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 Production Cost Modeling 
 What is a model? 
 Detail vs. Runtime 
 Production Cost Methods & Examples 

 Resource Optimization Methods 
 Dynamic Programming 
 Linear Programming (LP) Solutions 
 Mixed Integer Programming Solutions (MIPS) 

 DSM Modeling 
 Costs 
 Impacts 
 Hourly Shapes 

 

Outline 
INTRODUCTION 
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What is a Model? 

 All production cost models are mathematical models that 
simulate the fundamental elements of a power system. 

 You cannot model with perfect precision and accuracy 
 The only 100% accurate model is called: “The Real World” 
 But it’s a very poor predictive model! 

 Need to make simplifying assumptions: 
 Tradeoffs must be made! 

 Runtime vs. accuracy 
 Level of detail required 

 Outputs 
 Inputs 

 Availability of reliable data 
 The answers to the tradeoff questions vary depending on the use of 

the model 
 Almost all the inputs are forecasted information 
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What is a Model? 

 Forecasts: 
 Forecasting is the process of making statements about future 

events whose actual outcomes can not be observed (yet). 
 Forecast accuracy is always a concern and key forecast variables 

should be bounded with statistically relevant sensitivities. 
 Forecasts are time dependent 

 Actual market conditions change and forecasts should be updated 
to reflect those changes. 

 Since almost everything input into the model is a forecast… 
 Accept that forecast accuracy is a concern 
 Compensate for expected forecast error with scenarios, 

sensitivities, and stochastics 
 Modeling is partly art and partly science 
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Detail vs. Runtime Considerations 

 Broadly speaking; Runtime is a function of detail 
 The level of detail in simulation models include:  

 Planning horizon, i.e., 15 year, 20 year, 30 year, etc. 
 Model footprint, i.e., stand alone utility, ISO, region, etc. 
 Number and complexity modeling elements 

 Breakout of customer loads and load centers 
 Number of resources, transmission areas, companies, & markets 

 Level of hourly/sub-hourly detail 
 Typical week, chronological, load aggregation 

 Modeling algorithms 
 LP/MIPS vs. DP 
 Deterministic vs. Stochastic 
 Security constrained economic dispatch 
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What Makes a Good Model? 

 Model Detail is a function of Use 
 Short term commitment and dispatch models require the most 

detail 
 Long term resource optimization models require less detail 
 Near term budgetary models’ requirements fall somewhere in 

the middle 
 No one model can do it all well, nor should it be expected to! 
 A good model will estimate the direction and magnitude of  

differences from one set of assumptions to another 
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How to use the model correctly… 

 The “correct” model is a balance between of the underlying 
purpose and adequate detail versus runtime. 
 Short Term models for commitment and dispatch decisions 

require volumes of operational data and constraints and are 
typically run hourly or sub-hourly 

 Long Term optimization models require reasonable runtimes, 
requiring fewer operational data and constraints and typically 
run with aggregated time intervals 

 Special purpose models such as LMP models, require all of the 
same elements of Short Term models plus the volume of detail 
associated with transmission modeling 

 Scenarios, sensitivities, and stochastic risk analysis have their 
places both at the less detailed modeling level and the more 
detailed level 



©2013 Ventyx, An ABB Company   8 

Production Cost Modeling 

 The key to production cost commitment and dispatch 
requirement  is a proper generation response to market 
prices. 
 All production cost models simulate the day ahead market. 
 Dispatch to price can be achieved through: 

 Detailed modeling of a market’s footprint*, or 
 A hub and spoke representation 

 
 
 
 
 

 *Even detailed modeling of the MISO market requires a hub and  
         spoke representation of New York/New England and Florida. 
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 Unit Dispatch Methods: 
 Deterministic 
 Direct Enumeration 
 Probabilistic 
 Monte Carlo 
 Security Constrained Commitment and Dispatch 

 

Production Cost Modeling 
INTRODUCTION 
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Deterministic Dispatch 

 
 
 
 

 
     

 

