BRIDGE REHABILITATION PLANS
FOR SPANS OVER 20 FEET
U.S. 41 SB OVER EAGLE CREEK
PROJECT NO. 0200635

DECK RECONSTRUCTION ON STRUCTURES: SH-42-49903B, U.S. 41 SB OVER EAGLE CREEK LOCATED APPROXIMATELY 0.32 MILES SOUTH OF THE U.S.41 AND I-69 INTERCHANGE, IN SECTION 4, TOWNSHIP 7 SOUTH, RANGE 10 WEST, VANDERBURGH COUNTY, INDIANA.

NOTE: SEE ROAD PLANS FOR REMOVAL OF EXISTING GUARDRAIL, PROPOSED GUARDRAIL, PAVEMENT MARKINGS, EROSION CONTROL MEASURES AND MAINTENANCE OF TRAFFIC DETAILS.
NOTES

See Sheets 6 thru 8 for Proposed Structure General Plans.

19'-0" Girder Removal

See Special Provisions for Salvaging some Sections of the Existing Structure.

ADM: D. SHEETZ
DES: M. MATEL

Remove Existing Aluminum Bridge Railing (Typ.)

1'-3" Bridge Deck and Concrete Girders

Remove Bearing Assemblies

Remove Pin and Hanger Assemblies

Remove Bridge Deck and Concrete Girders

3' 3" Berm

39'-6" Clear Roadway

40'-3" Clear Span

41'-9" Coping to Face of Railing

41'-9" Out to Out of Bridge Floor

5600'-0" Out to Out of Bridge Floor

1'-3" Pier 12'-0" Pier

Notes: Hatched Areas indicate Portions to be Removed.

BENT NO.1

Bent No.1 SB & NB

Pier No.2 SB & NB

Pier No.3 SB & NB

Pier No.4 SB & NB

Pier No.5 SB & NB

Pier No.6 SB & NB

NOTE: SEE ROAD PLANS FOR REMOVAL OF EXISTING GUARDRAIL, CONTROL MEASURES AND MAINTENANCE OF TRAFFIC DETAILS.

Southbound Structure

Northbound Structure

EXISTING SOUTHBOUND STRUCTURE

TWIN CONTINUOUS STEEL PLATE GIRDER AND R.C. GIRDER BRIDGES

3 33

SN 85-007

TWIN CONTINUOUS STEEL PLATE GIRDER AND R.C. GIRDER BRIDGES

17 SPANS: 1 AT 40'-0", 1 AT 65'-0", 3 AT 81'-0", 2 AT 65'-0", 3 AT 81'-0", 2 AT 65'-0", 3 AT 81'-0", 1 AT 65'-0" AND 1 AT 40'-0" NO SKEW, 34'-0" CLEAR ROADWAY, ON U.S. 41 SOUTHBOUND OVER EAGLE CREEK, NORTHBOUND OVER EAGLE CREEK.

INDIANA DEPARTMENT OF TRANSPORTATION

DESIGN ENGINEER: D. SHEETZ

DATE: 1/28/14

NOTICE: THIS SHEET IS DRAFT AND MAY BE SUBJECT TO CHANGE. IT IS NOT FOR CONSTRUCTION.

GENERAL PLAN

PARTIAL ELEVATION

SCALE:

1"=1'-0"

PARTIAL PLAN

SCALE: 1/4"=1'-0"

1210'-0" Out to Out of Bridge Floor

SUMMARY OF WORK:

1. Remove Concrete Approach Slab

2. Remove Bridge Deck

3. Remove a portion of Bridge Deck

4. Remove Built-up Plate Girders

5. Remove Bearing Assemblies and Bearing Assemblies in Span "C"

6. Remove Bridge Deck and Concrete Girders in Span "B"

7. Remove Bearing Assemblies

8. Remove Existing End Bent

9. Remove Built-up Plate Girders in Span "C"

NOTE: SEE ROAD PLANS FOR REMOVAL OF EXISTING GUARDRAIL, CONTROL MEASURES AND MAINTENANCE OF TRAFFIC DETAILS.
TWIN CONTINUOUS STEEL PLATE GIRDERS AND RC GIRDER BRIDGES

DESIGNATED: 0200635
PROJECT: 041-82-4999JB
DATE: 05/05/2015

NOTES:
- SEE SHEET PLAN FOR REMOVAL OF EXISTING GUARDRAILS, PROPOSED GUARDRAIL, PAVEMENT MARKINGS, EROSION CONTROL MEASURES, AND MAINTENANCE OF TRAFFIC DETAILS.

