ADJACENT PRESTRESSED, PRECAST BOX BEAM BRIDGES

RYAN WHELCHEL, Purdue University
RYAN MOLLEY, KPFF
LUIS FELIPE URREGO, Universidad de los Andes
ROBERT FROSCH, Purdue University
CHRISTOPHER WILLIAMS, Purdue University

AN ADJACENT BOX BEAM BRIDGE

- Box Girders
- Shear Keys
- Tie Rods
- Wearing Surface
PROJECT MOTIVATION

- History of poor durability and performance
- Economical and simple to build
- Over 43,000 in US and 4,000 in Indiana

RESEARCH PLAN

- Acquire decommissioned bridge girders
- Research and acquire NDT equipment
- Conduct non-destructive evaluation
- Perform structural tests
- Load test an existing bridge to determine load distribution of a non-composite deck on a bridge without shear keys
SPECIMEN ACQUISITION

- Determine those bridges that will be replaced
- Inspect bridges to determine specimen quality
- Contact County, Engineer, or Contractor to coordinate girder salvage

COMMON DETERIORATION

- Longitudinal Cracking
- Exposed or Broken Strand
BOX BEAM SPECIMENS
Wells Co. Bridge 79

BOX BEAM SPECIMENS
Newton Co. Bridge K5
BOX BEAM SPECIMENS
Elkhart Co. Bridge 102

NONDESTRUCTIVE TESTING
NON-DESTRUCTIVE EVALUATION (NDE)

Ground Penetrating Radar (GPR)
Connectionless Electrical Pulse Response Analysis (CEPRA)
Half-cell potential measurement

PRELIMINARY NDE RESULTS

Specimen 409-1-ES
Span: 50’
Depth: 29”
Width: 36”
PRELIMINARY NDE RESULTS

Longitudinal Location (ft)

Transverse Location (in.)

Low Moderate High

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

PRELIMINARY NDE RESULTS

Longitudinal Location (ft)

Transverse Location (in.)

Low Moderate High

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50
STRUCTURAL TESTING

BEAM TEST

Load Points

Roller Bearing (TYP)

Reaction Block (TYP)

String Potentiometers (two at midspan)
BEAM TEST

Specimen 409-1-ES
- Three exposed strands at L/8 from support

Specimen 409-2-UD
- No damage

BEAM TEST

![Graph showing midspan deflection vs. applied force for different capacities: 42 kip - Undamaged Capacity, 52 kip - Test, 34 kip - Damaged Capacity, 47 kip - Theory.](graph.png)
BEAM TEST

- **Applied Force (kip)** vs. **Midspan Deflection (in.)**
- **42 kip - Undamaged Capacity**
- **50 kip - Test**
- **47 kip - Theory**

BEAM TEST

- **52 kip - Test**
- **50 kip - Test**
- **47 kip - Theory**
FIELD TESTING

TIPPECANOE COUNTY BRIDGE 115

• Built: 1957
• Rehabilitated: 1993
• Span: 40 ft
• Beam Depth: 21 in.
• Beam Width: 45 in.
• 7 Beams

Built: 1957
Rehabilitated: 1993
Span: 40 ft
Beam Depth: 21 in.
Beam Width: 45 in.
7 Beams
INTRODUCTION

INSTRUMENTATION

LOADING

Dump Truck
- Weight: ~ 58,000 lb
- 30% to front axle
- 70% to tandem axle
- Wheelbase: 16’ – 4”
FIELD TESTING

Bridge Deck Modifications

- Milling
- Shear Key Cutting
- Surface Preparation
- Bridge Deck Cast
East West

0 10' 10' 10' 10'

1 2 3 4 5 6 7

Midspan Deflection (in.)

Beam Number

LT1 - Original Condition
LT2 - Asphalt Removed
LT3 - Shear Keys Disabled
LT4 - Concrete Deck Placed

Midspan Deflection (in.)

Beam Number

Concrete Deck Placed
35% reduction in deflection
LOAD DISTRIBUTION

- The proportion of load carried by a given beam was calculated as follows

\[DF_i = \frac{\Delta_{\text{midspan}_i}}{\sum \Delta_{\text{midspan}_i}} \]
LOAD DISTRIBUTION SUMMARY

Experimental Distribution Factors

<table>
<thead>
<tr>
<th>Load Test</th>
<th>Interior</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT01</td>
<td>22%</td>
<td>23%</td>
</tr>
<tr>
<td>LT04</td>
<td>22%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Design Distribution Factors

AASHTO Standard Specification 2002

- **Load Fraction (truck)**
 - 32%

AASHTO LRFD 2017

<table>
<thead>
<tr>
<th>Interior</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>21%</td>
<td>24%</td>
</tr>
</tbody>
</table>
FIELD TEST CONCLUSIONS

- Concrete deck restored load distribution to a code level
- Durability and stiffness were added to the system
- Composite action between the deck and the beams was achieved

IMPLICATIONS TO BEST PRACTICE

- Recommend all new construction use concrete decks
- Potential new design of adjacent box beam bridges without shear keys

Concrete Deck Sealant

Standard Box Beam Shape
PROJECT BENEFITS

- Improved inspection capability for bridge inspectors
- Increase in bridge load rating accuracy
- Development of next generation box beams

ACKNOWLEDGMENTS
THANK YOU