A Rapid One-step Field based Method for Nanoplastics in Wastewater Samples

Vidhatri lyer

University High school of Indiana Carmel, Indiana

Plastics

- Mismanagement of plastic waste has resulted in 12.5 million tons of toxic plastics entering the ocean.
- The fragmentation of plastics into smaller particles has resulted in microplastics and nanoplastics generation.

https://www.wired.co.uk/article/plastic-waste-packaging

Impact of Microplastics and Nanoplastics on Human Health

https://www.mdpi.com/2079-4991/11/2/496

Classification of Plastics

Plastic (>5mm)

- Visual examination with naked human eye

Microplastic (1mm - 5mm)

- Filtration, staining counting under microscope

Nanoplastics (< 1mm)

- Spectroscopy (infrared, Raman Spectroscopy & Transmission Spectroscopy)

Research Topic

• **<u>Hypothesis</u>**: Nanoplastics can be detected using a plastic binding dye by measuring the emission wavelength with a hand-held fluorometer.

• <u>**Research Question:</u>** Can nanoplastics pollution in wastewater be monitored with Nile Red dye using a single-channel fluorometer?</u>

Methodology

Instrument

- Handheld
 Fluorometer
- Custom order (AMI Sciences)
- Absorption 450nm
- Emission 620 nm

Materials

- Milli-Q water
- Lab grade methanol
- 0.3 ml glass mini tubes
- Nile Red dye
- 50nm Polystyrene beads (Polysciences)

https://www.sigmaaldrich.com/US/en/product/sigma/n3013

https://www.polysciences.com/default/polybead-microspheres-005956m

Study Design and Reagents

Nile Red Stock Solution

- Prepare 10 mM Nile Red in Methanol
- Working solution 40 μM methanol

Standard Curve

- Mix 160 μL of bead with 40 μL of Dye
- Incubate at room temperature for 10 min
- Read at 450 nm

Bead Prep

- Stock concentration 25 mg/ml
- Serial dilution in water:
- 400 μ g/ml, 1:1 dilution

Blank

- Mix 160 μ L of water with 40 μ L of Dye
- Incubate at room temperature for 10 min
- Read at 450 nm

Bead Titration Standard Curve Generation

- 160 μl of increasing concentration of beads was mixed with 40 μl of Nile Red Dye.
- Samples were incubated for 10 min and read at 450 nm
- Equation and correlation coefficient associated with linear regression was calculated using excel
- Strong correlation with different bead concentration with limit of detection (LOD) of 35 μg/ml (greater than 95% confidence)

Time-Course Study of Bead Incubation

- 160 μl of increasing concentration of beads was mixed with 40 μl of Nile Red Dye.
- Samples were incubated for 10, 20, 30 or 60 min and read at 450 nm
- Similar slopes at all time-points tested

Time (min)	Nile Red	
	<mark>Slope</mark>	R ²
10	971.88	0.995
20	933.66	0.991
30	964.9	0.990
60	1003.6	0.990

Effect of Shaking on Standard Curve Generation

- 160 μl of increasing concentration of beads was mixed with 40 μl of Nile Red Dye.
- Samples were shaken at 200 rpm for 10 min and read at 450 nm
- Equation and correlation coefficient associated with linear regression was calculated using excel
- Data was comparable in both groups

One-Step Nanoplastics Detection Method

Filter water with 0.4 µm syringe 160 μL of water sample to tube Add 40 µL of Dye (final conc is 8 µM) 10 min incubation Read at 450 nm

TRICO Sewer Facility Process

Pretreatment Facility (Influent grab)

Primary treatment (VLR anoxic zone)

Secondary treatment (Clarifier effluent)

Indiana Water samples Effluent samples

Reduction in Nanoplastics in Effluent Samples

Nanoplastics are reduced in Effluent compared to Influent Wastewater Samples 6-month study

Clarification Reduces Nanoplastics in Effluent Water

Conclusions

- A one-step nanoplastics detection method has been developed using a hand-held fluorometer.
- Results can be obtained within 10 min without additional sample processing.
- Nanoplastics pollution in influent wastewater was monitored over a 6-month period.

Assay Limitations

- Assay does not differentiate different plastic types, size and shape. Need additional confirmation with spectroscopy.
- Only measures plastics in water suspension load not in trapped sludge waste.
- Cannot detect samples below 35 μ g/ml.

Ongoing studies and Plans

- River Assessment Field Team Project-Measuring nanoplastic load in Central Indiana water streams. (30+ sites)
- Marion County Public Health Department- Measuring nanoplastic load in Indiana water streams (54 different sites)
- Improve Sensitivity-Test additional dyes such a DCVJ to improve assay sensitivity.