NOTICE OF 30-DAY PERIOD FOR PUBLIC COMMENT

Preliminary Findings Regarding the Renewal of a Federally Enforceable State Operating Permit (FESOP) for Rieth-Riley Construction Co., Inc (Plant #366) in LaPorte County

FESOP Renewal No.: F091-43498-03179

The Indiana Department of Environmental Management (IDEM) has received an application from Rieth-Riley Construction Co., Inc (Plant #366) located at 2454 West CR 450 North, LaPorte, IN 46350 for a renewal of its FESOP issued on November 23, 2020. If approved by IDEM’s Office of Air Quality (OAQ), this proposed renewal would allow Rieth-Riley Construction Co., Inc to continue to operate its existing source.

This draft permit does not contain any new equipment that would emit air pollutants; however, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g., changes that add or modify synthetic minor emission limits). This notice fulfills the public notice procedures to which those conditions are subject. IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow for these changes.

A copy of the permit application and IDEM’s preliminary findings have been sent to:

LaPorte County Public Library
904 Indiana Ave.
LaPorte, IN 46350

and

IDEM Northwest Regional Office
330 W. US Highway 30, Suites E & F
Valparaiso, IN 46385

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the application and preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC). To access VFC, please go to: https://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/public-notices/) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will
make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number F091-43489-03179 in all correspondence.

Comments should be sent to:

Taylor Wade
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Taylor Wade or (317) 233-0868
Or dial directly: (317) 233-0868
Fax: (317) 232-6749 attn: Taylor Wade
E-mail: twade@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: https://www.in.gov/idem/airpermit/public-participation/; and the Citizens’ Guide to IDEM on the Internet at: https://www.in.gov/idem/resources/citizens-guide-to-idem/.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above and will also be sent to the local library indicated above, the IDEM Regional Office indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Taylor Wade of my staff at the above address.

Heath Hartley, Section Chief
Permits Branch
Office of Air Quality
Federally Enforceable State Operating Permit Renewal

OFFICE OF AIR QUALITY

Rieth-Riley Construction Co., Inc.
Plant #366
2454 West CR 450 North
LaPorte, Indiana 46350

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-8 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

Indiana statutes from IC 13 and rules from 326 IAC, quoted in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a FESOP under 326 IAC 2-8.

<table>
<thead>
<tr>
<th>Operation Permit No.: F091-43498-03179</th>
<th>Master Agency Interest ID: 13655</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued by:</td>
<td>Issuance Date:</td>
</tr>
<tr>
<td>Heath Hartley, Section Chief</td>
<td>Expiration Date:</td>
</tr>
<tr>
<td>Permits Branch</td>
<td></td>
</tr>
<tr>
<td>Office of Air Quality</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY ... 5

- **A.1** General Information [326 IAC 2-8-3(b)]
- **A.2** Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]
- **A.3** Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]
- **A.4** FESOP Applicability [326 IAC 2-8-2]

SECTION B GENERAL CONDITIONS ... 9

- **B.1** Definitions [326 IAC 2-8-1]
- **B.2** Permit Term [326 IAC 2-8-4(2)][326 IAC 2-1.1-9.5][IC 13-15-3-6(a)]
- **B.3** Term of Conditions [326 IAC 2-1.1-9.5]
- **B.4** Enforceability [326 IAC 2-8-6] [IC 13-17-12]
- **B.5** Severability [326 IAC 2-8-4(4)]
- **B.6** Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]
- **B.7** Duty to Provide Information [326 IAC 2-8-4(5)(E)]
- **B.8** Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]
- **B.9** Annual Compliance Certification [326 IAC 2-8-5(a)(1)]
- **B.10** Compliance Order Issuance [326 IAC 2-8-5(b)]
- **B.11** Preventive Maintenance Plan [326 IAC 1-6-3][326 IAC 2-8-4(9)]
- **B.12** Emergency Provisions [326 IAC 2-8-12]
- **B.13** Prior Permits Superseded [326 IAC 2-1.1-9.5]
- **B.14** Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]
- **B.15** Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]
- **B.16** Permit Renewal [326 IAC 2-8-3(h)]
- **B.17** Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]
- **B.18** Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]
- **B.19** Source Modification Requirement [326 IAC 2-8-11.1]
- **B.20** Inspection and Entry [326 IAC 2-8-5(a)(2)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]
- **B.21** Transfer of Ownership or Operational Control [326 IAC 2-8-10]
- **B.22** Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-8-4(6)] [326 IAC 1-1-6]
- **B.23** Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314] [326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS ... 19

Emission Limitations and Standards [326 IAC 2-8-4(1)] .. 19

- **C.1** Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
- **C.2** Overall Source Limit [326 IAC 2-8]
- **C.3** Opacity [326 IAC 5-1]
- **C.4** Open Burning [326 IAC 4-1] [IC 13-17-9]
- **C.5** Incineration [326 IAC 4-2] [326 IAC 9-1-2]
- **C.6** Fugitive Dust Emissions [326 IAC 6-4]
- **C.7** Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
- **C.8** Stack Height [326 IAC 1-7]
- **C.9** Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-8-4(3)].. 21

- **C.10** Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11] ... 22

- **C.11** Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)] 22

- **C.12** Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]
C.13 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-8-4(3)] [326 IAC 2-8-5(1)]

Corrective Actions and Response Steps [326 IAC 2-8-4] [326 IAC 2-8-5(a)(1)] 23

C.14 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
C.15 Risk Management Plan [326 IAC 2-8-4] [40 CFR 68]
C.16 Response to Excursions or Exceedances [326 IAC 2-8-4] [326 IAC 2-8-5]
C.17 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4] [326 IAC 2-8-5]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] ... 24

C.18 General Record Keeping Requirements [326 IAC 2-8-4(3)] [326 IAC 2-8-5]
C.19 General Reporting Requirements [326 IAC 2-8-4(3)(C)] [326 IAC 2-1.1-11]

Stratospheric Ozone Protection ... 25

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS ... 26

Emission Limitations and Standards [326 IAC 2-8-4(1)] .. 27

D.1.1 PSD Minor Limits [326 IAC 2-2]
D.1.2 FESOP Minor Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 8-1-6]
D.1.3 FESOP Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]
D.1.5 Sulfur Dioxide (SO2) Limits [326 IAC 7-1.1-1] [326 IAC 7-2-1]
D.1.6 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

Compliance Determination Requirements [326 IAC 2-8-4(1)] ... 30

D.1.7 Particulate Control
D.1.8 Testing Requirements [326 IAC 2-8-5(a)(1), (4)] [326 IAC 2-1.1-11]
D.1.9 Sulfur Dioxide Emissions and Sulfur Content
D.1.10 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine and Lead Content
D.1.11 Multiple Fuel and Slag Usage
D.1.12 Shingle Asbestos Content

Compliance Monitoring Requirements [326 IAC 2-8-4(1)] [326 IAC 2-8-5(a)(1)] 33

D.1.13 Visible Emissions Notations
D.1.14 Broken or Failed Bag Detection

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] .. 34

D.1.15 Record Keeping Requirement
D.1.16 Reporting Requirements

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS ... 37

Emission Limitations and Standards [326 IAC 2-8-4(1)] .. 37

D.2.1 Particulate Emissions [326 IAC 6-2-4]
D.2.2 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS ... 38

Emission Limitations and Standards [326 IAC 2-8-4(1)] .. 38

D.3.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]
D.3.2 FESOP and PSD Minor Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]
D.3.3 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] .. 40

D.3.4 Record Keeping Requirements
D.3.5 Reporting Requirements

SECTION E.1 NSPS ... 41

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)] 42

E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1]
[40 CFR Part 60, Subpart A]
E.1.2 Hot Mix Asphalt Facilities NSPS [326 IAC 12] [40 CFR Part 60, Subpart I]
Compliance Determination Requirements [326 IAC 2-8-4(1)] .. 42
E.1.3 Testing Requirements [326 IAC 2-1.1-11] [326 IAC 2-8-5(a)(1)]

SECTION E.2 NSPS .. 43

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-8-4(1)] ... 43

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)] 43
E.2.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1]
[40 CFR Part 60, Subpart A]
E.2.2 Nonmetallic Mineral Processing Plants NSPS [326 IAC 12] [40 CFR Part 60,
Subpart OOO]
Compliance Determination Requirements [326 IAC 2-8-4(1)] .. 44
E.2.3 Testing Requirements [326 IAC 2-1.1-11] [326 IAC 2-8-5(a)(1)]

CERTIFICATION ... 45

EMERGENCY OCCURRENCE REPORT .. 46
FESOP Quarterly Report ... 48
FESOP Quarterly Report ... 49
FESOP Quarterly Report ... 52
QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT 54

Attachment A: Fugitive Dust Control Plan
Attachment B: Standards of Performance for Hot Mix Asphalt Facilities [40 CFR 60, Subpart I]
Attachment C: Standards of Performance for Nonmetallic Mineral Processing Plants [40 CFR 60,
Subpart OOO]
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-8-3(b)]

The Permittee owns and operates a stationary hot-mix asphalt plant and cold-mix asphalt manufacturing operation.

- Source Address: 2454 West CR 450 North, LaPorte, Indiana 46350
- General Source Phone Number: (574) 875-5183
- SIC Code: 2951 (Asphalt Paving Mixtures and Blocks)
- County Location: LaPorte
- Source Location Status: Attainment for all criteria pollutants
- Source Status: Federally Enforceable State Operating Permit Program Minor Source, under PSD and Emission Offset Rules Minor Source, Section 112 of the Clean Air Act Not 1 of 28 Source Categories

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]

This stationary source consists of the following emission units and pollution control devices:

(a) Asphalt Plant Dryer

(1) One (1) counterflow drum hot-mix asphalt plant, identified as 2, constructed in 2001, with a maximum throughput of 400 tons of raw material per hour, equipped with one (1) one hundred twenty-five (125) million British thermal units (MMBtu) per hour dryer burner outfitted with low NOx burners, identified as 3, controlling particulate emissions with one (1) baghouse, replaced in 2016, and exhausting to one (1) stack, identified as SV1.

(2) The hot-mix asphalt plant processes one or more of the following as components of the aggregate mix:

(A) blast furnace slag
(B) steel slag
(C) asbestos-free recycled asphalt

(3) The dryer burner uses natural gas as the primary fuel, and the following backup fuels:

(A) #2 distillate fuel oil
(B) #4 residual fuel oil
(C) propane
(D) butane
(E) waste oil

Under 40 CFR 60.90, Subpart I - New Source Performance Standards for Hot Mix Asphalt Facilities, this drum hot-mix asphalt operation is considered an affected facility.

(b) Asphalt Storage Silos
(1) Three (3) asphalt mix storage silos identified as 5, constructed in 2001, with a maximum capacity of three hundred (300) tons, each.

(c) Raw Material Storage Piles:

(1) Sand storage piles, with a maximum anticipated pile size of 3.34 acres;
(2) Limestone storage piles, with a maximum anticipated pile size of 9.18 acres;
(3) Gravel storage piles, with a maximum anticipated pile size of 4.09 acres; and
(4) Asbestos-free shingle (ground factory seconds and/or post consumer waste) storage piles, with a combined maximum anticipated pile size of five and fifty-two hundredths (5.52) acres.
(5) Blast furnace and/or electric arc furnace steel mill slag storage piles, with a combined maximum anticipated pile size of six and ninety-four hundredths (6.94) acres.

(d) Conveyors and Screening Equipment

(1) Two (2) conveyors for transporting coarse to fine aggregates to the drum mixer.
(2) One (1) conveyor for transporting recycled asphalt pavement and recycled shingles to the drum mixer.
(3) One (1) drag slat conveyor transporting hot-mixed asphalt to the asphalt storage silos.
(4) One (1) screening unit.

(e) One (1) cold feed system, identified as 1, constructed in 2001, with a maximum capacity of three hundred seventy-two (372) tons of aggregate per hour, and consisting of:

(1) six (6) feeder bins;
(2) two (2) belt conveyors; and
(3) one (1) scalping screen.
(4) cold-mix (stockpile mix) asphalt storage piles;

(f) One (1) mineral filler dust silo, identified as 15, constructed in 2001, with a maximum capacity of five hundred (500) barrels.

(g) One (1) portable recycled asphalt pavement (RAP) system, identified as 10, constructed in 2001, with a maximum throughput capacity of two hundred (200) tons of RAP per hour (the lump breaker capacity is fifty (50) tons per hour), uncontrolled, exhausting to the atmosphere, and including the following:

(1) One (1) electric powered recycled asphalt pavement (RAP) lump breaker;
(2) one (1) feeder bin;
(3) three (3) belt conveyors;
(4) one (1) scalping screen, and
(5) RAP storage piles, with a maximum anticipated pile size of three and sixty-nine hundredths (3.69) acres;
(6) RAP and/or asbestos-free shingle storage piles, with a maximum anticipated pile size of one and six tenths (1.6) acre.

Under 40 CFR 60, 1068.30(2)(iii), General Compliance Provisions for Highway, Stationary, and Nonroad Programs, this unit this is considered a nonroad engine.

Under 40 CFR 60, Subpart OOO, New Source Performance Standards for Nonmetallic Mineral Processing Plants, this is considered an affected facility.

A.3 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]

This stationary source also includes the following insignificant activities, as defined in 326 IAC 2-7-1(21):

(a) Liquid Asphalt Cement Storage Tanks

(1) Three (3) liquid asphalt cement storage tanks, identified as 13A, 13B, and 13C, storing liquid asphalt. Tanks 13A and 13B were constructed in 2001, with a maximum capacity of 30,000 gallons each, and tank 13C was constructed in 2002 with a maximum capacity of 15,000 gallons, equipped with condenser vents and exhausting through Stacks SV4 and SV5;

(b) Fuel Oil Storage Tanks

(1) One (1) No.2 fuel oil storage tank, identified as 12, constructed in 2001, with a maximum storage capacity 10,000 gallons, and exhausting through stack SV8;

(2) Two (2) waste oil storage tanks, identified as 11A and 11B, constructed in 2001, with a maximum storage capacity of 15,000 gallons each, and exhausting through Stacks SV6 and SV7;

(c) Petroleum Dispensing Facility

A petroleum fuel, other than gasoline, dispensing facility, having a storage capacity of less than or equal to ten thousand five hundred (10,500) gallons, and dispensing less than or equal to two hundred thousand (230,000) gallons per month;

(d) Hot Oil Heaters

(1) Two (2) 2.0 million British Thermal Units per hour (MMBtu/hr) hot oil heaters, firing natural gas or No. 2 fuel oil, identified as 14A and 14B, constructed in 2001, and exhausting to stacks SV-2 and SV-3, respectively.

(e) Cleaners and Solvents

(1) having a vapor pressure equal to or less than 2 kPa; 15 mm Hg; or 0.3 psi measured at 38 °C (100 °F) or;

(2) having a vapor pressure equal to or less than 0.7 kPa; 5 mm Hg; or 0.1 psi measured at 20 °C (68 °F); the use of which for all cleaners and solvents combined does not exceed one hundred forty-five (145) gallons per twelve (12) months;

(f) Unpaved Roads

Unpaved roads and parking lots with public access.
This stationary source, otherwise required to have a Part 70 permit as described in 326 IAC 2-7-2(a), has applied to the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ) to renew a Federally Enforceable State Operating Permit (FESOP).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-8-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-8-4(2)] [326 IAC 2-1.1-9.5] [IC 13-15-3-6(a)]

(a) This permit, F091-43498-03179, is issued for a fixed term of ten (10) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-8-6] [IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source’s potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-8-4(4)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-8-4(5)(E)]

(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U.S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-8-5(a)(1) if:

1. it contains a certification by an "authorized individual", as defined by 326 IAC 2-1.1-1(1), and
2. the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) An "authorized individual" is defined at 326 IAC 2-1.1-1(1).

B.9 Annual Compliance Certification [326 IAC 2-8-5(a)(1)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

1. The appropriate identification of each term or condition of this permit that is the basis of the certification;
2. The compliance status;
3. Whether compliance was continuous or intermittent;
4. The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-8-4(3); and
5. Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).
B.10 Compliance Order Issuance [326 IAC 2-8-5(b)]

IDEM, OAQ may issue a compliance order to this Permittee upon discovery that this permit is in nonconformance with an applicable requirement. The order may require immediate compliance or contain a schedule for expeditious compliance with the applicable requirement.

B.11 Preventive Maintenance Plan [326 IAC 1-6-3][326 IAC 2-8-4(9)]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The
PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.12 Emergency Provisions [326 IAC 2-8-12]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation except as provided in 326 IAC 2-8-12.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a health-based or technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

1. An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
2. The permitted facility was at the time being properly operated;
3. During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
4. For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ or Northwest Regional Office within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;
 - Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or
 - Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
 - Facsimile Number: 317-233-6865
 - Northwest Regional Office phone: (219) 464-0233; fax: (219) 464-0553.
5. For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:
 - Indiana Department of Environmental Management
 - Compliance and Enforcement Branch, Office of Air Quality
 - 100 North Senate Avenue
 - MC 61-53 IGCN 1003
 - Indianapolis, Indiana 46204-2251
 - within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-8-4(3)(C)(ii) and must contain the following:
(A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and
(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-8-3(c)(6) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-8 and any other applicable rules.

(g) Operations may continue during an emergency only if the following conditions are met:

(1) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

(2) If an emergency situation causes a deviation from a health-based limit, the Permittee may not continue to operate the affected emissions facilities unless:

(A) The Permittee immediately takes all reasonable steps to correct the emergency situation and to minimize emissions; and

(B) Continued operation of the facilities is necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw material of substantial economic value.

Any operations shall continue no longer than the minimum time required to prevent the situations identified in (g)(2)(B) of this condition.

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5]

(a) All terms and conditions of permits established prior to F091-43498-03179 and issued pursuant to permitting programs approved into the state implementation plan have been either:
(1) incorporated as originally stated,
(2) revised, or
(3) deleted.

(b) All previous registrations and permits are superseded by this permit.

B.14 Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]
The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-8-3(h) and 326 IAC 2-8-9.

B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]
(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Federally Enforceable State Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-8-4(5)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

(1) That this permit contains a material mistake.
(2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
(3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-8-8(a)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-8-8(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-8-8(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-8-8(c)]

B.16 Permit Renewal [326 IAC 2-8-3(h)]
(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-8-3. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).
Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-8 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-8-3(g), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]

(a) Permit amendments and revisions are governed by the requirements of 326 IAC 2-8-10 or 326 IAC 2-8-11.1 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-8-10(b)(3)]

B.18 Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-8-15(b) and (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;

(2) Any approval required by 326 IAC 2-8-11.1 has been obtained;
(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-8-15(b)(1) and (c). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-8-15(b)(1) and (c).

(b) Emission Trades [326 IAC 2-8-15(b)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-8-15(b).

(c) Alternative Operating Scenarios [326 IAC 2-8-15(c)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-8-4(7). No prior notification of IDEM, OAQ or U.S. EPA is required.

(d) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.19 Source Modification Requirement [326 IAC 2-8-11.1]
A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.20 Inspection and Entry [326 IAC 2-8-5(a)(2)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]
Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:
Enter upon the Permittee's premises where a FESOP source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;

As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect, at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor, at reasonable times, substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

Transfer of Ownership or Operational Control [326 IAC 2-8-10]

The Permittee must comply with the requirements of 326 IAC 2-8-10 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-8-10(b)(3)]

Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-8-4(6)] [326 IAC 2-8-16] [326 IAC 2-1.1-7]

The Permittee shall pay annual fees to IDEM, OAQ no later than thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

Failure to pay may result in administrative enforcement action or revocation of this permit.

The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-8590 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.
B.23 Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314] [326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-8-4(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Overall Source Limit [326 IAC 2-8]

The purpose of this permit is to limit this source’s potential to emit to less than major source levels for the purpose of Section 502(a) of the Clean Air Act.

(a) Pursuant to 326 IAC 2-8:

(1) The potential to emit any regulated pollutant, except particulate matter (PM), from the entire source shall be limited to less than one hundred (100) tons per twelve (12) consecutive month period.

(2) The potential to emit any individual hazardous air pollutant (HAP) from the entire source shall be limited to less than ten (10) tons per twelve (12) consecutive month period; and

(3) The potential to emit any combination of HAPs from the entire source shall be limited to less than twenty-five (25) tons per twelve (12) consecutive month period.

(b) Pursuant to 326 IAC 2-2 (PSD), potential to emit particulate matter (PM) from the entire source shall be limited to less than two hundred fifty (250) tons per twelve (12) consecutive month period.

(c) This condition shall include all emission points at this source including those that are insignificant as defined in 326 IAC 2-7-1(21). The source shall be allowed to add insignificant activities not already listed in this permit, provided that the source’s potential to emit does not exceed the above specified limits.

(d) Section D of this permit contains independently enforceable provisions to satisfy this requirement.

C.3 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A,
Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor in a six (6) hour period.

C.4 Open Burning [326 IAC 4-1] [IC 13-17-9]
The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.5 Incineration [326 IAC 4-2] [326 IAC 9-1-2]
The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.6 Fugitive Dust Emissions [326 IAC 6-4]
The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions).

C.7 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the attached plan as in Attachment A.

C.8 Stack Height [326 IAC 1-7]
The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted by using ambient air quality modeling pursuant to 326 IAC 1-7-4.

C.9 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]
(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;

(B) Removal or demolition contractor; or

(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(c).
(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(d).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(e) Procedures for Asbestos Emission Control

The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation

The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector

The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos.

Testing Requirements [326 IAC 2-8-4(3)]

C.10 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).
(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.11 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)]

C.12 Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

C.13 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-8-4(3)][326 IAC 2-8-5(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.
C.14 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.15 Risk Management Plan [326 IAC 2-8-4] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.16 Response to Excursions or Exceedances [326 IAC 2-8-4] [326 IAC 2-8-5]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

 (1) initial inspection and evaluation;

 (2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

 (3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

 (1) monitoring results;

 (2) review of operation and maintenance procedures and records; and/or

 (3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.
C.17 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4][326 IAC 2-8-5]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

C.18 General Record Keeping Requirements [326 IAC 2-8-4(3)] [326 IAC 2-8-5]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

(AA) All calibration and maintenance records.
(BB) All original strip chart recordings for continuous monitoring instrumentation.
(CC) Copies of all reports required by the FESOP.

Records of required monitoring information include the following, where applicable:

(AA) The date, place, as defined in this permit, and time of sampling or measurements.
(BB) The dates analyses were performed.
(CC) The company or entity that performed the analyses.
(DD) The analytical techniques or methods used.
(EE) The results of such analyses.
(FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.19 General Reporting Requirements [326 IAC 2-8-4(3)(C)] [326 IAC 2-1.1-11]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to
an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) Asphalt Plant Dryer

(1) One (1) counterflow drum hot-mix asphalt plant, identified as 2, constructed in 2001, with a maximum throughput of 400 tons of raw material per hour, equipped with one (1) one hundred twenty-five (125) million British thermal units (MMBtu) per hour dryer burner outfitted with low NOx burners, identified as 3, controlling particulate emissions with one (1) baghouse, replaced in 2016, and exhausting to one (1) stack, identified as SV1.

(2) The hot-mix asphalt plant processes one or more of the following as components of the aggregate mix:

(A) blast furnace slag
(B) steel slag
(C) asbestos-free recycled asphalt

(3) The dryer burner uses natural gas as the primary fuel, and the following backup fuels:

(A) #2 distillate fuel oil
(B) #4 residual fuel oil
(C) propane
(D) butane
(E) waste oil

Under 40 CFR 60.90, Subpart I - New Source Performance Standards for Hot Mix Asphalt Facilities, this drum hot-mix asphalt operation is considered an affected facility.

(b) Asphalt Storage Silos

(1) Three (3) asphalt mix storage silos identified as 5, constructed in 2001, with a maximum capacity of three hundred (300) tons, each.

(c) Raw Material Storage Piles:

(1) Sand storage piles, with a maximum anticipated pile size of 3.34 acres;
(2) Limestone storage piles, with a maximum anticipated pile size of 9.18 acres;
(3) Gravel storage piles, with a maximum anticipated pile size of 4.09 acres; and
(4) Asbestos-free shingle (ground factory seconds and/or post consumer waste) storage piles, with a combined maximum anticipated pile size of five and fifty-two hundredths (5.52) acres.

(5) Blast furnace and/or electric arc furnace steel mill slag storage piles, with a combined maximum anticipated pile size of six and ninety-four hundredths (6.94) acres; and

(d) Conveyors and Screening Equipment

(1) Two (2) conveyors for transporting coarse to fine aggregates to the drum mixer.
(2) One (1) conveyor for transporting recycled asphalt pavement and recycled shingles to the drum mixer.
(3) One (1) drag slat conveyor transporting hot-mixed asphalt to the asphalt storage silos.
Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.1.1 PSD Minor Limits [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The amount of hot-mix asphalt processed shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) PM emissions from the dryer/mixer shall not exceed 0.320 pounds of PM per ton of asphalt produced.

(c) The Permittee shall control PM emissions from the paved and unpaved roads according to the fugitive dust plan, included as Attachment A to the permit.

Compliance with these limits, combined with the potential to emit PM from all other emission units at this source, shall limit the source-wide total potential to emit of PM to less than two-hundred fifty (250) tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.2 FESOP Minor Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 8-1-6]

Pursuant to 326 IAC 2-8-4 (FESOP) and in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 326 IAC 8-1-6 (BACT) not applicable, the Permittee shall comply with the following:

(a) The asphalt production rate shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) PM\(_{10}\) emissions from the dryer/mixer shall not exceed 0.142 pounds of PM\(_{10}\) per ton of asphalt produced.

(c) PM\(_{2.5}\) emissions from the dryer/mixer shall not exceed 0.172 pounds of PM\(_{2.5}\) per ton of asphalt produced.
asphalt produced.

(d) VOC emissions from the dryer/mixer shall not exceed 0.032 pounds of VOC per ton of asphalt produced.

(e) CO emissions from the dryer/mixer shall not exceed 0.130 pounds of CO per ton of asphalt produced.

Compliance with these limits, combined with the potential to emit PM$_{10}$, PM$_{2.5}$, VOC and CO from all other emission units at this source, shall limit the source-wide total potential to emit of PM$_{10}$, PM$_{2.5}$, VOC and CO to less than 100 tons per twelve (12) consecutive month period, each, and shall render 326 IAC 2-7 (Part 70 Permits), and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

Compliance with this VOC limit shall limit potential to emit of VOC to less than twenty-five (25) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities) not applicable.

D.1.3 FESOP Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]

Pursuant to 326 IAC 2-8-4 (FESOP) and in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP)) not applicable, the Permittee shall comply with the following:

(a) Fuel and Slag Specifications

1. The sulfur content of the No. 2 fuel oil shall not exceed 0.50% by weight.

2. The sulfur content of the refinery blend / residual (No. 4, No. 5, or No. 6) fuel oil shall not exceed 0.50% by weight.

3. The sulfur content of the waste fuel oil shall not exceed 1.00% percent by weight.

4. The HCl emissions shall not exceed 26.4 pounds of HCl per 1,000 gallons of waste oil burned.

5. The waste oil combusted shall not contain more than 1.00% ash, 0.40% chlorine, and 0.01% lead.

6. The sulfur content of the Blast Furnace slag shall not exceed 1.50% by weight.

7. The SO$_2$ emissions from the dryer/mixer shall not exceed 0.740 pounds per ton of Blast Furnace slag processed in the aggregate mix.

8. The sulfur content of the Steel slag shall not exceed 0.66% by weight.

9. The SO$_2$ emissions from the dryer/mixer shall not exceed 0.0014 pounds per ton of Steel slag processed in the aggregate mix.

(b) Emissions from the dryer/mixer burner are limited as follows:

1. SO$_2$ emissions shall not exceed 90.11 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

2. NO$_x$ emissions shall not exceed 96.50 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
(c) **Asphalt Shingle Usage Limitation:**

Pursuant to 326 IAC 2-8-4 (FESOP), and in order to ensure the requirements of 40 CFR 61, Subpart M and 326 IAC 2-2 (PSD) are not applicable, the Permittee shall not grind recycled asphalt shingles on-site and shall only use the following as an additive in its aggregate mix:

1. Certified asbestos-free factory second asphalt shingles;
2. Post-consumer waste shingles generated at single family homes and/or residential buildings containing four or fewer dwelling units; and/or
3. Factory second shingles and/or post-consumer waste shingles that have sampled negative for asbestos.

Compliance with these limits, combined with the potential to emit SO₂ and NOₓ from all other emission units at this source, shall limit the source-wide total potential to emit of SO₂ and NOₓ to less than one-hundred (100) tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits), 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 40 CFR 61, Subpart M not applicable.

Compliance with these limits, combined with the potential to emit HAPs from all other emission units at this source, shall limit the source-wide total potential to emit of any single HAP to less than ten (10) tons per twelve (12) consecutive month period, total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits), and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP) not applicable, and this source is an area source of HAP emissions under Section 112 of the Clean Air Act (CAA).

D.1.4 **Particulate Emission Limitations [326 IAC 6-3-2]**

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the RAP Lump-breaker, Screening, and Conveying Operations shall not exceed the pound per hour limits as reflected in the table below:

<table>
<thead>
<tr>
<th>Summary of Process Weight Rate Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process / Emission Unit</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>RAP Crusher/Lump-breaker/Screener</td>
</tr>
</tbody>
</table>

Interpolation and extrapolation of the data for the process weight rate in excess of sixty thousand (60,000) pounds per hour shall be accomplished by use of the equation:

\[E = 55.0 \times P^{0.11} - 40 \]

where \(E = \) rate of emission in pounds per hour; and \(P = \) process weight rate in tons per hour

D.1.5 **Sulfur Dioxide (SO₂) Limits [326 IAC 7-1.1-1][326 IAC 7-2-1]**

(a) Pursuant to 326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations), the Permittee shall comply with the following:

1. The sulfur dioxide (SO₂) emissions from the dryer/mixer burner shall not exceed 0.5 pounds per MMBtu when using distillate oil. (No.2 Fuel Oil is distillate oil)
2. The sulfur dioxide (SO₂) emissions from the dryer/mixer burner shall not exceed
1.6 pounds per MMBtu heat input when using residual oil. (No.4 Fuel Oil and waste oil is residual oil)

(b) Pursuant to 326 IAC 7-2-1, compliance shall be demonstrated on a calendar month average.

D.1.6 Preventive Maintenance Plan [326 IAC 2-8-4(9)]
A Preventive Maintenance Plan is required for these facilities and any control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-8-4(1)]

D.1.7 Particulate Control
In order to assure compliance with Conditions D.1.1(b), D.1.2(b) and D.1.2(c), the baghouse for particulate control shall be in operation and control emissions from the dryer/mixer at all times the dryer/mixer is in operation.

In the event that bag failure is observed in a multi-compartment baghouse, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

D.1.8 Testing Requirements [326 IAC 2-8-5(a)(1), (4)] [326 IAC 2-1.1-11]
In order to demonstrate compliance with Conditions D.1.1(b), D.1.2(b) and D.1.2(c), the Permittee shall perform PM, PM10, and PM2.5 testing of the dryer/mixer utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition. PM10 and PM2.5 includes filterable and condensable PM.

D.1.9 Sulfur Dioxide Emissions and Sulfur Content

Fuel Oil
In order to comply with Conditions D.1.3(a)(1), D.1.3(a)(2), and D.1.5, the Permittee shall comply with the following:

(a) Pursuant to 326 IAC 7-2-1(d)(2), compliance shall be determined using a calendar month average sulfur dioxide emission rate in pounds per MMBtu.

(b) Compliance shall be determined using one of the following options:

(i) Pursuant to 326 IAC 7-2-1(h)(3) and (4), the Permittee shall demonstrate compliance by:

(1) Providing vendor analysis of fuel delivered, if accompanied by a vendor certification, in accordance with 326 IAC 3-7 or;

(2) Analyzing the oil sample to determine the sulfur content of the oil via the procedures in 40 CFR 60, Appendix A, Method 19, accordance with 326 IAC 3-6.

(A) Oil samples may be collected from the fuel tank immediately
after the fuel tank is filled and before any oil is combusted; and

(B) If a partially empty fuel tank is refilled, a new sample and analysis would be required upon filling.

(ii) Pursuant to 326 IAC 7-2-1(h)(1), compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the dryer/mixer burner using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6.

