A **worksheet** provides the designer a representation of a measure that allows for input of specific design criteria. The plan designer will be required to assess field conditions and apply engineering principles to determine dimensions and specifications. An **exhibit** is a representative view of a measure. An exhibit often includes standardized dimensions and specifications. Several exhibits are only a representative view of the measure, and will require the designer to assess field conditions and input dimensions and specifications for the measure. These exhibits have been identified with a note.

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Construction Ingress/Egress Pad Plan View 5</td>
<td></td>
</tr>
<tr>
<td>Worksheet (Large Sites – Two Acres or Larger)</td>
<td></td>
</tr>
<tr>
<td>Temporary Construction Ingress/Egress Pad Cross-Section 7</td>
<td></td>
</tr>
<tr>
<td>View Worksheet (Large Sites – Two Acres or Larger)</td>
<td></td>
</tr>
<tr>
<td>Temporary Construction Ingress/Egress Pad Plan View 9</td>
<td></td>
</tr>
<tr>
<td>Worksheet (Small Sites – Less Than Two Acres)</td>
<td></td>
</tr>
<tr>
<td>Riprap Slope Protection Worksheet 11</td>
<td></td>
</tr>
<tr>
<td>Temporary Diversion Worksheet 13</td>
<td></td>
</tr>
<tr>
<td>Permanent Diversion Worksheet 15</td>
<td></td>
</tr>
<tr>
<td>Perimeter Diversion Dike Worksheet 17</td>
<td></td>
</tr>
<tr>
<td>Water Bar Worksheet 19</td>
<td></td>
</tr>
<tr>
<td>Rock Check Dam Worksheet 21</td>
<td></td>
</tr>
<tr>
<td>Temporary Slope Drain Worksheet 23</td>
<td></td>
</tr>
<tr>
<td>Grass-Lined Channel Worksheet 25</td>
<td></td>
</tr>
<tr>
<td>Riprap-Lined Channel Worksheet 27</td>
<td></td>
</tr>
<tr>
<td>Energy Dissipater Worksheet 1 29</td>
<td></td>
</tr>
<tr>
<td>Energy Dissipater Worksheet 2 31</td>
<td></td>
</tr>
<tr>
<td>Concrete Block Chute Worksheet 33</td>
<td></td>
</tr>
<tr>
<td>Excavated Drop Inlet Protection Worksheet 35</td>
<td></td>
</tr>
<tr>
<td>Temporary Sediment Trap Rock Dam Worksheet 37</td>
<td></td>
</tr>
<tr>
<td>Temporary Sediment Trap Outlet Worksheet 39</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B — WORKSHEETS & EXHIBITS

