CHAPTER 3
SUBSURFACE INVESTIGATION
PLANNING AND SAMPLING
REQUIREMENTS

3.0 GENERAL

All geotechnical work performed by an approved consultant for the State of Indiana or Local Public Agencies (LPA), such as any Indiana local municipalities or county government involving the use of State or Federal funds, shall meet the requirements as described herein. All the dimensions of the equipment shall meet the requirements of AASHTO, ASTM, or Indiana Test Methods (ITM)s unless otherwise specified herein. All work performed by the licensed Geotechnical Engineer for state and local agencies under these requirements shall consist of making a complete foundation investigation for the adequate design, construction of bridges, roadways, and any other associated structures.

A complete foundation investigation shall consist of an adequate program of field sampling, laboratory testing, engineering analysis, and evaluation. Results shall be presented in report form. The investigation shall be performed in compliance with the procedures outlined in this document and accepted principles of sound engineering practice shall be used. Project investigations on State and/or National Highway System (NHS) route shall be subject to the approval of the Manager of the Geotechnical Services of the Indiana Department of Transportation. Project investigations on local routes may be reviewed by the Manager, INDOT Geotechnical Services if requested by the LPA. Unless otherwise subsequently noted, later references to as approved or directed will imply as approved or directed by the INDOT Manager of Geotechnical Services.

3.1 GEOTECHNICAL INVESTIGATION

The geotechnical investigation is defined as the exploration of subsurface conditions along new or existing highway alignments as required for the adequate design and construction of bridges, roads, and other necessary structures. This investigation may be preliminary such as a corridor study or it may be more specific, such as the more frequently performed geotechnical exploration for roads, bridges, retaining structures, landslides, etc. The investigation details will depend upon the requirements of the individual project. Some project classifications include overlays, rubblization, reconstruction, new construction, bridge rehabilitation, bridge replacements, or landslides. Project classification provides an indication of the extent and complexity of the required geotechnical investigation. The Indiana Design Manual outlines the project types that do not require a geotechnical investigation. A geotechnical investigation will be performed on all other projects.

3.2 PURPOSE OF GEOTECHNICAL INVESTIGATION

The purpose of the geotechnical investigation is to identify the existing conditions of the in situ soils, rock types, and ground water in respect to the project requirements. It will also include the chemical and physical properties of the soils and rock to better enable the engineers to design the most uniform, stable, and cost-effective road or bridge foundations. The investigation may also be used to locate construction material for building embankments along roadways.

3.3 OFFICE STUDIES

The initial steps for conducting a geotechnical investigation are done in the office, prior to field work. A review of currently available information needs to be performed. Indiana is exceptionally fortunate to have state organizations which have published geological, agricultural, and water surveys for many years. These
publications provide a wealth of information for nearly every part of the state. Therefore, prior to initiating the field work for any project, a review of this literature, as well as previous studies done for and by INDOT, should be undertaken. This literature survey should be followed by an examination of any available boring logs and well drilling records, as well as any other available information. Also, this information gathering could include a review of aerial photography, United State Department of Agriculture (USDA), Soil Conservation Survey (SCS) reports, topographic maps, pedologic maps, bedrock surface maps, geologic maps, INDOT Data Bank, quaternary deposits maps, and other pertinent studies which have been completed for and near the project site.

3.3.1 PRELIMINARY PLANS

The proposed route and grade are a part of the preliminary plans. By review of these plans and the available literature, a geotechnical engineer or engineering geologist can identify many of the conditions that could potentially cause problems. These may include the extent of fill, cut, peat/marl deposits, landslides, sinkholes, abandoned mines, etc.

3.3.2 MAPS

Any available maps will be useful in determining the extent to which construction will influence or be influenced by the physical site conditions. Listed below are types of maps that may prove useful.

Quaternary Geologic Map of Indiana.
- 1° x 2° Regional Geologic Maps.
- 7 1/2 Minute Topo Quadrangle Maps.
- Topograph of the Bedrock Surface.
- Thickness of Unconsolidated Deposits.
- Soil Conservation Service County Soil Survey Map.
- JTRP A-P Soil Survey.
- Area Maps For Mines

These maps can be used as guides in planning the geotechnical investigation and defining areas of concern for the site reconnaissance. Additional maps of different types are available through the geological survey’s website: maps.indiana.edu

3.3.3 PREVIOUS WORK

Studies and construction plans completed for the existing or nearby projects can be useful in identifying the problem areas. In particular, previous investigations and construction records that give a history of the roadway and bridge are useful in planning the investigation.

The INDOT Geotechnical Services retains many geotechnical reports from previous projects. This includes preliminary plans, boring logs, test results, field observations, and correspondence relating to the project. Because of limited space, occasionally older files are eliminated, so not all projects are available.

Proper use of previous geotechnical data can sometimes reduce geotechnical work in some project areas. It can also help define soil types and pinpoint the areas of typical geotechnical problems even before the first on-site field investigation.
3.3.4 AERIAL PHOTOGRAPHY

The first step in any site investigation should be an examination of the area geography. Easy and quick resources for investigating are the various interactive map sites on the internet. Some examples include, but not limited to the following sites:

http://maps.google.com
http://maps.yahoo.com
http://earth.google.com

Internet maps are more current than the photographs provided by the USDA or SCS in each county soil maps, and the internet maps are set up to be maneuverable to more closely observe features of the site which are pertinent to the geotechnical investigation.

3.3.5 MAINTENANCE OPERATIONS REVIEW

It is important to get past performance, history, frequency, and type of rehabilitation from the maintenance engineer. This information can be found during the preliminary field check. Sometimes it is noteworthy to ask questions about the maintenance history from the local INDOT or county transportation workers to obtain more details about past problems.

3.3.6 ENVIRONMENTAL CONCERNS

Any available environmental information which could impact the geotechnical design, should be reviewed. The Pre-Engineering and Environmental Services Division of INDOT performs environmental assessment reports on all state projects. The environmental assessment includes possible presence of old underground storage tanks, hazardous or toxic spills, etc.

3.4 FIELD RECONNAISSANCE

The Geotechnical Engineer shall attend the preliminary field check and establish the boring locations, rig type requirements, accessibility and record any existing problems such as pavement distresses, slope failures, or any other problems within the project limits. During the field check, the Engineer should inquire about any details related to bridges, culverts, retaining structures and any restrictions, as well as local ordinances about any construction activities. Environmental concerns should also be reviewed at this time.

3.5 LOCATIONS AND DEPTHS OF BORINGS

Locations and depths of soil borings are very important for the geotechnical investigation of the proposed structure. It should provide the maximum possible information about the subsurface conditions for the design of the structure. The location and the depths of soil borings depend upon the existing topography, type of the structure as well as shape, size, and anticipated loads. The following are guidelines for soil boring locations and depths for various kinds of structures. For additional guidance, Section 10.4.2 of the AASHTO Load and Resistance Factor Design Bridge Design Specifications, as well as current FHWA and NHI manuals should be considered. The following series of guidelines are presented to enable a geologist, geotechnical engineer, or others to prepare a subsurface drilling and coring program. However, geotechnical judgment should also be used to determine the subsurface profile based on known or mapped geology and regional experience which could include the knowledge of karst areas, mines, rock elevation extremes, and boulder rich glacial sluiceways.
3.5.1 BRIDGE STRUCTURES

3.5.1.1 LOCATION OF BORINGS
The site designer shall furnish plans of the structure for which borings are to be made. Generally, the plans shall consist of road plan and profile sheets, and a situation plan showing the location of substructure elements and cross-sections of the structure’s approaches. The plan and profile sheets will include maximum high water elevation and the stream bed elevation. In general, there shall be a boring located within 10 feet of each pier and end bent. The borings shall alternate right and left of the center line of the structures. Twin structures shall be considered as separate structures. For substructure units over 100 feet in width, a minimum of two borings per pier should be performed. Additional borings may be required as described in the following sections, or as directed by the Engineer. In the case of skewed structures, the borings should be located at the extreme end of the end bents to better determine any subsurface variation at the maximum end limits of such proposed structure. When the prescribed boring program does not reveal adequate information to define various strata, additional borings may be required.