Unit A 

Unit B 

Unit C 

Unit D 

Unit E 
Unit F 
Unit G 
Unit H 

Unit K 
  Unit J 
   Unit I 

 Units Derated for Forced 
Outage Rates 

 Derated Units “stacked” 
against a Load Duration 
Curve (LDC)  

 Unit energies calculated 
by linear interpolation 
against the LDC 

 Pros:  Speed 
 Cons:  Dispatch accuracy 
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Random Forced Outages must be Modeled 

 Probabilistic production cost modeling is a necessary 
complexity 
 Captures the uncertainty of unit availabilities 
 Better represents expected generation from peaking resources 

 Three methods of doing this: 
 Direct Enumeration Method (Calebrese) 
 Probabilistic Simulation – Convolution Method 
 Monte Carlo Method 

 Let’s look at an example using all three of these methods… 
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Emergency Energy 
Cost $100 / MWh 

Demand:  640 MW 

LOAD 

640 
MW 

0 
0 Time 1 

UNIT A 

UNIT B 

UNIT C 

Capacity 400 MW 
F.O.R 20%  
Cost $10 / MWh 

Capacity 350 MW 
F.O.R 15%  
Cost $25 / MWh 

Capacity 75 MW 
F.O.R 5%  
Cost $60 / MWh 

Unit Uncertainty Example  
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Modeling Forced Outage Rates and  
Calculating Production Cost 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation – Convolution Method 

 
 Monte Carlo Method 
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Let’s Look at 
the Probability 
and Outcome of 
Each State for 
the Load of 640 
MW in 1 Hour  

N    Y   Y   .2 x .85 x .95 = .1615 

Direct Enumeration Method (Calebrese) 

STATE 
PROBABILITY 

OUTCOME 

GENERATION (MWH) 
$ 

B 

Y 

Y 

N 

N 

Y 

N 

Y 

N 

C 

Y 

N 

Y 

N 

Y 

Y 

N 

N 

 

0.646 

.0340 

.1140 

.0060 

.1615 

.0285 

.0085 

.0015 

1.0000 

UNIT A 

400 

400 

400 

400 

0 

0 

0 

0 

320 

UNIT B 

240 

240 

0 

0 

350 

0 

350 

0 

222.7 

UNIT C 

0 

0 

75 

0 

75 

75 

0 

0 

22.8 

EMERGENCY 

0 

0 

165 

240 

215 

565 

290 

640 

74.5 

 

10,000 

10,000 

25,000 

28,000 

34,750 

61,000 

37,750 

64,000 

17,585 EXPECTED RESULT: 

A 

Y 

Y 

Y 

Y 

N 

N 

N 

N 
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Direct Enumeration Method (Calebrese) 

 Direct Enumeration Method (Calebrese) 
 Calebrese’s method gives correct answer ... but: 
 3 units, each with two capacity states, yielded 23 = 8 distinct cases 
 50 units, each with 5 partial availability states would require 

enumeration of 550 or 8.8 x 1034 cases 
 

 At 1000 cases per second, it would take 2.8 x 1022 
years to evaluate! 
 

 Even for small systems enumeration is infeasible 
since load changes hourly and sub-hourly !!! 
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Modeling Forced Outage Rates 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation: Convolution Method 

 
 Monte Carlo Method 
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Probabilistic Simulation: Convolution Method 

 Method of combining probability distributions of 
unit forced outages 

 
 Procedure uses a remaining equivalent load 

distribution function 
 

 Produces results that are mathematically 
equivalent to direct enumeration 
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Probability Distribution Functions 

LOAD PROBABILITY 
DISTRIBUTION FUNCTION 

UNIT CAPACITY AVAILABILITY 
PROBABILITY FUNCTION 

EXPECTED LOAD DISTRIBUTION 
FUNCTION AFTER DISPATCH OF 

CAPACITY 

X = 

MW 

PROBABILITY 

X 

80 

20 

0 MAX 
MW 

DISCRETE AVAILABILITY (% ) 

= 
MW 

PROBABILITY 

Probabilistic Simulation: Convolution Method 
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Probabilistic Simulation: Convolution Method 