PARTIAL PLAN
Scale: 1" = 20'

TWIN CONTINUOUS STEEL PLATE GIRDERS AND R.C. GIRDER BRIDGES

AS NOTED

PARTIAL ELEVATION
Scale: 1" = 20'

GENERAL PLAN
Scale: 1" = 20'

NOTE: INSERT 17' SHOULDER WALLS INSTALLED PAVEMENT MARKERS (Total Required per Structure)

BENDING NUMBER

SPAN "A"

12'-0" Out to Out of Bridge Floor

3'-0" Pier

40'-3" Clear Span

1210'-6" Out to Out of Bridge Floor

SPAN "B"

380 EACH

2'-0" Pier

17 SPANS: 1 AT 40'-0", 1 AT 65'-0", 3 AT 81'-0", 2 AT 65'-0", 3 AT 81'-0", 2 AT 65'-0", 3 AT 81'-0", 1 AT 65'-0" AND 1 AT 40'-0" NO SKEW, 33'-6" CLEAR ROADWAY, ON U.S. 41

SPAN "C"

12'-0" Out to Out of Bridge Floor

3'-0" Pier

81'-0" to Original Top Shoes

3'-3" Pier

12'-0" Out to Out of Bridge Floor

39'-3" Clear Roadway

1'-6" Pier

41'-9" Coping to Bearing Assemblies

3'-3" Pier

65'-0" to Original Top Shoes

Bearing Assemblies

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

Coping Line

Face of Bridge

81'-0" to Original Top Shoes

Bridge Deck

Reconstructed

NOTES:
- REMOVE PORTIONS OF DETERIORATED CONCRETE STRUCTURE IS BUILT ON A +0.24% GRADE
- JOINTS: TYPE I-A
- CONCRETE REPAIRS: USE RECOMMENDED CONCRETE PATCHING CONCRETE STRUCTURES AT PIERS (SFT.)
- CONCRETE BASEMENT: USE RECOMMENDED CONCRETE BASEMENT.

DEPARTMENT OF TRANSPORTATION
INDIANA
TWIN CONTINUOUS STEEL PLATE GIRDER BRIDGES
U.S. 41 SOUTHBOUND OVER EAGLE CREEK
PARTIAL ELEVATION

NOTE: SEE ROAD PLANS FOR DETAILS OF EXISTING GUARDRAILS, PROPOSED GUARDRAILS, PAYMENT PARALLELS, ETC.
NOTE: SEE ROAD PLANS FOR DETAIL OVERVIEW OF BRIDGE DECK, BEARING ASSEMBLIES, AND CONSTRUCTION DETAILING.

RECOMMENDED FOR APPROVAL:

DESIGN ENGINEER:

CHECKED:

FOR APPROVAL:

RECOMMENDED:

DRAWN:

DATE

INDIANA DEPARTMENT OF TRANSPORTATION

PROPOSED SOUTHBOUND STRUCTURE

PARTIAL PLAN

SCALE: 1" = 1'-0"

PROPOSED GUARDRAIL, PAVEMENT MARKINGS, EROSION TREATMENTS, AND TWIN CONTINUOUS BRIDGE DECK.

PARTIAL ELEVATION

SCALE: 1" = 1'-0"

TWO CONTINUOUS STEEL PLATE GIRDER BRIDGES
3 AT 81'-0" NO SKEW, 33'-6" CLEAR ROADWAY ON TWIN CONTINUOUS STEEL PLATE GIRDER BRIDGES.
GENERAL NOTES

Risks for the existing structure are on file with the Indiana Department of Transportation as Bridge File: 41-82-4999 and 41-82-4999A and are available upon request.

When new work is to be fitted to old work, the Contractor shall check all dimensions and confirm with the field and report any discrepancies to the designer at once. The Contractor shall have available for his own use all necessary equipment for his corrective work and the fit of the new part to the old.