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Dry Sediment Basin Earthen Dam/ Embankment Worksheet</td>
<td>41</td>
</tr>
<tr>
<td>Temporary Dry Sediment Basin Spillway Worksheet 1</td>
<td>43</td>
</tr>
<tr>
<td>Temporary Dry Sediment Basin Spillway Worksheet 2</td>
<td>45</td>
</tr>
<tr>
<td>Concrete Washout (Above Grade System) Worksheet</td>
<td>47</td>
</tr>
<tr>
<td>Concrete Washout (Below Grade System) Worksheet</td>
<td>49</td>
</tr>
<tr>
<td>Surface Roughening – Stair-Step Worksheet</td>
<td>51</td>
</tr>
<tr>
<td>Surface Roughening – Grooving Worksheet</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sod Exhibit 1</td>
<td>55</td>
</tr>
<tr>
<td>Perimeter Diversion Dike Exhibit 1</td>
<td>57</td>
</tr>
<tr>
<td>Water Bar Exhibit 1</td>
<td>59</td>
</tr>
<tr>
<td>Rock Check Dam Exhibit 1</td>
<td>61</td>
</tr>
<tr>
<td>Rock Check Dam Exhibit 2</td>
<td>63</td>
</tr>
<tr>
<td>Temporary Slope Drain Exhibit 1</td>
<td>65</td>
</tr>
<tr>
<td>Rock-Lined Chute Exhibit 1</td>
<td>67</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
<tr>
<td>Reinforced Vegetated Chute Exhibit 1</td>
<td>69</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
<tr>
<td>Excavated Drop Inlet Protection Exhibit 1</td>
<td>71</td>
</tr>
<tr>
<td>Gravel Donut Drop Inlet Protection Exhibit 1</td>
<td>73</td>
</tr>
<tr>
<td>Gravel Donut Drop Inlet Protection Exhibit 2</td>
<td>75</td>
</tr>
<tr>
<td>Geotextile Fabric Drop Inlet Protection Exhibit 1</td>
<td>77</td>
</tr>
<tr>
<td>Geotextile Fabric Drop Inlet Protection Exhibit 2</td>
<td>79</td>
</tr>
<tr>
<td>Exhibit</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Straw Bale Drop Inlet Protection Exhibit 1</td>
<td>81</td>
</tr>
<tr>
<td>Straw Bale Drop Inlet Protection Exhibit 2</td>
<td>83</td>
</tr>
<tr>
<td>Block & Gravel Drop Inlet Protection Exhibit 1</td>
<td>85</td>
</tr>
<tr>
<td>Block & Gravel Drop Inlet Protection Exhibit 2</td>
<td>87</td>
</tr>
<tr>
<td>Stone Bag Curb Inlet Protection Exhibit 1</td>
<td>89</td>
</tr>
<tr>
<td>Stone Bag Curb Inlet Protection Exhibit 2</td>
<td>91</td>
</tr>
<tr>
<td>Block & Gravel Curb Inlet Protection Exhibit 1</td>
<td>93</td>
</tr>
<tr>
<td>Block & Gravel Curb Inlet Protection Exhibit 2</td>
<td>95</td>
</tr>
<tr>
<td>Temporary Dry Sediment Basin Riser Pipe Exhibit 1</td>
<td>97</td>
</tr>
<tr>
<td>Silt Fence Exhibit 1</td>
<td>99</td>
</tr>
<tr>
<td>Silt Fence Exhibit 2</td>
<td>101</td>
</tr>
<tr>
<td>Silt Fence Exhibit 3</td>
<td>103</td>
</tr>
<tr>
<td>Straw Bale Dam Exhibit 1</td>
<td>105</td>
</tr>
<tr>
<td>Straw Bale Dam Exhibit 2</td>
<td>107</td>
</tr>
<tr>
<td>Straw Bale Dam Exhibit 3</td>
<td>109</td>
</tr>
<tr>
<td>Straw Bale Dam Exhibit 4</td>
<td>111</td>
</tr>
<tr>
<td>Temporary Stream Crossing – Bridges Exhibit 1</td>
<td>113</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
<tr>
<td>Temporary Stream Crossing – Culverts Exhibit 1</td>
<td>115</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
<tr>
<td>Temporary Stream Crossing – Fords Exhibit 1</td>
<td>117</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
<tr>
<td>Temporary Stream Crossing – Fords Exhibit 2</td>
<td>119</td>
</tr>
<tr>
<td>(requires inclusion of dimensions and specifications)</td>
<td></td>
</tr>
</tbody>
</table>
This page was intentionally left blank.
Temporary Construction Ingress/Egress Pad
Plan View Worksheet
(large sites—two acres or larger)

Public Road

Geotextile Fabric Underliner

INDOT CA No. 2 Aggregate

Top-Dress First 50 Feet Adjacent to Public Roadway with 2-3 Inches of INDOT CA No. 53 Aggregate (optional)

L = Ingress/Egress Pad Length
W = Ingress/Egress Pad Width
T = Aggregate Thickness

(Note: For minimum dimensions, see the “Specifications” section of this measure.)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993
This page was intentionally left blank.
Temporary Construction Ingress/Egress Pad
Cross-Section View Worksheet
(large sites two acres or larger)

H = Height of Diversion Ridge
(Note: 8 inches minimum)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 17
This page was intentionally left blank.
Temporary Construction Ingress/Egress Pad
Plan View Worksheet
(small sites—less than two acres)

