9 Sampling

Safety

Sample References

Size of Original Samples

Sample Types

Method of Sampling
 * Production Sampling
 * Load-Out Sampling
 * Sampling Directly from Trucks, Rail Cars, or Barges

Reducing a Sample to Test Size
 * Mechanical Splitter
 * Sand Splitter
 * Miniature Stockpile
 * Quartering

Size of Test Sample (After Splitting)
CHAPTER NINE:
SAMPLING

Sampling is perhaps the most important step in assuring that good quality aggregates are being used on INDOT contracts. Since a sample is just a small portion of the total material, the importance that the sample be representative of the material being delivered cannot be overemphasized. Any test conducted on the sample, regardless of how carefully and accurately done, is worthless unless the sample is truly representative of the material used on the contract.

SAFETY

The sampling of materials may expose the Technician to machinery, moving belts, large stockpiles, and other potential dangers. Proper safety practices are always the first concern. When an unsafe condition exists, instructions from the Supervisor on the safety procedures for sampling are required to be obtained.

SAMPLE REFERENCES

A representative sample may be obtained by following the standard procedures detailed in AASHTO T 2, or ITM 207, Method of Sampling Stockpile Aggregate.

SIZES OF ORIGINAL SAMPLES

The key to any sample program is to obtain a representative sample. A standard sampling method is required to be followed to obtain uniform samples.
The following is a list of recommended minimum sizes of composite samples to be used as a guide when collecting samples.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 coarse aggregate</td>
<td>385 lb</td>
</tr>
<tr>
<td>No. 2 coarse aggregate</td>
<td>220 lb</td>
</tr>
<tr>
<td>No. 5 coarse aggregate</td>
<td>110 lb</td>
</tr>
<tr>
<td>No. 8 coarse aggregate</td>
<td>55 lb</td>
</tr>
<tr>
<td>No. 9 coarse aggregate</td>
<td>35 lb</td>
</tr>
<tr>
<td>No. 11, No. 12 & No. 16 coarse aggregate</td>
<td>25 lb</td>
</tr>
<tr>
<td>No. 43 coarse aggregate</td>
<td>110 lb</td>
</tr>
<tr>
<td>No. 53 coarse aggregate</td>
<td>135 lb</td>
</tr>
<tr>
<td>No. 73 coarse aggregate</td>
<td>80 lb</td>
</tr>
<tr>
<td>2 in. Structure Backfill</td>
<td>245 lb</td>
</tr>
<tr>
<td>1½ in. Structure Backfill</td>
<td>190 lb</td>
</tr>
<tr>
<td>1 in. Structure Backfill</td>
<td>135 lb</td>
</tr>
<tr>
<td>½ in. Structure Backfill</td>
<td>60 lb</td>
</tr>
<tr>
<td>All sands</td>
<td></td>
</tr>
<tr>
<td>No. 4 & No. 30 B Borrow</td>
<td>25 lb</td>
</tr>
</tbody>
</table>

The weight of the sample depends on the maximum particle size of the material being inspected. As a rule, a larger top size material requires a larger sample. A 25 lb sample of No. 2 coarse aggregate would not be as representative of that material as a 25 lb sample of natural sand.

TWO IMPORTANT DEFINITIONS TO REMEMBER

Top Size or Maximum Particle Size -- The sieve on which 100 percent of the material passes.

Nominal Maximum Particle Size -- Smallest sieve opening through which the entire amount of the aggregate is permitted to pass.
Although these two definitions are almost identical, the difference is important. An INDOT 53 aggregate, for example, is required to have 100% of the material passing the 1 1/2 in. sieve. The next smallest sieve by Specification is the 1 in. sieve which requires 80-100% of the material to pass the sieve. The maximum particle size therefore is 1 1/2 in. since 100% of the aggregate is required to pass the 1 1/2 in. sieve. The nominal maximum particle size is 1 in. since the 1 in. sieve is the smallest sieve which is permitted to have 100% of the material pass but is not required.

SAMPLE TYPES

The Technician is required to realize there are different types of samples. The most common sample is a stockpile sample, which is normally the method of load-out sampling under CAPP.

Some samples are required to be taken in the processing operation to assure that the final product is within control limits. These samples are referred to as production samples. The gradation of the production sample may not be the same as a load-out sample at some facilities.

Occasionally, an investigative sample is obtained when verifying a specific feature, such as a certain sieve, oversized material, etc. These tests may consist of many shortcuts and are only used as a quick comfort level check.