3.5.1.2 DEPTH OF BORINGS
Borings shall be drilled to a minimum depth of 90 feet below ground elevation, unless bedrock is encountered at a shallower depth. The boring depth shall extend below the anticipated pile or shaft tip elevation of a minimum of 20 feet. However, if high pile loads are proposed, deeper borings may be required. Engineering judgment shall be used to determine these additional boring depths. The first boring performed should be at an interior pier.

In the case of stream crossings, the boring depth shall penetrate a minimum of 15 feet below the Q500 scour depth or the depth that is sufficient to carry the pile loads when the scourable overburden materials are removed. The latter depth shall extend 20 feet below the anticipated pile tip elevations. Engineering judgment shall be required to establish the pile tip elevations required to carry the pile loads and should be handled on an individual basis for each structure. Specific guidelines for the final depth of boring in soil and in bedrock are outlined below.

3.5.1.3 BORINGS IN SOIL
Borings in any soil shall penetrate to the specified depth and penetrate a minimum of four split spoon samples into material having a standard penetration blow count (N) of 15 or greater. If this minimum penetration of 15 blows per foot material has not been obtained at the proposed boring termination depth, the boring shall be extended until this requirement is met or the INDOT project geotechnical engineer should be contacted for further guidance.

When groundwater is encountered, water or drilling mud should be added to the hole to maintain the water level in the hole at or above the groundwater level to aid in avoiding a quick condition when granular soils are encountered. This precaution will keep the sand from coming up in to the casing. The ball check valve in the split spoon sampler should not be removed, and washing through the spoon will not be permitted.

3.5.1.4 BORING THROUGH ROCK
When rock is encountered in the boring, rock coring will be required in each boring. Rock coring should not begin until auger refusal is obtained. When auger refusal, as specified below, is not achieved within 10 feet of encountering bedrock, the project geotechnical engineer should be contacted for guidance. Auger refusal shall be defined as auger penetration of less than 6 inches under 500 psi of auger-feed down pressure for a period not less than 10 minutes. Rock coring should not begin or end in weathered bedrock, such as weathered shale or weathered limestone unless absolutely necessary. Coring and sampling shall not be terminated in coal seams or voids. Recovery and rock quality designation (RQD) shall be calculated and recorded before transporting core samples from boring locations.

Page 4 of 23
If rock is encountered in the course of conducting borings for a structure a minimum length of coring of 10 feet into rock will be required at each substructure with a minimum recovery of 75% and a minimum RQD of 50%. For drilled shafts the minimum length of rock cores shall be 10 feet or at least 3 times the diameter of shaft, whichever is greater, below the shaft tip elevation. If these values are not achieved an additional 5 feet of coring shall be completed. This coring shall be conducted in 5-foot “runs”. 10 foot “runs” will only be allowed in special cases and shall be pre-approved by the Geotechnical Services. If the project is in an area in which it is known that geologic conditions will not allow the above criteria to be met, engineering judgment must be applied. A sounding shall be performed at the opposite end from the boring made for each pier or bent. These soundings shall be terminated in sound rock after achieving auger refusal. If there are layers of soft materials, voids in the cored rock, or other geological uncertainties are encountered, a minimum length of 10 feet of rock core shall be taken from each boring and sounding at each substructure.

3.5.2 SEWERS, PIPES, AND CULVERTS

3.5.2.1 TRENCHLESS PIPE INSTALLATION
A minimum of two borings for trenchless pipe shall be obtained. Engineering judgement shall be used to determine the location of the borings to optimize the soil information. The depth of the boring shall be a minimum of 5 feet, or twice the pipe diameter below the invert elevation, whichever is deeper. The sampling shall be continuous. Where groundwater is encountered, consideration shall be given to installing an observation well. Where rock is encountered within the required boring depths a 5-foot rock core shall be obtained.

3.5.2.2 STORM SEWERS
Borings shall be located over proposed sewer at points of maximum invert depths with a maximum spacing of 500 feet. A minimum of two split spoon samples shall penetrate below the invert elevation. When rock is encountered, coring shall be performed and a minimum 5-foot core shall be obtained. In areas that are inaccessible to machine drilling, hand auger soundings shall be performed to delineate the soils.

3.5.2.3 SMALL CULVERTS (3 FEET OR LESS DIAMETER)
A minimum of one sounding shall be made at each end of the pipe within the existing ditch, creek, or stream channel to determine the depth of any soft soils to be removed. The depth of soundings shall extend a minimum of one pipe diameter below the proposed flow line, or into firm material. Additionally, dynamic cone penetrometer (DCP) tests shall be performed at each end of the proposed culvert to a depth of 5 feet with blows recorded per each 6-inch increment.

3.5.2.4 LARGE CULVERTS (GREATER THAN 3 FEET DIAMETER)
For all drainage structures larger than 3 feet, the minimum number of borings and soundings required depends on the structure length, as summarized below:

- Drainage structures 150 feet or less in length will require a minimum of one boring near the maximum proposed fill height. The depth of the borings should be a minimum of twice the structure width below the invert elevation, or twice the fill height, whichever is deeper. If rock is encountered within the proposed depth of excavation, coring shall be performed. A minimum of one 5-foot core shall be taken for each structure. Additionally, DCP tests shall be performed at each end of the proposed culvert to a depth of 5 feet with blows recorded per each 6-inch increment.

- Drainage structures greater than 150 feet in length will require one boring near each outside shoulder at the proposed maximum fill height. The depth of the borings should be a minimum
of twice the drainage structure width below the invert elevation, or twice the fill height, whichever is deeper. If rock is encountered within the proposed depth of excavation, coring shall be performed. A minimum of one 5-foot core shall be taken for each structure. Additionally, DCP tests shall be performed at each end of the proposed culvert to a depth of 5 feet with blows recorded per each 6-inch increment.

- In the event the proposed drainage structure crosses an existing ditch, creek, or stream channel, the boring criteria above should be followed and an additional boring shall be located in the existing channel. If the additional boring is inaccessible to machine drilling, a minimum of one DCP test shall be performed at that location to a depth of 5 feet. Blow counts shall be recorded for each 6-inch increment.

3.5.2.5 PLATE ARCHES ON FOOTINGS

Often large structures are proposed which are not considered to be bridges by the INDOT Division of Design. An example of these structures is structural plate arches on footings (bottomless). Borings should be located under the footing within the existing channel along the entire length of the structure and at the ends at intervals not exceeding 100 feet. The borings should alternate from one side to the other. Soundings should be performed between the borings and at the ends within the existing and the proposed channel. The depth of the borings should be a minimum of twice the structure width below the invert elevation or twice the fill height, whichever is deeper. If the proposed channel borings are inaccessible to machine drilling, DCP tests may be performed with the approval of the Office of Geotechnical Services at those locations to a depth of 5 feet. Blow counts shall be recorded for each 6-inch increment.

3.5.2.6 CULVERTS ON FOOTINGS

Box culverts on spread footings (bottomless) is also a large structure that is not considered a bridge. For box culverts wider than 10 feet, the minimum depth of the boring shall be 30 feet below the invert of the proposed foundation. Borings shall penetrate to the specified depth and penetrate a minimum of four consecutive split spoon samples into material having a standard penetration blow count N of 15 or greater. If this minimum penetration of 15 blows per foot material has not been obtained at the proposed boring termination depth, the boring shall be extended until this requirement is met or the project geotechnical engineer should be contacted for further guidance. If rock is encountered within the planned depth of investigation a minimum of one 5-foot rock core should be taken for each structure. RQD and recovery percentages should be obtained, as described in Section 3.5.1.4.

3.5.3 RETAINING STRUCTURES

At the early stages of planning and development retaining wall type, location, and limits may not delineated Therefore, the preliminary engineering report, plans, visual inspection, and discussions with designers should be deliberated to develop a scope of subsurface investigation for retaining structures.

3.5.3.1 CANTILEVER RETAINING WALLS

Borings should be located at the proposed extremities and along the proposed alignment of retaining structures as closely as possible. Boring spacing along the alignment shall be no more than 100 feet for walls less than 20 feet high, and no more than 50 feet for proposed wall heights greater than 20 feet. Each proposed wall shall have a minimum of two borings completed along the proposed alignment. Back borings shall be completed at a distance of 1.0 - 1.5 times the proposed wall height behind the proposed alignment and at a spacing of 100 feet along the alignment. The depths of borings shall be a minimum of twice the height of the wall.