Public Road

Geotextile Fabric Underliner

INDOT CA No. 2 Aggregate

Top-Dress with INDOT CA No. 53 Aggregate (optional)

L = Ingress/Egress Pad Length
W = Ingress/Egress Pad Width
T = Aggregate Thickness

(Note: For minimum dimensions, see the “Specifications” section of this measure.)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993
Riprap Slope Protection Worksheet

Smooth foundation under bedding material/filter medium

Bedding material/filter medium

Keyway

\(T = \text{Aggregate Thickness} \geq 2 \times d_{50} \)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 69
This page was intentionally left blank.
Temporary Diversion Worksheet

\[R_W = \text{feet} \quad C_W = \text{feet} \]

Protection Area

6 inch freeboard

All constructed slopes 2:1 or flatter

\[C_D = \text{Channel Depth} \]
\[C_W = \text{Channel Width} \]
\[R_W = \text{Ridge Width} \]

For information on this measure, see Chapter 7, page 75
This page was intentionally left blank.
Permanent Diversion Worksheet

For information on this measure, see Chapter 7, page 79

\[C_D = \text{Channel Depth} \]

\[C_W = \text{Channel Width} \]

\[R_W = \text{Ridge Width} \]
Perimeter Diversion Dike Worksheet

- RH = Ridge Height
- RW = Ridge Base Width
- CW = Channel Top Width
- CD = Channel Depth
- Note: Drainage channel is optional.

For information on this measure, see Chapter 7, page 83
This page was intentionally left blank.
Water Bar Worksheet

![Diagram of water bar system]

- **R_H** = Ridge Height
- **R_W** = Ridge Base Width
- **C_D** = Channel Depth
- **C_W** = Channel Top Width

Note: Drainage channel is optional.

For information on this measure, see Chapter 7, page 89
This page was intentionally left blank.
Rock Check Dam Worksheet

$S_0 = \text{Spillway Depth}$

(NOTE: For minimum dimensions see the “Specifications” section of this measure.)

$D_N = \text{Dam Height}$
$S_0 = \text{Spillway Depth}$

(NOTE: For minimum dimensions see the “Specifications” section of this measure.)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 97
This page was intentionally left blank.
Temporary Slope Drain Worksheet

IBW = _____ feet
DBw = _____ feet
DBh = _____ feet
Pd = _____ inches
TSs = _____ feet
LSs = _____ feet

IBh = _____ feet

IBit = Island Berm Height
IBw = Island Berm Width
DBh = Diversion Berm Height
DBw = Diversion Berm Width
LSs = Level Section Length
TSs = Tie-Down Stake Spacing
Pd = Pipe Diameter

(Note: For minimum and maximum dimensions, see the “Specifications” section of this measure.)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 103
This page was intentionally left blank.
Grass-Lined Channel Worksheet

B_W = Designed Bottom Width of Channel
C_W = Designed Top Width of Channel
C_D = Designed Depth of Channel

For information on this measure, see Chapter 7, page 111
This page was intentionally left blank.
Riprap-Lined Channel Worksheet

\[B_W = \text{Designed Bottom Width of Channel} \]
\[C_W = \text{Designed Top Width of Channel} \]
\[C_D = \text{Designed Depth of Channel} \]
\[T = \text{Thickness of Riprap Layer} \]
This page was intentionally left blank.
Energy Dissipater Worksheet 1

\[A_L = \text{Apron Length} \]
\[A_T = \text{Apron Thickness} \]

For information on this measure, see Chapter 7, page 121.
This page was intentionally left blank.
Energy Dissipater Worksheet 2

Aₜ = _____ feet

A₆ = _____ feet

- **Drain pipe**
- **Stone placed around end of drain pipe to prevent slope erosion and undercutting of the pipe**
- **Stone apron below pipe discharge**

Geotextile fabric or well graded aggregate

Aₜ = Apron Thickness

A₆ = Apron Width

Note: A₆ is the apron width at the narrow end of the apron.