A determination of noncompliance pursuant to any of the methods specified Condition D.1.9(b)(i) or (ii) above shall not be refuted by evidence of compliance pursuant to the other method.

Blast Furnace Slag

(c) Compliance with the blast furnace slag limitation established in Condition D.1.3(a)(6), shall be determined utilizing one of the following options. Pursuant to 326 IAC 7-2-1 (Sulfur Dioxide Reporting Requirements), compliance shall be demonstrated on a thirty (30) day calendar-month average.

(1) Maintaining all records of vendor analyses, if accompanied by a vendor certification, or certifications of blast furnace slag delivered; or

(2) Analyzing a sample of each blast furnace slag delivery, if no vendor analyses or certifications are available, to determine the sulfur content of the blast furnace slag, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

(3) Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the 120 MMBtu/hr dryer/mixer burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified in (1) or (3) above shall not be refuted by evidence of compliance pursuant to the other method.

Use of blast furnace slag with a sulfur content of less than or equal to 1.5% demonstrates compliance with the dryer/mixer limit in Condition D.1.3(a)(6).

Steel Slag

(d) Compliance with the steel slag limitations established in Condition D.1.3(a)(8) shall be determined utilizing one of the following options. Pursuant to 326 IAC 7-2-1 (Sulfur Dioxide Reporting Requirements), compliance shall be demonstrated on a thirty (30) day calendar-month average.

(1) Maintaining all records of vendor analyses, if accompanied by a vendor certification, or certifications of steel slag delivered; or

(2) Analyzing a sample of the steel slag delivery if no vendor analyses or certifications are available, at least once per quarter, to determine the sulfur content of the steel slag, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.
(3) Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the 150 MMBtu/hr dryer/mixer burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified in (1) or (2) above shall not be refuted by evidence of compliance pursuant to the other method.

Use of steel furnace slag with a sulfur content of less than or equal to 0.66% demonstrates compliance with the dryer/mixer limit in Condition D.1.3(a)(8).

D.1.10 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine and Lead Content

The Permittee shall demonstrate compliance with the waste oil, ash, chlorine and lead content limits of the waste oil that is established in Condition D.1.3(a)(4), by providing a vendor analysis of each fuel delivery accompanied by a vendor certification.

D.1.11 Multiple Fuel and Slag Usage

In order to assure compliance with the Condition D.1.3(c) when combusting any single fuel or more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner, in conjunction with the use of blast furnace slag and steel slag in the aggregate mix, the Permittee shall limit fuel and slag usage according to the following formulas:

(a) Sulfur dioxide (SO2) emissions shall be determined using the following equation:

\[
S = \frac{G(E_G) + F02(E_{FO2}) + F04(E_{FO4}) + P(E_P) + B(E_B) + FWO(E_{WO}) + BFS(E_{BS}) + SS(E_{ST})}{2,000 \text{ lbs/ton}}
\]

where:
- \(S\) = tons of sulfur dioxide emissions for a 12-month consecutive period
- \(G\) = million cubic feet of natural gas used in the last 12 months
- \(F02\) = gallons of No. 2 fuel oil used in the last 12 months
- \(F04\) = gallons of No. 4 fuel oil used in the last 12 months
- \(P\) = gallons of propane used in dryer/mixer in the last 12-month consecutive period
- \(B\) = gallons of butane used in dryer/mixer in the last 12-month consecutive period
- \(FWO\) = gallons of waste oil used in the last 12 months
- \(BFS\) = tons of Blast Furnace slag used in the last 12 months
- \(SS\) = tons of Steel slag used in the last 12 months

Emission Factors
- \(E_G\) = 0.6 lb SO2/million cubic feet of natural gas
- \(E_{FO2}\) = 0.071 lb SO2/gallon of No. 2 fuel oil
- \(E_{FO4}\) = 0.075 lb SO2/gallon of No. 4 fuel oil
- \(E_P\) = Propane (dryer/mixer) = 0.00002 pounds per gallon of propane
- \(E_B\) = Butane (dryer/mixer) = 0.00002 pounds per gallon of butane
- \(E_{WO}\) = 0.147 lb SO2/gallon of waste oil
- \(E_{BS}\) = 0.74 lb/ton of Blast Furnace slag used
- \(E_{SS}\) = 0.0014 lb/ton of Steel slag used

(b) Nitrogen oxide (NOx) emissions shall be determined using the following equation:

\[
N = \frac{G(E_G) + F02(E_{FO2}) + F04(E_{FO4}) + FWO(E_{WO}) + P(E_P) + B(E_B)}{2,000 \text{ lbs/ton}}
\]

where:
- \(N\) = tons of nitrogen oxide emissions for a 12-month consecutive period
D.1.12 Shingle Asbestos Content

Compliance with Condition D.1.3(d) shall be determined utilizing one of the following options:

(a) Providing a shingle supplier certification that the factory second shingles do not contain asbestos;

(b) Obtaining from the post consumer waste shingle supplier a signed certification that the post consumer waste shingles were generated at single family homes and/or residential buildings containing four or fewer dwelling units; and/or

(c) Analyzing a sample of the factory second shingles and/or post consumer waste shingles delivery to determine the asbestos content of the shingles, utilizing any applicable procedures and analysis methods specified in 40 CFR 51, 40 CFR 60, 40 CFR 61, 40 CFR 63, 40 CFR 75, or other procedures approved by IDEM, OAQ.

A determination of noncompliance pursuant to any of the methods specified above shall not be refuted by evidence of compliance pursuant to the other method.

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)]

D.1.13 Visible Emissions Notations

(a) Visible emission notations of dryer/mixer stack SV1 exhausts shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C – Response to Excursions and Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.
D.1.14 Broken or Failed Bag Detection

(a) For a single compartment baghouse controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the line. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse’s pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.1.15 Record Keeping Requirement

(a) To document the compliance status with Conditions D.1.1(a) and D.1.2(a), the Permittee shall keep records of the amount of asphalt processed through the dryer/mixer.

(b) To document the compliance status with Conditions D.1.3 and D.1.4, the Permittee shall maintain records in accordance with (1) through (8) below. Records maintained for (1) through (8) below shall be taken monthly and shall be complete and sufficient to establish compliance with the limits established in Conditions D.1.3 and D.1.4.

1. Calendar dates covered in the compliance determination period;

2. Actual fuel usage, sulfur content, heat content, and equivalent sulfur dioxide and nitrogen oxide emission rates for each fuel used at the source since the last compliance determination period;

3. Actual waste oil usage, ash, chlorine, lead content, and equivalent hydrogen chloride emission rate for waste oil used at the source since the last compliance determination period;

4. A certification, signed by the owner or operator, that the records of the fuel supplier certifications represent all of the fuel combusted during the period; and

5. If the fuel supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

 (i) Fuel supplier certifications;

 (ii) The name of the fuel supplier; and

 (iii) A statement from the fuel supplier that certifies the sulfur content of the No. 2 fuel oil, No. 4 fuel oil, diesel fuel, waste oil, and the chlorine content of waste oil.

6. Actual blast furnace and steel slag usage, sulfur content and equivalent sulfur dioxide emission rates for all blast furnace and steel slag used at the source.
since the last compliance determination period;

(7) A certification, signed by the owner or operator, that the records of the blast furnace and steel slag supplier certifications represent all of the blast furnace and steel slag used during the period; and

(8) If the blast furnace and steel slag supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

(i) Blast furnace and steel slag supplier certifications;

(ii) The name of the blast furnace and steel slag supplier; and

(iii) A statement from the blast furnace and steel slag supplier that certifies the sulfur content of the blast furnace and steel slag.

(9) If the factory second shingle supplier certification is used to demonstrate compliance, the following, as a minimum, shall be maintained:

(A) Factory second shingle supplier certifications;

(B) The name of the factory second shingle supplier(s); and

(C) A statement from the factory second shingle supplier(s) that certifies the shingles from their company do not contain asbestos.

(2) If the post consumer waste shingle supplier certification is used to demonstrate compliance, the following as a minimum, shall be maintained:

(A) Post consumer waste shingle supplier certifications;

(B) The name of the post consumer waste shingle supplier(s); and

(C) A statement from the post consumer shingle supplier(s) that certifies the shingles were generated at single family homes and/or residential buildings containing four or fewer dwelling units.

(3) If the factory second shingles and/or post consumer waste shingles are analyzed to determine the asbestos content, the following, as a minimum, shall be maintained:

(A) The name of the shingle supplier(s);

(B) The name of the certified lab or certified personnel that performed the shingle asbestos content analysis; and

(C) The shingle asbestos content analysis results.

(d) To document the compliance status with Condition D.1.13, the Permittee shall maintain records of daily visible emission notations of the dryer/mixer baghouse stack (SV1) exhausts. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g. the process did not operate that day).

(e) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.
D.1.16 Reporting Requirements

A quarterly summary of the information to document the compliance status with D.1.1(a), D.1.2(a), D.1.3(b) and D.1.3(c) shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee’s obligation with regard to the reporting required by this condition.

The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official,” as defined by 326 IAC 2-7-1(35).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

<table>
<thead>
<tr>
<th>Emissions Unit Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) Hot Oil Heaters</td>
</tr>
<tr>
<td>(1) Two (2) 2.0 million British Thermal Units per hour (MMBtu/hr) hot oil heaters, firing natural gas or No. 2 fuel oil, identified as 14A and 14B, constructed in 2001, and exhausting to stacks SV-2 and SV-3, respectively.</td>
</tr>
</tbody>
</table>

((The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

<table>
<thead>
<tr>
<th>D.2.1 Particulate Emissions [326 IAC 6-2-4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pursuant to 326 IAC 6-2-4 (Particulate Emission Limitations for Sources of Indirect Heating), PM emissions from hot oil heating system shall be limited to 0.6 pounds per MMBtu heat input.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D.2.2 Preventive Maintenance Plan [326 IAC 2-8-4(9)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Preventive Maintenance Plan is required for this facility and any control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.</td>
</tr>
</tbody>
</table>
SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(e) One (1) cold feed system, identified as 1, constructed in 2001, with a maximum capacity of three hundred seventy-two (372) tons of aggregate per hour, and consisting of:

(1) six (6) feeder bins;
(2) two (2) belt conveyors; and
(3) one (1) scalping screen.

(4) cold-mix (stockpile mix) asphalt storage piles;

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.3.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]

Pursuant to 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving), the use of cutback asphalt or asphalt emulsion shall not contain more than seven percent (7%) oil distillate by volume of emulsion for any paving application except the following purposes:

(a) Penetrating prime coating
(b) Stockpile storage
(c) Application during the months of November, December, January, February, and March.

D.3.2 FESOP and PSD Minor Limits [326 IAC 2-8-4] [326 IAC 2-2] [326 IAC 2-4.1]

Pursuant to 326 IAC 2-8-4 (FESOP) and in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 326 IAC 2-4.1 (Major Sources of HAPs) not applicable, the Permittee shall comply with the following:

(a) The VOC solvent used as diluent in the liquid binder used in the cold mix asphalt production from the plant shall not exceed 53.1 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) Liquid binders used in the production of cold mix asphalt shall be defined as follows:

(1) **Cut back asphalt rapid cure**, containing a maximum of 25.3% by weight of VOC solvent in the liquid binder and 95% by weight of VOC solvent evaporating.

(2) **Cut back asphalt medium cure**, containing a maximum of 28.6% by weight of VOC solvent in the liquid binder and 70% by weight of VOC solvent evaporating.

(3) **Cut back asphalt slow cure**, containing a maximum of 20% by weight of VOC solvent in the liquid binder and 25% by weight of VOC solvent evaporating.

(4) **Emulsified asphalt with solvent**, containing a maximum of 15% by weight of VOC solvent in the liquid binder and 46.4% by weight of VOC solvent evaporating. The percent oil distillate in emulsified asphalt with solvent liquid, as determined by ASTM, must be 7% or less of the total emulsion by volume

(5) **Other asphalt with solvent binder**, containing a maximum of 25.9% by weight of VOC solvent in the liquid binder and 2.5% by weight of VOC solvent evaporating.
(c) When using only one type of liquid binder (asphalt emulsion) per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

1. The amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 55.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

2. The amount of VOC solvent used in medium cure cutback asphalt shall not exceed 75.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

3. The amount of VOC solvent used in slow cure cutback asphalt shall not exceed 212.4 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

4. The amount of VOC solvent used in emulsified asphalt shall not exceed 114.4 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

5. The amount of VOC solvent used in all other asphalt shall not exceed 2123.8 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) When using more than one liquid binder (asphalt emulsion) per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

1. The VOC solvent allotments in (1) through (5) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
\text{VOC emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of binder</th>
<th>adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>cutback asphalt rapid cure</td>
<td>1.053</td>
</tr>
<tr>
<td>cutback asphalt medium cure</td>
<td>1.429</td>
</tr>
<tr>
<td>cutback asphalt slow cure</td>
<td>4.000</td>
</tr>
<tr>
<td>emulsified asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>other asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Compliance with these limits, combined with the potential to emit VOC from all other emission units at this source, shall limit the source-wide total potential to emit VOC to less than one-hundred (100) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

Compliance with these limits, combined with the potential to emit single HAPs from all other emission units at this source, shall limit the source-wide total potential to emit any single HAP to
less than ten (10) tons per twelve (12) consecutive month period, total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits), and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP) not applicable, and this source is an area source of HAP emissions under Section 112 of the Clean Air Act (CAA).

D.3.3 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

A Preventive Maintenance Plan is required for these facilities and any control devices. Section B Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.3.4 Record Keeping Requirements

(a) To document the compliance status with Condition D.3.2(c)(1) through (5), the Permittee shall maintain records in accordance with (1) through (4) below. Records maintained shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limits established in Condition D.3.2(c)(1) through (5).

(1) Calendar dates covered in the compliance determination period;

(2) Actual asphalt binder usage in the production of cold mix asphalt since the last compliance determination period;

(3) Actual VOC solvent content by weight of the asphalt binder used in the production of cold mix asphalt since the last compliance determination period; and

(4) Actual amount of VOC solvent used in the production of cold mix asphalt, and the amount of VOC emitted since the last compliance determination period.

Records may include: delivery tickets, manufacturer’s data, material safety data sheets (MSDS), and other documents necessary to verify the type and amount used. Test results of ASTM tests for asphalt cutback and asphalt emulsion may be used to document volatilization.

(b) Section C - General Record Keeping Requirements contains the Permittee’s obligations with regard to the records required by this condition.

D.3.5 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.3.2(a), D.3.2(b), D.3.2(c), and D.3.2(d), shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee’s obligation with regard to the reporting required by this condition.

The report does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1).
SECTION E.1 NSPS

Emissions Unit Description:

(a) Asphalt Plant Dryer

(1) One (1) counterflow drum hot-mix asphalt plant, identified as 2, constructed in 2001, with a maximum throughput of 400 tons of raw material per hour, equipped with one (1) one hundred twenty-five (125) million British thermal units (MMBtu) per hour dryer burner outfitted with low NOx burners, identified as 3, controlling particulate emissions with one (1) baghouse, replaced in 2016, and exhausting to one (1) stack, identified as SV1.

(2) The hot-mix asphalt plant processes one or more of the following as components of the aggregate mix:

 (1) blast furnace slag
 (2) steel slag
 (3) asbestos-free recycled asphalt

(3) The dryer burner uses natural gas as the primary fuel, and the following backup fuels:

 (1) #2 distillate fuel oil
 (2) #4 residual fuel oil
 (3) propane
 (4) butane
 (5) waste oil

Under 40 CFR 60.90, Subpart I - New Source Performance Standards for Hot Mix Asphalt Facilities, this drum hot-mix asphalt operation is considered an affected facility.

(b) Asphalt Storage Silos

(1) Three (3) asphalt mix storage silos identified as 5, constructed in 2001, with a maximum capacity of three hundred (300) tons, each..

(c) Raw Material Storage Piles:

(1) Sand storage piles, with a maximum anticipated pile size of 3.34 acres;
(2) Limestone storage piles, with a maximum anticipated pile size of 9.18 acres;
(3) Gravel storage piles, with a maximum anticipated pile size of 4.09 acres; and
(4) Asbestos-free shingle (ground factory seconds and/or post consumer waste) storage piles, with a combined maximum anticipated pile size of five and fifty-two hundredths (5.52) acres.
(5) Blast furnace and/or electric arc furnace steel mill slag storage piles, with a combined maximum anticipated pile size of six and ninety-four hundredths (6.94) acres; and

(d) Conveyors and Screening Equipment

(1) Two (2) conveyors for transporting coarse to fine aggregates to the drum mixer.
(2) One (1) conveyor for transporting recycled asphalt pavement and recycled shingles to the drum mixer.
(3) One (1) drag slat conveyor transporting hot-mixed asphalt to the asphalt storage silos.
(4) One (1) screening unit,
(e) One (1) cold feed system, identified as 1, constructed in 2001, with a maximum capacity of three hundred seventy-two (372) tons of aggregate per hour, and consisting of:

(1) six (6) feeder bins;
(2) two (2) belt conveyors; and
(3) one (1) scalping screen.
(4) cold-mix (stockpile mix) asphalt storage piles;

(f) One (1) mineral filler dust silo, identified as 15, constructed in 2001, with a maximum capacity of five hundred (500) barrels.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart I.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 Hot Mix Asphalt Facilities NSPS [326 IAC 12] [40 CFR Part 60, Subpart I]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart I (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

(1) 40 CFR 60.90
(2) 40 CFR 60.91
(3) 40 CFR 60.92
(4) 40 CFR 60.93

Compliance Determination Requirements [326 IAC 2-8-4(1)]

E.1.3 Testing Requirements [326 IAC 2-1.1-11] [326 IAC 2-8-5(a)(1)]

In order to document the compliance status with Condition E.1.2, the Permittee shall perform the testing required under 40 CFR 60, Subpart I, utilizing methods as approved by the Commissioner, at least once every five (5) years from the date of the most recent valid compliance demonstration. Section C - Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.
SECTION E.2 NSPS

Emissions Unit Description:

(g) One (1) portable electric powered recycled asphalt pavement (RAP) system, identified as 10, constructed in 2001, with a maximum throughput capacity of two hundred (200) tons of RAP per hour (the lump breaker capacity is fifty (50) tons per hour), uncontrolled, exhausting to the atmosphere, and including the following:

(1) One (1) electric powered recycled asphalt pavement (RAP) lump breaker;
(2) one (1) feeder bin;
(3) three (3) belt conveyors;
(4) one (1) scalping screen, and
(5) RAP storage piles, with a maximum anticipated pile size of three and sixty-nine hundredths (3.69) acres;
(6) RAP and/or asbestos-free shingle storage piles, with a maximum anticipated pile size of one and six tenths (1.6) acre.

Under 40 CFR 60, 1068.30(2)(iii), General Compliance Provisions for Highway, Stationary, and Nonroad Programs, this unit this is considered a nonroad engine.

Under 40 CFR 60, Subpart OOO, New Source Performance Standards for Nonmetallic Mineral Processing Plants, this is considered an affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-8-4(1)]

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

E.2.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart OOO.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 Nonmetallic Mineral Processing Plants NSPS [326 IAC 12] [40 CFR Part 60, Subpart OOO]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart I (included as Attachment C to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

(1) 40 CFR 60.670
Compliance Determination Requirements [326 IAC 2-8-4(1)]

E.2.3 Testing Requirements [326 IAC 2-1.1-11] [326 IAC 2-8-5(a)(1)]

In order to demonstrate compliance with Condition E.2.2, the Permittee shall perform testing for fugitive emissions from affected facilities without water sprays, as required under NSPS 40 CFR 60, Subpart OOO, utilizing methods approved by the Commissioner at least once every five (5) years from the date of this valid compliance demonstration. Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

Note: Pursuant to §60.674(b)(1), affected facilities controlled by water carryover from upstream water sprays that are inspected according to the requirements in §60.674(b) and §60.676(b) are exempt from this 5-year repeat testing requirement.
This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter

☐ Test Result (specify) __

☐ Report (specify) __

☐ Notification (specify) __

☐ Affidavit (specify) __

☐ Other (specify) __

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature: ________________________________

Printed Name: ________________________________

Title/Position: ________________________________

Date: ________________________________
FEDERALLY ENFORCEABLE STATE OPERATING PERMIT (FESOP)

EMERGENCY OCCURRENCE REPORT

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Rieth-Riley Construction Co., Inc. (Plant #366)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address:</td>
<td>2454 West CR 450 North, LaPorte, Indiana 46350</td>
</tr>
<tr>
<td>FESOP Permit No.:</td>
<td>F091-43498-03179</td>
</tr>
</tbody>
</table>

This form consists of 2 pages
Page 1 of 2

- This is an emergency as defined in 326 IAC 2-7-1(12)
 - The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 - The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-8-12.

If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Facility/Equipment/Operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Equipment:</td>
</tr>
<tr>
<td>Permit Condition or Operation Limitation in Permit:</td>
</tr>
<tr>
<td>Description of the Emergency:</td>
</tr>
<tr>
<td>Describe the cause of the Emergency:</td>
</tr>
</tbody>
</table>
If any of the following are not applicable, mark N/A

Date/Time Emergency started:		
Date/Time Emergency was corrected:		
Was the facility being properly operated at the time of the emergency?	Y	N

Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:

Estimated amount of pollutant(s) emitted during emergency:

Describe the steps taken to mitigate the problem:

Describe the corrective actions/response steps taken:

Describe the measures taken to minimize emissions:

If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:

Form Completed by: __
Title / Position: __
Date: __
Phone: __
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FESOP Quarterly Report

Source Name: Rieth-Riley Construction Co., Inc. (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, Indiana 46350
FESOP Permit No.: F091-43498-03179
Facility: Drum dryer/mixer
Parameter: Hot mix asphalt production
Limit: The amount of hot-mix asphalt produced in the dryer/burner shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

QUARTER:_____________________ YEAR:_____________________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot-Mix Asphalt (Tons)</td>
<td>(Hot-Mix Asphalt (Tons))</td>
<td>Hot-Mix Asphalt (Tons)</td>
</tr>
<tr>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.
☐ Deviation/s occurred in this quarter.
Deviation has been reported on: ________________

Submitted by: __

Title / Position: __

Signature: __

Date: __

Phone: ___
Rieth-Riley Construction Co., Inc. (Plant #366) Page 49 of 55
LaPorte, Indiana F091-43498-03179
Permit Reviewer: Taylor Wade

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FESOP Quarterly Report

Source Name: Rieth-Riley Construction Co, Inc. (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, Indiana 46350
FESOP Permit No.: F091-43498-03179
Facility: Dryer/Mixer Burner
Parameter: Fuel & Slag Usage / SO2 & NOx emissions
Emission Limits: Sulfur Dioxide (SO₂) emissions shall not exceed 90.11 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.10(a).

Nitrogen Oxides (NOₓ) emissions shall not exceed 96.50 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D.1.10(b).

Fuel & Slag Limits: When combusting only one type of fuel per twelve (12) consecutive month period in the dryer/mixer burner, in conjunction with the use of slag in the aggregate mix, fuel and slag usage shall not exceed the following:

<table>
<thead>
<tr>
<th>Fuel Type (Units)</th>
<th>Fuel Usage Limit (per 12 consecutive month period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (MMCF)</td>
<td>1,016</td>
</tr>
<tr>
<td>No. 2 Distillate Fuel Oil (gallons)</td>
<td>1,496,193</td>
</tr>
<tr>
<td>No. 4 Residual Fuel Oil (gallons)</td>
<td>1,416,396</td>
</tr>
<tr>
<td>Waste Oil (gallons)</td>
<td>722,651</td>
</tr>
<tr>
<td>Blast Furnace Slag (tons)</td>
<td>100,000</td>
</tr>
<tr>
<td>Steel Slag (tons)</td>
<td>100,000</td>
</tr>
<tr>
<td>Propane (gallons)</td>
<td>14,845,714</td>
</tr>
<tr>
<td>Butane (gallons)</td>
<td>12,866,286</td>
</tr>
</tbody>
</table>
FESOP Quarterly Report - Fuel & Slag Usage / SO2 & NOx emissions

<table>
<thead>
<tr>
<th>Month</th>
<th>Fuel Types / Slag (units)</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
<th>Equation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Usage</td>
<td>Usage</td>
<td>Usage</td>
<td>Sulfur Dioxide (SO2) Emissions (tons per 12 months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
<tr>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Slag Usage (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Slag Usage (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas (MMCF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 2 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4 Fuel Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Furnace Slag (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Slag Usage (tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Oil (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butane (gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No deviation occurred in this reporting period. Submitted by: _____________________________ Date: ___________________

- Deviation/s occurred in this reporting period. Title / Position: ____________________________ Phone: _________________
 Deviation has been reported on: ____________ Signature: ________________________________
Source Name: Rieth-Riley Construction Co., Inc. (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, Indiana 46350
FESOP Permit No.: F091-43498-03179
Facility: Cold-mix Asphalt Production
Parameter: Binder Usage / VOC Emissions
Emission Limits: Volatile Organic Compound (VOC) emissions from the sum of the binders shall not exceed 53.1 tons per twelve (12) consecutive month period with compliance determined at the end of each month, using the equation found in Condition D.3.2(c).

Binder Limits: When using only one type of liquid binder (asphalt emulsion) per twelve (12) consecutive month period in the production of cold-mix asphalt, liquid binder (asphalt emulsion) usage shall not exceed the following:

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Binder Usage Limit (per 12 consecutive month period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>55.9</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>75.9</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>212.4</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>114.4</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>2123.8</td>
</tr>
</tbody>
</table>
FESOP Quarterly Report - Liquid Binder (Asphalt Emulsion) Usage / VOC Emissions

<table>
<thead>
<tr>
<th>Month</th>
<th>Binder/Emulsion Types (units)</th>
<th>Solvent Usage This Month (tons)</th>
<th>Solvent Usage Previous 11 Months (tons)</th>
<th>Solvent Usage 12 Month Total (tons)</th>
<th>VOC Emissions (tons per 12 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 1 + Column 2</td>
<td>Equation</td>
</tr>
<tr>
<td></td>
<td>Follow the same liquid binder type used in the previous report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cutback asphalt rapid cure liquid binder**
- **Cutback asphalt medium cure liquid binder**
- **Cutback asphalt slow cure liquid binder**
- **Emulsified asphalt with solvent liquid binder**
- **Other asphalt with solvent liquid binder**

Adjustment Factors

\[
\text{VOC Emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.0</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

- **No deviation occurred in this reporting period.**
- **Deviation(s) occurred in this reporting period.**
 - Title/Position: __________________
 - Phone: ______________
 - Deviation has been reported on: _________________
 - Signature: ___

No deviation occurred in this reporting period.	Submitted by: __________________ Date: ______________
Deviation(s) occurred in this reporting period.	Title/Position: __________________ Phone: ______________
Deviation has been reported on: _________________	Signature: ___
This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C - General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

<table>
<thead>
<tr>
<th>Permit Requirement</th>
<th>Date of Deviation</th>
<th>Duration of Deviation</th>
<th>Number of Deviations</th>
<th>Probable Cause of Deviation</th>
<th>Response Steps Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement</th>
<th>Date of Deviation</th>
<th>Duration of Deviation</th>
<th>Number of Deviations</th>
<th>Probable Cause of Deviation</th>
<th>Response Steps Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ___
Title / Position: ___
Date: ___
Phone: ___
Attachment A

FEDERALLY ENFORCEABLE
STATE OPERATING PERMIT RENEWAL
OFFICE OF AIR QUALITY

Rieth-Riley Construction Company, Inc.
(Plant #366)
2454 West CR 450 North
LaPorte, IN 46350

HOT-MIX ASPHALT PLANT
FUGITIVE DUST CONTROL PLAN

F091-43498-03179
HOT-MIX ASPHALT PLANT
SITE FUGITIVE PARTICULATE MATTER EMISSIONS
CONTROL PLAN

1. Fugitive particulate matter (dust) emissions from paved roads, unpaved roads, and parking lots shall be controlled by one or more of the following measures:

 A. Paved roads and parking lots:
 i. Cleaning by vacuum sweeping on an as-needed basis (monthly at a minimum).
 ii. Power brooming while wet either from rain or application of water.

 B. Unpaved roads and parking lots:
 i. Paving with asphalt.
 ii. Treating with emulsified asphalt on an as-needed basis.
 iii. Treating with water on an as-needed basis.
 iv. Double chip and seal the road surface and maintained on an as-needed basis.

2. Fugitive particulate matter (dust) emissions from aggregate stockpiles shall be controlled by one or more of the following measures:

 A. Maintain minimum size and number of stock piles of aggregate.
 B. Treating around the stockpile area with emulsified asphalt on an as-needed basis.
 C. Treating around the stockpile area with water on an as-needed basis.
 D. Treating the stockpiles with water on an as-needed basis.

3. Fugitive particulate matter (dust) emission from outdoor conveying of aggregates shall be controlled by the following measure:

 A. Apply water at the feed and the intermediate points on an as-needed basis.

4. Fugitive particulate matter (dust) emissions resulting from the transferring of aggregates shall be controlled by one or more of the following measures:

 A. Minimize the vehicular distance between the transfer points.
 B. Enclose the transfer points.
 C. Apply water on transfer points on an as-needed basis.

5. Fugitive particulate matter (dust) emissions from the transportation of aggregate by truck, front end loader, etc., shall be controlled by one or more of the following measures:

 A. Tarping the aggregate hauling vehicles.
 B. Maintain vehicle bodies in a condition to prevent leakage.
C. Spray the aggregates with water.

D. Maintain a 10-mph speed limit in the yard.

6. Fugitive particulate matter (dust) emissions from the loading and unloading of aggregates shall be controlled by one or more of the following measures:

A. Reduce free fall distance to a minimum.

B. Reduce the rate of discharge of the aggregate.

C. Spray the aggregate with water on an as-needed basis.

“An as-needed basis” means the frequency or quantity of application necessary to minimize visible particulate matter emissions.

7. Documentation and Record Keeping
A documentation log of the measures performed to control the fugitive dust will be maintained to comply with the regulations. The site manager or environmental manager will review and update this documentation log as necessary. All documentation logs will be retained on-site and will be available for inspection.
§ 60.90 Applicability and designation of affected facility.

(a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following: dryers; systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler, systems for mixing hot mix asphalt; and the loading, transfer, and storage systems associated with emission control systems.

(b) Any facility under paragraph (a) of this section that commences construction or modification after June 11, 1973, is subject to the requirements of this subpart.

§ 60.91 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) Hot mix asphalt facility means any facility, as described in § 60.90, used to manufacture hot mix asphalt by heating and drying aggregate and mixing with asphalt cements.

§ 60.92 Standard for particulate matter.

(a) On and after the date on which the performance test required to be conducted by § 60.8 is completed, no owner or operator subject to the provisions of this subpart shall discharge or cause the discharge into the atmosphere from any affected facility any gases which:

(1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf).

(2) Exhibit 20 percent opacity, or greater.

§ 60.93 Test methods and procedures.

(a) In conducting the performance tests required in § 60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in § 60.8(b).
(b) The owner or operator shall determine compliance with the particulate matter standards in § 60.92 as follows:

(1) Method 5 shall be used to determine the particulate matter concentration. The sampling time and sample volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf).

(2) Method 9 and the procedures in § 60.11 shall be used to determine opacity.

[54 FR 6667, Feb. 14, 1989]
Attachment C

Federally Enforceable State Operating Permit (FESOP) No: F091-43498-03179

[Downloaded from the eCFR on May 13, 2013]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart OOO—Standards of Performance for Nonmetallic Mineral Processing Plants

Source: 74 FR 19309, Apr. 28, 2009, unless otherwise noted.

§ 60.670 Applicability and designation of affected facility.

(a)(1) Except as provided in paragraphs (a)(2), (b), (c), and (d) of this section, the provisions of this subpart are applicable to the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station. Also, crushers and grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in recycled asphalt pavement and subsequent affected facilities up to, but not including, the first storage silo or bin are subject to the provisions of this subpart.

(2) The provisions of this subpart do not apply to the following operations: All facilities located in underground mines; plants without crushers or grinding mills above ground; and wet material processing operations (as defined in § 60.671).

(b) An affected facility that is subject to the provisions of subparts F or I of this part or that follows in the plant process any facility subject to the provisions of subparts F or I of this part is not subject to the provisions of this subpart.

