I-70 over SR 121
Accelerated Bridge Construction – Design Challenges

Tyler S. Wolf, P.E.

Project Overview

- Located east of Richmond, IN
- Replace Existing Deteriorated Structure
I-70 over SR 121

Project Overview

- At a Project Scoping Meeting – Items Noted
 - IHCP will only Allow Nightly Lane Closures
 - Two Additional Bridges within I-70 MOT Footprint

A TRADITION OF EXCELLENCE SINCE 1945

I-70 over SR 121

Project Overview

- At a Project Scoping Meeting – Items Noted
 - Landfill and Quarry East of Bridge
 - Open Field Immediately East of Bridge

A TRADITION OF EXCELLENCE SINCE 1945
Engineering Assessment

- Looked at Five Options
- Construction Cost
- Maintenance of Traffic
- Construction Timeframe
- Traffic Impacts
- Engineering Cost

Do Nothing – $0.00
Conventional – $7,723,000
SPMT – $8,061,000
Slide-In – $7,636,000
Hybrid Slide-In – $8,448,000
Moved Ahead with a Dual Design - SPMT Option and Slide Option
I-70 over SR 121 ABC Bridge Slide

Engineering Assessment

- Self Propelled Modular Transporters (SPMT)

UDOT 4500 South over I-215

Total Estimated Cost = $8,061,000

Less than One Construction Season

Two – Two week Single Lane Closures
Engineering Assessment

- Slide-In Superstructure Installation

Total Estimated Cost = $7,636,000

One Construction Season

Two – Two week Single Lane Closures
Final Design - Challenges

- “Design-Build”
- Foundation
- Substructure
- Superstructure
- Interstate Lane Closure Policy
- Expedited Construction
- Provisions
I-70 over SR 121

Foundation – Spread Footing

- Rock Fairly Shallow at Project Site
- Existing Bridge Piers on Spread Footings
- Low Quality Rock
- Limited Space
I-70 over SR 121

Foundation – Micropiles

- Good Fit for Site
- Able to work in Low Head Room
- But…..

Buy America Requirement – 106.01(c)

Geo-strata Magazine Article “Buy America’ Act Threatens U.S. Micropile Business” (September/October 2012)

Back to the Drawing Board – Drilled Shafts
I-70 over SR 121

Foundation – Drilled Shafts

Substructure - Design

- Full Face Abutment or Conventional Bent
Substructure - Design

- **Full Face Abutment**
 - **Advantages:**
 - Deeper Section
 - More Working Room
 - Shorter Span
 - **Disadvantages:**
 - More Overturning Forces
 - More Excavation under End Span
 - Soil Mitigation for Backfill

- **Conventional Bent**
 - **Advantages:**
 - Less Excavation
 - Less Overturning Forces
 - Less Soil Mitigation
 - **Disadvantages:**
 - Tighter Construction Area
 - Longer Span
 - Less Structural Depth
I-70 over SR 121

Substructure - Geometry

- Full Faced Abutment

I-70 over SR 121

Substructure - Geometry

- Needed to Accommodate Individual Bridge Installation Systems
 - Slide System – Needs to be Continuous from Coping to Coping plus Outside
 - Due to Drilled Shaft Locations and Construction Speed, extending Outside Coping warranted for SPMT
Substructure - Design

- Full Face Abutment – Use MSE Fill Behind
I-70 over SR 121 ABC Bridge Slide

Substructure - Design

- Used Cellular Concrete in lower portion of MSE section
 - Lightweight
 - Concerns with Stability of Soil
 - Stable – Will not induce Horizontal Loading on Abutment

Substructure – Strut and Tie

- Strut and Tie Analysis
- Based on AASHTO LRFD 5.6.3 says SHOULD use Strut and Tie
- Based on AASHTO LRFD 5.8.1.1 & 5.8.1.2 says SHALL use Strut and Tie in Deep Beams
I-70 over SR 121

Substructure – Strut and Tie

- FHWA/TX-12/5-5253-01-1 – Very Good Example

- Separate B & D Regions
 - [AASHTO 5.5.1.2] - 1d from Load Application
 - [AASHTO C.5.6.3.2] – Discusses 2d to 2.5d
 - Designed Abutment both as B and D Region
I-70 over SR 121 ABC Bridge Slide

Substructure – Strut and Tie

- Define Load Case
 - Dead Loads from Beam Design
 - Live Load – Taking into account the Construction in the Median, Proposed Condition and Future Condition
- Three Live Loading Conditions – Ten Load Combinations (Min and Max LF)