For information on this measure, see Chapter 7, page 121
This page was intentionally left blank.
Concrete Block Chute Worksheet

Subsurface drain tile offset from center of channel to prevent seepage of up-slope groundwater

\[B_{TW} = \text{feet} \]

\[\text{___:1 slope} \]

\[2:1 \text{ or flatter slope} \]

Plastic sheeting

Bedding material

Geotextile fabric

Concrete blocks

\[B_{TW} = \text{Berm Top Width} \]

Source: Adapted from U.S. Department of Agriculture, Natural Resources Conservation Service

For information on this measure, see Chapter 7, page 131
This page was intentionally left blank.
Excavated Drop Inlet Protection Worksheet

\[E_A = \text{____} \text{ feet} \times \text{____} \text{ feet} \]

2:1 or flatter slope

\[E_D = \text{____} \text{ inches} \]

Aggregate supported by geotextile fabric or hardware cloth

Weep holes for dewatering

\[E_A = \text{Excavated Area (as required)} \]
\[E_D = \text{Excavated Depth} \]

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 145
This page was intentionally left blank.
Temporary Sediment Trap
Rock Dam Worksheet

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 183
Temporary Sediment Trap
Outlet Worksheet

\[\text{Overfill 6 inches to allow for settlement} \]

\[\text{Geotextile filter fabric} \]

\[\text{RB}_w = \text{Rock Dam Bottom Width} \]
\[S_D = \text{Spillway Depth} \]
\[\text{SB}_w = \text{Spillway Bottom Width} \]
\[T = \text{Spillway Side-Slope Armament Thickness} \]

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 183
This page was intentionally left blank.
Temporary Dry Sediment Basin
Earthen Dam/Embankment Worksheet

\[E_{TW} = \text{_____ feet} \]

\[\text{_____}:1 \text{ slope} \]

\[\text{_____}:1 \text{ slope} \]

\[E_h = \text{_____ feet} \]

Hand-compacted fill around barrel/pipe and anti-seep collar

Earthen dam/embankment constructed in 6 to 8 inch lifts

Allowance for 10% settlement

\[E_h = \text{Earthen Dam/Embankment Height} \]
\[E_{TW} = \text{Earthen Dam/Embankment Top Width} \]

\(\text{(NOTE: For minimum dimensions see the "Specifications" section of this measure.)} \)

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 191
This page was intentionally left blank.
Temporay Dry Sediment Basin
Spillway Worksheet 1

Riser pipe crest elevation =

Emergency spillway crest elevation =

FB\(_s\) = _____ feet

Flood pool elevation =

___:1 slope

Anti-flotation block
Principal spillway barrel/pipe
Cut-off trench
Anti-seep collar
Stabilized outlet
Hand-compacted fill around pipe and anti-seep collar

\(E_{SW} = \) Emergency Spillway Width

\(FB_s = \) Free Board Depth

\textit{(NOTE: For minimum dimensions see the “Specifications” section of this measure.)}

Source: Adapted from U.S. Department of Agriculture, Natural Resources Conservation Service

\(E_{SW} = \) _____ feet

For information on this measure, see Chapter 7, page 191
This page was intentionally left blank.
Temporary Dry Sediment Basin
Spillway Worksheet 2

ESW = Emergency Spillway Width
FBD = Free Board Depth
LSL = Level Section Length

(Note: For minimum dimensions see the “Specifications” section of this measure.)

Source: Adapted from USDA Natural Resources Conservation Service

For information on this measure, see Chapter 7, page 191.
This page was intentionally left blank.
Concrete Washout (Above Grade System) Worksheet

Metal pins or staples to secure the polyethylene lining to the straw bales

Wood or metal stakes to secure the straw bales (2 per straw bale)

Straw bale (alternative materials or products may be used to provide structural containment. Alternative materials or products will require design modification.

Polyethylene lining (10 millimeters); The lining should extend over the straw bales.

L = inside length
W = inside width

For information on this measure, see Chapter 7, page 247
This page was intentionally left blank.
Concrete Washout (Below Grade System)
Worksheet

For information on this measure, see Chapter 7, page 247.
This page was intentionally left blank.
Surface Roughening – Stair-Step Worksheet

H = ____ inches

V = _____ inches

Slope

H = Horizontal Cut

V = Vertical Cut

H > **V**

Note: See “Roughening Slopes (Not to be Mowed)” under the “Specifications” section of this measure.