(c) Facilities at the following plants are not subject to the provisions of this subpart:

(1) Fixed sand and gravel plants and crushed stone plants with capacities, as defined in § 60.671, of 23 megagrams per hour (25 tons per hour) or less;

(2) Portable sand and gravel plants and crushed stone plants with capacities, as defined in § 60.671, of 136 megagrams per hour (150 tons per hour) or less; and

(3) Common clay plants and pumice plants with capacities, as defined in § 60.671, of 9 megagrams per hour (10 tons per hour) or less.

(d)(1) When an existing facility is replaced by a piece of equipment of equal or smaller size, as defined in § 60.671, having the same function as the existing facility, and there is no increase in the amount of emissions, the new facility is exempt from the provisions of §§ 60.672, 60.674, and 60.675 except as provided for in paragraph (d)(3) of this section.

(2) An owner or operator complying with paragraph (d)(1) of this section shall submit the information required in § 60.676(a).

(3) An owner or operator replacing all existing facilities in a production line with new facilities does not qualify for the exemption described in paragraph (d)(1) of this section and must comply with the provisions of §§ 60.672, 60.674 and 60.675.
(e) An affected facility under paragraph (a) of this section that commences construction, modification, or reconstruction after August 31, 1983, is subject to the requirements of this part.

(f) Table 1 of this subpart specifies the provisions of subpart A of this part 60 that do not apply to owners and operators of affected facilities subject to this subpart or that apply with certain exceptions.

§ 60.671 Definitions.

All terms used in this subpart, but not specifically defined in this section, shall have the meaning given them in the Act and in subpart A of this part.

Bagging operation means the mechanical process by which bags are filled with nonmetallic minerals.

Belt conveyor means a conveying device that transports material from one location to another by means of an endless belt that is carried on a series of idlers and routed around a pulley at each end.

Bucket elevator means a conveying device of nonmetallic minerals consisting of a head and foot assembly which supports and drives an endless single or double strand chain or belt to which buckets are attached.

Building means any frame structure with a roof.

Capacity means the cumulative rated capacity of all initial crushers that are part of the plant.

Capture system means the equipment (including enclosures, hoods, ducts, fans, dampers, etc.) used to capture and transport particulate matter generated by one or more affected facilities to a control device.

Control device means the air pollution control equipment used to reduce particulate matter emissions released to the atmosphere from one or more affected facilities at a nonmetallic mineral processing plant.

Conveying system means a device for transporting materials from one piece of equipment or location to another location within a plant. Conveying systems include but are not limited to the following: Feeders, belt conveyors, bucket elevators and pneumatic systems.

Crush or Crushing means to reduce the size of nonmetallic mineral material by means of physical impaction of the crusher or grinding mill upon the material.

Crusher means a machine used to crush any nonmetallic minerals, and includes, but is not limited to, the following types: Jaw, gyratory, cone, roll, rod mill, hammermill, and impactor.

Enclosed truck or railcar loading station means that portion of a nonmetallic mineral processing plant where nonmetallic minerals are loaded by an enclosed conveying system into enclosed trucks or railcars.

Fixed plant means any nonmetallic mineral processing plant at which the processing equipment specified in § 60.670(a) is attached by a cable, chain, turnbuckle, bolt or other means (except electrical connections) to any anchor, slab, or structure including bedrock.

Fugitive emission means particulate matter that is not collected by a capture system and is released to the atmosphere at the point of generation.

Grinding mill means a machine used for the wet or dry fine crushing of any nonmetallic mineral. Grinding mills include, but are not limited to, the following types: Hammer, roller, rod, pebble and ball, and fluid energy. The grinding mill includes the air conveying system, air separator, or air classifier, where such systems are used.

Initial crusher means any crusher into which nonmetallic minerals can be fed without prior crushing in the plant.
Nonmetallic mineral means any of the following minerals or any mixture of which the majority is any of the following minerals:

1. Crushed and Broken Stone, including Limestone, Dolomite, Granite, Traprock, Sandstone, Quartz, Quartzite, Marl, Marble, Slate, Shale, Oil Shale, and Shell.
2. Sand and Gravel.
3. Clay including Kaolin, Fireclay, Bentonite, Fuller's Earth, Ball Clay, and Common Clay.
4. Rock Salt.
5. Gypsum (natural or synthetic).
6. Sodium Compounds, including Sodium Carbonate, Sodium Chloride, and Sodium Sulfate.
7. Pumice.
8. Gilsonite.
10. Boron, including Borax, Kernite, and Colemanite.
12. Fluorospar.
13. Feldspar.
15. Perlite.
16. Vermiculite.
17. Mica.
18. Kyanite, including Andalusite, Sillimanite, Topaz, and Dumortierite.

Nonmetallic mineral processing plant means any combination of equipment that is used to crush or grind any nonmetallic mineral wherever located, including lime plants, power plants, steel mills, asphalt concrete plants, portland cement plants, or any other facility processing nonmetallic minerals except as provided in § 60.670 (b) and (c).

Portable plant means any nonmetallic mineral processing plant that is mounted on any chassis or skids and may be moved by the application of a lifting or pulling force. In addition, there shall be no cable, chain, turnbuckle, bolt or other means (except electrical connections) by which any piece of equipment is attached or clamped to any anchor, slab, or structure, including bedrock that must be removed prior to the application of a lifting or pulling force for the purpose of transporting the unit.

Production line means all affected facilities (crushers, grinding mills, screening operations, bucket elevators, belt conveyors, bagging operations, storage bins, and enclosed truck and railcar loading stations) which are directly connected or are connected together by a conveying system.
Saturated material means, for purposes of this subpart, mineral material with sufficient surface moisture such that particulate matter emissions are not generated from processing of the material through screening operations, bucket elevators and belt conveyors. Material that is wetted solely by wet suppression systems is not considered to be “saturated” for purposes of this definition.

Screening operation means a device for separating material according to size by passing undersize material through one or more mesh surfaces (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders associated with truck dumping and static (non-moving) grizzlies used anywhere in the nonmetallic mineral processing plant are not considered to be screening operations.

Seasonal shut down means shut down of an affected facility for a period of at least 45 consecutive days due to weather or seasonal market conditions.

Size means the rated capacity in tons per hour of a crusher, grinding mill, bucket elevator, bagging operation, or enclosed truck or railcar loading station; the total surface area of the top screen of a screening operation; the width of a conveyor belt; and the rated capacity in tons of a storage bin.

Stack emission means the particulate matter that is released to the atmosphere from a capture system.

Storage bin means a facility for storage (including surge bins) of nonmetallic minerals prior to further processing or loading.

Transfer point means a point in a conveying operation where the nonmetallic mineral is transferred to or from a belt conveyor except where the nonmetallic mineral is being transferred to a stockpile.

Truck dumping means the unloading of nonmetallic minerals from movable vehicles designed to transport nonmetallic minerals from one location to another. Movable vehicles include but are not limited to: Trucks, front end loaders, skip hoists, and railcars.

Vent means an opening through which there is mechanically induced air flow for the purpose of exhausting from a building air carrying particulate matter emissions from one or more affected facilities.

Wet material processing operation(s) means any of the following:

(1) Wet screening operations (as defined in this section) and subsequent screening operations, bucket elevators and belt conveyors in the production line that process saturated materials (as defined in this section) up to the first crusher, grinding mill or storage bin in the production line; or

(2) Screening operations, bucket elevators and belt conveyors in the production line downstream of wet mining operations (as defined in this section) that process saturated materials (as defined in this section) up to the first crusher, grinding mill or storage bin in the production line.

Wet mining operation means a mining or dredging operation designed and operated to extract any nonmetallic mineral regulated under this subpart from deposits existing at or below the water table, where the nonmetallic mineral is saturated with water.

Wet screening operation means a screening operation at a nonmetallic mineral processing plant which removes unwanted material or which separates marketable fines from the product by a washing process which is designed and operated at all times such that the product is saturated with water.

§ 60.672 Standard for particulate matter (PM).

(a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup as required under § 60.8. The requirements in Table 2 of this subpart apply for affected facilities with capture systems used to capture and transport particulate matter to a control device.
(b) Affected facilities must meet the fugitive emission limits and compliance requirements in Table 3 of this subpart within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup as required under § 60.11. The requirements in Table 3 of this subpart apply for fugitive emissions from affected facilities without capture systems and for fugitive emissions escaping capture systems.

(c) [Reserved]

d) Truck dumping of nonmetallic minerals into any screening operation, feed hopper, or crusher is exempt from the requirements of this section.

e) If any transfer point on a conveyor belt or any other affected facility is enclosed in a building, then each enclosed affected facility must comply with the emission limits in paragraphs (a) and (b) of this section, or the building enclosing the affected facility or facilities must comply with the following emission limits:

(1) Fugitive emissions from the building openings (except for vents as defined in § 60.671) must not exceed 7 percent opacity; and

(2) Vents (as defined in § 60.671) in the building must meet the applicable stack emission limits and compliance requirements in Table 2 of this subpart.

(f) Any baghouse that controls emissions from only an individual, enclosed storage bin is exempt from the applicable stack PM concentration limit (and associated performance testing) in Table 2 of this subpart but must meet the applicable stack opacity limit and compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does not apply for multiple storage bins with combined stack emissions.

§ 60.673 Reconstruction.

(a) The cost of replacement of ore-contact surfaces on processing equipment shall not be considered in calculating either the “fixed capital cost of the new components” or the “fixed capital cost that would be required to construct a comparable new facility” under § 60.15. Ore-contact surfaces are crushing surfaces; screen meshes, bars, and plates; conveyor belts; and elevator buckets.

(b) Under § 60.15, the “fixed capital cost of the new components” includes the fixed capital cost of all depreciable components (except components specified in paragraph (a) of this section) which are or will be replaced pursuant to all continuous programs of component replacement commenced within any 2-year period following August 31, 1983.

§ 60.674 Monitoring of operations.

(a) The owner or operator of any affected facility subject to the provisions of this subpart which uses a wet scrubber to control emissions shall install, calibrate, maintain and operate the following monitoring devices:

(1) A device for the continuous measurement of the pressure loss of the gas stream through the scrubber. The monitoring device must be certified by the manufacturer to be accurate within ±250 pascals ±1 inch water gauge pressure and must be calibrated on an annual basis in accordance with manufacturer's instructions.

(2) A device for the continuous measurement of the scrubbing liquid flow rate to the wet scrubber. The monitoring device must be certified by the manufacturer to be accurate within ±5 percent of design scrubbing liquid flow rate and must be calibrated on an annual basis in accordance with manufacturer's instructions.

(b) The owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses wet suppression to control emissions from the affected facility must perform monthly periodic inspections to check that water is flowing to discharge spray nozzles in the wet suppression system. The owner or operator must initiate corrective action within 24 hours and complete corrective action as expediently as practical if the owner or operator finds that water is not flowing properly during an inspection of the water spray nozzles. The owner or operator must record each inspection of the water spray nozzles, including the date of each inspection and any corrective actions taken, in the logbook required under § 60.676(b).
(1) If an affected facility relies on water carryover from upstream water sprays to control fugitive emissions, then that affected facility is exempt from the 5-year repeat testing requirement specified in Table 3 of this subpart provided that the affected facility meets the criteria in paragraphs (b)(1)(i) and (ii) of this section:

(i) The owner or operator of the affected facility conducts periodic inspections of the upstream water spray(s) that are responsible for controlling fugitive emissions from the affected facility. These inspections are conducted according to paragraph (b) of this section and § 60.676(b), and

(ii) The owner or operator of the affected facility designates which upstream water spray(s) will be periodically inspected at the time of the initial performance test required under § 60.11 of this part and § 60.675 of this subpart.

(2) If an affected facility that routinely uses wet suppression water sprays ceases operation of the water sprays or is using a control mechanism to reduce fugitive emissions other than water sprays during the monthly inspection (for example, water from recent rainfall), the logbook entry required under § 60.676(b) must specify the control mechanism being used instead of the water sprays.

(c) Except as specified in paragraph (d) or (e) of this section, the owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses a baghouse to control emissions must conduct quarterly 30-minute visible emissions inspections using EPA Method 22 (40 CFR part 60, Appendix A-7). The Method 22 (40 CFR part 60, Appendix A-7) test shall be conducted while the baghouse is operating. The test is successful if no visible emissions are observed. If any visible emissions are observed, the owner or operator of the affected facility must initiate corrective action within 24 hours to return the baghouse to normal operation. The owner or operator must record each Method 22 (40 CFR part 60, Appendix A-7) test, including the date and any corrective actions taken, in the logbook required under § 60.676(b). The owner or operator of the affected facility may establish a different baghouse-specific success level for the visible emissions test (other than no visible emissions) by conducting a PM performance test according to § 60.675(b) simultaneously with a Method 22 (40 CFR part 60, Appendix A-7) to determine what constitutes normal visible emissions from that affected facility's baghouse when it is in compliance with the applicable PM concentration limit in Table 2 of this subpart. The revised visible emissions success level must be incorporated into the permit for the affected facility.

(d) As an alternative to the periodic Method 22 (40 CFR part 60, Appendix A-7) visible emissions inspections specified in paragraph (c) of this section, the owner or operator of any affected facility for which construction, modification, or reconstruction commenced on or after April 22, 2008, that uses a baghouse to control emissions may use a bag leak detection system. The owner or operator must install, operate, and maintain the bag leak detection system according to paragraphs (d)(1) through (3) of this section.

(1) Each bag leak detection system must meet the specifications and requirements in paragraphs (d)(1)(i) through (viii) of this section.

(i) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 1 milligram per dry standard cubic meter (0.00044 grains per actual cubic foot) or less.

(ii) The bag leak detection system sensor must provide output of relative PM loadings. The owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger).

(iii) The bag leak detection system must be equipped with an alarm system that will sound when the system detects an increase in relative particulate loading over the alarm set point established according to paragraph (d)(1)(iv) of this section, and the alarm must be located such that it can be heard by the appropriate plant personnel.

(iv) In the initial adjustment of the bag leak detection system, the owner or operator must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay time.

(v) Following initial adjustment, the owner or operator shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided in paragraph (d)(1)(vi) of this section.
(vi) Once per quarter, the owner or operator may adjust the sensitivity of the bag leak detection system to account for seasonal effects, including temperature and humidity, according to the procedures identified in the site-specific monitoring plan required by paragraph (d)(2) of this section.

(vii) The owner or operator must install the bag leak detection sensor downstream of the fabric filter.

(viii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.

(2) The owner or operator of the affected facility must develop and submit to the Administrator or delegated authority for approval of a site-specific monitoring plan for each bag leak detection system. The owner or operator must operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. Each monitoring plan must describe the items in paragraphs (d)(2)(i) through (vi) of this section.

(i) Installation of the bag leak detection system;

(ii) Initial and periodic adjustment of the bag leak detection system, including how the alarm set-point will be established;

(iii) Operation of the bag leak detection system, including quality assurance procedures;

(iv) How the bag leak detection system will be maintained, including a routine maintenance schedule and spare parts inventory list;

(v) How the bag leak detection system output will be recorded and stored; and

(vi) Corrective action procedures as specified in paragraph (d)(3) of this section. In approving the site-specific monitoring plan, the Administrator or delegated authority may allow owners and operators more than 3 hours to alleviate a specific condition that causes an alarm if the owner or operator identifies in the monitoring plan this specific condition as one that could lead to an alarm, adequately explains why it is not feasible to alleviate this condition within 3 hours of the time the alarm occurs, and demonstrates that the requested time will ensure alleviation of this condition as expeditiously as practicable.

(3) For each bag leak detection system, the owner or operator must initiate procedures to determine the cause of every alarm within 1 hour of the alarm. Except as provided in paragraph (d)(2)(vi) of this section, the owner or operator must alleviate the cause of the alarm within 3 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the following:

(i) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions;

(ii) Sealing off defective bags or filter media;

(iii) Replacing defective bags or filter media or otherwise repairing the control device;

(iv) Sealing off a defective fabric filter compartment;

(v) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; or

(vi) Shutting down the process producing the PM emissions.

(e) As an alternative to the periodic Method 22 (40 CFR part 60, Appendix A-7) visible emissions inspections specified in paragraph (c) of this section, the owner or operator of any affected facility that is subject to the requirements for processed stone handling operations in the Lime Manufacturing NESHAP (40 CFR part 63, subpart AAAAA) may follow the continuous compliance requirements in row 1 items (i) through (iii) of Table 6 to Subpart AAAAA of 40 CFR part 63.
§ 60.675 Test methods and procedures.

(a) In conducting the performance tests required in § 60.8, the owner or operator shall use as reference methods and procedures the test methods in appendices A-1 through A-7 of this part or other methods and procedures as specified in this section, except as provided in § 60.8(b). Acceptable alternative methods and procedures are given in paragraph (e) of this section.

(b) The owner or operator shall determine compliance with the PM standards in § 60.672(a) as follows:

(1) Except as specified in paragraphs (e)(3) and (4) of this section, Method 5 of Appendix A-3 of this part or Method 17 of Appendix A-6 of this part shall be used to determine the particulate matter concentration. The sample volume shall be at least 1.70 dscm (60 dscf). For Method 5 (40 CFR part 60, Appendix A-3), if the gas stream being sampled is at ambient temperature, the sampling probe and filter may be operated without heaters. If the gas stream is above ambient temperature, the sampling probe and filter may be operated at a temperature high enough, but no higher than 121 °C (250 °F), to prevent water condensation on the filter.

(2) Method 9 of Appendix A-4 of this part and the procedures in § 60.11 shall be used to determine opacity.

(c)(1) In determining compliance with the particulate matter standards in § 60.672(b) or § 60.672(e)(1), the owner or operator shall use Method 9 of Appendix A-4 of this part and the procedures in § 60.11, with the following additions:

(i) The minimum distance between the observer and the emission source shall be 4.57 meters (15 feet).

(ii) The observer shall, when possible, select a position that minimizes interference from other fugitive emission sources (e.g., road dust). The required observer position relative to the sun (Method 9 of Appendix A-4 of this part, Section 2.1) must be followed.

(iii) For affected facilities using wet dust suppression for particulate matter control, a visible mist is sometimes generated by the spray. The water mist must not be confused with particulate matter emissions and is not to be considered a visible emission. When a water mist of this nature is present, the observation of emissions is to be made at a point in the plume where the mist is no longer visible.

(2)(i) In determining compliance with the opacity of stack emissions from any baghouse that controls emissions only from an individual enclosed storage bin under § 60.672(f) of this subpart, using Method 9 (40 CFR part 60, Appendix A-4), the duration of the Method 9 (40 CFR part 60, Appendix A-4) observations shall be 1 hour (ten 6-minute averages).

(ii) The duration of the Method 9 (40 CFR part 60, Appendix A-4) observations may be reduced to the duration the affected facility operates (but not less than 30 minutes) for baghouses that control storage bins or enclosed truck or railcar loading stations that operate for less than 1 hour at a time.

(3) When determining compliance with the fugitive emissions standard for any affected facility described under § 60.672(b) or § 60.672(e)(1) of this subpart, the duration of the Method 9 (40 CFR part 60, Appendix A-4) observations must be 30 minutes (five 6-minute averages). Compliance with the applicable fugitive emission limits in Table 3 of this subpart must be based on the average of the five 6-minute averages.

(d) To demonstrate compliance with the fugitive emission limits for buildings specified in § 60.672(e)(1), the owner or operator must complete the testing specified in paragraph (d)(1) and (2) of this section. Performance tests must be conducted while all affected facilities inside the building are operating.

(1) If the building encloses any affected facility that commences construction, modification, or reconstruction on or after April 22, 2008, the owner or operator of the affected facility must conduct an initial Method 9 (40 CFR part 60, Appendix A-4) performance test according to this section and § 60.11.

(2) If the building encloses only affected facilities that commenced construction, modification, or reconstruction before April 22, 2008, and the owner or operator has previously conducted an initial Method 22 (40 CFR part 60, Appendix A-7) performance test showing zero visible emissions, then the owner or operator has demonstrated compliance with
the opacity limit in § 60.672(e)(1). If the owner or operator has not conducted an initial performance test for the building before April 22, 2008, then the owner or operator must conduct an initial Method 9 (40 CFR part 60, Appendix A-4) performance test according to this section and § 60.11 to show compliance with the opacity limit in § 60.672(e)(1).

(e) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section:

(1) For the method and procedure of paragraph (c) of this section, if emissions from two or more facilities continuously interfere so that the opacity of fugitive emissions from an individual affected facility cannot be read, either of the following procedures may be used:

(i) Use for the combined emission stream the highest fugitive opacity standard applicable to any of the individual affected facilities contributing to the emissions stream.

(ii) Separate the emissions so that the opacity of emissions from each affected facility can be read.

(2) A single visible emission observer may conduct visible emission observations for up to three fugitive, stack, or vent emission points within a 15-second interval if the following conditions are met:

(i) No more than three emission points may be read concurrently.

(ii) All three emission points must be within a 70 degree viewing sector or angle in front of the observer such that the proper sun position can be maintained for all three points.

(iii) If an opacity reading for any one of the three emission points equals or exceeds the applicable standard, then the observer must stop taking readings for the other two points and continue reading just that single point.

(3) Method 5I of Appendix A-3 of this part may be used to determine the PM concentration as an alternative to the methods specified in paragraph (b)(1) of this section. Method 5I (40 CFR part 60, Appendix A-3) may be useful for affected facilities that operate for less than 1 hour at a time such as (but not limited to) storage bins or enclosed truck or railcar loading stations.

(4) In some cases, velocities of exhaust gases from building vents may be too low to measure accurately with the type S pitot tube specified in EPA Method 2 of Appendix A-1 of this part [i.e., velocity head <1.3 mm H₂O (0.05 in. H₂O)] and referred to in EPA Method 5 of Appendix A-3 of this part. For these conditions, the owner or operator may determine the average gas flow rate produced by the power fans (e.g., from vendor-supplied fan curves) to the building vent. The owner or operator may calculate the average gas velocity at the building vent measurement site using Equation 1 of this section and use this average velocity in determining and maintaining isokinetic sampling rates.

\[
v_e = \frac{Q_r}{A_e} \quad (E \ q \ 1)
\]

Where:

\(V_e\) = average building vent velocity (feet per minute);

\(Q_r\) = average fan flow rate (cubic feet per minute); and

\(A_e\) = area of building vent and measurement location (square feet).

(f) To comply with § 60.676(d), the owner or operator shall record the measurements as required in § 60.676(c) using the monitoring devices in § 60.674 (a)(1) and (2) during each particulate matter run and shall determine the averages.
(g) For performance tests involving only Method 9 (40 CFR part 60 Appendix A-4) testing, the owner or operator may reduce the 30-day advance notification of performance test in § 60.7(a)(6) and 60.8(d) to a 7-day advance notification.

(h) [Reserved]

(i) If the initial performance test date for an affected facility falls during a seasonal shut down (as defined in § 60.671 of this subpart) of the affected facility, then with approval from the permitting authority, the owner or operator may postpone the initial performance test until no later than 60 calendar days after resuming operation of the affected facility.

§ 60.676 Reporting and recordkeeping.

(a) Each owner or operator seeking to comply with § 60.670(d) shall submit to the Administrator the following information about the existing facility being replaced and the replacement piece of equipment.

(1) For a crusher, grinding mill, bucket elevator, bagging operation, or enclosed truck or railcar loading station:

(i) The rated capacity in megagrams or tons per hour of the existing facility being replaced and

(ii) The rated capacity in tons per hour of the replacement equipment.

(2) For a screening operation:

(i) The total surface area of the top screen of the existing screening operation being replaced and

(ii) The total surface area of the top screen of the replacement screening operation.

(3) For a conveyor belt:

(i) The width of the existing belt being replaced and

(ii) The width of the replacement conveyor belt.

(4) For a storage bin:

(i) The rated capacity in megagrams or tons of the existing storage bin being replaced and

(ii) The rated capacity in megagrams or tons of replacement storage bins.

(b)(1) Owners or operators of affected facilities (as defined in §§ 60.670 and 60.671) for which construction, modification, or reconstruction commenced on or after April 22, 2008, must record each periodic inspection required under § 60.674(b) or (c), including dates and any corrective actions taken, in a logbook (in written or electronic format). The owner or operator must keep the logbook onsite and make hard or electronic copies (whichever is requested) of the logbook available to the Administrator upon request.

(2) For each bag leak detection system installed and operated according to § 60.674(d), the owner or operator must keep the records specified in paragraphs (b)(2)(i) through (iii) of this section.

(i) Records of the bag leak detection system output;

(ii) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system settings; and
(iii) The date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and whether the cause of the alarm was alleviated within 3 hours of the alarm.

(3) The owner or operator of each affected facility demonstrating compliance according to § 60.674(e) by following the requirements for processed stone handling operations in the Lime Manufacturing NESHAP (40 CFR part 63, subpart AAAAA) must maintain records of visible emissions observations required by § 63.7132(a)(3) and (b) of 40 CFR part 63, subpart AAAAA.

(c) During the initial performance test of a wet scrubber, and daily thereafter, the owner or operator shall record the measurements of both the change in pressure of the gas stream across the scrubber and the scrubbing liquid flow rate.

(d) After the initial performance test of a wet scrubber, the owner or operator shall submit semiannual reports to the Administrator of occurrences when the measurements of the scrubber pressure loss and liquid flow rate decrease by more than 30 percent from the average determined during the most recent performance test.

(e) The reports required under paragraph (d) of this section shall be postmarked within 30 days following end of the second and fourth calendar quarters.

(f) The owner or operator of any affected facility shall submit written reports of the results of all performance tests conducted to demonstrate compliance with the standards set forth in § 60.672 of this subpart, including reports of opacity observations made using Method 9 (40 CFR part 60, Appendix A-4) to demonstrate compliance with § 60.672(b), (e) and (f).

(g) The owner or operator of any wet material processing operation that processes saturated and subsequently processes unsaturated materials, shall submit a report of this change within 30 days following such change. At the time of such change, this screening operation, bucket elevator, or belt conveyor becomes subject to the applicable opacity limit in § 60.672(b) and the emission test requirements of § 60.11.

(h) The subpart A requirement under § 60.7(a)(1) for notification of the date construction or reconstruction commenced is waived for affected facilities under this subpart.

(i) A notification of the actual date of initial startup of each affected facility shall be submitted to the Administrator.

(1) For a combination of affected facilities in a production line that begin actual initial startup on the same day, a single notification of startup may be submitted by the owner or operator to the Administrator. The notification shall be postmarked within 15 days after such date and shall include a description of each affected facility, equipment manufacturer, and serial number of the equipment, if available.

(2) For portable aggregate processing plants, the notification of the actual date of initial startup shall include both the home office and the current address or location of the portable plant.

(j) The requirements of this section remain in force until and unless the Agency, in delegating enforcement authority to a State under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such States. In that event, affected facilities within the State will be relieved of the obligation to comply with the reporting requirements of this section, provided that they comply with requirements established by the State.

(k) Notifications and reports required under this subpart and under subpart A of this part to demonstrate compliance with this subpart need only to be sent to the EPA Region or the State which has been delegated authority according to § 60.4(b).
Table 1 to Subpart OOO of Part 60—Exceptions to Applicability of Subpart A to Subpart OOO

<table>
<thead>
<tr>
<th>Subpart A reference</th>
<th>Applies to subpart OOO</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.4, Address</td>
<td>Yes</td>
<td>Except in § 60.4(a) and (b) submittals need not be submitted to both the EPA Region and delegated State authority (§ 60.676(k)).</td>
</tr>
<tr>
<td>60.7, Notification and recordkeeping</td>
<td>Yes</td>
<td>Except in (a)(1) notification of the date construction or reconstruction commenced (§ 60.676(h)).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, except in (a)(6) performance tests involving only Method 9 (40 CFR part 60, Appendix A-4) require a 7-day advance notification instead of 30 days (§ 60.675(g)).</td>
</tr>
<tr>
<td>60.8, Performance tests</td>
<td>Yes</td>
<td>Except in (d) performance tests involving only Method 9 (40 CFR part 60, Appendix A-4) require a 7-day advance notification instead of 30 days (§ 60.675(g)).</td>
</tr>
<tr>
<td>60.11, Compliance with standards and maintenance requirements</td>
<td>Yes</td>
<td>Except in (b) under certain conditions (§§ 60.675(c)), Method 9 (40 CFR part 60, Appendix A-4) observation is reduced from 3 hours to 30 minutes for fugitive emissions.</td>
</tr>
<tr>
<td>60.18, General control device</td>
<td>No</td>
<td>Flares will not be used to comply with the emission limits.</td>
</tr>
</tbody>
</table>

Table 2 to Subpart OOO of Part 60—Stack Emission Limits for Affected Facilities With Capture Systems

<table>
<thead>
<tr>
<th>For * * *</th>
<th>The owner or operator must meet a PM limit of * * *</th>
<th>And the owner or operator must meet an opacity limit of * * *</th>
<th>The owner or operator must demonstrate compliance with these limits by conducting * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected facilities (as defined in §§ 60.670 and 60.671 that commenced construction, modification, or reconstruction after August 31, 1983 but before April 22, 2008</td>
<td>0.05 g/dscm (0.022 gr/dscf) a</td>
<td>7 percent for dry control devices b</td>
<td>An initial performance test according to § 60.8 of this part and § 60.675 of this subpart; and Monitoring of wet scrubber parameters according to § 60.674(a) and § 60.676(c), (d), and (e).</td>
</tr>
<tr>
<td>Affected facilities (as defined in §§ 60.670 and 60.671 that commence construction, modification, or reconstruction on or after April 22, 2008</td>
<td>0.032 g/dscm (0.014 gr/dscf) a</td>
<td>Not applicable (except for individual enclosed storage bins)</td>
<td>7 percent for dry control devices on individual enclosed storage bins</td>
</tr>
</tbody>
</table>

a Exceptions to the PM limit apply for individual enclosed storage bins and other equipment. See § 60.672(d) through (f).

b The stack opacity limit and associated opacity testing requirements do not apply for affected facilities using wet scrubbers.
Table 3 to Subpart OOO of Part 60—Fugitive Emission Limits

<table>
<thead>
<tr>
<th>For * * *</th>
<th>The owner or operator must meet the following fugitive emissions limit for grinding mills, screening operations, bucket elevators, transfer points on belt conveyors, bagging operations, storage bins, enclosed truck or railcar loading stations or from any other affected facility (as defined in §§ 60.670 and 60.671) * * *</th>
<th>The owner or operator must meet the following fugitive emissions limit for crushers at which a capture system is not used * * *</th>
<th>The owner or operator must demonstrate compliance with these limits by conducting * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected facilities (as defined in §§ 60.670 and 60.671) that commenced construction, modification, or reconstruction after August 31, 1983 but before April 22, 2008</td>
<td>10 percent opacity</td>
<td>15 percent opacity</td>
<td>An initial performance test according to § 60.11 of this part and § 60.675 of this subpart.</td>
</tr>
<tr>
<td>Affected facilities (as defined in §§ 60.670 and 60.671) that commence construction, modification, or reconstruction on or after April 22, 2008</td>
<td>7 percent opacity</td>
<td>12 percent opacity</td>
<td>An initial performance test according to § 60.11 of this part and § 60.675 of this subpart; and Periodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat performance test according to § 60.11 of this part and § 60.675 of this subpart within 5 years from the previous performance test for fugitive emissions from affected facilities without water sprays. Affected facilities controlled by water carryover from upstream water sprays that are inspected according to the requirements in § 60.674(b) and § 60.676(b) are exempt from this 5-year repeat testing requirement.</td>
</tr>
</tbody>
</table>
Indiana Department of Environmental Management
Office of Air Quality

Technical Support Document (TSD) for a Federally Enforceable State Operating Permit (FESOP) Renewal

Source Description and Location

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Rieth-Riley Construction Co., Inc. (Plant #366)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Location:</td>
<td>2454 West CR 450 North, LaPorte, IN 46350</td>
</tr>
<tr>
<td>County:</td>
<td>LaPorte</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>2951 (Asphalt Paving Mixtures and Blocks)</td>
</tr>
<tr>
<td>Permit Renewal No.:</td>
<td>F 091-43498-03179</td>
</tr>
<tr>
<td>Permit Reviewer:</td>
<td>Taylor Wade</td>
</tr>
</tbody>
</table>

On November 23, 2020, Rieth-Riley Construction Co., Inc. (Plant #366) submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Rieth-Riley Construction Co., Inc. (Plant #366) relating to the operation of a stationary hot mix asphalt plant. Rieth-Riley Construction Co., Inc. (Plant #366) was issued its second FESOP Renewal (F091-29725-03179) on August 25, 2011.