UNIT A 
400 MW DISPATCH OF UNIT A 

LOAD 
BEFORE UNIT 

A IS 
DISPATCHED 

640 

1.0 

MW 

640 

1.0 

400 

UNIT A 

UNIT A GENERATION 
400 (1.0) X .80 = 320 MWH 

PROBABILITY 

80%  
available 

20%  
unavailable 

240 

1.0 

240 

1.0 

240 

1.0 

640 

REMAINING 
LOAD 

.2 

+ 

640 
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Probabilistic Simulation: Convolution Method 

DISPATCH OF UNIT B 

640 

1.0 

MW 

UNIT B GENERATION 
[ 350* (0.20 ) + 240*(0.80 )] X 0.85 

PROBABILITY 

85%  
available 

15%  
unavailable 

1.0 

290 

1.0 

240 240 

1.0 

640 640 REMAINING 
LOAD 

UNIT B 
350 MW 

.2 

.2 

+ 350 

UNIT B 

640 

1.0 

240 

.2 

290 

REMAINING LOAD BEFORE 
UNIT B IS DISPATCHED 

240 

.2 0.32 
0.2 

0.03 
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UNIT C DISPATCH OF UNIT C 

UNIT C GENERATION 
[75 (.32)] X .95 = 22.8 MWH 

95%  
available 

5%  
unavailable 

+ 

PROBABILITY 

REMAINING LOAD BEFORE 
UNIT C IS DISPATCHED 

640 

.32 

240 
290 

.2 .03 

75 
UNIT C 

565 

.32 

165 
215 

.2 .03 .32 

240 

640 

.2 

290 

.03 

290 

.2060 

640 
REMAINING 

LOAD 

565 

240 
165 
215 

.0015 .03 .0445 .3200 
.0385 

.32 

240 

640 

.2 

290 

.03 

Probabilistic Simulation: Convolution Method 
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Probabilistic Simulation: Convolution Method 

 Expected Generation 
  Unit A = 320 MWH 
  Unit B = 222.7 MWH 
  Unit C = 22.8 MWH 
  Emergency = 74.5 MWH 

 
 Expected Production Cost 

  (320 x 10) + (222.7 x 25) + (22.8 x 60) + (74.5 x 100) = $17,585.50 
 

 It can be shown that convolution is mathematically equivalent to direct 
enumeration 

 Expected Marginal Cost  
    $ 49  / MWH 



©2013 Ventyx, An ABB Company   23 

Modeling Forced Outage Rates 

 
 Direct Enumeration Method (Calebrese) 

 
 Probabilistic Simulation: Convolution Method 

 
 Monte Carlo Method 
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Monte Carlo Method 

 Estimate probability function of random variables; e.g. 
Forced Outage Rate of Each Unit  
 

 Simulate the system by using a random number generator 
to produce a sample from the probability functions 
(simulate generating unit forced outages) 
 

 Process is repeated a large number of times  
(typically dozens to hundreds of draws) 
 

 Results from all draws are averaged together 
 

 Average approaches the expected value as the number of 
draws (sample size) increases 
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Monte Carlo Method:  Example 

 Suppose twenty draws were taken as follows from the 8 possible combinations: 
 1, 3, 4, 1, 1, 1, 5, 1, 1, 5, 6, 1, 1, 2, 1, 7, 1, 3, 1, 1 
 Frequency for each outcome: 
  
  
 

 Outcome Frequency Unit A Unit B Unit C
0 0 N N N
1 12 Y Y Y
2 1 Y N N
3 2 Y N Y
4 1 N Y N
5 2 N Y Y
6 1 N N Y
7 1 Y Y N

Total 20

State
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Monte Carlo Method:  Example 

 Estimate the expected values by the direct average of results “Expected” Generation of: 
 

 Unit A= [(0x0) + (12x400)+ (1x400)+ (2x400)+ (1x0)     +(2x0)     +(1x0)   +(1x400)] / 20 = 320 
 

