ENVIRONMENTAL ASSESSMENT
AND
FINDING OF NO SIGNIFICANT IMPACT

EVANSVILLE WATER AND SEWER UTILITY
PER J - Project 3
East Wastewater Treatment Plant
Capacity Upgrades Phase 2
SRF PROJECT SRF WW 19 13 82 19

DATE: September 27, 2019
TARGET PROJECT APPROVAL DATE: October 28, 2019

I. INTRODUCTION

The above entity has applied to the Wastewater State Revolving Fund (SRF) Loan Program for a loan to finance all or part of the wastewater project described in the accompanying Environmental Assessment (EA). As part of facilities planning requirements, an environmental review has been completed which addresses the project’s impacts on the natural and human environment. This review is summarized in the attached EA, which can also be viewed in color at http://www.in.gov/ifa/srf/.

II. PRELIMINARY FINDING OF NO SIGNIFICANT IMPACT (FNSI)

The SRF Wastewater Program has evaluated all pertinent environmental information regarding the proposed project and determined that an Environmental Impact Statement is not necessary. Subject to responses received during the 30-day public comment period, and pursuant to Indiana Code 5-1.2-3, it is our preliminary finding that the construction and operation of the proposed facilities will result in no significant adverse environmental impact. In the absence of significant comments, the attached EA shall serve as the final environmental document.

III. COMMENTS

All interested parties may comment upon the EA/FNSI. Comments must be received at the address below by the target approval date above. Significant comments may prompt a reevaluation of the preliminary FNSI; if appropriate, a new FNSI will be issued for another 30-day public comment period. A final decision to proceed, or not to proceed, with the proposed project shall be effected by finalizing, or not finalizing, the FNSI as appropriate. Comments regarding this document should be sent within 30 days to:

April Douglas
Environmental Review Coordinator
State Revolving Fund
100 N. Senate Ave. IGCN 1275
Indianapolis, IN 46204
317-234-7294
adouglas@ifa.in.gov
ENVIRONMENTAL ASSESSMENT

I. PROJECT IDENTIFICATION

Project Name and Address: PER J - Project 3:
East Wastewater Treatment Plant
Capacity Upgrades Phase 2
Evansville Water and Sewer Utility
1 SE 9th Street, Suite 205
Evansville, IN 47708

SRF Project Number: WW 19 13 82 19

Authorized Representative: Michael Labitzke, Deputy Director of Utilities

II. PROJECT LOCATION

The East Wastewater Treatment Plant (WWTP) is located in Vanderburgh County, Pigeon Township, Evansville South 24K USGS Quadrangle, township 6S, range 10W section 31. See Figure 1.

III. PROJECT NEED AND PURPOSE

Evansville’s consent decree with the U.S. Environmental Protection Agency and the Indiana Department of Environmental Management requires Evansville Water and Sewer Utility (EWSU) to develop and implement an Integrated Overflow Control Plan (IOCP). The IOCP establishes specific projects and schedules, including ten individual control measures that will dramatically reduce the number of Combined Sewer Overflows (CSOs) that occur. The East WWTP Capacity Upgrades Phase 2 project is a component of Control Measure #2, which includes increasing the peak flow capacity of the East WWTP to 40 MGD.

IV. PROJECT DESCRIPTION

In order to treat 40 MGD, the East WWTP secondary treatment process and disinfection system need to be expanded. The project is divided into two phases. Phase 1 includes secondary pump upgrades, chemical phosphorus removal addition, influent screens upgrades, and cogen expansion. Phase 1 will be funded by municipal bonds, and Phase 2 will be funded by SRF.

The following components are included in the East WWTP Capacity Upgrades Phase 2 work, see Figures 2 and 3:

- Biological Aerated Filter (BAF) addition, including eight new BAF tanks, BAF equipment, piping, influent pump station, backwash tank, blowers, building, electrical and instrumentation;
- Ultraviolet disinfection addition within the existing south chlorine contact tank, including three channels, UV equipment, baffles, weirs, electrical and instrumentation;
- Primary sludge degritting and thickening addition, including primary sludge pumps, vortex grit separators, grit classifier, drum thickeners, thickened sludge pumps, building, odor control system, electrical and instrumentation;
• Sidestream equalization addition, including new tank, piping, pumping and instrumentation;
• Electrical system improvements, including new electrical service, building, main switchgear, secondary switchgear and transformers;
• MLSS structure addition, including three mixed liquor channels with mixing, gates, and piping;
• Effluent pipe improvements, including CIPP lining, new structure and replacement piping; and
• Hydraulic improvements, including replace raw wastewater force main and meter, modify primary influent structure, raise primary clarifier 1 and 2 effluent weirs and equipment, and upsize aeration influent piping.