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 297
This page was intentionally left blank.
Surface Roughening – Grooving Worksheet

GW = ____ inches
GD = ____ inches

GD = Groove Depth
GW = Groove Width

Note: See “Roughening Slopes (Not to be Mowed)” under the “Specifications” section of this measure.

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 297
This page was intentionally left blank.
Sod

Exhibit 1

Perspective View

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993 for information on this measure, see Chapter 7, page 47
This page was intentionally left blank.
Perimeter Diversion Dike

Exhibit 1

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 83
This page was intentionally left blank.
Water Bar

Exhibit 1

Slope ≤ 2 percent

Outlet to a stable area

For information on this measure, see Chapter 7, page 89
Rock Check Dam

Exhibit 1

A = Crest of Dam
B = Toe of Dam

For information on this measure, see Chapter 7, page 97
This page was intentionally left blank.
Rock Check Dam

Exhibit 2

For information on this measure, see Chapter 7, page 97
This page was intentionally left blank.
Temporary Slope Drain

Exhibit 1

Anchor stake spacing (maximum of 10 feet)

Corrugated, non-perforated, plastic drain pipe

Anchor stakes

Stabilized outlet

Level section (4 foot min.)

Diversion berm

Diversion channel

Flow

Earthen island over inlet section of drain

For information on this measure, see Chapter 7, page 103
This page was intentionally left blank.
Rock-Lined Chute

Exhibit 1

- Riprap placed over geotextile fabric
- Subsurface drain tile offset from center of channel to prevent seepage of up-slope groundwater

NOTE: This measure requires the designer to provide design specifications and dimensions.

Source: Adapted from USDA Natural Resources Conservation Service

For information on this measure, see Chapter 7, page 127.
This page was intentionally left blank.
Reinforced Vegetated Chute

Exhibit 1

Source: Adapted from USDA Natural Resources Conservation Service

NOTE: This measure requires the designer to provide design specifications and dimensions.

For information on this measure, see Chapter 7, page 135
This page was intentionally left blank.
Excavated Drop Inlet Protection

Exhibit 1

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 145
This page was intentionally left blank.
Gravel Donut Drop Inlet Protection

Exhibit 1

For information on this measure, see Chapter 7, page 149
This page was intentionally left blank.
Gravel Donut Drop Inlet Protection

Exhibit 2

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 149
This page was intentionally left blank.
Geotextile Fabric Drop Inlet Protection

Exhibit 1

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 153
This page was intentionally left blank.
Geotextile Fabric Drop Inlet Protection

Exhibit 2

For information on this measure, see Chapter 7, page 153
This page was intentionally left blank.
Straw Bale Drop Inlet Protection

For information on this measure, see Chapter 7, page 159

Source: Adapted from Michigan Soil Erosion and Sedimentation Control Guidebook, 1975
This page was intentionally left blank.
Straw Bale Drop Inlet Protection

Exhibit 2

Comacted fill to prevent piping

Bale turned on its side to prevent deterioration of bindings

Flow

Bales entrenched four (4) inches into the soil

Source: Adapted from Michigan Soil Erosion and Sedimentation Control Guidebook, 1975

For information on this measure, see Chapter 7, page 159
This page was intentionally left blank.
Block & Gravel Drop Inlet Protection

Exhibit 1

One concrete block, in bottom row of blocks on each side of structure, laid horizontally to allow for dewatering

Aggregate blanket with 2:1 slope or flatter

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 163
This page was intentionally left blank.
Block & Gravel Drop Inlet Protection

Exhibit 2

Concrete block laid horizontally for dewatering

Hardware cloth

2:1 or flatter slope

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 163
This page was intentionally left blank.
Stone Bag Curb Inlet Protection

Exhibit 1

For information on this measure, see Chapter 7, page 169
This page was intentionally left blank.
Stone Bag Curb Inlet Protection

