Appendix H.6 - Level of Service Analysis

A level of service (LOS) analysis was performed for the Kennedy Interchange and Ohio River bridge crossings using the 2010 Highway Capacity Manual1 (HCM) and related 2010 Highway Capacity Software (HCS). The summaries of LOS results are shown here in Tables H.6-1 and H.6-2. The actual HCS reports have been included at the end of the section. The LOS results were reported in Chapters 2 and 3 of the FSEIS within Figure 2.2-7 and Table 3.3-4 respectively, as well as Table A.5-4 in Appendix A.5. Table 3.3-4 and Table A.5-4 present the worst-case bridge crossing LOS out of northbound in the AM peak hour, southbound in the AM peak hour, northbound in the PM peak hour, and southbound in the PM peak hour for each bridge under each alternative. These worst-case values are presented in Table H.6-2 in bold.

As part of the Louisville – Southern Indiana Ohio River Bridges (LSIORB) Project a Time-of-Day (TOD) travel demand model was developed (see Appendix H.2 and Appendix H.3 for more information). The TOD model produced the freeway segment volumes used in the HCS analysis (see Appendix H.1 for more details of the traffic volume forecasts). Several key assumptions were made regarding freeway operations as inputs to the HCS.

Peak-Hour Factor (PHF)

Within the HCS analysis, PHF is used to convert an average hourly traffic volume to a peak 15-minute flow rate. The 15-minute flow rate is used as the basis for most procedures of the HCS, including freeway analysis. Segment-specific 15-minute count data was not available to calculate PHFs. The HCM (page 11-13) points out that freeway PHFs typically range from 0.85 to 0.98. For this analysis a PHF of 0.92 was used. As part of the LSIORB Project, intersection turning movement volumes were collected at ramp terminals and other intersections adjacent to the Kennedy Interchange. Although not completely correlated to the freeway segments, these turning movement volumes were collected in 15-minute intervals and indicate that a PHF of 0.92 is reflective of local traffic conditions.

Free-Flow Speed (FFS)

Conducting an LOS analysis of freeway segments requires a value of FFS. The HCM directs that the FFS can be determined from field measurement or estimated based on physical roadway characteristics. In the absence of actual field-measured speeds, an initial approach taken to estimate the FFS based on physical characteristics indicated values through the Kennedy Interchange ranging from 67 to 69 miles per hour (mph). Notwithstanding the flexibility provided in estimating the FFS based on physical roadway characteristics, the HCM freeway analysis methodologies best reflect operations within more standardized interstate corridors. Given the complex nature of the Kennedy

Interchange it was reasoned that these estimates likely exceeded realistic FFS expectations.

Under a separate context, a FFS study was conducted in support of statewide travel demand modeling efforts in Indiana\(^2\). For the speed study, the surveyed locations were all located in Southern Indiana. Many of the locations were along interstate roadways including I-64. The conclusions of the study identified a free-flow speed of 60 mph for a typical urban 2-lane interstate with a posted speed of 55 mph. For 4-, 6- and 8-lane facilities, a free-flow speed of 64 mph was identified. As required for a statewide travel demand model, these estimates represented conditions along a typical interstate segment. Again, given the complex nature of the Kennedy Interchange it seemed that 64 mph was also likely higher than the expected FFS.

Given the aforementioned reasoning and the 55 mph speed limit in the Kennedy Interchange, an assumed FFS of 60 mph was used for the LOS analysis throughout the Kennedy Interchange and Ohio River bridge crossings. The exceptions to using the 60 mph FFS assumption included:

- I-265 East End Bridge - Given the relatively isolated nature of the I-265 East End Bridge, the HCS analysis was conducted using a FFS of 65 mph.
- Clark Memorial Bridge – The Clark Memorial Bridge was analyzed with HCS using the multilane lane highway methodology, which best reflects the configuration of the bridge and the approaches to it. The analysis was conducted using a 45 mph FFS based on the following.
 - The Clark Memorial Bridge and the approaches to it total over one mile of uninterrupted roadway. Given the functional characteristics of the bridge and its approaches the segment was analyzed using the HCS multilane highway methodology. For the multilane highway methodology, the calculations internally force the analysis to use the closest of four speed-flow curves: 45 mph, 50 mph, 55 mph, or 60 mph. The 45 mph FFS was used as it is closest to the posted speed limit of 35 mph on the Clark Memorial Bridge.
- I-71 Southbound between I-65 Off and I-64 On - The southbound segment of I-71 between the exit to I-65 northbound and the entrance from I-64 eastbound was analyzed using a FFS of 55 mph. The decision was made based on the presence of a 35 mph posted advisory speed limit for this segment of the interchange.

Heavy Vehicle Percentages

The percentage of heavy vehicles in the traffic stream for each freeway segment was estimated by the TOD model for the 2030 No-Action, the 2030 FEIS Selected, 2030 Modified Selected, 2030 East End and 2030 Downtown bridge-scenarios. For the 2010 analysis, heavy vehicle percentages were available for the Ohio River bridge crossings and Kennedy interchange from vehicle classification ground counts.

Table H.6-1
Kennedy Interchange 2010 and 2030 No-Action Level of Service (LOS) Summary

<table>
<thead>
<tr>
<th>Mainline</th>
<th>2010 AM Peak Hour</th>
<th>2010 PM Peak Hour</th>
<th>2030 AM Peak Hour</th>
<th>2030 PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-65 Northbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Muhammad Ali Blvd. On to I-64/I-71 Off*</td>
<td>B</td>
<td>E</td>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>Between I-64/I-71 Off to I-64/I-71 On</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Between I-64/I-71 On to Court Ave. Off (Kennedy Bridge)</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>1-65 Southbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Market Off to I-64 Off (Kennedy Bridge)</td>
<td>D</td>
<td>C</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>Between I-64 Off to I-64/I-71 On</td>
<td>C</td>
<td>C</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>Between I-64/I-71 On to Jefferson St. Off*</td>
<td>E</td>
<td>B</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1-64 Eastbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West of I-65 Off</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Between River Rd. On to I-71NB Off</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>Between I-65 On to Story Ave. Off*</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Between Story Ave. Off to Mellwood Ave. On</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>1-64 Westbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Mellwood Ave. Off to Story Ave. On</td>
<td>D</td>
<td>C</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Between Story Ave. On to I-65 Off*</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>Between I-71SB On to I-65 On</td>
<td>D</td>
<td>C</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Between I-65 On to 3rd St. Off*</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>West of 3rd St. Off</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1-71 Northbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between I-64WB Off to I-65SB On</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Between I-65SB On to I-64EB Off*</td>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Between I-64EB On to Zorn Ave. Off</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>1-71 Southbound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Zorn Ave. On to I-64WB Off</td>
<td>E</td>
<td>C</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Between I-64WB Off to I-64WB On</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Between I-64WB On to I-65NB Off*</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Between I-65NB Off to I-64EB On</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>

* Analyzed as a weaving segment.
Table H.6-2
2030 Ohio River Bridge Crossings Level of Service (LOS) Summary

<table>
<thead>
<tr>
<th>River Crossing</th>
<th>Period/Direction</th>
<th>No-Action</th>
<th>FEIS Selected</th>
<th>Modified Selected</th>
<th>East End Only</th>
<th>Downtown Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-64 Sherman Minton Bridge</td>
<td>A.M. Peak Westbound</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>A.M. Peak Eastbound</td>
<td>F</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Westbound</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Eastbound</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>US-31 Clark Memorial Bridge</td>
<td>A.M. Peak Northbound</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>A.M. Peak Southbound</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Northbound</td>
<td>C</td>
<td>C</td>
<td>D*</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Southbound</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>I-65 John F. Kennedy Memorial Bridge</td>
<td>A.M. Peak Northbound</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>A.M. Peak Southbound</td>
<td>F</td>
<td>D</td>
<td>C</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Northbound</td>
<td>E</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Southbound</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>I-265 East End Bridge</td>
<td>A.M. Peak Northbound</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.M. Peak Southbound</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Northbound</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.M. Peak Southbound</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold LOS - Indicates the lowest level of service by direction and time period which was reported in Chapter 3 Table 3.3-4 and Table A.5-4 in Appendix A.5.

* Under the Modified Selected Alternative the Clark Memorial Bridge is LOS D. LOS is based on density in passenger cars per mile per lane (pcpmpl). The upper boundary for density for LOS C is 26 pcpmpl. For the multilane highway analysis the calculated density was 26.7 pcpmpl. This is equivalent to about 60 vehicles out of the P.M. peak northbound 2,200 vehicles forecasted.

The HCS reports have been assembled together in nine groups:

1. 2010 A.M. peak hour Kennedy Interchange including the Kennedy Bridge (LOS reported in Figure 2.2-7).
2. 2010 P.M. peak hour Kennedy Interchange including the Kennedy Bridge (LOS reported in Figure 2.2-7).
3. 2030 No-Action A.M. peak hour Kennedy Interchange including the Kennedy Bridge (LOS reported in Figure 2.2-7).
4. 2030 No-Action P.M. peak hour Kennedy Interchange including the Kennedy Bridge (LOS reported in Figure 2.2-7).
5. 2030 No-Action A.M. and P.M. peak hours for the Sherman Minton Bridge and Clark Memorial Bridge (LOS reported in Table 3.3-4).
6. 2030 FEIS Selected A.M. and P.M. peak hours for the Sherman Minton Bridge, Clark Memorial Bridge, Kennedy Bridge and East End Bridge (LOS reported in Table 3.3-4).
7. 2030 Modified Selected A.M. and P.M. peak hours for the Sherman Minton Bridge, Clark Memorial Bridge, Kennedy Bridge and East End Bridge (LOS reported in Table 3.3-4).
8. 2030 East End A.M. and P.M. peak hours for the Sherman Minton Bridge, Clark Memorial Bridge, Kennedy Bridge and East End Bridge (LOS reported in Table A.5-4).
9. 2030 Downtown A.M. and P.M. peak hours for the Sherman Minton Bridge, Clark Memorial Bridge and Kennedy Bridge (LOS reported in Table A.5-4).

Note: For the multilane highway analysis of the Clark Memorial Bridge, Direction 1 is northbound and Direction 2 is southbound.
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Northbound
- **Between**: I-64 Off and I-64
- **From/To**: On
- **Jurisdiction**: 11-4.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 1400 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 17
- **%RVs, P_R**: 0
- **General Terrain: Level**
- **Grade % Length mi**:
 - **Up/Down %**:

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{141 + P_T(E_T - 1) + P_R(E_R - 1)}{0.922} \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures

Operational (LOS)
- \(v_p = \frac{(V or DDHV) \times (PHF \times N \times f_{HV})}{S \times f_p} \) pc/h/ln
- \(S = 60.0 \) mph
- \(D = v_p / S \) pc/mi/ln

Design (N)
- **LOS**: Required Number of Lanes, N

Glossary
- **N**: Number of lanes
- **S**: Speed
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **FFS**: Free-flow speed
- **BFFS**: Base free-flow speed

Factor Location
- **E_R - Exhibits**: 11-10, 11-12
- **f_LW - Exhibit**: 11-8
- **E_T - Exhibits**: 11-10, 11-11, 11-13
- **f_LC - Exhibit**: 11-9
- **f_p - Page**: 11-18
- **TRD - Page**: 11-11
- **LOS, S, FFS, v_p - Exhibits**: 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1
Generated: 2/24/2012 3:25 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Northbound
- **From/To**: Between I-64 On and Court Off
- **Jurisdiction**: 11-5.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3250 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, PT 10
- **Peak-Hr Direction Prop, D**: %RVs, PR 0
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **fp**: 1.00
- **ET**: 1.5
- **E_R**: 1.2
- **f_{HV} = \{(1+PT)(ET - 1) + PR(E_R - 1)\}0.952**

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 4
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \left(\frac{V \text{ or } DDHV}{PHF \times N \times f_{HV}}\right) 927 \text{ pc/h/ln} \)
 - \(S = 60.0 \text{ mph} \)
 - \(D = \frac{v_p}{S} = 15.4 \text{ pc/mi/ln} \)
 - **LOS**: B

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Design (N)
- **Design LOS**
- **Design (N)**
- **Required Number of Lanes, N**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**
Basic Freeway Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Southbound
- **From/To**: Btw Market St Off and I-64
- **Jurisdiction**: Analysis Year - 2010

Flow Inputs
- **Volume, V**: 4500 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 16
- **%RVs, PR**: 0
- **General Terrain**: Level
- **Grade %**: Up/Down %

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **E_T**: 1.5
- **f_HV = 1/(1 + p_(T)(E_T - 1) + p_(R)(E_R - 1))**: 0.926

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

Operational (LOS)
- **v_p = (V or DDHV) / [(PHF x N x f_HV) x f_p]**: pc/h/ln
- **S**: 59.5 mph
- **D = v_p / S**: pc/mi/ln
- **LOS**:

Design (N)
- **Design LOS**:
- **Design LOS**:
- **Required Number of Lanes, N**:

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density
- **FFS**: Free-flow speed
- **BFFS**: Base free-flow speed
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 3:40 PM

2/24/2012
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Southbound
- **From/To**: Between I-64 Off and I-64
- **Jurisdiction**: Analysis Year 2010

Flow Inputs
- **Volume, V**: 2450 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 21
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **E_T**: 1.5
- **f_{HV} = \frac{1}{[1 + P_T(E_T - 1) + P_R(E_R - 1)]} 0.905**

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/MI
- **FFS (measured)**: 60.0 mph
- **Base free-flow speed, BFFS**: mph

LOS and Performance Measures

Operational (LOS)
- **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **S**: 60.0 mph
- **D = v_p / S**: 24.5 pc/MI/ln
- **LOS**: C

Design (N)
- **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **S**: mph
- **D = v_p / S**: pc/MI/ln
- **Required Number of Lanes, N**:

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Eastbound
- **From/To**: West of Kennedy Interchange
- **Jurisdiction**: 21-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3350 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: AADT x K x D
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 7%
- **%RVs, P_R**: 0%
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **f_{HV} = \frac{1}{4} + \frac{P_T}{E_T - 1} + \frac{P_R}{E_R - 1} \times 0.966**

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Inputs
- **Calc Speed Adj and FFS**
 - **f_{LVW}**
 - **m**
 - **f_{LC}**
 - **m**
 - **TRD Adjustment**
 - **mph**
 - **FFS**
 - **60.0 mph**

LOS and Performance Measures
- **Operational (LOS)**
 - **v_p = \frac{(V or DDHV)}{(PHF x N x f_{HV})} \times f_p**
 - **pc/h/ln**
 - **S**: 60.0 mph
 - **D = \frac{v_p}{S}**
 - **pc/mi/ln**
 - **LOS**

Design (N)
- **Design LOS**
 - **Design (N)**
 - **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LVW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 3:55 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-64 Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Between I-65 Off and River</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>21-2.1</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V (veh/h)</th>
<th>2150</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (veh/day)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K (veh/h)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D (veh/h)</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D (veh/h)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P_T</td>
<td>8</td>
</tr>
<tr>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain Level</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

f_p	1.00
E_R	1.2
E_T	1.5

Speed Inputs

Lane Width (ft)	
Rt-Side Lat. Clearance (ft)	
Number of Lanes, N	2
Total Ramp Density, TRD (ramps/mi)	
FFS (measured) (mph)	60.0
Base free-flow Speed, BFFS (mph)	

Calc Speed Adj and FFS

f_{LW}	mph
f_{LC}	mph
TRD Adjustment	
FFS	60.0 mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
</table>

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>S - Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

<p>| E_R - Exhibits 11-10, 11-12 | f_{LW} - Exhibit 11-8 |
| E_T - Exhibits 11-10, 11-11, 11-13 | f_{LC} - Exhibit 11-9 |
| f_p - Page 11-18 | TRD - Page 11-11 |
| LOS, S, FFS, v_p - Exhibits 11-2, 11-3 |</p>
<table>
<thead>
<tr>
<th>BASIC FREEWAY SEGMENTS WORKSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
</tr>
<tr>
<td>Analyst</td>
</tr>
<tr>
<td>Agency or Company</td>
</tr>
<tr>
<td>Date Performed</td>
</tr>
<tr>
<td>Analysis Time Period</td>
</tr>
<tr>
<td>Project Description</td>
</tr>
<tr>
<td>Oper.(LOS)</td>
</tr>
<tr>
<td>Flow Inputs</td>
</tr>
<tr>
<td>Volume, V</td>
</tr>
<tr>
<td>AADT</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
</tr>
<tr>
<td>Calculate Flow Adjustments</td>
</tr>
<tr>
<td>f_p</td>
</tr>
<tr>
<td>E_T</td>
</tr>
<tr>
<td>Speed Inputs</td>
</tr>
<tr>
<td>Lane Width</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
</tr>
<tr>
<td>FFS (measured)</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
</tr>
<tr>
<td>Calc Speed Adj and FFS</td>
</tr>
<tr>
<td>Lane Width</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
</tr>
<tr>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>FFS (measured)</td>
</tr>
<tr>
<td>LOS and Performance Measures</td>
</tr>
<tr>
<td>Operational (LOS)</td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_{HV}1272)</td>
</tr>
<tr>
<td>S = 60.0 mph</td>
</tr>
<tr>
<td>LOS = v_p / S</td>
</tr>
<tr>
<td>N - Number of lanes</td>
</tr>
<tr>
<td>V - Hourly volume</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
</tr>
<tr>
<td>LOS - Level of service</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
</tr>
</tbody>
</table>

Glossary

N - Number of lanes
V - Hourly volume
v_p - Flow rate
LOS - Level of service
DDHV - Directional design hour volume

Factor Location

E_R - Exhibits 11-10, 11-12
f_{LW} - Exhibit 11-8
E_T - Exhibits 11-10, 11-11, 11-13
f_{LC} - Exhibit 11-9
f_p - Page 11-18
TRD - Page 11-11
LOS, S, FFS, v_p - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 3:56 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/30/11
- **Analysis Time Period**: AM Peak Hour

Site Information
- **Highway/Direction of Travel**: I-64 Eastbound
- **From/To**: Btw Story Off & Mellwood
- **Jurisdiction**: 21-6.1
- **Analysis Year**: 2010

Project Description: Ohio River Bridges Project

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>2600 veh/h</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
<td>%Trucks and Buses, P_T</td>
<td>7</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, P_R</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>General Terrain: Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
<td>Grade % Length mi</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>(f_p)</th>
<th>1.00</th>
<th>(E_R)</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_T)</td>
<td>1.5</td>
<td>(f_{HV}) = (1/{1+P_T(1-E_T-1) + P_R(E_R-1)})</td>
<td>0.966</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td>(f_{LW})</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
<td>(f_C)</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
<td>FFS</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
<td>60.0</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}^{1462}))</td>
<td>Design LOS</td>
</tr>
<tr>
<td>S</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>D = (v_p / S)</td>
<td>24.4 pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>V - Hourly volume</th>
<th>v_p - Flow rate</th>
<th>LOS - Level of service</th>
<th>DDHV - Directional design hour volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>S - Speed</td>
<td>D - Density</td>
<td>FFS - Free-flow speed</td>
<td>BFFS - Base free-flow speed</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LW} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_C \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/30/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Westbound
- **From/To**: Btw Mellwood Off and Story
- **Jurisdiction**: 22-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3250 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 4%
- **%RVs, P_R**: 0%
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{(1 + P_T (E_T - 1) + P_R (E_R - 1))} \times 0.980 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV})} \times 1802 \) pc/h/ln
 - \(S_p = 59.3 \) mph
 - \(D = \frac{v_p}{S} \times 30.4 \) pc/mi/ln

- **Design (N)**
 - **Design LOS**
 - **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 3:59 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Westbound
- **From/To**: Between I-71 On and I65
- **Jurisdiction**: 22-4.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3600 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 3
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade %**:
- **Length mi**:
- **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
- **Design (N)**

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location
- **E_R** - Exhibits 11-10, 11-12
- **f_LW** - Exhibit 11-8
- **E_T** - Exhibits 11-10, 11-11, 11-13
- **f_LC** - Exhibit 11-9
- **f_p** - Page 11-18
- **TRD** - Page 11-11
- **LOS, S, FFS, v_p** - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 3:59 PM
BASIC FREEWAY WORKSHEET

General Information
- Analyst: Adams
- Agency or Company: Parsons
- Date Performed: 11/7/11
- Analysis Time Period: AM Peak Hour
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-64 Westbound
- From/To: West of Third Street
- Jurisdiction: 22-6.1
- Analysis Year: 2010

Flow Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>2750</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P_T</td>
<td>5</td>
</tr>
<tr>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain:</td>
<td>Level</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>Up/Down %</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

\[
\begin{align*}
f_p & = 1.00 \\
E_T & = 1.5 \\
E_R & = 1.2 \\
f_{HV} = \frac{1}{1+P_T(E_T\cdot 1) + P_R(E_R\cdot 1)} & = 0.976
\end{align*}
\]

Speed Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LV}</td>
<td></td>
</tr>
<tr>
<td>f_{LC}</td>
<td></td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td></td>
</tr>
<tr>
<td>FFS</td>
<td>60.0</td>
</tr>
<tr>
<td>mph</td>
<td></td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>Design (N)</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of lanes</td>
</tr>
<tr>
<td>V</td>
<td>Hourly volume</td>
</tr>
<tr>
<td>v_p</td>
<td>Flow rate</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of service</td>
</tr>
<tr>
<td>DDHV</td>
<td>Directional design hour volume</td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>E_R - Exhibits 11-10, 11-12</td>
</tr>
<tr>
<td>D</td>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>LOS</td>
<td>f_{p} - Page 11-18</td>
</tr>
<tr>
<td>LOS</td>
<td>LOS, S, FFS, v_p - Exhibits 11-2,</td>
</tr>
<tr>
<td></td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>f_{LV} - Exhibit 11-8</td>
</tr>
<tr>
<td></td>
<td>f_{LC} - Exhibit 11-9</td>
</tr>
<tr>
<td></td>
<td>TRD - Page 11-11</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 Northbound
- **From/To**: Btw I-64WB Off and I-65SB
- **Jurisdiction**: 31-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 1150 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **DDHV = AADT × K × D**: veh/h
- **Peak-Hr Direction Prop, D**: %Trucks and Buses, \(P_T \)
- **%RVs, \(P_R \)**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- \(f_{LV} \)
- \(f_{LC} \)
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
- **Design (N)**

Glossary
- **V**: Hourly volume
- **D**: Density
- **\(f_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- \(E_R \): Exhibits 11-10, 11-12
- \(f_{LV} \): Exhibit 11-8
- \(E_T \): Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \): Exhibit 11-9
- \(f_p \): Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, \(v_p \)**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- Analyst: Adams
- Agency or Company: Parsons
- Date Performed: 11/7/11
- Analysis Time Period: AM Peak Hour
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-71 Northbound
- From/To: Btw I64EB On & Zorn Off
- Jurisdiction: 31-4.1
- Analysis Year: 2010

Flow Inputs
- Volume, V: 2200 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K
- Peak-Hr Direction Prop, D
- DDHV = AADT x K x D veh/h
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, PT: 8
- %RVs, PR: 0
- General Terrain: Level
- Grade % Length mi
- Up/Down %

Calculate Flow Adjustments
- \(f_p \): 1.00
- \(E_T \): 1.5
- \(E_R \): 1.2
- \(E_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \): 0.962

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 2
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFFS: mph

Speed Adjustments and FFS
- \(f_{LV} \): mph
- \(f_{LC} \): mph
- TRD Adjustment: mph
- FFS: 60.0 mph

LOS and Performance Measures
- Operational (LOS)
 - \(v_p = \frac{(V or DDHV)}{(PHF x N x f_{HV}} \times f_p \)
 - pc/h/ln
 - S: 60.0 mph
 - D: \(v_p / S \)
 - pc/mi/ln
 - LOS: C

Design (N)
- Design LOS
- Design (N)
 - \(v_p = \frac{(V or DDHV)}{(PHF x N x f_{HV}} \times f_p \)
 - pc/h/ln
 - S: mph
 - D: \(v_p / S \)
 - pc/mi/ln
 - Required Number of Lanes, N

Glossary
- N: Number of lanes
- V: Hourly volume
- \(v_p \): Flow rate
- LOS: Level of service
- DDHV: Directional design hour volume

Factor Location
- \(E_R \): Exhibits 11-10, 11-12
- \(f_{LV} \): Exhibit 11-8
- \(E_T \): Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \): Exhibit 11-9
- \(f_p \): Page 11-18
- TRD: Page 11-11
- LOS, S, FFS, \(v_p \): Exhibits 11-2, 11-3

Copyright
- University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:00 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 Southbound
- **From/To**: Btw Zorn On & I64 WB Off
- **Jurisdiction**: 32-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 4
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade % Length mi Up/Down %**

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_HV = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))**: 0.980

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - **V_p = (V or DDHV) / (PHF x N x f_HV)**:
 - **S**: 55.3 mph
 - **D = V_p / S**: 38.1 pc/mi/ln
 - **LOS**: E

Design (N)
- **Design LOS**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_LW - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_LC - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 4:01 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-71 Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Btw I-54WB Off and I-64WB On</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>32-2.1</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V (veh/h)</th>
<th>2350</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (veh/day)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K (veh/h)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D (veh/h)</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D (veh/h)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P_T</td>
<td>3</td>
</tr>
<tr>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain</td>
<td>Level</td>
</tr>
<tr>
<td>Grade</td>
<td>% Length</td>
</tr>
<tr>
<td>Up/Down %</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

| f_p | 1.00 |
| E_T | 1.5 |
| f_HV = \frac{1}{(1 + P_T(E_T - 1) + P_R(E_R - 1))}0.985 |

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width (ft)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance (ft)</td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD (ramps/mi)</td>
<td></td>
</tr>
<tr>
<td>FFS (measured) (mph)</td>
<td>60.0</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS (mph)</td>
<td></td>
</tr>
<tr>
<td>f_LW</td>
<td></td>
</tr>
<tr>
<td>f_C</td>
<td></td>
</tr>
<tr>
<td>TRD Adjustment (mph)</td>
<td></td>
</tr>
<tr>
<td>FFS</td>
<td>60.0</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV)</td>
<td>Design LOS</td>
</tr>
<tr>
<td>x f_p)</td>
<td></td>
</tr>
<tr>
<td>S = 60.0 mph</td>
<td></td>
</tr>
<tr>
<td>D = v_p / S</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>C</td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV)</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>x f_p)</td>
<td></td>
</tr>
<tr>
<td>S = 60.0 mph</td>
<td></td>
</tr>
<tr>
<td>D = v_p / S</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>S - Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>E_R - Exhibits 11-10, 11-12</th>
<th>f_LW - Exhibit 11-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
<td>f_C - Exhibit 11-9</td>
</tr>
<tr>
<td>f_p - Page 11-18</td>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, v_p - Exhibits 11-2, 11-3</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 5:57 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 Southbound
- **From/To**: Btw I65NB Off & I64EB On
- **Jurisdiction**: 32-4.1
- **Analysis Year**: 2010

Flow Inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>2700 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop. D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Peak-Hour Factor
- PHF: 0.92
- %Trucks and Buses, P_T: 4
- %RVs, P_R: 0

General Terrain
- Level

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} = 0.980 \)

Speed Inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>55.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td></td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LV})</td>
<td>mph</td>
</tr>
<tr>
<td>(f_{LC})</td>
<td>mph</td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS</td>
<td>55.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}} \times f_p)</td>
<td>1497 pc/h/ln</td>
</tr>
<tr>
<td>(x f_p)</td>
<td>55.0 mph</td>
</tr>
<tr>
<td>(S)</td>
<td>27.2 pc/mi/ln</td>
</tr>
<tr>
<td>(D = \frac{v_p}{S})</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>

Design (N)
- Design LOS
- Required Number of Lanes, \(N \)

Glossary
- \(N \): Number of lanes
- \(V \): Hourly volume
- \(v_p \): Flow rate
- LOS: Level of service
- DDHV: Directional design hour volume
- S: Speed
- D: Density
- FFS: Free-flow speed
- BFFS: Base free-flow speed

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:02 PM
General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-65 Northbound 11-3.1</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Btw Ali On & 164/171 Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Site Information

| Project Description | Ohio River Bridges Project |

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>One-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
</tr>
<tr>
<td>Weaving segment length, L_S</td>
<td>2100 ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
<tr>
<td>Segment type</td>
<td>Freeway</td>
</tr>
<tr>
<td>Freeway minimum speed, S_MIN</td>
<td>50</td>
</tr>
<tr>
<td>Freeway maximum capacity, C_FF</td>
<td>2300</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_HV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1100</td>
<td>0.92</td>
<td>20</td>
<td>0</td>
<td>1.2</td>
<td>0.909</td>
<td>1.00</td>
<td>1315</td>
</tr>
<tr>
<td>V_RF</td>
<td>1400</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
<td>1567</td>
</tr>
<tr>
<td>V_FR</td>
<td>300</td>
<td>0.92</td>
<td>9</td>
<td>0</td>
<td>1.2</td>
<td>0.957</td>
<td>1.00</td>
<td>341</td>
</tr>
<tr>
<td>V_REL</td>
<td>400</td>
<td>0.92</td>
<td>20</td>
<td>0</td>
<td>1.2</td>
<td>0.909</td>
<td>1.00</td>
<td>1315</td>
</tr>
<tr>
<td>V_HV</td>
<td>1754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 3662</td>
<td></td>
</tr>
<tr>
<td>V_W</td>
<td>1908</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_WL	3 lc
Interchange density, ID	2.50 int/mi
Minimum RF lane changes, LC_FF	2 lc/pc
Minimum FR lane changes, LC_FR	0 lc/pc
Minimum RR lane changes, LC_RR	1 lc/pc
Minimum weaving lane changes, LC_MIN	682 lc/h
Weaving lane changes, LC_W	1403 lc/h
Non-weaving lane changes, LC_NW	729 lc/h
Total lane changes, LC_ALL	2132 lc/h
Non-weaving vehicle index, I_NW	0.229