I-70 over SR 121

Substructure – Strut and Tie

- Loading Condition 1 - Proposed
I-70 over SR 121

Substructure – Strut and Tie

- Loading Condition 2 – During Construction/Future MOT

Substructure – Strut and Tie

- Loading Condition 3 – Three Lane Section
I-70 over SR 121

Substructure – Strut and Tie

- Analyze Structural Component
 - Perform Conventional Analysis to determine Reactions from Drilled Shafts

- Size Structural Component
 - Not required by AASHTO, but a quick and easy check

\[V_r = \left[a \cdot f_c \right] \sqrt{A_e} \] \hspace{1cm} (2.1)

where:
- \(a \) = shear span (in.)
- \(d \) = effective depth of the member (in.)
- \(f_c \) = specified compressive strength of concrete (psi)
- \(A_e \) = width of member’s web (in.)

A TRADITION OF EXCELLENCE SINCE 1945
I-70 over SR 121

Substructure – Strut and Tie

- Develop Strut and Tie – [AASHTO 5.6.3.2]
 - Struts should be oriented in Compressive Direction – 25 Deg. Max Angle
 - Top Strut and Bottom Tie Defined by Reinforcement – this became iterative.
 - Dead Load of Abutment applied at Discrete Nodes
Substructure – Strut and Tie

- Proportion Tension Ties – [AASHTO 5.6.3.4]
 - Top and Bottom Chords

Proportion Tension Ties – [AASHTO 5.6.3.4]
- Top and Bottom Chords
Check Drilled Shaft Bearing – [AASHTO 5.6.3.5.3]

Substructure – Strut and Tie

Check Drilled Shaft Bearing – [AASHTO 5.6.3.5.3]

Analysis

<table>
<thead>
<tr>
<th>Node 11</th>
<th>Node 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>100.9</td>
</tr>
<tr>
<td>2</td>
<td>100.3</td>
</tr>
<tr>
<td>3</td>
<td>107.8</td>
</tr>
<tr>
<td>4</td>
<td>1031.8</td>
</tr>
<tr>
<td>5</td>
<td>893.7</td>
</tr>
<tr>
<td>6</td>
<td>702.9</td>
</tr>
<tr>
<td>7</td>
<td>801.1</td>
</tr>
<tr>
<td>8</td>
<td>525.1</td>
</tr>
<tr>
<td>9</td>
<td>649.4</td>
</tr>
<tr>
<td>10</td>
<td>887.2</td>
</tr>
</tbody>
</table>

Check Beam Bearings – [AASHTO 5.6.3.5.3]

Substructure – Strut and Tie

Check Beam Bearings – [AASHTO 5.6.3.5.3]

Analysis

<table>
<thead>
<tr>
<th>Load Combinations</th>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
<th>Node 4</th>
<th>Node 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>L</td>
<td>U</td>
<td>L</td>
<td>U</td>
</tr>
<tr>
<td>1 105.8</td>
<td>1</td>
<td>1</td>
<td>100.3</td>
<td>1</td>
<td>107.8</td>
</tr>
<tr>
<td>2 156.2</td>
<td>2</td>
<td>2</td>
<td>118.7</td>
<td>2</td>
<td>191.3</td>
</tr>
<tr>
<td>3 156.2</td>
<td>3</td>
<td>3</td>
<td>303.5</td>
<td>3</td>
<td>156.2</td>
</tr>
<tr>
<td>4 156.2</td>
<td>4</td>
<td>4</td>
<td>156.2</td>
<td>4</td>
<td>156.2</td>
</tr>
<tr>
<td>5 156.2</td>
<td>5</td>
<td>5</td>
<td>332.0</td>
<td>5</td>
<td>156.2</td>
</tr>
<tr>
<td>6 156.2</td>
<td>6</td>
<td>6</td>
<td>210.6</td>
<td>6</td>
<td>332.0</td>
</tr>
<tr>
<td>7 156.2</td>
<td>7</td>
<td>7</td>
<td>332.0</td>
<td>7</td>
<td>156.2</td>
</tr>
<tr>
<td>8 156.2</td>
<td>8</td>
<td>8</td>
<td>332.0</td>
<td>8</td>
<td>156.2</td>
</tr>
<tr>
<td>9 156.2</td>
<td>9</td>
<td>9</td>
<td>210.6</td>
<td>9</td>
<td>332.0</td>
</tr>
<tr>
<td>10 156.2</td>
<td>10</td>
<td>10</td>
<td>332.0</td>
<td>10</td>
<td>210.6</td>
</tr>
</tbody>
</table>

Completed by: [Staff Name]

A Tradition of Excellence Since 1945
Substructure – Strut and Tie

- Perform Nodal Strength Checks – [AASHTO 5.6.3.5.3]
 - Most Complicated and Time Consuming Portion of Design
 - Vector Elements
 - Partition Nodes