Epoxy coated reinforcing bars shall be required in various portions of the bridge as shown.

Reinforcing bars covering shall be 2-1/2" in top of approach slab and 2" in all other areas unless noted.

Steel reinforcing bars shall be A.S.T.M. A615, Grade 60.

Concrete shall be Class C in bent, wingwalls, floor slabs and barrier railings.

Concrete shall be Class A in all other portions of the project not noted above.

Chamber exposed corners of concrete 1" unless noted.

Seal all joints and cracks in the approach pavement with a hot poured joint sealer before placing the HMA wedges.

Surface seal shall be required on various areas of the structure as shown. Calculated Quantity = 33135 Sft. (Does not include Concrete Barrier Rail Transitions)

NOTE: SEE BOND PLANS FOR REMOVAL OF EXISTING GUARDARILS, PROPOSED GUARDARILS, PHANTOM MARKERS, SEASONAL CONTROL MEASURES AND MAINTENANCE OF TRAFFIC DETAILS

SEISMIC DATA

Seismic Zone = 2

$V = 2.000$ p.s.i.

$V = 1.500$ p.s.i.

CONSTRUCTION LOADING

The exterior girder has been checked for strength, deflection and overturning using the construction loads shown below. Cantilever overturning brackets were assumed for support of the deck overhang past the edge of the exterior girder. The finishing machine was assumed to be supported 6 inches outside the vertical coping form. The top overhang brackets were assumed to be located 4 inches past the edge of the vertical coping form. The bottom overhang brackets were assumed to be braced against the intersection of the girder bottom flange and web.

DECK FAILED STATE LOADS: Designed for 15 psf for permanent metal stay-in-place deck forms, removable deck forms, and 2 ft interior roadway.

CONSTRUCTION LIVE LOAD: Designed for 20 psf including 2 ft past the edge of coping and 75 psf of vertical forces acting on the interior girder. A 4 ft radius is used for live load.

FINISHING MACHINE LOAD: 4300 lbs distributed over 15 ft along the coping.

WIND LOAD: Designed for 70 mph horizontal wind loading in accordance with IUB 3-6-1.
Girder Spacing

3'-0" 6" 2'-0" 6" 17'-0" 1'-0" 1'-0" 1'-6" 3'-0" Min.

ȭT

Bearing

9" 9" 9" 9" 9"

ȭGirder

(Typ.)

ȭBearing

(Typ.)

CLEAN AND STRAIGHTEN EXISTING VERTICAL REINF. (Typ.)

Pier No. 7 El. 382.51
Pier No. 12 El. 383.41

Plan

Scale: 1/8" = 1'-0"

Elevation

Scale: 1/8" = 1'-0"

Section

Scale: 1/8" = 1'-0"

Note: Hatched areas indicate portions to be removed.

See this Sheet for Reconstruction Details.
NOTES

See Sheet 19 for Framing Plan and Structural Steel Fabrication Notes.

See Sheet 21 for Splice Detail.

ELEVATION

NEW Girder 1 THRU 4

Spans A, B and C (Shown)

Spans S, R and Q (Opp. Hand)

SPANS

- **A**: 1'-0" Rad.
- **B**: 1'-0" Rad.
- **C**: 1'-0" Rad.
- **S**: 6'-0" Rad.
- **R**: 6'-0" Rad.
- **Q**: 6'-0" Rad.

NEW 12"x 3/4" Flange

NEW 12"x 3/4" Flange

BEARING STIFFENER

PLATE

- **5 8 x 5 13 16"**

SHEAR STUD DETAILS

SECTION

PLAN

DETAIL "A"

NOTES

See Sheet 20 for Floating Raft and Structural Steel Fabrication Notes.

See Sheet 24 for Splice Detail.
SPLICE NO.1 AND NO.2 DETAILS

Notes:
- Splice Elevations shown in Table are with falsework removed and allow for net dead load only.
- Top of Splice Plates shall be adjusted with falsework removed and allow for net dead load only.
- Field splices are bolted.