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	3662 pc/h
Weaving segment capacity, c_w	6107 veh/h
Weaving segment wc ratio	0.545
Weaving segment density, D	16.9 pc/miln
Level of Service, LOS	B
Weaving intensity factor, W	0.229
Weaving segment speed, S	54.3 mph
Average weaving speed, S	58.1 mph
Average non-weaving speed, S_NW	50.7 mph
Maximum weaving length, L_MAX	6507 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td>Analysis Year</td>
</tr>
</tbody>
</table>

Project Description

Ohio River Bridges Project

Inputs

- **Weaving configuration**: One-Sided
- **Weaving number of lanes, N**: 4
- **Weaving segment length, Lg**: 2175 ft
- **Freeway free-flow speed, FFS**: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>ET</th>
<th>ER</th>
<th>fm</th>
<th>fp</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1620</td>
<td>0.92</td>
<td>30</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.870</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>830</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>2180</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>1120</td>
<td>0.92</td>
<td>30</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.870</td>
<td>1.00</td>
</tr>
<tr>
<td>V_MW</td>
<td>3273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 6577</td>
</tr>
<tr>
<td>V_W</td>
<td>3304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- **Minimum maneuver lanes, N_{WL}**: 3 lanes
- **Interchange density, ID**: 2.70 int/mi
- **Minimum RF lane changes, L_{RF}**: 0 lane/pc
- **Minimum FR lane changes, L_{FR}**: 2 lane/pc
- **Minimum RR lane changes, L_{RR}**: lane/pc

Weaving Segment Speed, Density, Level of Service, and Capacity

- **Weaving segment flow rate, v**: 6577 pc/h
- **Weaving segment capacity, c_w**: 6058 veh/h
- **Weaving segment v/c ratio**: 0.944
- **Weaving segment density, D**: 35.5 pc/mil

<table>
<thead>
<tr>
<th>Speed Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving intensity factor, W</td>
</tr>
<tr>
<td>Weaving segment speed, S</td>
</tr>
<tr>
<td>Average weaving speed, S_w</td>
</tr>
<tr>
<td>Average non-weaving speed, S_{nw}</td>
</tr>
<tr>
<td>Maximum weaving length, L_{MAX}</td>
</tr>
</tbody>
</table>

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:44 PM
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-64 Eastbound 21-5.1</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Btw I-65 On & Story Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description Ohio River Bridges Project

Inputs

- Weaving configuration: Two-Sided
- Weaving number of lanes, N: 3
- Weaving segment length, L_{w}: 1425ft
- Freeway free-flow speed, FFS: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{rv}</th>
<th>f_p</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>1210</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>190</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>1390</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.966</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>210</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>3128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{W}</td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- Minimum maneuver lanes, N_{ML}: 0 lc
- Interchange density, ID: 2.00 int/mi
- Minimum RF lane changes, LC_{RF}: lc/pc
- Minimum FR lane changes, LC_{FR}: lc/pc
- Minimum RR lane changes, LC_{RR}: 2 lc/pc

Weaving Segment Speed, Density, Level of Service, and Capacity

- Weaving segment flow rate, v: 3359 pc/h
- Weaving segment capacity, c_{w}: 5598 veh/h
- Weaving segment v/c ratio: 0.583
- Weaving segment density, D: 21.7 pc/miln
- Level of Service, LOS: C

Notes

4. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

2. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

General Information
- Analyst: Adams
- Agency/Company: Parsons
- Date Performed: 10/28/2011
- Analysis Time Period: AM Peak Hour
- Project Description: Ohio River Bridges Project

Site Information
- Freeway/Dir of Travel: I-64 Westbound 22-2.1
- Weaving Segment Location: Blw Story On & I-65 Off
- Analysis Year: 2010

Inputs
- Weaving configuration: Two-Sided
- Weaving number of lanes, N: 3
- Weaving segment length, L_g: 1600ft (500m)
- Freeway free-flow speed, FFS: 60 mph (100 km/h)

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>I_VW</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1850</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>1400</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>300</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>200</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>3932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4160</td>
</tr>
<tr>
<td>V_W</td>
<td>228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics
- Minimum maneuver lanes, Nwl: 0
- Minimum weaving lane changes, Lcw: 455 lcf/h
- Weaving lane changes, Lcw: 744 lcf/h
- Non-weaving lane changes, Lcw: 1099 lcf/h
- Total lane changes, Lal: 1843 lcf/h
- Non-weaving vehicle index, Ivw: 0.253

Weaving Segment Speed, Density, Level of Service, and Capacity
- Weaving segment flow rate, v: 4160 pc/h
- Weaving intensity factor, W: 0.253
- Weaving segment capacity, c: 5749 veh/h
- Average weaving speed, Sw: 58.0 mph
- Weaving segment v/c ratio: 0.713
- Average non-weaving speed, Snw: 50.1 mph
- Weaving segment density, D: 27.5 pc/mi/ln
- Maximum weaving length, Lmax: 6339 ft

Notes
- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 6:02 PM
Ohio River Bridges Project

FREEROWAY WEAVING WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td></td>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td></td>
<td>I-64 Westbound 22-5.1</td>
</tr>
<tr>
<td></td>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td></td>
<td>Btw I-65 On & 3rd Off</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description: Ohio River Bridges Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
</tr>
<tr>
<td>Weaving segment length, L_w</td>
<td>1425 ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_R</th>
<th>f_M</th>
<th>f_o</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_EF</td>
<td>2200</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
<td>2451</td>
</tr>
<tr>
<td>V_RF</td>
<td>1400</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
<td>1529</td>
</tr>
<tr>
<td>V_FR</td>
<td>550</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
<td>616</td>
</tr>
<tr>
<td>V_RR</td>
<td>350</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
<td>2451</td>
</tr>
<tr>
<td>V_NW</td>
<td>4596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_W</td>
<td>382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

N_WL	Minimum maneuver lanes, N_WL	0 lc
ID	Interchange density, ID	1.80 int/mi
LC_RF	Minimum RF lane changes, LC_RF	1 lc/pc
LC_FR	Minimum FR lane changes, LC_FR	1 lc/pc
LC_RR	Minimum RR lane changes, LC_RR	1 lc/pc

Minimum weaving lane changes, LC_MN: 382 lc/h
Weaving lane changes, LC_W: 859 lc/h
Non-weaving lane changes, LC_NW: 949 lc/h
Total lane changes, LC_ALL: 1808 lc/h
Non-weaving vehicle index, f_M: 0.273

Weaving Segment Speed, Density, Level of Service, and Capacity

<table>
<thead>
<tr>
<th>V (pc/h)</th>
<th>Weaving intensity factor, W</th>
<th>0.273</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving segment flow rate, v</td>
<td>4978 pc/h</td>
<td></td>
</tr>
<tr>
<td>Weaving segment capacity, c_w</td>
<td>7477 veh/h</td>
<td></td>
</tr>
<tr>
<td>Weaving segment v/c ratio</td>
<td>0.850</td>
<td></td>
</tr>
<tr>
<td>Weaving segment density, D</td>
<td>24.1 pc/mi/ln</td>
<td></td>
</tr>
<tr>
<td>Level of Service, LOS</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Maximum weaving length, L_MAX</td>
<td>6447 ft</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
2. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved
Ohio River Bridges Project

FREETWAY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Dir of Travel</th>
<th>I-71 Northbound 31-2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving Segment Location</td>
<td>Btw I-65S3 On & I-64EB Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description

Ohio River Bridges Project

Inputs

- **Weaving configuration**: Two-Sided
- **Weaving number of lanes, N**: 2
- **Weaving segment length, Ls**: 220 ft
- **Freeway free-flow speed, FFS**: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_hv</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>530</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>620</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>820</td>
<td>0.92</td>
<td>9</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.957</td>
<td>1.00</td>
</tr>
<tr>
<td>V_LR</td>
<td>980</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>2213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V =</td>
<td>3316</td>
</tr>
<tr>
<td>V_W</td>
<td>1103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>0.333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_WM	0 l/c
Interchange density, ID	2.30 int/mi
Minimum RF lane changes, LC_RF	l/c/pc
Minimum FR lane changes, LC_FR	l/c/pc
Minimum RR lane changes, LC_RR	l/c/pc

Minimum weaving lane changes, LC_MN

1103 l/c

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	3316 pc/h
Weaving capacity, c_w	3482 veh/h
Weaving segment w/c ratio	0.934
Weaving segment density, D	34.6 pc/mi/ln
Average weaving speed, S_w	47.9 mph
Average non-weaving speed, S_NW	58.0 mph
Maximum weaving length, L_MAX	9069 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".
General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-71 Southbound 32-3</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Btw I64WB On & I65NB Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Inputs

- Weaving configuration: Two-Sided
- Weaving number of lanes, N: 2 lanes
- Weaving segment length, L_s: 1480 ft
- Freeway free-flow speed, FFS: 60 mph
- Freeway minimum speed, S_{MN}: 50 mph
- Freeway maximum capacity, C_{FPL}: 2300 veh/Anh

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_1</th>
<th>E_R</th>
<th>f_{HV}</th>
<th>f_p</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RF}</td>
<td>1610</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>740</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>1090</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>510</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>3816</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_w</td>
<td>574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- Minimum maneuver lanes, N_{WL}: 0 lane
- Interchange density, ID: 220 in/ti/mi
- Minimum RF lane changes, L_{CRF}: 0 lane/pc
- Minimum FR lane changes, L_{CFR}: 0 lane/pc
- Minimum RR lane changes, L_{CRR}: 1 lane/pc

Weaving Segment Speed, Density, Level of Service, and Capacity

- Weaving segment flow rate, v: 4390 pc/h
- Weaving segment capacity, c_w: 3723 veh/h
- Weaving segment v/c ratio: 1.167
- Level of Service, LOS: F

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Northbound
- **From/To**: Between I-64 Off and I-64
- **Jurisdiction**: 11-4.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3000 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, P_T
- **Peak-Hr Direction Prop, D**: %RVs, P_R
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 22
- **%RVs, P_R**: 0

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_HV = \frac{1}{1+(P_T / P_R)}**: 0.901

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **LOS and Performance Measures**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Site Specification
- **Oper.(LOS)**
- **Des.(N)**
- **Planning Data**

Calc Speed Adj and FFS

- **Calc Speed Adj**
 - **f_LW**: mph
 - **f_LC**: mph

- **FFS**: 60.0 mph
- **TRD Adjustment**: mph

Design (N)

- **Design LOS**
 - **v_p**: pc/h/ln
 - **D**: pc/mi/ln

- **LOS**: pc/h/ln

Factor Location

- **E_R**: Exhibits 11-10, 11-12
- **f_LW**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_LC**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-65 Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Between I-64 On and Off</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>11-5.1</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>5350 veh/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

\[
f_p = 1.00 \quad E_R = 1.2 \quad f_{HV} = \frac{1}{1 + \frac{P_T(E_R - 1)}{P_R(E_R - 1)}} 0.926
\]

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rl-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>4</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Speed Adj and FFS

<table>
<thead>
<tr>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LW})</td>
</tr>
<tr>
<td>(f_{LC})</td>
</tr>
<tr>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>FFS</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \times f_p)</td>
</tr>
<tr>
<td>(S)</td>
</tr>
<tr>
<td>(D = \frac{v_p}{S})</td>
</tr>
<tr>
<td>LOS</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
</tr>
<tr>
<td>(v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \times f_p)</td>
</tr>
<tr>
<td>(S)</td>
</tr>
<tr>
<td>(D = \frac{v_p}{S})</td>
</tr>
<tr>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
</tr>
<tr>
<td>(v_p) - Flow rate</td>
</tr>
<tr>
<td>LOS - Level of service</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>E_R - Exhibits 11-10, 11-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LW} - Exhibit 11-8</td>
</tr>
<tr>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>f_{LC} - Exhibit 11-9</td>
</tr>
<tr>
<td>f_p - Page 11-18</td>
</tr>
<tr>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, (v_p) - Exhibits 11-2, 11-3</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:03 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
<tr>
<td>Highway/Direction of Travel</td>
<td>I-65 Southbound Btw Market St Off and I-64</td>
</tr>
<tr>
<td>From/To</td>
<td>Off</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>12-4-1</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>3400 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_R</td>
<td>1.5</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>f_{HV} = 1/(1+P_T(E_T-1) + P_R(E_R-1))</td>
<td>0.881</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
<td>f_{LW} mph</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td>f_{LC} mph</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
<td>FFS</td>
</tr>
<tr>
<td>Base free-flow speed, BFFS</td>
<td>mph</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design LOS</td>
<td>v_p = (V or DDHV) / (PHF x N x f_{HV} x f_p) pc/h/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x f_p) pc/h/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D = v_p / S pc/mi/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOS C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design (N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design LOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v_p = (V or DDHV) / (PHF x N x f_{HV} x f_p) pc/h/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x f_p) pc/h/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D = v_p / S pc/mi/ln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>S - Speed</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

- E_R - Exhibits 11-10, 11-12
- f_LW - Exhibit 11-8
- E_T - Exhibits 11-10, 11-11, 11-13
- f_{LC} - Exhibit 11-9
- f_p - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Southbound
- **Between**: I-64 Off and I-64 On
- **Jurisdiction**: 12-5.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 1800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, P_T
- **Peak-Hr Direction Prop, D**: %RVs, P_R
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_{HV} = \frac{1}{4} (1 + P_T (E_T - 1) + P_R (E_R - 1))**: 0.889

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **V_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/in
- **D = V_p / S**: pc/mi/in

Design (N)
- **Design LOS**:
- **Design N**:
- **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, V_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:04 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Eastbound
- **From/To**: West of Kennedy
- **Jurisdiction**: 21-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 4200 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hr Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 6
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade % Length mi**: Up/Down %

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1+P_T(E_T - 1) + P_R(E_R - 1)} \times 0.971 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adj and FFS
- **Calc Speed Adj**: mph
- **FFS**: mph

LOS and Performance Measures
- **LOS and Performance Measures**: Required Number of Lanes, N
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}} \times f_p) \)
 - \(S \) = 60.0 mph
 - \(D = \frac{v_p}{S} \)
 - \(D = \frac{v_p}{S} \)
 - \(LOS \)

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density
- **FFS**: Free-flow speed

Factor Location
- **E_R - Exhibits 11-10, 11-12**: f_LW - Exhibit 11-8
- **E_T - Exhibits 11-10, 11-11, 11-13**: f_LC - Exhibit 11-9
- **f_p - Page 11-18**: TRD - Page 11-11
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**: HCS 2010™ Version 6.1

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 11/7/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges

Site Information
- **Highway/Direction of Travel:** I-64 Eastbound
- **From/To:** Between I-55 Off and River
- **Jurisdiction:** 21-2.1
- **Analysis Year:** 2010

Flow Inputs
- **Volume, V:** 2950 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:** veh/h
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 7
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %:**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_T:** 1.5
 - **f_HV = 1/(1+P_T(E_T - 1) + P_R(E_R - 1))/0.966**
- **E_R:** 1.2

Speed Inputs
- **Lane Width:** ft
 - **f_LW:** mph
- **Rt-Side Lat. Clearance:** ft
 - **f_LC:** mph
- **Number of Lanes, N:** 2 ramps/mi
 - **TRD Adjustment:** mph
- **Total Ramp Density, TRD:**
 - **FFS (measured):** 60.0 mph
 - **FFS:** mph
 - **BFFS:** mph

LOS and Performance Measures
- **Operational (LOS):**
 - **Design (N):**
- **v_p = (V or DDHV) / (PHF x N x f_HV)**
 - **v_p = (V or DDHV) / (PHF x N x f_HV)**
 - **v_p:** pc/h/ln
 - **S:** 59.9 mph
 - **D:** 27.7 pc/mi/ln
 - **LOS:**

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **V_p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **E_R:** Exhibits 11-10, 11-12
- **f_LW:** Exhibit 11-8
- **E_T:** Exhibits 11-10, 11-11, 11-13
- **f_LC:** Exhibit 11-9
- **f_p:** Page 11-18
- **TRD:** Page 11-11
- **LOS, S, FFS, v_p:** Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:05 PM
BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Highway/Direction of Travel I-64 Eastbound</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Parsons</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>From/To Between River On and I-71</td>
</tr>
<tr>
<td>Project Description</td>
<td>11/7/11</td>
</tr>
<tr>
<td></td>
<td>Jurisdiction</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Oper. (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>3800</td>
</tr>
<tr>
<td>AADT (veh/day)</td>
<td>Peak-Hour Factor, PHF 0.92</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T 5</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, P_R 0</td>
</tr>
<tr>
<td>DDHV = AADT x K x D (veh/h)</td>
<td>General Terrain: Level</td>
</tr>
<tr>
<td></td>
<td>Grade % Length mi Up/Down %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th>Des. (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>$f_{HV} = \frac{1}{1+P_T(E_T - 1) + P_R(E_R - 1)} \times 0.976$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width (ft)</td>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance (ft)</td>
<td>f_LW</td>
</tr>
<tr>
<td>Number of Lanes, N (2)</td>
<td>f_LC</td>
</tr>
<tr>
<td>Total Ramp Density, TRD (ramps/mi)</td>
<td></td>
</tr>
<tr>
<td>FFS (measured) (mph)</td>
<td>FFS</td>
</tr>
<tr>
<td>Base free-flow Speed, mph</td>
<td>60.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design LOS</td>
</tr>
<tr>
<td>$v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{LW}^{2117}}$</td>
<td>$v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}}$</td>
</tr>
<tr>
<td>S (55.1 mph)</td>
<td>S</td>
</tr>
<tr>
<td>D = v_p / S</td>
<td>$D = v_p / S$</td>
</tr>
<tr>
<td>LOS</td>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>E_R - Exhibits 11-10, 11-12</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>f_{LW} - Exhibit 11-8</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>f_p - Page 11-18</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td>TRD - Page 11-11</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:05 PM
BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
<tr>
<td></td>
<td>Highway/Direction of Travel I-64 Eastbound From/To East of Story Avenue Jurisdiction 21-6.1 Analysis Year 2010</td>
</tr>
<tr>
<td>Oper.(LOS)</td>
<td>Des.(N)</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>3400 veh/h</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
<td>%Trucks and Buses, PT</td>
<td>5</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, PR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>General Terrain:</td>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
<td>Grade</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

\[
E_R = 1.2 \\
E_T = 1.5 \\
f_{HV} = \frac{1}{\frac{1}{1+P_T(E_T - 1)} + P_R(E_R - 1)} = 0.976
\]

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
<th>FFS (measured)</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0</td>
<td>FFS</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
<th>FFS (measured)</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0</td>
<td>FFS</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOS and Performance Measures

Operational (LOS)

\[
v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV} \times f_p)} \]

\[
v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV} \times f_p)} \]

\[
x = \frac{1894}{\text{pc/h/ln}} \]

\[
S = 58.4 \text{ mph} \]

\[
D = \frac{v_p}{S} = 32.4 \text{ pc/mi/ln} \]

LOS = \[
D = \frac{v_p}{S} = 32.4 \text{ pc/mi/ln} \]

Required Number of Lanes, N

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>S - Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>E_R - Exhibits 11-10, 11-12</th>
<th>f_{HV} - Exhibit 11-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
<td>f_{LC} - Exhibit 11-9</td>
</tr>
<tr>
<td>f_p - Page 11-18</td>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, v_p - Exhibits 11-2, 11-3</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/4/2012 4:08 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Westbound
- **From/To**: East of Story Avenue
- **Jurisdiction**: 22-1.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 2250 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**: veh/h

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p \) = \(\frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV} \times f_{p})} \)
 - \(S \) = 60.0 mph
 - \(D = v_p / S \)

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location
- **E_T** - Exhibits 11-10, 11-11, 11-13
- **f_{LC}** - Exhibit 11-9
- **f_{P}** - Page 11-18
- **LOS, S, FFS, v_p** - Exhibits 11-2, 11-3
BASIC FREeways WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 Westbound
- **From/To**: Between I-71 On and I65
- **Jurisdiction**: 22-4.1
- **Analysis Year**: 2010

Site Information
- **Peak-Hour Factor, PHF**: 0.92
- **Trucks and Buses, P_T**: 8
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade %**: Up/Down %

Flow Inputs
- **Volume, V**: 2700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: D
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>E_R</td>
<td>1.2</td>
</tr>
<tr>
<td>F_HV</td>
<td>0.962</td>
</tr>
</tbody>
</table>

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - **v_p = (V or DDHV) / (PHF x N x f_HV)**: pc/h/ln
 - **S**: 60.0 mph
 - **D = v_p / S**: 25.4 pc/mi/ln
- **LOS**: C

Design (N)
- **Design (N)**
- **Design LOS**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**: f_LW - Exhibit 11-8
- **E_T - Exhibits 11-10, 11-11, 11-13**: f_LC - Exhibit 11-9
- **f_p - Page 11-18**: TRD - Page 11-11
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 4:07 PM

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Westbound
- **From/To**: West of Third Street
- **Jurisdiction**: 22-6.1
- **Analysis Year**: 2010

Flow Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>3300 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>veh/h</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, pT</td>
<td>6</td>
</tr>
<tr>
<td>%RVs, pR</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain</td>
<td>Level</td>
</tr>
<tr>
<td>Grade</td>
<td>%</td>
</tr>
<tr>
<td>Length</td>
<td>mi</td>
</tr>
<tr>
<td>Up/Down</td>
<td>%</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

- f_p = 1.00
- E_R = 1.2
- \[f_{HV} = \frac{1}{f_p + E_T (f_{AC} - 1) + E_R (f_{AC} - 1)} \]

Speed Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_LW</td>
<td>mph</td>
</tr>
<tr>
<td>f_LC</td>
<td>mph</td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS</td>
<td>60.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>(v_p = \frac{V \times DDHV}{(PHF \times N \times f_{HV})})</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>D = (\frac{v_p}{S})</td>
<td>20.5 pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
<td></td>
</tr>
<tr>
<td>Design (v_p = \frac{V \times DDHV}{(PHF \times N \times f_{HV})})</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>D = (\frac{v_p}{S})</td>
<td>pc/hi/ln</td>
</tr>
<tr>
<td>Required Number of Lanes, N</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed

Factor Location

- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LW} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:07 PM

2/24/2012
BASIC FREEWAY WORKSHEET

GENERAL INFORMATION

Analyst: Adams
Agency or Company: Parsons
Date Performed: 11/7/11
Analysis Time Period: PM Peak Hour
Project Description: Ohio River Bridges Project

SITE INFORMATION

Highway/Direction of Travel: I-71 Northbound
From/To: Btw I-64WB Off and I-65 SB
Jurisdiction: 31-1.1
Analysis Year: 2010

FLOW INPUTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>2300 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>General Terrain: Level</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \times 0.980 \)

Speed Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

- \(f_{LW} \)
- \(f_L C \)
- \(TRD \) Adjustment
- \(FFS \) 60.0 mph

LOS AND PERFORMANCE MEASURES

Operational (LOS)

\[
V_p = \left(\frac{V \text{ or DDHV}}{PHF \times N \times f_{HV}} \right) x f_p \text{ pc/h/ln} \\
S = 60.0 \text{ mph} \\
D = \frac{V_p}{S} \text{ pc/mi/ln} \\
LOS = C \\
\]

Design (N)

- Design LOS
- Required Number of Lanes, N

GLOSSARY

- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

FACTOR LOCATION

- \(E_R \): Exhibits 11-10, 11-12
- \(f_{LW} \): Exhibit 11-8
- \(E_T \): Exhibits 11-10, 11-11, 11-13
- \(f_L C \): Exhibit 11-9
- \(f_p \): Page 11-18
- TRD: Page 11-11
- LOS, S, FFS, \(v_p \): Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 4:07 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 Northbound
- **From/To**: Btw I64EB On & Zorn Off
- **Jurisdiction**: 31-4.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 3750 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments

\[
E_R = 1.2 \\
E_T = 1.5 \\
f_{HV} = \frac{1}{f_p (1 + P_T (E_T - 1) + P_R (E_R - 1))} 0.976
\]

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph

Calc Speed Adj and FFS
- **f_{LVW}**
- **f_{LC}**
- **TRD Adjustment**
- **FFS**

LOS and Performance Measures

Design (N)

Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Hourly volume</td>
</tr>
<tr>
<td>v_p</td>
<td>Flow rate</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of service</td>
</tr>
<tr>
<td>DDHV</td>
<td>Directional design hour volume</td>
</tr>
</tbody>
</table>

Factor Location

- **E_R**: Exhibits 11-10, 11-12
- **f_{LVW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11

- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 24/02/2012 4:07 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Artist</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>11/7/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-71 Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Btw Zorn On & I64WB Off</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>32-1.1</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Flow Inputs

Volume, V	2500 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	%Trucks and Buses, P_T
Peak-Hr Direction Prop, D	%RVs, P_R
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments

| f_p | 1.00 |
| f_T | 1.5 |

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

Operational (LOS)

\[
\begin{align*}
V_p &= \left(\frac{V \times DDHV}{PHF \times L \times f_{HV} \times f_p} \right) \\
S &= \left(\frac{60.0}{23.3} \right) \\
D &= \left(\frac{23.3}{60.0} \right)
\end{align*}
\]

Design (N)

Design LOS

<table>
<thead>
<tr>
<th>V_p = (V or DDHV) / (PHF x N x f_{HV} x f_p)</th>
<th>pc/h/ln</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>D = v_p / S</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

- **N** - Number of lanes
- **V** - Hourly volume
- **V_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume
- **S** - Speed
- **D** - Density
- **f_p** - Exhibit 11-10, 11-12
- **f_{HV}** - Exhibit 11-9
- **LOS** - Exhibit 11-12, 11-3
- **FFS** - Free-flow speed
- **BFFS** - Base free-flow speed
- **E_R** - Exhibit 11-10, 11-12
- **E_T** - Exhibit 11-10, 11-11, 11-13
- **f_{LC}** - Exhibit 11-9
- **TRD** - Page 11-11

Factor Location

- **E_R** - Exhibits 11-10, 11-12
- **E_T** - Exhibits 11-10, 11-11, 11-13
- **f_{LC}** - Exhibit 11-9
- **TRD** - Page 11-11
- **LOS, S, FFS, V_p** - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 4:08 PM
BASIC FREEWAY WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour

Site Information
- **Highway/Direction of Travel**: I-71 Southbound
- **From/To**: Btw I-64WB Off and I-64WB
- **Jurisdiction**: 32-2.1
- **Analysis Year**: 2010

Project Description
- **Project**: Ohio River Bridges Project

Flow Inputs
- **Volume, V**: 1450 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, PT
- **Peak-Hr Direction Prop, D**: %RVs, PR
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **E_R**: 1.2
- **f_p**: 1.00
- **E_T**: 1.5
- **f_HV = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]**: 0.976

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or } \text{DDHV}) \times f_p}{(PHF \times N \times f_{HV})^{0.8}} \) pc/h/ln
 - \(S = 60.0 \) mph
 - \(D = \frac{v_p}{S} \) pc/mi/ln
 - **LOS**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Design (N)
- **Design (N)**
- **Design LOS**

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 11/7/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 Southbound
- **From/To**: I-85NB Off & I-64EB On
- **Jurisdiction**: 32-4.1
- **Analysis Year**: 2010

Flow Inputs
- **Volume, V**: 800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h
 - **Peak-Hour Factor, PHF**: 0.92
 - **%Trucks and Buses, P_T**: 6
 - **%RVs, P_R**: 0
 - **General Terrain**: Level
 - **Grade**: %
 - **Length**: mi
 - **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **E_T**: 1.5
- **f_HV = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]**: 0.971

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 55.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 55.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - **v_p = (V or DDHV) / (PHF x N x f_HV x f_p)**: pc/h/ln
 - **S**: 55.0 mph
 - **D = v_p / S**: pc/mi/ln
 - **LOS**: A

Glossary
- **N - Number of lanes**
- **V - Hourly volume**
- **v_p - Flow rate**
- **LOS - Level of service**
- **DDHV - Directional design hour volume**

Design (N)
- **Required Number of Lanes, N**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_LW - Exhibit 11-8**
- **f_LC - Exhibit 11-9**
- **Page 11-18**
- **TRD - Page 11-11**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 4:08 PM

2/24/2012
Ohio River Bridges Project

FREeway weaving WORKSHEET

General Information
- **Analyst:** Adams
- **Agency/Company:** Parsons
- **Date Performed:** 10/28/2011
- **Analysis Time Period:** PM Peak Hour

Site Information
- **Freeway/Dir of Travel:** I-65 Northbound 11-3.1
- **Weaving Segment Location:** Btw All On & I64/I71 Off
- **Analysis Year:** 2010

Project Description
- **Ohio River Bridges Project**

Inputs
- **Weaving configuration:** One-Sided
- **Weaving number of lanes, N:** 4
- **Weaving segment length, Ls:** 2100 ft
- **Freeway free-flow speed, FFS:** 60 mph

Segment type
- **Freeway minimum speed, S_{MIN}**
- **Freeway maximum capacity, C_{FRL}**
- **Terrain type:** Level

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{HV}</th>
<th>f_p</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>1900</td>
<td>0.92</td>
<td>33</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.858</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>2000</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>1100</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>1200</td>
<td>0.92</td>
<td>33</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.858</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{W}</td>
<td>3730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V =</td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>3421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics
- **Minimum maneuver lanes, N_{WL}**
- **Interchange density, ID:** 3 lc
- **Minimum RF lane changes, LC_{RF}**
- **Minimum FR lane changes, LC_{FR}**
- **Minimum RR lane changes, LC_{RR}**