 Unit B= [(0x0) + (12x240)+ (1x0)    + (2x0)    + (1x350) +(2x350) +(1x0)   +(1x240)] / 20 = 208.5 
 

 Unit C= [(0x0) + (12x0)    + (1x0)    + (2x75)  + (1x0)     +(2x75)   +(1x75) +(1x0)    ] / 20 = 18.75 
 
 

10 25 60 100

400 350 75
Expected

Outcome Freq Unit A Unit B Unit C Unit A Unit B Unit C Emerg Engy Cost $ Unit A Unit B Unit C Uns.Energy
0 0 N N N 0 0 0 640 64,000$   0 0 0 0
1 12 Y Y Y 400 240 0 0 10,000$   4800 2880 0 0
2 1 Y N N 400 0 0 240 28,000$   400 0 0 240
3 2 Y N Y 400 0 75 165 25,000$   800 0 150 330
4 1 N Y N 0 350 0 290 37,750$   0 350 0 290
5 2 N Y Y 0 350 75 215 34,750$   0 700 150 430
6 1 N N Y 0 0 75 565 61,000$   0 0 75 565
7 1 Y Y N 400 240 0 0 10,000$   400 240 0 0

Total 20 6400 4170 375 1855
320 208.5 18.75 92.75

Capacity MW

Generation Mwh

Cost $/Mwh

State

Load = 640 MW

Expected Generation
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Monte Carlo Method:  Example 

  “Expected” Production Cost =  
 [(0x64,000)] +(12x10,000) + (1x28,000) + (2x25,000) + (1x37,500) + (2x34,750) + (1x10,000)  (1x61,000)] / 20 

= $18,812.50 
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Dispatch 

Unit A 320.0 320.0 320.0 
Unit B 222.7  222.7  208.5 
Unit C 22.8  22.8  18.75 
Unsupplied 74.5  74.5  92.75 
 
Cost ($)    17,585.5 17,585.5              18,812.5 
    
($/MWH)  
Average Cost            27.48                  27.48                   29.39 
Exp.Marginal Cost  49.00                  49.00                   51.25 
 

Enumeration 
Method 

Convolution 
Method 

Monte 
Car lo 

Modeling Forced Outage Rates - 
Comparison of Results 
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Modeling Forced Outage Rates - 
Comparison Modeling Techniques 

 Enumeration is computationally intensive and 
considered not feasible as load changes hourly 
and systems generally have many more units 

 

 Convolution is mathematically equivalent to 
enumeration without the computational burden 

 

 Monte Carlo’s deterministic algorithm benefits 
some commitment and dispatch applications, but 
it requires iteration for convergence 
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Load Representations 

 All Production Cost models must represent the load to be 
served: 
 Customer load (utility sales) 

 Energy 
 Peak demand 
 Time series consumption data 

 Hourly 8760 covering the entire year 
 Typical Weeks (168 hours per month) 
 Aggregations of hours by time bucket or sub-period within the 

week or month 
 Losses 

 Transmission & Distribution 
 Can vary by customer class 

 Customer Load + Losses = Generation Requirements 
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Glossing over… 

 Differences in how specific models handle: 
 Bilateral Transactions 
 Market Energy and Capacity Purchases 
 Hydro & Energy Storage Resources 
 Transmission & Distribution 
 Distributed Generation 
 Etc. 
 Etc. 
 Etc. 
 DSM… 
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Optimization  

 Optimization models seek the optimal solution for a system 
 With one or more objective functions: 

 Minimize revenue requirements 
 Minimize societal cost 
 Maximize shareholder benefit 

 Subject to constraints 
 Reserve Margins 
 Unit X is not available for construction until xx/xx/20xx 
 Unit X and Unit Z are not allowed to occur simultaneously 
 No more than 3 Unit Y’s may be built over the time horizon 
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Resource Optimization 

 Optimization models evaluate the key cost components of 
new generation:  Cost of construction, Cost of production, 
Cost (or Benefit) of Market Interaction, etc. 
 Models require an imbedded production cost model 
 Models require a capital expenditures model 