V. ESTIMATED PROJECT COSTS, AFFORDABILITY AND FUNDING

A. Selected Plan Estimated Cost Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAF System</td>
<td>$15,377,000</td>
</tr>
<tr>
<td>UV Disinfection</td>
<td>$5,158,000</td>
</tr>
<tr>
<td>Primary Sludge Degritting and Thickening</td>
<td>$6,144,000</td>
</tr>
<tr>
<td>Sidestream Equalization</td>
<td>$3,073,000</td>
</tr>
<tr>
<td>Electrical System Improvements</td>
<td>$6,765,000</td>
</tr>
<tr>
<td>MLSS Structure</td>
<td>$1,080,000</td>
</tr>
<tr>
<td>Effluent Pipe Improvements</td>
<td>$1,233,000</td>
</tr>
<tr>
<td>Hydraulic Improvements</td>
<td>$2,126,000</td>
</tr>
<tr>
<td>Construction Allowance</td>
<td>$1,200,000</td>
</tr>
</tbody>
</table>

Construction Costs Subtotal: $42,156,000

Construction Contingency: $4,325,000

Total Construction Costs: $46,481,000

Non-Construction Costs: $8,135,000

Total Estimated Project Cost: $54,616,000

B. The total cost of these projects is estimated to be approximately $54,616,000. Evansville Water and Sewer Utility will finance the project with a loan from the State Revolving Fund Loan Program for a term and annual fixed interest rate to be determined at loan closing. The actual loan amount will depend on the bids received. Monthly user rates and charges may need to be analyzed to determine if adjustments are required for loan repayment.

VI. DESCRIPTION OF EVALUATED ALTERNATIVES

A. BAF System

a. Alternative 1 – No action: If no action is taken, the existing plant would continue to not have the capacity to treat the required 40 MGD. Therefore, this is not a viable alternative.

b. Alternative 2 – Conventional Activated Sludge with New Aeration Tank and Secondary Clarifier: This alternative provides a new aeration tank with a volume of 1.4 million gallons and a new 150 foot diameter secondary clarifier.
c. Alternative 3 – Biological Aerated Filter System: This alternative includes six cells with submerged polystyrene media to support the growth of biomass and as a filtration medium. The BAF system will operate under aerobic conditions so that the biofilm can be configured for BOD removal and nitrification. The media also retains TSS, eliminating the need for secondary clarification. Periodic backwashing of the BAF cells is necessary. The system is similar to the BAF at EWSU’s West WWTP and would be designed to handle up to 14 MGD. The BAF system does not have the lowest capital cost, but EWSU staff prefers to have similar operations at both plants due to familiarity with the equipment and wet weather flexibility. The difference in cost is within a small margin of error for the size of the project. Therefore, Alternative 3 – BAF System is the selected alternative.

B. UV Disinfection

a. Alternative 1 – No action: Since the existing chlorine contact tanks do not have the adequate capacity to handle 40 MGD peak wet weather flow, this alternative is not a viable option.

b. Alternative 2 – Expand Existing Chlorine Gas Disinfection: This alternative includes adding additional disinfection capacity by increasing chlorine gas storage and feed systems. Chlorine gas presents inherent safety concerns to the plant staff and surrounding community, and expansion increases those concerns.

c. Alternative 3 – Install new UV Disinfection System: This alternative includes retrofitting the existing south chlorine contact tank with three channels (2 duty and 1 standby) with an additional spare channel installed without UV equipment. The design UV transmittance of 50% was selected for a total design flow of 40 MGD. The West WWTP is upgrading to UV disinfection, and EWSU staff would like to have operational consistency. Therefore, Alternative 3 – UV Disinfection is the selected alternative.