Minimum weaving lane changes, LC_{MN}
- 2428 lc/h

Weaving lane changes, LC_{W}
- 3149 lc/h

Non-weaving lane changes, LC_{MN}
- 2521 lc/h

Total lane changes, LC_{ALL}
- 5670 lc/h

Non-weaving vehicle index, I_{NW}
- 0.495

Weaving Segment Speed, Density, Level of Service, and Capacity
- **Weaving segment flow rate, v:** 7151 pc/h
- **Weaving segment capacity, c_w:** 6280 veh/h
- **Weaving segment v/c ratio:** 0.977
- **Weaving segment density, D:** 42.6 pc/mi/ln

Weaving intensity factor, W
- 0.495

Weaving segment speed, S
- 42.0 mph

Average weaving speed, S
- 56.7 mph

Average non-weaving speed, S_{NW}
- 33.9 mph

Maximum weaving length, L_{MAX}
- 6009 ft

Notes
- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments."
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 5:10 PM
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
<th>Freeway/Dir of Travel</th>
<th>I-65 Southbound 12-6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
<td>Weaving Segment Location</td>
<td>Btw I54/I71 On & Jefferson Off</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
<td>Analysis Year</td>
<td>2010</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Description | Ohio River Bridges Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>One-Sided</th>
<th>Segment type</th>
<th>Freeway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
<td>Freeway minimum speed, S_{MW}</td>
<td>50</td>
</tr>
<tr>
<td>Weaving segment length, l_s</td>
<td>2175 ft</td>
<td>Freeway maximum capacity, C_{FL}</td>
<td>2300</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

V_{FF}	1550	PHF	0.92	Truck (%)	32	RV (%)	0	E_1	1.5	E_R	1.2	f_{HR}	0.862	f_p	1.00	V (pc/h)	1954
V_{RF}	250	0.92	4	0	1.5	1.2	0.980	1.00	277								
V_{FR}	1200	0.92	4	0	1.5	1.2	0.980	1.00	1330								
V_{RR}	200	0.92	32	0	1.5	1.2	0.862	1.00	1954								
V_{NW}	2176							3783									
V_{W}	1607																
VR	425																

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	3	Minimum weaving lane changes, $L_{C_{MIN}}$	554 l/c/h
Interchange density, ID	2.70 int/mi	Weaving lane changes, $L_{C_{W}}$	1324 l/c/h
Minimum RF lane changes, $L_{C_{RF}}$	0 l/c	Non-weaving lane changes, $L_{C_{NW}}$	857 l/c/h
Minimum FR lane changes, $L_{C_{FR}}$	2 l/c	Total lane changes, $L_{C_{ALL}}$	2181 l/c/h
Minimum RR lane changes, $L_{C_{RR}}$	l/c	Non-weaving vehicle index, I_{NW}	0.226

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v | 3783 pc/h | Weaving intensity factor, W | 0.226 |
Weaving segment capacity, c_w | 7083 veh/h | Weaving segment speed, S_w | 54.1 mph |
Weaving segment v/c ratio | 0.460 | Average weaving speed, S_{AV} | 58.2 mph |
Weaving segment density, D | 17.5 pc/mi/h | Average non-weaving speed, S_{NW} | 51.5 mph |
Level of Service, LOS | B | Maximum weaving length, L_{MAX} | 5395 ft |

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 5:22 PM
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-64 Eastbound 21-5.1</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Blw I-65 On & Story Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description Ohio River Bridges Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Weaving segment length, L_s</td>
<td>1425ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment type</th>
<th>Freeway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway minimum speed, S_{MN}</td>
<td>50</td>
</tr>
<tr>
<td>Freeway maximum capacity, C_{FL}</td>
<td>2300</td>
</tr>
<tr>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{hv}</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>1860</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>190</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.955</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>1540</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>160</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>4004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4179</td>
</tr>
<tr>
<td>V_{W}</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>VR</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

<table>
<thead>
<tr>
<th>Minimum maneuver lanes, N_{WL}</th>
<th>0 lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchange density, ID</td>
<td>2.00 int/mi</td>
</tr>
<tr>
<td>Minimum RF lane changes, L_{RF}</td>
<td>2 lc/pc</td>
</tr>
<tr>
<td>Minimum FR lane changes, L_{FR}</td>
<td>2 lc/pc</td>
</tr>
<tr>
<td>Minimum RR lane changes, L_{RR}</td>
<td>2 lc/pc</td>
</tr>
</tbody>
</table>

Minimum weaving lane changes, L_{C_{MN}}	350 lc/h
Weaving lane changes, L_{C_{W}}	634 lc/h
Non-weaving lane changes, L_{C_{NW}}	1019 lc/h
Total lane changes, L_{C_{ALL}}	1653 lc/h
Non-weaving vehicle index, I_{NW}	0.254

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	4179 pc/h
Weaving segment capacity, c_{w}	5681 veh/h
Weaving segment v/c ratio	0.718
Weaving segment density, D	27.3 pc/mil
Level of Service, LOS	C

Weaving intensity factor, W	0.254
Weaving segment speed, S	51.1 mph
Average weaving speed, S_{w}	58.0 mph
Average non-weaving speed, S_{NW}	50.8 mph
Maximum weaving length, L_{MAX}	6117 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-64 Westbound 22-2.1</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Btw Story On & I-65 Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description
Ohio River Bridges Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Weaving segment length, L₃</td>
<td>1600ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
<tr>
<td>Segment type</td>
<td>Freeway</td>
</tr>
<tr>
<td>Freeway minimum speed, Sₘᵦ</td>
<td>50</td>
</tr>
<tr>
<td>Freeway maximum capacity, Cᵢₑ</td>
<td>2300</td>
</tr>
<tr>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>Eₜ</th>
<th>Eᵣ</th>
<th>fₑ</th>
<th>fᵢ</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1375</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.956</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>875</td>
<td>0.92</td>
<td>15</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.930</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>275</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.955</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>175</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.966</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>2669</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 3063</td>
</tr>
<tr>
<td>V_W</td>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, Nᵦᵪ	0 lc
Interchange density, ID	1.80 in/mi
Minimum RF lane changes, LCᵦᵦ	lc/pc
Minimum FR lane changes, LCᵦᵦ	lc/pc
Minimum RR lane changes, LCᵦᵦ	2 lc/pc
Minimum weaving lane changes, LCᵦᵦ	388 lc/h
Weaving lane changes, LCᵦᵦ	676 lc/h
Non-weaving lane changes, LCᵦᵦ	880 lc/h
Total lane changes, LCᵦᵦ	1556 lc/h
Non-weaving vehicle index, Iᵦᵦ	0.221

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	3063 pc/h
Weaving segment capacity, Cᵦ	5620 veh/h
Weaving segment w/c ratio	0.527
Weaving segment density, D	19.4 pc/mi/ln
Level of Service, LOS	B
Weaving intensity factor, W	0.221
Weaving segment speed, S	52.6 mph
Average weaving speed, Sᵦ	58.2 mph
Average non-weaving speed, Sᵦᵦ	52.3 mph
Maximum weaving length, Lᵦᵦ	6319 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Freeway Weaving Worksheet

Ohio River Bridges Project

Freeway Weaving Worksheet

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>I-64 Westbound 22-5.1</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Blw I-65 On & 3rd Off</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2010</td>
</tr>
</tbody>
</table>

Inputs

- **Weaving configuration**: Two-Sided
- **Weaving number of lanes, N**: 4
- **Weaving segment length, Ls**: 1425 ft
- **Freeway free-flow speed, FFS**: 60 mph

- **Segment type**: Freeway
- **Freeway minimum speed, SMN**: 50
- **Freeway maximum capacity, CFNL**: 2300
- **Terrain type**: Level

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_HV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2340</td>
<td>0.92</td>
<td>8</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.962</td>
<td>1.00</td>
<td>2645</td>
</tr>
<tr>
<td>360</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
<td>397</td>
</tr>
<tr>
<td>960</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
<td>1059</td>
</tr>
<tr>
<td>140</td>
<td>0.92</td>
<td>8</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.962</td>
<td>1.00</td>
<td>2645</td>
</tr>
<tr>
<td>4' 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 4255</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR 0.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- **Minimum maneuver lanes, NML**: 3
- **Minimum weaving lane changes, LCMN**: 154 lc/h
- **Weaving lane changes, LCW**: 631 lc/h
- **Non-weaving lane changes, LCMN**: 847 lc/h
- **Total lane changes, LCA**: 1478 lc/h
- **Non-weaving vehicle index, I_W**: 0.233

Weaving Segment Speed, Density, Level of Service, and Capacity

- **Weaving segment flow rate, v**: 4255 pc/h
- **Weaving intensity factor, W**: 0.233
- **Weaving segment capacity, C_W**: 7481 veh/h
- **Average weaving speed, s_w**: 53.9 mph
- **Average non-weaving speed, s_W**: 58.1 mph
- **Maximum weaving length, l_MAX**: 6063 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridges Project

FREeway WEAVING WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/28/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td></td>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td></td>
<td>1-71 Northbound 31-2.1</td>
</tr>
<tr>
<td></td>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td></td>
<td>Btw I65SB On & I64EB Off</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description Ohio River Bridges Project

Inputs

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving configuration</td>
<td>Two-Sided</td>
</tr>
<tr>
<td>Weaving number of lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Weaving segment length, L_s</td>
<td>2220 ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
<tr>
<td>Segment type</td>
<td>Freeway</td>
</tr>
<tr>
<td>Freeway minimum speed, S_MN</td>
<td>50</td>
</tr>
<tr>
<td>Freeway maximum capacity, C_Fl</td>
<td>2300</td>
</tr>
<tr>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_HV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1240</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
<td>1368</td>
</tr>
<tr>
<td>V_RF</td>
<td>1060</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
<td>1187</td>
</tr>
<tr>
<td>V_FR</td>
<td>760</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
<td>347</td>
</tr>
<tr>
<td>V_RW</td>
<td>640</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
<td>1368</td>
</tr>
<tr>
<td>V_HW</td>
<td>3402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_1</td>
<td>723</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum maneuver lanes, N_WL</td>
<td>0</td>
</tr>
<tr>
<td>Interchange density, ID</td>
<td>2.30 int/ml</td>
</tr>
<tr>
<td>Minimum RF lane changes, L_CRF</td>
<td>1 pc</td>
</tr>
<tr>
<td>Minimum FR lane changes, L_CFR</td>
<td>1 pc</td>
</tr>
<tr>
<td>Minimum RR lane changes, L_CRR</td>
<td>1 pc</td>
</tr>
<tr>
<td>Minimum weaving lane changes, L_CMN</td>
<td></td>
</tr>
<tr>
<td>Weaving lane changes, L_CW</td>
<td></td>
</tr>
<tr>
<td>Non-weaving lane changes, L_CNW</td>
<td></td>
</tr>
<tr>
<td>Total lane changes, L_CA</td>
<td></td>
</tr>
<tr>
<td>Non-weaving vehicle index, L_NV</td>
<td></td>
</tr>
</tbody>
</table>

Weaving Segment Speed, Density, Level of Service, and Capacity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving segment flow rate, v</td>
<td>4125 pc/h</td>
</tr>
<tr>
<td>Weaving segment capacity, c_w</td>
<td>3748 veh/h</td>
</tr>
<tr>
<td>Weaving segment v/c ratio</td>
<td>1.084</td>
</tr>
<tr>
<td>Weaving segment density, D</td>
<td>pc/ml/h</td>
</tr>
<tr>
<td>Level of Service, LOS</td>
<td>F</td>
</tr>
<tr>
<td>Weaving intensity factor, W</td>
<td></td>
</tr>
<tr>
<td>Average weaving speed, S_w</td>
<td></td>
</tr>
<tr>
<td>Average non-weaving speed, S_NW</td>
<td></td>
</tr>
<tr>
<td>Maximum weaving length, L_MAX</td>
<td>7417 ft</td>
</tr>
</tbody>
</table>

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 6:20 PM

file://C:\Documents and Settings\p0001234\Local Settings\Temp\s2k22B.tmp 2/24/2012
Ohio River Bridges Project

FREEWAY WEAVING WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>I-71 Southbound 32-3.1</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Btw I64WB On & I65NB Off</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2010</td>
</tr>
</tbody>
</table>

Project Description: Ohio River Bridges Project

Inputs

- Weaving configuration: Two-Sided
- Weaving number of lanes, N: 2
- Weaving segment length, L: 1480 ft
- Freeway free-flow speed, FFS: 60 mph

<table>
<thead>
<tr>
<th>Segment type</th>
<th>Freeway minimum speed, S_{MIN}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrain type</th>
<th>Freeway maximum capacity, C_{FL}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2300</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{HV}</th>
<th>f_D</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>460</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>990</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.966</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>340</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>710</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
</tbody>
</table>

V_{NW} 2010

V_{W} 826

VR 0.291

Configuration Characteristics

- Minimum maneuver lanes, N_{WL}: 0 lane
- Interchange density, ID: 2.20 in/mi
- Minimum RF lane changes, L_{RF}: 1c/pc
- Minimum FR lane changes, L_{RF}: 1c/pc
- Minimum RR lane changes, L_{RR}: 1c/pc

<table>
<thead>
<tr>
<th></th>
<th>Minimum weaving lane changes, L_{C_{MIN}}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>826 lcf/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Weaving lane changes, L_{Cw}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>962 lcf/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-weaving lane changes, L_{C_{NW}}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>831 lcf/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total lane changes, L_{C_{ALL}}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1793 lcf/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-weaving vehicle index, I_{NW}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.263</td>
</tr>
</tbody>
</table>

Weaving Segment Speed, Density, Level of Service, and Capacity

- Weaving segment flow rate, ν: 2836 pc/h
- Weaving segment capacity, c_{w}: 3406 veh/h
- Weaving segment v/c ratio: 0.808
- Weaving segment density, D: 28.4 pc/mi/ln

<table>
<thead>
<tr>
<th></th>
<th>Weaving intensity factor, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.263</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Weaving segment speed, S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49.9 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Average weaving speed, S_{W}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57.9 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Average non-weaving speed, S_{NW}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>47.2 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Maximum weaving length, L_{MAX}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8622 ft</td>
</tr>
</tbody>
</table>

Notes

- Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merges and Diverge Segments".
- For volumes that exceed the weaving segment capacity, the level of service is "F".
BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Tony Lewis</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>9/15/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>1600 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

\[
f_p = 1.00 \\
E_T = 1.5 \\
f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)} = 0.966
\]

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV})} \times f_p)</td>
<td>900 pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>D = (v_p / S)</td>
<td>15.0 pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>B</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Design (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
<td></td>
</tr>
<tr>
<td>(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV})} \times f_p)</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>D = (v_p / S)</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>Required Number of Lanes, N</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

N	Number of lanes
V	Hourly volume
\(v_p\)	Flow rate
LOS	Level of service
DDHV	Directional design hour volume
S	Speed
D	Density
BFFS	Base free-flow speed
FFS	Free-flow speed

Factor Location

E_R	Exhibits 11-10, 11-12
\(f_{LV}\)	Exhibit 11-8
E_T	Exhibits 11-10, 11-11, 11-13
\(f_{LC}\)	Exhibit 11-9
\(f_p\)	Page 11-18
TRD	Page 11-11
LOS, S, FFS, \(v_p\)	Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

Generated: 2/6/2012 12:24 PM
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Tony Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>9/15/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

Highway/Direction of Travel	I-65 NB Mainline
From/To	North of I-64/71 On
Jurisdiction	analysis
Analysis Year	2030 No Build

Flow Inputs

Volume, V	3900 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	%Trucks and Buses, P_T
Peak-Hr Direction Prop, D	%RVs, P_R
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments

f_p	1.00
E_T	1.5
E_R	1.2
\(f_{HV} = \frac{1}{1+f_p(E_T-1)+f_R(E_R-1)} \)	0.952

Speed Inputs

Lane Width	ft
Rt-Side Lat. Clearance	ft
Number of Lanes, N	4
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFSS	mph

Calc Speed Adj and FFS

f_LW	mph
f_LC	mph
TRD Adjustment	mph
FFS	60.0 mph

LOS and Performance Measures

Design (N)

Operational (LOS)

\(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})} \)	pc/h/in
\(S = 60.0 \) mph	pc/h/in
\(D = v_p / S \)	pc/mi/in
LOS	C

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>S - Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>(v_p) - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFSS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

E_R - Exhibits 11-10, 11-12	\(f_{LV} \) - Exhibit 11-8
E_T - Exhibits 11-10, 11-11, 11-13	\(f_{LC} \) - Exhibit 11-9
\(f_p \) - Page 11-18	TRD - Page 11-11
LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3	

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/6/2012 12:24 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k193.tmp 2/6/2012
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM

Site Information
- **Highway/Direction of Travel**: I-66 SB Mainline
- **From/To**: North of I-64/71 Off
- **Jurisdiction**:
- **Analysis Year**: 2030 No Build
- **Project Description**: Ohio River Bridges Project

Flow Inputs
- **Volume, V**: 7700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: \%
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 11
- **%RVs, P_R**: 0

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **f_{HV} = 1/(f_p + P_T/10 + P_R) = 0.948**

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **Operational (LOS)**
- **LOS**
- **Design (N)**

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location
- **E_R** - Exhibits 11-10, 11-12
- **f_{LVW}** - Exhibit 11-8
- **E_T** - Exhibits 11-10, 11-11, 11-13
- **f_{LC}** - Exhibit 11-9
- **f_p** - Page 11-18
- **D** - pc/h/ln
- **TRD** - Page 11-11
- **LOS, S, FFS, v_p** - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/6/2012 12:25 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k1A5.tmp
Basic Freeway Segments Worksheet

General Information
- Analyst: Tony Lewis
- Agency or Company: KTA
- Date Performed: 9/15/2011
- Analysis Time Period: AM
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-65 SB Mainline
- From/To: Btw I-64/71 Off and I-64/71 On
- Jurisdiction: Analysis Year: 2030 No Build

Flow Inputs
- Volume, V: 4100 veh/h
- AADT: 4100 veh/day
- Peak-Hr Prop. of AADT, K:
- Peak-Hr Direction Prop, D:
- DDHV = AADT x K x D: 4100 veh/h

Calculate Flow Adjustments
- \(f_p \): 1.00
- \(E_T \): 1.5
- \(E_R \): 1.2
- \(f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)} \): 0.948

Speed Inputs
- Lane Width: 12 ft
- Rt-Side Lat. Clearance: 12 ft
- Number of Lanes, N: 2
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFFS: mph

LOS and Performance Measures

Design (N)
- Design LOS

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_LW \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM
- **Project Description**: Ohio River Bridge Project

Site Information
- **Highway/Direction of Travel**: I-64 EB Mainline
- **From/To**: West of I-65 Off
- **Jurisdiction**: 2030 No Build
- **Analysis Year**: 2030 No Build

Flow Inputs
- **Volume, V**: 4600 veh/h
- **AADT**: 4600 veh/day
- **Peak-Hr Prop. of AADT, K**: 80
- **Peak-Hr Direction Prop, D**: 80
- **DDHV = AADT x K x D**: 1200 veh/h

Calculate Flow Adjustments
- **f_0**: 0.92
- **E_R**: 1.2
- **f_HV = f_0 + E_R**: 0.962

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/ft
- **FFS (measured)**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or DDHV})}{(\text{PHF} \times N \times f_{HV})} \)
 - \(S = \frac{v_p}{D} = 29.0 \text{ pc/mi/ln} \)

Design (N)
- **Design LOS**
 - \(v_p = \frac{(V \text{ or DDHV})}{(\text{PHF} \times N \times f_{HV})} \)
 - \(S = \frac{v_p}{D} = 29.0 \text{ pc/mi/ln} \)

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LVW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
BASIC FREEWAY SECTIONS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 EB Mainline Btw River Rd. On and I-71
- **Jurisdiction**: From/To
- **Analysis Year**: 2030

Site Information
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 7
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi

Flow Inputs
- **Volume, V**: 3200 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**: veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_{TR} = 1.5 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFSS**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{ph})} \times f_p \)
 - \(S \) = \(v_p \) / \(S \)
 - \(D = v_p / S \)

Design (N)
- **Design LOS**
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{ph})} \)
 - \(S \) = \(v_p \) / \(S \)
 - \(D = v_p / S \)

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(v_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density

Factor Location
- **\(E_R \)**: Exhibits 11-10, 11-12
- **\(f_{lw} \)**: Exhibit 11-8
- **\(E_p \)**: Exhibits 11-10, 11-11, 11-13
- **\(f_{lc} \)**: Exhibit 11-9
- **\(f_p \)**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, \(v_p \)**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1
Generated: 2/6/2012 12:28 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\2k1B0.tmp

2/6/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 EB Mainline
- **From/To**: Btw Story Off and Mell. On
- **Jurisdiction**: Analysis Year 2030 No build

Site Information
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 10
- **%RVs, PR**: 0
- **General Terrain, Level**:
- **Grade %**:
- **Length mi**:
- **Up/Down %**:

Flow Inputs
- **Volume, V**: 3500 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_{HV} = \frac{1}{f_p f_L W f_T}\right) + f_R (f_E - 1) = 0.952

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFSS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **f_{HV}**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures

Operational (LOS)
- **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **S**: 57.1 mph
- **D = v_p / S**: pc/mi/ln

Design (N)
- **Design LOS**
- **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **S**: mph
- **D = v_p / S**: pc/mi/ln
- **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KFA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** AM
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-64 WB Mainline
- **From/To:** Blw Mell. Off and Story On
- **Jurisdiction:**
- **Analysis Year:** 2030 No Build

Flow Inputs
- **Volume, V:** 4100 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:** veh/h
- **DDHV = AADT x K x D:**

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = 1 + f_p(E_T + 1) + P_T(E_R + 1) \) 0.962

Speed Inputs
- **Lane Width:**
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 2
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base-freeflow Speed, BFFS:** mph

LOS and Performance Measures
- **Operational (LOS):**
 - \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV})} \)
 - \(x f_p \)
 - \(S \) mph
 - \(D = \frac{v_p}{S} \)
 - \(F \)

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **v_p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k1C2.tmp 2/6/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 WB Mainline
- **From/To**: Btw I-71 On and I-65 On
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 No Build

Flow Inputs
- **Volume, V**: 4300 veh/h
- **Peak-Hour Prop. of AADT, K**: veh/day
- **Peak-Hr Direction Prop, D**: veh/h
- **AADT**: 5
- **%Trucks and Buses, PT**: 0
- **%RVs, PR**: Level
- **General Terrain**: Up/Down %

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_HV = 1/(1 + PT(E_T - 1) + PR(E_R - 1))**: 0.976

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

Speed Adjust and FFS
- **f_LW**: mph
- **f_RC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

Design (N)
- **Design (N)**
- **Design LOS**
- **v_p = (V or DDHV) / (PHF x N x f_HV)**
- **pc/h/ln**
- **= (PHF x N x f_HV)**
- **pc/h/ln**
- **= S mph**
- **= D = v_p / S pc/mi/ln**
- **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density
- **FFS**: Free-flow speed
- **BFFS**: Base free-flow speed
- **E_R**: Exhibits 11-10, 11-12
- **f_LW**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_RC**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Tony Lewis</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>12/12/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Oper.(LOS) | Des.(N) | Planning Data

Flow Inputs

Volume, V	4300 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments

f_p	1.00
E_T	1.5
E_R	1.2

Speed Inputs

Lane Width	ft
Rt.-Side Lat. Clearance	ft
Number of Lanes, N	3
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

LOS and Performance Measures

Design (N)

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV})$</td>
<td>Design LOS</td>
</tr>
<tr>
<td>$x f_p$</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>$D = v_p / S$</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>D</td>
</tr>
</tbody>
</table>

Glossary

- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location

- E_R - Exhibits 11-10, 11-12
- f_{LV} - Exhibit 11-8
- E_T - Exhibits 11-10, 11-11, 11-13
- f_p - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Data Performed:** 9/15/2011
- **Analysis Time Period:** AM
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-71 NB Mainline
- **From/To:** Btw 1-64 WB Off and I-65
- **Jurisdiction:** SB On
- **Analysis Year:** 2030 No Build

Flow Inputs
- **Volume, V:** 1200 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:** %
- **Peak-Hr Direction Prop, D:** %
- **DDHV = AADT x K x D:** veh/h
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 4
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_T:** 1.5
- **E_R:** 1.2
- **f_{HV} = \frac{1}{(1 + P_T(E_T - 1) + P_R(E_R - 1))}** 0.980

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 2
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow speed, BFFS:** mph

Calc Speed Adj and FFS
- **f_{LW}:** mph
- **f_{LC}:** mph
- **TRD Adjustment:** mph
- **FFS:** 60.0 mph

LOS and Performance Measures
- **Operational (LOS):**
 - **v_p = \frac{(V \text{ or DDHV})}{(\text{PHF} \times N \times f_{HV})}** pc/h/ln
 - **S:** 60.0 mph
 - **D:** 11.1 pc/mln/ln
 - **LOS:** B

Design (N)
- **Design LOS:**
 - **v_p = \frac{(V \text{ or DDHV})}{(\text{PHF} \times N \times f_{HV})}** pc/h/ln
 - **S:** mph
 - **D:** pc/mln/ln

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **v_p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/6/2012 12:40 PM
BASIC FREEWAY WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel I-71 NB Mainline</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td>Project Description</td>
<td>2030 No Build</td>
</tr>
<tr>
<td></td>
<td>Oper.(LOS)</td>
</tr>
<tr>
<td></td>
<td>Des.(N)</td>
</tr>
<tr>
<td></td>
<td>Planning Data</td>
</tr>
</tbody>
</table>

Flow Inputs

- **Volume, V**: 2800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: K
- **Peak-Hr Direction Prop, D**: D
- **DDHV = AADT x K x D**: veh/h

- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 7
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments

- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{(1 + P_T(E_T - 1) + P_R(E_R - 1))} = 0.966 \)
- \(E_R = 1.2 \)

Speed Inputs

- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS

- **Calc Speed Adj**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})})</td>
<td>Design LOS</td>
</tr>
<tr>
<td>(x f_p)</td>
<td>(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})})</td>
</tr>
<tr>
<td>1575 pc/h/ln</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>60.0 mph</td>
<td>mph</td>
</tr>
<tr>
<td>(D = \frac{v_p}{S})</td>
<td>(D = \frac{v_p}{S})</td>
</tr>
<tr>
<td>26.3 pc/mi/ln</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

Glossary

- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location

- **E_R** - Exhibits 11-10, 11-12
- **f_LW** - Exhibit 11-8
- **E_T** - Exhibits 11-10, 11-11, 11-13
- **f LC** - Exhibit 11-9
- **f_p** - Page 11-18
- **TRD** - Page 11-11
- **LOS, S, FFS, v_p** - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/6/2012 12:40 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\2k1CE.tmp
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: AM

Site Information
- **Highway/Direction of Travel**: I-71 SB Mainline
- **From/To**: North of I-64 Off
- **Jurisdiction**:
- **Analysis Year**: 2030 No Build

Project Description
- **Oper.(LOS)**
- **Des.(N)**
- **Planning Data**

Flow Inputs
- **Volume, V**: 4500 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 5
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade % Length mi**: Up/Down %

Calculate Flow Adjustments
- **E_R**: 1.2
- **f_HV = 1/(1+P_T(E_T - 1) + P_R(E_R - 1))**: 0.976

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
- **Design (N)**

Glossary

<table>
<thead>
<tr>
<th>N</th>
<th>Number of lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Hourly volume</td>
</tr>
<tr>
<td>v_p</td>
<td>Flow rate</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of service</td>
</tr>
<tr>
<td>DDHV</td>
<td>Directional design hour volume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Density</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>E_R</th>
<th>Exhibits 11-10, 11-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_LW</td>
<td>Exhibit 11-8</td>
</tr>
<tr>
<td>E_T</td>
<td>Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>f_LC</td>
<td>Exhibit 11-9</td>
</tr>
<tr>
<td>f_p</td>
<td>Page 11-18</td>
</tr>
<tr>
<td>TRD</td>
<td>Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, v_p</td>
<td>Exhibits 11-2, 11-3</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/6/2012 12:41 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- Analyst: Tony Lewis
- Agency or Company: KTA
- Date Performed: 9/15/2011
- Analysis Time Period: AM
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-71 SB Mainline
- From/To: Btw I-64 Off and I-64 On
- Jurisdiction:
- Analysis Year: 2030 No Build

Flow Inputs
- Volume, V: 2700 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K:
- Peak-Hr Direction Prop, D:
- DDHV = AADT x K x D: veh/h
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, PT: 5
- %RVs, PR: 0
- General Terrain: Level
- Grade: %
- Length: mi
- Up/Down %:

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{1 + f_p (E_T - 1) + P_R (E_T - 1)} = 0.976 \)

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 2
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFFS: mph

Calc Speed Adj and FFS
- \(f_{LV} \)
- \(f_{LC} \)
- TRD Adjustment: mph
- FFS: 60.0 mph

LOS and Performance Measures
- Operational (LOS)
- \(V_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV}) \times f_p} \)
- \(S \)
- \(D = \frac{v_p}{S} \)
- LOS:

Design (N)
- Design LOS
- Design (N)
- Required Number of Lanes, N

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LV} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3
- TRD - Page 11-11

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/6/2012 12:41 PM
Basic Freeway Segments Worksheet

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Tony Lewis</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Data Performed</td>
<td>9/15/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>3300 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>E_R</td>
<td>1.2</td>
</tr>
<tr>
<td>f_{HV} = 1(1+P_T(E_T - 1) + P_R(E_R - 1))</td>
<td>0.976</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/MI</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>55.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>f_LW</td>
<td>mph</td>
</tr>
<tr>
<td>f_LC</td>
<td>mph</td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS</td>
<td>55.0 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design LOS</td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_{HV}^{1838})</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>x f_p</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>55.0 mph</td>
</tr>
<tr>
<td>D = v_p / S</td>
<td>pc/mil/ln</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>S - Speed</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Design LOS:

- Exhibits 11-10, 11-12
- f_{LV} - Exhibit 11-8

- Exhibits 11-10, 11-11, 11-13
- f_{LC} - Exhibit 11-9

- Page 11-18
- TRD - Page 11-11

- LOS, S, FFS, v_p - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/6/2012 12:41 PM
Freeway Weaving Worksheet

