Broadband Equity, Access, and Deployment (BEAD) Program: Hybrid Fiber-Coaxial (HFC) Service Evidence Template Instructions and Schema

This document is intended to guide BEAD applicants in completing the **Hybrid Fiber-Coaxial (HFC) Submission Template**. The evidence is required to demonstrate the applicant has taken the steps necessary to ensure compliance with technical requirements for consideration as a Priority Broadband Project as established in the NTIA's BEAD Restructuring Policy Notice (issued June 6, 2025).

HFC Service Evidence Template Submission Instructions

- 1. Refer to the schema below for detailed instructions on how to complete each tab and its associated fields. All fields are required unless otherwise stated.
- 2. Save your completed HFC Service Evidence Template with the following file name format: <<CompanyName>>_HFCEvidence_<<yyyy-mm-dd>>.xlsx.
- 3. For applications proposing to use multiple technology types in the network (e.g., fiber and licensed fixed wireless), please upload a template for each technology type used.

HFC Service Evidence Template Schema

The HFC Service Evidence Template contains five tabs:

Tab number	Description
1	Logical network diagram
2	Access layer
3	Headend & internet backbone connectivity
4	Reliability & quality of service
5	Performance calculations

Information must be entered for all fields in Tabs 1-5. All supplemental evidence files and documents must be submitted with the completed HFC Service Evidence template.

Tab 1. Logical Network Diagram Tab

Field	Data type	Example	Description	Constraints
Logical Network	Image	Diagram	Provide a logical diagram	Illustrate a
Diagram			showing backhaul;	worst-case
			headend systems,	scenario for
			including cable modem	node
			termination system	combining,
			(CMTS); fiber nodes and	active
			links; active distribution	component
			network components	cascades, and
			(amplifiers, taps, etc.);	number of
			and customer premises	subscribers
			equipment (CPE),	served per
			including the cable	node and/or
			modem and/or customer	CMTS port
			gateway device	

Tab 2. Access Layer Tab

Field	Data type	Example	Description
What is the total upstream and downstream DOCSIS channel capacity allocated per service group?	Narrative		Please specify: 1. Number and type of channels (OFDM, SC-QAM) 2. Total bandwidth (MHz) and throughput (Mbps)
What is the average or nominal number of serviceable passings per fiber node by design?	Number	300	
What is the maximum number of serviceable passings per fiber node by design?	Number	500	

Field	Data type	Example	Description
How many anticipated	Narrative	100 subscribers	
subscribers will be served		per node	
per node upon activation?			
What is the DOCSIS version	Narrative	DOCSIS 4.0	
currently deployed?			
Describe how your CMTS is	Narrative		
configured for node			
segmentation and combining			
in both the upstream and			
downstream directions.			

Tab 3. Headend & Internet Backbone Connectivity Tab

Field	Data type	Example	Description
Describe the capacity of all	Narrative		Include expected peak
links between the CMTS and			utilization and how the
the Internet backbone,			design avoids
including the uplinks to			congestion
backbone routers and the			
connections to both transit			
and non-transit peers.			
Describe the physical and	Narrative		Include a description of
logical redundancy of the			any protection schemes
proposed network, including			in place, such as dual-
CMTS components,			homing, ring
backbone network devices,			architecture, or failover
and core routers and			protocols
backbone transport links.			

Tab 4. Reliability & Quality of Service Tab

Field	Data type	Example	Description				
	Performance Thresholds						
How does the applicant	Narrative		Latency: ≤ 100 ms				
monitor and ensure that			Packet loss: ≤ 2% over				
roundtrip latency, real-time			any 15-second interval				
packet loss, and jitter remain			Jitter: ≤ 30 ms over any				
within the following			15-second interval				
thresholds during typical and							
peak operating conditions?							

Field	Data type	Example	Description			
F	Performance Thresholds					
What mechanisms are in place to detect and mitigate congestion?	Narrative		Please describe any: 1. Queue management, 2. Traffic prioritization, 3. DOCSIS scheduler configurations, or 4. Any other measure taken to reduce network congestion.			
Netwoi	k Managemei	nt & Redundan	су			
How is network congestion detected in real time?	Narrative					
What mechanisms are used to prioritize or shape traffic during periods of congestion?	Narrative					
What redundancy exists in the last-mile access network to protect against performance degradation or outages?	Narrative					

Tab 5. Performance Calculations Tab

Field	Data type	Example	Description			
Demonstration of Capacity						
Using worst-case design	Narrative		Calculations should be for			
assumptions, please provide			the proposed design specific			
calculations demonstrating			to the BSLs and all network			
that the network can provide			components encompassed			
to each location at the time			the application.			
of activation:						
			Please include the following			
(1) A minimum of 100			in your calculations:			
Mbps download and			 Existing network 			
20 Mbps upload			components upon which			
			the application is			
(2) ≤ 100 ms roundtrip			dependent			
latency			2. A summary of the			
			assumptions used for			
(3) Simultaneous 5 Mbps			demand modeling			
to all connected			3. Oversubscription ratios			

Field	Data type	Example	Description
locations (BEAD and non-BEAD users)		·	4. Existing and future network components upon which the application is dependent Number of anticipated subscribers that will utilize shared capacity along any segment of the network as of the activation date
De	monstration	of Scalabili	ty
Please demonstrate, using calculations based on the submitted technical information, how the proposed network will meet the following performance targets five years after initial deployment, assuming a 25% annual increase in capacity demand: (1) Provide at least 240 Mbps download and 48 Mbps upload capacity to each Broadband Serviceable Location (BSL) (2) Maintain roundtrip latency no greater than 100 ms under projected peak load (BEAD and non-BEAD users) (3) Simultaneous 12 Mbps to all connected locations (BEAD and non-BEAD and non-BEAD users)	Narrative		Please include the following in your calculations: 1. Existing and future network components upon which the application is dependent 2. Oversubscription ratios 3. All anticipated subscribers that will utilize shared capacity along any segment of the network at as of the activation date Calculations should be for the proposed design specific to the BSLs and all network components encompassed the application

Field	Data type	Example	Description
Please demonstrate, using	Narrative		The calculations must
calculations based on the			demonstrate that the
submitted technical			following performance
information, how the			targets can be met:
proposed network will			1. Deliver at least 300 Mbps
support deployment of 5G,			download and 30 Mbps
successor wireless			upload capacity to each
technologies, and other			of three distinct locations
advanced services.			within the proposed
For the purpose of this			project area (totaling
demonstration, calculations			900/90 Mbps aggregate
should be based on one of			capacity)
the following two scenarios:			2. Maintain roundtrip
			latency no greater than
(1) Rural capacity backhaul			100 ms on each of these
to one provider at each of			links
three locations, or			
			Your response must include:
(2) Three separate providers			Spectrum allocation
at one location each			plans across the HFC
			plant
			2. CMTS service group
			configurations
			3. Backhaul capacity
			serving the proposed
			area
			Distribution of bandwidth
			across shared users (BEAD
			and non-BEAD)
			and non-dead)