C. Primary Sludge Degritting and Thickening

a. Alternative 1 – No action: Taking no action to improve grit removal would result in continued operational and maintenance issues. This would mean difficult pumping conditions and allowing large amounts of grit to bypass removal and settle in primary clarifiers. Therefore, this alternative is not viable.

b. Alternative 2 – New Raw Wastewater Grit Removal System: Since the existing raw wastewater screens, grit removal system, and influent pumps are located below grade, a new grit removal system would require a significant structure in a small space and costly pumping.

c. Alternative 3 – New Primary Sludge Grit Removal System: A new grit removal system on the primary sludge system prior to anaerobic digestion will reduce the grit volume to be treated and allow for smaller footprint and cost than Alternative 2. In addition, less grit in the primary sludge allows EWSU to thicken primary sludge which will free capacity in the digesters. Therefore, Alternative 3 – New Primary Sludge Grit Removal System is the selected alternative.

D. Sidestream Equalization

a. Alternative 1 – No Action: The existing plant experiences spikes in ammonia loadings as well as filamentous outbreaks due to the high and non-continuous loadings of recycle streams from WAS, digester decanting, and digested sludge dewatering. In addition, filtrate from the gravity belt thickeners, centrate from the dewatering centrifuges, and digester supernatant are combined and pumped upstream of the primary clarifiers. If no action is taken, these process upsets will continue to result in operational difficulty. Therefore, this alternative is not viable.
b. Alternative 2 – Sidestream treatment with AnitaMox process: The AnitaMox process includes simultaneous aerobic nitrification reaction and anoxic ammonia oxidation reactions resulting in total nitrogen removal in a single step. The same number of cells would be required for the new BAF system. Also, this was the most expensive alternative.

c. Alternative 3 – Flow Equalization: A new closed flow equalization tank for centrate and digester supernatant will allow returning a more constant flow seven days a week to the primary influent channel which will reduce spikes in ammonia loadings and resultant operational issues. Since it is closed, it will also minimize odors. Therefore, Alternative 3 – Flow Equalization is the selected alternative.

E. Electrical System Improvements

a. Alternative 1 – No Action: Since additional power will be required to operate the new equipment required by the capacity expansion, this alternative is not viable.

b. Alternative 2 – Upgrade Electrical Service: Upgrading the electrical service is considered critical to upgrading and expanding the treatment processes at the East WWTP. The main switchgear will be designed to match the existing electricity provider’s requirements. Electric service redundancy will be achieved by having two electrical feeds, coming from opposite directions, to feed the plant. Therefore, Alternative 2 – Electrical System Improvements is the selected alternative.

F. MLSS Structure

a. Alternative 1 – No Action: Analyses have shown operational issues during low flows and high retention times in the secondary clarifiers. Currently, it is not possible to take one or more clarifiers offline during low flows. Therefore, this alternative is not viable.

b. Alternative 2 – Mixed Liquor Structure: A new mixed liquor structure would include three mixed liquor channels with mixing, gates, and piping. The gates will be programmed to open during high flow. This would minimize the potential for generating filamentous bacteria and would provide the operational flexibility to take clarifiers offline without taking the aeration tanks offline. Therefore, Alternative 2 – MLSS Structure is the selected alternative.

G. Effluent Pipe Improvements

a. Alternative 1 – No Action: Due to the configuration of the chlorine contact tanks, EWSU has some flexibility to discharge treated effluent through either or both 36-inch effluent pipes. Two of the existing chlorine contact tanks are being eliminated and the plant will lose one of the 36-inch effluent lines if no improvements are made. To pass 40 MGD, a portion of this pipe must be upgraded. Therefore, this alternative is not viable.

b. Alternative 2 – Single to Dual Pipe: A single pipe between the UV and parallel to the 36-inch existing effluent pipe would replace the existing 54-inch pipe. The new pipe would connect to a new diversion structure, which would split flow to two outgoing channels and 36-inch pipes with sluice gates. The gates will allow EWSU to divert flow through either of the 36-inch effluent pipes.

c. Alternative 3 – Diversion Structure with 48-inch Pipes: This alternative includes dual effluent lines from downstream of the UV tank and would replace the 54-inch pipe with dual 48-inch pipes. A new diversion structure will be constructed adjacent to the existing Y-3 structure and will include sluice gates to split flow to the two new pipes. Both Alternative 2 and 3 meet the need to pass 40 MGD and establish a connection of both effluent pipes to the UV tank. Alternative 3 is less expensive than Alternative 2 because it uses a simple construction for the diversion structure. Therefore, Alternative 3 – Diversion Structure with 48-inch Pipes is the selected alternative.
H. Hydraulic Improvements

a. Alternative 1 – No Action: Hydraulic evaluation identified several hydraulic bottlenecks in the existing system, and improvements are required to achieve the peak flow capacity of 40 MGD. If no action is taken, this peak flow rate will not be achieved. Therefore, this alternative is not viable.

b. Alternative 2 – Hydraulic Improvements: This alternative will replace the raw wastewater force main and meter, modify primary influent structure, raise primary clarifier 1 and 2 effluent weirs and equipment, and upsize aeration influent piping. Eliminating these hydraulic bottlenecks will ensure the East WWTP can process 40 MGD. Therefore, Alternative 2 – Hydraulic Improvements is the selected alternative.