Existing Approvals

The source was issued FESOP Renewal No. F091-29725-03179 on August 25, 2011. The source has since received the following approval:

(a) FESOP Administrative Amendment No. 091-36866-03179, issued on March 18, 2016; and
(b) FESOP Administrative Amendment No. 091-40315-03179, issued on September 25, 2019.

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:

(a) Asphalt Plant Dryer

(1) One (1) counterflow drum hot-mix asphalt plant, identified as 2, constructed in 2001, with a maximum throughput of 400 tons of raw material per hour, equipped with one (1) 125 million British thermal units (MMBtu) per hour dryer burner outfitted with low NOx burners, identified as 3, controlling particulate emissions with one (1) baghouse, replaced in 2016, and exhausting to one (1) stack, identified as SV1.

(2) The hot-mix asphalt plant processes one or more of the following as components of the aggregate mix:

 (A) blast furnace slag
 (B) steel slag
 (C) asbestos-free recycled asphalt

(3) The dryer burner uses natural gas as the primary fuel, and the following backup fuels:

 (A) #2 distillate fuel oil
 (B) #4 residual fuel oil
(C) propane
(D) butane
(E) waste oil

Under 40 CFR 60.90, Subpart I - New Source Performance Standards for Hot Mix Asphalt Facilities, this drum hot-mix asphalt operation is considered an affected facility.

(b) Asphalt Storage Silos

(1) Three (3) asphalt mix storage silos identified as 5, constructed in 2001, with a maximum capacity of three hundred (300) tons, each.

(c) Raw Material Storage Piles:

(1) Sand storage piles, with a maximum anticipated pile size of 3.34 acres;
(2) Limestone storage piles, with a maximum anticipated pile size of 9.18 acres;
(3) Gravel storage piles, with a maximum anticipated pile size of 4.09 acres; and
(4) Asbestos-free shingle (ground factory seconds and/or post consumer waste) storage piles, with a combined maximum anticipated pile size of five and fifty-two hundredths (5.52) acres.
(5) Blast furnace and/or electric arc furnace steel mill slag storage piles, with a combined maximum anticipated pile size of six and ninety-four hundredths (6.94) acres.

(d) Conveyors and Screening Equipment

(1) Two (2) conveyors for transporting coarse to fine aggregates to the drum mixer.
(2) One (1) conveyor for transporting recycled asphalt pavement and recycled shingles to the drum mixer.
(3) One (1) drag slat conveyor transporting hot-mixed asphalt to the asphalt storage silos.
(4) One (1) screening unit,

(e) One (1) cold feed system, identified as 1, constructed in 2001, with a maximum capacity of three hundred seventy-two (372) tons of aggregate per hour, and consisting of:

(1) six (6) feeder bins;
(2) two (2) belt conveyors; and
(3) one (1) scalping screen.
(4) cold-mix (stockpile mix) asphalt storage piles;

(f) One (1) mineral filler dust silo, identified as 15, constructed in 2001, with a maximum capacity of five hundred (500) barrels.

(g) One (1) portable recycled asphalt pavement (RAP) system, identified as 10, constructed in 2001, with a maximum throughput capacity of two hundred (200) tons of RAP per hour (the lump breaker capacity is fifty (50) tons per hour), uncontrolled, exhausting to the atmosphere, and including the following:

(1) One (1) electric powered recycled asphalt pavement (RAP) lump breaker;
(2) one (1) feeder bin;
(3) three (3) belt conveyors;
(4) one (1) scalping screen, and
(5) RAP storage piles, with a maximum anticipated pile size of three and sixty-nine hundredths (3.69) acres;
(6) RAP and/or asbestos-free shingle storage piles, with a maximum anticipated pile size of one and six tenths (1.6) acre.

Under 40 CFR 60, 1068.30(2)(iii), General Compliance Provisions for Highway, Stationary, and Nonroad Programs, this unit this is considered a nonroad engine.
Under 40 CFR 60, Subpart OOO, New Source Performance Standards for Nonmetallic Mineral Processing Plants, this is considered an affected facility.

Insignificant Activities

The source also consists of the following insignificant activities:

(a) Liquid Asphalt Cement Storage Tanks

 (1) Three (3) liquid asphalt cement storage tanks, identified as 13A, 13B, and 13C, storing liquid asphalt. Tanks 13A and 13B were constructed in 2001, with a maximum capacity of 30,000 gallons each, and tank 13C was constructed in 2002 with a maximum capacity of 15,000 gallons, equipped with condenser vents and exhausting through Stacks SV4 and SV5;

(b) Fuel Oil Storage Tanks

 (1) One (1) No.2 fuel oil storage tank, identified as 12, constructed in 2001, with a maximum storage capacity 10,000 gallons, and exhausting through stack SV8;

 (2) Two (2) waste oil storage tanks, identified as 11A and 11B, constructed in 2001, with a maximum storage capacity of 15,000 gallons each, and exhausting through Stacks SV6 and SV7;

(c) Petroleum Dispensing Facility

 A petroleum fuel, other than gasoline, dispensing facility, having a storage capacity of less than or equal to ten thousand five hundred (10,500) gallons, and dispensing less than or equal to two hundred thousand (230,000) gallons per month;

(d) Hot Oil Heaters

 (1) Two (2) 2.0 million British Thermal Units per hour (MMBtu/hr) hot oil heaters, firing natural gas or No. 2 fuel oil, identified as 14A and 14B, constructed in 2001, and exhausting to stacks SV-2 and SV-3, respectively.

(e) Cleaners and Solvents

 (1) having a vapor pressure equal to or less than 2 kPa; 15 mm Hg; or 0.3 psi measured at 38 °C (100 °F) or;

 (2) having a vapor pressure equal to or less than 0.7 kPa; 5 mm Hg; or 0.1 psi measured at 20 °C (68 °F); the use of which for all cleaners and solvents combined does not exceed one hundred forty-five (145) gallons per twelve (12) months;

(f) Unpaved Roads

 Unpaved roads and parking lots with public access.

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.
County Attainment Status

The source is located in LaPorte County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective January 16, 2018, for the 2015 8-hour ozone standard.</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective December 13, 2009, for the 2006 24-hour PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Unclassifiable or attainment effective January 29, 2012, for the 2010 NO₂ standard.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.</td>
</tr>
</tbody>
</table>

(a) Ozone Standards
Volatile organic compounds (VOC) and Nitrogen Oxides (NOₓ) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOₓ emissions are considered when evaluating the rule applicability relating to ozone. LaPorte County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) PM₂.₅
LaPorte County has been classified as attainment for PM₂.₅. Therefore, direct PM₂.₅, SO₂, and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants
LaPorte County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

This type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B). However, there is an applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980 (NSPS Subpart I for Hot Mix Asphalt Facilities); therefore, fugitive emissions are counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of *Utility Air Regulatory Group v. EPA*, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”
The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Unrestricted Potential Emissions

This table reflects the unrestricted potential emissions of the source.

<table>
<thead>
<tr>
<th></th>
<th>PM1</th>
<th>PM$_{10}$1</th>
<th>PM$_{2.5}$1,2</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP3</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE of Entire Source Excluding Fugitives*</td>
<td>49,056.25</td>
<td>11,388.41</td>
<td>26,284.1</td>
<td>11,282.8</td>
<td>186.31</td>
<td>56.16</td>
<td>229.23</td>
<td>103.24 (HCl)</td>
<td>108.07</td>
</tr>
<tr>
<td>Fugitives from NSPS/NESHAP Source Category (Source-wide)</td>
<td>278.78</td>
<td>84.63</td>
<td>33.59</td>
<td>0.00</td>
<td>0.00</td>
<td>42,139.33</td>
<td>5.05</td>
<td>3789.84</td>
<td>110,922.4</td>
</tr>
<tr>
<td>Total PTE of Entire Source</td>
<td>49,335.03</td>
<td>11,473.05</td>
<td>2,662.00</td>
<td>1,128.28</td>
<td>186.31</td>
<td>42,195.49</td>
<td>234.28</td>
<td>3,789.84</td>
<td>110,922.24</td>
</tr>
</tbody>
</table>

1. Under the Part 70 Permit program (40 CFR 70), PM$_{10}$ and PM$_{2.5}$, not particulate matter (PM), are each considered as a "regulated air pollutant."
2. PM$_{2.5}$ listed is direct PM$_{2.5}$.
3. Single highest source-wide HAP

*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

(a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of PM$_{10}$, PM$_{2.5}$, SO$_2$, NO$_x$, VOC and CO is equal to or greater than 100 tons per year. However, the Permittee has agreed to limit the source’s criteria pollutants emissions to less than Title V major source thresholds. Therefore, the source will be issued a FESOP Renewal.

(b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of all other regulated air pollutants are less than 100 tons per year.

(c) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and/or the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. However, the source will be issued FESOP Renewal because the source will limit HAP emissions to less than the Title V major source threshold levels. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA) subject to the provisions of 326 IAC 2-7.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this FESOP renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.
<table>
<thead>
<tr>
<th>Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sup>1</sup></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Total PTE of Entire Source Excluding Fugitives<sup>*</sup></td>
</tr>
<tr>
<td>Fugitives from NSPS/NESHAP Source Category (Source-wide)</td>
</tr>
<tr>
<td>Total PTE of Entire Source</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
</tr>
</tbody>
</table>

1Under the Part 70 Permit program (40 CFR 70), PM₁₀ and PM_{2.5}, not particulate matter (PM), are each considered as a “regulated air pollutant.”
2PM_{2.5} listed is direct PM_{2.5}.
3Single highest source-wide HAP.
*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

The source opted to take limit(s) in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable to this source and to render the source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA). See Technical Support Document (TSD) State Rule Applicability - Entire Source section, 326 IAC 2-8 (FESOP), 326 IAC 2-2 (PSD), and 326 IAC 2-3 (Emission Offset), and 326 IAC 20 (Hazardous Air Pollutants) for more information regarding the limit(s).

(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) This source is not a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) The requirements of the New Source Performance Standard for Small Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12, are not included in the permit for the hot oil heaters, because the two (2) hot oil heaters each have a maximum heat input capacity of less than 10 MMBtu/hr.
(b) This source is subject to the New Source Performance Standards for Hot Mix Asphalt Facilities, 40 CFR 60, Subpart I and 326 IAC 12, because it meets the definition of a hot-mix asphalt facility and was constructed after June 11, 1973. The units subject to this rule includes the following:

(1) One (1) counterflow drum hot-mix asphalt plant, identified as 2, constructed in 2001, capable of processing four hundred (400) tons of raw material per hour, processing blast furnace and/or steel slag and asbestos-free shingles in the aggregate mix, equipped with one (1) one hundred twenty-five (125) million British thermal units (MMBtu) per hour dryer burner outfitted with low NOX burners, identified as 3, firing waste oil, natural gas, No. 2 fuel oil, No. 4 fuel oil, propane gas or butane gas, controlling particulate emissions with one (1) baghouse, replaced in 2016, and exhausting to one (1) stack, identified as SV1.

(b) Material handling, screening, conveying operations, uncontrolled, exhausting to the atmosphere, and including:

(1) Aggregate storage piles consisting of sand, limestone, gravel, blast furnace and/or electric arc furnace steel mill slag, and asbestos-free recycled shingles (ground factory seconds and/or post consumer waste), as follows;

(A) Sand storage piles, with a maximum anticipated pile size of three and thirty-four hundredths (3.34) acres;

(B) Limestone storage piles, with a maximum anticipated pile size of nine and eighteen hundredths (9.18) acres;

(C) Gravel storage piles, with a maximum anticipated pile size of four and nine hundredths (4.09) acres; and

(D) Blast furnace and/or electric arc furnace steel mill slag storage piles, with a combined maximum anticipated pile size of six and ninety-four hundredths (6.94) acres; and

(E) Asbestos-free shingle (ground factory seconds and/or post consumer waste) storage piles, with a combined maximum anticipated pile size of five and fifty-two hundredths (5.52) acres.

These hot mix asphalt facilities are subject to the following portions of Subpart I.

(1) 40 CFR 60.90
(2) 40 CFR 60.91
(3) 40 CFR 60.92
(4) 40 CFR 60.93

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the source except as otherwise specified in 40 CFR 60, Subpart I.

(c) The requirements of the New Source Performance Standard for Standards for Volatile Organic Liquid Storage Vessels, 40 CFR 60, Subpart Kb and 326 IAC 12, are not included in the permit for the existing storage tanks, because although each storage tank was constructed after the rule applicability date of July 23, 1984, storage tanks 11A, 11B, 12, and 13C each have a maximum storage capacity less than 75m³ (19,813 gallons). Storage tanks 13A and 13B each have a maximum storage capacity greater than 75m³ (19,813 gallons) but less than 151m³ (39,890 gallons), but the liquid stored in each tank has a true vapor pressure of less than 15.0 kPa.

(d) The requirements of the New Source Performance Standard for Asphalt Processing and Asphalt Roofing Manufacture, 40 CFR 60, Subpart UU and 326 IAC 12, are not included in the permit for this source, because the source does not meet the definition of an asphalt processing plant,
since it does not blow asphalt and does not meet the definition of an asphalt roofing plant since it does not produce asphalt roofing products such as shingles, roll roofing, siding, or saturated felt.

(e) The recycled asphalt pavement (RAP) system, identified as 10, is subject to the New Source Performance Standards for Nonmetallic Mineral Processing Plants, 40 CFR 60, Subpart OOO and 326 IAC 12, because the system uses a crusher/lump-brekaer to reduce the size of nonmetallic minerals embedded in recycled asphalt pavement. The units subject to this rule includes the following:

(c) One (1) portable recycled asphalt pavement (RAP) system, identified as 10, constructed in 2001, with a maximum throughput capacity of two hundred (200) tons of RAP per hour (the lump breaker capacity is fifty (50) tons per hour), uncontrolled, exhausting to the atmosphere, and including the following:

(1) One (1) electric powered recycled asphalt pavement (RAP) lump breaker;
(2) one (1) feeder bin;
(3) three (3) belt conveyors;
(4) one (1) scalping screen, and
(5) RAP storage piles, with a maximum anticipated pile size of three and sixty-nine hundredths (3.69) acres;
(6) RAP and/or asbestos-free shingle storage piles, with a maximum anticipated pile size of one and six tenths (1.6) acre.

The recycled asphalt pavement (RAP) system is subject to the following portions of Subpart OOO.

(1) 40 CFR 60.670
(2) 40 CFR 60.671
(3) 40 CFR 60.672
(4) 40 CFR 60.673
(5) 40 CFR 60.674
(6) 40 CFR 60.675
(7) 40 CFR 60.676
(8) Table 1
(9) Table 3

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the recycled asphalt pavement (RAP) system except as otherwise specified in 40 CFR 60, Subpart OOO.

(f) The requirements of the New Source Performance Standard for Calciners and Dryers in Mineral Industries, 40 CFR 60, Subpart UUU and 326 IAC 12, are not included in the permit for the portable hot mix drum dryer/mixer facility since it is not considered a mineral processing plant. This subpart applies to each calciner and dryer at a mineral processing plant. Pursuant to 40 CFR 60.731, mineral processing plant are defined as any facility that processes or produces any of the following minerals, their concentrates or any mixture of which the majority (>50 percent) is any of the following minerals or a combination of these minerals: alumina, ball clay, bentonite, diatomite, feldspar, fire clay, fuller’s earth, gypsum, industrial sand, kaolin, lightweight aggregate, magnesium compounds, perlite, roofing granules, talc, titanium dioxide, and vermiculite.

(g) The requirements of the New Source Performance Standard for Stationary Compression Ignition internal Combustion Engines, 40 CFR 60, Subpart III and 326 IAC 12, are not included in the permit, because the diesel engine that powers the RAP lump-breaking and screening unit is considered a non-road engine, as defined at 40 CFR 1068.30, and they do not meet the definition of a stationary internal combustion engine in 40 CFR 60.4219, Subpart III. A nonroad engine as defined in 40 CFR 1068.30, is an internal combustion engine that meets any of the following criteria:
(i) It is (or will be) used in or on a piece of equipment that is self-propelled or serves a dual purpose by both propelling itself and performing another function (such as garden tractors, off-highway mobile cranes and bulldozers).

(ii) It is (or will be) used in or on a piece of equipment that is intended to be propelled while performing its function (such as lawnmowers and string trimmers).

(iii) By itself or in or on a piece of equipment, it is portable or transportable, meaning designed to be and capable of being carried or moved from one location to another. Indicia of transportability include, but are not limited to, wheels, skids, carrying handles, dolly, trailer, or platform.

(iv) The engine otherwise included in this definition will not remain at a location for more than 12 consecutive months at a source.

(h) There are no other New Source Performance Standards (40 CFR Part 60) and 326 IAC 12 included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(i) The requirements of 40 CFR 63, Subpart ZZZZ, the National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines, are not included for this proposed revision for the diesel-fired RAP lump-breaker and screener because it is considered a non-road engine, as defined by 40 CFR 1068.30, and not considered a stationary RICE.

(j) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Asphalt Processing and Asphalt Roofing Manufacturing, 40 CFR 63, Subpart LLLLL and 326 IAC 20-71 are not included in the permit for this source, because this source does not meet the definition of an asphalt processing plant or an asphalt roofing manufacturing facility, since it doesn't engage in the preparation of asphalt flux or asphalt roofing materials. Additionally, this source is not a major source of HAPs.

(k) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing, 40 CFR 63, Subpart AAAAAAA are not included in the permit for this source, since because this source does not meet the definition of an asphalt processing plant or an asphalt roofing manufacturing facility, since it doesn't engage in the preparation of asphalt flux or asphalt roofing materials.

(l) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is not included in the permit, because the potential to emit of the source is limited to less than the Title V major source thresholds and the source is not required to obtain a Part 70 or Part 71 permit.

State Rule Applicability - Entire Source

326 IAC 1-6-3 (Preventive Maintenance Plan)
The source is subject to 326 IAC 1-6-3.

326 IAC 1-5-2 (Emergency Reduction Plans)
The source is subject to 326 IAC 1-5-2.
326 IAC 2-2 (PSD) and 326 IAC 2-3 (Emission Offset)
PSD and Emission Offset applicability is discussed under the Potential to Emit After Issuance section of this document.

PSD Minor Source Limits
In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The asphalt production rate shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) PM emissions from the dryer/mixer shall not exceed 0.320 pounds of PM per ton of asphalt produced.

Compliance with these limits, combined with the potential to emit PM from all other emission units at this source, shall limit the source-wide total potential to emit of PM to less than 250 tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of this source will emit less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply.

326 IAC 2-6 (Emission Reporting)
This source is not subject to 326 IAC 2-6 (Emission Reporting), because it is not required to have an operating permit pursuant to 326 IAC 2-7 (Part 70); it is not located in Lake, Porter, Clark, or Floyd County, and its potential to emit lead is less than 5 tons per year. Therefore, this rule does not apply.

326 IAC 2-8-4 (FESOP) and 326 IAC 20 (Hazardous Air Pollutants)
FESOP applicability is discussed under the Potential to Emit After Issuance section of this document.

FESOP PM	extsubscript{10}, PM	extsubscript{2.5}, VOC, and CO Limit(s)
Pursuant to 326 IAC 2-8-4 (FESOP), and in order to render the requirements of 326 IAC 2-7 (Part 70 Permits), not applicable, the Permittee shall comply with the following:

(a) The asphalt production rate shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) PM	extsubscript{10} emissions from the dryer/mixer shall not exceed 0.142 pounds of PM per ton of asphalt produced.

(c) PM	extsubscript{2.5} emissions from the dryer/mixer shall not exceed 0.172 pounds of PM2.5 per ton of asphalt produced.

(d) VOC emissions from the dryer/mixer shall not exceed 0.032 pounds of VOC per ton of asphalt produced.

(e) CO emissions from the dryer/mixer shall not exceed 0.130 pounds of CO per ton of asphalt produced.
Compliance with these limits, combined with the potential to emit PM$_{10}$, PM$_{2.5}$, VOC, and CO from all other emission units at this source, shall limit the source-wide total potential to emit of PM$_{10}$, PM$_{2.5}$, VOC, and CO to less than 100 tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits) not applicable.

FESOP SO$_2$, NO$_x$, VOC and HAP Limit(s)

Pursuant to 326 IAC 2-8-4 (FESOP), and in order to render the source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA), and render the requirements of 326 IAC 2-7 (Part 70 Permits) not applicable, the Permittee shall comply with the following:

(a) **Fuel and Slag Specifications**

 (1) The 30 day calendar month average sulfur content of the blast furnace slag shall not exceed 1.5 percent by weight, with compliance determined at the end of each month.

 (2) SO$_2$ emissions from the blast furnace slag used in the dryer/mixer shall not exceed 0.74 pounds of SO$_2$ per ton of blast furnace slag processed.

 (3) The sulfur content of the steel slag shall not exceed 0.66 percent by weight.

 (4) SO$_2$ emissions from the steel slag used in the dryer/mixer shall not exceed 0.0014 pounds of SO$_2$ per ton of steel slag processed.

 (5) The sulfur content of the No. 2 fuel oil shall not exceed 0.5 percent by weight.

 (6) The sulfur content of the No. 4 fuel oil shall not exceed 0.5 percent by weight.

 (7) The sulfur content of the butane shall not exceed 0.22 gr/100 ft3.

 (8) The sulfur content of the propane shall not exceed 0.20 gr/100 ft3.

 (9) The sulfur content of the waste oil shall not exceed 1.0 percent by weight.

 (10) The chlorine content of the waste oil shall not exceed 0.4 percent by weight.

 (11) HCl emissions from the dryer/mixer shall not exceed 0.0264 pounds of HCl per gallon of waste oil burned.

(b) **Emissions from the dryer/mixer burner are limited as follows:**

 (1) SO$_2$ emissions from the dryer/mixer burner, blast furnace, and steel slag processing shall not exceed 90.11 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

 (2) NO$_x$ emissions from the dryer/mixer burner, shall not exceed 96.50 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with this limit combined with the PTE of other emission units, shall limit the source-wide SO$_2$, and NO$_x$ emissions to less than 100 tons per twelve (12) consecutive month period and shall render the requirements of Part 70 (326 IAC 2-7) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

(c) The VOC solvent used as diluent in the liquid binder used in the cold mix asphalt production from the plant shall not exceed 53.1 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(d) Liquid binders used in the production of cold mix asphalt shall be defined as follows:
(1) **Cut back asphalt rapid cure**, containing a maximum of 25.3% by weight of VOC solvent in the liquid binder and 95% by weight of VOC solvent evaporating.

(2) **Cut back asphalt medium cure**, containing a maximum of 28.6% by weight of VOC solvent in the liquid binder and 70% by weight of VOC solvent evaporating.

(3) **Cut back asphalt slow cure**, containing a maximum of 20% by weight of VOC solvent in the liquid binder and 25% by weight of VOC solvent evaporating.

(4) **Emulsified asphalt with solvent**, containing a maximum of 15% by weight of VOC solvent in the liquid binder and 46.4% by weight of VOC solvent evaporating. The percent oil distillate in emulsified asphalt with solvent liquid, as determined by ASTM, must be 7% or less of the total emulsion by volume.

(5) **Other asphalt with solvent binder**, containing a maximum of 25.9% by weight of VOC solvent in the liquid binder and 2.5% by weight of VOC solvent evaporating.

(e) When using only one type of liquid binder (asphalt emulsion) per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

(1) The amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 55.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) The amount of VOC solvent used in medium cure cutback asphalt shall not exceed 75.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(3) The amount of VOC solvent used in slow cure cutback asphalt shall not exceed 212.4 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(4) The amount of VOC solvent used in emulsified asphalt shall not exceed 114.4 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(5) The amount of VOC solvent used in all other asphalt shall not exceed 2123.8 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(f) When using more than one liquid binder (asphalt emulsion) per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

(1) The VOC solvent allotments in (1) through (5) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
\text{VOC emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of binder</th>
<th>adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>cutback asphalt rapid cure</td>
<td>1.053</td>
</tr>
<tr>
<td>cutback asphalt medium cure</td>
<td>1.429</td>
</tr>
</tbody>
</table>
Compliance with these limits, combined with the potential to emit VOC from all other emission units at this source, shall limit the source-wide total potential to emit VOC to less than one-hundred (100) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

Compliance with these limits, combined with the potential to emit HAP from all other emission units at the source, shall limit the source-wide potential to emit single HAP to less than 10 tons per twelve (12) consecutive month period and the source-wide potential to emit total HAPs to less than 25 tons per twelve (12) consecutive month period, and shall render the source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA) and shall render the requirements of 326 IAC 2-7 (Part 70 Permits) not applicable.

326 IAC 5-1 (Opacity Limitations)
This source is subject to the opacity limitations specified in 326 IAC 5-1-2(1).

326 IAC 6-4 (Fugitive Dust Emissions Limitations)
Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
This source was constructed after December 13, 1985 and has potential fugitive particulate emissions of twenty-five (25) tons per year or more. Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the Fugitive Dust Control Plan that is included as Attachment A to the permit.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a), this source (located in LaPorte County) is not subject to the requirements of 326 IAC 6.5 because it is not located in one of the following counties: Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo or Wayne.

326 IAC 6.8 (Particulate Matter Limitations for Lake County)
Pursuant to 326 IAC 6.8-1-1(a), this source (located in LaPorte County) is not subject to the requirements of 326 IAC 6.8 because it is not located in Lake County.

326 IAC 6.8 (Lake County: Fugitive Particulate Matter)
Pursuant to 326 IAC 6.8-10-1, this source (located in LaPorte County) is not subject to the requirements of 326 IAC 6.8-10 because it is not located in Lake County.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cutback asphalt slow cure</td>
<td>4.000</td>
</tr>
<tr>
<td>emulsified asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>other asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

State rule applicability has been reviewed as follows:

Dryer/Mixer
326 IAC 6-2-1 (Particulate Emission Limitations for Sources of Indirect Heating)
The asphalt drum mixer, identified as "2", is not subject to the requirements of 326 IAC 6-2, because it is not a source of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(c)(5), the Counterflow Hot Mix Drum Dryer/Mixer, is not subject to the requirements of 326 IAC 6-3, since it is subject to the more stringent particulate limit established in 40 CFR 60, Subpart I, which is incorporated by reference in 326 IAC 12.

326 IAC 7-1.1 Sulfur Dioxide Emission Limitations
The Counterflow Hot Mix Drum Dryer/Mixer, is subject to 326 IAC 7-1.1 because it has a potential to emit sulfur dioxide (SO2) equal to or greater than 25 tons per year or 10 pounds per hour.

(a) The Sulfur Dioxide emissions from the dryer/mixer shall not exceed five-tenths (0.5) pound per MMBtu for when using distillate oil.

(No.2 fuel oil is distillate oil)

(b) The Sulfur Dioxide emissions from the dryer/mixer shall not exceed one and six-tenths (1.6) pounds per MMBtu heat input when using residual oil.

(No. 4 fuel oil and waste oil are both considered residual oils)

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The Counterflow Hot Mix Drum Dryer/Mixer was constructed after January 1, 1980, and its unlimited VOC potential emissions are equal to or greater than 25 tons per year and the Counterflow Hot Mix Drum Dryer/Mixer, is not regulated by other rules in 326 IAC 8. The source has opted to limit the potential to emit VOC from the Counterflow Hot Mix Drum Dryer/Mixer to less than 25 tons per 12 consecutive month period in order to render the requirements of 326 IAC 8-1-6 not applicable. Therefore, the Counterflow Hot Mix Drum Dryer/Mixer is not subject to the requirements of 326 IAC 8-1-6.

In order to render the requirements of 326 IAC 8-1-6 not applicable, Permittee shall comply with the following:

(1) The asphalt production rate shall not exceed 1,000,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(2) VOC emissions from the Counterflow Hot Mix Drum Dryer/Mixer, shall not exceed 0.032 pounds of VOC per ton of asphalt produced.

326 IAC 9-1 (Carbon Monoxide Emission Limits)
The requirements of 326 IAC 9-1 do not apply to the Counterflow Hot Mix Drum Dryer/Mixer, because this source does not operate a catalyst regeneration petroleum cracking system or a petroleum fluid coker, grey iron cupola, blast furnace, basic oxygen steel furnace, or other ferrous metal smelting equipment.

326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Categories)
The requirements of 326 IAC 10-3 do not apply to the Counterflow Hot Mix Drum Dryer/Mixer, since this unit is not a blast furnace gas-fired boiler, a Portland cement kiln, or a facility specifically listed under 326 IAC 10-3-1(a)(2).

Material Processing, Handling, and Conveying Operations

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(c)(5), the Material Processing, Handling, Screening, and Conveying Operations, are not subject to the requirements of 326 IAC 6-3, since they are subject to the more stringent particulate limit established in 40 CFR 60, Subpart I, which is incorporated by reference in 326 IAC 12.
Hot Oil Heaters

326 IAC 6-2 (Particulate Emissions from Indirect Heating Units)
The two (2) existing hot oil heaters, identified as 14A, and 14B, each with a maximum heat input capacity of 2.0 MMBtu/hr, respectively, are subject to 326 IAC 6-2-4 because they were each constructed after the rule applicability date of September 21, 1983, and meets the definition of an indirect heating unit, as defined in 326 IAC 1-2-19, since it combusts fuel to produce usable heat that is to be transferred through a heat-conducting materials barrier or by a heat storage medium to a material to be heated so that the material being heated is not contacted by, and adds no substance to the products of combustion.

\[Pt = \frac{1.09}{Q^{0.26}} \]

Where:
- \(Pt \) = Pounds of particulate matter emitted per million British thermal units (lb/MMBtu).
- \(Q \) = Total source maximum operating capacity rating in MMBtu/hr heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility’s permit application, except when some lower capacity is contained in the facility’s operation permit; in which case, the capacity specified in the operation.

Pursuant to 326 IAC 6-2-4(a), for \(Q \) less than 10 MMBtu/hr, \(Pt \) shall not exceed 0.6 lb/MMBtu.

Therefore, particulate emissions from the hot oil heaters shall continue to not exceed six tenths (0.6) pounds per MMBtu heat input.

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
The two (2) existing hot oil heaters are not subject to the requirements of 326 IAC 6-3 because it is not considered a manufacturing process.

RAP Crushing/Lump Breaking, Screening and Conveying Operations

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the RAP Crushing/Lump-Breaker, Screening, and Conveying Operations, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the RAP Crushing, Screening, and Conveying Operations shall not exceed the pound per hour limits as reflected in the table below. The pound per hour limitation was calculated with the following equation:

\[E = 55.0 P^{0.11} - 40 \]

where
- \(E \) = rate of emission in pounds per hour;
- \(P \) = process weight rate in tons per hour

<table>
<thead>
<tr>
<th>Summary of Process Weight Rate Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process / Emission Unit</td>
</tr>
<tr>
<td>RAP Crusher/Lump-Breaker/Screener</td>
</tr>
</tbody>
</table>
Based on calculations, control equipment is not needed to comply with this limit.

Cold-Mix Asphalt Production

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

Pursuant to 326 IAC 8-1-6(3)(A), the Cold-Mix Cutback Asphalt Production and Storage Piles, are not subject to the requirements of 326 IAC 8-1-6. This rule applies to new facilities (as of January 1, 1980) that: (1) have potential emissions of VOC that are twenty-five (25) tons or more per year; (2) are located anywhere in the state; and (3) are not otherwise regulated by other provisions of this article. Although the potential emissions of VOC are twenty-five (25) tons or more per year for the Cold-Mix Cutback Asphalt Production and Storage Piles, the Cold-Mix Cutback Asphalt Production and Storage Piles, are regulated by 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving); therefore, the requirements of 326 IAC 8-1-6 do not apply.