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Tony Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Dir of Travel</th>
<th>I-85 NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving Segment Location</td>
<td>Btw All On and I-64/71 Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Project Description
Ohio River Bridge Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>One-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
</tr>
<tr>
<td>Weaving segment length, L_s</td>
<td>2300 ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_RV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1587</td>
<td>0.92</td>
<td>10</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.952</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>914</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V.FR</td>
<td>565</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>335</td>
<td>0.92</td>
<td>10</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.952</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>2179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_W</td>
<td>1641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_WL	2 lc
Interchange density, ID	2.50 int/mi
Minimum RF lane changes, L_CRF	2 lc/pc
Minimum FR lane changes, L_CFR	0 lc/pc
Minimum RR lane changes, L_CRR	lc/pc

Freeway Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	3820 pc/h
Weaving segment capacity, c_w	5321 veh/h
Weaving segment v/c ratio	0.684
Weaving segment density, D	18.9 pc/mi/ln
Level of Service, LOS	B

Notes
- Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridge Project

Freeway Weaving Worksheet

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>KTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Dir of Travel</th>
<th>I-65 SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving Segment Location</td>
<td>Btw I-64/7 On and Jeffers Rd Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Project Description
Ohio River Bridge Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>One-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
</tr>
<tr>
<td>Weaving segment length, Lw</td>
<td>2200 ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

Segment Details

- **Segment Type**
 - Freeway
 - Freeway minimum speed, Smn | 50 |
 - Freeway maximum capacity, C_{pl} | 2300 |
 - Terrain type | Level |

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{nv}</th>
<th>f_p</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>2080</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>2020</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.885</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>2476</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>1623</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>4090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{W}</td>
<td>4947</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{R}</td>
<td>0.547</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- **Minimum maneuver lanes, N_{WL}** | 2 |
- **Interchange density, ID** | 2.70 Int/mi |
- **Minimum RF lane changes, L_{cR}** | 2 lpc |
- **Minimum FR lane changes, L_{cF}** | 0 lpc |
- **Minimum RR lane changes, L_{cR}** | 2 lpc |
- **Minimum weaving lane changes, L_{cMN}** | 2 lpc |

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	9037 pc/h
Weaving segment capacity, c_{w}	4277 veh/h
Weaving segment v/c ratio	2.061 pc/mi/ln
Weaving segment density, D	F

Weaving Lane Changes

- Weaving intensity factor, W
- Weaving segment speed, S
- Average weaving speed, S_{av}
- Average non-weaving speed, S_{nw}
- Maximum weaving length, L_{max}

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Freeway Weaving Worksheet

General Information

- **Analyst**: KTA
- **Date Performed**: 12/13/2011
- **Analysis Time Period**: AM
- **Freeway/Dir of Travel**: I-64 EB
- **Weaving Segment Location**: Blw I-71 On and Story Off
- **Analysis Year**: 2030 No Build

Project Description

Ohio River Bridge Project

Inputs

- **Weaving configuration**: Two-Sided
- **Weaving number of lanes, N**: 3
- **Weaving segment length, Lc**: 1475 ft
- **Freeway free-flow speed, FFS**: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_NW</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1555</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.965</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>245</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FB</td>
<td>1595</td>
<td>0.92</td>
<td>8</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.962</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RW</td>
<td>505</td>
<td>0.92</td>
<td>7</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.966</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>3825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_W</td>
<td>557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- **Minimum maneuver lanes, N_WL**: 0
- **Interchange density, ID**: 2.00 Int/mi
- **Minimum RF lane changes, LC_RF**: 1 pc
- **Minimum FR lane changes, LC_FR**: 1 pc
- **Minimum RR lane changes, LC_RR**: 2 pc

Minimum weaving lane changes, LC_MIN: 1114 pc/h

Weaving Lane Changes

- **LC_W**: 1404 pc/h
- **LC_NW**: 1010 pc/h
- **LC_ALL**: 2414 pc/h

Non-Weaving Vehicle Index, I_NW: 0.333

Weaving Segment Speed, Density, Level of Service, and Capacity

- **Weaving segment flow rate, v**: 4382 pc/h
- **Weaving segment capacity, c_w**: 5455 veh/h
- **Weaving segment v/c ratio**: 0.776
- **Weaving segment density, D**: 31.6 pc/mi/ln

<table>
<thead>
<tr>
<th>W</th>
<th>0.333</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>46.2 mph</td>
</tr>
<tr>
<td>S_w</td>
<td>57.5 mph</td>
</tr>
<tr>
<td>S_NW</td>
<td>45.0 mph</td>
</tr>
</tbody>
</table>

Maximum weaving length, L_MAX: 6937 ft

Notes

- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridge Project

Freeway Weaving Worksheet

General Information
- **Analyst**
- **Agency/Company** KTA
- **Date Performed** 10/26/2011
- **Analysis Time Period** AM

Site Information
- **Freeway/Dir of Travel** I-64 WB
- **Weaving Segment Location** Btw Story On and I-65 Off
- **Analysis Year** 2030 No Build

Project Description
Ohio River Bridge Project

Inputs
- **Weaving configuration** Two-Sided
- **Weaving number of lanes, N** 3
- **Weaving segment length, L_s** 1600 ft or 60 mph
- **Freeway free-flow speed, FFS**

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_iW</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>2526</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>1573</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>296</td>
<td>0.92</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>1.000</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>304</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 5196</td>
</tr>
<tr>
<td>V_w</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics
- **Minimum maneuver lanes, N_wL** 0 LC
- **Interchange density, ID** 1.80 Int/mi
- **Minimum RF lane changes, Lc_RF** 1 LC
- **Minimum FR lane changes, Lc_FR** 1 LC
- **Minimum RR lane changes, Lc_RR** 2 LC

Minimum weaving lane changes, Lc_MIN 668 LC/h

Weaving lane changes, Lc_w 956 LC/h

Weaving lane changes, Lc_NW 1520 LC/h

Total lane changes, Lc_ALL 2476 LC/h

Non-weaving vehicle index, i_NW 0.319

Weaving Segment Speed, Density, Level of Service, and Capacity
- **Weaving segment flow rate, v** 5196 pc/h
- **Weaving segment capacity, c_w** 5728 veh/h
- **Weaving segment v/c ratio** 0.894
- **Weaving segment density, D** 38.5 pc/mi/ln
- **Level of Service, LOS** E

Weaving intensity factor, W 0.319

Weaving segment speed, S 47.4 mph

Average weaving speed, S_w 57.6 mph

Average non-weaving speed, S_NW 46.9 mph

Maximum weaving length, L_max 6328 ft

Notes
- Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/22/2012 5:45 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\s2kD3.tmp

2/22/2012
Ohio River Bridge Project

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Agency/Company</th>
<th>Date Performed</th>
<th>Analysis Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KTA</td>
<td>12/13/2011</td>
<td>AM</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Direc of Travel</th>
<th>I-64 WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving Segment Location</td>
<td>Bow I-65 On and 3rd Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Project Description

Ohio River Bridge Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>4</td>
</tr>
<tr>
<td>Weaving segment length, Ls</td>
<td>1466ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_RV</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>2720</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>1125</td>
<td>0.92</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>1.000</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>1580</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>675</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>5992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_W</td>
<td>741</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

<table>
<thead>
<tr>
<th>N_WL</th>
<th>Minimum maneuver lanes</th>
<th>0 lc</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Interchange density</td>
<td>1.80 int/ml</td>
</tr>
<tr>
<td>LCF</td>
<td>Minimum RF lane changes</td>
<td>1 lc/pc</td>
</tr>
<tr>
<td>LCRF</td>
<td>Minimum FR lane changes</td>
<td>1 lc/pc</td>
</tr>
<tr>
<td>LCRRR</td>
<td>Minimum RR lane changes</td>
<td>1 lc/pc</td>
</tr>
</tbody>
</table>

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	6723 pc/h
Weaving segment capacity, c_w	7427 veh/h
Weaving segment v/c ratio	0.887
Weaving segment density, D	35.3 pc/m/l

Weaving intensity factor, W: 0.423
Weaving segment speed, S: 47.6 mph
Average weaving speed, S_NW: 57.0 mph
Average non-weaving speed, S_NW: 46.6 mph
Maximum weaving length, L_MAX: 6711 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>KTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway/Dir of Travel</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
</tr>
<tr>
<td>Analysis Year</td>
</tr>
</tbody>
</table>

Project Description
Ohio River Bridge Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Weaving segment length, L<sub>s</sub></td>
<td>2200ft</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment type</th>
<th>Freeway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeway minimum speed, S<sub>MIN</sub></td>
<td>50</td>
</tr>
<tr>
<td>Freeway maximum capacity, C<sub>FL</sub></td>
<td>2300</td>
</tr>
<tr>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

V_{FF}	354	0.92	5	0	1.5	1.2	0.976	1.00	394
V_{RF}	846	0.92	5	0	1.5	1.2	0.976	1.00	943
V_{FR}	1960	0.92	2	0	1.5	1.2	0.990	1.00	2152
V_{RR}	441	0.92	5	0	1.5	1.2	0.976	1.00	394
V_{NW}	3489								
V_W	494								
VR	0.122								

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0 lane
Interchange density, ID	2.30 Int/mi
Minimum RF lane changes, L_{CRF}	lc/pc
Minimum FR lane changes, L_{CFR}	lc/pc
Minimum RR lane changes, L_{CRR}	1 lc/pc

Minimum weaving lane changes, L_C_{MIN}	lc/h
Weaving lane changes, L_C_W	lc/h
Non-weaving lane changes, L_{CNW}	lc/h
Total lane changes, L_C_{ALL}	lc/h
Non-weaving vehicle index, l_{NW}	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	3973 pc/h
Weaving segment capacity, c_W	3789 veh/h
Weaving segment v/c ratio	1.023
Weaving segment density, D	pc/mln
Level of Service, LOS	F

| Weaving intensity factor, W |
| Weaving segment speed, S |
| Average weaving speed, S_W |
| Average non-weaving speed, S_{NW} |
| Maximum weaving length, L_{MAX} | 6985 ft |

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
Freeway Weaving Worksheet

General Information
- **Analyst**: KTA
- **Date Performed**: 10/26/2011
- **Analysis Time Period**: AM

Site Information
- **Freeway/Dir of Travel**: I-71 SB
- **Weaving Segment Location**: Bow I-64 On and I-65 NB Off
- **Analysis Year**: 2030 No Build

Project Description
- **Ohio River Bridge Project**

Inputs
- **Weaving configuration**: Two-Sided
- **Weaving number of lanes, N**: 2
- **Weaving segment length, Lw**: 1500 ft
- **Freeway free-flow speed, FFS**: 60 mph
- **Segment type**: Freeway
- **Freeway minimum speed, S_w**: 50 mph
- **Freeway maximum capacity, C氟**: 2300 veh/h
- **Terrain type**: Level

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th></th>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_R</th>
<th>f_R</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>2032</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
<td>2220</td>
</tr>
<tr>
<td>V_RF</td>
<td>688</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
<td>741</td>
</tr>
<tr>
<td>V_FR</td>
<td>910</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
<td>994</td>
</tr>
<tr>
<td>V_RR</td>
<td>1290</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
<td>2220</td>
</tr>
<tr>
<td>V_NW</td>
<td>3955</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics
- **Minimum maneuver lanes, N_WL**: 0 lane
- **Minimum weaving lane changes, LCM_W**: 0 pc
- **Weaving lane changes, LCW**: 2.20 veh/mi
- **Non-Weaving lane changes, LCNW**: 1车道
- **Total lane changes, LCA**: 1车道
- **Non-Weaving vehicle index, lw**: 1车道

Weaving Segment Speed, Density, Level of Service, and Capacity
- **Weaving segment flow rate, v**: 5406 pc/h
- **Weaving segment capacity, CW**: 3530 veh/h
- **Average weaving speed, SW**: 1.524 mph
- **Average non-weaving speed, SW**
- **Maximum weaving length, L_MAX**: 8379 ft

Notes
- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/22/2012 5:46 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\s2kDD.tmp

2/22/2012
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Tony Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>9/15/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-65 NB Mainline</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Btw I-64/71 Off and I-64/71 On</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td></td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>3800 veh/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop., D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Peak-Hour Factor, PHF	0.92
Trucks and Buses, P_T	20
RVs, P_R	0

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>f_p</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\[f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \times 0.909 \]

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Speeds and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{V \times DDHV}{PHF \times N \times f_{HV}} \times f_p)</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>51.8 mph</td>
</tr>
<tr>
<td>D = (\frac{v_p}{S})</td>
<td>43.9 pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>E</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Design (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
<td></td>
</tr>
<tr>
<td>(v_p = \frac{V \times DDHV}{PHF \times N \times f_{HV}} \times f_p)</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>D = (\frac{v_p}{S})</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>N</th>
<th>Number of lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Hourly volume</td>
</tr>
<tr>
<td>(v_p)</td>
<td>Flow rate</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of service</td>
</tr>
<tr>
<td>DDHV</td>
<td>Directional design hour volume</td>
</tr>
</tbody>
</table>

Factor Location

\(E_R \)	Exhibits 11-10, 11-12
f_p	Exhibit 11-8
\(E_T \)	Exhibits 11-10, 11-11, 11-13
f_p	Exhibit 11-9
TRD	Page 11-11
LOS, S, FFS, \(v_p \)	Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** PM
- **Flow Inputs:**
 - **Volume, V:** 7500 veh/h
 - **AADT:** veh/day
 - **Peak-Hr Prop. of AADT, K:** veh/h
 - **Peak-Hr Direction Prop, D:**
 - **DDHV = AADT x K x D:** veh/h

Site Information
- **Highway/Direction of Travel:** I-65 NB Mainline
- **From/To:** North of I-64/71 On
- **Jurisdiction:** Analysis Year: 2030 No Build

Project Description
- **Ohio River Bridges Project**

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + f_p} \left(E_T \cdot \frac{f_p}{E_R} - 1 \right) = 0.930 \)

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 4
- **Total Ramp Density, TRD:** ramps/ft
- **FFS (measured):** 60.0 mph
- **Base free-flow speed, BFFS:** mph

LOS and Performance Measures
- **Operational (LOS):**
 - \(v_p = \frac{(V \text{ or } DDHV) \times f_{HV}}{(PHF + N \times f_{HV})} \) pc/h/ln
 - \(S = 53.7 \) mph
 - \(D = \frac{v_p}{S} \) pc/mi/ln
 - **LOS:**

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **\(f_p \):** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **Design (N):**
 - **Design LOS:**
 - \(v_p = \frac{(V \text{ or } DDHV) \times f_{HV}}{(PHF + N \times f_{HV})} \) pc/h/ln
 - \(S = \) mph
 - \(D = \frac{v_p}{S} \) pc/mi/ln
 - **Required Number of Lanes, N**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/7/2012 3:16 PM
BASIC FREEWAY WORKSHEET

Basic Freeway Segments Worksheet

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: PM
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 SB Mainline
- **From/To**: North of I-64/71 Off
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 No Build

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>4800 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}</td>
<td>0.905</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \times f_p)</td>
<td>(v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \times f_p)</td>
</tr>
<tr>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>D = \frac{v_p}{S}</td>
<td>pc/ml/in</td>
</tr>
<tr>
<td>LOS</td>
<td>pc/ml/in</td>
</tr>
</tbody>
</table>

Glossary

- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location

- **E_R - Exhibits 11-10, 11-12**
- **f_{LV} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/7/2012 3:16 PM

file:C:\Documents and Settings\76429\Local Settings\Temp\f2k93.tmp 2/7/2012
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: PM
- **Jurisdiction**: Ohio River Bridges Project
- **Project Description**: Btw I-64/71 Off and I-64/71
- **Highway/Direction of Travel**: I-65 SB Mainline
- **From/To**: On
- **Analysis Year**: 2030 No Build

Site Information
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 25
- **%RVs, PR**: 0
- **General Terrain**: Level
- **Grade**: Up/Down %

Flow Inputs
- **Volume, V**: 2600 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_{HV} = 1/(1+p_{T}(E_{T} - 1) + P_{R}(E_{R} - 1))**: 0.889

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFSS**: mph

LOS and Performance Measures
- **V_p = (V or DDHV) / (PHF x N x f_{HV} x f_{p})**
- **S**: 60.0 mph
- **D = V_p / S**: 26.5 pc/mi/ln
- **LOS**: D

Design (N)
- **Design (N)**
- **Design LOS**
- **V_p = (V or DDHV) / (PHF x N x f_{HV} x f_{p})**
- **S**: mph
- **D = V_p / S**: pc/mi/ln
- **LOS**: Required Number of Lanes, N

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LV}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, V_p**: Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: PM
- **Project Description**: Ohio River Bridge Project
- **Highway/Direction of Travel**: I-64 EB Mainline
- **From/To**: West of I-65 Off
- **Jurisdiction**: Analysis Year: 2030 No Build

Site Information

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>5600 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>General Terrain: Level</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

$$f_p = 1.00$$ $$E_R = 1.2$$

$$f_{HV} = \frac{1}{f_1 + f_2} = \frac{1}{f_{HV}(E_R - 1) + f_{R}(E_R - 1)} = 0.962$$

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>f_{LW}</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LC}</td>
<td>mph</td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td></td>
</tr>
<tr>
<td>FFS</td>
<td>60.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}) = 2110$</td>
<td>Design LOS</td>
</tr>
<tr>
<td>$S = 55.3$ mph</td>
<td></td>
</tr>
<tr>
<td>$D = v_p / S = 38.2$ pc/mi/ln</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>E</td>
</tr>
</tbody>
</table>

Glossary

N	Number of lanes
V	Hourly volume
v_p	Flow rate
LOS	Level of service
DDHV	Directional design hour volume

Factor Location

<table>
<thead>
<tr>
<th>E_R</th>
<th>Exhibits 11-10, 11-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LW}</td>
<td>Exhibit 11-8</td>
</tr>
<tr>
<td>E_p</td>
<td>Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>f_{LC}</td>
<td>Exhibit 11-9</td>
</tr>
<tr>
<td>f_p</td>
<td>Page 11-18</td>
</tr>
<tr>
<td>TRD</td>
<td>Page 11-11</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved
HCS 2010™ Version 6.1
Generated: 2/7/2012 3:21 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\2kA3.tmp
2/7/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- Analyst: Tony Lewis
- Agency or Company: KTA
- Date Performed: 9/15/2011
- Analysis Time Period: PM
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-64 EB Mainline
- From/To: Btw River Rd. On and I-71 off
- Jurisdiction:
- Analysis Year: 2030 No Build

Flow Inputs
- Volume, V: 4400 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K
- Peak-Hr Direction Prop, D
- DDHV = AADT x K x D veh/h
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, P_T: 6%
- %RVs, P_R: 0%

Calculate Flow Adjustments
- \(f_p \): 1.00
- \(E_T \): 1.5
 - \(f_{HV} = \frac{1}{1 + P_T (f_T - 1) + P_R (E_R - 1)} \) 0.971

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 2
- Total Ramp Density, TRD ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFSS: mph

Calc Speed Adj and FFS
- \(f_{LV} \) mph
- \(f_{LC} \) mph
- TRD Adjustment mph
- FFS mph

LOS and Performance Measures
- Operational (LOS)
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}} \text{ pc/h/ln} \)
 - \(x f_p \)
 - S mph
 - D = \(v_p / S \) pc/mi/ln
 - LOS

Design (N)
- Design LOS
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}} \text{ pc/h/ln} \)
 - S mph
 - D = \(v_p / S \) pc/mi/ln
 - Required Number of Lanes, N

Glossary
- N - Number of lanes
- V - Hourly Volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LV} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 8.1 Generated: 2/7/2012 3:21 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k9E.tmp 2/7/2012
BASIC FREEWAY SECTIONS WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** PM
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-64 EB Mainline
- **From/To:** Btw Story Off and Mell. On
- **Jurisdiction:**
- **Analysis Year:** 2030 No build

Flow Inputs
- **Volume, V:** 3800 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:**
- **DDHV = AADT x K x D:** veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(\frac{1}{1+P_T(E_T - 1) + P_R(E_R - 1)} = 0.957 \)

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 2
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow speed, BFFS:** mph

Speed Adj and FFS
- \(f_{LW} \)
- \(f_{LC} \)
- **FFS:** 60.0 mph

LOS and Performance Measures
- **Operational (LOS):**
 \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV} \times f_p)} \) pc/h/ln
- **S:** 54.3 mph
- **D = v_p / S:** 39.7 pc/mi/ln
- **LOS:**

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **V_p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Design (N)
- **Design (N):**
- **Design LOS:
 \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_{HV} \times f_p)} \) pc/h/ln
 \(S \) mph
 \(D = v_p / S \) pc/mi/ln
- **Required Number of Lanes, N**

Factor Location
- **E_R - Exhibits 11-10, 11-12:**
- **f_{LW} - Exhibit 11-8:**
- **E_p - Exhibits 11-10, 11-11, 11-13:**
- **f_{LC} - Exhibit 11-9:**
- **f_p - Page 11-18:**
- **TRD - Page 11-11:**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/7/2012 3:21 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k9A.tmp

2/7/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** PM
- **Project Description:** Ohio River Bridges Project
- **Highway/Direction of Travel:** I-64 WB Mainline
- **From/To:** Btw Mell, Off and Story On
- **Jurisdiction:**
- **Analysis Year:** 2030 No Build

Site Information

Flow Inputs
- **Volume, V:** 3800 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:**
- **DDHV = AADT x K x D:** veh/h
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 10
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %**

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(f_{HV} = \frac{1}{1+P_R(E_T - 1) + P_T(E_T - 1)} \) = 0.952

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 2
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed, BFFS:** mph

Speed Speed Adj and FFS
- \(f_{LW} \)
- \(f_{LC} \)

LOS and Performance Measures
- **Operational (LOS):**
- \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV}^{2168})} \) pc/h/ln
- \(S \) = 54.1 mph
- \(D = \frac{v_p}{S} \) pc/mi/ln
- **LOS:**

Design (N)
- **Design (N):**
- **Required Number of Lanes, N:**

Glossary
- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **V_p - Flow rate**
- **LOS - Level of service**
- **DDHV - Directional design hour volume**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-B**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**
BASIC FREEWAY WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** PM
- **Project Description:** Ohio River Bridges Project
- **Highway/Direction of Travel:** I-64 WB Mainline
- **From/To:** Btw I-71 On and I-65 On
- **Jurisdiction:**
- **Analysis Year:** 2030 No Build

Flow Inputs
- **Volume, V:** 4000 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:** veh/h
- **Peak-Hr Direction Prop, D:** %
- **DDHV = AADT x K x D:** veh/h
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 9
- **%RVs, P_R:** 0
- **Grade:** %
- **Length:** mi
- **General Terrain:** Level
- **Up/Down %:**

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{\left(1 + P_T f_T - 1\right) + P_R f_R \left(1 - 1\right)} = 0.957 \)
- \(E_R = 1.2 \)

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 2
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base-free-flow Speed:** mph
- **Calc Speed Adj and FFS**
- \(f_{LW} \)
- \(f_{LC} \)
- **TRD Adjustment:** mpg
- **FFS:** 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or DDHV})}{\text{PHF} \times N \times f_{HV} \times f_p} \)
 - pc/h/ln
 - pc/h/ln
 - mph
 - S
 - mph
 - mph
 - D
 - pc/mi/ln
 - pc/mi/ln
 - LOS

Glossary
- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **V_p - Flow rate**
- **FFS - Free-flow speed**
- **LOS - Level of service**
- **BFFS - Base free-flow speed**
- **DDHV - Directional design hour volume**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/7/2012 3:23 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 12/12/2011
- **Analysis Time Period**: PM
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 WB Mainline
- **From/To**: West of 3rd Off
- **Jurisdiction**: Analysis Year: 2030 No Build

Site Information

Flow Inputs
- **Volume, V**: 4900 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **fHV = 1/[(1 + P_T(E_T - 1) + P_R(E_R - 1))]** 0.957

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/MI
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **v_p = (V or DDHV) / (PHF x N x fHV)** 1855 pc/h/ln
- **S**: 58.8 mph
- **D = v_p / S**: 31.5 pc/MI/ln

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**: f_LW - Exhibit 11-8
- **E_T - Exhibits 11-10, 11-11, 11-13**: f_LC - Exhibit 11-9
- **f_p - Page 11-18**: TRD - Page 11-11
- **LOS, S, FFS, V_p - Exhibits 11-2, 11-3**
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Tony Lewis
- **Agency or Company:** KTA
- **Date Performed:** 9/15/2011
- **Analysis Time Period:** PM
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-71 NB Mainline
- **From/To:** Btw 1-64 WB Off and I-65 SB On
- **Jurisdiction:**
- **Analysis Year:** 2030 No Build

Analysis
- **Oper.(LOS):**
- **Des.(N):**
- **Planning Data:**

Flow Inputs
- **Volume, \(V \):** 2700 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, \(K \):**
- **Peak-Hr Direction Prop, \(D \):**
- **DDHV = AADT \times K \times D:** veh/h

Peak-Hour Factor, \(PHF \):** 0.92

%Trucks and Buses, \(P_T \):** 5

%RVs, \(P_R \):** 0

General Terrain:**
- **Length:** mi
- **Up/Down %:**

Calculate Flow Adjustments
- **\(E_R \):** 1.2

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, \(N \):** 2
- **Total Ramp Density, \(TRD \):** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed:** mph

Speed Adjustment and FFS
- **Calc Speed Adj:** mph
- **FFS Adjustment:** mph
- **LOS and Performance Measures:**
- **Operational (LOS):**
- **Design (N):**

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **\(V_p \):** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume
- **S:** Speed
- **D:** Density
- **FFS:** Free-flow speed
- **BFFS:** Base free-flow speed
- **E_R:** Exhibits 11-10, 11-12, 11-13
- **\(f_{LW} \):** Exhibit 11-8
- **\(f_{L_C} \):** Exhibit 11-9
- **\(f_p \):** Page 11-18
- **TRD:** Page 11-11
- **LOS, S, FFS:** Exhibits 11-2, 11-3

Generated: 2/7/2012 3:26 PM
Basic Freeway Segments Worksheet

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Tony Lewis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>9/15/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM</td>
</tr>
</tbody>
</table>

Project Description

- Ohio River Bridges Project

Site Information

- Highway/Direction of Travel: I-71 NB Mainline
- From/To: North of I-64 On

Flow Inputs

- Volume, \(V \): 4600 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, \(K \):
- Peak-Hr Direction Prop, \(D \):
- \(DDHV = AADT \times K \times D \): veh/h

Calculate Flow Adjustments

- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + (P_T(E_T - 1) + P_R(E_R - 1))} = 0.976 \)

Speed Inputs

- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, \(N \): 2
- Total Ramp Density, \(TRD \): ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, \(BFFS \): mph

Calc Speed Adj and FFS

- \(f_{LW} \)
- \(f_{LC} \)
- TRD Adjustment: mph
- FFS: 60.0 mph

LOS and Performance Measures

Operational (LOS)

- \(v_p = \frac{(V or DDHV)}{(PHF \times N \times f_{HV})} \times f_p \)
- \(S = \frac{v_p}{S} \)
- \(D = v_p / S \)
- \(LOS = F \)

Design (N)

- Design LOS
- \(v_p = \frac{(V or DDHV)}{(PHF \times N \times f_{HV})} \times f_p \)
- \(S = \)
- \(D = v_p / S \)
- Required Number of Lanes, \(N \)

Glossary

- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density
- **BFFS**: Base free-flow speed

Factor Location

- \(E_R \): Exhibits 11-10, 11-12
- \(f_{LW} \): Exhibit 11-8
- \(E_p \): Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \): Exhibit 11-9
- \(f_p \): Page 11-18
- TRD: Page 11-11
- LOS, S, FFS, \(v_p \): Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th></th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel I-71 SB Mainline</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2030 No Build</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Flow Inputs

Volume, V	3700 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	%Trucks and Buses, P_T
	%RVs, P_R
	General Terrain: Level
DDHV = AADT x K x D	Grade % Length mi

Calculate Flow Adjustments

f_p	1.00
f_T	1.5
E_R	1.2
f_HV	1/1 + P_T (E_T - 1) + P_R (E_R - 1) 0.966

Speed Inputs

Lane Width	ft
Rt-Side Lat. Clearance	ft
Number of Lanes, N	2
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

Calc Speed Adj and FFS

f_LW	mph
f_LC	mph
TRD Adjustment	mph
FFS	60.0 mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV) 2081 pc/h/ln</td>
<td></td>
</tr>
<tr>
<td>x f_p)</td>
<td></td>
</tr>
</tbody>
</table>
| S | 55.8 mph
| D = v_p / S | 37.3 pc/mi/ln
| LOS | E |

Glossary

| N - Number of lanes | S - Speed
| V - Hourly volume | D - Density
| v_p - Flow rate | FFS - Free-flow speed
| LOS - Level of service | BFFS - Base free-flow speed
| DDHV - Directional design hour volume | E_R - Exhibits 11-10, 11-12
| | f_LW - Exhibit 11-8
| | E_T - Exhibits 11-10, 11-11, 11-13
| | f_LC - Exhibit 11-9
| | f_p - Page 11-18
| | TRD - Page 11-11
| | LOS, S, FFS, v_p - Exhibits 11-2, 11-3 |
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Tony Lewis
- **Agency or Company**: KTA
- **Date Performed**: 9/15/2011
- **Analysis Time Period**: PM
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-71 SB Mainline
- **From/To**: Btw I-64 Off and I-64 On
- **Jurisdiction**: Analysis Year 2030 No Build

Flow Inputs
- **Volume, V**: 2100 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, \(P_T \)
- **Peak-Hr Direction Prop, D**: %RVs, \(P_R \)
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