VII. ENVIRONMENTAL IMPACTS OF THE FEASIBLE ALTERNATIVES

A. Direct Impacts of Construction and Operation

Disturbed/Undisturbed Land: The project area is located within the property boundaries of the Evansville East WWTP. All work, except the construction of a new entrance road will occur within the fence line of the plant. The new south entrance road is required as installation of the BAF and associated sewer relocation will require closure of the plant’s only existing entrance for up to a year.

Structural Resources (Figure 2): Construction and operation of the project will not alter, demolish or remove historic properties. If any visual or audible impacts to historic properties occur, they will be temporary and will not alter the characteristics that qualify such properties for inclusion in or eligibility for the National Register of Historic Places. The SRF’s finding pursuant to Section 106 of the National Historic Preservation Act is: “no historic properties affected.”

Surface Waters: The project will not adversely affect outstanding state resource waters listed in 327 IAC 2-1.3-3(d), exceptional use streams listed in 327 IAC 2-1-11(b), Natural, Scenic and Recreational Rivers and Streams listed in 312 IAC 7-(2), or Salmonid Streams listed in (327 IAC 2-1.5-5(a)(3) or streams on the Outstanding River List for Indiana.

Wetlands (Figure 3): The Preliminary Engineering Report (PER) states:

Treatment Facility – Wetlands are located adjacent to the project area; however, the selected alternatives/selected plan lies outside the boundary of the wetlands. Wetlands will not be impacted by the construction or operation of the project.

South Entrance Road – A wetland delineation was performed in May 2019. A section 401/404 wetlands permit was delivered on June 20, 2019. EWSU anticipates that mitigation credits may need to be purchased from Indiana Stream and Wetland Mitigation Program (INSWMP).

Floodplain (Figure 4): The Preliminary Engineering Report (PER) states:

Treatment Facility – The project area is shown to be protected from the 1-percent annual chance or greater flood hazard by a levee system that was previously accredited by FEMA. Since all improvements will be limited to the WWTP and will have no impact on the levee system, no flooding hazards will be created.
South Entrance Road – The City maintains a levee system to protect the City from flooding. The East WWTP Treatment Facility and the South Entrance Road are both within the City’s K-4 levee Pumping Station storage basin. The City’s goal is to maintain a 1-percent-annual-chance high water elevation in the K-4 Levee Pumping Station storage basin. The City’s combined sewer system model have been modified through other projects to account for all stormwater runoff contributing flows to the Bee Slough during conditions when the Ohio River is at flood stage and the K-4 Levee Pumping Station is active.

The resulting high-water elevation from this model under existing conditions was determined to be 365.21-ft. Modeling further indicated that this is reduced to 364.25-ft under the proposed East WWTP 40 mgd discharge pumping conditions. This is because the upgrades as part of this project will allow the City to treat and discharge additional flow out of the K-4 basin. This difference between existing and proposed pumping conditions will allow up to 152,500-cy of fill could be placed within the K-4 basin below 365.21-ft before the water level would exceed the existing high-water level. We have used a Civil-3D surface model to estimate that we will be placing 12,500-cy below 365.21-ft elevation for the South Entrance Road. This is 8.2% of the 152,500-cy maximum and therefore will not adversely impact the K-4 basin.

Groundwater: The project will not impact a drinking water supply or sole source aquifer.

Plants and Animals: The Preliminary Engineering Report (PER) states:

Treatment Facility – Tree removal is not anticipated as all work will occur within the boundaries of the WWTP. The construction and operation of the project will not negatively impact state or federal listed endangered species or their habitat. The project will be implemented to minimize impact to non-endangered species and their habitat.