326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving)

Any paving application made after January 1, 1980, is subject to the requirements of 326 IAC 8-5-2. Pursuant to this rule, no person shall cause or allow the use of cutback asphalt or asphalt emulsion containing more than 7% oil distillate by volume of emulsion for any paving application except the following purposes:

1. penetrating prime coating;
2. stockpile storage; and
3. application during the months of November, December, January, February, and March.

The owner or operator will not process emulsified or cutback asphalt at this source unless proper approval has been obtained from IDEM, OAQ. Therefore, this source can comply with this rule.

326 IAC 8-6 (Organic Solvent Emission Limitations)

Pursuant to 326 IAC 8-6-1, the Cold-Mix Cutback Asphalt Production and Storage Piles, are not subject to the requirements of 326 IAC 8-6. This rule applies to: (1) existing sources (as of January 1, 1980), located in Lake and Marion Counties, with potential emissions of 100 tons or greater per year of VOC, not limited by other rules in this article (326 IAC 8); and (2) sources commencing operation after October 7, 1974, and prior to January 1, 1980, located anywhere in the state, with potential emissions of 100 tons or greater per year of VOC, not limited by other rules in this article (326 IAC 8). This source was constructed after 1980, the date of applicability. Also, the Cold-Mix Cutback Asphalt Production and Storage Piles, are regulated by 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving); therefore, the requirements of 326 IAC 8-6 (Organic Solvent Emission Limitations) do not apply.

Storage Tanks

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

Each of the storage tanks are not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from each storage tank is less than twenty-five (25) tons per year. Therefore, 326 IAC 8-1-6, does not apply to the storage tanks.

326 IAC 8-4-3 (Petroleum Liquid Storage Facilities)

This rule applies to all petroleum liquid storage vessels with capacities greater than 39,000 gallons containing volatile organic compounds whose true vapor pressure is greater than 10.5 kPa (1.52 psi). The storage tanks are not subject to the requirements of 326 IAC 8-4-3 because the storage capacity for each tank is less than 39,000 gallons, and each tank does not store a petroleum liquid.

326 IAC 8-9 (Volatile Organic Liquid Storage Vessels)

This rule applies to stationary storage vessels used to store volatile organic liquid (VOL) that are located in Clark, Floyd, Lake, and Porter Counties with each storage vessel having a storage capacity less than thirty-nine thousand (39,000) gallons. Although each of the storage tanks has a storage capacity less than 39,000 gallons, this portable asphalt plant is not located in Porter, Clark, or Floyd Counties. This...
source is located in LaPorte County. Therefore, 326 IAC 8-9 (Volatile Organic Liquid Storage Vessels) does not apply.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-8 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-8-4. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source’s failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Determination Requirements applicable to this source are as follows:

(a) The existing dryer/mixer continues to have applicable compliance determination requirements as specified below:

(1) In order to comply with the PM, PM10, and PM2.5 limitations in the permit, the baghouse for the dryer/mixer, shall continue to be in operation and control emissions from the dryer/mixer at all times when the dryer/mixer is in operation.

(2) The annual hot-mix asphalt production rate will be used to verify compliance with the PSD PM emission limitation, and the FESOP PM10, PM2.5, VOC, and CO emission limitations.

(3) The slag and fuel characteristics (i.e., sulfur content) and usage rates will be used to verify compliance with the SO2 limitations.

(4) The waste oil characteristics (i.e., ash, chlorine, and lead content) and usage rates will be used to verify compliance with the FESOP PM, PM10, PM2.5, and HAP limitations.

In order to assure compliance with the NOx and SO2 limits, the Permittee shall limit NOx and SO2 according to the following formulas:

(1) Sulfur dioxide (SO2) emissions shall be determined using the following equation:

\[
S = \frac{G(E_G) + FO2(E_{FO2}) + FO4(E_{FO4}) + P(E_P) + B(E_B) + FW0(E_{FW0}) + BFS(E_{BFS}) + SS(E_{SS})}{2,000 \text{ lbs/ton}}
\]

where:
S = tons of sulfur dioxide emissions for a 12-month consecutive period
G = million cubic feet of natural gas used in the last 12 months
FO2 = gallons of No. 2 fuel oil used in the last 12 months
FO4 = gallons of No. 4 fuel oil used in the last 12 months
P = gallons of propane used in dryer/mixer in the last 12-month consecutive period
B = gallons of butane used in dryer/mixer in the last 12-month consecutive period
FW0 = gallons of waste oil used in the last 12 months
BFS = tons of Blast Furnace slag used in the last 12 months
SS = tons of Steel slag used in the last 12 months
Emission Factors

\[
E_G = 0.6 \, \text{lb SO}_2/\text{million cubic feet of natural gas}
\]

\[
E_{\text{FO}_2} = 0.071 \, \text{lb SO}_2/\text{gallon of No. 2 fuel oil}
\]

\[
E_{\text{FO}_4} = 0.075 \, \text{lb SO}_2/\text{gallon of No. 4 fuel oil}
\]

\[
E_P = \text{Propane (dryer/mixer)} = 0.00002 \text{ pounds per gallon of propane}
\]

\[
E_B = \text{Butane (dryer/mixer)} = 0.00002 \text{ pounds per gallon of butane}
\]

\[
E_{\text{WO}} = 0.147 \, \text{lb SO}_2/\text{gallon of waste oil}
\]

\[
E_{\text{FS}} = 0.74 \, \text{lb/ton of Blast Furnace slag used}
\]

\[
E_{\text{SS}} = 0.0014 \, \text{lb/ton of Steel slag used}
\]

(2) Nitrogen oxide (NOx) emissions shall be determined using the following equation:

\[
N = \frac{G(E_G) + FO2(E_{FO2}) + FO4(E_{FO4}) + FW0(E_{WO}) + P(E_P) + B(E_B)}{2,000 \, \text{tons/ton}}
\]

where:

- \(N\) = tons of nitrogen oxide emissions for a 12-month consecutive period
- \(G\) = million cubic feet of natural gas used in the last 12 months
- \(FO2\) = gallons of No. 2 fuel oil used in the last 12 months
- \(FO4\) = gallons of No. 4 fuel oil used in the last 12 months
- \(FW0\) = gallons of waste oil used in the last 12 months
- \(P\) = million cubic feet of propane gas used in the last 12 months
- \(B\) = million cubic feet of butane gas used in the last 12 months

Emission Factors

\[
E_G = 190 \, \text{lb NOx/million cubic feet of natural gas}
\]

\[
E_{\text{FO}_2} = 0.024 \, \text{lb NOx/gallon of No. 2 fuel oil}
\]

\[
E_{\text{FO}_4} = 0.047 \, \text{lb NOx/gallon of No. 4 fuel oil}
\]

\[
E_{\text{WO}} = 0.019 \, \text{lb NOx/gallon of waste oil}
\]

\[
E_P = 0.013 \, \text{lb NOx/gallon of propane gas}
\]

\[
E_B = 0.015 \, \text{lb NOx/gallon of butane gas}
\]

Testing Requirements:

<table>
<thead>
<tr>
<th>Emission Unit (Control Device)</th>
<th>Timeframe for Testing or Date of Initial Valid Demonstration</th>
<th>Pollutant/Parameter</th>
<th>Frequency of Testing</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer/Mixer (Baghouse)</td>
<td>July 2016</td>
<td>PM, PM({10}), PM({2.5})</td>
<td>Every five (5) years</td>
<td>326 IAC 2-2 326 IAC 2-8-4 40 CFR 60, Subpart I</td>
</tr>
<tr>
<td>RAP Crusher/Lump-breaker/screener</td>
<td>N/A</td>
<td>Opacity</td>
<td>Initial</td>
<td>40 CFR 60, Subpart OOO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Every five (5) years</td>
<td>326 IAC 2-8-5(a)(1)</td>
</tr>
</tbody>
</table>

(b) The Compliance Monitoring Requirements applicable to this source are as follows:

<table>
<thead>
<tr>
<th>Emission Unit (Control Device)</th>
<th>Type of Parametric Monitoring</th>
<th>Frequency</th>
<th>Range or Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer/Mixer (Baghouse)</td>
<td>Visible emission notations</td>
<td>Daily</td>
<td>Verify whether emissions are normal or abnormal</td>
</tr>
</tbody>
</table>
These monitoring conditions are necessary because the baghouse for the Dryer/Mixer must operate properly to assure compliance with 40 CFR 60, Subpart I, 326 IAC 2-8 (FESOP) and the limits that render 326 IAC 2-2 (PSD) and 326 IAC 2-7 (Part 70 Permit Program) not applicable.

Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.

The following changes were made to conditions contained previously issued permits/approvals (these changes may include Title I changes):

1. Sections D.2 and D.3 have been added to the permit to list the applicable requirements for the liquid asphalt cement hot oil heating system and Cold-Mix asphalt production, respectively.

2. 40 CFR 63, Subpart JJJJJJ has been removed from the permit. The hot oil heaters are considered to be process heaters and not boilers.

3. The reporting forms for SO₂, NOₓ and the Cold Mix VOC emissions at the end of the permit have been updated to their most recent versions and also reflect the most updated limits.

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on November 23, 2020.

The operation of this stationary hot mix asphalt plant shall be subject to the conditions of the attached proposed FESOP Renewal No. F091-43498-03179.

The staff recommends to the Commissioner that the FESOP Renewal be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Taylor Wade, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-0868 or (800) 451-6027, and ask for Taylor Wade or (317) 233-0868.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: https://www.in.gov/idem/airpermit/2358.htm; and the Citizens' Guide to IDEM on the Internet at: https://www.in.gov/idem/6900.htm.
Appendix A.1: Unlimited Emissions Calculations

Entire Source - Drum Mix

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43489-03179
Reviewer: Taylor Wade

Asphalt Plant Maximum Capacity - Drum Mix

Maximum Hourly Asphalt Production = 400 ton/hr
Maximum Annual Asphalt Production = 3,504,000 ton/yr
Maximum Annual Blast Furnace Slag Usage = 1,471,680 ton/yr 1.5 % sulfur
Maximum Annual Steel Slag Usage = 1,471,680 ton/yr 0.66 % sulfur
Maximum Dryer Fuel Input Rate = 125.0 MMBtu/hr
Natural Gas Usage = 1,095 MMCF/yr
No. 2 Fuel Oil Usage = 7,821,429 gal/yr, and 0.50 % sulfur
No. 4 Fuel Oil Usage = 7,821,429 gal/yr, and 0.50 % sulfur
Residual (No. 5 or No. 6) Fuel Oil Usage = 7,821,429 gal/yr, and 0.50 % sulfur
Propane Usage = 12,099,448 gal/yr, and 0.20 gr/100 ft³ sulfur
Butane Usage = 11,242,300 gal/yr, and 0.22 gr/100 ft³ sulfur
Used/Waste Oil Usage = 7,821,429 gal/yr, and 1.00 % sulfur 1.00 % ash 0.40 % chlorine, 0.01 % lead
Diesel Fuel Usage - Generator < 600 HP = 0 gal/yr, and 0.50 % sulfur
Diesel Fuel Usage - Generator > 600 HP = 0 gal/yr

Unlimited PM Dryer/Mixer Emission Factor = 28.0 lb/ton of asphalt production
Unlimited PM10 Dryer/Mixer Emission Factor = 6.5 lb/ton of asphalt production
Unlimited PM2.5 Dryer/Mixer Emission Factor = 1.5 lb/ton of asphalt production
Unlimited VOC Dryer/Mixer Emission Factor = 0.032 lb/ton of asphalt production
Unlimited CO Dryer/Mixer Emission Factor = 0.13 lb/ton of asphalt production
Unlimited Blast Furnace Slag SO2 Dryer/Mixer Emission Factor = 0.74 lb/ton of slag processed
Unlimited Steel Slag SO2 Dryer/Mixer Emission Factor = 0.0014 lb/ton of slag processed

Unlimited/Uncontrolled Emissions

Unlimited/Uncontrolled Potential to Emit (tons/year)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>CO2e</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ducted Emissions</td>
<td></td>
</tr>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>290.29</td>
<td>195.46</td>
<td>199.46</td>
<td>674.88</td>
<td>183.90</td>
<td>8.18</td>
<td>47.22</td>
<td>97.836.19</td>
<td>108.03</td>
<td>103.24 (hydrogen chloride)</td>
</tr>
<tr>
<td>Dryer/Mixer (Process)</td>
<td>49,056.00</td>
<td>11,388.00</td>
<td>2,628.00</td>
<td>161.92</td>
<td>96.35</td>
<td>56.06</td>
<td>227.76</td>
<td>58.341.90</td>
<td>18.68</td>
<td>5.43 (formaldehyde)</td>
</tr>
<tr>
<td>Hot Oil Heater Fuel Combustion/Process (worst case)</td>
<td>0.25</td>
<td>0.41</td>
<td>0.41</td>
<td>8.89</td>
<td>2.50</td>
<td>0.10</td>
<td>1.47</td>
<td>3,504.00</td>
<td>0.041</td>
<td>0.032 (hexane)</td>
</tr>
<tr>
<td>Diesel-Fired Generator < 600 HP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00 (formaldehyde)</td>
</tr>
<tr>
<td>Diesel-Fired Generator > 600 HP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00 (benzene)</td>
</tr>
<tr>
<td>Worst Case Emissions</td>
<td>49,356.25</td>
<td>11,438.41</td>
<td>2,628.41</td>
<td>1,129.28</td>
<td>166.31</td>
<td>56.16</td>
<td>229.33</td>
<td>101,342.19</td>
<td>108.07</td>
<td>103.24 (hydrogen chloride)</td>
</tr>
<tr>
<td>Fugitive Emissions</td>
<td></td>
</tr>
<tr>
<td>Asphalt Load-Out, Silo Filling, On-Site Yard</td>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
<td>0</td>
<td>0</td>
<td>30.01</td>
<td>5.06</td>
<td>0.50</td>
<td>0.16</td>
<td>(formaldehyde)</td>
</tr>
<tr>
<td>Material Storage Piles</td>
<td>13.03</td>
<td>4.56</td>
<td>4.56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Processing and Handling</td>
<td>11.79</td>
<td>5.35</td>
<td>5.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Crushing, Screening, and Conveying</td>
<td>56.75</td>
<td>20.31</td>
<td>20.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unpaved and Paved Roads (worst case)</td>
<td>196.50</td>
<td>52.47</td>
<td>52.47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cold Mix Asphalt Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>42,109.32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,983.67</td>
<td>3,789.84</td>
<td>(xylene)</td>
</tr>
<tr>
<td>Gasoline Fuel Transfer and Dispensing</td>
<td>0</td>
</tr>
<tr>
<td>Inactive Organic Liquid Storage Vessels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total Fugitive Emissions</td>
<td>278.78</td>
<td>84.83</td>
<td>33.59</td>
<td>0.00</td>
<td>0.00</td>
<td>42,109.33</td>
<td>5.05</td>
<td>0.00</td>
<td>10,984.17</td>
<td>3,789.84</td>
</tr>
<tr>
<td>Totals Unlimited/Uncontrolled PTE</td>
<td>49,353.03</td>
<td>11,437.05</td>
<td>2,628.00</td>
<td>1,129.28</td>
<td>166.31</td>
<td>42,109.49</td>
<td>234.28</td>
<td>101,342.19</td>
<td>11,092.24</td>
<td>3,789.84</td>
</tr>
</tbody>
</table>

negl = negligible

Worst Case Fuel Combustion is based on the fuel with the highest emissions for each specific pollutant.
*Worst Case Emissions (tons/yr) = Worst Case Emissions from Dryer Fuel Combustion and Dryer/Mixer + Worst Case Emissions From Dryer/Mixer Slag Processing + Worst Case Emissions from Hot Oil Heater Fuel Combustion and Hot Oil Heating System + Diesel-Fired Generator < 600 HP + Diesel-Fired Generator > 600 HP

Fuel component percentages provided by the source.
The following calculations determine the unlimited/uncontrolled emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer at the source.

Maximum Capacity

<table>
<thead>
<tr>
<th>Maximum Fuel Input Rate</th>
<th>125 MMBtu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Usage</td>
<td>3.25 MCF/hr</td>
</tr>
<tr>
<td>No. 2 Fuel Oil Usage</td>
<td>7.821,429 gal/yr, and 0.020 tons/yr</td>
</tr>
<tr>
<td>No. 4 Fuel Oil Usage</td>
<td>7.821,429 gal/yr, and 0.020 tons/yr</td>
</tr>
<tr>
<td>Residual (No. 5 or No. 6) Fuel Oil Usage</td>
<td>2.48E-03 tons/yr</td>
</tr>
<tr>
<td>Propane Usage</td>
<td>12,099,448 gal/yr, and 9.4E-03 tons/yr</td>
</tr>
<tr>
<td>Butane Usage</td>
<td>12,099,448 gal/yr, and 9.4E-03 tons/yr</td>
</tr>
<tr>
<td>Used/Waste Oil Usage</td>
<td>7.821,429 gal/yr, and 0.020 tons/yr</td>
</tr>
</tbody>
</table>

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Pollutant</th>
<th>Emission Factor (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>No. 2 Fuel Oil</td>
<td>2.98E-03 PM, 3.373 SO2, 0.020 PM10, and 1.29E-01 Butane</td>
</tr>
<tr>
<td>No. 4 Fuel Oil</td>
<td>2.98E-03 PM, 3.373 SO2, 0.020 PM10, and 1.29E-01 Butane</td>
<td></td>
</tr>
<tr>
<td>Residual (No. 5 or No. 6) Fuel Oil</td>
<td>2.98E-03 PM, 3.373 SO2, 0.020 PM10, and 1.29E-01 Butane</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>2.98E-03 PM, 3.373 SO2, 0.020 PM10, and 1.29E-01 Butane</td>
<td></td>
</tr>
<tr>
<td>Butane</td>
<td>2.98E-03 PM, 3.373 SO2, 0.020 PM10, and 1.29E-01 Butane</td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Natural Gas Usage (MCF/hr) = [Maximum Fuel Input Rate (MMBtu/hr) * (8.760 hrs/yr)]

Propane Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr) * (26.760 hrs/yr)]

Butane Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr) * (8.760 hrs/yr)]

Roll-Off or Waste Oil Usage = [Maximum Fuel Input Rate (MMBtu/hr) * (26.760 hrs/yr)]

**Unlimited/Uncontrolled Potential to Emit (tons/yr) = \[\text{Maximum Fuel Input Rate (MMBtu/hr)} \times \text{Emission Factor (lb/MMCF)}\] **

TSD App. A

since there are no specific AP-42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.
The following calculations determine the unlimited/uncontrolled emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer at the source.

Maximum Capacity

<table>
<thead>
<tr>
<th>Maximum Fuel Input Rate (tons/yr)</th>
<th>Natural Gas Usage (MMCF/yr)</th>
<th>No. 2 Fuel Oil Usage (gal/yr)</th>
<th>No. 4 Fuel Oil Usage (gal/yr)</th>
<th>Propane Usage (gal/yr)</th>
<th>Butane Usage (gal/yr)</th>
<th>Used/Waste Oil Usage (gal/yr)</th>
<th>CO2 Equivalent Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>105 MMBtu/hr</td>
<td>1.085</td>
<td>7,821.49</td>
<td>0.50 % sulfur</td>
<td>0.20 gr/100 ft³ sulfur</td>
<td>0.53 gr/100 ft³ sulfur</td>
<td>1.00 % sulfur</td>
<td>69,977.16</td>
</tr>
<tr>
<td>86,134.37</td>
<td>81,553.32</td>
<td>7,821.49</td>
<td>0.50 % sulfur</td>
<td>0.20 gr/100 ft³ sulfur</td>
<td>0.53 gr/100 ft³ sulfur</td>
<td>1.00 % sulfur</td>
<td>69,977.16</td>
</tr>
<tr>
<td>2.07 gal/yr, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.06 % sulfur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>CO2 Fraction</th>
<th>Name</th>
<th>Chemical Formula</th>
<th>Global Warming Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>CH4</td>
<td>C2H4</td>
<td>0.91</td>
</tr>
<tr>
<td>0.19</td>
<td>N2O</td>
<td>N2O</td>
<td>1.00</td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>0.53</td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td>0.97</td>
</tr>
</tbody>
</table>

Conversion Factors

- **CO2** Conversion: $\text{tons/yr} = \text{MMCF/yr} \times 2,000,000 \text{ lbs/MMCF} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)}$

Other Fuel Calculations

- **N2O** Conversion: $\text{tons/yr} = \text{MMCF/yr} \times 2,000,000 \text{ lbs/MMCF} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)}$

Abbreviations

- **PTE** = Potential to Emit
- **CS** = Carbon Dioxide
- **CH4** = Methane
- **N2O** = Nitrogen Dioxide

Sources of Emission Factors

- Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart A.
- Emission Factors for CO2 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factor for N2O from AP-42 Chapter 1.4 (dated 7/98), Table 1.2-2
- Emission Factor for CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factors for CO2 and N2O from AP-42 Chapter 1.5 (dated 7/98), Table 1.2-2
- Emission Factor for CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factors for CO2 and N2O from AP-42 Chapter 1.5 (dated 7/98), Table 1.2-2
- Emission Factor for CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factors for CO2 and N2O from AP-42 Chapter 1.5 (dated 7/98), Table 1.2-2
- Emission Factor for CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/MMBtu to lb/MMCF. Emission Factors for CO2 and N2O from AP-42 Chapter 1.5 (dated 7/98), Table 1.2-2

Emission Factors

- **CO2** Conversion: $\text{tons/yr} = \text{MMCF/yr} \times 2,000,000 \text{ lbs/MMCF} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)} \times \text{EF (kg/MMCF)} \times \text{Conversion Factor (2.20462 lbs/kg)}$

Summary

The Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (25) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (298).
Appendix A.1: Unlimited Emissions Calculations

Dryer/Mixer - Process Emissions

Company Name: Rieh-Riley Construction Co., Inc (Plant #366)
Source Address: 2464 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited/uncontrolled emissions from the aggregate drying/mixing process.

<table>
<thead>
<tr>
<th>Maximum Hourly Asphalt Production</th>
<th>400 ton/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Annual Asphalt Production</td>
<td>3,504,000 ton/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Worscase PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10**</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>11388</td>
<td>11388</td>
<td>11388</td>
<td>11388</td>
</tr>
<tr>
<td>PM2.5**</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>2628</td>
<td>2628</td>
<td>2628</td>
<td>2628</td>
</tr>
<tr>
<td>NOx**</td>
<td>0.028</td>
<td>0.055</td>
<td>0.055</td>
<td>45.6</td>
<td>96.4</td>
<td>96.4</td>
<td>96.4</td>
</tr>
<tr>
<td>VOC</td>
<td>0.002</td>
<td>0.032</td>
<td>0.032</td>
<td>66.1</td>
<td>56.1</td>
<td>56.1</td>
<td>56.1</td>
</tr>
<tr>
<td>CO**</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>227.8</td>
<td>227.8</td>
<td>227.8</td>
<td>227.8</td>
</tr>
</tbody>
</table>

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.

** SO2, NOx, and VOC AP-42 emission factors are for natural gas, No. 2 fuel oil, and waste oil only.
*** CO AP-42 emission factor determined by combining data from drum mix dryer fired with natural gas, propane, fuel oil, and waste oil. According to AP-42 fuel type does not significantly effect PM, PM10, and PM2.5 emissions.

Abbreviations

PM = Particulate Matter
SO2 = Sulfur Dioxide
CO = Carbon Monoxide
PAH = Polycyclic Aromatic Hydrocarbon
PM10 = Particulate Matter (<10 um)
NOx = Nitrous Oxides
HAP = Hazardous Air Pollutant
PM2.5 = Particulate Matter (<2.5 um)
VOC = Volatile Organic Compounds
HCl = Hydrogen Chloride
Appendix A.1: Unlimited Emissions Calculations
Greenhouse Gas (CO2e) Emissions from the Drum-Mix Plant (Dryer/Mixer) Process Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited/uncontrolled emissions from the aggregate drying/mixing process:

Maximum Hourly Asphalt Production = 400 ton/hr
Maximum Annual Asphalt Production = 3,504,000 ton/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Emission Factor (lb/ton)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drum-Mix Plant (dryer/mixer)</td>
<td>Drum-Mix Plant (dryer/mixer)</td>
<td>Natural Gas</td>
<td>No. 2 Fuel Oil</td>
<td>Waste Oil</td>
</tr>
<tr>
<td>CO2</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>1</td>
<td>57,816.00</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0120</td>
<td>0.0120</td>
<td>0.0120</td>
<td>25</td>
<td>21.02</td>
</tr>
<tr>
<td>N2O</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57,837.02</td>
</tr>
</tbody>
</table>

CO2e for Worst Case Fuel (tons/yr) = 58,341.60

CO2e Equivalent Emissions (tons/yr) = 58,341.60

Methodology
Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels. Therefore, it is assumed that there are no N2O emissions anticipated from this process.

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (25) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (298).

Abbreviations
CO2 = Carbon Dioxide CH4 = Methane N2O = Nitrogen Dioxide PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Dryer/Mixer Slag Processing

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited emissions from the processing of slag in the aggregate drying/mixing:

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)</th>
<th>Unlimited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag*</td>
<td>0.74</td>
<td>544.5</td>
</tr>
<tr>
<td>Steel Slag**</td>
<td>0.0014</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Maximum Annual Blast Furnace Slag Usage = 1,471,680 ton/yr
Maximum Annual Steel Slag Usage = 1,471,680 ton/yr

Methodology
The maximum annual slag usage was provided by the source.

* Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.

** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Unlimited Potential to Emit SO2 from Slag (tons/yr) = [(Maximum Annual Slag Usage (ton/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations
SO2 = Sulfur Dioxide
Appendix A.1: Unlimited Emissions Calculations

Hot Oil Heater
Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Location: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Maximum Hot Oil Heater Fuel Input Rate = 4.00 MMBtu/hr
Natural Gas Usage = 35.04 MMCF/yr
No. 2 Fuel Oil Usage = 250,286 gal/yr, and 0.50% sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Worse Case Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emission Factor (lb/MMCF)</td>
<td>Potential to Emit (tons/yr)</td>
<td>Emission Factor (lb/kgal)</td>
<td>Potential to Emit (tons/yr)</td>
<td>Emission Factor (tons/yr)</td>
</tr>
<tr>
<td>PM</td>
<td>1.9</td>
<td>2.0</td>
<td>0.033</td>
<td>0.250</td>
<td>0.25</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.8</td>
<td>3.3</td>
<td>0.133</td>
<td>0.413</td>
<td>0.41</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>71.0</td>
<td>0.011</td>
<td>8.885</td>
<td>8.88</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>20.0</td>
<td>1.752</td>
<td>2.503</td>
<td>2.50</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>0.20</td>
<td>0.596</td>
<td>0.025</td>
<td>0.02</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>5.0</td>
<td>1.472</td>
<td>0.028</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutant

<table>
<thead>
<tr>
<th></th>
<th>Emission Factor (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2.6E-04</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.2E-05</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.1E-03</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8.4E-05</td>
</tr>
<tr>
<td>Lead</td>
<td>8.8E-04</td>
</tr>
<tr>
<td>Manganese</td>
<td>3.8E-04</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.6E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Selenium</td>
<td>2.4E-05</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.2E-03</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.5E-02</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.6E+00</td>
</tr>
<tr>
<td>Phenol</td>
<td>3.4E-03</td>
</tr>
<tr>
<td>Total PAH Haps</td>
<td>neg</td>
</tr>
<tr>
<td>Total HAPs</td>
<td>3.2E-02</td>
</tr>
<tr>
<td></td>
<td>8.9E-03</td>
</tr>
</tbody>
</table>

Total HAPs = 3.2E-02
Worse Single HAP = 8.9E-03

Methodology:
Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr) * 8,760 hrs/yr] / [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr) * 8,760 hrs/yr] / [1 gal/0.140 MMBtu]
Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]
Sources of AP-42 Emission Factors for fuel combustion:
Natural Gas: AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
No. 2 Fuel Oil: AP-42 Chapter 1.3 (dated 5/10), Tables 1.3-1, 1.3-2, 1.3-3, 1.3-8, 1.3-9, 1.3-10, and 1.3-11

Abbreviations:
PM = Particulate Matter
CO = Carbon Monoxide
PM10 = Particulate Matter (<10 um)
HAP = Hazardous Air Pollutant
PM2.5 = Particulate Matter (<2.5 um)
HC = Hydrogen Chloride
SO2 = Sulfur Dioxide
PAH = Polycaromatic Hydrocarbon
NOx = Nitrous Oxides
VOC = Volatile Organic Compounds
Appendix A.1: Unlimited Emissions Calculations

Greenhouse Gas (CO2e) Emissions from Hot Oil Heater Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43488-03179
Reviewer: Taylor Wade

Maximum Hot Oil Heater Fuel Input Rate = 4.00 MMBtu/hr
Natural Gas Usage = 35.04 MMCF/yr
No. 2 Fuel Oil Usage = 250,285.71 gal/yr, 0.50% sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/kgal)</th>
<th>Global Warming Potentials (GWP)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>120,161.34</td>
<td>22,501.41</td>
<td>1</td>
<td>2,105.24</td>
</tr>
<tr>
<td>CH4</td>
<td>2.49</td>
<td>0.91</td>
<td>25</td>
<td>0.04</td>
</tr>
<tr>
<td>N2O</td>
<td>2.2</td>
<td>0.26</td>
<td>298</td>
<td>0.04</td>
</tr>
</tbody>
</table>

CO2e Equivalent Emissions (tons/yr): 2,117.81

Worse Case CO2e Emissions (tons/yr): 2,828.44

Methodology

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.
Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]

Sources of Emission Factors for fuel combustion: (Note: To form a conservative estimate, the "worst case" emission factors have been used.)
- Natural Gas: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/mmBtu to lb/MMCF. Emission Factor for N2O from AP-42 Chapter 1.4 (dated 7/98), Table 1.4-2
- No. 2 Fuel Oil: Emission Factors for CO2 and CH4 from 40 CFR Part 98 Subpart C, Tables C-1 and 2, have been converted from kg/mmBtu to lb/kgal. Emission Factor for N2O from AP-42 Chapter 1.3 (dated 5/10), Table 1.3-8

Emission Factor (EF) Conversions
- Natural Gas: EF (lb/MMCF) = [EF (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of Natural Gas (MMBtu/scf) * Conversion Factor (1,000 scf/MMCF)]
- Fuel Oils: EF (lb/kgal) = [EF (kg/MMBtu) * Conversion Factor (2.20462 lbs/kg) * Heating Value of the Fuel Oil (MMBtu/gal) * Conversion Factor (1000 gal/kgal)]

Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]

Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 of "worst case" fuel (ton/yr) x CO2 GWP (1) + Unlimited Potential to Emit CH4 of "worst case" fuel (ton/yr) x CH4 GWP (25) + Unlimited Potential to Emit N2O of "worst case" fuel (ton/yr) x N2O GWP (298).

Abbreviations

- CO2 = Carbon Dioxide
- N2O = Nitrogen Dioxide
- CH4 = Methane
- PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Hot Oil Heating System - Process Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited/uncontrolled emissions from the combustion of natural gas and No. 2 fuel oil in the hot oil heating system, which is used to heat a specially designed transfer oil. The hot transfer oil is then pumped through a piping system that passes through the asphalt cement storage tanks, in order to keep the asphalt cement at the correct temperature.