Design (N)
- **Design LOS**
- **Design (N)**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_LW**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_LC**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/7/2012 3:28 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\2kCC.tmp

2/7/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Tony Lewis</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>KTA</td>
<td>Highway/Direction of Travel I-71 SB Mainline</td>
</tr>
<tr>
<td>Date Performed</td>
<td>9/15/2011</td>
<td>From/To: Btw I-65 NB Off and I-64 EB On</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM</td>
<td>Jurisdiction: Analysis Year 2030 No Build</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
<td>Oper.(LOS)</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>1700 veh/h</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
<td>%Trucks and Buses, P_T</td>
<td>4</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
<td>General Terrain: Level</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
<td>Grade</td>
<td>%</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>f_p</th>
<th>1.00</th>
<th>E_R</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>1.5</td>
<td>f_{HV} = 1/(1+P_T(E_T - 1) + P_R(E_R - 1)) 0.980</td>
<td></td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td></td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>55.0 mph</td>
<td></td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
<td></td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>f_{lw}</th>
<th>mph</th>
<th>f_{LC}</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRD Adjustment</td>
<td>mph</td>
<td>FFS</td>
<td>55.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p = (V or DDHV) / (PHF x N x f_{HV})</td>
</tr>
<tr>
<td>x f_p</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D = V_p / S</td>
</tr>
<tr>
<td>LOS</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
</tr>
<tr>
<td>V_p = (V or DDHV) / (PHF x N x f_{HV})</td>
</tr>
<tr>
<td>x f_p</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D = V_p / S</td>
</tr>
<tr>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>N - Number of lanes</th>
<th>S - Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>V_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td></td>
</tr>
</tbody>
</table>

Factor Location

<table>
<thead>
<tr>
<th>E_R - Exhibits 11-10, 11-12</th>
<th>f_{lw} - Exhibit 11-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
<td>f_{LC} - Exhibit 11-9</td>
</tr>
<tr>
<td>f_p - Page 11-18</td>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, V_p - Exhibits 11-2, 11-3</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/7/2012 3:28 PM
Ohio River Bridge Project

FREeway Weaving Worksheet

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Tony Lewis</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>KTA</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM</td>
</tr>
<tr>
<td>Freeway/Dir of Travel</td>
<td>I-65 NB</td>
</tr>
<tr>
<td>Weaving Segment Location</td>
<td>Btw All On and I-64/71 Off</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Project Description Ohio River Bridge Project

Inputs

- **Weaving configuration**: One-Sided
- **Weaving number of lanes, N**: 4
- **Weaving segment length, Ls**: 2300 ft
- **Freeway free-flow speed, FFS**: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_RV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>3603</td>
<td>0.92</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>997</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>2018</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>1082</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.971</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>5216</td>
<td>0.92</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_P</td>
<td>3321</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>0.389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_WIL	2 lc
Interchange density, ID	2.50 int/mi
Minimum RF lane changes, LCF	2 lc/pc
Minimum FR lane changes, LCF	0 lc/pc
Minimum RR lane changes, LCF	lc/pc

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, V	8537 pcf/h
Weaving segment capacity, C_W	5990 veh/h
Weaving segment V/C ratio	1.384
Level of Service, LOS	F

Notes

- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/22/2012 5:32 PM
Ohio River Bridge Project

FREEROY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Agency/Company</th>
<th>KTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
<td>PM</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Dir of Travel</th>
<th>I-65 SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving Segment Location</td>
<td>Btw I-64/7 On and Jefferson Of</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Inputs

- **Weaving configuration**: One-Sided
- **Weaving number of lanes, N**: 4
- **Weaving segment length, L_s**: 2200 ft
- **Freeway free-flow speed, FFS**: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_NV</th>
<th>f_P</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>1500</td>
<td>0.92</td>
<td>10</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.952</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>1100</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>1401</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>1069</td>
<td>0.92</td>
<td>10</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.952</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>2919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V =</td>
</tr>
<tr>
<td>V_W</td>
<td>2772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- **Minimum maneuver lanes, N_{WL}**: 2 lc
- **Interchange density, ID**: 2.70 Int/mi
- **Minimum RF lane changes, L_{RF}**: 0 lc/pc
- **Minimum FR lane changes, L_{FR}**: 2 lc/pc
- **Minimum RR lane changes, L_{RR}**: 0 lc/pc

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	5691 pc/h
Weaving segment capacity, c_w	4693 veh/h
Weaving segment vc ratio	1.155
Weaving segment density, D	pc/mln
Level of Service, LOS	F

Notes

- a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
- b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/22/2012 5:33 PM
Freeway Weaving Worksheet

Ohio River Bridge Project

General Information
- **Analyst**:
- **Agency/Company**: KTA
- **Date Performed**: 12/13/2011
- **Analysis Time Period**: PM

Project Description
- **Project**: Ohio River Bridge Project

Site Information
- **Freeway/Dir of Travel**: I-84 EB
- **Weaving Segment Location**: Btw I-71 On and Story Off
- **Analysis Year**: 2030 No Build

Inputs
- **Weaving configuration**: Two-Sided
- **Weaving number of lanes, N**: 3
- **Weaving segment length, L_s**: 1475 ft
- **Freeway free-flow speed, FFS**: 60 mph

Freeway Parameters
- **Freeway minimum speed, S_{MN}**: 50 mph
- **Freeway maximum capacity, C_{FL}**: 2300 pc/h
- **Terrain type**: Level

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>t_nv</th>
<th>f_0</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>2215</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>185</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>1615</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>285</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>4473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 4800</td>
</tr>
<tr>
<td>V_W</td>
<td>327</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.068</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics
- **Minimum maneuver lanes, N_{WL}**: 0 lane
- **Interchange density, ID**: 2.00 in/mi
- **Minimum RF lane changes, L_{CF}**: 0 pc
- **Minimum FR lane changes, L_{CF}**: 0 pc
- **Minimum RR lane changes, L_{RR}**: 2 pc

Minimum Weaving Lane Changes, L_{MN}
- **LC_{MN}**: 654 pc/h

Weaving Lane Changes, LC_{W}
- **LC_{W}**: 944 pc/h

Non-Weaving Lane Changes, LC_{NW}
- **LC_{NW}**: 1189 pc/h

Total Lane Changes, LC_{ALL}
- **LC_{ALL}**: 2133 pc/h

Non-Weaving Vehicle Index, I_{NW}
- **I_{NW}**: 0.302

Weaving Segment Speed, Density, Level of Service, and Capacity
- **Weaving segment flow rate, v**: 4800 pc/h
- **Weaving segment capacity, c_{w}**: 5637 veh/h
- **Weaving segment v/c ratio**: 0.831
- **Weaving segment density, D**: 33.2 pc/mln
- **Weaving intensity factor, W**: 0.302
- **Weaving segment speed, S**: 48.2 mph
- **Weaving segment speed, S**: 57.7 mph
- **Average non-weaving speed, S_{NW}**: 47.6 mph
- **Maximum weaving length, L_{MAX}**: 6355 ft

Notes
1. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
2. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridge Project

Freeway Weaving Worksheet

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Freeway/Dir of Travel : I-64 WB</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Freeway Segment Location : Btw Story On and I-65 Off</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Analysis Year : 2030 No Build</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td></td>
</tr>
</tbody>
</table>

Project Description: Ohio River Bridge Project

<table>
<thead>
<tr>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving configuration</td>
</tr>
<tr>
<td>Weaving number of lanes, N</td>
</tr>
<tr>
<td>Weaving segment length, l_s</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
</tr>
<tr>
<td>Segment type</td>
</tr>
<tr>
<td>Freeway minimum speed, S_{MIN}</td>
</tr>
<tr>
<td>Freeway maximum capacity, C_{FL}</td>
</tr>
<tr>
<td>Terrain type</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{IV}</th>
<th>f_p</th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>2383</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>1417</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>177</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>323</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>4406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{W}</td>
<td>353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{R}</td>
<td>0.074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0 lc
Interchange density, ID	1.80 int/mi
Minimum RF lane changes, L_{CRF}	lc/pc
Minimum FR lane changes, L_{CRF}	lc/pc
Minimum RR lane changes, L_{CRR}	2 lc/pc
Minimum weaving lane changes, L_{C_{MIN}}	706 lc/h
Weaving lane changes, L_{C_{W}}	994 lc/h
Non-weaving lane changes, L_{C_{NW}}	1197 lc/h
Total lane changes, L_{C_{ALL}}	2191 lc/h
Non-weaving vehicle index, L_{NW}	0.290

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	4759 pc/h	
Weaving segment capacity, c_{W}	5679 veh/h	
Weaving segment v/c ratio	0.822	
Weaving segment density, D	33.1 pc/mi/ln	
Level of Service, LOS	D	0.290
Weaving intensity factor, W	47.9 mph	
Weaving segment speed, S	57.8 mph	
Average weavine speed, S_{AVERAGE}	47.3 mph	
Maximum weaving length, L_{MAX}	6423 ft	

Notes

1. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
2. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/22/2012 5:38 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\s2kBB.tmp

2/22/2012
General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Agency/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KTA</td>
</tr>
<tr>
<td>Date</td>
<td>12/13/2011</td>
</tr>
<tr>
<td>Time</td>
<td>PM</td>
</tr>
</tbody>
</table>

| Project Description | Ohio River Bridge Project |

Site Information

- Freeway/Dir of Travel: I-64 WB
- Weaving Segment Location: Btw I-65 On and 3rd Off
- Analysis Year: 2030 No Build

Inputs

- Weaving configuration: Two-Sided
- Weaving number of lanes, N: 4
- Weaving segment length, L_s: 1468 ft
- Freeway free-flow speed, FFS: 60 mph

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_RV</th>
<th>f_p</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_FF</td>
<td>3615</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RF</td>
<td>410</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
</tr>
<tr>
<td>V_FR</td>
<td>1285</td>
<td>0.92</td>
<td>4</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.980</td>
<td>1.00</td>
</tr>
<tr>
<td>V_RR</td>
<td>290</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_NW</td>
<td>5881</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>v</td>
<td>320</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>VR</td>
<td>0.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

- Minimum maneuver lanes, N_WL: 0
- Minimum weaving lane changes, L_C_MIN: 320 lc/h
- Weaving lane changes, L_C: 806 lc/h
- Non-weaving lane changes, L_C_NW: 1901 lc/h
- Total lane changes, L_C_ALL: 2707 lc/h
- Non-weaving vehicle index, l_NW: 0.367

Weaving Segment Speed, Density, Level of Service, and Capacity

- Weaving segment flow rate, v: 6181 pc/h
- Weaving intensity factor, W: 0.367
- Weaving segment capacity, c_w: 7633 veh/h
- Average weaving speed, S_w: 50.6 mph
- Average non-weaving speed, S_NW: 57.3 mph
- Maximum weaving length, L_MAX: 6210 ft

Notes

1. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".
2. For volumes that exceed the weaving segment capacity, the level of service is "F".
Ohio River Bridge Project

FREEWAY WEAVING WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>KTA</th>
<th>Freeway/Dir of Travel</th>
<th>I-71 NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency/Company</td>
<td>KTA</td>
<td>Weaving Segment Location</td>
<td>Btw I-65 SB On and I-64 Off</td>
</tr>
<tr>
<td>Date Performed</td>
<td>10/26/2011</td>
<td>Analysis Year</td>
<td>2030 No Build</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Description Ohio River Bridge Project

Inputs

<table>
<thead>
<tr>
<th>Weaving configuration</th>
<th>Two-Sided</th>
<th>Segment type</th>
<th>Freeway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weaving number of lanes, N</td>
<td>2</td>
<td>Freeway minimum speed, S_{MIN}</td>
<td>50</td>
</tr>
<tr>
<td>Weaving segment length, L<sub>S</sub></td>
<td>2200 ft</td>
<td>Freeway maximum capacity, C_{FL}</td>
<td>2300</td>
</tr>
<tr>
<td>Freeway free-flow speed, FFS</td>
<td>60 mph</td>
<td>Terrain type</td>
<td>Level</td>
</tr>
</tbody>
</table>

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f<sub>HV</sub></th>
<th>f<sub>p</sub></th>
<th>V (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>1518</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>1182</td>
<td>0.92</td>
<td>5</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.976</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>1488</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>313</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>4617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V = 4961</td>
</tr>
<tr>
<td>V_{W}</td>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{R}</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0	Minimum weaving lane changes, L_{C_MIN}	lc/h
Interchange density, ID	2.30 int/mi	Weaving lane changes, L_{C_W}	lc/h
Minimum RF lane changes, L_{C_RF}	lc/pc	Non-weaving lane changes, L_{C_NW}	lc/h
Minimum FR lane changes, L_{C_FR}	lc/pc	Total lane changes, L_{C_ALL}	lc/h
Minimum RR lane changes, L_{C_RR}	1 lc/pc	Non-weaving vehicle index, I_{NW}	

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	4961 pc/h	Weaving intensity factor, W	
Weaving segment capacity, c_W	3001 veh/h	Weaving segment speed, S	mph
Weaving segment v/c ratio	1.253	Average weaving speed, S_W	mph
Weaving segment density, D	pc/ml/h	Average non-weaving speed, S_{NW}	mph
Level of Service, LOS	F	Maximum weaving length, L_{MAX}	6377 ft

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/22/2012 5:40 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\s2kC2.tmp 2/22/2012
General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Agency/Company</th>
<th>Date Performed</th>
<th>Analysis Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KTA</td>
<td>10/26/2011</td>
<td>PM</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Freeway/Dir of Travel</th>
<th>Weaving Segment Location</th>
<th>Analysis Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-71 SB</td>
<td>Btw I-64 On and I-65 NB Off</td>
<td>2030 No Build</td>
</tr>
</tbody>
</table>

Project Description
Ohio River Bridge Project

Inputs

Weaving configuration
- Two-Sided

Weaving number of lanes, N
- 2

Weaving segment length, L_s
- 1500 ft

Freeway free-flow speed, FFS
- 60 mph

Segment type
- Freeway

Freeway minimum speed, S_{MN}
- 50

Freeway maximum capacity, C_{FL}
- 2300

Terrain type
- Level

Conversions to pc/h Under Base Conditions

<table>
<thead>
<tr>
<th>V (veh/h)</th>
<th>PHF</th>
<th>Truck (%)</th>
<th>RV (%)</th>
<th>E_T</th>
<th>E_R</th>
<th>f_{HV}</th>
<th>f_{P}</th>
<th>v (pc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FF}</td>
<td>1356</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RF}</td>
<td>745</td>
<td>0.92</td>
<td>3</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.985</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{FR}</td>
<td>364</td>
<td>0.92</td>
<td>1</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.995</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{RR}</td>
<td>1536</td>
<td>0.92</td>
<td>2</td>
<td>0</td>
<td>1.5</td>
<td>1.2</td>
<td>0.990</td>
<td>1.00</td>
</tr>
<tr>
<td>V_{NW}</td>
<td>2709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{W}</td>
<td>1703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>0.386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Characteristics

Minimum maneuver lanes, N_{WL}	0 lc
Interchange density, ID	2.20 in/ft
Minimum RF lane changes, L_{RF}	ic/pc
Minimum RR lane changes, L_{RR}	1 lc/pc

Minimum weaving lane changes, L_{MIN} | ic/h |

Weaving Segment Speed, Density, Level of Service, and Capacity

Weaving segment flow rate, v	4412 pc/h
Weaving segment capacity, c_{w}	3319 veh/h
Weaving segment v/c ratio	1.316
Level of Service, LOS	F

Weaving intensity factor, W	
Weaving segment speed, S	mph
Average weaving speed, S_{w}	mph
Average non-weaving speed, S_{NW}	mph

Notes

a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments".

b. For volumes that exceed the weaving segment capacity, the level of service is "F".
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>2400 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, PT = 15</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, PR = 0</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>f_HV = 1/[(1 + (PTf_HV - 1) + (PRf_R - 1)) = 0.930</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design (N)</td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV) x f_p</td>
<td></td>
</tr>
<tr>
<td>x f_p)</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>D = v_p / S</td>
<td>15.6 pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>pc/mi/ln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>S - Speed</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>D - Density</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>FFS - Free-flow speed</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>BFFS - Base free-flow speed</td>
</tr>
</tbody>
</table>
General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Southbound
- **From/To**: Sherman Minton Bridge SB
- **Jurisdiction**: Analysis Year 2030

Flow Inputs
- **Volume, V**: 6700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 8
- **%RVs, PR**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_R \) = 1.2
- \(f_{HV} = \frac{1}{1 + p_A (E_T - 1) + p_R (E_R - 1)} \) = 0.962

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adj and FFS
- **Calc Speed**: mph
- **TRD Adjustment**: mph
- **FFS**: mph

LOS and Performance Measures
Design (N)

Glossary
- **N**: Number of lanes
- **S**: Speed
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LV}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB

Flow Inputs
- **Volume, V**: 6700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 10
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**:
 - **% Length**: mi
 - **Up/Down %**:

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = (f_p/E_T)(E_T/E_R) = 0.952 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}) = 2549 \text{ pc/h/ln} \)
 - \(S = 43.6 \text{ mph} \)
 - \(D = v_p / S = 58.4 \text{ pc/mi/ln} \)
 - **LOS**:
- **Design (N)**
 - **Design LOS**
 - **Design (N)**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{HV}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_LW**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **BFFS**: Base free-flow speed
- **FFS**: Free-flow speed
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel I-64 Southbound</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2030</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>Peak-Hour Factor, PHF</td>
</tr>
<tr>
<td>AADT</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>General Terrain: Level</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>Grade % Length Up/Down %</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>E_R</td>
</tr>
<tr>
<td>E_T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>f_LW</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>f_LC</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>FFS</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td></td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV 1466)</td>
<td>v_p = (V or DDHV) / (PHF x N x f_HV)</td>
</tr>
<tr>
<td>x f_p</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>D = v_p / S</td>
<td></td>
</tr>
<tr>
<td>LOS C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>E_R - Exhibits 11-10, 11-12</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>f_LW - Exhibit 11-8</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>f_LC - Exhibit 11-9</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td>f_p - Page 11-18</td>
</tr>
<tr>
<td></td>
<td>TRD - Page 11-11</td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida, All Rights Reserved
HCS 2010™ Version 6.1 Generated: 2/8/2012 12:51 PM
MULTILANE HIGHWAYS WORKSHEET (Direction 1)

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst: J. Sherman</td>
<td>Highway/Direction to Travel: US 31 Clark Bridge</td>
</tr>
<tr>
<td>Agency or Company: Parsons</td>
<td>From/To: Bridge</td>
</tr>
<tr>
<td>Date Performed: 12/30/2011</td>
<td>Jurisdiction:</td>
</tr>
<tr>
<td>Analysis Time Period: AM Peak</td>
<td>Analysis Year: 2030 No-Action</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Oper (LOS)</th>
<th>Det. (N)</th>
<th>Plan. (Vg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumes, V (veh/h): 720</td>
<td>Peak-Hour Factor, FH: 0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADT (veh/day):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-Hour Prop of AADT (veh/day):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak-Hour Direction Prop, D:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHPV (veh/h):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Types Adjustment: 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Calculate Flow Adjustments | | | |
|-----------------------------|----------|----------|
| F | 1.00 | E_r | 1.2 |
| E_t | 1.5 | E_v | 0.955 |

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft): 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft): 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Points, A (Alms): 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Type, M:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFS (measured): 45.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Free Flow Speed, BFFS: 45.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational LOS:</td>
<td>Design (N)</td>
</tr>
<tr>
<td>Flow Rate, v (pc/h/m): 363</td>
<td>Required Number of Lanes, N</td>
</tr>
<tr>
<td>Speed, S (mph): 45.0</td>
<td>Flow Rate, v (pc/h)</td>
</tr>
<tr>
<td>D (pc/h/m): 8.7</td>
<td>Max Service Flow Rate (pc/h/m)</td>
</tr>
<tr>
<td>LOS</td>
<td>Design LOS</td>
</tr>
</tbody>
</table>

Bicycle Level of Service
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Data Performed:** 12/30/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1: NB, Direction 2: SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **Jurisdiction:** Fort Wayne
- **Analysis Year:** 2030 No-Action

Flow Inputs
- **Flow Rate, V_n (veh/h):** 1660
- **Peak Hour Factor, PHF:** 0.92
- **% Trucks and Buses, P_T:** 1
- **%Veh., P_v:** 0
- **General Terrain:** Level
- **Grade (Length in):** 0.00
- **Up/Down %:** 0.00
- **Number of Lanes:** 2

Calculate Flow Adjustments
- **Y:** 1.00
- **Y_H:** 1.2
- **Y_W:** 0.995

Speed Inputs
- **Lane Width, L (ft):** 12.0
- **Total Lateral Clearance, LC (ft):** 12.0
- **Access Points, A (Access):** 0
- **Median Type, M:**
- **FFS (measured):** 45.0
- **Base Free-Flow Speed, FFS:** 45.0

Operations
- **Operational LOS:**
 - **Flow Rate, V_n (veh/h):** 917
 - **Speed, S (mph):** 40.0
 - **D (psf/ft^2):** 20.4
 - **LOS:** C

Bicycle Level of Service

Note: The file paths and dates at the bottom indicate the document was generated on 2/24/2012.
MULTILANE HIGHWAYS WORKSHEET (Dir 1)

General Information
- **Analyst:** J Shanam
- **Agency or Company:** Parsons
- **Date Performed:** 12/30/2011
- **Analytic Time Period:** PM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **Jurisdiction:** Bridge
- **Analysis Year:** 2030 No-Action

Flow Inputs
<table>
<thead>
<tr>
<th>Volume, V (vph)</th>
<th>1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Trucks and Buses, Pb</td>
<td>1</td>
</tr>
<tr>
<td>%Steer, Pst</td>
<td>0</td>
</tr>
<tr>
<td>%Divided Median, PD</td>
<td>Level</td>
</tr>
<tr>
<td>%Number of Lanes, N</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments
- \(F_r = 1.00\)
- \(F_v = 1.2\)
- \(F_w = 0.955\)

Speed Inputs
- **Lane Width, LW (ft):** 12.0
- **Total Lateral Clearance, LC (ft):** 12.0
- **Access Points, A (Alms):** 0
- **Median Type, M:**
 - Internal M
 - 45.0
- **Base Free Flow Speed, FFS:** 45.0

Design
- **Desire (N):**
- **Flow Rate, \(v_x\) (pcph):** 1691
- **Speed, \(S\) (mph):** 45.0
- **D (pc/h/ln):** 24.0
- **LOS:** C

Note: The document contains tables and calculations related to traffic flow and operational aspects of a highway project. The tables include various inputs, adjustments, and outputs related to traffic volume, speed, and design criteria.
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Date Performed:** 12/30/2011
- **Analysis Time Period:** PM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **Jurisdiction:** Analysis Year
- **Analysis Year:** 2030 No-Action

Flow Inputs

<table>
<thead>
<tr>
<th>Volumetric, V (veh/h)</th>
<th>1300</th>
<th>Peak Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (veh/h)</td>
<td></td>
<td>%Trucks and Buses, P_T</td>
<td>1</td>
</tr>
<tr>
<td>Peak Hour Prop of AADT (veh/h)</td>
<td></td>
<td>%Vans, P_V</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Direction Prop, D</td>
<td></td>
<td>General Terrain: Level</td>
<td>0.00</td>
</tr>
<tr>
<td>DOHV (veh/h)</td>
<td></td>
<td>Grate Length (m)</td>
<td>0.00</td>
</tr>
<tr>
<td>Driver Type Adjustment</td>
<td>1.00</td>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments
- \(F_T = 1.00 \)
- \(F_R = 1.2 \)
- \(F_W = 1.5 \)
- \(F_H = 0.995 \)

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width, LW (ft)</th>
<th>12.0</th>
<th>(I_{mi}) (mph)</th>
<th>45.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
<td>(I_{mi}) (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>Access Points, A (Alms)</td>
<td>0</td>
<td>(I_{mi}) (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>45.0</td>
<td>FF3 (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free Flow Speed, FF3</td>
<td>45.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operations

<table>
<thead>
<tr>
<th>Operational LOS</th>
<th>Design LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate, (v_c) (pcv/h)</td>
<td>730</td>
</tr>
<tr>
<td>Speed, S (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (pcv/min)</td>
<td>16.0</td>
</tr>
<tr>
<td>LOS</td>
<td>B</td>
</tr>
</tbody>
</table>

Design
- **Required Number of Lanes, N**:
- **Flow Rate, \(v_c \) (pcv/h)**:
- **Max Service Flow Rate (pcv/h)**:
- **Design LOS**:
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
<td>Highway/Direction of Travel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I-64 Northbound</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/16/11</td>
<td>From/To</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2030 FEIS</td>
</tr>
<tr>
<td>Oper.(LOS)</td>
<td>Des.(N)</td>
<td>Planning Data</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>2600 veh/h</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
<td>%Trucks and Buses, PT</td>
<td>13</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, PR</td>
<td>General Terrain: Level</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>Grade</td>
<td>Length</td>
<td>mi</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
<td>Up/Down</td>
<td>%</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>f_p</th>
<th>1.00</th>
<th>E_R</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>1.5</td>
<td>$f_{HV} = 1/1 + P_T(E_T - 1) + P_R(E_R - 1)$</td>
<td>0.939</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>f_{LW}</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{LC}</td>
<td>mph</td>
</tr>
<tr>
<td>TRD Adjustment</td>
<td>mph</td>
</tr>
<tr>
<td>FFS</td>
<td>60.0 mph</td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_p = (V$ or DDHV) / (PHF x N x $f_{HV} \times 1003$) pc/h/ln</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>$D = v_p / S$</td>
</tr>
<tr>
<td>LOS</td>
</tr>
</tbody>
</table>

Design (N)

<table>
<thead>
<tr>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design LOS</td>
</tr>
<tr>
<td>$v_p = (V$ or DDHV) / (PHF x N x $f_{HV} \times 1003$) pc/h/ln</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>$D = v_p / S$</td>
</tr>
</tbody>
</table>

Required Number of Lanes, N

Glossary

- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location

- E_R - Exhibits 11-10, 11-12
- f_{LW} - Exhibit 11-8
- E_T - Exhibits 11-10, 11-11, 11-13
- f_{LC} - Exhibit 11-9
- f_p - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/16/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

Highway/Direction of Travel	I-64 Southbound
From/To	Sherman Minton Bridge SB
Jurisdiction	
Analysis Year	2030 FEIS

Flow Inputs

Volume, V	5300 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments

\[f_p = 1.00 \]
\[E_T = 1.5 \]

Speed Inputs

Lane Width	ft
Rt-Side Lat. Clearance	ft
Number of Lanes, N	3
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

Calc Speed Adj and FFS

| \(f_{LW} \) | mph |
| \(f_{LC} \) | mph |

LOS and Performance Measures

\(v_p = (V \text{ or DDHV}) \times (PHF \times N \times f_{HV}^{-1987}) \)	pc/h/ln
S	mph
D = \(v_p / S \)	pc/mi/ln

Design (N)

| Design LOS | Design (N) |
| Requires Number of Lanes, N | |

Glossary

- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume

Factor Location

- E_R - Exhibits 11-8
- E_T - Exhibits 11-10, 11-11
- \(f_{LW} \) - Exhibit 11-8
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 0.1

Generated: 2/8/2012 4:08 PM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB
- **Jurisdiction**: Analysis Year 2030 FEIS

Flow Inputs
- **Volume, V**: 6000 veh/h
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 8
- **%RVs, PR**: 0

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_{HV} = 1/(1 + P_T f_E_T + P_R (E_R - 1))**: 0.962

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
 - **x f_p**:
 - **S**: 52.1 mph
 - **D = v_p / S**: 43.4 pc/mi/ln
 - **LOS**: E

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Design (N)
- **Design LOS**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_p - Page 11-18**
- **f_{HV} - Exhibit 11-8**
- **f_{LC} - Exhibit 11-9**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/8/2012 4:06 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\2k1E9.tmp

2/8/2012
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel I-64 Southbound</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td>Project Description</td>
<td>Sherman Minton Bridge SB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>Peak-Hour Factor, PHF 0.92</td>
</tr>
<tr>
<td>AADT</td>
<td>%Trucks and Buses, P_T 11</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%RVs, P_R 0</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop. D</td>
<td>General Terrain: Level</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>Grade % Length mi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>E_R 1.2</td>
</tr>
<tr>
<td>E_T</td>
<td>f_{HV} = \frac{1}{(1 + P_T(E_T - 1) + P_R(E_R - 1))} 0.948</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td></td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td></td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td></td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td></td>
</tr>
<tr>
<td>FFS (measured)</td>
<td></td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_{HV}) 1529 pc/h/ln</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>D = v_p / S</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>E_R - Exhibits 11-10, 11-12</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>f_LW - Exhibit 11-8</td>
</tr>
<tr>
<td>V_p - Flow rate</td>
<td>f_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>f_p - Page 11-18</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td>TRD - Page 11-11</td>
</tr>
</tbody>
</table>

| | LOS, S, FFS, v_p - Exhibits 11-2, 11-3 |
MULTILANE HIGHWAYS WORKSHEET (Direction 1)

General Information

- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Date Performed:** 12/30/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1-HB, Direction 2-SS)

Site Information

- **Highway/Direction to Travel:** US 31 Clark Bridge
- **Jurisdiction:** Bridge
- **Analysis Year:** 2033 FEIS

Flow Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>500</td>
</tr>
<tr>
<td>AADT (veh/h)</td>
<td>600</td>
</tr>
<tr>
<td>Peak-Hour Prop of AADT (veh/h)</td>
<td>1</td>
</tr>
<tr>
<td>P0</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain</td>
<td>Level</td>
</tr>
<tr>
<td>Grade Length (m)</td>
<td>0.00</td>
</tr>
<tr>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>1.2</td>
</tr>
<tr>
<td>FW</td>
<td>0.935</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC</td>
<td>12.0</td>
</tr>
<tr>
<td>Antasus Points, A (Aiste)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>45.0</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free-Flow Speed, BFFS</td>
<td></td>
</tr>
</tbody>
</table>

Operations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational LOS</td>
<td>Design (N)</td>
</tr>
<tr>
<td>Flow Rate, (v_o) (pchr)</td>
<td>327</td>
</tr>
<tr>
<td>Speed, S (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (ft)</td>
<td>7.3</td>
</tr>
<tr>
<td>LOS A</td>
<td></td>
</tr>
</tbody>
</table>

Bicycle Level of Service

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>N1</td>
</tr>
<tr>
<td>Effective width, (W_e) (ft)</td>
<td>24</td>
</tr>
<tr>
<td>Effective speed factor, (S_e)</td>
<td>3.64</td>
</tr>
<tr>
<td>Bicycle level of service score, LBOS</td>
<td>1.84</td>
</tr>
<tr>
<td>Bicycle level of service (Chastain 15-4)</td>
<td>8</td>
</tr>
</tbody>
</table>
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Date Performed:** 12/30/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **From/To:** Bridge
- **Jurisdiction:**
- **Analysis Year:** 2030 FHWA

Flow Inputs
- **Volume, V (veh/h):** 2000
- **Peak Hour Factor, PHF:** 0.92
- **AADT (veh/h):**
- **% Trucks and Buses, P_t:** 1
- **Peak Hour Prop of AADT (veh/h):**
- **% RVs, P_r:** 0
- **Peak Hour Direction Prop, D:**
- **General Terrain:** Level
- **CDHV (veh/h):**
- **Driver Type Adjustment:** 1.00
- **Grade Length (mi):** 0.00
- **Up/Down %:** 0.00
- **Number of Lanes:** 2

Calculate Flow Adjustments
- **S:** 1.5
- **E_r:** 1.0
- **F_s:** 1.5
- **F_r:** 0.993

Speed Inputs
- **Lanes Wide, L*W (ft):** 12.0
- **Total Lateral Clearance, L* (ft):** 12.0
- **Access Points, A (A/mark):**
- **Median Type, M:**
- **FFS (measured):** 450
- **Base Free-Flow Speed, BFFS:**

Operational (LOGS)
- **Operational (LOGS):**
- **Flow Rate, V_s (pc/h/ln):** 1.092
- **Speed, S (mph):** 45.0
- **D (mph/hr):** 24.3
- **LOS:**

Bicycle Level of Service

Multilane Highways Worksheet (Direction 2)

<table>
<thead>
<tr>
<th>Directional demand flow rate in outside lane, V_d (Eq. 15-24) (veh/h)</th>
<th>1087.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective width, W_e (Eq. 15-29) (ft)</td>
<td>24.00</td>
</tr>
<tr>
<td>Effective speed factor, S_e (Eq. 15-30) (mph)</td>
<td>2.84</td>
</tr>
<tr>
<td>Empirical level of service, LOS (Eq. 15-31)</td>
<td>2.4</td>
</tr>
<tr>
<td>Empirical level of service (Equation 13-4)</td>
<td>8</td>
</tr>
</tbody>
</table>

Copyright © 2012 University of Florida. All Rights Reserved.