Borings shall penetrate to the specified depth and penetrate a minimum of two consecutive split
spoon samples into material having a standard penetration blow count N of 15 or greater. If this minimum penetration of 15 blows per foot material has not been obtained at the proposed boring termination depth, the boring shall be extended until this requirement is met or the project geotechnical engineer should be contacted for further guidance.

Where rock is encountered in the planned depth of investigation, a minimum of one 5-foot rock core shall be taken for every 150 feet of wall length with a minimum of two cored boreholes for each wall. Non-cored borings shall be terminated after achieving auger refusal and competent rock profile developed.

3.5.3.2 ANCHORED WALLS
Borings should be located at the proposed extremities and along the proposed alignment of retaining structures as closely as possible. Boring spacing along the alignment shall be no more than 100 feet for walls less than 20 feet high and no more than 50 feet for proposed wall heights greater than 20 feet. Each proposed wall shall have a minimum of two borings completed along the proposed alignment. Back borings shall be completed at a distance of 1.0 - 1.5 times the proposed wall height behind the proposed alignment and at a distance of 100 feet along the alignment. Front borings shall be completed in front of the proposed wall at a distance of 0.75 - 1.0 times the proposed height and at a spacing of 100 feet along the proposed alignment.

The depths of borings shall be a minimum of twice the height of the wall. Borings shall penetrate to the specified depth and penetrate a minimum of two consecutive split spoon samples into material where a standard penetration blow count N is 15 or greater. If this minimum penetration of 15 blows per foot material has not been obtained at the proposed boring termination depth, the boring shall be extended until this requirement is met, or the project geotechnical engineer should be contacted for further guidance.

Where rock is encountered in the planned depth of investigation, a minimum of two 5-foot rock cores shall be taken for every 150 feet of wall length with a minimum of two cored boreholes for each wall. 10 feet of rock core shall also be obtained from back borings for anchor design. Non-cored borings shall be terminated after achieving auger refusal and competent rock profile developed.

3.5.3.3 MSE WALLS
Borings should be located at the proposed extremities and along the proposed alignment of retaining structures as closely as possible. Boring spacing along the alignment shall be no more than 100 feet for walls less than 20 feet high and no more than 50 feet for proposed wall heights greater than 20 feet. Each proposed wall shall have a minimum of two borings completed along the proposed alignment. Back borings shall be completed at a distance behind the proposed wall of 1.0 - 1.5 times the proposed wall height and at a spacing of 100 feet along the alignment.

The depths of borings shall be a minimum of twice the height. Borings shall penetrate to the specified depth and penetrate a minimum of two consecutive split spoon samples into material having a standard penetration blow count N of 15 or greater. If this minimum penetration of 15 blows per foot material has not been obtained at the proposed boring termination depth, the boring shall be extended until this requirement is met, or the project geotechnical engineer should be contacted for further guidance.

Where rock is encountered in the planned depth of investigation, a minimum of one 5-foot rock core shall be taken for every 150 feet of wall length with a minimum of two cored boreholes for each wall. Non-cored borings shall be terminated after achieving auger refusal and competent rock profile developed.
3.5.4 NEW ROADWAY ALIGNMENT

In general, borings for roadway alignments shall be dictated by the topography, geological conditions, visible soil conditions, and other design considerations. Borings should be located at the maximum cut or fill along the cross sections for new horizontal alignments. The borings should be spaced at a 300 to 500 foot intervals for each two lane roadway and drilled to a minimum depth of 10 feet below the proposed grade. In the instance of divided highways, each bound should be considered a separate roadway when boring locations are considered. Engineering judgment should be used in sections of roadway where deeper subsurface investigation may be warranted.

One bag sample for resilient modulus (MR) testing shall be collected per mile for each predominant soil within the proposed subgrade when the project is two miles or less. As a general guide and suggested frequency, when the project is more than 2 miles, at least three bag samples for resilient modulus testing should be collected for each major predominant soil type. When the new alignment is in cut or at grade, a Shelby tube will be taken at a depth between 2 and 5 feet below the subgrade. Additionally, bag samples (25 lbs) shall be collected from the subgrade for moisture-density relation testing for each predominant subgrade soil.

3.5.4.1 PAVEMENT CORING

Pavement cores shall be taken at the frequency described in Section 304-13.03 of the Indiana Design Manual:

- Two cores per lane per mile in a staggered pattern
- At select joints with distress
- In existing widened areas where different pavement structures from the mainline are obvious
- At cracks to determine top-down or bottom-up cracking
- At predominant distress locations
- If shoulders are to be used for MOT purposes, they should be cored at a frequency of every two miles
- Along the longitudinal joint (in the worst areas of spalling) to determine the extent of partial depth patching that will be needed

The overall coring program shall be designed to fully characterize the pavement section throughout the project limits in the most thorough yet economical manner. Core reports shall be created for each core taken containing a detailed description of the core along with photographs of the core, the location at which the core was taken, base stones at the base of the pavement core, and the core hole cross section by taking a photo down the empty core hole. Additionally, a compilation report shall be prepared summarizing findings and including a summary table in the attached format and file structure. An example of a pavement core report can be found in the Appendices. Core data shall also be entered in the Department’s Core Collector Application. Prior to creating the proposed coring location plan, the appropriate District Pavement Engineer should be contacted for additional guidance on coring locations and special testing.

3.5.4.2 CUT SECTIONS

For cut sections where the proposed depth of cut is greater than 15 feet, borings shall be spaced not more than 200 feet along the length of the proposed cut. Borings shall be located at the point of maximum cut and shall penetrate to a depth of 10 feet below the proposed grade line. Borings shall not stop in soft, very loose, or unsuitable soils but should be extended a minimum of 3 feet into firm material, unless otherwise approved. If rock is encountered below the proposed subgrade elevation, the borings on the centerline shall extend at least 5 feet into the rock. Cut section borings made in the ditch line shall extend 2 feet below the proposed flow line or 10 feet
below the proposed finished grade line, whichever is deeper. Core borings made in rock back slopes shall be to a minimum depth of 2 feet below the proposed grade.

Soundings made to determine the limits of rock shall be discontinued at the rock surface or 4 feet below proposed grade line, whichever depth is encountered first, or as otherwise approved.

3.5.4.3 FILL SECTIONS

Borings shall be located in areas of maximum fill at a spacing not greater than 400 feet for the fills less than 20 feet for two lane highways. Borings shall be located at a spacing not greater than 200 ft for fill heights greater than 20 feet unless otherwise approved. Roadway borings in fill sections shall penetrate to a depth of 10 feet or to a depth 2 times the height of proposed embankment, whichever is greater. Where fills cross floodplains, old lake beds, ponds, or other areas of suspected compressible or low-strength foundation soils, the borings shall penetrate to a minimum depth equal to the fill height plus the unsuitable soil into the firm ground. Borings shall not be terminated in soft, very loose, or unsuitable soils but should be extended into firm material with the last two standard penetration N values greater than 10.

If rock is encountered in proposed fill sections, the borings shall be discontinued at auger refusal or the proposed depth as determined above, whichever is shallower. One core boring shall be made 5 feet into the rock to establish its quality.

3.5.4.4 SPECIAL CASES

Side Hill Cut Sections: A minimum two borings shall be conducted at each prescribed station such that a geologic cross section can be created. One boring shall be located at the maximum up-hill extent of the proposed cut and shall penetrate to a minimum depth of 10 feet below the proposed final grade. A second boring shall be located at the proposed ditch line and shall penetrate to the minimum depth described above. If the width of the proposed cut is greater than 100 feet from ditch line to ditch line a third boring shall be conducted. A third boring shall be located in the proposed ditch line opposite the first ditch line boring.

Side Hill Cut To Fill Section: When one side of centerline is in cut and the other side is in fill, borings shall be located in such way to capture the subsurface conditions of the cut section, the fill section, and the groundwater conditions. As an additional requirement, borings depths shall have vertical overlap between the two borings shall be a minimum of 10 feet.