Exhibit 2

For information on this measure, see Chapter 7, page 169.
This page was intentionally left blank.
Block & Gravel Curb Inlet Protection

Exhibit 1

Source: Adapted from Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation

For information on this measure, see Chapter 7, page 173
This page was intentionally left blank.
Block & Gravel Curb Inlet Protection

Exhibit 2

- Blocks laid with openings horizontal to the pavement to allow for drainage
- Filter aggregate
- Hardware cloth
- 2” x 4” wooden stud

For information on this measure, see Chapter 7, page 173
This page was intentionally left blank.
Temporary Dry Sediment Basin Riser Pipe

Exhibit 1

![Diagram of a temporary dry sediment basin riser pipe]

- **12 inches of filter aggregate over perforations (min.)**
- **Hardware cloth or wire mesh to prevent aggregate from plugging perforations**
- **INDOT CA No. 5 aggregate filter stone over filter pack**
- **Riprap or INDOT CA No. 2 aggregate filter pack**
- **Perforated riser pipe with trash guard**
- **One foot (min.)**
- **Emergency spillway crest**
- **Anti-flotation block**

NOTE: For minimum dimensions see the “Specifications” section of this measure.

Source: Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

For information on this measure, see Chapter 7, page 191
This page was intentionally left blank.
Silt Fence

Exhibit 1

Source: Adapted from Commonwealth of Pennsylvania Erosion and Sediment Pollution Control Program Manual, 1990

For information on this measure, see Chapter 7, page 215
This page was intentionally left blank.
Silt Fence

Exhibit 2

For information on this measure, see Chapter 7, page 215
This page was intentionally left blank.
Silt Fence

Exhibit 3

For information on this measure, see Chapter 7, page 215
This page was intentionally left blank.
Straw Bale Dam

Exhibit 1

Turn ends of straw bale dam up slope to prevent bypass flow and allow for ponding of storm water runoff

Source: Adapted from Minnesota Pollution Control Agency, Minnesota Construction Site Erosion and Sediment Control Planning Handbook, 1987

For information on this measure, see Chapter 7, page 223
This page was intentionally left blank.
Straw Bale Dam

Exhibit 2

10 foot minimum spacing from toe of slope to allow for ponding of stormwater runoff

Source: California Regional Water Quality Control Board, San Francisco Bay Region Erosion and Sediment Control Field Manual, Second Edition

For information on this measure, see Chapter 7, page 223.
This page was intentionally left blank.
Straw Bale Dam

Exhibit 3

For information on this measure, see Chapter 7, page 223
This page was intentionally left blank.
Straw Bale Dam

Exhibit 4

For information on this measure, see Chapter 7, page 223
This page was intentionally left blank.
NOTE: This measure requires the designer to provide design specifications and dimensions.

For information on this measure, see Chapter 7, page 267

Temporary Stream Crossing - Bridges

Exhibit 1

Earthen approach ramp

Timber mat or portable span

Timber mat for support (optional)

Earthen approach ramp

Timber mat or portable span

Native Soil Material

Timber mat for support (optional)
Temporary Stream Crossing - Culverts

Exhibit 1

NOTE: This measure requires the designer to provide design specifications and dimensions.

For information on this measure, see Chapter 7, page 273
This page was intentionally left blank.
Temporary Stream Crossing - Fords

Exhibit 1

Stone over geotextile fabric

5 foot (max.) bank height

All excavated slopes 2:1 or flatter

Road alignment straight for a minimum of 30 feet (min.)

Temporary diversion channel

NOTE: This measure requires the designer to provide design specifications and dimensions.

Source: Adapted from Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, 1992

For information on this measure, see Chapter 7, page 279
This page was intentionally left blank.
Temporary Stream Crossing - Fords

Exhibit 2

Temporary diversion channel

5:1 slope (max.)

5 foot maximum bank height

Geotextile fabric for stabilization and separation

NOTE: This measure requires the designer to provide design specifications and dimensions.

Source: Adapted from Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, 1992

For information on this measure, see Chapter 7, page 279
This page was intentionally left blank.