HDS 2000™ Version 8.1 Generated 7/8/2012 17:42 PM
Multilane Highways Worksheet (Direction 1)

General Information
- **Analyst:** J. Sherrman
- **Agency or Company:** FHWA
- **Data Processed:** 12/09/2011
- **Analysis Time Period:** PM Peak
- **Project Description:** Chilhowie Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **From:** Bridge
- **Jurisdiction:**
- **Analysis Year:** 2038 FEIS

Flow Inputs
- **Volume, V (veh/h):** 2100
- **Peak Hour Factor, PHF:** 0.92
- **ADT (veh/h):**
- **Peak Hour Prop of ADT (veh/h):**
- **Peak Hour Direct Prop, D:**
- **Driver Typ Adjustment:** 1.00

Calculate Flow Adjustments
- **f_l:** 1.00
- **f_v:** 1.5
- **f_hv:** 0.995

Speed Inputs
- **Lane Width, LW (ft):** 12.0
- **Total Lateral Clearance, LC (ft):** 12.0
- **Access Points, A (Aims):** 0
- **Median Type, M:**
- **FFS (measured):** 45.0

Calc Speed Adj and FFS
- **f_m:**
- **f_c:**
- **f_l:**
- **f_g:**

Operational LOS
- **Design (N):**
- **Required Number of Lanes, N:**
- **Flow Rate, v_n (pc/h):** 1147
- **Speed, s (mph):** 45.0
- **D (pc/h/ln):** 28.5
- **LOS:**

Bicycle Level of Service

Multilane Highways Worksheet (Direction 1)

Directional Demand Flow Rate in Outside Lane, v_n:

- **Effective width, W_e (ft):**
- **Effective speed factor, S_e (Eq. 15-29):**
- **Bicycle level of service, BLOS (Eq. 15-23):**
- **Bicycle level of service (Table 16-4):**

Copyright © 2010 University of Florida, All Rights Reserved

HOS 2010™ Edition 8.1

Generated: 2/24/2012 11:41 AM
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>J. Sherman</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Data Performed</td>
<td>12/03/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Cho River Bridges Project (Direction 1=NB, Direction 2=SB)</th>
</tr>
</thead>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>1400</td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P<sub>T</sub></td>
<td>1</td>
</tr>
<tr>
<td>%Veh, P<sub>P</sub></td>
<td>0</td>
</tr>
<tr>
<td>Grade Length (mi)</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>F</sub></td>
<td>1.00</td>
</tr>
<tr>
<td>E<sub>R</sub></td>
<td>1.2</td>
</tr>
<tr>
<td>f<sub>UV</sub></td>
<td>0.995</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (A/kmi)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>FFS (surfaced)</td>
</tr>
<tr>
<td>Base Free-Flow Speed, FFS</td>
<td>45.0</td>
</tr>
</tbody>
</table>

FFS (surfaced)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>FS</sub></td>
<td>0.96</td>
</tr>
<tr>
<td>Design LOS</td>
<td>B</td>
</tr>
</tbody>
</table>

Bicycle Level of Service

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>B</td>
</tr>
</tbody>
</table>

Design

- Required Number of Lanes, N
- Flow Rate, v_{RF} (pc/h/ln)
- Flow Rate, v<sub>(p)_{RF} (pc/h/ln)
- Max Service Flow Rate (pc/h/ln)
- Design LOS

Copyright © 2008 University of Florida, All Rights Reserved.
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/1/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-65 Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>Kennedy Bridge</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td></td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 FEIS</td>
</tr>
</tbody>
</table>

Flow Inputs

Volume, V	3000 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Peak-Hour Factor, PHF	0.92
%Trucks and Buses, P_T	10
%RVs, P_R	0
General Terrain, Level	

Calculate Flow Adjustments

\[
f_p = 1.00 \\
E_T = 1.5 \\
f_{HV} = \frac{f_p}{1 + f_p(E_T - 1) + P_R(E_T - 1)} = 0.952 \\
E_R = 1.2
\]

Speed Inputs

Lane Width	ft
Rt-Side Lat. Clearance	ft
Number of Lanes, N	6
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

Calc Speed Adj and FFS

f_{LW}	mph
f_{LC}	mph
TRD Adjustment	mph
FFS	60.0 mph

LOS and Performance Measures

Operational (LOS)	Design (N)
v_p = (V or DDHV) / (PHF x N x f_{HV} x 571)	Design LOS
S	pc/h/ln
D = v_p / S	mph

Glossary

- N - Number of lanes
- V - Hourly volume
- v_p - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed
- pc/h/ln - Passenger cars per hour per lane
- pc/ft - Passenger cars per hour per foot
- mph - Miles per hour
- pc/mi - Passenger cars per hour per mile
- Exhibit 11-3 - 11-12 - 11-13 - 11-8 - 11-9
- Page 11-18 - TRD - Page 11-11

Factor Location

- Exhibit 11-3
- 11-2
- 11-8
- 11-9
Basic Freeway Segments Worksheet

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/11/11
- **Analysis Time Period:** AM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-65 Southbound
- **From/To:** Kennedy Bridge
- **Jurisdiction:**
- **Analysis Year:** 2030 FEIS

Flow Inputs
- **Volume, V:** 8300 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:** veh/h
- **Peak-Hr Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 8
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %:**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_R:** 1.2
- **E_T:** 1.5
- **f_{HV} = \frac{1}{\frac{1}{\frac{1}{f_{p}}+P_T(E_T-1)}+P_R(E_R-1)}:** 0.962

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 6
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed, BFFS:** mph

LOS and Performance Measures
- **f_{LW}**
- **f_{LC}**
- **TRD Adjustment**
- **FFS:** 60.0 mph

Glossary
- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **v_p - Flow rate**
- **FFS - Free-flow speed**
- **LOS - Level of service**
- **BFFS - Base free-flow speed**
- **DDHV - Directional design hour volume**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/11/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Northbound
- **From/To**: Kennedy Bridge
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 FEIS

Flow Inputs
- **Volume, V**: 8100 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 12
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade %**:
- **Length mi**:
- **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **F_HV = \frac{1}{[1 + \frac{P_T(E_T - 1)}{P_R(E_R - 1)}]}**: 0.943

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 6
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: mph
- **f_LC**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures

Operational (LOS)
- **v_p = (V or DDHV) / (PHF x N x f_HV)**
- **S**: 60.0 mph
- **D = v_p / S**: 25.9 pc/mi/ln

Design (N)
- **Design LOS**
- **Design (N)**
- **V_p = (V or DDHV) / (PHF x N x f_HV)**
- **S**: mph
- **D = v_p / S**: pc/mi/ln

Glossary
- **N**: Number of lanes
- **S**: Speed
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_LW**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_LC**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

Generated: 2/9/2012 11:26 AM
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/11/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Southbound
- **From/To**: Kennedy Bridge
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 FEIS

Flow Inputs
- **Volume, V**: 4500 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**:
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 19
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_{HV} = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))**: 0.913
- **E_R**: 1.2

Speed Inputs
- **Lane Width**: ft
- **RT-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 6
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

Design (N)

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**: f_{LW} - Exhibit 11-8
- **E_T - Exhibits 11-10, 11-11, 11-13**: f_{LC} - Exhibit 11-9
- **f_p - Page 11-18**: TRD - Page 11-11
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**:

License: Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/9/2012 11:29 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k92.tmp
Basic Freeway Segments Worksheet

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/16/11
- **Analysis Time Period:** AM Peak Hour
- **Project Description:** Ohio River Bridges Project
- **Highway/Direction of Travel:** I-265 Northbound
- **From/To:** East End Bridge NB
- **Jurisdiction:**
- **Analysis Year:** 2030 FEIS

Site Information
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, \(P_T \):** 5
- **%RVs, \(P_R \):** 0
- **General Terrain:** Level
- **Grade:**
- **Length:** mi
- **Up/Down %:**

Flow Inputs
- **Volume, \(V \):** 4200 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, \(K \):** veh/h
- **Peak-Hr Direction Prop, \(D \):** veh/h
- \[E_R = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)} \]
- **Flow Adjustments**
- **\(E_R \):** 1.2
- **\(f_p \):** 1.00
- **\(E_T \):** 1.5

Calculate Flow Adjustments

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, \(N \):** 3
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 65.0 mph
- **Base free-flow Speed:** mph

LOS and Performance Measures
- **Operational (LOS)**
 - \[v_p = \frac{(V \text{ or DDHV}) \times (PHF \times N \times f_{HV})}{1550} \]
 - \(f_{HV} \):
 - \(S \): mph
 - \(D = v_p / S \): pc/mi/in
 - \(LOS \):

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **\(v_p \):** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **\(E_R \):** Exhibits 11-10, 11-12
- **\(f_LW \):** Exhibit 11-8
- **\(E_T \):** Exhibits 11-10, 11-11, 11-13
- **\(f_{LC} \):** Exhibit 11-9
- **\(f_p \):** Page 11-18
- **TRD:** Page 11-11
- **LOS, S, FFS, \(v_p \):** Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 8.1 Generated: 2/9/2012 11:43 AM
BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/16/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
<tr>
<td></td>
<td>Highway/Direction of Travel I-265 Southbound East End Bridge SB</td>
</tr>
<tr>
<td></td>
<td>From/To</td>
</tr>
<tr>
<td></td>
<td>Jurisdiction</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
</tbody>
</table>

Flow Inputs

- Volume, V: 1900 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K: %
- Peak-Hr Direction Prop, D: %
- DDHV = AADT x K x D: veh/h

Calculate Flow Adjustments

- \(f_p \): 1.00
- \(E_T \): 1.5
- \(E_R \): 1.2
- \(f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \): 0.962

Speed Inputs

- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 3
- Total Ramp Density, TRD: ramps/ri
- FFS (measured): 65.0 mph
- Base free-flow speed, BFFS: mph

Calc Speed Adj and FFS

- \(f_{LV} \): mph
- \(f_{LC} \): mph
- TRD Adjustment: mph
- FFS: 65.0 mph

LOS and Performance Measures

Operational (LOS)

- \(v_p = \frac{(V \text{ or } DDHV) \times \left(PHF \times N \times f_{HV} \right)}{716} \) pc/h/ln
- S: 65.0 mph
- D = \(v_p / S \):
- LOS:

Design (N)

- Design LOS
- \(v_p = \frac{(V \text{ or } DDHV) \times \left(PHF \times N \times f_{HV} \right)}{716} \) pc/h/ln
- S: mph
- D = \(v_p / S \):
- Required Number of Lanes, N:

Glossary

- N - Number of lanes
- S - Speed
- V - Hourly volume
- D - Density
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume

Factor Location

- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LV} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel I-265 Northbound</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>From/To</td>
</tr>
<tr>
<td>Date Performed</td>
<td>East End Bridge NB</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td></td>
<td>Analysis Year</td>
</tr>
<tr>
<td></td>
<td>2030 FEIS</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>2200 veh/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, P_T</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, P_R</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Peak-Hour Factor, PHF: 0.92
%Trucks and Buses, P_T: 9
%RVs, P_R: 0

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>f_p</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
</tbody>
</table>

f_TV = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1)) = 0.957

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>65.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calc Speed Adj and FFS

<table>
<thead>
<tr>
<th>f_LW</th>
<th>f_LC</th>
<th>f_TV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_TV)</td>
<td>Design LOS</td>
</tr>
<tr>
<td>S</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>D</td>
<td>mph</td>
</tr>
<tr>
<td>LOS</td>
<td>pc/mi/ln</td>
</tr>
</tbody>
</table>

Glossary

N - Number of lanes
V - Hourly volume
v_p - Flow rate
LOS - Level of service
DDHV - Directional design hour volume

Factor Location

<table>
<thead>
<tr>
<th>E_R - Exhibits 11-10, 11-12</th>
<th>f_LW - Exhibit 11-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
<td>f_LC - Exhibit 11-9</td>
</tr>
<tr>
<td>f_p - Page 11-18</td>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>LOS, S, FFS, v_p - Exhibits 11-2, 11-3</td>
<td></td>
</tr>
</tbody>
</table>
General Information

- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/16/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information

- **Highway/Direction of Travel:** I-265 Southbound
- **From/To:** East End Bridge SB
- **Jurisdiction:** Analysis Year
- **Analysis Year:** 2030 FEIS

Flow Inputs

- **Volume, V:** 4500 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:** veh/h
- **Peak-Hr Direction Prop, D:** veh/h
- **DDHV = AADT x K x D:** veh/h

Calculate Flow Adjustments

- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{1 + \left(P_T \cdot E_T - 1 \right)} + \left(P_R \cdot E_R - 1 \right) \) 0.971

Speed Inputs

- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 3
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 65.0 mph
- **Base free-flow Speed, BFFS:** mph

Calc Speed Adj and FFS

- **Design (N):** mph
- **TRD Adjustment:** mph
- **FFS:** 65.0 mph

LOS and Performance Measures

- **Operational (LOS):** pc/h/ln
- **LOS:** pc/mi/ln

Glossary

- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **V_p - Flow rate**
- **LOS - Level of service**
- **DDHV - Directional design hour volume**

Factor Location

- **E_R - Exhibits 11-10, 11-12**
- **f_{HV} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, V_p - Exhibits 11-2, 11-3**
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: AM Peak
- **Project Description**: Ohio River Bridges

Site Information
- **Highway/Direction of Travel**: WB I-64
- **From/To**: Sherman Minton Bridge
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 Mod Pref with Tolls

Oper.(LOS) Des.(N) Planning Data

Flow Inputs
- **Volume, V**: 3200 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 13
- **%RVs, PR**: 0
- **General Terrain**: Level
- **Grade**, **Length**, **Up/Down %**

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_{HV} = 1[(1 + f_p(E_T - 1)) + f_R(E_R - 1)]**: 0.939

Speed Inputs
- **Lane Width**: ft
- **Rt.-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**, **mph**
- **f_{LC}**, **mph**
- **TRD Adjustment**, **mph**
- **FFS**: 60.0 mph

LOS and Performance Measures

Design (N)
- **Design LOS**
- **Design (N)**

Operational (LOS)
- **V_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **x f_p)**
- **S**: 60.0 mph
- **D = v_p / S**: pc/mi/ln
- **LOS**: C

Glossary
- **N - Number of lanes**
- **V - Hourly volume**
- **v_p - Flow rate**
- **LOS - Level of service**
- **DDHV - Directional design hour volume**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_{LW} - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_{LC} - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, v_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/8/2012 3:09 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k189.tmp 2/8/2012
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Highway/Direction of Travel</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Sherman Minton Bridge</td>
</tr>
<tr>
<td>Date Performed</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>Analysis Year</td>
</tr>
<tr>
<td>Project Description</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>5700 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>%Trucks and Buses, p_T</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>%RVs, p_R</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>General Terrain: Level</td>
</tr>
<tr>
<td></td>
<td>Grade % Length mi Up/Down %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>E_T</td>
<td>1.5</td>
</tr>
<tr>
<td>E_R</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width</td>
<td>ft</td>
</tr>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS and Performance Measures</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_{hv} x f_p)</td>
<td>Design LOS</td>
</tr>
<tr>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>$D = v_p / S$</td>
<td>mph</td>
</tr>
<tr>
<td>LOS</td>
<td>pc/mi/ln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Factor Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - Number of lanes</td>
<td>E_R - Exhibits 11-10, 11-12</td>
</tr>
<tr>
<td>V - Hourly volume</td>
<td>E_T - Exhibits 11-10, 11-11, 11-13</td>
</tr>
<tr>
<td>v_p - Flow rate</td>
<td>f_p - Page 11-18</td>
</tr>
<tr>
<td>LOS - Level of service</td>
<td>TRD - Page 11-11</td>
</tr>
<tr>
<td>DDHV - Directional design hour volume</td>
<td>Lost, S, FFS, v_p - Exhibits 11-2, 11-3</td>
</tr>
</tbody>
</table>
BASIC FREEWAY WORKSHEET

GENERAL INFORMATION
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: PM Peak
- **Project Description**: Ohio River Bridges

SITE INFORMATION
- **Highway/Direction of Travel**: WB I-64
- **From/To**: Sherman Minton Bridge
- **Jurisdiction**: Analysis Year
- **Project Description**: 2030 Mod Pref with Tolls

OPERATING (LOS) TABLE

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>6100 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

SITE INFORMATION
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 8
- **%RVs, P_R**: 0
- **General Terrain**: Level

CALCULATE FLOW ADJUSTMENTS
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{4} \left[\left(P_T - 1 \right) + P_R \right] \left(E_R - 1 \right) \) 0.962

SPEED INPUTS
- **Lane Width** ft
- **Rt-Side Lat. Clearance** ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD** ramps/mi
- **FFS (measured)** mph
- **Base free-flow Speed, BFFS** mph

SPEED AND PERFORMANCE MEASURES
- **LOS and Performance Measures**
 - \(V_p = \frac{V + DDHV}{PHF \times N \times f_{HV}} \) pc/h/ln
 - \(S = \frac{V_p}{D} \) mph
 - \(D = \frac{V_p}{S} \) pc/mi/ln

DESIGN (N)
- **Design (N)**
 - Design LOS

GLOSSARY
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

FACTOR LOCATION
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **TRD**: Page 11-11

Copyright © 2010 University of Florida, All Rights Reserved
HCS 2010™ Version 6.1 Generated: 2/8/2012 3:09 PM
BASIC FREeways WORKSHEET

General Information
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: PM Peak
- **Project Description**: Ohio River Bridges Project
- **From/To**: Sherman Minton Bridge
- **Jurisdiction**: Analysis Year: 2030 Mod Pref with Tolls

Site Information
- **Highway/Direction of Travel**: SB I-64
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 11
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade %**:
- **Length mi**:
- **Up/Down %**:

Flow Inputs
- **Volume, V**: 4800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(E_R \) = 1.2
- \(f_{HV} = 1.1^{(1+P_T(E_T-1)+P_R(E_R-1))} \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adjustments and FFS
- \(f_{LW} \) mph
- \(f_{LC} \) mph
- **TRD Adjustment** mph
- **FFS** mph

LOS and Performance Measures
- **\(V_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}^{1835}) \)** pc/h/ln
- **\(S \)** mph
- **\(D = v_p / S \)** pc/mi/ln
- **LOS**

Design (N)
- **Design (N)
- **Design LOS**
- **Required Number of Lanes, N**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(V_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **LOS, S, FFS, \(v_p \)**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/8/2012 3:38 PM
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst: J Sherman</td>
<td>Highway/Direct to Travel: US 31 Clark Bridge</td>
</tr>
<tr>
<td>Agency or Company: Panama</td>
<td>Station To: Bridge</td>
</tr>
<tr>
<td>Date Performed: 12/30/2011</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Analysis Time Period: AM Peak</td>
<td>Analysis Year: 2030 Mod Peak</td>
</tr>
<tr>
<td>Project Description: Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>1100</td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>AADT (veh/h)</td>
<td></td>
</tr>
<tr>
<td>%Trucks and Buses, P_t</td>
<td>1</td>
</tr>
<tr>
<td>Peak-Hour Prop of AADT (veh/h)</td>
<td></td>
</tr>
<tr>
<td>%ARV, P_A</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Hour Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>General Terrain:</td>
<td>Level</td>
</tr>
<tr>
<td>Grade Length (ft)</td>
<td>0.00</td>
</tr>
<tr>
<td>Driver Type Adjustment</td>
<td>1.00</td>
</tr>
<tr>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>f_r</td>
<td>1.2</td>
</tr>
<tr>
<td>f_t</td>
<td>1.5</td>
</tr>
<tr>
<td>f_w</td>
<td>0.995</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (Akn)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>45.0</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td></td>
</tr>
<tr>
<td>FFS (m/s)</td>
<td>45.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design (N)</td>
</tr>
<tr>
<td>Flow Rate, v_p (pc/h)</td>
<td>600</td>
</tr>
<tr>
<td>Speed, S (m/s)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (pc/h)</td>
<td>13.3</td>
</tr>
<tr>
<td>LOS</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bicycle Level of Service</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Data Performed:** 12/30/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **From To:** Bridge
- **Jurisdiction:** 2030 Mod Ped

Flow Inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>2100</td>
<td>Peak Hour Factor, PHF</td>
</tr>
<tr>
<td>AADT (veh/h)</td>
<td>2100</td>
<td>%Traffic and Buses, P_t</td>
</tr>
<tr>
<td>Peak Hour Prop of AADT (veh/h)</td>
<td>40%</td>
<td>%RtV, P_o</td>
</tr>
<tr>
<td>Peak Hour Direction Prop, D</td>
<td>General Terrain: Level</td>
<td>Grade: Length (mi) 0.00</td>
</tr>
<tr>
<td>Driver Type Adjustment</td>
<td>1.00</td>
<td>Up/Down % 0.00</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_t</td>
<td>1.00</td>
</tr>
<tr>
<td>f_d</td>
<td>1.5</td>
</tr>
<tr>
<td>f_v</td>
<td>0.995</td>
</tr>
</tbody>
</table>

Speed Inputs
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (A/M)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>45.0</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Free Flow Speed, FFS</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Design
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td>Design (N)</td>
</tr>
<tr>
<td>Flow Rate, v_f (pc/h)</td>
<td>1147</td>
</tr>
<tr>
<td>Speed, S (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (pol/mi)</td>
<td>25.5</td>
</tr>
<tr>
<td>LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

Bicycle Level of Service
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Level of Service (Factor 15-3)</td>
<td>2.4</td>
</tr>
<tr>
<td>Bicycle Level of Service (Factor 15-4)</td>
<td>2.4</td>
</tr>
</tbody>
</table>

File Path: C:\Documents and Settings\76429\Local Settings\Temp\a2kC1.tmp 2/24/2012

File Path: C:\Documents and Settings\76429\Local Settings\Temp\a2kC1.tmp 2/24/2012
MULTILANE HIGHWAYS WORKSHEET

Direction 1

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>J. Sherman</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Data Performed</td>
<td>01/02/05/12</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>US 31 Bridge</td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 Model Year</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project (Direction 1: NB, Direction 2: SG)</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V (veh/h)</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT veh/h</td>
<td>1200</td>
</tr>
<tr>
<td>Peak-Hour Factor</td>
<td>0.92</td>
</tr>
<tr>
<td>% Trucks and Buses</td>
<td>1</td>
</tr>
<tr>
<td>% RVs, P2</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain</td>
<td>Level</td>
</tr>
<tr>
<td>Grades Length</td>
<td>0.00</td>
</tr>
<tr>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

f_C	1.00
f_E	1.5
f_V	0.995

Speed Inputs

Lane Width, LW (ft)	12.0
Total Lateral Clearance, LC (ft)	12.0
Access Points, A (A/min)	0
Median Type	M
FFS (measured)	45.0
Basic Free Flow Speed, BFFS	FFS (mi/h) 45.0

Operations

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate, V_f (pcv/h)</td>
<td>1201</td>
</tr>
<tr>
<td>Speed, S (mi/h)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (pcv/h)</td>
<td>26.7</td>
</tr>
<tr>
<td>LOS</td>
<td>Design LOS</td>
</tr>
</tbody>
</table>

Multilane Demand Flow Ratio to Outside Lane, V_f: 19.37

Effective width, W_e: 68

Effective speed factor, S_c: 1.81

Bicycle level of service, LOSb: 2.43

Bicycle level of service (LOS): 2.43

Copyright © 2012 University of Florida. All Rights Reserved. AHS 2010 TM Version 6.1 Generated: 05/15/2002 11:44 AM
General Information

Analyst: J Sherman
Agency or Company: Parsons
Data Performed: 12/30/2011
Analysis Time Period: PM Peak
Project Description: Ohio River Bridges Project (Direction 1-NB, Direction 2-SB)

Site Information

Highway/Direction to Travel: US 31 Clark Bridge
Jurisdiction:
Analysis Year: 2030 Mod Plan

Flow Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>1600</td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>AADT (veh/h)</td>
<td></td>
</tr>
<tr>
<td>% Trucks and Buses, PT</td>
<td>1</td>
</tr>
<tr>
<td>Peak Hour Proportion AADT (veh/h)</td>
<td></td>
</tr>
<tr>
<td>% ARVs, PA</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>General Terrain, Level</td>
<td></td>
</tr>
<tr>
<td>Grade Length (mi)</td>
<td>0.00</td>
</tr>
<tr>
<td>Driver Type Adjustment</td>
<td>1.00</td>
</tr>
<tr>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_r</td>
<td>1.00</td>
</tr>
<tr>
<td>F_t</td>
<td>1.2</td>
</tr>
<tr>
<td>F_s</td>
<td>1.5</td>
</tr>
<tr>
<td>F_o</td>
<td>0.995</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (Ala)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>45.0</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free Flow Speed, FFS</td>
<td></td>
</tr>
</tbody>
</table>

Speed Calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_m</td>
<td></td>
</tr>
<tr>
<td>V_c</td>
<td></td>
</tr>
<tr>
<td>V_s</td>
<td></td>
</tr>
</tbody>
</table>

Operations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational (LOS)</td>
<td></td>
</tr>
<tr>
<td>Design N</td>
<td></td>
</tr>
<tr>
<td>Flow Rate, V_d (pc/h/mi)</td>
<td>873</td>
</tr>
<tr>
<td>Speed, S (mph)</td>
<td>45.0</td>
</tr>
<tr>
<td>D (pc/h/mi)</td>
<td>19.4</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Number of Lanes, N</td>
<td></td>
</tr>
<tr>
<td>Flow Rate, V_d (pc/h)</td>
<td></td>
</tr>
<tr>
<td>Max Service Flow Rate (pc/h)</td>
<td></td>
</tr>
<tr>
<td>Design LOS</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2010 University of Florida. All Rights Reserved
HCS 2010™ Version 6.1
Generated 2/24/2012 11:45 AM
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- Analyst: JJS
- Agency or Company: Parsons
- Date Performed: 7/7/2011
- Analysis Time Period: AM Peak
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: NB I-65
- From/To: Kennedy Bridge
- Jurisdiction:
- Analysis Year: 2030 Modal Pref with Tolls

- Oper.(LOS)
- Des.(N)
- Planning Data

Flow Inputs
- Volume, V: 2000 veh/h
 - Peak-Hour Factor, PHF: 0.92
 - %Trucks and Buses, PT: 15
 - %RVs, PR: 0
 - General Terrain: Level
 - Grade:
 - % Length
 - Up/Down %

- Peak-Hr Prop. of AADT, K
- DDHV = AADT x K x D: veh/h

Calculate Flow Adjustments
- \(f_p \): 1.00
- \(E_T \): 1.5
- \(E_R \): 1.2
- \(f_{HV} = \frac{1}{1 + 0.5(F_T - 1) + P_R(F_R - 1)} \): 0.930

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 6
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFFS: mph