Side Hill Fill Section: On Unstable Slope: When embankment fill is to be placed on slopes where instability is predicted, a series of not less than three borings shall be conducted such that a geologic cross section can be created. Locate a boring at the toe of downhill side and other at intersection of the 1:1 slope from the edge of pavement with ground line. The boring should be terminated at a depth twice the height of the fill or into rock. A rock core of 5 feet shall be taken if bedrock is encountered. If the road is at the toe of the slope, a boring shall be performed at toe of the uphill slope to complete stratigraphy. All these three borings shall overlap vertically. Soil moisture shall be evaluated when common soil shall be used as fill in project. The geotechnical engineer shall be contacting designers for the cut soil evaluation.

3.5.5 PAVEMENT REPLACEMENT, RECONSTRUCTION, RUBBLIZATION, OR FULL DEPTH RECLAMATION (FDR)

Borings shall be placed at approximately 600 to 800 foot intervals, alternate from left to right lanes and in the case of divided highways, in the driving lanes alternating left to right sides. Borings may be performed closer in spacing when a geotechnical anomaly is encountered. Borings shall extend to a minimum depth of three continuous split samples below the proposed subgrade. Split spoon samples
shall be taken after auguring through the pavement and subbase. Thicknesses of the various pavement and subbase material should be recorded. Locations shall be delineated in the event of soft soils with standard penetration N values less than 6, organic, unsuitable soils, rocks, or etc. Boring shall not be terminated in peat/or marl.

A minimum of one bag sample and one Shelby tube sample per mile shall be taken for each predominant subgrade soil type for MR testing on projects that are less than two miles. Full depth rehabilitation (FDR) and rubblization projects require one Shelby tube per mile for each predominant soil for in situ MR. As a general guide and suggested frequency, when the project is greater than 2 miles, at least three bag samples for MR testing should be collected for each major predominant soil type. Shelby tube samples for the in situ MR test shall be collected from between 2 and 5 feet below the subgrade.

When FDR or pavement rubblization is proposed, the pavement cores shall be collected in accordance with Section 3.5.4.1. Additionally, pulverized pavement and subbase gradations shall be performed at every mile and results reported in the geotechnical report.

Groundwater monitoring shall be performed by completing soundings either on or as close to the shoulder as possible at a spacing of every 2 miles in a staggered pattern. Engineers should ensure monitoring wells are placed in sections that are cut or at grade. These soundings shall be to a depth of 10 feet and shall be left open for a minimum of 24 hours for water level measurements. When the water level reported is less than 6 feet, the monitoring period may be extended. This may require the temporary placement of slotted PVC pipe or similar measures.

Generally, ground penetrating radar (GPR) and falling weight deflectometer (FWD) testing is performed by INDOT’s Research and Development Division prior to the geotechnical investigation. If anomalies are discovered by these tests, they shall be delineated and the subsurface investigation shall be planned accordingly.

GPR is a valuable tool for reducing the number of borings for a project by segmenting the project on the basis of similar subsurface features or anomalies identified prior to subsurface investigation. GPR may also be used to investigate the internal composition of many pavement layers and soils. Results from the field observation and GPR surveys could be used to prepare plans for FWD testing. Boring plans shall be based on field observation, GPR testing, and FWD testing. Boring plans shall cover all the areas with different physical features and characteristics. Borings should be planned in widening areas to cover the entire widening area with respect to total project length or area. If cut or fill is proposed for widening, the geotechnical investigation should follow guidelines in Section 3.5.4.

3.5.6 PAVEMENT IMPROVEMENT AND SURFACE TREATMENT PROJECTS

Pavement improvement projects include the following project work types: concrete pavement restoration (CPR), structural hot mix asphalt (HMA) overlay, minor structural HMA overlay, cold in-place recycle pavement, thin concrete overlay, and preventative maintenance HMA overlay.

Surface treatment projects include the following project work types: microsurfacing surface treatment, thin HMA overlay surface treatment, ultrathin bonded wearing course surface treatment, patching only, and concrete pavement preservation.

The geotechnical engineer should evaluate and prescribe soil borings based on the scope, topographic, and variability of subgrade soils. Borings shall be completed at a minimum spacing of 5 per mile, approximately 1,100 feet, in a staggered pattern for pavement improvement projects. Soil borings shall be completed at a minimum spacing of 3 per mile, approximately 1800 feet, in a staggered pattern for surface treatment projects. Borings may be performed closer when there is geotechnical anomaly. The staggering shall be per bound, as an example; northbound – southbound – northbound.
Borings shall be located in wheel paths, shoulder areas, or in most distressed locations. Borings shall only be completed in the driving lane. Borings shall only be completed within the passing lane if there is an area of special concern within that lane. Sampling shall consist of three continuous split spoon samples. Special geotechnical problems such as peat or marl shall be delineated. Borings shall not be terminated in peat or marl. Subsurface investigations shall be in accordance with Section 3.6.5.

Shelby tubes shall be taken in a separate boring. A minimum of two Shelby tube samples shall be taken per mile for in situ subgrade MR testing for each predominant soil for pavement improvement projects. A minimum of one Shelby tube sample shall be taken per mile for in situ subgrade MR testing for each predominant soil. Shelby tubes for in situ MR testing shall be taken within 3 feet of the subgrade for surface treatment projects. When soils are similar in fine content and plasticity, MR testing may be reduced. Engineering judgement should be used so MR tests cover all the predominant soils of the project. Shelby tubes for in situ MR testing shall be taken within 3 feet of the subgrade. The samples shall be taken in accordance with the procedure detailed in INDOT Geotechnical Manual, Section 3.6.4.1. Additionally, bag samples (25 lbs.) shall be collected from the subgrade for moisture-density relation testing for each predominant soil. This evaluation shall include a delineation of any anomaly on the project.

The pavement cores shall be taken in accordance with Section 3.5.4.1.

Groundwater monitoring shall be performed by completing soundings either on or just off of the shoulder at a spacing of every 2 miles in a staggered pattern. Engineers should ensure that monitoring wells are placed in cut sections or at grade. These soundings shall extend to a depth of 10 feet and shall remain open to the atmosphere for a minimum of 24 hours for water level readings. When the water level reported is less than 6 feet, the monitoring period may be extended, which may require a temporary slotted PVC pipe casing or similar measures.

GPR is a valuable tool for reducing the number of borings for a project by segmenting the project on the basis of similar subsurface features or anomalies identified prior to subsurface investigation. GPR may also be used to investigate the internal composition of many pavement layers and soils. Results of the pavement composition and GPR surveys could be used to prepare a plan for FWD testing. Boring plans will be prepared with a condition survey. GPR and FWD testing should be done to ensure that all the areas with different physical features and characteristics have been investigated.

3.5.7 HIGH MAST LIGHTING & CLOSED CIRCUIT TELEVISION (CCTV) TOWERS

High mast tower lights and intelligent transportation system (ITS) CCTV or communication towers require a soil investigation at each location. These borings shall be drilled to a minimum depth of 25 feet with an N values greater than 15 for the last 15 feet of the boring. If this criteria is not met, drilling must continue until 15 continuous feet of greater than 15 blow counts material has been encountered. When soils are suitable, as described in Section 3.6.5, Shelby tubes should be taken from either the same bore hole or an additional borehole should be drilled for the sample. Strength tests shall be performed only on Shelby tube samples. When the above criteria cannot be met within a reasonable depth, or rock is encountered within the required depth, the project geotechnical engineer should be contacted and engineering judgment will be made as to the extent of additional drilling. Groundwater shall be monitored when high mast tower lights are located in cut or grade sections.

3.5.8 TRAFFIC SIGNAL CANTILEVER STRUCTURE

Traffic signal cantilever structures require a soils investigation at each intersection to be signalized. However, strain poles, pedestal poles, ITS detection assembly poles, and signal or ITS controller cabinet foundations do not require soil investigations. The borings for traffic signal cantilever structures shall be drilled to a minimum depth of 25 feet with an N value of 15 blows or greater for the last 15 feet of the boring. When the criteria is not met, drilling must continue until 15 continuous
feet of greater than a 15 N material has been encountered. A minimum of one boring shall be required for each intersection, two if the intersection is wider than 75 ft. When soils are suitable, as described in Section 3.6.5, Shelby tubes should be either taken from the same bore hole or an additional bore hole should be drilled for Shelby tube samples. Strength tests shall be performed on Shelby tubes only. In case the soil conditions are not encountered as noted above, or rock is encountered within the required depth of the investigation, the project geotechnical engineer should be contacted and engineering judgment will be made as to the extent of additional drilling.