Maximum Fuel Input Rate To Hot Oil Heater = 4.00 MMBtu/hr
Natural Gas Usage = 35.04 MMCF/yr, and
No. 2 Fuel Oil Usage = 250,285.71 gal/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/ft³)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>2.60E-08</td>
<td>2.65E-05</td>
<td>4.56E-04</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>CO</td>
<td>8.90E-06</td>
<td>0.0012</td>
<td>0.156</td>
<td>0.156</td>
<td>0.156</td>
</tr>
<tr>
<td>Greenhouse Gas as CO2e*</td>
<td>0.20</td>
<td>28.00</td>
<td>3504.00</td>
<td>3504.00</td>
<td>3504.00</td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>2.60E-08</td>
<td>3.50E-06</td>
<td>4.56E-04</td>
<td>4.38E-04</td>
<td>4.56E-04</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>5.50E-07</td>
<td>6.63E-05</td>
<td>6.63E-05</td>
<td>6.63E-05</td>
<td>6.63E-05</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>2.00E-07</td>
<td>2.50E-05</td>
<td>2.50E-05</td>
<td>2.50E-05</td>
<td>2.50E-05</td>
</tr>
<tr>
<td>Anthracene</td>
<td>1.80E-07</td>
<td>2.25E-05</td>
<td>2.25E-05</td>
<td>2.25E-05</td>
<td>2.25E-05</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.00E-07</td>
<td>1.25E-05</td>
<td>1.25E-05</td>
<td>1.25E-05</td>
<td>1.25E-05</td>
</tr>
<tr>
<td>Fluoranthenene</td>
<td>4.40E-08</td>
<td>5.51E-06</td>
<td>5.51E-06</td>
<td>5.51E-06</td>
<td>5.51E-06</td>
</tr>
<tr>
<td>Fluorene</td>
<td>3.20E-08</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1.70E-05</td>
<td>2.13E-03</td>
<td>2.13E-03</td>
<td>2.13E-03</td>
<td>2.13E-03</td>
</tr>
<tr>
<td>Pyrene</td>
<td>3.20E-08</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
</tr>
</tbody>
</table>

Total HAPs = 3.34E-03 (Naphthalene)
Worst Single HAP = 2.13E-03 (Naphthalene)

Methodology
Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
No. 2 Fuel Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Potential to Emit (tons/yr) = (Natural Gas Usage (MMCF/yr)) * (Emission Factor (lb/MMCF/ton)) * (MMCF/yr)
No. 2 Fuel Oil: Potential to Emit (tons/yr) = (No. 2 Fuel Oil Usage (gal/yr)) * (Emission Factor (lb/MMBF)) * (MMBF/yr)
Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 (ton/yr) x CO2 GWP (1)

1 gallon of No. 2 Fuel Oil has a heating value of 140,000 Btu
Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Table 11.1-13

*Note: There are no emission factors for CH4 and N2O available in either 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no CH4 and N2O emission anticipated from this process.

Abbreviations
CO = Carbon Monoxide VOC = Volatile Organic Compound CO2 = Carbon Dioxide
Appendix A.1: Unlimited Emissions Calculations

Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (<600 HP)

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43488-03179
Reviewer: Taylor Wade

<table>
<thead>
<tr>
<th>Output Horsepower Rating (hp)</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hours Operated per Year</td>
<td>8760</td>
</tr>
<tr>
<td>Potential Throughput (hp-hr/yr)</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Diesel Fuel Usage (gal/yr)</td>
<td>0</td>
</tr>
</tbody>
</table>

Pollutant

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM2.5</th>
<th>PM10</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0021</td>
<td>0.0310</td>
<td>0.0025</td>
<td>0.0067</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>43.07</td>
<td>43.07</td>
<td>43.07</td>
<td>40.13</td>
<td>606.85</td>
<td>49.22</td>
<td>130.77</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1 The AP-42 Chapter 3.3-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

2 Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) / 7.1 (lb/gal) * 1,000 (gal/kgal)

3 PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>1.28E-01</td>
<td>5.60E-02</td>
<td>3.91E-02</td>
<td>5.36E-03</td>
<td>1.05E-01</td>
<td>1.27E-02</td>
<td>2.30E-02</td>
<td>1.28E-01</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

4 Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) / 7.1 (lb/gal) * 1,000 (gal/kgal)

Green House Gas Emissions (GHG)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2</th>
<th>CH4</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>1.15</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Emission Factor in kg/MMBtu</td>
<td>NA</td>
<td>0.003</td>
<td>0.0006</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>22.51207</td>
<td>0.91</td>
<td>0.18</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

5 The AP-42 Chapter 3.3-1 emission factor in lb/hp-hr was converted to lb/kgal emission factor using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

6 Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) / 7.1 (lb/gal) * 1,000 (gal/kgal)

7 The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

8 Emission factor (lb/kgal) = 40 CFR 98 EF (kg/MMBtu) * 2.20462 (lb/kg) / 1,000 (gal/kgal)

Methodology

Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year]
Maximum Diesel Fuel Usage (gal/yr) = Potential Throughput (hp-hr/yr) * 7000 (Btu/hp-hr) / 1.19830 (Btu/lb) * 1/7.1 (lb/gal)
Emission Factors are from AP42 (Supplement B 10/96), Tables 3.3-1 and 3.3-2 and have been converted to lb/kgal
CH4 and N2O Emission Factor from 40 CFR 98 Subpart C Table C-2 and have been converted to lb/kgal
Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.
Potential Emissions (tons/yr) = [Maximum Diesel Fuel Usage (gal/yr) * Emission Factor (lb/kgal)] / (1,000 gal/kgal) / (2,000 lb/ton)
CO2e (tons/yr) = CO2 Potential Emission tons/yr x CO2 GWP (1) + CH4 Potential Emission tons/yr x CH4 GWP (25) + N2O Potential Emission tons/yr x N2O GWP (298)
Appendix A.1: Unlimited Emissions Calculations
Large Reciprocating Internal Combustion Engines - Diesel Fuel
Output Rating (>600 HP)

Company Name: Rieh- Riley Construction Co., Inc (Plant #366)
Source Address: 2484 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Output Horsepower Rating (hp) 0.0
Maximum Hours Operated per Year 7360
Potential Throughput (hp-hr/yr) 0
Maximum Diesel Fuel Usage (gal/yr) 0

Potential Emissions (tons/yr) = [Maximum Diesel Fuel Usage (gal/yr) x Emission Factor (lb/kgal)] / (1,000 ga/kgal) / (2,000 lb/ton)

Table A.1: Emissions Factors for Diesel Fuel

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/kgal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>7.00E-04</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>7.00E-04</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>4.05E-03</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>2.04E-02</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>7.05E-04</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>5.50E-03</td>
<td></td>
</tr>
</tbody>
</table>

Potential Emission of Worst Case HAPs (tons/yr) 0.00E+00
Potential Emission of Total HAPs (tons/yr) 0.00E+00

Page 11 of 20, TSD App. A
Appendix A.1: Unlimited Emissions Calculations
Asphalt Load-Out, Silo Filling, and Yard Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited/uncontrolled fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Avoidable</th>
<th>Avoidable</th>
<th>On-Site Yard</th>
<th>Avoidable</th>
<th>Avoidable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PM*</td>
<td>3.5E-04</td>
<td>5.9E-04</td>
<td>NA</td>
<td>0.91</td>
<td>1.03</td>
<td>NA</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
<td>5.9E-04</td>
<td>NA</td>
<td>0.60</td>
<td>0.445</td>
<td>NA</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
<td>0.012</td>
<td>0.001</td>
<td>7.29</td>
<td>21.35</td>
<td>1.927</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
<td>0.001</td>
<td>3.5E-04</td>
<td>2.36</td>
<td>2.067</td>
<td>0.617</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Total VOCs: 6.65 21.35 1.8 30.0
Total HAPs: 0.15 0.32 0.029 0.50
Worst Single HAP: 0.155 (formaldehyde)

Methodology
The asphalt temperature and volatility factor were provided by the source.

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):
Total PM/PM10/PM2.5 EF = 0.000181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)
Organic PM EF = 0.00141(-V)e^((0.0251)(T+460)-20.43)
TOC EF = 0.0172(-V)e^((0.0251)(T+460)-20.43)
CO EF = 0.00558(-V)e^((0.0251)(T+460)-20.43)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):
PM/PM10 EF = 0.000332 + 0.00105(-V)e^((0.0251)(T+460)-20.43)
Organic PM EF = 0.00105(-V)e^((0.0251)(T+460)-20.43)
TOC EF = 0.0504(-V)e^((0.0251)(T+460)-20.43)
CO EF = 0.00498(-V)e^((0.0251)(T+460)-20.43)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

*No emission factors available for PM10 or PM2.5, therefore IDEM assumes PM10 and PM2.5 are equivalent to Total PM.

Abbreviations
TOC = Total Organic Compounds
CO = Carbon Monoxide
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
Organic Particulate-Based Compounds (Table 11.1-15)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% by weight of Total Organic PM)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.26%</td>
<td>0.47%</td>
<td>1.6E-03 2.1E-03 NA 3.6E-03</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.028%</td>
<td>0.014%</td>
<td>1.7E-04 6.2E-05 NA 2.3E-04</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.07%</td>
<td>0.13%</td>
<td>4.2E-04 5.8E-04 NA 1.0E-03</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56-55-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.019%</td>
<td>0.056%</td>
<td>1.1E-04 2.5E-04 NA 3.6E-04</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0079%</td>
<td>0</td>
<td>4.5E-05 NA 4.5E-05</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207-08-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0022%</td>
<td>0</td>
<td>1.3E-05 NA 1.3E-05</td>
</tr>
<tr>
<td>Benzo(l)pyrene</td>
<td>191-24-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0019%</td>
<td>0</td>
<td>1.1E-05 NA 1.1E-05</td>
</tr>
<tr>
<td>Benzo(e)pyrene</td>
<td>50-32-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0023%</td>
<td>0</td>
<td>1.4E-05 NA 1.4E-05</td>
</tr>
<tr>
<td>Benzo(e)pyrene</td>
<td>192-97-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0078%</td>
<td>0.0098%</td>
<td>4.7E-05 4.2E-05 NA 8.9E-05</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.103%</td>
<td>0.21%</td>
<td>6.2E-04 9.3E-04 NA 1.5E-03</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>53-70-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0037%</td>
<td>0</td>
<td>2.2E-05 NA 2.2E-05</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>208-44-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.05%</td>
<td>0.15%</td>
<td>3.0E-04 NA 3.0E-04</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.77%</td>
<td>1.01%</td>
<td>4.6E-03 4.5E-03 NA 9.1E-03</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.00047%</td>
<td>0</td>
<td>2.8E-06 NA 2.8E-06</td>
</tr>
<tr>
<td>2-Methylanthanthrene</td>
<td>91-57-6</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>2.38%</td>
<td>5.27%</td>
<td>1.4E-02 2.3E-02 NA 0.038</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>1.25%</td>
<td>1.83%</td>
<td>7.6E-03 8.1E-03 NA 1.6E-02</td>
</tr>
<tr>
<td>Perylene</td>
<td>198-55-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.022%</td>
<td>0.03%</td>
<td>1.3E-04 1.3E-04 NA 2.6E-04</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85-01-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.81%</td>
<td>1.80%</td>
<td>4.8E-03 8.0E-03 NA 1.3E-02</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.15%</td>
<td>0.44%</td>
<td>9.0E-04 2.9E-03 NA 2.9E-04</td>
</tr>
<tr>
<td>Total PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.035</td>
<td>0.050</td>
<td>0.035</td>
</tr>
<tr>
<td>Other semi-volatile HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.099</td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td>PM/HAP</td>
<td>---</td>
<td>Organic PM</td>
<td>1.16%</td>
<td>0</td>
<td>7.0E-03 NA 7.0E-03</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Speciation Profile (%)] * [Organic PM (tons/yr)]

Abbreviations

PM = Particulate Matter
HAP = Hazardous Air Pollutant
POM = Polycyclic Organic Matter
Appendix A.1: Unlimited Emissions Calculations
Asphalt Load-Out, Silo Filling, and Yard Emissions (continued)

Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Speciation Profile</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out and Onsite Yard (% by weight of TOC)</td>
<td>Silo Filling and Asphalt Storage Tank (% by weight of TOC)</td>
</tr>
<tr>
<td>VOC</td>
<td>VOC</td>
<td>---</td>
<td>TOC</td>
<td></td>
<td>94%</td>
<td>100%</td>
</tr>
<tr>
<td>non-VOC/non-HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>6.50%</td>
<td>0.26%</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.06%</td>
<td>0.055%</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.71%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Total non-VOC/non-HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.30%</td>
<td>1.40%</td>
</tr>
<tr>
<td>Volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.052%</td>
<td>0.032%</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0096%</td>
<td>0.0049%</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>78-93-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.049%</td>
<td>0.039%</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.013%</td>
<td>0.018%</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.00021%</td>
<td>0.0044%</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.015%</td>
<td>0.023%</td>
</tr>
<tr>
<td>Cumene</td>
<td>62-82-8</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.11%</td>
<td>0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.28%</td>
<td>0.038%</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.088%</td>
<td>0.69%</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>100-04-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.15%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Isooctane</td>
<td>540-84-1</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0018%</td>
<td>0.00031%</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>75-05-2</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0.00027%</td>
</tr>
<tr>
<td>MTBE</td>
<td>1634-04-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0073%</td>
<td>0.0054%</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>127-18-4</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0077%</td>
<td>0</td>
</tr>
<tr>
<td>Toluene</td>
<td>100-88-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.21%</td>
<td>0.062%</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-85-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0013%</td>
<td>0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.14%</td>
<td>0.20%</td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>1230-20-7</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.08%</td>
<td>0.057%</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.08%</td>
<td>0.057%</td>
</tr>
<tr>
<td>Total volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50%</td>
<td>1.30%</td>
</tr>
</tbody>
</table>

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = \[\text{Speciation Profile (%)} \times \text{[TOC (tons/yr)]}\]

Abbreviations

- TOC = Total Organic Compounds
- HAP = Hazardous Air Pollutant
- VOC = Volatile Organic Compound
- MTBE = Methyl tert butyl ether
Appendix A.1: Unlimited Emissions Calculations
Material Storage Piles

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA’s AP-42 (Pre 1983 Edition), Section 11.2.3.

\[Ef = 1.7*(s/1.5)*(365-p)/235*(f/15) \]

where \(Ef \) = emission factor (lb/acre/day)
\(s \) = silt content (wt %)
\(p \) = 125 days of rain greater than or equal to 0.01 inches
\(f \) = 15 % of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>3.34</td>
<td>1.834</td>
<td>0.642</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>9.18</td>
<td>3.103</td>
<td>1.086</td>
</tr>
<tr>
<td>RAP*</td>
<td>0.5</td>
<td>0.58</td>
<td>3.69</td>
<td>0.390</td>
<td>0.136</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>4.09</td>
<td>1.382</td>
<td>0.484</td>
</tr>
<tr>
<td>RAP/Shingles</td>
<td>0.5</td>
<td>0.58</td>
<td>1.60</td>
<td>0.169</td>
<td>0.059</td>
</tr>
<tr>
<td>Shingles</td>
<td>0.5</td>
<td>0.58</td>
<td>5.52</td>
<td>0.583</td>
<td>0.204</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.40</td>
<td>6.94</td>
<td>5.571</td>
<td>1.950</td>
</tr>
</tbody>
</table>

**Maximum anticipated pile size (acres) provided by the source.

Methodology
PTE of PM (tons/yr) = (Emission Factor (lb/acre/day)) * (Maximum Pile Size (acres)) * (ton/2000 lbs) * (365 days/yr)
PTE of PM10/PM2.5 (tons/yr) = (Potential PM Emissions (tons/yr)) * 35%

* Silt content values obtained from AP-42 Table 13.2.4-1 (dated 1/95)
**Maximum anticipated pile size (acres) provided by the source.

PM2.5 = PM10

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
RAP = Recycled Asphalt Pavement
Appendix A.1: Unlimited Emissions Calculations
Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)
To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1/95) are utilized.

\[
Ef = k*(0.0032)*(U/5)^{1.3} / (M/2)^{1.4}
\]
where:
- \(Ef \) = Emission factor (lb/ton)
- \(k (PM) = 0.74 \) = particle size multiplier (0.74 assumed for aerodynamic diameter <=100 um)
- \(k (PM10) = 0.35 \) = particle size multiplier (0.35 assumed for aerodynamic diameter <=10 um)
- \(k (PM2.5) = 0.053 \) = particle size multiplier (0.053 assumed for aerodynamic diameter <=2.5 um)
- \(U = 10.2 \) = worst case annual mean wind speed (Source: NOAA, 2006*)
- \(M = 4.0 \) = material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1)

\[
Ef (PM) = 2.27E-03
\]
\[
Ef (PM10) = 1.07E-03
\]
\[
Ef (PM2.5) = 1.62E-04
\]

Maximum Annual Asphalt Production = 3,504,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 3,328,800 tons/yr

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10 (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>3.77</td>
<td>1.78</td>
<td>0.27</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>3.77</td>
<td>1.78</td>
<td>0.27</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>3.77</td>
<td>1.78</td>
<td>0.27</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>11.32</td>
<td>5.35</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Methodology
The percent asphalt cement/binder provided by the source.
Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Material Screening and Conveying (AP-42 Section 11.19.2)
To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 11.19.2 (dated 8/04) are utilized.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lbs/ton)*</th>
<th>Uncontrolled Emission Factor for PM10 (lbs/ton)*</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0054</td>
<td>0.0024</td>
<td>8.99</td>
<td>3.99</td>
</tr>
<tr>
<td>Screening</td>
<td>0.026</td>
<td>0.0087</td>
<td>41.61</td>
<td>14.48</td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0011</td>
<td>4.99</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Unlimited Potential to Emit (tons/yr) = 55.59

Methodology
Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Unlimited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include limestone, sand, recycled asphalt pavement (RAP), gravel, slag, and other additives

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006

Emission Factors from AP-42 Chapter 11.19.2 (dated 8/04), Table 11.19.2-2

**Assumes PM10 = PM2.5

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (< 2.5 um)
PTE = Potential to Emit
Unpaved Roads at Industrial Site

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch 13.2.2 (12/2003).

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PTE = Potential to Emit

Methodology

- Maximum Material Handling Throughput = Annual Asphalt Production Limitation (tons/yr) / 100
- Maximum Weight of Vehicle and Load (tons) = Maximum Weight of Vehicle + Maximum Weight of Load (tons)
- Total Weight driven per year (tons) = Maximum Weight of Vehicle and Load (tons) * Maximum trips per year (trip/yr)
- Maximum one-way distance (miles/trip) = Maximum one-way distance (feet/trip) / 5280 (tons)
- Maximum one-way distance (miles/trip) = Maximum trips per year (trip/yr) / Maximum Material Handling Throughput (tons/yr)

Calculations

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum Weight of Vehicle and Load (tons)</th>
<th>Maximum trips per year (trip/yr)</th>
<th>Maximum one-way distance (miles/trip)</th>
<th>Mitigated Material Handling Throughput (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/RAP Truck Empty/Full</td>
<td>Dump truck (16 CY)</td>
<td>17.0</td>
<td>23.4</td>
<td>39.0</td>
<td>1.18E+10</td>
<td>6.6E+06</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Loaded</td>
<td>Dump truck (16 CY)</td>
<td>17.0</td>
<td>23.4</td>
<td>39.0</td>
<td>1.18E+10</td>
<td>6.6E+06</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Empty/Full</td>
<td>Tanker truck (8000 gal)</td>
<td>12.0</td>
<td>26.0</td>
<td>38.0</td>
<td>8.7E+03</td>
<td>2.6E+03</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Loaded</td>
<td>Tanker truck (8000 gal)</td>
<td>12.0</td>
<td>26.0</td>
<td>38.0</td>
<td>8.7E+03</td>
<td>2.6E+03</td>
</tr>
<tr>
<td>Fuel Oil Truck Empty/Full</td>
<td>Tanker truck (8000 gal)</td>
<td>12.0</td>
<td>26.0</td>
<td>38.0</td>
<td>8.7E+03</td>
<td>2.6E+03</td>
</tr>
<tr>
<td>Fuel Oil Truck Loaded</td>
<td>Tanker truck (8000 gal)</td>
<td>12.0</td>
<td>26.0</td>
<td>38.0</td>
<td>8.7E+03</td>
<td>2.6E+03</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Empty/Full</td>
<td>Front-end loader (3 CY)</td>
<td>15.0</td>
<td>5.0</td>
<td>24.0</td>
<td>3.7E+06</td>
<td>5.5E+06</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Loaded</td>
<td>Front-end loader (3 CY)</td>
<td>15.0</td>
<td>5.0</td>
<td>24.0</td>
<td>3.7E+06</td>
<td>5.5E+06</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Loaded</td>
<td>Dump truck (16 CY)</td>
<td>17.0</td>
<td>24.0</td>
<td>41.0</td>
<td>1.5E+10</td>
<td>5.5E+06</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Empty/Full</td>
<td>Dump truck (16 CY)</td>
<td>17.0</td>
<td>24.0</td>
<td>41.0</td>
<td>1.5E+10</td>
<td>5.5E+06</td>
</tr>
</tbody>
</table>

Total: 1.3E+10

Summary

- Average Vehicle Weight Per Trip = 21.6 tons/trip
- Average Miles Per Trip = 0.117 miles/trip
- Average Vehicle Weight Per Trip = 21.6 tons/yr
- Total Weight driven per year (tons) = 3.7E+07
- Maximum one-way miles (miles/yr) = 140.46
- Maximum trips per year (trip/yr) = 3.7E+07
- Maximum one-way distance (miles/trip) = 0.45
- Maximum Weight of Load (tons) = 0.9
- Maximum Weight of Vehicle (tons) = 1.87
- Maximum Weight of Vehicle and Load (tons) = 2.84
- Maximum Weight of Load (tons) = 0.9
- Maximum Weight of Vehicle (tons) = 1.87
- Maximum Weight of Vehicle and Load (tons) = 4.65
- Maximum Weight of Load (tons) = 0.9
- Maximum Weight of Vehicle (tons) = 1.87
- Maximum Weight of Vehicle and Load (tons) = 4.65
- Maximum Weight of Load (tons) = 0.9
- Maximum Weight of Vehicle (tons) = 1.87
- Maximum Weight of Vehicle and Load (tons) = 4.65
- Maximum Weight of Load (tons) = 0.9
- Maximum Weight of Vehicle (tons) = 1.87
- Maximum Weight of Vehicle and Load (tons) = 4.65

Source

Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Rieth- Riley Construction Co., Inc (Plant #366)
2454 West CR 450 North, LaPorte, IN 46350
Paved Roads

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (12/2003).

Maximum Annual Asphalt Production

- 9.34E+05 tons/yr
- Percent Asphalt Cement/Binder (weight %) = 0.3
- Maximum Material Handling Throughput = 3.0E+07 tons/yr
- Maximum Asphalt Cement/Binder Throughput = 2.7E+06 tons/yr
- Maximum No. 2 Fuel Oil Usage = 1.5E+07 gal/yr

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (tons)</th>
<th>Maximum Weight of Vehicle and Load (tons)</th>
<th>Maximum Trips per year (trip/yr)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Total Weight driven per day (ton/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete Truck Enter Full</td>
<td>Dump truck (18 CY)</td>
<td>1.97</td>
<td>20.96</td>
<td>24.00</td>
<td>5.0%</td>
<td>0.382</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Leave Full</td>
<td>Dump truck (18 CY)</td>
<td>1.97</td>
<td>20.96</td>
<td>24.00</td>
<td>5.0%</td>
<td>0.382</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Empty</td>
<td>Aggregate/RAP Loader (6 CY)</td>
<td>0.133</td>
<td>23.6</td>
<td>12.0</td>
<td>1.93</td>
<td>0.011</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Full</td>
<td>Aggregate/RAP Loader (6 CY)</td>
<td>0.133</td>
<td>23.6</td>
<td>12.0</td>
<td>1.93</td>
<td>0.011</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>Aggregate/RAP Truck (8 CY)</td>
<td>19.31</td>
<td>23.0</td>
<td>765.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Empty</td>
<td>Aggregate/RAP Truck (8 CY)</td>
<td>19.31</td>
<td>23.0</td>
<td>765.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete Truck Leave Empty</td>
<td>Dump truck (18 CY)</td>
<td>1.97</td>
<td>20.96</td>
<td>24.00</td>
<td>5.0%</td>
<td>0.382</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Enter Empty</td>
<td>Dump truck (18 CY)</td>
<td>1.97</td>
<td>20.96</td>
<td>24.00</td>
<td>5.0%</td>
<td>0.382</td>
</tr>
</tbody>
</table>

Mitigated Emission Factor

- Mitigated Emission Factor, $E_{ext} = E_{f} \times \left[1 - \frac{p}{4N}\right]$ (Equation 1 from AP-42 13.2.1)

- Where $p = \frac{W}{72} \times \frac{W}{72} \times \frac{W}{72} \times 10^{-6}$ (tons per year) or equal to 0.01 inches (see Fig. 13.2.1-2)

- Where $N = \frac{2}{72} \times \frac{W}{72} \times \frac{W}{72} \times 10^{-6}$ (tons per year) or equal to 0.01 inches (see Fig. 13.2.1-2)

- Mitigation PTE of PM2.5 = Unmitigated PTE of PM2.5 - (Mitigated Emission Factor, E_{ext})

Methodology

- Maximum Material Handling Throughput = (Annual Asphalt Production Limitation (tons/yr)) * (Percent Asphalt Cement/Binder (weight %))
- Maximum Asphalt Cement/Binder Throughput = (Annual Asphalt Production Limitation (tons/yr)) * (Percent Asphalt Cement/Binder (weight %))
- Maximum Weight of Vehicle and Load (tons) = (Maximum Weight of Vehicle (tons)) + (Maximum Weight of Load (tons))
- Maximum one-way distance (feet/trip) = (Maximum one-way distance (feet/trip) (12/00))
- Maximum one-way distance (miles/yr) = (Maximum one-way distance (feet/trip) (12/00) * (20.94 miles/foot))
- Average Vehicle Weight Per Trip (tons/yr) = (Maximum Weight of Vehicle and Load (tons) (tons/yr) / (Maximum Trips per year (trip/yr))

Equation 1 from AP-42 13.2.1

- $[k \times (sL)^{0.91} \times W^{1.02}]$
Appendix A.1: Unlimited Emissions Calculations
Cold Mix Asphalt Production and Stockpiles

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Maximum Annual Asphalt Production = 3,504,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Asphalt Cement/Binder Throughput = 175,200 tons/yr

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Cut back asphalt rapid cure (assuming gasoline or naphtha solvent)</th>
<th>Maximum weight % of VOC solvent in binder</th>
<th>Weight % VOC solvent in binder that evaporates</th>
<th>Maximum VOC Solvent Usage (tons/yr)</th>
<th>PTE of VOC (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt medium cure (assuming kerosene solvent)</td>
<td>25.3%</td>
<td>95.0%</td>
<td>44,325.6</td>
<td>42,109.3</td>
</tr>
<tr>
<td>Cut back asphalt slow cure (assuming fuel oil solvent)</td>
<td>28.6%</td>
<td>70.0%</td>
<td>50,107.2</td>
<td>35,075.0</td>
</tr>
<tr>
<td>Emulsified asphalt with solvent (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>46.4%</td>
<td>26,280.0</td>
<td>12,193.9</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.9%</td>
<td>2.5%</td>
<td>45,376.8</td>
<td>1,134.4</td>
</tr>
</tbody>
</table>

Worst Case PTE of VOC = 42,109.3

Hazardous Air Pollutants

| Hazardous Air Pollutant (HAP) Content (% by weight) for Various Petroleum Solvents* |
|---|---|---------------------|
| Volatile Organic HAP | CAS# | Hazardous Air Pollutant (HAP) Content (% by weight) for Various Petroleum Solvents |
| 1,3-Butadiene | 106-99-0 | Gasoline | 7.0E-5% | Kerosene | 1.8E-4% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 2.0E-2% | No. 6 Fuel Oil |
| 2,3,4-Trimethylpentane | 124-84-1 | Gasoline | 2.40% | Kerosene | 4.7E-5% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Acenaphthene | 83-32-9 | Gasoline | 1.9E-5% | Kerosene | 1.2E-4% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Acenaphthylene | 208-96-8 | Gasoline | 4.5E-5% | Kerosene | 6.0E-5% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Anthracene | 120-12-7 | Gasoline | 1.2E-3% | Kerosene | 2.0E-3% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Benzene | 71-43-2 | Gasoline | 2.5E-4% | Kerosene | 2.0E-3% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Benzo[a]anthracene | 95-55-3 | Gasoline | 9.6E-4% | Kerosene | 4.5E-4% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Benz[a]pyrene | 93-32-8 | Gasoline | 2.2E-4% | Kerosene | 2.1E-3% | Diesel (#2) | 4.4E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Benzo[g,h,i]perylene | 191-24-2 | Gasoline | 1.2E-3% | Kerosene | 5.7E-3% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Biphenyl | 92-52-4 | Gasoline | 6.3E-4% | Kerosene | 7.2E-3% | Diesel (#2) | 5.0E-5% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Chrysene | 218-01-9 | Gasoline | 4.5E-4% | Kerosene | 3.0E-4% | Diesel (#2) | 6.9E-4% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Ethylbenzene | 100-41-4 | Gasoline | 1.7E-4% | Kerosene | 3.4E-4% | Diesel (#2) | 1.2E-3% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Fluoranthene | 206-44-0 | Gasoline | 7.1E-4% | Kerosene | 1.4E-3% | Diesel (#2) | 2.4E-4% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Fluorene | 86-72-7 | Gasoline | 4.2E-4% | Kerosene | 4.0E-4% | Diesel (#2) | 1.9E-4% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Indeno[1,2,3-cd]pyrene | 193-39-5 | Gasoline | 1.6E-3% | Kerosene | 1.0E-3% | Diesel (#2) | 1.0E-4% | No. 2 Fuel Oil | 1.2E-3% | No. 6 Fuel Oil |
| Methyl tert-butylether | 1034-04-4 | Gasoline | 0.33% | Kerosene | 0.31% | Diesel (#2) | 0.26% | No. 2 Fuel Oil | 0.22% | No. 6 Fuel Oil |
| n-Hexane | 110-54-3 | Gasoline | 2.40% | Kerosene | 0.31% | Diesel (#2) | 0.26% | No. 2 Fuel Oil | 0.22% | No. 6 Fuel Oil |
| Phenanthrene | 85-01-8 | Gasoline | 8.6E-4% | Kerosene | 8.8E-4% | Diesel (#2) | 7.9E-4% | No. 2 Fuel Oil | 2.1E-4% | No. 2 Fuel Oil |
| Pyrene | 129-50-0 | Gasoline | 2.4E-4% | Kerosene | 4.0E-4% | Diesel (#2) | 2.9E-4% | No. 2 Fuel Oil | 2.3E-5% | No. 2 Fuel Oil |
| Toluene | 108-88-3 | Gasoline | 8.1E-4% | Kerosene | 0.18% | Diesel (#2) | 6.2E-4% | No. 2 Fuel Oil | 0.23% | No. 2 Fuel Oil |
| Total Xylenes | 1330-20-7 | Gasoline | 9.0E-4% | Kerosene | 0.50% | Diesel (#2) | 0.23% | No. 2 Fuel Oil | 0.69% | No. 2 Fuel Oil |

Methodology

Maximum Asphalt Cement/Binder Throughput = [Annual Asphalt Production Limitation (tons/yr)] * [Percent Asphalt Cement/Binder (weight %)]
Maximum VOC Solvent Usage (tons/yr) = [Maximum Asphalt Cement/Binder Throughput (tons/yr)] * [Maximum Weight % of VOC Solvent in Binder]
PTE of VOC (tons/yr) = [Weight % VOC solvent in binder that evaporates] * [Maximum VOC Solvent Usage (tons/yr)]
PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]
PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]

Abbreviations
VOC = Volatile Organic Compounds
PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Gasoline Fuel Transfer and Dispensing Operation

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

To calculate evaporative emissions from the gasoline dispensing fuel transfer and dispensing operation handling emission factors from AP-42 Table 5.2-7 were used. The total potential emission of VOC is as follows:

\[
\text{Gasoline Throughput} = 0 \text{ gallons/day} = 0.0 \text{ kgal/yr}
\]

<table>
<thead>
<tr>
<th>Volatile Organic Compounds</th>
<th>Emission Source</th>
<th>Emission Factor (lb/kgal of throughput)</th>
<th>PTE of VOC (tons/yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling storage tank (balanced submerged filling)</td>
<td>0.3</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tank breathing and emptying</td>
<td>1.0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Vehicle refueling (displaced losses - controlled)</td>
<td>1.1</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Spillage</td>
<td>0.7</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazardous Air Pollutants</th>
<th>Worst Case Total HAP Content of VOC solvent (weight %)* = 26.08%</th>
<th>Worst Case Single HAP Content of VOC solvent (weight %)* = 9.0% Xylenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited PTE of Total HAPs (tons/yr) = 0.00</td>
<td>Limited PTE of Single HAP (tons/yr) = 0.00 Xylenes</td>
<td></td>
</tr>
</tbody>
</table>

Methodology
The gasoline throughput was provided by the source.