FOR APPROVAL:
RECOMMENDED

DESIGN ENGINEER
CHECKED:

SOUTHBOUND STRUCTURE

INFORMATION:
DEPARTMENT OF TRANSPORTATION
STRUCTURAL STEEL DETAILS
SOUTHBOUND STRUCTURE

GIRDER SPICE NO.1 SPICE NO.2

<table>
<thead>
<tr>
<th>SPICE ELEVATIONS</th>
<th>GRADE</th>
<th>SPICE NO.1</th>
<th>SPICE NO.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Flange</td>
<td>390.17</td>
<td>390.17</td>
<td>390.17</td>
</tr>
<tr>
<td>Web Flange</td>
<td>387.74</td>
<td>387.74</td>
<td>387.74</td>
</tr>
<tr>
<td>Top Flange</td>
<td>387.89</td>
<td>387.89</td>
<td>387.89</td>
</tr>
</tbody>
</table>

Top Splice Elevations shown in Table are with falsework removed and allow for net dead load only.

Top of Splice Plates shall be adjusted with falsework removed and allow for net dead load only.

Field splices are bolted.

SCALE: 1" = 1'-0"
NOTE: All Structural Steel for the End and Intermediate Diaphragms shall be Grade 36 Steel.

See Sheet 19 for Framing Plan and Structural Steel Fabrication Notes.
New Transverse Reinforcing to be placed between and alternating with existing reinforcing.

- For SPANS "A" OR "S"
 - 17x20'-0" + 1x10'-6" Per Row
 - 73 Rows #5 Cont. in Top
 - (Lap 2'-8")

- For SPANS "B" OR "R"
 - 19'-0" Span "B" or "R"
 - 7x20'-0" + 1x10'-6" Per Row
 - 73 Rows #5 Cont. in Top
 - (Lap 2'-8")

- For SPANS "C" OR "Q"
 - 81'-0" Span "N", SPANS "P","Q","R" AND "S" (OPP. HAND)
 - 7x20'-0" + 1x17'-9" Per Row
 - 19-Threaded Tie Bar Assemblies
 - (Epoxy Coated)
 - Type I-A Joint
 - Drain Type "OS-D"

- For SPANS "D" OR "P"
 - 32'-6" Clear Span
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "D" OR "P"

- For SPANS "E" OR "N"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "E" OR "N"

- For SPANS "F" OR "T"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "F" OR "T"

- For SPANS "G" OR "U"
 - 17'-0"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "G" OR "U"

- For SPANS "H" OR "V"
 - 17'-0"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "H" OR "V"

- For SPANS "I" OR "W"
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "I" OR "W"

- For SPANS "J" OR "X"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "J" OR "X"

- For SPANS "K" OR "Y"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "K" OR "Y"

- For SPANS "L" OR "Z"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "L" OR "Z"

- For SPANS "M" OR "AA"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "M" OR "AA"

- For SPANS "N" OR "BB"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "N" OR "BB"

- For SPANS "O" OR "CC"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "O" OR "CC"

- For SPANS "P" OR "DD"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "P" OR "DD"

- For SPANS "Q" OR "EE"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "Q" OR "EE"

- For SPANS "R" OR "FF"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "R" OR "FF"

- For SPANS "S" OR "GG"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "S" OR "GG"

- For SPANS "T" OR "HH"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "T" OR "HH"

- For SPANS "U" OR "II"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "U" OR "II"

- For SPANS "V" OR "JJ"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "V" OR "JJ"

- For SPANS "W" OR "KK"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "W" OR "KK"

- For SPANS "X" OR "LL"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "X" OR "LL"

- For SPANS "Y" OR "MM"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "Y" OR "MM"

- For SPANS "Z" OR "NN"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "Z" OR "NN"

- For SPANS "AA" OR "OO"
 - 12'-0" Lane
 - 16'-6" 2'-3" 32'-6" 23'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "AA" OR "OO"

- For SPANS "BB" OR "PP"
 - 81'-0" 32'-6"
 - Drain Spacing (Typ.)
 - 34'-0" 65'-0" SPANS "BB" OR "PP"
NEW TRANSVERSE REINFORCING to be placed between and alternating with existing reinforcing.