 Optimization Methods 
 Dynamic Programming (DP) Solutions 
 Linear Programming (LP) Solutions 
 Mixed Integer Programming Solutions (MIPS) 
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Dynamic Programming (DP) Solutions 

 Dynamic programming generates possible solutions (states) in 
each year that satisfy the optimization problem’s constraints 

 Iterates forward generating each year’s states based on all the 
states that passed in the previous year 

 All possible combinations are explored 
 Only those combinations that meet all constraints are saved 
 Pathways that reach the same state in any one year are 

converged and only the least expensive pathway is saved 
(Bellman’s Principle of optimality) 

 Possible to generate an optimization problem that it is 
infeasible to solve with available computing resources 

 Each additional prototype option adds to the size of the 
solution set, and to runtime 
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Dynamic Programming (DP) Solutions 

 At the end of the time horizon the paths are traced backward 
to determine the timing of resource additions. 

 End Effects analysis may be performed 
 This methodology yields multiple plans 
 Plans are then sorted in rank order on the Objective Function 

 
 This method is called Forward Propagation – Back Trace 
 It is theoretically possible to do Back Propagation 

 This would be computationally more efficient 
 This has only been demonstrated in simplified models 
 The number of variables in models with sufficient detail to be 

reasonably accurate for real systems makes this infeasible in 
practice 
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Linear Programming (LP) Solutions 

 Uses a mathematical method that solves for all years and all 
possible combinations of prototype resources simultaneously 

 The result can put in “partial” units 
 Yields only a single “optimal” answer 
 That answer is only “optimal” for the specific set of 

assumptions 
 Must change the optimization problem’s constraints and/or 

assumptions to generate “sub-optimal” answers  
 The result can be considered a representation of the optimal 

mix of resources from among the prototypes offered 
 More efficient (than DP) when used with stochastic 

uncertainty modeling (Risk Analysis) 
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Mixed Integer Programming Solution 

 Uses same mathematical methods as LP, but requires that 
“whole” units be added 

 Yields a solution that represents a potential “real” future 
resource plan 
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Why does this matter? 

 Theoretically, optimal is optimal no matter how you get 
there 

 In practice, resource optimization models may yield slightly 
different optimization results  

 This depends on: 
 The underlying production cost engines 
 The problem constrains available/employed 
 The level of detail in the models 

 Convolution methods preferred to Monte Carlo 
 Simplified hourly representations of the load and dispatch 

generally used (i.e. – Typical Week, Time Block Aggregation) 
 Need to run detailed models to fully capture operational 

details and interactions 
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DSM Modeling 

 DSM in integrated resource planning models  
 Ways to include DSM 
 Associated pros and cons. 

 Costs 
 Impacts Analysis 
 Hourly Impact Shapes 
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Incorporating DSM in Production Cost Models 

 Subtract it from the load before running the production costs 
 Advantages: simple and can be done with spreadsheets 
 Disadvantages:  

 Have to assume how much DSM there is beforehand 
 Assessment of individual programs possible but hard 
 No direct capture of associated costs 

 Roll all the DSM together and represent as a single purchase 
transaction 
 Pros:  

 Again it’s pretty straightforward and most of the work is done off-
line in spreadsheets 

 You can capture the costs in aggregate 
 Cons: Same as fist two “Disadvantages” above 
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Incorporating DSM in Production Cost Models 

 Model DSM as a Load Modifying Resource 
 In aggregate including costs… 
 Individual programs 

 Pros: 
 Much more detail on individual program impacts and costs 
 Can turn programs on & off to assess individual impacts 

 Cons: 
 Need more detailed data on each program, so data maintenance 

burden goes up 
 Sometimes that additional detail results in inconsistencies 

 The better resource planning models allow modeling of 
individual resources 
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DSM Costs 

 Utility Company Costs 
 Program operation/administration costs 
 Marketing/advertising costs 
 Implementation costs 
 Verification and measurement costs 
 Customer sign up costs 
 Incentives 