Calc Speed Adj and FFS
- \(f_{LV} \): mph
- \(f_{LC} \): mph
- TRD Adjustment: mph
- FFS: 60.0 mph

LOS and Performance Measures
- Operational (LOS)
 - \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_p \times f_{HV}} \): pch/h
 - S: 60.0 mph
 - D = \(\frac{v_p}{S} \): pc/mi
 - LOS: A

Design (N)
- Design LOS:
 - Design (N)
 - \(v_p = \frac{(V \times DDHV)}{(PHF \times N \times f_p \times f_{HV}} \): pch/h
 - S: mph
 - D = \(\frac{v_p}{S} \): pc/mi
 - Required Number of Lanes, N:

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- T - Transient
- FFS - Free-flow speed
- BFFS - Base free-flow speed
- Exhibit

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LV} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/9/2012 10:09 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k17.tmp

2/9/2012
Basic Freeway Segments Worksheet

General Information
- **Analyst:** JJS
- **Agency or Company:** Parsons
- **Date Performed:** 7/7/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges
- **Highway/Direction of Travel:** SB I-65 Kennedy Bridge
- **From/To:**
- **Jurisdiction:**
- **Project Description:**
- **Analysis Year:** 2030 Mod Pref with Tolls

Site Information
- **Oper.(LOS):**
- **Des.(N):**
- **Planning Data:**

Flow Inputs
- **Volume, V (veh/h):** 7700
- **AADT (veh/day):**
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:**
- **DDHV = AADT x K x D (veh/h):**
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, PT:** 8
- **%RVs, PR:** 0
- **General Terrain:** Level
- **Grade %:**
- **Length mi:**
- **Up/Down %:**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_T:** 1.5
- **f_{HV} = \frac{1}{f_p + E_T} [1 + \frac{1}{2} (E_R - 1) + P_R (E_R - 1)]**
- **E_R:** 1.2

Speed Inputs
- **Lane Width (ft):**
- **Rt-Side Lat. Clearance (ft):**
- **Number of Lanes, N:** 6
- **Total Ramp Density, TRD (ramps/mi):**
- **FFS (measured) (mph):** 60.0
- **Base free-flow Speed, BFFS (mph):**

Calc Speed Adj and FFS
- **f_{LV} (mph):**
- **f_{LC} (mph):**
- **TRD Adjustment (mph):**
- **FFS (mph):** 60.0

LOS and Performance Measures
- **Operational (LOS):**
- **V_p = \frac{(V or DDHV)}{(PHF \times N \times f_{HV}} 1451 (pc/h/ln)
- **S (mph):** 60.0
- **D = \frac{V_p}{S} (pc/mi/ln):** 24.2
- **LOS:**

Design (N)
- **Design LOS**
- **Design (N) (pc/h/ln):**
- **D = \frac{V_p}{S} (pc/mi/ln):**

Glossary
- **N - Number of lanes**
- **S - Speed**
- **V - Hourly volume**
- **D - Density**
- **v_p - Flow rate**
- **FFS - Free-flow speed**
- **LOS - Level of service**
- **BFFS - Base free-flow speed**
- **DDHV - Directional design hour volume**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/9/2012 10:11 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k1B.tmp

2/9/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/1/2011
- **Analysis Time Period**: PM Peak
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: NB I-65
- **From/To**: Kennedy Bridge
- **Jurisdiction**: 2030 Mod Pref with Tolls

Flow Inputs
- **Volume, V**: 7900 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_{HV} = 1/[1 + P_T(E_T - 1) + P_R(E_R - 1)]**: 0.943

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 6
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **FFS**: 60.0 mph
- **TRD Adjustment**: mph

LOS and Performance Measures
- **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/ln
- **S**: 60.0 mph
- **D = v_p / S**: pc/mi/ln
- **LOS**: C

Design (N)
- **Design LOS**: Design (N)
- **Design (N)**: Required Number of Lanes, N

Glossary
- **N**: Number of lanes
- **S**: Speed
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **BFFS**: Base free-flow speed
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/9/2012 10:11 AM
Basic Freeway Segments Worksheet

General Information
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: PM Peak
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: SB I-65
- **From/To**: Kennedy Bridge
- **Jurisdiction**: 2030 Mod Pref with Tolls
- **Analysis Year**: 2030 Mod Pref with Tolls

Site Information

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V</td>
<td>3600 veh/h</td>
</tr>
<tr>
<td>AADT</td>
<td>1800 veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td>600 veh/h</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, D</td>
<td>50 veh/h</td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>100 veh/h</td>
</tr>
<tr>
<td>Peak-Hr Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P_T</td>
<td>23</td>
</tr>
<tr>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain:</td>
<td>Level</td>
</tr>
<tr>
<td>Grade %</td>
<td></td>
</tr>
<tr>
<td>Up/Down %</td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{\left(1 + P_T \left(f_E - 1\right) + P_R \left(f_E - 1\right)\right)} \)
- \(0.897 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 6
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- \(f_{LV} \)
- \(f_{LC} \)
- **FFS Adjustment**: 60.0 mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \ or \ DDHV) \times \ (PHF \times N \times f_{HV})}{727}) pc/h/in</td>
<td>Design LOS</td>
</tr>
<tr>
<td>(S)</td>
<td>S</td>
</tr>
<tr>
<td>(D = \frac{v_p}{S})</td>
<td>D</td>
</tr>
<tr>
<td>(B)</td>
<td>B</td>
</tr>
</tbody>
</table>

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- \(E_R \)- Exhibits 11-10, 11-12, 13
- \(f_{LV} \)- Exhibit 11-8
- \(E_T \)- Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \)- Exhibit 11-9
- \(f_p \)- Page 11-18
- \(TRD \)- Page 11-11

Footnotes
- File: \C:\Documents and Settings\76429\Local Settings\Temp\f2k1D.tmp
- Date: 2/9/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- Analyst: JJS
- Agency or Company: Parsons
- Date Performed: 7/7/2011
- Analysis Time Period: AM Peak
- Project Description: Ohio river Bridges Project
- Highway/Direction of Travel: WB I-265
- From/To: East End Bridge
- Jurisdiction:
- Analysis Year: 2030 Mod Prefereed with Tolls
- Oper:(LOS): Des.(N): Planning Data:

Site Information
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, P_T: 6
- %RVs, P_R: 0
- General Terrain: Level
- Grade: % Length: mi: Up/Down %:

Flow Inputs
Volume, V	3300	v/h
AADT	veh/day	
Peak-Hr Prop. of AADT, K		
Peak-Hr Direction Prop, D		
DDHV = AADT x K x D	veh/h	

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(f_{HV} = \frac{1}{1 + \left(f_p \cdot E_T \cdot 1 \right) + P_R \cdot (E_R - 1)} \) = 0.971

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N = 2
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 65.0 mph
- Base free-flow Speed, BFFS: mph

Calc Speed Adj and FFS
- \(f_{LW} \) = mph
- \(f_{LC} \) = mph
- TRD Adjustment = mph
- FFS = 65.0 mph

LOS and Performance Measures

Design (N)

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed
- PC/h/ln - pc/h/ln
- Mph - mph
- Pch/ln - pc/h/ln
- Design (N)
- Design LOS
- Required Number of Lanes, N
- E_R - Exhibits 11-10, 11-12
- E_T - Exhibits 11-10, 11-11, 11-13
- \(f_{LW} \) - Exhibit 11-8
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyist**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: AM Peak
- **Project Description**:
 - **Oper.(LOS)**
 - **Des.(N)**
 - **Planning Data**

Site Information
- **Highway/Direction of Travel**: EB I-265
- **From/To**: East End Bridge
- **Jurisdiction**: Analysis Year: 2030 Mod Pref with Tolls

Flow Inputs
- **Volume, V**: 1700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_{HV} = \frac{1}{4(1+P_T(1+P_R)+P_R(1+P_T))}**: 0.980

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2 ramps/mi
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 65.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **FFS Adjustment**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - **v_p = (V or DDHV) / (PHF x N x f_{HV})**: pc/h/in
 - **S**: mph
 - **D = v_p / S**: pc/mi/in
 - **LOS**: B

Design (N)
- **Design LOS**
- **Design (N)**
- **Design LOS**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/8/2012 3:43 PM
General Information
- **Analyst**: JJS
- **Agency or Company**: Parsons
- **Date Performed**: 7/7/2011
- **Analysis Time Period**: PM Peak
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: WB I-265
- **From/To**: East End Bridge
- **Jurisdiction**: Analysis Year: 2030 Mod Pref with Tolls

Site Information
- **Oper.(LOS)**
- **Design (N)**
- **Planning Data**

Flow Inputs
- **Volume, V**: 2000 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, \(P_T \)
- **Peak-Hr Direction Prop, D**: %RVs, \(P_R \)
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + (P_T/E_T - 1) + (P_R/E_R - 1)} = 0.962 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 2
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 65.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adjustments and FFS
- \(f_{LV} \)
- \(f_{LC} \)
- \(f_{HV} = \frac{1}{1 + (P_T/E_T - 1) + (P_R/E_R - 1)} = 0.962 \)

LOS and Performance Measures
- **Design (N)**
- **Design LOS**
- **LOS**

glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **V_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/8/2012 3:42 PM
General Information
- Analyst: JJS
- Agency or Company: Parsons
- Date Performed: 7/7/2011
- Analysis Time Period: PM Peak
- Project Description: Ohio River Bridges Project
- Highway/Direction of Travel: EB I-265
- From/To: East End Bridge
- Jurisdiction: 2030 Mod Pref with Tolls

Site Information
- Analysis Year: 2030

Flow Inputs
- Volume, V: 3600 veh/h
- AADT: 7 veh/day
- Peak-Hr Prop. of AADT, K
- Peak-Hr Direction Prop, D
- DDHV = AADT x K x D: veh/h
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, PT: 7
- %RVs, PR: 0
- General Terrain: Level
- Grade: %
- Length: mi
- Up/Down %

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(E_R \) = 1.2
- \(f_{HV} = \frac{1}{1+P_T(E_T - 1) + P_R(E_R - 1)} \) = 0.966

Speed Inputs
- Lane Width: ft
- Rt-Side Lat. Clearance: ft
- Number of Lanes, N: 2 ramps/mi
- Total Ramp Density, TRD: 65.0 mph
- FFS (measured): 65.0 mph
- Base free-flow Speed, BFFS: mph

Speed Adj and FFS
- \(f_{LW} \) mph
- \(f_{LC} \) mph
- TRD Adjustment: mph
- FFS: 65.0 mph

LOS and Performance Measures
- \(V_p = \frac{(V \text{ or DDHV}) \times f_{HV}}{f_p} \) pc/h/ln
- \(S = \frac{V_p}{D} \) mph
- \(D = \frac{V_p}{S} \text{ pc/mi/ln} \)
- \(D = \frac{V_p}{S} \text{ pc/mi/ln} \)

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LW} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/8/2012 3:43 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k1CA.tmp

Generated: 2/8/2012
BASİC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB
- **Jurisdiction**: Analysis Year: 2030 East End

Site Information
- **Des.(N)**
- **Planning Data**

Flow Inputs
- **Volume, V**: 2400 veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **Peak-Hr Prop. of AADT, K**: 14
- **Peak-Hr Direction Prop, D**: 0
- **DDHV = AADT x K x D**: veh/h
- **%Trucks and Buses, P_T**: 14
- **%RVs, P_R**: 0

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **f_HV = 1/(1 + P_T(1 - E_T) + P_R(1 - E_R))**: 0.935

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_LW**: m/h
- **f_LC**: m/h
- **TRD Adjustment**: m/h
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Design (N)**
- **Operational (LOS)**
 - **v_p = (V or DDHV) / (PHF x N x f_HV)**
 - **930 pc/h/ln**: pcf/h/ln
 - **S**: 60.0 mph
 - **D = v_p / S**: pc/mi/ln
 - **LOS**: B

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **V_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_p - Page 11-16**
- **TRD - Page 11-11**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010TM Version 6.1 Generated: 2/23/2012 3:29 PM
BASIC FREEWAY WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Southbound
- **From/To**: Sherman Minton Bridge SB
- **Jurisdiction**: Analysis Year 2030 East End

Flow Inputs
- **Volume, V**: 5200 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: veh/h
- **Peak-Hr Direction Prop, D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, P_T**: 6
- **%RVs, P_R**: 0
- **General Terrain**: Level
- **Grade**, **% Length**, **Up/Down %**

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(E_R = 1.2 \)
- \(f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)} \) 0.971

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph
- **Calc Speed Adj and FFS**

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V or DDHV) \times (PHF \times N \times f_{HV} \times f_p)}{1941} \) pc/h/ln
 - **S**: 57.9 mph
 - **D = v_p / S**: 33.5 pc/mi/ln
 - **LOS**: D

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/23/2012 3:30 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2kB3.tmp

2/23/2012
BASIC FREEWAY WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB
- **Jurisdiction**: Analysis Year: 2030 East End

Flow Inputs
- **Volume, V**: 5800 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, P_T
- **Peak-Hr Direction Prop, D**: %RVs, P_R
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **P_T**: 8
- **P_R**: 0
- **General Terrain**: Level

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_R**: 1.2
- **$f_HV = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))**: 0.962

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Calc Speed Adj and FFS
- **f_{LW}**: mph
- **f_{LC}**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **LOS**
- **Design (N)**

Glossary
- **N**: Number of lanes
- **S**: Speed
- **V**: Hourly volume
- **D**: Density
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_{LW}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- Analyst: Adams
- Agency or Company: Persons
- Date Performed: 5/16/11
- Analysis Time Period: PM Peak Hour
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-64 Southbound
- From/To: Sherman Minton Bridge SB
- Jurisdiction: Analysis Year: 2030 East End

Flow Inputs
- Volume, V: 3900 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K: veh/h
- Peak-Hr Direction Prop, D: veh/h
- DDHV = AADT x K x D: veh/h
- Peak-Hr Factor, PHF: 0.92
- %Trucks and Buses, PT: 11
- %RVs, PR: 0
- General Terrain: Level
- Grade: %
- Length: mi
- Up/Down: %

Calculate Flow Adjustments
- \(f_p \): 1.00
- \(E_T \): 1.5
- \(f_{hv} = \frac{1}{(1+P_T E_T - 1) + P_R E_R - 1)} \): 0.948

Speed Inputs
- Lane Width: ft
- RT-Side Lat. Clearance: ft
- Number of Lanes, N: 3
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): mph
- Base free-flow speed, BFFS: mph

Speed Adj and FFS
- \(f_{lw} \): mph
- \(f_{lc} \): mph

LOS and Performance Measures
- Design (N)
- Design LOS
- Design N
- Design (N)

Glossary
- N - Number of lanes
- V - Hourly volume
- \(v_p \) - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed
- PC/MI/In
- pc/h/ln
- mph
- pc/h/ln

Factor Location
- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{lw} \) - Exhibit 11-8
- \(E_p \) - Exhibits 11-10, 11-11, 11-13
- \(f_{lc} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, \(v_p \) - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

MULTILANE HIGHWAYS WORKSHEET (Direction 1)

General Information
- Analyst: Adams
- Agency or Company: Parsons
- Date Performed: 12/02/2011
- Analysis Time Period: AM Peak
- Project Description: Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)

Site Information
- Highway/Directio to Travel: US 31 Clark Bridge
- Jurisdiction: Bridge
- Analysis Year: 2030 East End

Flow Inputs
- Volume, V (veh/h): 720
- AADT (veh/d): 720
- Peak-Hour Prop of AADT (veh/d): 0.92
- Peak Hour Direction Prop, D: 1
- Driver Type Adjustment: 1.00

Calculate Flow Adjustments
- \(f_1 \): 1.00
- \(B_k \): 1.2
- \(f_w \): 0.955

Speed Inputs
- Lane Width, LW (ft): 12.0
- Total Lateral Clearance, LC (ft): 12.0
- Access Points, A (All): 0
- Median Type, M: 0
- FFS (measured): 45.0
- Base Free Flow Speed, BFFS: 45.0

Operations
- Operational (LOS): Design
- Flow Rate, \(\nu_p \) (pcu/h): 393
- Speed, \(B \) (mph): 45.0
- D (poles/mi): 8.7
- LOS: A

Design
- Required Number of Lanes, N
- Flow Rate, \(\nu_p \) (pcu/h)
- Max Service Flow Rate (pcu/h)
- Design LOS

MULTILANE HIGHWAYS WORKSHEET (Direction 1)

Directional Demand Flow Rate in Outside Lane, \(\nu_{p1} \) (Eq. 15-24) (veh/h): 181.9

Effective Width, \(W_e \) (Eq. 15-23) ft: 24.00

Effective Speed Factor, \(\nu_s \) (Eq. 15-23): 1.64

Single Lane Service Area, \(R_{SLA} \) (Eq. 15-21): 1.62

Copyright © 2016 University of Florida. All Rights Reserved.

MULTILANE HIGHWAYS WORKSHEET (Direction 2)

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Data Performed**: 12/03/2011
- **Analysis Time Period**: AM Peak
- **Project Description**: Ohio River Bridges Project (Direction 1-N, Direction 2-S)
- **US 31 Clark Bridge**

Site Information
- **Highway/Direction to Travel**: From To Bridge
- **Jurisdiction**: Analysis Year: 2035 East End

Flow Inputs
- **Volume, V (veh/h)**: 1680
- **AADT (veh/h)**: Peak Hour Factor: RHF: 0.92
- **Peak-Hour Prop of AADT (veh/h)**: %Trucks and Busses: P_t = 1
- **Peak-Hour Direction Prop, D**: %RVs, P_d = 0
- **Driver Type Adjustment**: Grade: Length (m): 0.00
- **Elevation**: Up/Down %: 0.00
- **Number of Lanes**: 2

Calculate Flow Adjustments
- **E_1**: 1.00
- **E_2**: 1.2
- **E_3**: 1.5

Speed Inputs
- **Lane Width, LW (ft)**: 12.0
- **Total Lateral Clearance, LC (ft)**: 12.0
- **Access Points, A (A/mi)**: 0
- **Median Type, M**: 45.0
- **FFS (measured)**: 45.0

Calc Speed Adj and FFS
- **Operational (LOS)**: Design (M)
 - Flow Rate, v (cph/ln): 917
 - Speed, S (mph): 45.0
 - D (mph/hr): 20.4
 - LOS: C

Bicycle Level of Service
- **Effective width, W_e (Eq. 15-20) ft**: 24.00
- **Effective speed factor, S_f (Eq. 15-36)**: 1.00
- **Bicycle level of service, BLOS (Eq. 15-39)**: 2.00
- **Bicycle level of service (Exhibit 15-4)**: B

file://C:\Documents and Settings\76429\Local Settings\Temp\LAkD9.tmp 2/23/2012

file://C:\Documents and Settings\76429\Local Settings\Temp\LAkD9.tmp 2/23/2012
General Information
- Analyst: Adams
- Agency or Company: Parsons
- Data Performed: 13/02/2011
- Analytical Time Period: PM Peak
- Project Description: One River Bridge Project (Direction 1=N, Direction 2=S)

Site Information
- Highway/Direction to Travel: US 31 Clark Bridge
- From To: Bridge
- Jurisdiction: Analysis Year: 2030 East End

Flow Inputs
- Volumes, V (veh/h): 1850
- AADT (veh/h): Peak Hour Factor, PHF: 0.92
- % Trucks and Buses, P_T: 1
- % RVs, P_R: 0
- Peak Hour Prop of AADT (veh/h):
- General Terrain: Level
- Grade: Length (m): 0.00
- Driver Type Adjustment: Up/Down %: 0.00
- Number of Lanes: 2

Calculate Flow Adjustments
- T_1: 1.00
- R: 1.2
- T: 1.5
- T_0: 0.995

Speed Inputs
- Lane Width, LW (ft): 12.0
- Total Lateral Clearance, LC (ft): 12.0
- Access Points, A (A/mi): 0
- Median Type, M:
- FFS (measured): 45.0
- Base Free Flow Speed, BFFS: 45.0

Operations
- Design
- Operational (LOS): Design HS
- Flow Rate, \(y_\text{c}(\text{pcu/h}) \): 1015
- Speed, \(S \) (mph): 45.0
- D (pcu/mi): 22.5
- LOG: C

Bicycle Level of Service
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0 (mph)</td>
<td>1015</td>
</tr>
<tr>
<td>Flow Rate, (y_\text{c}(\text{pcu/h}))</td>
<td>1015</td>
</tr>
<tr>
<td>Max Service Flow Rate (pcu/mi)</td>
<td>22.5</td>
</tr>
<tr>
<td>Design LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

file://C:\Documents and Settings\76429%Local Settings\Temp\2eE0.tmp 2/23/2012

file://C:\Documents and Settings\76429%Local Settings\Temp\2eE0.tmp 2/23/2012
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>Adams</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>12/01/011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>PM Peak</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project (Direction 1-N3, Direction 2-5S)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/h)</td>
<td>1240</td>
</tr>
<tr>
<td>AADT (veh/h)</td>
<td></td>
</tr>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, P_t</td>
<td>1</td>
</tr>
<tr>
<td>%Buses, P_b</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
</tr>
<tr>
<td>Up/Down %</td>
<td>6.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculate Flow Adjustments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>1.00</td>
</tr>
<tr>
<td>f_s</td>
<td>1.5</td>
</tr>
<tr>
<td>f_v</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>2.0</td>
</tr>
<tr>
<td>Access Points, A (Amen)</td>
<td></td>
</tr>
<tr>
<td>Median Type, M</td>
<td></td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free-Flow Speed, FFS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (N)</td>
<td></td>
</tr>
<tr>
<td>Required Number of Lanes, N</td>
<td></td>
</tr>
<tr>
<td>Flow Rate, v_p (pc/h/m)</td>
<td>67</td>
</tr>
<tr>
<td>Max Service Flow Rate (pc/h/m)</td>
<td></td>
</tr>
<tr>
<td>Design LOS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recycle Level of Service</th>
<th></th>
</tr>
</thead>
</table>
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/11/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Northbound
- **From/To**: Kennedy Bridge
- **Jurisdiction**: Analysis Year 2030 East End

Flow Inputs
- **Volume, V**: 2700 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{\{1 + f_p (E_T - 1) + P_R (E_R - 1)\}} = 0.952 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 4
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Speed Adj and FFS
- **Calc Speed**: mph
- **TRD Adjustment**: mph
- **FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})} \times f_p \)
 - \(S = 60.0 \) mph
 - \(D = \frac{v_p}{S} = 12.8 \) pc/mi/ln

Design (N)
- **Design (N)**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(v_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **\(E_R \)**: Exhibits 11-10, 11-12
- **\(f_{HV} \)**: Exhibit 11-8
- **\(E_T \)**: Exhibits 11-10, 11-11, 11-13
- **\(f_L \)**: Page 11-18
- **\(f_{BF} \)**: Exhibits 11-2, 11-3

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/23/2012 3:58 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2kE8.tmp

2/23/2012
Basic Freeway Segments Worksheet

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/11/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

Highway/Direction of Travel	I-65 Southbound
From/To	Kennedy Bridge
Jurisdiction	
Analysis Year	2030 East End

Flow Inputs

Volume, V	7100 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments

\[
\begin{align*}
 f_p &= 1.00 \\
 E_r &= 1.2 \\
 E_T &= 1.5 \\
 f_{HV} &= \frac{1}{1 + P_T(P_T - 1) + P_R(P_R - 1)} = 0.957
\end{align*}
\]

Speed Inputs

Lane Width	ft
Right-Side Lat. Clearance	ft
Number of Lanes, N	3
Total Ramp Density, TRD	ramps/MI
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

Speed Adj and FFS

| Design LOS |
| f_LW |
| f_LC |
| TRD Adjustment |
| FFS |
| mph |
| mph |
| mph |
| mph |

LOS and Performance Measures

| Operational (LOS) |
V_p = (V or DDHV) / (PHF x N x f_{HV} x f_p)	pc/h/ln
S	38.5 mph
D = v_p / S	69.8 pc/mi/ln
LOS	F

Glossary

N - Number of lanes	S - Speed
V - Hourly volume	D - Density
v_p - Flow rate	FFS - Free-flow speed
LOS - Level of service	BFFS - Base free-flow speed
DDHV - Directional design hour volume	

Factor Location

| E_r - Exhibits 11-10, 11-12 |
| f_LW - Exhibit 11-8 |
| E_T - Exhibits 11-10, 11-11, 11-13 |
| f_LC - Exhibit 11-9 |
| f_p - Page 11-18 |
| TRD - Page 11-11 |
| LOS, S, FFS, v_p - Exhibits 11-2, 11-3 |

Copyright © 2010 University of Florida, All Rights Reserved

file://C:\Documents and Settings\76429\Local Settings\Temp\f2kEC.tmp

2/23/2012
Basic Freeway Segments Worksheet

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/1/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-65 Northbound
- **From/To:** Kennedy Bridge
- **Jurisdiction:**
- **Analysis Year:** 2030 East End

Flow Inputs
- **Volume, V:** 7900 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:** veh/h
- **DDHV = AADT x K x D:** veh/h
- **Peak-Hr Direction Prop, D:**
- **Peak-Hr Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 12
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %**

Calculate Flow Adjustments
- **f_p = 1.00**
- **E_T = 1.5**
- **E_R = 1.2**
- **f_hv = 1/[1+P_T(F_T - 1) + P_R(F_R - 1)]**

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 4
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed, BFFS:** mph

Calc Speed Adj and FFS
- **f_LW:** mph
- **f_LC:** mph
- **FFS Adjustment:** mph
- **FFS:** 60.0 mph

LOS and Performance Measures
- **LOS:**
- **Operational (LOS):**
 - **V_p = (V or DDHV) / (PHF x N x f_hv)**
 - **S:** pc/h/ln
 - **D = V_p / S:** pc/ln
 - **LOS:** E

Design (N)
- **Design LOS:**
 - **V_p = (V or DDHV) / (PHF x N x f_hv)**
 - **S:** pc/h/ln
 - **D = V_p / S:** pc/ln
 - **Required Number of Lanes, N**

Glossary
- **N - Number of lanes**
- **V - Hourly volume**
- **V_p - Flow rate**
- **LOS - Level of service**
- **DDHV - Directional design hour volume**

Factor Location
- **E_R - Exhibits 11-10, 11-12**
- **f_LW - Exhibit 11-8**
- **E_T - Exhibits 11-10, 11-11, 11-13**
- **f_LC - Exhibit 11-9**
- **f_p - Page 11-18**
- **TRD - Page 11-11**
- **LOS, S, FFS, V_p - Exhibits 11-2, 11-3**

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/23/2012 4:00 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2kF2.tmp 2/23/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- Analyst: Adams
- Agency or Company: Parsons
- Date Performed: 5/11/11
- Analysis Time Period: PM Peak Hour
- Project Description: Ohio River Bridges Project

Site Information
- Highway/Direction of Travel: I-65 Southbound
- From/To: Kennedy Bridge
- Jurisdiction: 2030 East End

Flow Inputs
- Volume, V: 4300 veh/h
- AADT: veh/day
- Peak-Hr Prop. of AADT, K: %
- Peak-Hr Direction Prop, D: veh/h
- DDHV = AADT x K x D
- Peak-Hour Factor, PHF: 0.92
- %Trucks and Buses, PT: 20
- %RVs, PR: 0
- General Terrain: Level
- Grade: %
- Length: mi
- Up/Down: %

Calculate Flow Adjustments
- f_p: 1.00
- E_T: 1.5
- f_HV = \frac{1 + f_p (E_T - 1)}{1 + P_T (E_T - 1)}: 0.909

Speed Inputs
- Lane Width: ft
- RI-Side Lat. Clearance: ft
- Number of Lanes, N: 3
- Total Ramp Density, TRD: ramps/mi
- FFS (measured): 60.0 mph
- Base free-flow Speed, BFFS: mph

Speed Inputs
- Calc Speed Adj and FFS
- f_LW: m
- f_LC: m
- TRD Adjustment: m
- FFS: 60.0 mph

LOS and Performance Measures
- Operational (LOS)
- Design (N)
- f_p: (V or DDHV) / (PHF x N x f_HV)
- x 1714 pc/h/ln
- S: 59.8 mph
- D = v_p / S: pc/mt/ln
- LOS: D

Glossary
- N - Number of lanes
- V - Hourly volume
- v_p - Flow rate
- LOS - Level of service
- DDHV - Directional design hour volume
- S - Speed
- D - Density
- FFS - Free-flow speed
- BFFS - Base free-flow speed
- E_R - Exhibits 11-10, 11-12
- E_T - Exhibits 11-10, 11-11, 11-13
- f_LW - Exhibit 11-8
- f_LC - Exhibit 11-9
- f_p - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/23/2012 4:01 PM
Basic Freeway Segments Worksheet

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/16/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
</tbody>
</table>

Project Description

- **Ohio River Bridges Project**

Site Information

<table>
<thead>
<tr>
<th>Highway/Direction of Travel</th>
<th>I-265 Northbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>From/To</td>
<td>East End Bridge NB</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td></td>
</tr>
<tr>
<td>Analysis Year</td>
<td>2030 East End</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
</tr>
<tr>
<td>DDHV = AADT x K x D</td>
<td>veh/h</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

| f_p | 1.00 |
| E_T | 1.5 |

| ER | 1.2 |
| f_{HV} | $1/[(1+P_T(E_T - 1) + P_R(E_R - 1))^{0.971}]$ |

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rte-Side Lat. Clearance</td>
<td>ft</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>65.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
</tr>
</tbody>
</table>

Calculate Speed Adj and FFS

f_{lw}	mph
f_{LC}	mph
FFS Adjustment	mph

LOS and Performance Measures

$v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV})$	1679 pc/h-ln
S	63.9 mph
$D = v_p / S$	26.3 pc/mi-ln
LOS	D

Design (N)

Design (N)	Design LOS
$v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV})$	pc/h-ln
S	mph
$D = v_p / S$	pc/mi-ln
Required Number of Lanes, N	