3.5.9 TRAFFIC SIGNS & LIGHT POLE

Dynamic message sign (DMS) truss, box truss, tri-chord truss, cantilever, and monotube span sign structures require a soils investigation at or near each proposed foundation. If multiple foundations are proposed within approximately 75 feet of each other, such as at a small to moderate sized intersection, one exploration point for the foundation group is adequate if conditions are relatively uniform. If more variable site conditions are anticipated, one boring near each foundation should be obtained. These borings shall be drilled to a minimum depth of 20 feet, or 5 feet below the anticipated bottom of the foundation, whichever is greater. Only a site review is required if the new structures are to be founded in new or existing embankments known to be constructed with sands, B borrow or select backfill and in accordance with 211 of the INDOT Standard Specifications. Overhead cable span signs, ground mounted panel signs, school speed limit or warning sign flashing beacon assemblies, and light poles do not require a soils investigation.

3.5.10 CABLE BARRIER SYSTEMS

Cable barrier systems require soil investigations for barrier termination anchor points. A minimum of one boring should be completed at each proposed termination anchor point. These borings shall be drilled to a minimum depth of 25 feet with an N value of 15 blows or greater for the last 15 feet of the boring. If this criteria is not met, drilling must continue until 15 continuous feet of greater than 15 blow material has been encountered. When soils are suitable, as described in Section 3.6.5, Shelby tubes should be either taken from the same bore hole or an additional bore hole could be drilled. Strength tests shall be performed on Shelby tubes only. In case soil is not encountered as mentioned above, or rock is encountered within the required depth, the project geotechnical engineer should be contacted and engineering judgment will be made as to the extent of additional drilling.

3.5.11 SPECIAL GEOLOGIC CONDITIONS

3.5.11.1 PEAT, MARL OR ORGANIC DEPOSITS

Natural peat bogs often consist of a layer of peat or a combination of organic and mineral deposits overlying stable soils. While the upper layers may vary markedly in composition and exhibit a range of physical properties, they are entirely unsuitable as subgrade for highways. These materials must be dealt with in such a manner that they do not cause detrimental settlement or perhaps failure of the embankments or roads built upon them.

Careful attention must be taken when determining the extent of organic and marl deposits. Borings should be completed on both sides of the roadway at a maximum spacing of 50 feet and shall extend a minimum of 10 feet into firm material. Firm material shall be defined as mineral soils with an N value of 10 blows or greater. Split spoon samples shall be taken continuously for the entire length of the boring and the complete sample shall be logged. The boring pattern at the lateral limits of these deposits shall be such that the limit can be determined with an accuracy of less than 10 feet.

3.5.11.2 LANDSLIDES

Landslides are most prevalent in the un-glaciated southern half of Indiana. Although causes vary, most landslides are the result of weak soil and rock in the upper strata and variability in
groundwater conditions. Landslides should not be confused with simple fill failures (which are easier to repair) or with embankment erosion problems, which result in sloughing of fill materials. Landslides are gravity transported, downward sliding or falling, of soil and rock mixtures that have become loosened or detached with movement being along a plane. The landslide area will have obvious scarps and toe bulges. If the slide has been a slow, continuous movement, trees growing in the slide will be bent to compensate for the movement of their base. Quick movement can occur and is obvious by the destruction caused by the falling materials.

Borings should be located so that geologic cross sections of the landslide can be constructed. The cross section shall include borings above the scarp line, within the failure and beyond the toe bulge of the failure. Cross sectional borings shall be completed at a maximum spacing of 100 feet perpendicular to the direction of failure. All borings shall extend to bedrock and auger refusal shall be achieved. Split spoon samples shall be taken at 2.5-foot intervals for the entire length of the boring to auger refusal, unless otherwise specified. A minimum of one 5-foot rock core shall be completed in critical borings to be determined by the geotechnical engineer.

3.5.11.3 MINE SUBSIDENCE
Underground mining occurs mainly in western and southwestern Indiana. There are many undocumented individual sites mined out prior to remediation where subsidence may occur. The presence of underground mines is manifested in local areas of depression or settlement of the ground surface, which can occur gradually or in a very short period of time.

The Indiana Department of Natural Resources (IDNR) Division of Mining and Reclamation and the Indiana Geological Survey (IGS) working with the state’s mining industry, have developed maps of the known surface and underground mine locations. Mine locations should always be considered during the planning phase of any new construction. Undocumented mine locations and possible mine subsidence represent a definite risk. Mine subsidence issues are handled on an individual basis because of the site specific conditions affecting each mine. Because INDOT district personnel are familiar with their own areas, it is up to each INDOT district to inform the necessary contact person with the IGS and IDNR when any subsidence problems are observed.

The scope of investigation should be determined on a case-by-case basis, and the boring layout should be similar to the peat investigation pattern to help minimize the number of borings to draw the required profile.

3.5.11.4 KARST
Like mine subsidence, sinkholes can be insidious, or they can appear suddenly. Sometimes pavement, especially concrete, can conceal a developing sinkhole until the road surface breaks from lack of subsurface support, causing a major situation. Unfortunately, there are no maps of developing sinkholes except for old topographic maps, which may show depressions, or known sinkholes that were remediated and covered prior to construction.

Similar to potential mine subsidence locations, karst areas should always be considered during the planning phase of any new construction. A careful site investigation must be conducted in karst areas to locate any possible settlement areas followed by a geotechnical investigation. The geotechnical investigation should establish the depth to bedrock, the extent of cavities and the drainage pattern of the subsurface water.

The scope of geotechnical investigation should be determined on a case-by-case basis and the boring layout should be similar to the peat or mine subsidence investigation patterns. Geophysical techniques can be very helpful in targeting and refining the boring program proposed to investigate karst areas.
3.5.11.5 LANDFILLS
A landfill is a feature that results from the disposal of waste and cover material, which generally provides unsuitable material for the roadway substructure. INDOT policy is to suspend all geotechnical drilling and report the condition to INDOT Office of Environmental Services. All applicable OSHA safety precautions and procedures should be followed in the completion of the geotechnical investigation. The limits and depth of the landfill shall be determined to facilitate remediation recommendations in a manner similar to the delineation of peat and marl deposits.

3.5.11.6 BUILDINGS
Each project is drilled on an individual basis depending upon the areas architectural design. Commonly (but not limited to) geotechnical soil borings are placed at areas of maximum stress and extend a minimum of 15 feet into stiff soil.

3.5.11.7 WETLANDS AND DETENTION PONDS
Wetlands and swampy areas usually contain peat or organic soils. The boring pattern should be based on a case-by-case basis. The boring should be extended to a minimum of 15 feet into firm material. Firm material shall be defined as mineral soils with an N value of 10 or greater.

Wetlands are protected under established federal guidelines. Before any investigation is started, all appropriate permits and a list of all work restrictions must be obtained from the Indiana Department of Environmental Management (IDEM) through INDOT’s Office of Environmental Services.

In general, studies that are required for detention ponds and wetlands are site specific. Therefore, it is difficult to generalize requirements for geotechnical investigation of such sites. For preliminary studies, the best sources are USDA soil surveys, SCS soil surveys, and US Fish and Wildlife Service’s National Wetlands Inventory map.

3.6 GEOTECHNICAL SAMPLING REQUIREMENTS

For geotechnical analyses, Shelby tube samples and split spoon samples should be taken depending on the soil type. In sandy soils, split spoon samples are generally preferred. In cohesive silty and clayey soils, the Shelby tube samples are more reliable. Other relatively undisturbed sampling systems may also be used at the discretion of the Manager of the Geotechnical Services Section. If these systems are used, the wall thickness of the tubes should result in an area ratio (Ar) which does not exceed 30%.

The area ratio is defined as the ratio of the volume of soil displacement to the volume of the collected sample and it is expressed as:

\[A_r(\%) = \frac{D_o^2 - D_i^2}{D_i^2} \times 100 \]

Where:

- \(A_r \) = Area ratio
- \(D_o \) = Outside diameter of tube
- \(D_i \) = Inside diameter of cutting edge

An area ratio of 100% means that the in situ soil was displaced by a volume equal to that of the collected sample. Well-designed tubes have \(A_r < 10\% \).