South Entrance Road – Approximately 0.4 acres of forested wetland require tree-removal for fill placement. The project will minimize the impact on plants and animals outside of this area. This forested wetland has the potential for bat roosting habitat. Tree clearing will be timed to avoid roosting times: tree removal will be limited to October 1 through March 31 of each year to avoid impacting federally endangered Indiana Bat (Myotis sodalist) and federally threatened northern long-eared bat (Myotis septentrionalis).

Prime Farmland: The project will not convert prime farmland.

Air Quality: Construction activities may generate some noise, fumes and dust, but should not significantly affect air quality.

Open Space and Recreational Opportunities: The project will neither create nor destroy open space or recreational opportunities.

Lake Michigan Coastal Program: The project will not affect the Lake Michigan Coastal Zone.

National Natural Landmarks: Construction and operation of the proposed project will not affect National Natural Landmarks.

B. Indirect Impacts

Evansville Water and Sewer Utility’s PER states: The City of Evansville, through the authority of its council, planning commission, or other means, will ensure that future development, as well as future collection system or treatment works projects connecting to SRF funded facilities, will not adversely impact wetlands, forested areas, steep slopes, 100-year floodplains,
archaeological/historical/structural resources, or other sensitive environmental resources. The City will require new development and treatment works projects to be constructed within the guidelines of the US Fish and Wildlife Service, Indiana Department of Natural Resources, Indiana Department of Environmental Management, and other environmental review authorities.

C. Comments from Environmental Review Authorities

In correspondence dated July 23, 2019, the Indiana Department of Natural Resources Division of Historic Preservation and Archaeology stated:

Pursuant to IC 13-18-21 and 327 IAC 14 and Section 106 of the National Historic Preservation Act (54 U.S.C. § 306108) and 36 C.F.R. Part 800, the Indiana State Historic Preservation Officer ("Indiana SHPO") is conducting an analysis of the materials dated and received by the Indiana SHPO on July 2, 2019, for the above indicated project in Evansville, Vanderburgh County, Indiana.

Based on our analysis, it has been determined that no historic properties will be altered, demolished, or removed by the proposed project.

Thank you for the submission of the archaeological short report by Cultural Resource Analysts (Dickerson, 6/6/2019). We note that no archaeological sites were identified as a result of the investigation.

If any prehistoric or historic archaeological artifacts or human remains are uncovered during construction, demolition, or earthmoving activities, state law (Indiana Code 14-21-1-27 & 29) requires that the discovery must be reported to the Department of Natural Resources within two (2) business days.

In correspondence dated August 1, 2019, the Department of Natural Resources Environmental Unit stated:

The Indiana Department of Natural Resources has reviewed the above referenced project per your request. Our agency offers the following comments for your information and in accordance with the National Environmental Policy Act of 1969.

If our agency has regulatory jurisdiction over the project, the recommendations contained in this letter may become requirements of any permit issued. If we do not have permitting authority, all recommendations are voluntary.

Regulatory Assessment: Formal approval by the Department of Natural Resources under the regulatory programs administered by the Division of Water is not required for this project.

Natural Heritage Database: The Natural Heritage Program's data have been checked.

The American Badger (Taxidea taxus) and Great Egret (Ardea alba), both state species of special concern, have been documented within 1/2 mile of the project area.

Fish & Wildlife Comments: Badgers are a wide ranging species that prefer an open, prairie-type habitat, with Indiana being at the eastern edge of their natural range. The range of the badger continues to expand as a result of land-use changes from forest to farmland and open pastureland. Impacts to the American badger or its preferred habitat are unlikely as a result of this project.
Avoid and minimize impacts to fish, wildlife, and botanical resources to the greatest extent possible, and compensate for impacts. The following are recommendations that address potential impacts identified in the proposed project area:

1) Great Egret: Suitable habitat for nesting Great Egrets may exist within the project area. We recommend surveying the trees within the project area prior to construction to look for egret nests. Their nests are large, about 0.5 to 1 meter wide, made of large sticks, and are found near the tops of the trees. If active nests with eggs or chicks are observed, then work should not be conducted until after the egrets finish nesting. If no active nests are found, project work may occur without disturbance to this species.

2) Riparian Habitat: We recommend a mitigation plan be developed for any unavoidable habitat impacts that will occur. The DNR's Floodway Habitat Mitigation guidelines (and plant lists) can be found on line at: http://www.in.gov/legislative/iac/20190130-IR-312190041_NRA.xml.pdf.