Every source may have other types of samples which are unique to their operation.

METHODS OF SAMPLING

Because of the various sampling locations and the availability of equipment, there are several methods of taking aggregate samples. Uniformity of obtaining the sample is very important, since the sampling procedure eliminates one variable in the test results. The Technician should remember that safety comes first.

PRODUCTION SAMPLING

Bin Sampling

Sampling the top of the bin is an extremely dangerous as well as a difficult, if not impossible, method to obtain a representative sample. For this reason, this method of sampling is undesirable.
Discharge Sampling of Bins or Belts

Bin samples may be taken at the discharge chute. In these situations, a number of small samples are taken at short intervals and combined to make the total sample. Each of these samples is required to include the entire cross section of the flow of material from the chute or belt.

Continuity of operation normally does not allow the Technician to control the rate of flow from the discharge chute. A mechanical diversion or slide chute system is the quickest, safest, and most accurate system (Figure 9-1). Unfortunately very few mechanical systems exist. All methods, including manual methods, are required to be included in the Quality Control Plan for the source and the proper safety practices should be designated.

Figure 9-1. Discharge Sampling of Belt

Belt Sampling

Belt sampling consists of taking samples of materials directly from the conveyor belts. This may be done by a mechanical sampling device (Figure 9-2) or manually. The proper procedure for manual belt sampling is designated in AASHTO T 2 and includes the following:

1) Make sure that the belt is carrying a normal load of material that is not segregated
2) Have the plant operator stop the belt and use proper lock out procedures

3) Take a complete cross section of the material, being careful to include all the material on the belt and only the material in the section. A template is recommended, especially on steeply inclined belts. Remove most of the sample with a scoop or shovel and the remainder with a brush.

4) Take as many complete cross sections as necessary to obtain a sample that meets the minimum sample size.

Figure 9-2. Belt Sampling with Mechanical Device

LOAD-OUT SAMPLING

Coarse Aggregate Stockpiles

Coarse aggregates are recommended to be sampled using ITM 207.

Fine Aggregate Stockpiles

Fine aggregate samples normally are obtained in the same method as coarse aggregate samples, except a fire shovel or sampling tube is used to collect the material.
SAMPLING DIRECTLY FROM TRUCKS, RAIL CARS, OR BARGES

Direct sampling from trucks, rail cars, or barges is not recommended. There are a number of factors that may influence the gradation of the material, such as segregation or particle breakdown during loading, transporting, and unloading. Therefore, material being shipped by cars or barges is required to be sampled at the point of delivery. Materials being shipped by trucks for local delivery points also are required to be sampled at the point of delivery.

REDUCING A SAMPLE TO TEST SIZE

The total sample (production or load-out) is required to be reduced to a sample size that may be quickly tested. The procedure is conducted in accordance with AASHTO T 248. Time does not allow the Technician to test the total sample. The key to sample reduction is to ensure that the sample remains representative of the material in the stockpile. This practice is commonly referred to as splitting a sample. There are four different methods to reduce a sample to the proper test size.

1) The mechanical splitter is the most accepted method of reducing to test size all coarse aggregate material smaller than No. 2 aggregate, except highly moistened compacted aggregate.

2) The sand splitter is the accepted method of reducing fine aggregate or the minus No. 4 material from compacted aggregate samples that is drier than the saturated surface-dry condition. As a quick check to determine this condition, if the material retains the shape when molded in the hand, the material is considered wetter than saturated surface-dry.

3) The miniature stockpile is the method used for fine aggregate that has free moisture on the particle surfaces.

4) Quartering is the method that is used for highly moistened compacted aggregate or when a mechanical splitter is not available.

MECHANICAL SPLITTER

The mechanical splitter (Figure 9-3) separates the sample into halves as the material passes through the spaces between the bars in the splitter. The same number of each particle size goes into each half of the sample, thus keeping the reduced sample representative of the total collected sample.
In using the mechanical splitter, the splitter bars are adjusted so that the bar opening is approximately 50% larger than the maximum particle size of the material to be split. A No. 5 aggregate has a maximum particle size of 1½ in. Therefore, the recommended bar opening is approximately 2.25 in. INDOT allows the bar opening at 3 in. or 6 bars (each bar is approximately 1/2 in) for all coarse aggregate No. 5 or smaller. The splitter is required to be level to ensure that each half of the split is approximately the same size; within approximately 10 percent of each other by weight.

