

Getting you there. Smarter.

Jon Newhard – *General Manager* September 25th, 2019

Company Overview: Cubic & Trafficware

- Cubic (NYSE: CUB) billion dollar player in global transportation systems.
- Cubic ITS is the largest ITS player in North America incorporating Trafficware, GRIDSMART and Cubic brands.
- Trafficware designs, engineers, and manufactures every major component used to control an intersection, all in the USA.
- Reputation for technological innovation and high levels of quality and customer service.
- Most advanced software in the industry. Leaders in adaptive and connected vehicle.
- Large deployments at marque customers in the US and around the world.
- We do not create "technology orphans"

Coast to Coast Innovation

Technology Overview

Trafficware Cloud

	Connected Vehicle	SPM	Synchro Green	WEB.now	TSP	Emergency .now	TEAMS
	ссту	DMS	Parking Guidance	StreetSync	BlueTOAD	Alpha UPS	Disaster Recovery

ATMS.now

Central Management Platform

Dashboards

Database

Synchro® 10

Signal Timing & Analysis Software

Detection System

Cabinets & Controllers

Experience

- Houston, Texas
- Santa Clara County, California
- Seminole County, Florida
- Baltimore, Maryland
- New Jersey Transit
- Oklahoma City
- Palo Alto, California
- Broward County, Florida
- Sugar Land, Texas

Safety First

- Ensure Clearances
- Ensure No Conflicts
- Ensure Efficient Recovery

Rail and Traffic Operations

- Preemption Inputs
 - Some are Very Simple
 - Some or More Complex with Confirmation Circuits
- Clearance (Track) Phases
- Dwell Phases
- Exit Phases

Preemp Dwell Exit xit

Example

- Rail Crossing and Preemption at Rush Hour
- Signal Performs Clearance Routine
- Limited Service Operations During Train Crossing
- Signal Recovery
 - Priority Movements
 - Resume Standard Signal Coordination
 - "Transition Period"
- And Then Another Train

Traditional Traffic Signals

- Between 20,000-30,000 Settings in a Standard Traffic Controller
- Why Do Traditional Traffic Signals Struggle?
 - Programming is Relatively Static
 - Optimization is Local, Instead of Global
 - Infrastructure is Outdated

Goals

- Safety First and Foremost
- Optimize Traffic During Dwell and Exit Phases
 - Maximize Available Time and Space
 - Make Signals More Dynamic
- Quicker Recovery
- Better Reporting

Rail-Centric Traffic Signals

- Trafficware SCOUT Local Controller Software
- Features
 - More Phases, More Detectors, More Preempt Inputs
 - Custom Logic Lines
 - Peer to Peer Logic
 - Dynamic Exit Routines
 - Dynamic Recovery Modes
- What does this mean?
 - Faster Traffic Signal Synchronization After a Train Exits
 - Traffic Returns to Normal Faster
 - More Features and Options for Improving Traffic

Adaptive Signal Control Technology

- Automatically Adjusts Signal Timing in Real Time
- Able to Vary Green Times, Coordination Patterns and Sequences
- Technology has Gained Momentum in the Past Decade
- Applications in Various Traffic and Operational Scenarios
- Designed to Maximize Available Time and Space

What you Need

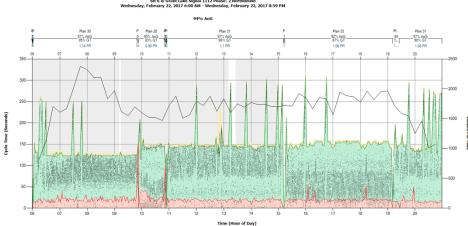
- Accurate Detection Technology
- Reliable Communications
- Processing Power

Locations

Benefits

- Faster Recovery After a Rail Preempt Event
- Dynamically Serve Delayed Movements First
- Create Custom Logic to Handle Unique Situations
- Maintain Operations at Unimpacted Locations
- Added Benefits
 - Lower Travel Time and Delay under Normal Conditions
 - Capacity to Handle Complex Operations
 - Reduced Emissions

Performance Metrics


- Dashboard of Current Operations
- Quantitative Performance Metrics
- Reports and Graphics
- Real Time and Historical Measures
- Reports Designed for Various Disciplines

Reporting

Closing Thoughts

- Rail Crossing and Preemption Are Necessary to Ensure Safety
- Traffic Disruption Can Be Minimized with the Right Tools
- Solution is Likely a Combination of Solutions
- Most Traffic Issues will be Addressed Using a Holistic Approach
- Reporting Tools are Critical and Lead to Informed Decisions
- Agencies are Embracing New Technologies
- Be Creative and Think Differently