3.6.1 SPLIT SPOON SAMPLES

Generally, all borings requiring samples will be taken with a split spoon sampler to obtain the data for the standard penetration test (SPT). The samples are taken at 2.5-foot intervals for the upper 10...
feet and at 5-foot intervals thereafter unless otherwise specified or requested.

The sampler shall be the standard 2 inch O.D. and 1 ½ inch I.D., driven with a 140 lb. hammer, and dropped 30 inches. The number of “blows” required of the hammer to drive the split spoon 1 ½ feet, in 6-inch intervals, shall be recorded. The penetration resistance, N, shall be defined in AASHTO T 206 standards and shall be the total of the last two intervals (the second and third six inches of penetration), or 1 foot of the 1 ½ feet drive.

Two jar samples, each approximately 6 inches long shall be obtained from each split spoon sample for laboratory examination or testing. When required for subgrade or peat investigation, a full 18 inch SPT sample shall be taken and stored in jars. Sample should be designated as top or bottom. Keeping the samples as intact as possible, they are to be seated in clean glass jars to prevent loss of moisture. Samples should be properly marked with the project number, boring number, sample number, blow count, and field identification number. As soon as possible after drilling, the samples should be delivered to the laboratory for tests.

3.6.2 SHELBY TUBES

Undisturbed samples, if required by the engineer, shall be obtained by pressing a thin-walled tube into the soil with a slow, continuous push. The Shelby tube shall be 3 inches O.D. and the length shall be as recommended in Table 1 of AASHTO T 207 or longer to avoid overfilling of the tube during sampling. The standard lengths for INDOT are: 30 to 36 inches. A recovery of 50% or greater is required unless otherwise approved by the Manager of the Geotechnical Services Section. Immediately upon retrieval, the tubes are to be trimmed and cleaned of excess soil on the ends, sealed with approved air-tight expanders on the top and sealing wax on the bottom. Both ends shall be covered with plastic caps, then tape should be applied in such a manner as to seal the open bolt holes and the lip of the cap. Samples shall be kept in a vertical position with the top up during transporting and storage. Samples shall not be jarred or shaken, and shall always be protected from temperature extremes, especially freezing. Each tube shall be properly tagged inside and out with all the pertinent information including: project and designation number, road, boring, station and offset, line, depths, recovery percentage and date. It shall be delivered promptly to the laboratory for testing. A damaged Shelby tube shall not be reused.

3.6.2.1 RESILIENT MODULUS (MR)

In situ MR test shall be performed on Shelby tube samples for pavement replacement, reconstruction, rubblization or full depth reclamation (FDR), pavement improvement, and surface treatment projects. Refer to project type for specific MR requirements. When soils are similar in fine content and plasticity, MR testing frequencies may be reduced. Engineering judgement shall be used so MR tests cover all the predominant soils of the project. The procedure shall be as described below:

- A continuous flight auger shall be used to penetrate the existing pavement and pavement subbase material to a depth approximately 4-6 inches below the top of the subgrade.
- The flight auger shall then be extracted from the borehole.
- The borehole shall be inspected and cleaned to insure no subbase material will interfere with or contaminate sampling.
- A 3-inch diameter and 24 inch long Shelby tube sample shall be collected from the borehole for the subgrade foundation. It should be taken within 3 feet of the subgrade.
- Deviator and confining stresses shall be 4 psi for subgrade foundation MR testing.
- Deviator and confining stresses shall be 6 and 2 psi for MR testing when a Shelby tube is taken for in situ subgrade.
3.6.3 ROCK CORES

Rock coring involves using a drill rig to core through hard rock, which cannot be augered through. Core barrels, double or triple-tucked, with diamond core bits of "NX", "NWG", or "NWPAM" (2 inch) sizes are suggested to obtain an approximate core size of 2 inches. The core barrel shall be 5 feet long with an inside diameter of 2 inches to obtain the minimum size core, unless otherwise approved by the Manager of the Geotechnical Services Section. Longer barrels can be used; however, the maximum allowable run is 5 feet. Wire-line coring shall only be permitted in special cases and should be preapproved by the Manager of the Geotechnical Services Section.

If shale or any other non-durable sedimentary rocks are encountered, the core samples shall be wrapped tightly in a moisture-proof wrapping such as aluminum foil or plastic wrap to prevent drying of samples. Cores shall be measured to determine percent recovery and RQD, and then placed in core boxes with labels indicating “top”, “bottom”, and depths. The core box shall be labeled with designation number, station, line, offset, boring number, depths of coring, RQD and percent recovery.

3.6.4 BAG SAMPLES

3.6.4.1 RESILIENT MODULUS (MR)

Bag samples for MR testing shall be obtained for each prominent soil for the project. When an embankment is constructed for the new roadway, one bag sample is adequate for MR testing. One bag sample shall be obtained for every 10 borings performed, or one per mile if boring spacing is greater than 600 feet. For projects where widening or new alignment is proposed, the sampling frequency shall be as noted above. The bag sample may be taken from the soil collected from auger cuttings taken below the pavement and subbase material. Approximately 25 pounds of auger cuttings shall be collected for the bag sample and care shall be taken so that aggregate base material does not contaminate soil cuttings. Deviator and confining stresses shall be 6 and 2 psi for MR when a Shelby tube is taken.

Two jar samples shall be included with each bag sample to be tested for in situ moisture. All bags shall be properly tagged, inside and out, with tags showing the project number, road, sample number, station and offset, date, and field identification number. Samples should be delivered to the lab in a timely manner. Soil classification tests are also assigned for each MR bag sample and unconfined test at 1% strain.

3.6.4.2 MOISTURE AND DENSITY RELATION

A small bag sample, 25 lbs, is required for all cohesive soil types found during a subgrade investigation. The sample shall be taken from directly under the pavement or subbase strata, or from the auger cuttings. A jar sample for moisture testing is not necessary if a split spoon sample was taken. Bag samples for moisture and density relation shall be obtained for each project, usually from each predominant soil found during the drilling. These samples shall be taken from the subgrade. The requirements for the bag sample for moisture density shall be eliminated when predominant soil is collected for MR testing.

3.6.4.3 SAMPLE FOR PLANT GROWTH LAYER

Bag samples for plant growth layers shall weigh 1 lb.

3.6.5 SUBGRADE SAMPLING

The horizontal and vertical variation in subsurface soil types, moisture, densities, strength, groundwater elevations and rock location should all be considered when performing subgrade investigations. Pavement maintenance history, county soils map, GPR, and falling weight
deflectometer data are all helpful in developing a thorough subgrade investigation. The purpose of a subgrade investigation is to define the depth, thickness, and location of major soil and rock strata that may reduce the pavement service life. Subgrade investigations also determine the need for any foundation improvement and strengthening that may be required. The guidelines for drilling and sampling for subgrade investigation are as follows:

When the top of the subgrade soil is reached, split spoon samples shall be taken and logged. Borings shall evaluate the upper approximate 4.5 feet of the proposed subgrade. Borings shall penetrate to a depth that allows for three continuous split spoon samples to be collected below the pavement subbase. In the first split spoon sample if the N value is less than or equal to 10 blows, and the soil is cohesive, a 24 inch long Shelby tube sample shall be taken beside the split spoon boring. When a Shelby tube sample is required, it shall have a minimum recovery of 50%. If this is not obtained from the first tube, a second tube will be required as described previously depending on the soil encountered, so that a combined total of not less than 16 inches of undisturbed sample is obtained. If the N value is greater than 10, no Shelby tube sample shall be required and the boring shall be extended to the bottom of the first split spoon depth and the procedure repeated.

If the N value is less than 6 in either the second or third split spoon samples and the soil is cohesive, a Shelby tube sample is required at the corresponding depth. Similarly, a 50% minimum recovery is required. If the N value on the third split spoon is six or greater the boring is to be terminated at this point.

Groundwater monitoring shall be performed by completing soundings either on or as close to the shoulder as possible at a spacing of every 2 miles in a staggered pattern. Monitoring wells should be placed in cut or at grade. These soundings shall be to a depth of 10 feet and shall be left open for a minimum of 24 hours for water level readings. When the water level reported is less than 6 feet, monitoring period may be extended. This may require the temporary placement of slotted PVC pipe or similar measures. Water level determination is prudent to roadways and other structures.