Glossary

- **N** - Number of lanes
- **S** - Speed
- **V** - Hourly volume
- **D** - Density
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location

- E_R - Exhibits 11-10, 11-12
- f_{lw} - Exhibit 11-8
- E_T - Exhibits 11-10, 11-11, 11-13
- f_{LC} - Exhibit 11-9
- f_p - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/6/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-265 Southbound
- **From/To**: East End Bridge SB
- **Jurisdiction**: Analysis Year 2030 East End

Flow Inputs
- **Volume, V**: 2400 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %Trucks and Buses, \(P_T \)
- **Peak-Hr Direction Prop, D**: %RVs, \(P_R \)
- **DDHV = AADT x K x D**: veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{1 + f_p(E_T - 1) + P_R(E_R - 1)} \) = 0.957

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 65.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adj and FFS
- **Calc Speed Adj**: mph
- **FFS Adjustment**: mph

LOS and Performance Measures
- **Operational (LOS)**
 - \(v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}) \) pc/h/ln
 - \(S = 65.0 \) mph
 - \(D = v_p / S \) pc/mi/ln
 - **LOS**: B

Design (N)
- **Design LOS**
 - \(v_p = (V \text{ or } DDHV) / (PHF \times N \times f_{HV}) \) pc/h/ln
 - **S**: mph
 - \(D = v_p / S \) pc/mi/ln

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(v_p \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **E_T**: Exhibits 11-10, 11-12
- **E_R**: Exhibits 11-10, 11-12
- **f_{LVW}**: Exhibit 11-8
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11

[Copyright © 2010 University of Florida, All Rights Reserved]

HCS 2010™ Version 6.1

Generated: 2/23/2012 4:04 PM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k100.tmp

2/23/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/16/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-265 Northbound
- **From/To:** East End Bridge NB
- **Jurisdiction:**
- **Analysis Year:** 2030 East End

Flow Inputs
- **Volume, V:** 2400 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:** %
- **Peak-Hr Direction Prop, D:** %
- **DDHV = AADT x K x D:** veh/h
- **Peak-Hour Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 9
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:** %
- **Length:** mi
- **Up/Down %:**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_T:** 1.5
- **E_R:** 1.2
- **f_HV = 1/[f_p + E_T (E_T - 1) + P_R (E_T - 1)]:** 0.957

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 3
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 65.0 mph
- **Base free-flow Speed, BFFS:** mph

Calc Speed Adj and FFS
- **f_LW:** mph
- **f_LC:** mph
- **FFS Adjustment:** mph

LOS and Performance Measures
- **Operational (LOS):**
 - \(v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})}\)
 - \(S = \frac{65.0 \text{ mph}}{14.0 \text{ pc/mi/ln}}\)
 - \(D = \frac{v_p}{S}\)
 - \(B = \) LOS
 - \(N = \) Number of lanes

Design (N)
- **Design LOS**
- **Design (N)**
- **TRD Adjustment:** mph
- **Required Number of Lanes, N**

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **V_p:** Flow rate
- **LOS:** - Level of service
- **DDHV:** - Directional design hour volume
 - S - Speed
 - D - Density
 - BFFS - Base free-flow speed
 - FFS - Free-flow speed

Factor Location
- **E_R:** Exhibits 11-10, 11-12
- **E_T:** Exhibits 11-10, 11-11, 11-13
- **f_LW:** Exhibit 11-8
- **f_LC:** Exhibit 11-9
- **f_p:** Page 11-18
- **LOS, S, FFS, v_p:** Exhibits 11-2, 11-3
- **TRD:** Page 11-11
Basic Freeway Segments Worksheet

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/16/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges Project
- **Highway/Direction of Travel:** I-265 Southbound
- **From/To:** East End Bridge SB
- **Jurisdiction:** Analysis Year
- **Des. (N):** 2030 East End

Site Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-Hour Factor, PHF</td>
<td>0.92</td>
</tr>
<tr>
<td>%Trucks and Buses, PT</td>
<td>6</td>
</tr>
<tr>
<td>%RVs, PR</td>
<td>0</td>
</tr>
<tr>
<td>General Terrain, Level</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
</tr>
<tr>
<td>% Length</td>
<td></td>
</tr>
<tr>
<td>Up/Down %</td>
<td></td>
</tr>
</tbody>
</table>

Flow Inputs
- **Volume, V:** 4700 veh/h
- **AADT:** 1754 veh/day
- **Peak-Hr Prop. of AADT, K:** 1.5 veh/h
- **AADT**
- **Peak-Hr Direction Prop, D:**
- **DDHV = AADT x K x D:** veh/h

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_R:** 1.5
- **E_T:** 1.2
- **f_HV = \(\frac{1}{1 + f_p(E_R - 1) + P_R(E_R - 1)} \):** 0.971

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 3 ramps/ml
- **Total Ramp Density, TRD:** mph
- **FFS (measured):** 65.0 mph
- **Base free-flow Speed, BFFS:** mph

Speed Adjustments and FFS
- **Calc Speed Adj and FFS**

LOS and Performance Measures
- **Operational (LOS):**
 - \(V_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})} \times f_p \): pc/h/ln
 - \(S \): mph
 - \(D = V_p / S \): pc/mi/ln
 - **LOS:**

Design (N)
- **Design (N)**
 - **Design LOS**
 - **V_p:** pc/h/ln
 - **S:** mph
 - **D:** pc/mi/ln

Glossary
- **N:** Number of lanes
- **S:** Speed
- **V:** Hourly volume
- **D:** Density
- **p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **E_R:** Exhibits 11-10, 11-12
- **f_{LVW}:** Exhibit 11-8
- **E_T:** Exhibits 11-10, 11-11, 11-13
- **f_{LC}:** Exhibit 11-9
- **f_p:** Page 11-18
- **TRD:** Page 11-11
- **LOS:** S, FFS, \(V_p \): Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: AM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB
- **Jurisdiction**: Analysis Year: 2030 Downtown

Flow Inputs
- **Volume, V**: 2300 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: %
- **DDHV = AADT x K x D**: veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **%Trucks and Buses, PT**: 15%
- **%RVs, PR**: 0%
- **General Terrain**: Level
- **Grade %**: Up/Down %

Calculate Flow Adjustments
- **f_p**: 1.00
- **E_T**: 1.5
- **E_R**: 1.2
- **f_HV = 1/(1+(f_pE_r - 1) + (f_rE_r - 1)0.930**

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/MI
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = (V \text{ or DDHV}) / (PHF \times N \times f_HV))</td>
<td>(v_p = (V \text{ or DDHV}) / (PHF \times N \times f_HV))</td>
</tr>
<tr>
<td>696 pc/h/ln</td>
<td>696 pc/h/ln</td>
</tr>
<tr>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>60.0 mph</td>
<td>mph</td>
</tr>
<tr>
<td>(D = v_p / S)</td>
<td>(D = v_p / S)</td>
</tr>
<tr>
<td>14.9 pc/mi/ln</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>Required Number of Lanes, N</td>
</tr>
</tbody>
</table>

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume
- **S**: Speed
- **D**: Density
- **FFS**: Free-flow speed
- **BFFS**: Base free-flow speed

Factor Location
- **E_R**: Exhibits 11-10, 11-12
- **f_LW**: Exhibit 11-8
- **f_T**: Exhibits 11-10, 11-11, 11-13
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 10:25 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k57.tmp

2/24/2012
BASIC FREEWAY SEGMENTS WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
<td>Highway/Direction of Travel I-64 Southbound</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/16/11</td>
<td>From/To Sherman Minton Bridge SB</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
<td>Analysis Year 2030 Downtown</td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V</th>
<th>4900 veh/h</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>veh/day</td>
<td>%Trucks and Buses, P_T</td>
<td>8</td>
</tr>
<tr>
<td>Peak-Hr Prop. of AADT, K</td>
<td></td>
<td>%RVs, P_R</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Hr Direction Prop, D</td>
<td></td>
<td>General Terrain:</td>
<td>Level</td>
</tr>
<tr>
<td>D/DHV = AADT x K x D</td>
<td>veh/h</td>
<td>Grade</td>
<td>%</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = 1 + P_T(E_T - 1) + P_R(E_R - 1) \) 0.962

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>ft</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rt-Side Lat. Clearance</td>
<td>ft</td>
<td>(f_{LV}) mph</td>
</tr>
<tr>
<td>Number of Lanes, N</td>
<td>3</td>
<td>(f_{LC}) mph</td>
</tr>
<tr>
<td>Total Ramp Density, TRD</td>
<td>ramps/mi</td>
<td>TRD Adjustment</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>60.0 mph</td>
<td>FFS 60.0 mph</td>
</tr>
<tr>
<td>Base free-flow Speed, BFFS</td>
<td>mph</td>
<td></td>
</tr>
</tbody>
</table>

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
<th>Design LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_p = \frac{(V \ or \ DDHV)}{PHF \times N \times f_{HV}})</td>
<td>(v_p = \frac{(V \ or \ DDHV)}{PHF \times N \times f_{HV}})</td>
<td>pc/h/ln</td>
</tr>
<tr>
<td>S = 58.9 mph</td>
<td>S</td>
<td>mph</td>
</tr>
<tr>
<td>D = (\frac{v_p}{S})</td>
<td>D = (\frac{v_p}{S})</td>
<td>pc/mi/ln</td>
</tr>
<tr>
<td>LOS</td>
<td>Required Number of Lanes, N</td>
<td></td>
</tr>
</tbody>
</table>

Glossary

- **N** - Number of lanes
- **V** - Hourly volume
- **v_p** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Factor Location

- \(E_R \) - Exhibits 11-10, 11-12
- \(f_{LV} \) - Exhibit 11-8
- \(E_T \) - Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \) - Exhibit 11-9
- \(f_p \) - Page 11-18
- TRD - Page 11-11
- LOS, S, FFS, v_p - Exhibits 11-2, 11-3
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-64 Northbound
- **From/To**: Sherman Minton Bridge NB
- **Jurisdiction**: 2030 Downtown

Flow Inputs
- **Volume, V**: 5900 veh/h
- **AADT**: veh/day
- **Peak-Hr Prop. of AADT, K**: %
- **Peak-Hr Direction Prop, D**: veh/h
- **DDHV = AADT x K x D**: veh/h

<table>
<thead>
<tr>
<th>Flow Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_p)</td>
</tr>
<tr>
<td>(E_T)</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

| \(E_R \) | 1.2 |
| \(f_{HV} = \frac{1}{(1 + \frac{f_p}{E_T}) + \frac{f_p}{E_R - 1}} \) | 0.957 |

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

LOS and Performance Measures

Operational (LOS)

\[
v_p = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \times f_p \times \frac{2234}{S} \text{ pc/h/ln}
\]

- **S**: 52.7 mph
- **D = V_p / S**: 42.4 pc/mi/ln

Glossary

- **N**: Number of lanes
- **V**: Hourly volume
- **v_p**: Flow rate
- **LOS**: Level of service

Factor Location

- **E_R**: Exhibits 11-10, 11-12
- **f_{LV}**: Exhibit 11-8
- **E_T**: Exhibits 11-10, 11-11, 11-13
- **f_{LC}**: Exhibit 11-9
- **f_p**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, v_p**: Exhibits 11-2, 11-3
Basic Freeway Segments Worksheet

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/16/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project
- **Highway/Direction of Travel**: I-64 Southbound
- **From/To**: Sherman Minton Bridge SB
- **Jurisdiction**: Analysis Year: 2030 Downtown

Site Information

Flow Inputs
Volume, V	4200 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Calculate Flow Adjustments
- \(f_p = 1.00 \)
- \(E_T = 1.5 \)
- \(f_{HV} = \frac{1}{1 + 0.92(1.5 - 1.2)} = 0.943 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 3
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow Speed, BFFS**: mph

Speed Adj and FFS
- **Calc Speed Adj**: \(f_{LV} \)
- **Calc Speed FFS**: 60.0 mph

LOS and Performance Measures
- **Operational (LOS)**:
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV, 613})} \)
 - S: 60.0 mph
 - D: \(v_p / S \)
 - LOS: D

Design (N)
- **Design (N)**
- **Design LOS**
 - \(v_p = \frac{(V \text{ or } DDHV)}{(PHF \times N \times f_{HV})} \)
 - S
 - D = \(v_p / S \)
 - LOS: D

Glossary
- N: Number of lanes
- V: Hourly volume
- \(v_p \): Flow rate
- LOS: Level of service
- DDHV: Directional design hour volume

Factor Location
- \(E_T \): Exhibits 11-10, 11-12
- \(f_{LV} \): Exhibit 11-8
- \(E_R \): Exhibits 11-10, 11-11, 11-13
- \(f_{LC} \): Exhibit 11-9
- \(f_p \): Page 11-18
- TRD: Page 11-11
- LOS, S, FFS, \(v_p \): Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1

Generated: 2/24/2012 10:28 AM

file:///C:\Documents and Settings\76429\Local Settings\Temp\f2k63.tmp 2/24/2012
MULTILANE HIGHWAYS WORKSHEET (Direction 1)

General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Date Performed:** 12/03/2011
- **Analysis Time Period:** AM Peak
- **Project Description:** Ohio River Bridges Project (Direction 1-N, Directions 2-N)
- **Site Information:** Highway/Direct to Travel US 31 Clark Bridge From/To Bridge Jurisdiction Analysis Year

Flow Inputs

<table>
<thead>
<tr>
<th>Flow Inputs</th>
<th>Direction 1</th>
<th></th>
<th>Direction 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, V (veh/hr)</td>
<td>750</td>
<td>Peak-Hour Factor, FHP</td>
<td>0.92</td>
<td>Peak-Hour Factor, FHP</td>
</tr>
<tr>
<td>AADT (veh/day)</td>
<td></td>
<td>%Trucks and Buses, P1</td>
<td>1</td>
<td>%Trucks and Buses, P1</td>
</tr>
<tr>
<td>Peak-Hour Prop of AADT (veh/h)</td>
<td></td>
<td>General Terrain:</td>
<td>Level</td>
<td>General Terrain:</td>
</tr>
<tr>
<td>OD HW (veh/h)</td>
<td></td>
<td>Grade</td>
<td>0.00</td>
<td>Grade</td>
</tr>
<tr>
<td>Driver Type Adjustment</td>
<td>1.00</td>
<td>Up/Down %</td>
<td>0.00</td>
<td>Up/Down %</td>
</tr>
<tr>
<td>Calculate Flow Adjustments</td>
<td></td>
<td>Number of Lanes</td>
<td>2</td>
<td>Number of Lanes</td>
</tr>
<tr>
<td>E<sub>1</sub></td>
<td>1.00</td>
<td>E<sub>2</sub></td>
<td>1.2</td>
<td>E<sub>2</sub></td>
</tr>
<tr>
<td>E<sub>3</sub></td>
<td>1.5</td>
<td>F<sub>4</sub></td>
<td>0.95</td>
<td>F<sub>4</sub></td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Speed Inputs</th>
<th>Calc Speed Adj and FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Width, LW (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (Am)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td>0</td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free-Flow Speed, BFFS</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Design

Operational (LOS)
- **Flow Rate, v₁ (pct/hu):** 426
- **Speed, S (mph):** 45.0
- **D (pct/hu):** 5.5
- **LOS:** A

Design:
- **Design (N):**
- **Required Number of Lanes, N:**
- **Flow Rate, v₁ (pct/hu):**
- **Max Service Flow Rate (pct/hu):**
- **Design LOS:**
MULTILANE HIGHWAYS WORKSHEET (Direction 2)

General Information
- **Analyst:** J Sherman
- **Agency or Company:** Parsons
- **Data Performed:** 12/09/2011
- **Analysis Time Period:** AM Peak

Site Information
- **Project Description:** Ohio River Bridges Project (Direction 1=NB, Direction 2=SB)
- **Highway/Direction to Travel From/Fr:** US 31 Clark Bridge
- **Jurisdiction:** Bridge
- **Analysis Year:** 2030 Downtown

Flow Inputs
- **Volume, V (veh/h):** 1820
- **AADT (veh/day):**
 - Peak-Hour Factor, PHF: 0.92
 - %NTRAC, P1: 1
 - %NRV, P2: 0
 - General Terrain, Level: 0
- **CDHV (veh/h):**
- **Other Type Adjustment:** 1.00
- **Other Flow Adjustment:**
 - E\(_i\): 1.00
 - E\(_f\): 1.2

Speed Inputs
- **Lane Width, LW (ft):** 12.0
- **Total Lateral Clearance, LC (ft):** 120
- **Access Points, A (Aim):** 0
- **Median Type, M:**
- **FFS (Measured):** 45.0
- **Base Free Flow Speed, FFS:**

Operations
- **Flow Rate, \(v_f\) (pcv/h):** 594
- **Speed, S (mph):** 45.0
- **D (pcv/mi):** 22.1
- **LOS:** C

Design
- **Traffic Volume:**
 - **Desired Number of Lanes, N:**
 - **Flow Rate, \(v_d\) (pcv/h):**
 - **Max Service Flow Rate (pcv/mi):**
 - **Design LOS:**

file://C:Documents and Settings\764299\Local Settings\Temp\la2k69.tmp 2/24/2012
MULTILANE HIGHWAYS WORKSHEET (Direction 1)

General Information
- **Analyst:** J. Sherman
- **Agency or Company:** Parsons
- **Data Performed:** 12/00/2011
- **Analysis Time Period:** PM Peak
- **Project Description:** Ohio River Bridge Project (Direction 1-NB, Direction 2-SB)

Site Information
- **Highway/Direction to Travel:** US 31 Clark Bridge
- **Jurisdiction:** Bureau County
- **Analysis Year:** 2030 Downtown

Flow Inputs
<table>
<thead>
<tr>
<th>Volume, V (veh/h)</th>
<th>1820</th>
<th>Peak Hour Factor, FHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (veh/h)</td>
<td></td>
<td>%Trucks and Buses, Pn</td>
<td>1.0</td>
</tr>
<tr>
<td>Peak Hour Prop of AADT (veh/h)</td>
<td></td>
<td>NRLs, Pn</td>
<td>0.0</td>
</tr>
<tr>
<td>General Terrain:</td>
<td></td>
<td>Grade Length (m)</td>
<td>0.00</td>
</tr>
<tr>
<td>Other Type Adjustment</td>
<td></td>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments
- $L_1 = 1.20$
- $E_n = 1.2$
- $I_n = 1.5$
- $V_n = 0.995$

Speed Inputs
- **Lane Width, LW (ft):** 12.0
- **Total Lateral Clearance, LC (ft):** 12.0
- **Access Pans, A (A/m):** 0
- **Median Type, M:**
- **FFS (measured):** 45.0
- **Base Free Flow Speed, BFFS:** 45.0

Operations
- **Operational (LOS):**
 - Flow Rate, v_b (pcv/h): 884
 - Speed, v_s (mph): 45.0
 - D (pums/h): 19.0
 - LOS: C
- **Design (N):**
 - Required Number of Lanes, N
 - Flow Rate, v_f (pcv/h)
 - Max Service Flow Rate (pcv/h)
 - Design LOS

Bicycle Level of Service
<table>
<thead>
<tr>
<th>General Information</th>
<th>Site Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td>J. Sherman</td>
</tr>
<tr>
<td>Agency or Company</td>
<td>Highway/Direc. to Travel</td>
</tr>
<tr>
<td>Data Performed</td>
<td>12/09/2011</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>FM 10</td>
</tr>
<tr>
<td>Project Description</td>
<td>One River Bridge Project (Direction 1-NW, Direction 2=SB)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Inputs

<table>
<thead>
<tr>
<th>Volume, V (veh/h)</th>
<th>Peak-Hour Factor, PHF</th>
<th>0.92</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (veh/h)</td>
<td>%Trucks and Buses, P2</td>
<td>1</td>
</tr>
<tr>
<td>Peak-Hour Prop of AADT (veh/h)</td>
<td>%Vehicles, P2</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Hour Direction Prop, D</td>
<td>General Terrain</td>
<td>Level</td>
</tr>
<tr>
<td>Design (veh/h)</td>
<td>Grade Length (mi)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Up/Down %</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Number of Lanes</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculate Flow Adjustments

<table>
<thead>
<tr>
<th>f'_1</th>
<th>E_a</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>0.988</td>
</tr>
</tbody>
</table>

Speed Inputs

<table>
<thead>
<tr>
<th>Lane Width, LW (ft)</th>
<th>12.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lateral Clearance, LC (ft)</td>
<td>12.0</td>
</tr>
<tr>
<td>Access Points, A (Ainj)</td>
<td>0</td>
</tr>
<tr>
<td>Median Type, M</td>
<td></td>
</tr>
<tr>
<td>FFS (measured)</td>
<td>45.0</td>
</tr>
<tr>
<td>Base Free-Flow Speed, BFFS</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
<th>Design (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate, v_o (veh/h)</td>
<td>Required Number of Lanes, N</td>
</tr>
<tr>
<td>Speed, S (mi/h)</td>
<td>Flow Rate, v_o (veh/h)</td>
</tr>
<tr>
<td>D (veh/h)</td>
<td>Max Service Flow Rate (veh/h)</td>
</tr>
<tr>
<td>LOS</td>
<td>Design LOS</td>
</tr>
</tbody>
</table>
BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/11/11
- **Analysis Time Period:** AM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-65 Northbound
- **From/To:** Kennedy Bridge
- **Jurisdiction:**
- **Analysis Year:** 2030 Downtown

Flow Inputs
- **Volume, V:** 4900 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:** veh/h
- **DDHV = AADT x K x D:**
- **Peak-Hr Factor, PHF:** 0.92
- **%Trucks and Buses, P_T:** 8
- **%RVs, P_R:** 0
- **General Terrain:** Level
- **Grade:**
- **Length:** mi
- **Up/Down %:**

Calculate Flow Adjustments
- **f_p:** 1.00
- **E_R:** 1.2
- **f_{HV} = 1/[1+(P_T x (E_R - 1) + P_R x (E_R - 1))]:** 0.962

Speed Inputs
- **Lane Width:** ft
- **RT-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 6
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed, BFFS:** mph

Calc Speed Adj and FFS
- **f_{LW}:** mph
- **f_{LG}:** mph
- **TRD Adjustment:** mph
- **FFS:** 60.0 mph

LOS and Performance Measures
- **Operational (LOS):**
- **v_p = (V or DDHV) / (PHF x N x f_{HV} x_k):** pc/h/ln
- **S:** 60.0 mph
- **D = v_p / S:** 15.4 pc/mi/ln

Design (N)
- **Design (N):**
- **Design LOS:**
- **v_p = (V or DDHV) / (PHF x N x f_{HV} x_k):** pc/h/ln
- **S:** mph
- **D = v_p / S:** pc/mi/ln

Required Number of Lanes, N

Glossary
- **N:** Number of lanes
- **V:** Hourly volume
- **v_p:** Flow rate
- **LOS:** Level of service
- **DDHV:** Directional design hour volume

Factor Location
- **E_R:** Exhibits 11-10, 11-12
- **E_T:** Exhibits 11-10, 11-11, 11-13
- **f_p:** Page 11-18
- **LOS, S, FFS, v_p:** Exhibits 11-2, 11-3

Copyright © 2010 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1
Generated: 2/24/2012 10:39 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\f2k78.tmp

2/24/2012
BASIC FREEWAY WORKSHEET

General Information

<table>
<thead>
<tr>
<th>Analyst</th>
<th>Adams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency or Company</td>
<td>Parsons</td>
</tr>
<tr>
<td>Date Performed</td>
<td>5/1/11</td>
</tr>
<tr>
<td>Analysis Time Period</td>
<td>AM Peak Hour</td>
</tr>
<tr>
<td>Project Description</td>
<td>Ohio River Bridges Project</td>
</tr>
</tbody>
</table>

Site Information

Highway/Direction of Travel	I-65 Southbound
Jurisdiction	Kennedy Bridge
Analysis Year	2030 Downtown

Flow Inputs

Volume, V	8700 veh/h
AADT	veh/day
Peak-Hr Prop. of AADT, K	
Peak-Hr Direction Prop, D	
DDHV = AADT x K x D	veh/h

Peak-Hour Factor, PHF	0.92
%Trucks and Buses, P_T	10
%RVs, P_R	0

Calculate Flow Adjustments

f_p	1.00
E_T	1.5
E_R	1.2
f_HV = 1/[(1 + f_p(E_T - 1) + P_R[E_R - 1])	0.952

Speed Inputs

Lane Width	ft
Rt-Side Lat. Clearance	ft
Number of Lanes, N	6
Total Ramp Density, TRD	ramps/mi
FFS (measured)	60.0 mph
Base free-flow Speed, BFFS	mph

Calc Speed Adj and FFS

f_LW	mph
f_LC	mph
TRD Adjustment	mph
FFS	60.0 mph

LOS and Performance Measures

<table>
<thead>
<tr>
<th>Operational (LOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_p = (V or DDHV) / (PHF x N x f_HV)</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D = v_p / S</td>
</tr>
</tbody>
</table>

Design (N)

| Design (N) |
| Design LOS |
| v_p = (V or DDHV) / (PHF x N x f_HV) |
| S | mph |
| D = v_p / S | pc/ml/in |

Glossary

N	Number of lanes
V	Hourly volume
v_p	Flow rate
LOS	Level of service
DDHV	Directional design hour volume

Factor Location

| E_R - Exhibits 11-10, 11-12 |
| E_T - Exhibits 11-10, 11-11, 11-13 |
| f_p - Page 11-18 |
| LOS, S, FFS, v_p - Exhibits 11-2, 11-3 |

Copyright © 2010 University of Florida, All Rights Reserved
BASIC FREEWAY WORKSHEET

General Information
- **Analyst:** Adams
- **Agency or Company:** Parsons
- **Date Performed:** 5/11/11
- **Analysis Time Period:** PM Peak Hour
- **Project Description:** Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel:** I-65 Northbound
- **From/To:** Kennedy Bridge
- **Jurisdiction:**
- **Analysis Year:** 2030 Downtown

Flow Inputs
- **Volume, V:** 9100 veh/h
- **AADT:** veh/day
- **Peak-Hr Prop. of AADT, K:**
- **Peak-Hr Direction Prop, D:**
- **DDHV = AADT x K x D:** veh/h

Flow Adjustments
- **fₚ:** 1.00
- **fₜ:** 1.5

Speed Inputs
- **Lane Width:** ft
- **Rt-Side Lat. Clearance:** ft
- **Number of Lanes, N:** 6
- **Total Ramp Density, TRD:** ramps/mi
- **FFS (measured):** 60.0 mph
- **Base free-flow Speed, BFFS:** mph

LOS and Performance Measures

Glossary
- **N** - Number of lanes
- **V** - Hourly volume
- **fₚ** - Flow rate
- **LOS** - Level of service
- **DDHV** - Directional design hour volume

Site Information
- **Design (N):**

Factor Location
- **Eₚ** - Exhibits 11-10, 11-12
- **fₚ** - Page 11-18
- **TRD** - Page 11-11
BASIC FREEWAY WORKSHEET

BASIC FREEWAY SEGMENTS WORKSHEET

General Information
- **Analyst**: Adams
- **Agency or Company**: Parsons
- **Date Performed**: 5/11/11
- **Analysis Time Period**: PM Peak Hour
- **Project Description**: Ohio River Bridges Project

Site Information
- **Highway/Direction of Travel**: I-65 Southbound
- **From/To**: Kennedy Bridge
- **Jurisdiction**: Analysis Year
- **Analysis Year**: 2030 Downtown

Flow Inputs
- **Volume, V**: 6700 veh/h
- **Peak-Hour Factor, PHF**: 0.92
- **AADD**: veh/day
- **%Trucks and Buses, \(P_T \)**: 16
- **Peak-Hr Prop. of AADD, K**: veh/h
- **%RVs, \(P_R \)**: 0
- **Peak-Hr Direction Prop, D**:
- **DDHV = AADD x K x D**: veh/h
- **General Terrain**: Level
- **Grade**: %
- **Length**: mi
- **Up/Down %**:

Calculate Flow Adjustments
- \(f_p \) = 1.00
- \(E_T \) = 1.5
- \(f_{HV} = \frac{1 + \left(P_T \right)}{1 + \left(P_R \right)} \)
- \(E_R = 1.2 \)

Speed Inputs
- **Lane Width**: ft
- **Rt-Side Lat. Clearance**: ft
- **Number of Lanes, N**: 6
- **Total Ramp Density, TRD**: ramps/mi
- **FFS (measured)**: 60.0 mph
- **Base free-flow speed, BFFS**: mph

Calc Speed Adj and FFS
- \(f_{LV} \)
- \(f_{LC} \)
- **FFS Adjustment**: mph
- **TRD Adjustment**: mph

LOS and Performance Measures
- **Operational (LOS)**
- \(v_0 = \frac{(V \text{ or DDHV})}{(PHF \times N \times f_{HV})} \)
- \(x_{f_p} \)

Design (N)
- **Design LOS**: pc/h/ln
- **Required Number of Lanes, N**: pc/mi/ln
- **Design (N)**

Glossary
- **N**: Number of lanes
- **V**: Hourly volume
- **\(v_0 \)**: Flow rate
- **LOS**: Level of service
- **DDHV**: Directional design hour volume

Factor Location
- **\(E_R \)**: Exhibits 11-10, 11-12
- **\(f_{LV} \)**: Exhibit 11-8
- **\(E_T \)**: Exhibits 11-10, 11-11, 11-13
- **\(f_{LC} \)**: Exhibit 11-9
- **\(f_p \)**: Page 11-18
- **TRD**: Page 11-11
- **LOS, S, FFS, \(v_p \)**: Exhibits 11-2, 11-3

Copyright © 2016 University of Florida, All Rights Reserved

HCS 2010™ Version 6.1 Generated: 2/24/2012 10:44 AM

file://C:\Documents and Settings\76429\Local Settings\Temp\t2k89.tmp

2/24/2012