The splitting procedure is as follows:

1) Properly place the pans under the splitter in such a way that all of the particles diverting in both directions will be caught

2) Pour the sample evenly into the hopper

3) Open the hopper fully and allow the material to free fall through the splitter

4) If wet particles stick inside the splitter, gently tap the splitter with a rubber hammer to loosen them

5) To ensure that the sample has not been segregated during sampling, place both halves of the sample back into the hopper and repeat the splitting operation

9-7
6) After the second splitting, the two receiving pans contain approximately the same amount of material. Only one pan is placed back into the hopper and the splitting procedure repeated until a sample of the desired size is obtained. Skillful manipulation of the splitter allows a sample of nearly any size to be made that is still representative of the material in the stockpile.

SAND SPLITTER

The sand splitter (Figure 9-4) is a small version of the mechanical splitter except that the openings are fixed and there are no hopper doors.

![Figure 9-4. Sand Splitter](image)

The splitting procedure is as follows:

1) Place the pans under the splitter to catch all of the particles

2) Slowly pour the dry sample into the splitter from the side (never from the end or corner)

3) Recombine the samples and split the sample a second time to eliminate any segregation

4) Reduce the sample to proper size by additional splitting of the material in one of the pans
MINIATURE STOCKPILE

The miniature stockpile (Figure 9-5) method is used for reducing all samples of fine aggregates when the material is in a damp or moist condition. If the sample to be split is dry, then the material is required to be moistened before using this method.

Figure 9-5. Miniature Stockpile

The splitting procedure is as follows:

1) Place the original sample on a clean, dry plate or other hard, smooth, non-absorptive surface

2) Using a trowel or other suitable tool, turn the entire sample over three times

3) Shape the material into a conical pile

4) With a spoon or small trowel, randomly take at least five small portions of material around the pile and one-third way up the cone until the required test sample is obtained
Quartering (Figure 9-6) is a non-mechanical method of reducing a sample. This is the best method of reducing highly moistened compacted aggregate or when a mechanical splitter is not available.

![Quartering Procedure](image)

Figure 9-6. Quartering

The quartering procedure is as follows:

1) Place the sample on a hard, clean, level, non-absorptive surface where there will be neither loss of material nor the accidental addition of foreign material.

2) Using a large trowel, shovel, or other suitable tool turn the entire sample over at least three times. Form the sample into a conical pile by depositing individual lifts on top of the preceding lift.

3) Flatten the pile to a uniform thickness by pressing down the apex with a shovel or trowel. Each quarter sector of the resulting pile is required to contain the material originally in the pile. The diameter of the pile should be equal to 4-8 times the thickness of the pile.

4) With a large trowel or other suitable tool, divide the sample into four equal quarters. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.

5) Combine diagonally opposite quarters of the material into two samples. All fine materials shall be included by brushing the surface clean. Store one of these two halves. If the remaining material still weighs too much, repeat the entire quartering process until the proper test sample size is obtained.
SIZE OF TEST SAMPLE (AFTER SPLITTING)

The original sample is required to be reduced to a test sample size that is within the minimum and maximum weights of the following table.

WEIGHT OF TEST SAMPLE

<table>
<thead>
<tr>
<th>AGGREGATE SIZE</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 2</td>
<td>11,300 g</td>
<td>---</td>
</tr>
<tr>
<td>No. 5</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>No. 8</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>No. 9</td>
<td>4000 g</td>
<td>6000 g</td>
</tr>
<tr>
<td>No. 11</td>
<td>2000 g</td>
<td>---</td>
</tr>
<tr>
<td>No. 12</td>
<td>1000 g</td>
<td>---</td>
</tr>
<tr>
<td>No. 16</td>
<td>1000 g</td>
<td>---</td>
</tr>
<tr>
<td>No. 43</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>No. 53</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>No. 73</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>No. 91</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>B Borrow</td>
<td>4000 g</td>
<td>6000 g</td>
</tr>
<tr>
<td>Structure Backfill, 2 in.</td>
<td>11,300 g</td>
<td>---</td>
</tr>
<tr>
<td>Structure Backfill, 1 1/2 in. & 1 in.</td>
<td>6000 g</td>
<td>8000 g</td>
</tr>
<tr>
<td>Structure Backfill, 1/2 in.</td>
<td>4000 g</td>
<td>6000 g</td>
</tr>
<tr>
<td>Structure Backfill, No. 4 & No. 30</td>
<td>300 g</td>
<td>---</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>300 g</td>
<td>---</td>
</tr>
</tbody>
</table>