3.6.6 TOPSOIL/PLANT GROWTH LAYER SAMPLING

Top soil is described as soil that facilitates grass growth and is defined in Section 629 of the Recurring Special Provisions. Top soil consists of organic material, silt, sand, clay, gravel, in addition to chemical elements, such as potassium and phosphorus. The top soil thickness shall also be determined during the geotechnical investigation. Soils shall be sampled from the upper most strata of the boring or sounding. Sampling and testing shall be performed within the proposed construction limits and shall be representative of the surface soils within that area. Split spoon sampling shall be in accordance with AASHTO T 206. Borings not taken on roadway shall have organic soils identification. If drilling is not feasible, bag samples shall be recovered and hand auger testing shall be completed. The bag sample shall be a minimum of 1.0 lbs. Sampling and testing shall be completed for all projects requiring a Rule 5 permit, new road, bridge, box culverts, ditches, landslides, which require a plant growth layer for grass germination. Engineering judgment shall be used to determine the location of sampling unless specified below.

The frequency shall be as follows:

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Testing Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Road / Reconstruction</td>
<td>1 Test / 1,000 Feet</td>
</tr>
<tr>
<td>Bridge /Pipe Culvert</td>
<td>1 Test /Quadrant</td>
</tr>
</tbody>
</table>
Rule 5 Permit Projects
(not already specified in table) | 2 Tests / Acre

Samples shall be logged, placed in zip lock bags and labeled appropriately. Labels shall include project ID, either designation number or contract number, sample location and depth. Finally, topsoil thickness shall be determined by either machine or hand auger sounding.

3.6.7 PITS

In areas such as gullies, ravines, or in streambeds where it is not feasible to place a drill rig and information from a hand auger is inadequate, pits may be dug as an alternate method of establishing bedrock elevations and overburden depths. Usually a series of 10 ft² pits, in an acceptable pattern as per the requirements of the project, are dug by hand to confirm expected data. This method of data collection is limited to sites where shallow bedrock is known or expected, usually within a 3-foot depth. Generally, no samples are taken although a representative bag or jar sample for grain size analysis and moisture tests may be requested.

3.6.8 HAND AUGERS

Hand augers are limited to soft cohesive soils and are performed in areas where standard penetration tests are not possible or necessary. They are used to obtain a profile of the existing strata, sometimes with samples. There are five types of hand augers, as follows:

- The sample hand auger (minimum of 1 ½ inch diameter)
- 1 inch retraction piston sampler
- A peat sampler
- Hand guide power hand auger
- 3 inch diameter post hole type auger

Hand augers shall not exceed 6 inches per increment of advancement and are performed as directed. If samples are obtained, they shall be placed in jars, sealed and labeled appropriately.

3.6.9 PAVEMENT CORES / SUBBASE

Pavement cores shall be obtained from existing pavement when an analysis or test of the core is requested by the Pavement Design Engineer in accordance with the Indiana Design Manual.

If testing of the core is not required, then other methods of drilling through the pavement are acceptable. A detailed log with full description of material type and thicknesses should be written for each pavement core.

Once the pavement core has been extracted, the boring shall be extended through the subbase to the subgrade. Hence, the boring depth shall be from bottom of pavement. Subbase material should be carefully logged; however, no sample should be taken for testing unless otherwise specified by the geotechnical engineer.

3.7 CONE PENETRATION TESTING, CPT

The cone penetrometer test consists of pushing an instrumented penetrometer into the ground while continuously recording sleeve friction, cone resistance, and pore pressure in accordance with ASTM D5778. Shear wave velocities can also be measured at user defined depths. Cone penetration testing can
be performed in conjunction with SPT borings for all investigation types covered under Section 3.5 of this document, based on the engineering judgment of the geotechnical engineer and approval of the Manager of the Geotechnical Services Section.

3.8 DILATOMETER TEST (DMT)

The dilatometer is a 3.75-inch wide and 0.55-inch thick stainless steel blade with a thin 2.4-inch diameter expandable metal membrane on one side. While the membrane is flush with the blade surface, the blade is either pushed or driven into the soil using a penetrometer or drilling rig. Rods carry pneumatic and electrical lines from the membrane to the surface. At depth intervals of 8 inches, the pressurized gas expands the membrane and both the pressure required to begin membrane movement and that required to expand the membrane into the soil 0.04 inches is measured. Additionally, upon venting the pressure corresponding to the return of the membrane to its original position may be recorded.

Through developed correlations, information can be deduced concerning material type, pore water pressure, in situ horizontal and vertical stresses, void ratio or relative density, modulus, shear strength parameters, and consolidation parameters. Compared to the pressuremeter the flat dilatometer has the advantage of reduced soil disturbance during penetration. Tests shall be performed in accordance with ASTM D6635.

3.9 DYNAMIC CONE PENETROMETER, DCP

Dynamic cone penetrometer testing shall be performed in accordance with ITM 509. The DCP test consists of driving a steel rod with 60° steel cone at one end into the soil by dropping a sliding hammer from a standard height of 22.6 inches. The soil strength is determined by counting blows for every 6 inches of penetration. The length of the bottom steel rods shall be 60 inches. Rods may be fabricated into different combinations of lengths for ease of use. Rod shall not shall be less than 12 inches. A disposable cone is highly recommended for easier extraction of the rods at the completion of the test.

DCP strengths should be based on the following table:

<table>
<thead>
<tr>
<th>Blows per 6”</th>
<th>Consistency/Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 3</td>
<td>soft</td>
</tr>
<tr>
<td>4 to 6</td>
<td>medium stiff</td>
</tr>
<tr>
<td>7 to 12</td>
<td>stiff</td>
</tr>
<tr>
<td>Over 13</td>
<td>very stiff</td>
</tr>
</tbody>
</table>

3.10 GEOPHYSICS

Geophysical testing is becoming an increasingly important tool for geotechnical engineers and geologists in the performance of subsurface investigations. There are multiple tests including ground penetrating radar and soil resistivity; in addition to seismic reflection and seismic refraction, which can be employed to aid subsurface profiling. The appropriate test for the anticipated ground conditions and the intent of investigation should be determined on a project by project basis.

3.11 PERFORMANCE OF FIELD WORK ON PRIVATE PROPERTY
3.11.1 ENTRY PERMISSION

When employees and representatives of the State of Indiana must enter and work on private property, they are required to follow Indiana Code 8-23-7-26, 27, 28, which took effect on July 1, 2008.

The usual information about the project and its impact on the property owner or tenant should start the letter, along with an explanation of the type work, a timetable to expect entry and an estimate how many days the work will take should be given. However, a notice of survey (NOS) letter is required by law to include the following:

1. Include both the occupant and the recorded owner of the property in the notification process.
2. A description of the property owner’s right to compensation for damages.
3. The procedure the property owner must follow to obtain the compensation.
4. The name, address, and telephone number of an individual or office where property owners may direct questions about the investigation. (This would be the geotechnical consultant’s information.)
5. The name, address, and telephone number of an individual or office where property owner’s questions about the rights and procedures for damage compensation may be directed. (This would be the project area’s INDOT District Office, to the attention of the district’s Real Estate Manager.)
6. A copy of the Indiana Code 8-23-7-26, 27, 28 should be included with the letter. This will assist property owners with immediate answers to many of their questions.

After the field work is finished, Form IC-662 is to be immediately completed for crop damages. (Property damages are handled by the district in a different manner and are not claimed on Form IC-662.) All Form IC-662 claims are to be promptly directed to the appropriate District Real Estate Manager since a timetable of 60 days for reimbursement of an agreed upon compensation is established in the code.

3.11.2 CROP DAMAGE CLAIMS INCURRED ON PRIVATE PROPERTY

Crop damage claims are to be reported on Indiana Form IC 662. The forms should be filled out completely and accurately, with a sketch (length and width) of the damaged crop areas, the location where the damages occurred on the property in reference to a known point, and type crop planted. Acreage can be easily converted once the square footage of damages is determined by using the following website:

www.metric-conversions.org/area/square-feet-to-acres.htm

Send the filled out forms immediately to the project location’s District Real Estate Manager for review and payment.