 Customer Costs 
 Equipment 
 Operating Costs 
 Maintenance Costs 
 Fuel Costs 

 Externality and Societal Costs 
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DSM Costs 

 The more detail you have on costs the more refined your 
cost/benefit modeling can be 

 Supports all the California Standard Practice Manual B/C Tests 
 The more “slots” you have for the various costs the more 

separated you can keep them in the model – ease of tracking 
inputs 

 But that can lead to modeling inconsistencies between 
programs – the modeler has to be focused and disciplined 
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DSM Impacts 

 Energy Savings 
 Annual 
 Monthly 

 Peak Demand Savings 
 Program Peak 
 Coincident Peak 

 Hourly Load Impact Shapes 
 8760 Hours 
 Model Granularity 
 Diversified vs. Undiversified 
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Going Back to the Question of Hourly Load Shapes 

 Production costing models all need a representation of the 
pattern of customer demands, as well as forecasts of their 
energy consumption and peak demand 

 Why?  Because depending on the model’s level of detail: 
 All of them need to “stack” the resources to serve the load 
 Some models do everything on an hourly basis (Hourly Monte 

Carlo) 
 Others use Typical Weeks to represent the load for the dispatch 

period 
 Still others use hour “buckets” to simplify the dispatch 
 Sub-periods: Weekday, Weeknight, Weekend 
 Hour to hour load differences drive the way units are 

committed – regardless of the underlying load representation 
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The Issue with DSM Impact Shapes 

 For production cost models diversified hourly customer load 
shapes are assumed 

 By definition any measurement of load at an aggregated level 
is “diversified” 

 What is “diversified load?” 
 Represents an average across a large number of customers 
 Some individual customers will be “on” more than others in any 

given hour due to equipment cycling (e.g. – AC) 
 Engineering estimates generally represent “undiversified” load 

 No variance from customer to customer in hour to hour usage 
 You can’t just multiply by the number of customers! 
 Results in an overestimation of impact at peak 
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Diversified Impacts vs. Undiversified Impacts 

 DSM analysis models frequently use an hourly impact 
representation called “T36” 
 Typical Days – the “T” part 
 Each month in the year represented by a typical weekday, and 

typical peak day, and a typical weekend day – 3 day types times 
12 months = the “36” part 

 Day types are strung together to get 8760 shapes – usually the 
weekdays and weekend days to estimate overall energy savings 

 The peak day shape is adjusted for diversity to correct for 
overestimation by simple multiplication 

 The problem: really only three days types 
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Why is this an Issue for Resource Planning Models? 

 Resource additions are driven (mostly) by capacity reserve 
needs 

 This is measured at the time of the peak 
 If the impact of the DSM at the time of system peak are 

wrong this results in an incorrect estimate of capacity need 
 The weekday + weekend day doesn’t capture the peak day so 

it needs to be overlain on the correct day 
 But the Diversity Adjustment applied suppresses its hourly 

impacts 
 Sometimes the resulting “Peak Day” impacts are less than 

comparable hours from the Weekday! 
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Worse yet… 

 The hourly impacts for Weekdays and Weekend Days are the 
undiversified load shapes “grossed up” for the number of 
participants 

 So the hourly impacts may be under or overstated depending 
on the error vs. a diversified hourly impacts shape 

 Again; this can have profound and potentially detrimental 
impacts on the dispatch of the system’s resources against the 
remaining load after DSM is applied 

 So the costs calculated from that dispatch can be wrong too 
 This can either overestimate the costs and/or savings from a 

program, or underestimate them 
 There is no way to know for sure if you have it right unless the 

underlying load shapes are all based on Diversified shapes  
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Finally 

 Incorrect hourly impact shapes can cause even more error in 
models that can capture Time of Use and Block  Rate 
Structures 

 This is also true for hourly dispatch models 
 Error is less for aggregated load models, but these are less 

accurate to begin with 
 Models with load precision somewhere in the middle will 

have less error – but the error didn’t go away completely. 
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Eric Hughes 
Vice President 
Ventyx Advisors 
678-830-1049 
eric.hughes@ventyx.abb.com 
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