Impacts to non-wetland forest of one (1) acre or more should be mitigated at a minimum 2:1 ratio. If less than one acre of non-wetland forest is removed in a rural setting, replacement should be at a 1:1 ratio based on area. Impacts to non-wetland forest under one (1) acre in an urban setting should be mitigated by planting five trees, at least 2 inches in diameter-at-breast height (dbh), for each tree which is removed that is 10" dbh or greater (5:1 mitigation based on the number of large trees).

The additional measures listed below should be implemented to avoid, minimize, or compensate for impacts to fish, wildlife, and botanical resources:

1. Revegetate all bare and disturbed areas with a mixture of native grasses, sedges, wildflowers, and also native hardwood trees and shrubs if any woody plants are disturbed during construction as soon as possible upon completion. Do not use any varieties of Tall Fescue or other non-native plants, including prohibited invasive species (see 312 IAC 18-3-25).

2. Minimize and contain within the project limits inchannel disturbance and the clearing of trees and brush.

3. Do not cut any trees suitable for Indiana bat or Northern Long-eared bat roosting (greater than 5 inches dbh, living or dead, with loose hanging bark, or with cracks, crevices, or cavities) from April 1 through September 30.

4. Appropriately designed measures for controlling erosion and sediment must be implemented to prevent sediment from entering the stream or leaving the construction site; maintain these measures until construction is complete and all disturbed areas are stabilized.

5. Seed and protect all disturbed streambanks and slopes not protected by other methods that are 3:1 or steeper with erosion control blankets that are heavy-duty, biodegradable, and net free or that use loose-woven / Leno-woven netting to minimize the entrapment and snaring of small-bodied wildlife such as snakes and turtles (follow manufacturer's recommendations for selection and installation); seed and apply mulch on all other disturbed areas.
In correspondence dated May 16, 2016, the Natural Resources Conservation Service stated:

The proposed project to make sewer improvements in the Town of Evansville, Vanderburgh County, Indiana, as stated in your correspondence received May 4, 2016, will not cause a conversion of prime farmland.

The United States Fish and Wildlife Service had no comments on this project.

VIII. MITIGATION MEASURES

Evansville Water and Sewer Utility’s PER states:

Siltation and erosion will be kept to a minimum. Any mitigation measures cited in comment letters or mandated by authorized review agencies to reduce or eliminate siltation, erosion, and waterway contamination will be implemented. Mitigation measures to limit erosion and siltation will include the following:

1. Erosion and sediment control measures required by the project specifications will require that the contractor provide a schedule for clearing, grading, excavating, and restoring disturbed areas, along with a description of measures to be used during construction to ensure erosion/sediment control. The program shall meet all applicable federal, state and local requirements.
2. Natural vegetation will be retained wherever feasible.
3. Excavations will be limited to previously disturbed land within existing WWTP property.
4. Appropriate agronomic practices (sediment basins, seeding, mulching) will be returned to their natural state as soon as possible, if disturbed.
5. Drainage systems, including surface and subsurface drainage, will be returned to their natural state as soon as possible, if disturbed.
6. Roadways and parking lots will remain stabilized during construction to the extent possible.
7. When possible, construction activities will be scheduled to avoid excessively wet conditions.
8. Where possible, excavated material will be kept to the upland side of the excavation. Excess material will be used elsewhere on the project.
9. The existing topsoil will be reused during the restoration process.
10. If necessary, discharge from dewatering may be directed to sedimentation basins prior to discharging into surrounding surface waters.

The adverse impacts caused by dust maybe alleviated by periodically wetting the exposed soil and unpaved roadways to reduce the suspension of particles. To reduce noise impacts, work activities can be limited to normal daytime hours.

If necessary, dewatering will be employed during construction with the flow directed to a sedimentation basin prior to being discharged to surrounding surface waters.

IX. PUBLIC PARTICIPATION

A properly noticed public hearing was held on September 11, 2019 at 6:00 pm at the Evansville Water and Sewer Utility Engineering Department, located at 1 SE 9th Street, Suite 205, Evansville, IN 47708, in the Large Conference Room. No written comments were received in the 5-day period following the hearing for this project.
Evansville East Water Treatment Plant Project; 1500 Waterworks Road, 1.50 miles West of US 41

Evansville South
USGS Topographic Map

Location: Waterworks Road
County: Vanderburgh
Township: Pigeon
State: Indiana

Figure 1
Figure 2

Historic Buildings, Bridges, and Cemeteries Map
Figure 4