It is also the sole responsibility of INDOT and the Consultant Geotechnical Engineer, acting as a representative of the Indiana Department of Transportation or local public agency, to compensate the property owners for any damage incurred to their property because of the geotechnical investigation. Damage compensation including crop damage should be handled as outlined in the aforementioned Indiana Code, by completing Indiana form IC 662 as accurately as possible then transmitting the information to the INDOT District Development office of the project area. Compensation of the damages will be handled by the district personnel. If the property owner is not satisfied with the compensation as determined by INDOT, the County Agricultural Agent will be asked to assist. Compensation for the damages of local agency projects will be handled by the design consultant and local government.

3.12 EQUIPMENT
All drilling rigs which take split spoon samples shall be equipped with yearly calibrated automatic hammers. Calibration records for each rig’s hammer must be available for INDOT inspection upon request. Pile driving analyzers are the method commonly used for calibration of SPT hammers. Catheads shall not be used for sampling on INDOT projects.

Only approved equipment shall be mobilized to the project sites as determined by a pre-drilling field check. If it is deemed necessary to change or add rigs during the process of drilling the project due to unforeseen circumstances at the site, the mobilization of the additional rig must be approved by the Geotechnical Services Section prior to the move if additional payment for mobilization is to be requested.

3.13 UTILITIES

Buried utilities must be located prior to the start of all geotechnical investigations. Most Indiana companies subscribe to the “Indiana 811” network at 1-800-382-5544. Companies which are not members, in most cases municipal utilities, need to be contacted individually. Failure to contact these companies could result in injury or death to geotechnical drill crew members and the public or a loss of utility services.

Before contacting the utility companies to locate their buried lines, it is helpful if all soil test boring locations are marked in a distinctive manner (laths, flags, paint, etc.) in order to expedite the process. If the road work involves extensive road work over several blocks or miles, it is recommended that a meeting be planned, onsite, with the utilities locators so that no boring locations are missed. If a meeting is not feasible, maps of the project with the soil test locations clearly marked (to be given to the locators) are an excellent alternative.

Overhead utilities, although in plain sight, are sometimes forgotten. Drilling crews with high mast rigs should work within the guidelines established by the affected utilities and it is recommended that safety insulators or boots be placed on the wires to protect the workers. If it is imperative that data be obtained from directly under power lines, then an alternative to drilling with a high mast rig must be used such as a tripod, hand auger, pit, etc. Consider all overhead lines to be powered and dangerous.

Older urbanized areas can have abandoned utility lines or tanks, which could be encountered during drilling. Getting information about these lines prior to drilling from the utilities and street departments could help prevent accidental contact with abandoned structures. All utility hits should be treated as active lines, and emergency safety guidelines should be as followed until the utility company can confirm the abandoned line as such.

The American Right-of-Way Association has established color codes to surface mark buried utilities. These color codes are in compliance with the Occupational Safety and Health Acts (OSHA) standards.

<table>
<thead>
<tr>
<th>Table 3.1</th>
<th>Color Code Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>Telephone</td>
</tr>
<tr>
<td>Red</td>
<td>Electric</td>
</tr>
<tr>
<td>Yellow</td>
<td>Gas</td>
</tr>
<tr>
<td>Blue</td>
<td>Water</td>
</tr>
<tr>
<td>Green</td>
<td>Sanitary Sewer</td>
</tr>
<tr>
<td>White</td>
<td>New Construction</td>
</tr>
</tbody>
</table>

INDOT commonly uses pink and white markers for locations where geotechnical drilling is to be done.

3.14 DRILLING SAFETY
3.14.1 TRAINING

Drilling safety begins with an introductory safety course for all new drillers, inspectors, engineers and others who are in the field with the drill rig operators. The “Drilling Safety Guide” published by the International Drilling Federation and the “Drilling Safety” film produced by Mobile Drill Co. and ATC Associates are good examples of the industry safety guidelines.

3.14.2 PERSONAL SAFETY GEAR

Every person around the drilling operations is required to use personal protection equipment, which includes, but is not necessarily limited to, a safety hardhat, safety shoes and hearing protection. Those working in close proximity to the augers are required to have no loose-fitting clothing with straps, drawstrings, belts, loose ends or otherwise which might become entangles in the rotating augers. Rings and other types of jewelry should not be worn at any time and long, loose hair should be pulled back and secured.

In cases where there is known contamination (e.g. chemical, biological, and radioactive) and special protection is required, it becomes the responsibility of each consultant to provide their drilling crew with the appropriate equipment and clothing for the project.

3.14.3 SITE MAINTENANCE

The drilling supervisor is responsible for good upkeep on the drill rig and around the drilling site. There must be suitable storage for all tools, materials and supplies to avoid placing them in areas where they cannot be safely handled or secured. Heavy rods, pipe, casings, augers, cables, and other drilling tools should be stored in an orderly fashion to prevent movement when not in use. Work areas should be free of debris, obstructions, and hazardous substances, such as grease, oil, or ice which could cause surfaces to become slick and hazardous.

When leaving the testing site it is everyone’s responsibility to make sure all holes have been backfilled properly, dirt mounds scattered and sod replaced if necessary. All debris should be removed and the drill site returned to the condition it that was in before drilling operations began. If possible, a follow-up inspection to inspect and correct any settlement of the test holes should be done.

3.14.4 TRAFFIC CONTROL AND SAFETY

This work shall consist of providing traffic control services in accordance with the INDOT Worksite Traffic Control Manual, when traffic flow must be restricted in order to conduct drilling or coring operations. In case of an accident on the roadway District Safety Manager should be contacted.

3.15 NATURAL AND MANMADE HAZARDS

3.15.1 RIVERS AND STREAMS

Drilling on a river requires a barge setup if it is not possible to access through the existing bridge deck. The drilling needs to be done at a time when flash floods are not likely and should never be done in flood conditions. Drillers should be equipped with life vests or personal floatation devices while working on the water and, because icy conditions could develop quickly, it is not advisable to work on a barge in the winter cold.

3.15.2 UTILITY LINES

Always have buried utility lines located before drilling at the “Indiana 811” number 1-800-382-5544.
See section 3.13 for additional information.

3.15.3 TOXIC OR HAZARDOUS AREAS

Most projects have an environmental assessment prior to any geotechnical survey which identifies hazardous areas. If a site previously thought to be “clean” is found to be hazardous, then the Manager of the Geotechnical Services Section, INDOT Office of Environmental Services, and the District Environmental Manager should be immediately notified and all drilling operations ceased until guidance from the regulatory agency has been provided.

3.15.4 NATURAL GAS POCKETS

In Indiana, naturally occurring gas pockets have been opened up several times by standard geotechnical drilling methods over the years. Due to the volatility of the trapped gas, which can escape at high pressures, immediate action must be taken to make the situation as safe as possible for all involved at the drill site as well as the public safety concerns.

Actions to be taken if a trapped natural gas pocket (not piped gas) is opened during drilling operations:

1. Immediately shutdown all equipment being used on order to prevent electrical sparks from igniting the gas and all on-site workers move away from the equipment.
2. All traffic must be stopped and rerouted away from the scene. Local emergency personnel should be contacted about the situation.
3. Contact the Indiana Department of Natural Resources Division of Oil and Gas Assistant Director (office: 317-232-4055, directly: 317-232-6961) and IDNR will then contact their field personnel about the situation and send someone to the site to assist.
4. As per directions from the IDNR personnel on site, observe the pressure and amount of gas being expelled and determine when the situation is safe enough to close up and abandon the hole.

3.16 BACKFILLING REQUIREMENTS

Boreholes should be backfilled by following INDOT’s Aquifer Protection Guidelines. Groundwater contamination and other liability issues exist if a borehole is not backfilled properly. A borehole can act as a conduit for water or contaminants into an aquifer or between porous zones at different depths. Additionally, the area around a borehole may settle excessively and the resulting hole at the surface may become a safety hazard. Boreholes in environmentally sensitive locations, regardless of depth, may require special backfilling requirements. The Office of Geotechnical Services must be notified of environmentally sensitive locations. INDOT’s Aquifer Protection Guidelines also provide instructions on how to backfill boreholes that contain specialized testing equipment, such as slope inclinometers, piezometer, and standpipes.