Hazen-Williams Equation

$\left.h_{f}=\left(10.434^{\star} L^{*} Q^{\wedge} 1.85\right) / C^{\wedge} 1.85^{*} d^{\wedge} 4.8655\right)$
where: $\quad h_{f}=$ head loss in feet
L = length of force main in feet
$\mathrm{Q}=$ pump discharge rate in GPM
C = constant (150 for PVC pipe)
d = diameter of pipe in inches (can be actual or nominal; i.e., the difference is not critical to the calculation)

Answer: $\mathrm{h}_{\mathrm{f}}=\quad 2.48 \mathrm{E}-01$

$$
2.48 \mathrm{E}-01, \mathrm{~L}=8^{\prime} \& \mathrm{~d}=2 "
$$

$1.01 \mathrm{E}+00, \mathrm{~L}=8^{\prime} \& \mathrm{~d}=1.5^{\prime \prime}$
$2.44 \mathrm{E}+00, \mathrm{~L}=8^{\prime} \& \mathrm{~d}=1.25^{\prime \prime}$
$7.24 \mathrm{E}+00, \mathrm{~L}=8^{\prime} \& \mathrm{~d}=1{ }^{\prime \prime}$
$2.93 \mathrm{E}+01, \mathrm{~L}=8^{\prime} \& \mathrm{~d}=0.75^{\prime \prime}$
$1.81 \mathrm{E}+00, \mathrm{~L}=2^{\prime} \& \mathrm{~d}=1^{\prime \prime}$
$3.64 \mathrm{E}+00$, TOTAL Head Loss (in feet)