- **SPAN "E" OR "N"**
 - Drain Spacing (Typ.)
 - Rail Reinf. (Typ.)
 - Slab Reinforcing & Dowels
 - Slab Dimensions

- **SPAN "L"**
 - Drain Spacing (Typ.)
 - Slab Dimensions

NOTES

- See Sheet 29 for Screed Plans and Screed Notes.
- See Sheet 30 for Screed Elevations.
- See Sheets 26 and 27 for Sections "A-A" and Additional Notes.
- See Sheet 24 for Concrete Dead Load Deflection Diagrams. See Sheet 28 for Moment and Shear Notes.
SECTION "A-A"

Scale: 3/8" = 1'-0"

SECTION "A-A"

3'-3" spa.@ 10'-0" = 30'-0"

Existing Built-up Plate Girder w/52" Web (Typ.)

P.G. Shear Studs (Typ.)

Existing Slope: 1.50%

New Bridge Railing, Type FC (Typ.)

Face of Bridge

New Built-up Plate Girder w/36" Web (Typ.)

P.G. Shear Studs (Typ.)

New 9 1/2" Slab

New 6" (Typ.)

3" Drip Bead (Typ.)

New 3'-3" spa.@ 10'-0" = 30'-0"

33'-6" Clear Roadway

1'-4"

2"

1'-6"

SB Lanes

12'-0" Lane

SPANS "A", "B", "R" AND "S"

PORTIONS OF SPANS "C" AND "Q"

Note: Sides of the unpainted Top Flanges shall not be Exposed.

DETAIL "A"

SPANS "A", "B", "R" AND "S"

PORTIONS OF SPANS "C" AND "Q"

See Sheet 28 for Concrete Dead Load Deflection Diagrams.

See Sheet 29 for Screed Plans and Screed Notes.

See Sheet 30 for Screed Elevations.

NOTES

See Sheet 31 for Bar Bending Details and Bill of Materials.

CHECKED:

DESIGN ENGINEER

DESIGNED:

FOR APPROVAL:

DRAWN:

RECOMMENDED DATE

CONTRACT VERTICAL SCALE SURVEY BOOK PROJECT SHEET DESIGNATION OF HORIZONTAL SCALE BRIDGE FILE BFS NO.

DEPARTMENT OF TRANSPORTATION INDIANA REGISTRATION DRAFT NOT FOR CONSTRUCTION
'Note: Hatched Areas Indicate Portions to be Removed.

Existing Bridge Floor

Remove BRIDGE DECK OVERLAY

are Poured Slab and Rails Top of Form before

and Hydrodemolition Existing Built-up Plate Girder

1" Surface Milling

Existing Bridge Floor

Remove BRIDGE DECK OVERLAY

are Poured Slab and Rails Top of Form after

Saw Cut

SECTION AT PIER NO.7 OR NO.12

(SHOWING REMOVALS)

Scale: 1" = 2'-0"

Top of Form before

Slab and Rails are Poured

Top of Form after

Slab and Rails are Poured

CONCRETE DEAD LOAD DEFLECTION DIAGRAM

SPAN "A", SPAN "B" AND PARTIAL SPAN "C"

Not to Scale

SECTION AT PIER NO.7 OR NO.12

(SHOWING RECONSTRUCTION)

Scale: 1" = 2'-0"

Reinforcing (Typ.)

Existing Reinforcing (Typ.)

Clean and Straighten

Existing Built-up Plate Girder

Exp. Joint

New Class SS

New 1/2" Lakes Modified Portland Cement Concrete BRIDGE DECK OVERLAY

Existing Bridge Floor

Existing Bridge Floor

PARTIAL SPAN "Q", SPAN "R" AND SPAN "S"

New 1/2" Lakes Modified Portland Cement Concrete BRIDGE DECK OVERLAY

Existing Bridge Floor

Existing Bridge Floor

Not to Scale

NOTE

See Sheet 31 for Bar Bending Details and Bill of Materials.
Screed Notes

Screed elevations will be given for setting screeds and coping forms so that the slab and coping will be at the required elevation after all the concrete has been poured.

Take elevations at the time the concrete is poured. Elevations will be given at each beam and use the elevation at that beam as the height for the slab and coping forms above that point. Dimensions remain unchanged regardless of how much or what order the concrete is poured.