Substructure – Strut and Tie

- Perform Nodal Strength Checks – [AASHTO 5.6.3.5.3]
 - Recalculate Node Geometry

Geometry of Node Partitions:
- Propagation and yield by vertical force from left strut and right strut
 - Left: 33.73 in
 - Right: 14.32 in

- Place nodes 2AA and 2AB at new locations in center of left and right partition
 - Offset left: 18.75 in
 - Offset right: 55.89 in

- Determine new angles based on relocalized loads and offsets above

<table>
<thead>
<tr>
<th>Strut</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>139.4</td>
<td>39.63</td>
</tr>
<tr>
<td>Angle</td>
<td>15.91°</td>
<td>15.91°</td>
</tr>
<tr>
<td>Area</td>
<td>186.8</td>
<td>40.01</td>
</tr>
<tr>
<td>Angle</td>
<td>74.50°</td>
<td>74.50°</td>
</tr>
</tbody>
</table>

“t” is compression
I-70 over SR 121

Substructure – Strut and Tie

- Perform Nodal Strength Checks – [AASHTO 5.6.3.5.3]
 - Check Back Face – [AASHTO 5.6.3.5.3a]

Substructure – Strut and Tie

- Perform Nodal Strength Checks – [AASHTO 5.6.3.5.3]
 - Check Node Face – [AASHTO 5.6.3.5.3a]
Substructure – Strut and Tie

- Perform Nodal Strength Checks – [AASHTO 5.6.3.5.3]
 - Check Anchorage – [AASHTO 5.6.3.4.2]
 - Each Check Varies Depending on Node Type – CCC, CCT, CTT

Proportion Crack Control Reinforcement – [AASHTO 5.6.3.6]
I-70 over SR 121 ABC Bridge Slide

Substructure – Strut and Tie

- Proportion Stirrups in High Shear Regions –
 [AASHTO 5.6.3.4.1]

<table>
<thead>
<tr>
<th>Member</th>
<th>Str 1 Width</th>
<th>Str 2 Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.9</td>
<td>11.74</td>
</tr>
<tr>
<td>2</td>
<td>12.05</td>
<td>11.97</td>
</tr>
<tr>
<td>3</td>
<td>12.05</td>
<td>11.97</td>
</tr>
<tr>
<td>4</td>
<td>12.05</td>
<td>11.97</td>
</tr>
<tr>
<td>5</td>
<td>12.05</td>
<td>11.97</td>
</tr>
</tbody>
</table>

Superstructure

- Mostly followed Typical Design
- End Diaphragms Unique
 - Slide Diaphragm – Accommodate Jacking Ports
Superstructure

- End Diaphragms Unique
 - Slide Diaphragm – Accommodate Jacking Ports

- SPMT – Not Enough Room to cast up to Bridge Seats
- Used Precast Bridge Seat Cap
Superstructure

- End Diaphragms Unique
 - SPMT – Not Enough Room to cast up to Bridge Seats
 - Used Precast Bridge Seat Cap

Superstructure

- End Diaphragms Unique
 - SPMT – End Diaphragm needed to Eliminate Joint but Minimize Dead Load
I-70 over SR 121

Superstructure

- SPMT – Needed to perform 3D Finite Element of Transportation

Speed of Construction

- Tried to incorporate Precast wherever possible
- Precast Sleeper Slab w/ Precompressed Foam Joint instead of Terminal Joint
- MSE Wall Wings
- Allowed to Open with Concrete Strength = 500 psi
A+B Contract Provisions

- As Part of the Bid, Contractor to bid Number of Hours of I-70 Lane Closure and Days of SR 121 Road Closure
- I-70: Bid, Incentive and Disincentive = $2,500/hour on Fridays and $2,000/Hour on other Days
- SR 121: Bid, Incentive and Disincentive = $4,000/day

- Requirements of Revisions to Contract Plans, Working Drawings, Contingency Plans, Installation Plans, Tolerances
- Installation Bid at $160,000 and Engineering Bid at $95,000
Contract Award

- Walsh was the Successful Bidder – Slide Option
- Construction Cost $5,630,000 (Original Estimate $6,921,000)
- B Component = $855,000
- 24 Days of I-70 Lane Closure
- 30 Days of SR 121 Full Closure

Actual Construction

- Two Eight Day Lane Closures
- Two Three SR 121 Road Closure Days for Bridge Demolition
- 14 Days of SR 121 Closure for Road Work on SR 121
- https://www.youtube.com/watch?v=N4FrVGW0Upg&feature=youtu.be
- https://www.youtube.com/watch?v=6SBjNkCRmUg&feature=youtu.be
THANK YOU