\[
\text{Gasoline Throughput (kgal/yr)} = \left[\frac{\text{Gasoline Throughput (lbs/day)}}{365 \text{ days/yr}} \times \frac{\text{kgal}}{1000 \text{ gal}} \right] \\
\text{PTE of VOC (tons/yr)} = \left[\text{Gasoline Throughput (kgal/yr)} \right] \times \left[\text{Emission Factor (lb/kgal)} \right] \times \left[\frac{\text{ton}}{2000 \text{ lb}} \right] \\
\text{PTE of Total HAPs (tons/yr)} = \left[\text{Worst Case Total HAP Content of VOC solvent (weight %)} \right] \times \left[\text{PTE of VOC (tons/yr)} \right] \\
\text{PTE of Single HAP (tons/yr)} = \left[\text{Worst Case Single HAP Content of VOC solvent (weight %)} \right] \times \left[\text{PTE of VOC (tons/yr)} \right]
\]

Abbreviations
VOC = Volatile Organic Compounds
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Entire Source - Drum Mix

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F991-43488-03179
Reviewer: Taylor Wade

Asphalt Plant Limitations - Drum Mix

Maximum Hourly Asphalt Production = 400 ton/hr
Annual Asphalt Production Limitation = 1,000,000 ton/yr
Blast Furnace Slag Usage Limitation = 100,000 ton/yr
Steel Slag Usage Limitation = 100,000 ton/yr

Natural Gas Limitation = 1,015.76 MMCF/yr
No. 2 Fuel Oil Limitation = 1,496,193 gal/yr, and 0.50% sulfur
No. 4 Fuel Oil Limitation = 1,416,396 gal/yr, and 0.50% sulfur
Residual (No. 5 or No. 6) Fuel Oil Limitation = 0 gal/yr, and 0.00% sulfur

Propane Limitation = 14,845,714 gal/yr, and 0.20 gr/100 ft3 sulfur
Butane Limitation = 12,866,286 gal/yr, and 0.22 gr/100 ft3 sulfur

Cold Mix Asphalt VOC Limitation = 53.1 tons/yr

Limited/Controlled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutants</th>
<th>Greenhouse Gas Pollutants</th>
<th>Hazardous Air Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td>SO2</td>
<td>NOx</td>
<td>VOC</td>
</tr>
<tr>
<td>CO</td>
<td>CO2e</td>
<td>Total HAPs</td>
</tr>
<tr>
<td>Worst Case HAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limited/Controlled Potential Emissions (tons/year)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>CO2e</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>23.12</td>
<td>18.43</td>
<td>18.43</td>
<td>93.11</td>
<td>98.50</td>
<td>7.42</td>
<td>55.67</td>
<td>95.156.67</td>
<td>10.87</td>
<td>0.54 (hydrogen chloride)</td>
</tr>
<tr>
<td>Dryer/Mixer (Process)</td>
<td>159.68</td>
<td>71.17</td>
<td>53.36</td>
<td>29.90</td>
<td>17.50</td>
<td>19.00</td>
<td>98.00</td>
<td>16.559.15</td>
<td>5.33</td>
<td>1.56 (formaldehyde)</td>
</tr>
<tr>
<td>Blast Furnace Slag SOC Dryer/Mixer Processing</td>
<td>0.25</td>
<td>0.41</td>
<td>0.41</td>
<td>8.89</td>
<td>2.50</td>
<td>0.10</td>
<td>1.47</td>
<td>3.504.00</td>
<td>0.04</td>
<td>0.032 (hexane)</td>
</tr>
<tr>
<td>Diesel-Fired Generator < 600 HP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000.00</td>
<td>0.00</td>
<td>0.00 (formaldehyde)</td>
</tr>
<tr>
<td>Diesel-Fired Generator > 600 HP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000.00</td>
<td>0.00</td>
<td>0.00 (toluene)</td>
</tr>
<tr>
<td>Worst Case Emissions</td>
<td>160.13</td>
<td>71.59</td>
<td>86.36</td>
<td>99.00</td>
<td>99.00</td>
<td>16.10</td>
<td>66.47</td>
<td>98.660.67</td>
<td>10.91</td>
<td>9.54 (hydrogen chloride)</td>
</tr>
</tbody>
</table>

Fugitive Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>CO2e</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Load-Out, Silo Filling, On-Site Yard</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>8.57</td>
<td>1.44</td>
<td>0.14</td>
<td>0.04 (formaldehyde)</td>
<td></td>
</tr>
<tr>
<td>Material Storing</td>
<td>13.03</td>
<td>4.56</td>
<td>4.56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Processing and Handling</td>
<td>3.25</td>
<td>1.55</td>
<td>1.55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Crushing, Screening, and Conveying</td>
<td>15.97</td>
<td>5.91</td>
<td>5.91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unpaved and Paved Roads (worst case)</td>
<td>56.97</td>
<td>14.97</td>
<td>14.97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cold Mix Asphalt Production</td>
<td>0</td>
</tr>
<tr>
<td>Gasoline Fuel Transfer and Dispensing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Volatile Organic Liquid Storage Vessels</td>
<td>0</td>
</tr>
<tr>
<td>Total Fugitive Emissions</td>
<td>88.87</td>
<td>27.41</td>
<td>12.84</td>
<td>0</td>
<td>0</td>
<td>negl</td>
<td>negl</td>
<td>negl</td>
<td>negl</td>
<td>negl</td>
</tr>
</tbody>
</table>

Totals Limited/Controlled Emissions: 249.00 | 99.60 | 99.60 | 99.60 | 99.60 | 77.76 | 67.91 | 99.660.67 | 24.90 | 9.54 (xylene)
The following calculations determine the limited emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer and all other fuel combustion sources at the source.

Fuel Limitations

Maximum Fuel Input Rate = 125 MMBtu/hr

Natural Gas Limitation = 125 MMBtu/hr

No. 2 Fuel Oil Limitation = 1,496.193 gal (for 43.40% succinic acid), 0.50 % sulfur, and 0.00% % chlorine.

No. 4 Fuel Oil Limitation = 1,416.396 gal (for 54.04% succinic acid), 0.50% % sulfur, and 0.00% % chlorine.

Residual (No. 5 or No. 6) Fuel Oil Limitation = 18.429 gal (for 2.50% succinic acid), 0.00% % sulfur, and 0.00% % chlorine.

Propane Limitation = 23.12 gal (for 1.00% succinic acid), 0.00% % sulfur, and 0.00% % chlorine.

Butane Limitation = 3.30E-2 gal (for 2.00% succinic acid), 0.00% % sulfur, and 0.00% % chlorine.

Used/Waste Oil Limitation = 722.65 gal (for 1.00% succinic acid), 0.00% % sulfur, and 0.00% % chlorine.

Limited Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>No. 4 Fuel Oil</th>
<th>Propane</th>
<th>Butane</th>
<th>Used/Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>No. 4 Fuel Oil</th>
<th>Propane</th>
<th>Butane</th>
<th>Used/Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>3.00E-03</td>
<td>4.00E-02</td>
<td>5.50E-02</td>
<td>1.00E-03</td>
<td>3.00E-03</td>
<td>4.00E-02</td>
<td>3.00E-03</td>
<td>4.00E-02</td>
<td>5.50E-02</td>
<td>1.00E-03</td>
<td>3.00E-03</td>
<td>4.00E-02</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>5.25E-03</td>
<td>4.6E-05</td>
<td>5.0E-05</td>
<td>0.00E+00</td>
<td>5.25E-03</td>
<td>4.6E-05</td>
<td>5.25E-03</td>
<td>4.6E-05</td>
<td>5.0E-05</td>
<td>0.00E+00</td>
<td>5.25E-03</td>
<td>4.6E-05</td>
</tr>
<tr>
<td>NOx</td>
<td>1.00E-02</td>
<td>1.13E-04</td>
<td>1.00E-02</td>
<td>0.00E+00</td>
<td>1.00E-02</td>
<td>1.13E-04</td>
<td>1.00E-02</td>
<td>1.13E-04</td>
<td>1.00E-02</td>
<td>0.00E+00</td>
<td>1.00E-02</td>
<td>1.13E-04</td>
</tr>
<tr>
<td>VOC</td>
<td>8.3E-02</td>
<td>9.54E-02</td>
<td>5.0E-02</td>
<td>0.00E+00</td>
<td>8.3E-02</td>
<td>9.54E-02</td>
<td>8.3E-02</td>
<td>9.54E-02</td>
<td>5.0E-02</td>
<td>0.00E+00</td>
<td>8.3E-02</td>
<td>9.54E-02</td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Limited Emissions = (Fuel Limitation (gals/yr)) * (Emission Factor (lb/kgal)) * (kgal/1000 gal) * (ton/2000 lbs)

Case Assumptions

- AP-42 Chapter 1.1 (dated 10/96), Tables 1.1-1, 1.1-2, 1.1-3, 1.1-4, and 1.1-5
- AP-42 Chapter 1.2 (dated 03/97), Tables 1.2-1, 1.2-2, and 1.2-3
- AP-42 Chapter 1.3 (dated 05/10), Tables 1.3-1, 1.3-2, 1.3-3, 1.3-8, 1.3-9, 1.3-10, and 1.3-11
- AP-42 Chapter 1.4 (dated 07/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
- AP-42 Chapter 1.5 (dated 07/08), Tables 1.5-1, 1.5-2, 1.5-3, 1.5-4, 1.5-5, 1.5-6, 1.5-7, 1.5-8, 1.5-9, and 1.5-10
- AP-42 Chapter 1.6 (dated 10/96), Tables 1.6-1, 1.6-2, 1.6-3, 1.6-4, 1.6-5, 1.6-6, 1.6-7, 1.6-8, 1.6-9, 1.6-10, and 1.6-11
- AP-42 Chapter 1.7 (dated 07/98), Tables 1.7-1, 1.7-2, 1.7-3, and 1.7-4
- AP-42 Chapter 1.8 (dated 03/97), Tables 1.8-1, 1.8-2, 1.8-3, 1.8-4, 1.8-5, 1.8-6, 1.8-7, 1.8-8, 1.8-9, and 1.8-10
- AP-42 Chapter 1.9 (dated 07/08), Tables 1.9-1, 1.9-2, 1.9-3, 1.9-4, 1.9-5, 1.9-6, 1.9-7, 1.9-8, 1.9-9, and 1.9-10
- AP-42 Chapter 1.10 (dated 07/98), Tables 1.10-1, 1.10-2, 1.10-3, and 1.10-4
- AP-42 Chapter 1.11 (dated 10/96), Tables 1.11-1, 1.11-2, 1.11-3, 1.11-4, and 1.11-5

*Since there are no specific AP-42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.
Appendix A.2: Limited Emissions Summary
Greenhouse Gas (CO2e) Emissions from the Dryer/Mixer Fuel Combustion with Maximum Capacity ≥ 100 MMBtu/hr

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F991-43498-03179
Reviewer: Taylor Wade

The following calculations determine the limited emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer and all other fuel combustion sources at the source.

Fuel Limitations

- **Maximum Fuel Input Rate**: 125 MMBtu/hr
- **Natural Gas Limitation**: 1,016 MMCF/yr
- **No. 2 Fuel Oil Limitation**: 1,496,193 gal/yr, and 0.50% sulfur
- **No. 4 Fuel Oil Limitation**: 1,416,396 gal/yr, and 0.50% sulfur
- **Residual (No. 5 or No. 6) Fuel Oil Limitation**: 0 gal/yr, and 0.00% sulfur
- **Propane Limitation**: 14,845,714 gal/yr, and 0.20 gr/100 ft³ sulfur
- **Butane Limitation**: 12,866,286 gal/yr, and 0.22 gr/100 ft³ sulfur
- **Used/Waste Oil Limitation**: 722,651 gal/yr, and 1.00% sulfur, 1.00% ash, 0.400% chlorine, 0.010% lead

Limited Emissions

- **Natural Gas CO2e Fraction**
- **No. 2 Fuel Oil CO2e Fraction**
- **No. 4 Fuel Oil CO2e Fraction**
- **Residual (No. 5 or No. 6) Fuel Oil CO2e Fraction**
- **Propane CO2e Fraction**
- **Butane CO2e Fraction**
- **Used/Waste Oil CO2e Fraction**

<table>
<thead>
<tr>
<th>CO2e Fraction</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/kgal)</th>
<th>No. 4 Fuel Oil (lb/kgal)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (lb/kgal)</th>
<th>Propane (lb/kgal)</th>
<th>Butane (lb/kgal)</th>
<th>Used/Waste Oil (lb/kgal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>125,161.84</td>
<td>22,501.41</td>
<td>24,153.46</td>
<td>24,835.04</td>
<td>12,500.00</td>
<td>14,506.73</td>
<td>22,024.15</td>
</tr>
<tr>
<td>CH4</td>
<td>2.49</td>
<td>0.91</td>
<td>0.97</td>
<td>1.00</td>
<td>0.67</td>
<td>0.67</td>
<td>0.89</td>
</tr>
<tr>
<td>N2O</td>
<td>2.20</td>
<td>0.26</td>
<td>0.19</td>
<td>0.53</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Limited Potential to Emit (tons/yr)

- **CO2**: 61,027.76
- **CH4**: 1,27
- **N2O**: 1,12

CO2e Equivalent Emissions (tons/yr)

- 61,392.39

Methodology

Fuel Limitations from TSD Appendix A.2, page 1 of 15.
Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Limited CO2e Emissions (tons/yr) = CO2 Potential Emission of "worst case" fuel (ton/yr) x CO2 GWP (1) + CH4 Potential Emission of "worst case" fuel (ton/yr) x CH4 GWP (25) + N2O Potential Emission of "worst case" fuel (ton/yr) x N2O GWP (298).

Abbreviations

- CH4 = Methane
- CO2 = Carbon Dioxide
- N2O = Nitrogen Dioxide
- PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Dryer/Mixer - Process Emissions

<table>
<thead>
<tr>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM**</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>159.9</td>
<td>159.9</td>
</tr>
<tr>
<td>PM10**</td>
<td>0.142</td>
<td>0.142</td>
<td>0.142</td>
<td>71.2</td>
<td>71.2</td>
</tr>
<tr>
<td>PM2.5**</td>
<td>0.172</td>
<td>0.172</td>
<td>0.172</td>
<td>85.9</td>
<td>85.9</td>
</tr>
<tr>
<td>SO2**</td>
<td>0.003</td>
<td>0.011</td>
<td>0.058</td>
<td>1.7</td>
<td>5.5</td>
</tr>
<tr>
<td>NOx**</td>
<td>0.029</td>
<td>0.035</td>
<td>0.035</td>
<td>13.0</td>
<td>27.5</td>
</tr>
<tr>
<td>VOC**</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>CO**</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td>65.0</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Criteria Pollutant

<table>
<thead>
<tr>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5*</td>
<td>1.80E-07</td>
<td>1.80E-07</td>
<td>1.80E-07</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>9.00E-07</td>
<td>9.00E-07</td>
<td>9.00E-07</td>
<td>2.60E-04</td>
<td>2.60E-04</td>
</tr>
<tr>
<td>Butadiene</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>Cadmium</td>
<td>4.10E-07</td>
<td>4.10E-07</td>
<td>4.10E-07</td>
<td>2.05E-04</td>
<td>2.05E-04</td>
</tr>
<tr>
<td>Manganese</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.60E-07</td>
<td>2.60E-07</td>
<td>2.60E-07</td>
<td>1.30E-05</td>
<td>1.30E-05</td>
</tr>
<tr>
<td>Nickel</td>
<td>6.30E-05</td>
<td>6.30E-05</td>
<td>6.30E-05</td>
<td>3.10E-02</td>
<td>3.10E-02</td>
</tr>
<tr>
<td>Selenium</td>
<td>3.90E-07</td>
<td>3.90E-07</td>
<td>3.90E-07</td>
<td>1.75E-04</td>
<td>1.75E-04</td>
</tr>
<tr>
<td>1,3,5 Trimethylenetane</td>
<td>4.00E-05</td>
<td>4.00E-05</td>
<td>4.00E-05</td>
<td>2.00E-02</td>
<td>2.00E-02</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>1.30E-03</td>
<td>0.60</td>
<td>0.60</td>
<td>2.00E-02</td>
<td>2.00E-02</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>2.60E-05</td>
<td></td>
<td>2.60E-05</td>
<td>1.30E-02</td>
<td>1.30E-02</td>
</tr>
<tr>
<td>Benzene</td>
<td>3.90E-04</td>
<td>3.90E-04</td>
<td>3.90E-04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Butylbenzene</td>
<td>2.40E-04</td>
<td>2.40E-04</td>
<td>2.40E-04</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.10E-03</td>
<td>3.10E-03</td>
<td>3.10E-03</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>Hexane</td>
<td>9.00E-04</td>
<td>9.00E-04</td>
<td>9.00E-04</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Methyl chloroform</td>
<td>4.80E-05</td>
<td>4.80E-05</td>
<td>4.80E-05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MEK</td>
<td>2.00E-05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Propanaldehyde</td>
<td>1.30E-04</td>
<td></td>
<td>1.30E-04</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Quinone</td>
<td>1.60E-04</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.50E-04</td>
<td>2.90E-03</td>
<td>2.90E-03</td>
<td>0.08</td>
<td>1.45</td>
</tr>
<tr>
<td>Total HAPs</td>
<td>1.90E-04</td>
<td>1.90E-04</td>
<td>1.90E-04</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.00E-04</td>
<td>2.00E-04</td>
<td>2.00E-04</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Abbreviations

- PM = Particulate Matter
- SO2 = Sulfur Dioxide
- CO = Carbon Monoxide
- PAH = Polynuclear Hydrocarbons
- PM10 = Particulate Matter (<10 um)
- NOX = Nitrous Oxides
- VOC = Volatile Organic Compounds
- HAP = Hazardous Air Pollutant

Methodology

<table>
<thead>
<tr>
<th>Total HAPs</th>
<th>5.33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HAPs</td>
<td>5.33</td>
</tr>
</tbody>
</table>

Limited/Controlled Potential to Emit (ton/yr)

\[
\text{Limited/Controlled Potential to Emit (ton/yr)} = \text{(Annual Asphalt Production Limitation (tons/yr)) \times (Emission Factor (lb/ton)) \times (ton/2000 lbs)}
\]

Limited/Controlled Potential to Emit (tons/yr)

\[
\text{Limited/Controlled Potential to Emit (tons/yr)} = \text{(Annual Asphalt Production Limitation (tons/yr)) \times (Emission Factor (lb/ton)) \times (ton/2000 lbs)}
\]

Limited/Controlled Potential to Emit (ton/yr)

\[
\text{Limited/Controlled Potential to Emit (ton/yr)} = \text{(Annual Asphalt Production Limitation (tons/yr)) \times (Emission Factor (lb/ton)) \times (ton/2000 lbs)}
\]

Total HAPs

\[
\text{Total HAPs} = 5.33
\]
Appendix A.2: Limited Emissions Summary
Greenhouse Gas (CO2e) Emissions from the
Drum-Mix Plant (Dryer/Mixer) Process Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the limited emissions from the aggregate drying/mixing

Maximum Hourly Asphalt Production = 400 ton/hr
Annual Asphalt Production Limitation = 1,000,000 ton/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Global Warming Potentials (GWP)</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>CO2e for Worst Case Fuel (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>1</td>
<td>16,500.00</td>
<td>16,500.00</td>
<td>16,500.00</td>
<td>16,500.00</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0120</td>
<td>0.0120</td>
<td>0.0120</td>
<td>25</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>N2O</td>
<td>298</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,506.00</td>
<td>16,506.00</td>
<td>16,506.00</td>
<td>16,650.00</td>
</tr>
</tbody>
</table>

CO2e Equivalent Emissions (tons/yr) = 16,650.00

Methodology
Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Tables 11.1-7 and 11.1-8
There are no emission factors for N2O available in either the 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no N2O emission anticipated from this process.

Limited/Controlled Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.

Limited CO2e Emissions (tons/yr) = CO2 Potential Emission of "worst case" fuel (ton/yr) x CO2 GWP (1) + CH4 Potential Emission of "worst case" fuel (ton/yr) x CH4 GWP (25) + N2O Potential Emission of "worst case" fuel (ton/yr) x N2O GWP (298).

Abbreviations
CO2 = Carbon Dioxide
CH4 = Methane
N2O = Nitrogen Dioxide
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary
Dryer/Mixer Slag Processing

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the limited emissions from the processing of slag in the aggregate drying/mixing

Limited Blast Furnace Slag Usage = 100,000 ton/yr
Limited Annual Steel Slag Usage = 100,000 ton/yr

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)</th>
<th>Limited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag*</td>
<td>0.7400</td>
<td>37.0</td>
</tr>
<tr>
<td>Steel Slag**</td>
<td>0.0014</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Methodology

* Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.

** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Limited Potential to Emit SO2 from Slag (tons/yr) = [(Limited Slag Usage (ton/yr)) * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations
SO2 = Sulfur Dioxide
Appendix A.2: Limited Emissions Summary

Hot Oil Heater

Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Location: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Maximum Hot Oil Heater Fuel Input Rate = 4.00 MMBtu/hr
Natural Gas Usage = 35 MMCF/yr
No. 2 Fuel Oil Usage = 250,286 gal/yr, and 0.50% sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas Emission Factor (lb/MMCF)</th>
<th>Natural Gas Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
<th>No. 2 Fuel Oil Emission Factor (lb/kgal)</th>
<th>No. 2 Fuel Oil Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
<th>Worse Case Fuel Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>7.6</td>
<td>0.133</td>
<td>0.413</td>
<td>0.413</td>
<td>0.41</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>0.011</td>
<td>8.685</td>
<td>8.89</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>1.752</td>
<td>2.50</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>0.096</td>
<td>0.025</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>1.472</td>
<td>0.626</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Hazardous Air Pollutants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.0E-04</td>
<td>5.6E-04</td>
<td>3.5E-06</td>
<td>7.0E-05</td>
<td>7.0E-05</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.2E-05</td>
<td>4.2E-04</td>
<td>2.1E-07</td>
<td>5.2E-05</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.1E-03</td>
<td>4.2E-04</td>
<td>1.9E-05</td>
<td>5.2E-05</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.4E-03</td>
<td>4.2E-04</td>
<td>2.5E-05</td>
<td>5.2E-05</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8.4E-05</td>
<td>1.5E-04</td>
<td>1.5E-06</td>
<td>1.5E-06</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>5.0E-04</td>
<td>1.3E-03</td>
<td>8.8E-06</td>
<td>1.5E-04</td>
<td>1.5E-04</td>
</tr>
<tr>
<td>Manganese</td>
<td>3.8E-04</td>
<td>8.4E-04</td>
<td>6.7E-06</td>
<td>1.0E-04</td>
<td>1.1E-04</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.6E-04</td>
<td>4.2E-04</td>
<td>4.6E-06</td>
<td>5.2E-05</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
<td>4.2E-04</td>
<td>2.7E-05</td>
<td>5.2E-05</td>
<td>5.3E-05</td>
</tr>
<tr>
<td>Selenium</td>
<td>2.4E-05</td>
<td>2.1E-03</td>
<td>4.2E-07</td>
<td>2.8E-04</td>
<td>2.8E-04</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
<td>3.7E-05</td>
<td>3.7E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>1.2E-03</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.5E-02</td>
<td>6.1E-02</td>
<td>1.3E-03</td>
<td>7.8E-03</td>
<td>0.008</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.8E+00</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td>0.032</td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>3.4E-03</td>
<td>6.0E-05</td>
<td>6.0E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PAH Haps</td>
<td>negl</td>
<td>negl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total HAPs</td>
<td>3.3E-03</td>
<td>4.1E-04</td>
<td></td>
<td></td>
<td>4.1E-04</td>
</tr>
</tbody>
</table>

Equivalent Natural Gas Usage (MMCF/yr) = Maximum Fuel Input Rate (MMBtu/hr) * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = Maximum Fuel Input Rate (MMBtu/hr) * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = Maximum Natural Gas Usage (MMCF/yr) * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = Maximum Fuel Usage (gals/yr) * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]

Abbreviations
PM = Particulate Matter
CO = Carbon Monoxide
PM10 = Particulate Matter (<10 um)
HAP = Hazardous Air Pollutant
PM2.5 = Particulate Matter (<2.5 um)
HCl = Hydrogen Chloride
SO2 = Sulfur Dioxide
PAH = Polynuclear Hydrocarbon
NOx = Nitrous Oxides
VOC = Volatile Organic Compounds

Methodology
Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]
Appendix A.2: Limited Emissions Summary

Greenhouse Gas (CO2e) Emissions from Hot Oil Heater Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43496-03179
Reviewer: Taylor Wade

Maximum Hot Oil Heater Fuel Input Rate = 4.00 MMBtu/hr
Natural Gas Usage = 35.04 MMCF/yr
No. 2 Fuel Oil Usage = 250,285.71 gal/yr, 0.50% sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Emission Factor (units)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
<th>Worse Case CO2e Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas (lb/MMCF)</td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
<td>Natural Gas (ton/yr)</td>
</tr>
<tr>
<td>CO2</td>
<td>120,161.84</td>
<td>22,501.41</td>
<td>1</td>
</tr>
<tr>
<td>CH4</td>
<td>2.49</td>
<td>0.91</td>
<td>25</td>
</tr>
<tr>
<td>N2O</td>
<td>2.20</td>
<td>0.26</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

CO2e Equivalent Emissions (tons/yr) = 2,117.81

Methodology

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Abbreviations

CH4 = Methane N2O = Nitrogen Dioxide
CO2 = Carbon Dioxide PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary
Hot Oil Heating System - Process Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the unlimited/uncontrolled emissions from the combustion of natural gas and No. 2 fuel oil in the hot oil heating system, which is used to heat a specially designed transfer oil. The hot transfer oil is then pumped through a piping system that passes through the asphalt cement storage tanks, in order to keep the asphalt cement at the correct temperature.

Maximum Fuel Input Rate To Hot Oil Heater = 4.00 MMBtu/hr
Natural Gas Usage = 35.04 MMCF/yr, and
No. 2 Fuel Oil Usage = 250,285.71 gal/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/ft³)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>2.60E-08</td>
<td>2.68E-05</td>
<td>4.56E-04</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>CO</td>
<td>8.90E-06</td>
<td>0.0012</td>
<td>0.156</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>CO2</td>
<td>0.20</td>
<td>28.00</td>
<td>3504.00</td>
<td>3504.00</td>
<td>3,504.00</td>
</tr>
<tr>
<td>Greenhouse Gas as CO2e*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>0.20</td>
<td>28.00</td>
<td>3504.00</td>
<td>3504.00</td>
<td>3,504.00</td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>2.60E-08</td>
<td>3.50E-06</td>
<td>4.56E-04</td>
<td>4.38E-04</td>
<td>4.56E-04</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>5.30E-07</td>
<td>6.63E-05</td>
<td>6.63E-05</td>
<td>6.63E-05</td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>2.00E-07</td>
<td>2.50E-05</td>
<td>2.50E-05</td>
<td>2.50E-05</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>1.80E-07</td>
<td>2.25E-05</td>
<td>2.25E-05</td>
<td>2.25E-05</td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.00E-07</td>
<td>1.25E-05</td>
<td>1.25E-05</td>
<td>1.25E-05</td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>4.40E-08</td>
<td>5.51E-06</td>
<td>5.51E-06</td>
<td>5.51E-06</td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>3.20E-08</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1.70E-05</td>
<td>2.13E-03</td>
<td>2.13E-03</td>
<td>2.13E-03</td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>3.20E-08</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td>4.00E-06</td>
<td></td>
</tr>
</tbody>
</table>

Total HAPs = 3.34E-03 (Naphthalene)
Worst Single HAP = 2.13E-03 (Naphthalene)

Methodology
Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
No. 2 Fuel Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas - Potential to Emit (tons/yr) = (Natural Gas Usage (MMCF/yr))*(Emission Factor (lb/MMCF))*(ton/2000 lbs)
No. 2 Fuel Oil - Potential to Emit (tons/yr) = (No. 2 Fuel Oil Usage (gal/yr))*(Emission Factor (lb/gal))*(ton/2000 lbs)
Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 (ton/yr) x CO2 GWP (1)

1 gallon of No. 2 Fuel Oil has a heating value of 140,000 Btu

Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Table 11.1-13

*Note: There are no emission factors for CH4 and N20 available in either 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no CH4 and N20 emission anticipated from this process.

Abbreviations
CO = Carbon Monoxide VOC = Volatile Organic Compound CO2 = Carbon Dioxide
Appendix A.2: Limited Emissions Summary
Reciprocating Internal Combustion Engines - Diesel Fuel
Output Rating (=600 HP)

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Output Horsepower Rating (hp) 0.0
Limited Hours Operated per Year 2500
Limited Throughput (hp-hr/yr) 0
Limited Diesel Fuel Usage (gal/yr) 0

Pollutant	PM¹	PM10²	direct PM2.5³	SO2	NOx	VOC	CO
Emission Factor in lb/hp-hr	0.0022	0.0022	0.0022	0.0021	0.0310	0.0025	0.0067
Emission Factor in lb/kgal⁴	43.07	43.07	43.07	40.13	806.85	49.22	130.77
Limited Emission in tons/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00

1The AP-42 Chapter 3.3-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/kMMBtu</td>
<td>1.28E-07</td>
<td>5.60E-07</td>
<td>3.91E-07</td>
<td>5.36E-07</td>
<td>1.62E-07</td>
<td>1.05E-07</td>
<td>1.27E-07</td>
<td>2.30E-07</td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

³PAH = Polynaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

4The AP-42 Chapter 3.3-1 emission factors in lb/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Limited Emission of Total HAPs (tons/yr) 0.00E+00
Limited Emission of Worst Case HAPs (tons/yr) 0.00E+00

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2⁵</th>
<th>CH4⁶</th>
<th>N2O⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>1.15</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Emission Factor in kg/MMBtu</td>
<td>NA</td>
<td>0.003</td>
<td>0.0006</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>22.51207</td>
<td>0.91</td>
<td>0.18</td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

⁵The AP-42 Chapter 3.3-1 emission factor in lb/hp-hr was converted to lb/kgal emission factor using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

6The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Emission factor (lb/kgal) = 40 CFR 98 EF (kg/MMBtu) * 2.20462 (lb/kg) * 1/10^6 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

Limited Emission of Total CO2e (tons/yr) 0.00E+00

Summed Limited Emissions in tons/yr 0.00E+00 CO2e Total in tons/yr 0.00E+00

Methodology

Limited Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Limited Hours Operated Per Year]
Limited Diesel Fuel Usage (gal/yr) = Limited Throughput (hp-hr/yr) * 7000 (Btu/hp-hr) * 1/19300 (lb/Btu) * 1/71 (gal/lb)
Emission Factors are from AP42 (Supplement B 10/96), Tables 3.3-1 and 3.3-2 and have been converted to lb/kgal
CH4 and N2O Emission Factor from 40 CFR 98 Subpart C Table C-2 and have been converted to lb/kgal
Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.
Limited Emissions (tons/yr) = [Limited Diesel Fuel Usage (gal/yr) x Emission Factor (lb/kgal)] / (2,000 bbl/ton)
CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).
Green House Gas Emissions (GHGs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO$_2$5</th>
<th>CH$_4$5</th>
<th>N$_2$O5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>9.3E-05</td>
<td>6.35E-05</td>
<td>NA</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal2</td>
<td>22.707</td>
<td>1.24</td>
<td>0.18</td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

5The AP-42 Chapter 3.4-1 emission factors in lb/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu/lb and diesel fuel density of 7.1 lb/gal (AP-42 Tables 3.3.1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

2Emission factor (lb/kgal) = AP-42 EF (lb/MMBtu) * 1/106 (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

App. A.2: Limited Emissions Summary

Large Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (>600 HP)

Limited Throughput (hp-hr/yr) = Limited Horsepower Rating (hp) * Limited Hours Operated per Year

Limited Diesel Fuel Usage (gal/yr) = Limited Throughput (hp-hr/yr) * 7000 (Btu/hp-hr) * 1/15000 (lb/Btu) * 1/7.1 (gal/lb)

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4 and have been converted to lb/kgal.