Concrete shall not be poured until the above operation is completed. Do not set screeds or coping forms by leveling.

See Sheet 30 for Screed Elevations.
Floor Details

Southbound Structure

Checked:
- DESIGN ENGINEER: C. OBRIEN
- DESIGN: D. SHEETZ
- FOR APPROVAL: M. MATEL
- DRAWN: B. WRIGHT

Contract:
- Vertical Scale: 1 / Survey Book: 1

Designation:
- Horizontal Scale: 1

BFS No.:
- 0200635

Not for Construction:

Schedule

<table>
<thead>
<tr>
<th>Page</th>
<th>150</th>
<th>151</th>
<th>152</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
<th>171</th>
<th>172</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Caping Form:</td>
<td>393.775</td>
<td>393.785</td>
<td>393.795</td>
<td>393.805</td>
<td>393.815</td>
<td>393.825</td>
<td>393.835</td>
<td>393.845</td>
<td>393.855</td>
<td>393.865</td>
<td>393.875</td>
<td>393.885</td>
<td>393.895</td>
<td>393.905</td>
<td>393.915</td>
<td>393.925</td>
<td>393.935</td>
<td>393.945</td>
<td>393.955</td>
<td>393.965</td>
<td>393.975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Exterior Beam:</td>
<td>393.775</td>
<td>393.785</td>
<td>393.795</td>
<td>393.805</td>
<td>393.815</td>
<td>393.825</td>
<td>393.835</td>
<td>393.845</td>
<td>393.855</td>
<td>393.865</td>
<td>393.875</td>
<td>393.885</td>
<td>393.895</td>
<td>393.905</td>
<td>393.915</td>
<td>393.925</td>
<td>393.935</td>
<td>393.945</td>
<td>393.955</td>
<td>393.965</td>
<td>393.975</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule

<table>
<thead>
<tr>
<th>Page</th>
<th>150</th>
<th>151</th>
<th>152</th>
<th>153</th>
<th>154</th>
<th>155</th>
<th>156</th>
<th>157</th>
<th>158</th>
<th>159</th>
<th>160</th>
<th>161</th>
<th>162</th>
<th>163</th>
<th>164</th>
<th>165</th>
<th>166</th>
<th>167</th>
<th>168</th>
<th>169</th>
<th>170</th>
<th>171</th>
<th>172</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Caping Form:</td>
<td>393.775</td>
<td>393.785</td>
<td>393.795</td>
<td>393.805</td>
<td>393.815</td>
<td>393.825</td>
<td>393.835</td>
<td>393.845</td>
<td>393.855</td>
<td>393.865</td>
<td>393.875</td>
<td>393.885</td>
<td>393.895</td>
<td>393.905</td>
<td>393.915</td>
<td>393.925</td>
<td>393.935</td>
<td>393.945</td>
<td>393.955</td>
<td>393.965</td>
<td>393.975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top of Exterior Beam:</td>
<td>393.775</td>
<td>393.785</td>
<td>393.795</td>
<td>393.805</td>
<td>393.815</td>
<td>393.825</td>
<td>393.835</td>
<td>393.845</td>
<td>393.855</td>
<td>393.865</td>
<td>393.875</td>
<td>393.885</td>
<td>393.895</td>
<td>393.905</td>
<td>393.915</td>
<td>393.925</td>
<td>393.935</td>
<td>393.945</td>
<td>393.955</td>
<td>393.965</td>
<td>393.975</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended for Approval:

Department of Transportation

FLOOR DETAILS

SOUTHBOUND STRUCTURE
Bridge Summary

Southbound Structure

<table>
<thead>
<tr>
<th>Item</th>
<th>Concrete</th>
<th>Superstructure</th>
<th>Substructure</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structure Quantities

<table>
<thead>
<tr>
<th>Item</th>
<th>Concrete</th>
<th>Superstructure</th>
<th>Substructure</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- For an alternate, clean and straighten exposed existing transverse reinforcing in lieu of field drilled holes and dowels.

A.S.T.M. Grade 60

Note: As an alternative, clean and straighten exposed existing transverse reinforcing in lieu of field drilled holes and dowels.