Limited Emissions (tons/yr) = Limited Diesel Fuel Usage (gal/yr) * Emission Factor (lb/kgal) / (1,000 lb/tbl) / (2,000 lb/ton)

Methodology

- Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu/lb and diesel fuel density of 7.1 lb/gal (AP-42 Tables 3.3.1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

- Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu/lb and diesel fuel density of 7.1 lb/gal (AP-42 Tables 3.3.1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

- Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu/lb and diesel fuel density of 7.1 lb/gal (AP-42 Tables 3.3.1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.
Appendix A.2: Limited Emissions Summary
Asphalt Load-Out, Silo Filling, and Yard Emissions

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the limited fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant

<table>
<thead>
<tr>
<th>Emission Factor (lb/ton asphalt)</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant</td>
<td>Load-Out</td>
</tr>
<tr>
<td>Total PM*</td>
<td>5.2E-04</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

<table>
<thead>
<tr>
<th>Emission Factor (lb/ton asphalt)</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM/HAPs</td>
<td>0.012</td>
</tr>
<tr>
<td>VOC/HAPs</td>
<td>0.031</td>
</tr>
<tr>
<td>non-VOC/HAPs</td>
<td>1.6E-04</td>
</tr>
<tr>
<td>non-VOC/non-HAPs</td>
<td>0.15</td>
</tr>
</tbody>
</table>

PM/HAPs = 0.012
VOC/HAPs = 0.031
non-VOC/HAPs = 1.6E-04
non-VOC/non-HAPs = 0.15

Total VOCs = 1.95
Total HAPs = 0.04

Worst Single HAP = 0.044 (formaldehyde)

Methodology

The asphalt temperature and volatility factor were provided by the source.

Limited Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):

Total PM/PM10 EF = 0.000181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)
Organic PM EF = 0.00141(-V)e^((0.0251)(T+460)-20.43)
TOC EF = 0.0172(-V)e^((0.0251)(T+460)-20.43)
CO EF = 0.00558(-V)e^((0.0251)(T+460)-20.43)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):

PM/PM10 EF = 0.000332 + 0.00105(-V)e^((0.0251)(T+460)-20.43)
Organic PM EF = 0.00105(-V)e^((0.0251)(T+460)-20.43)
TOC EF = 0.0504(-V)e^((0.0251)(T+460)-20.43)
CO EF = 0.00488(-V)e^((0.0251)(T+460)-20.43)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

Worst Single HAP = 0.044 (formaldehyde)

Abbreviations

TOC = Total Organic Compounds
CO = Carbon Monoxide
PM = Particulate
Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
Appendix A.2: Limited Emissions Summary

Asphalt Load-Out, Silo Filling, and Yard Emissions (continued)

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)

Source Address: 2454 West CR 450 North, LaPorte, IN 46350

Permit Number: F091-43498-03179

Reviewer: Taylor Wade

Organic Particulate-Based Compounds (Table 11.1-15)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% by weight of Total Organic PM)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out</td>
<td>Silo Filling</td>
<td>Total</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.26%</td>
<td>0.47%</td>
<td>4.4E-04</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.028%</td>
<td>0.014%</td>
<td>4.8E-05</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.07%</td>
<td>0.13%</td>
<td>1.2E-04</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56-55-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.019%</td>
<td>0.058%</td>
<td>3.2E-05</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0076%</td>
<td>0</td>
<td>1.3E-05</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207-08-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0022%</td>
<td>0</td>
<td>3.8E-06</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>191-24-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.001%</td>
<td>0</td>
<td>3.2E-06</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0023%</td>
<td>0</td>
<td>3.9E-06</td>
</tr>
<tr>
<td>Benzo(e)pyrene</td>
<td>192-97-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0078%</td>
<td>0.0095%</td>
<td>1.3E-05</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.103%</td>
<td>0.21%</td>
<td>1.8E-04</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53-70-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.00037%</td>
<td>0</td>
<td>6.3E-07</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.05%</td>
<td>0.15%</td>
<td>8.5E-05</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.77%</td>
<td>1.01%</td>
<td>1.3E-03</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.00047%</td>
<td>0</td>
<td>8.0E-07</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91-57-6</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>2.38%</td>
<td>5.27%</td>
<td>4.1E-03</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>1.25%</td>
<td>1.82%</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>198-55-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.022%</td>
<td>0.03%</td>
<td>3.8E-05</td>
</tr>
<tr>
<td>Pyrene</td>
<td>85-01-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.81%</td>
<td>1.30%</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>Total PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.010</td>
<td>0.014</td>
<td>NA</td>
</tr>
</tbody>
</table>

Other semi-volatile HAPs

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% by weight of Total Organic PM)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>PM/HAP</td>
<td>---</td>
<td>Organic PM</td>
<td>1.18%</td>
<td>0</td>
<td>2.0E-03</td>
<td>0</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [Organic PM (tons/yr)]

Abbreviations

PM = Particulate Matter

HAP = Hazardous Air Pollutant

POM = Polycyclic Organic Matter
Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Speciation Profile</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out and Onsite Yard (% by weight of TOC)</td>
<td>Silo Filling and Asphalt Storage Tank (% by weight of TOC)</td>
</tr>
<tr>
<td>VOC</td>
<td>VOC</td>
<td>---</td>
<td>TOC</td>
<td>94%</td>
<td>100%</td>
</tr>
<tr>
<td>non-VOC/non-HAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>6.50%</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.046%</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.71%</td>
</tr>
<tr>
<td>Total non-VOC/non-HAPS</td>
<td></td>
<td></td>
<td></td>
<td>7.30%</td>
<td>1.40%</td>
</tr>
<tr>
<td>Volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.052%</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0086%</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>78-93-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.049%</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.013%</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0021%</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.015%</td>
</tr>
<tr>
<td>Cumene</td>
<td>92-82-8</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.11%</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.28%</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.088%</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>100-54-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.15%</td>
</tr>
<tr>
<td>Isocyanate</td>
<td>540-84-1</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0016%</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>75-09-2</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
</tr>
<tr>
<td>MTBE</td>
<td>1634-04-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0073%</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0077%</td>
</tr>
<tr>
<td>Toluene</td>
<td>100-88-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.21%</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0013%</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>1330-20-7</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.41%</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.08%</td>
</tr>
<tr>
<td>Total volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td>1.50%</td>
<td>1.30%</td>
</tr>
</tbody>
</table>

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [TOC (tons/yr)]

Abbreviations

TOC = Total Organic Compounds
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
MTBE = Methyl tert butyl ether
Appendix A.2: Limited Emissions Summary
Material Storage Piles

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Note: Since the emissions from the storage piles are minimal, the limited emissions are equal to the unlimited emissions.

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA's AP-42 (Pre 1983 Edition), Section 11.2.3.

\[
Ef = 1.7 \times \left(\frac{s}{1.5} \right) \times \left(\frac{365-p}{235} \right) \times \left(\frac{f}{15} \right)
\]

where \(Ef \) = emission factor (lb/acre/day)
\(s \) = silt content (wt %)
\(p \) = 125 days of rain greater than or equal to 0.01 inches
\(f \) = 15% of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>3.34</td>
<td>1.834</td>
<td>0.642</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>9.18</td>
<td>3.103</td>
<td>1.086</td>
</tr>
<tr>
<td>RAP</td>
<td>0.5</td>
<td>0.58</td>
<td>3.69</td>
<td>0.390</td>
<td>0.136</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>4.09</td>
<td>1.362</td>
<td>0.484</td>
</tr>
<tr>
<td>Shingles</td>
<td>0.5</td>
<td>0.58</td>
<td>7.12</td>
<td>0.752</td>
<td>0.263</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.00</td>
<td>6.94</td>
<td>5.571</td>
<td>1.950</td>
</tr>
<tr>
<td>Totals</td>
<td>13.03</td>
<td>4.56</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology
PTE of PM (tons/yr) = (Emission Factor (lb/acre/day)) * (Maximum Pile Size (acres)) * (ton/2000 lbs) * (365 days/yr)
PTE of PM10/PM2.5 (tons/yr) = (Potential PM Emissions (tons/yr)) * 35%
*Silt content values obtained from AP-42 Table 13.2.4-1 (dated 1/95)
**Maximum anticipated pile size (acres) provided by the source.
PM2.5 = PM10
Abbreviations
RAP = recycled asphalt pavement
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)

To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1/95) are utilized.

\[
Ef = k*(0.0032)\frac{(U/5)^{1.3}}{(M/2)^{1.4}}
\]

where:

- \(Ef\) = Emission factor (lb/ton)
- \(k\) (PM) = 0.74 = particle size multiplier (0.74 assumed for aerodynamic diameter <=100 \(\mu m\))
- \(k\) (PM10) = 0.35 = particle size multiplier (0.35 assumed for aerodynamic diameter <=10 \(\mu m\))
- \(k\) (PM2.5) = 0.053 = particle size multiplier (0.053 assumed for aerodynamic diameter <=2.5 \(\mu m\))
- \(U\) = 10.2 = worst case annual mean wind speed (Source: NOAA, 2006*)
- \(M\) = 4.0 = material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1)

\[
\begin{align*}
Ef\text{ (PM)} &= 2.27E-03 \text{ lb PM/ton of material handled} \\
Ef\text{ (PM10)} &= 1.07E-03 \text{ lb PM10/ton of material handled} \\
Ef\text{ (PM2.5)} &= 1.62E-04 \text{ lb PM2.5/ton of material handled}
\end{align*}
\]

Annual Asphalt Production Limitation = 1,000,000 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 950,000 tons/yr

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Limited PTE of PM (tons/yr)</th>
<th>Limited PTE of PM10 (tons/yr)</th>
<th>Limited PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>1.08</td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>1.08</td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>1.08</td>
<td>0.51</td>
<td>0.08</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>3.23</td>
<td>1.53</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Methodology
The percent asphalt cement/binder provided by the source.

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = (Maximum Material Handling Throughput (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Raw materials may include limestone, sand, recycled asphalt pavement (RAP), gravel, slag, and other additives

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006

Material Screening and Conveying (AP-42 Section 19.2.2)

To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 19.2.2 (dated 8/04) are utilized.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lb/ton)*</th>
<th>Uncontrolled Emission Factor for PM10 (lb/ton)*</th>
<th>Limited PTE of PM (tons/yr)**</th>
<th>Limited PTE of PM10/PM2.5 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0054</td>
<td>0.0024</td>
<td>3.57</td>
<td>1.14</td>
</tr>
<tr>
<td>Screening</td>
<td>0.025</td>
<td>0.0087</td>
<td>11.88</td>
<td>4.13</td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0011</td>
<td>1.43</td>
<td>0.52</td>
</tr>
<tr>
<td>Total Potential to Emit (tons/yr)</td>
<td>15.87</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology
Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include stone/gravel, slag, and recycled asphalt pavement (RAP)

Emission Factors from AP-42 Chapter 11.19.2 (dated 8/04), Table 11.19.2-1

*Uncontrolled emissions factors for PM/PM10 represent tertiary crushing of stone with moisture content ranging from 0.21 to 1.3 percent by weight (Table 11.19.2-2). The bulk moisture content of aggregate in the storage piles at a hot mix asphalt production plant typically stabilizes between 3 to 5 percent by weight (Source: AP-42 Section 11.1.1.1).

**Assumes PM10 = PM2.5

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
Appendix A2: Limited Emissions Summary

Unpaved Roads

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch. 13.2.2 (12/2003).

Annual Asphalt Production Limitation

Percent Asphalt Cement/Binder (weight %) = 0.9

Maximum Material Handling Throughput = 560,000 tons/yr

Maximum Asphalt Cement/Binder Throughput = 799,270 tons/yr

No. 2 Fuel Oil Limitation = 10,000 tons/yr

Unmitigated Emission Factor, \(E_f \) = \(\frac{(365 - P)/365}{W} \) [where \(P = \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)]

Mitigated Emission Factor, \(E_{ext} \) = \(E_f \) * \(\frac{(365 - P)/365}{W} \) [where \(P = \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)]

Mitigated PTE of PM (tons/yr) = Mitigated Emission Factor, \(E_{ext} \) * (Maximum one-way miles (miles/yr))

Mitigated PTE of PM2.5 (tons/yr) = Mitigated PTE of PM (tons/yr) * \(\frac{b}{a} \) [where \(a = \) particle size multiplier (AP-42 Table 13.2.2-2 for Industrial Roads) and \(b = \) constant (AP-42 Table 13.2.2-2)]

Mitigated PTE of PM10 (tons/yr) = Mitigated PTE of PM (tons/yr) * \(\frac{2.15}{0.7} \) [where \(0.7 = \) constant (AP-42 Table 13.2.2-2)]

Unmitigated Emissions

Total

Mitigated Emissions

Total

Notes

- Maximum one-way distance (mi/trip) = \(\frac{(365 - P)/365}{W} \) [where \(P = \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)]

Methodology

- Maximum Material Handling Throughput + (Annual Asphalt Production Limitation (tons/yr) * percent Asphalt Cement/Binder (weight %))
- Maximum Asphalt Cement/Binder Throughput + (Annual Asphalt Production Limitation (tons/yr) * percent Asphalt Cement/Binder (weight %))
- Maximum Weight of Vehicle and Load (tons) = (Maximum Weight of Vehicle (tons)) + (Maximum Weight of Load (tons))
- Maximum trips per year (trips/yr) = \(\frac{(365 - P)/365}{W} \) [where \(P = \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)]
- Maximum one-way distance (mi/trip) = \(\frac{(365 - P)/365}{W} \) [where \(P = \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.2-1)]

Abbreviations

- \(PM \) = Particulate Matter
- \(PM10 \) = Particulate Matter (<10 um)
- \(PM2.5 \) = Particulate Matter (<2.5 um)
- \(PTE \) = Potential to Emit

Process	**Vehicle Type**	**Maximum Weight of Vehicle (tons)**	**Maximum Weight of Load (tons)**	**Maximum Trips per Year (trips/yr)**	**Total Weight Driven per Year (ton/yr)**	**Mitigated PTE of PM (Before Control) (tons/yr)**	**Mitigated Emission Factor (Before Control) (tons/yr)**	**Mitigated PTE of PM10 (After Control) (tons/yr)**	**Mitigated PTE of PM2.5 (After Control) (tons/yr)**	**Dual Control Efficiency (%)**
Asphalt-Cement/Binder Truck Enter Full | Dump Truck (16 CY) | 17.0 | 24.0 | 4.29 | 71.616 | 1.1E+05 | 0.20 | 0.45 | 0.00 | 0.00 | 1.1E+05
Asphalt-Cement/Binder Truck Enter Empty | Dump Truck (16 CY) | 17.0 | 24.0 | 4.29 | 71.616 | 1.1E+05 | 0.20 | 0.45 | 0.00 | 0.00 | 1.1E+05
Asphalt-Cement/Binder Truck Leave Full | Tanker Truck (6000 gal) | 12.0 | 26.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Asphalt-Cement/Binder Truck Leave Empty | Tanker Truck (6000 gal) | 12.0 | 26.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Fuel Oil Truck Enter Full | Tanker Truck (6000 gal) | 12.0 | 26.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Fuel Oil Truck Leave Empty | Tanker Truck (6000 gal) | 12.0 | 26.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Asphalt-Cement/Binder Loader Full | Front-end loader (3 CY) | 15.0 | 9.0 | 24.0 | 1.1E+05 | 7.1E+05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Asphalt-Cement/Binder Loader Empty | Front-end loader (3 CY) | 15.0 | 9.0 | 24.0 | 1.1E+05 | 7.1E+05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Asphalt-Concrete Truck Leave Full | Dump Truck (16 CY) | 17.0 | 24.0 | 4.29 | 71.616 | 4.2E+04 | 4.2E+04 | 4.2E+04 | 4.2E+04 | 4.2E+04
Asphalt-Concrete Truck Leave Empty | Dump Truck (16 CY) | 17.0 | 24.0 | 4.29 | 71.616 | 4.2E+04 | 4.2E+04 | 4.2E+04 | 4.2E+04 | 4.2E+04

Calculations

- \((\text{Average Vehicle Weight Per Trip}) = \frac{\text{Average Miles Per Trip}}{\text{Average Vehicle Weight Per Trip}} \)

- \((\text{Maximum one-way distance (mi/trip)}) = \frac{(\text{Maximum one-way distance (feet/trip)})}{5280} \)

- \((\text{Maximum Weight of Vehicle and Load (tons/trip)}) = \frac{(\text{Maximum Weight of Vehicle (tons/trip)}) + (\text{Maximum Weight of Load (tons/trip)})}{(\text{Maximum Weight of Load (tons/trip)})} \)

- \((\text{Total Weight driven per year (ton/yr)}) = \frac{(\text{Mitigated PTE of PM (Before Control) (tons/yr)})}{(\text{Mitigated Emission Factor (Before Control) (tons/yr)})} \)

- \((\text{Mitigated PTE of PM10 (After Control) (tons/yr)}) = \frac{(\text{Mitigated PTE of PM (After Control) (tons/yr)})}{(\text{Mitigated Emission Factor (After Control) (tons/yr)})} \)

- \((\text{Mitigated PTE of PM2.5 (After Control) (tons/yr)}) = \frac{(\text{Mitigated PTE of PM (After Control) (tons/yr)})}{(\text{Mitigated Emission Factor (After Control) (tons/yr)})} \)

- \((\text{Dual Control Efficiency}) = \frac{(\text{Mitigated PTE of PM10 (After Control) (tons/yr)})}{(\text{Mitigated PTE of PM2.5 (After Control) (tons/yr)})} \)

Company Name: Reith- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade
Table 13.2.1-3: Particulate Matter Loading Values for Paved Roads at Iron and Steel Production Facilities

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (ton)</th>
<th>Maximum Weight of Load (ton)</th>
<th>Maximum trips per year (trip/yr)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Total Weight driven per year (ton/yr)</th>
<th>Maximum one-way distance (miles)</th>
<th>Maximum one-way distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/Asphalt Concrete Truck Enter Empty</td>
<td>Dump Truck (16 CY)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/Asphalt Concrete Truck Leave Full</td>
<td>Dump Truck (16 CY)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/Asphalt Concrete Truck Leave Empty</td>
<td>Dump Truck (16 CY)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Empty</td>
<td>Front-end loader (3 CY)</td>
<td>12.0</td>
<td>24</td>
<td>1,920.0</td>
<td>112.0</td>
<td>0.30</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>Aggregate/RAP Loader Full</td>
<td>Front-end loader (3 CY)</td>
<td>12.0</td>
<td>24</td>
<td>1,920.0</td>
<td>112.0</td>
<td>0.30</td>
<td>41.0</td>
<td></td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>Aggregate/RAP Truck (6000 gal)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full</td>
<td>Aggregate/RAP Truck (6000 gal)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Empty</td>
<td>Aggregate/RAP Truck (6000 gal)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Full</td>
<td>Aggregate/RAP Truck (6000 gal)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
<tr>
<td>Asphalt Concrete Truck Enter Empty</td>
<td>Dump Truck (16 CY)</td>
<td>17.0</td>
<td>0</td>
<td>24</td>
<td>238.5</td>
<td>1,168.0</td>
<td>0.113</td>
<td>350.9</td>
</tr>
</tbody>
</table>

Average Miles Per Trip = \(\frac{\text{Maximum one-way distance (feet/trip)}}{\text{5280 ft/mile}} \)

Average Vehicle Weight Per Trip = \(\frac{\text{Maximum Weight of Vehicle and Load (tons/trip)}}{\text{Maximum trips per year (trip/yr)}} \)

\[s_L = \frac{1}{\text{Average Vehicle Weight Per Trip}} \]

\[k = \frac{\text{Maximum one-way distance (feet/trip)}}{\text{Maximum one-way distance (miles)}} \]

\[\text{Mitigated Emission Factor} = E_{\text{ext}} = E \cdot \left[1 - \left(\frac{p}{4N} \right) \right] \]

where \(E \) = Unmitigated Emission Factor;

\(p \) = Weight of rainfall greater than or equal to 0.01 inches (see Fig. 13.2.1-2);

\(N \) = Days of rain greater than or equal to 0.01 inches (see Fig. 13.2.1-2).

Methodology
- Maximum Material Handling Throughput = \(\left(\text{Annual Asphalt Production Limitation (tons/yr)} \right) \cdot \left(1 - \text{Percent Asphalt Cement/Binder (weight %)} \right) \)
- Maximum Weight of Vehicle and Load (ton/yr) = \(\left(\text{Maximum Weight of Vehicle (tons/trip)} \right) \cdot \left(\text{Maximum trips per year (trip/yr)} \right) \)
- Maximum one-way distance (feet/trip) = \(\left(\text{Maximum one-way distance (miles)} \right) \cdot \left(\text{5280 ft/mile} \right) \)
- Average Vehicle Weight Per Trip (ton/trip) = \(\frac{\text{Maximum Weight of Vehicle and Load (tons/trip)}}{\text{Maximum trips per year (trip/yr)}} \)
- Average Miles Per Trip = \(\frac{\text{Maximum one-way distance (feet/trip)}}{\text{5280 ft/mile}} \)

Mitigated Emission Factor, \(E_{\text{ext}} \)
- For paved roads at iron and steel production facilities - Table 13.2.1-3
- Taken natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{\text{ext}} \) = \(E \cdot \left[1 - \left(\frac{p}{4N} \right) \right] \)

Mitigated PTE (Before Control) (tons/yr)
- Maximum Material Handling Throughput = \(\left(\text{Annual Asphalt Production Limitation (tons/yr)} \right) \cdot \left(1 - \text{Percent Asphalt Cement/Binder (weight %)} \right) \)

Mitigated PTE (After Control) (tons/yr)
- Maximum Material Handling Throughput = \(\left(\text{Mitigated PTE (Before Control) (tons/yr)} \right) \cdot \left(1 - \text{Dust Control Efficiency} \right) \)

Abbreviations
- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PTE = Potential to Emit

Source Address: 2454 West CR 450 North, LaPorte, IN 46350

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)

Permit Number: F091-43498-03179

Reviewer: Taylor Wade

Limited Emissions

Appendix A.2: Limited Emissions Summary

Paved Roads

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (12/2003).

- **Unmitigated Emission Factor, \(E \)**
 - For paved roads at iron and steel production facilities - Table 13.2.1-3
 - Taken natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{\text{ext}} = E \cdot \left[1 - \left(\frac{p}{4N} \right) \right] \)

Mitigated Emission Factor, \(E_{\text{ext}} \)

<table>
<thead>
<tr>
<th>Process</th>
<th>Mitigated PTE of PM (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM (After Control) (tons/yr)</th>
<th>Dust Control Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/Asphalt Concrete Truck Enter Empty</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/Asphalt Concrete Truck Leave Full</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/Asphalt Concrete Truck Leave Empty</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Empty</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Loader Full</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Empty</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Leave Full</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Empty</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
<tr>
<td>Aggregate/RAP Truck Enter Full</td>
<td>0.113</td>
<td>0.032</td>
<td>70%</td>
</tr>
</tbody>
</table>

Totals

- **Mitigated PTE of PM (Before Control) (tons/yr)**
 - 0.113
- **Mitigated PTE of PM (After Control) (tons/yr)**
 - 0.032

Dust Control Efficiency

- 70%
Appendix A.2: Limited Emissions Summary
Cold Mix Asphalt Production and Stockpiles

Company Name: Rieth-Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

The following calculations determine the amount of VOC and HAP emissions created from volatilization of solvent used as diluent in the liquid binder for cold mix asphalt production

Limited VOC Emissions from the Sum of the Liquid Binders = 53.1 tons/yr

<table>
<thead>
<tr>
<th>Volatile Organic Compounds</th>
<th>Maximum weight % of VOC solvent in binder</th>
<th>Weight % VOC solvent in binder that evaporates</th>
<th>VOC Solvent Usage Limitation (tons/yr)</th>
<th>Limited PTE of VOC (tons/yr)</th>
<th>Liquid Binder Adjustment Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt rapid cure (assuming gasoline or naphtha solvent)</td>
<td>25.3%</td>
<td>95.0%</td>
<td>55.9</td>
<td>53.1</td>
<td>1.053</td>
</tr>
<tr>
<td>Cut back asphalt medium cure (assuming kerosene solvent)</td>
<td>28.6%</td>
<td>70.0%</td>
<td>75.9</td>
<td>53.1</td>
<td>1.429</td>
</tr>
<tr>
<td>Cut back asphalt slow cure (assuming fuel oil solvent)</td>
<td>20.0%</td>
<td>25.0%</td>
<td>212.4</td>
<td>53.1</td>
<td>4.000</td>
</tr>
<tr>
<td>Emulsified asphalt with solvent (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>46.4%</td>
<td>114.4</td>
<td>53.1</td>
<td>2.155</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.9%</td>
<td>2.5%</td>
<td>2123.8</td>
<td>53.1</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Worst Case Limited PTE of VOC = 53.1

Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Hazardous Air Pollutant (HAP) Content (% by weight)* For Various Petroleum Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organic HAP</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
</tr>
<tr>
<td>Acenaphthene</td>
</tr>
<tr>
<td>Acenaphthylene</td>
</tr>
<tr>
<td>Anthracene</td>
</tr>
<tr>
<td>Benzene</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
</tr>
<tr>
<td>Biphenyl</td>
</tr>
<tr>
<td>Chrysene</td>
</tr>
<tr>
<td>Ethylbenzene</td>
</tr>
<tr>
<td>Fluoranthene</td>
</tr>
<tr>
<td>Fluorene</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
</tr>
<tr>
<td>Methyl-tert-butylether</td>
</tr>
<tr>
<td>Naphthalene</td>
</tr>
<tr>
<td>n-Hexane</td>
</tr>
<tr>
<td>Phenanthrene</td>
</tr>
<tr>
<td>Pyrene</td>
</tr>
<tr>
<td>Toluene</td>
</tr>
<tr>
<td>Total Xylenes</td>
</tr>
<tr>
<td>Total Organic HAPs</td>
</tr>
</tbody>
</table>

Worst Single HAP

<table>
<thead>
<tr>
<th>Xylenes</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>Xylenes</th>
<th>Chrysene</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00%</td>
<td>0.50%</td>
<td>0.23%</td>
<td>9.00%</td>
<td>0.50%</td>
</tr>
</tbody>
</table>

Methodology

Limited PTE of VOC (tons/yr) = [Weight % VOC solvent in binder that evaporates] * [VOC Solvent Usage Limitation (tons/yr)]
Limited PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]
Limited PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]

Composition of Petroleum Mixtures. The Association for Environmental Health and Science.

Abbreviations

VOC = Volatile Organic Compounds
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary
Gasoline Fuel Transfer and Dispensing Operation

Company Name: Rieth- Riley Construction Co., Inc (Plant #366)
Source Address: 2454 West CR 450 North, LaPorte, IN 46350
Permit Number: F091-43498-03179
Reviewer: Taylor Wade

Note: Since the emissions from the gasoline fuel transfer and dispensing operation are minimal, the limited emissions are equal to the unlimited emissions.

To calculate evaporative emissions from the gasoline dispensing fuel transfer and dispensing operation handling emission factors from AP-42 Table 5.2-7 were used. The total potential emission of VOC is as follows:

\[
\text{Gasoline Throughput} = 0 \text{ gallons/day} = 0.0 \text{ kgal/yr}
\]

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Emission Factor (lb/kgal of throughput)</th>
<th>PTE of VOC (tons/yr)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filling storage tank (balanced submerged filling)</td>
<td>0.3</td>
<td>0.00</td>
</tr>
<tr>
<td>Tank breathing and emptying</td>
<td>1.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Vehicle refueling (displaced losses - controlled)</td>
<td>1.1</td>
<td>0.00</td>
</tr>
<tr>
<td>Spillage</td>
<td>0.7</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Hazardous Air Pollutants

- **Worst Case Total HAP Content of VOC solvent (weight %)** = 26.08%
- **Worst Case Single HAP Content of VOC solvent (weight %)** = 9.0% Xylenes
- **Limited PTE of Total HAPs (tons/yr)** = 0.00
- **Limited PTE of Single HAP (tons/yr)** = 0.00 Xylenes

Methodology

The gasoline throughput was provided by the source.

\[
\text{Gasoline Throughput (kgal/yr)} = \frac{\text{Gasoline Throughput (lbs/day)} \times [365 \text{ days/yr}] \times [\text{kgal/1000 gal}]}{\text{ton/2000 lb}}
\]

\[
\text{PTE of VOC (tons/yr)} = \text{Gasoline Throughput (kgal/yr)} \times \text{Emission Factor (lb/kgal)} \times \frac{\text{ton/2000 lb}}{\text{ton/2000 lb}}
\]

\[
\text{PTE of Total HAPs (tons/yr)} = \text{Worst Case Total HAP Content of VOC solvent (weight %)} \times \text{PTE of VOC (tons/yr)}
\]

\[
\text{PTE of Single HAP (tons/yr)} = \text{Worst Case Single HAP Content of VOC solvent (weight %)} \times \text{PTE of VOC (tons/yr)}
\]

Abbreviations

- VOC = Volatile Organic Compounds
- PTE = Potential to Emit
June 10, 2021

John Berscheit
Rieth Riley Asphalt Plant No 366
PO Box 477
Goshen IN 46527

Re: Public Notice
Rieth-Riley Construction Co., Inc (Plant #366)
Permit Level: FESOP Renewal
Permit Number: 091-43498-03179

Dear John Berscheit:

Enclosed is the Notice of 30-Day Period for Public Comment for your draft air permit.

Our records indicate that you are the contact person for this application. However, if you are not the appropriate person within your company to receive this document, please forward it to the correct person. The Notice of 30-Day Period for Public Comment has also been sent to the OAQ Permits Branch Interested Parties List and, if applicable, your Consultant/Agent and/or Responsible Official/Authorized Individual.

The preliminary findings, including the draft permit, technical support document, emission calculations, and other supporting documents, are available electronically at:

IDEM's online searchable database: http://www.in.gov/apps/idem/caats/. Choose Search Option by Permit Number, then enter permit 43498

and

IDEM's Virtual File Cabinet (VFC): https://www.IN.gov/idem. Enter VFC in the search box, then search for permit documents using a variety of criteria, such as Program area, date range, permit #, Agency Interest Number, or Source ID.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/public-notices/

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the LaPorte County Public Library, 904 Indiana Ave, LaPorte IN 46350-4307. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.
Please review the draft permit documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Taylor Wade, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 3-0868 or dial (317) 233-0868.

Sincerely,

L. Pogost

L. Pogost
Permits Branch
Office of Air Quality

Enclosures

PN Applicant Cover Letter access via website 8/10/2020
June 10, 2021

To: LaPorte County Public Library 904 Indiana Ave LaPorte IN 46350-4307

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Rieth-Riley Construction Co., Inc (Plant #366)
Permit Number: 091-43498-03179

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.
Notice of Public Comment

June 10, 2021
Rieth-Riley Construction Co., Inc (Plant #366)
091-43498-03179

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/public-notices/.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Joanne Smiddie-Brush with the Air Permits Administration Section at 1-800-451-6027, ext. 3-0185 or via e-mail at JBRUSH@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure
PN AAA Cover Letter 2/28/2020
Mail Code 61-53

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Rest. Del. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>John Berscheit, Rieth Riley Asphalt Plant No 366 PO Box 477 Goshen IN 46527-0477 (Source CAATS)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>LaPorte County Public Library 904 Indiana Ave LaPorte IN 46350-4307 (Library)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>LaPorte City Council/ Mayors Ofc. 801 Michigan Avenue LaPorte IN 46350 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>LaPorte County Commissioners 555 Michigan Avenue # 202 LaPorte IN 46350 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>LaPorte County Health Department 809 State St, Ste 401A LaPorte IN 46350-3329 (Health Department)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Mr. Dick Paulen Barnes & Thomburg 52700 Independence Court, Suite 150 Elkhart IN 46514-8155 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Jeff Mayes News-Dispatch 422 Franklin St Michigan City IN 46360 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Martin Barr 4996 South 75 West Laporte IN 46350 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender:

- **Total number of Pieces Received at Post Office:**
- **Postmaster, Per (Name of Receiving employee):**
- **Postage:**
- **Handing Charges:**
- **Act. Value (If Registered):**
- **Insured Value:**
- **Due Send if COD:**
- **R.R. Fee:**
- **S.D. Fee:**
- **S.H. Fee:**
- **Rest. Del. Fee:**
- **Remarks:**

The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See *Domestic Mail Manual* R900, S913, and S921 for limitations of coverage on insured and COD mail. See *International Mail Manual* for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.