NOTICE OF 30-DAY PERIOD FOR PUBLIC COMMENT

Preliminary Findings Regarding the Renewal of a Part 70 Operating Permit for Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc. in Elkhart County

Part 70 Operating Permit Renewal No.: T039-43199-00174

The Indiana Department of Environmental Management (IDEM) has received an application from Nickell Moulding Company located at 3015 Mobile Drive, Elkhart, Indiana 46514 for a renewal of its Part 70 Operating Permit issued on September 6, 2016. If approved by IDEM's Office of Air Quality (OAQ), this proposed renewal would allow Nickell Moulding Company to continue to operate its existing source.

This draft permit does not contain any new equipment that would emit air pollutants; however, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g., changes that add or modify synthetic minor emission limits). This notice fulfills the public notice procedures to which those conditions are subject. IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow for these changes.

A copy of the permit application and IDEM's preliminary findings have been sent to:

Elkhart Public Library
300 S 2nd St.
Elkhart, Indiana 46516

and

IDEM Northern Regional Office
300 North Dr. Martin Luther King Jr. Boulevard, Suite 450
South Bend, IN 46601-1295

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/. A copy of the application and preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC). To access VFC, please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public...
meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number T039-43199-00174 in all correspondence.

Comments should be sent to:

L. David Cohen
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for L. David Cohen or (317) 233-9327
Or dial directly: (317) 233-9327
Fax: (317) 232-6749 attn: L. David Cohen
E-mail: LCohen@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above and will also be sent to the local library indicated above, the IDEM Regional Office indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact L. David Cohen of my staff at the above address.

Madhurima D. Moulik, Ph.D., Section Chief
Permits Branch
Office of Air Quality
Part 70 Operating Permit Renewal
OFFICE OF AIR QUALITY

Patrick Industries, Inc. d/b/a Nickell Moulding Company
3015 Mobile Drive
Elkhart, Indiana 46514

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

<table>
<thead>
<tr>
<th>Operation Permit No.: T039-43199-00174</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Agency Interest ID: 29606</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issued by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhurima D. Moulik, Ph.D., Section Chief</td>
</tr>
<tr>
<td>Permits Branch</td>
</tr>
<tr>
<td>Office of Air Quality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issuance Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiration Date:</td>
</tr>
</tbody>
</table>

An Equal Opportunity Employer

Recycled Paper
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY ... 5
A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]
A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]
A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

SECTION B GENERAL CONDITIONS ... 9
B.1 Definitions [326 IAC 2-7-1]
B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
B.3 Term of Conditions [326 IAC 2-1.1-9.5]
B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]
B.5 Severability [326 IAC 2-7-5(5)]
B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]
B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]
B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]
B.11 Emergency Provisions [326 IAC 2-7-16]
B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]
B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]
B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]
B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]
B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)] [326 IAC 2-7-12(b)(2)]
B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]
B.20 Source Modification Requirement [326 IAC 2-7-10.5]
B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
B.23 Annual Fee Payment [326 IAC 2-7-19] [326 IAC 2-7-5(7)][326 IAC 2-1.1-7]
B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314] [326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS ... 20
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 20
C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
C.2 Opacity [326 IAC 5-1]
C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]
C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]
C.5 Fugitive Dust Emissions [326 IAC 6-4]
C.6 Stack Height [326 IAC 1-7]
C.7 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18] [40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)] ... 22
C.8 Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11] .. 22
C.9 Compliance Requirements [326 IAC 2-1.1-11]
Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)].......................... 22
C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]
C.11 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] 23
C.12 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
C.13 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]
C.14 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]
C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 24
C.16 Emission Statement
[326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]
C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6]
C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]

Stratospheric Ozone Protection ... 26
C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS .. 27

Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 27
D.1.1 Particulate Emission Limitations [326 IAC 6-3-2]

Compliance Determination Requirements [326 IAC 2-7-5(1)].. 28
D.1.3 Particulate Control

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)] 28
D.1.4 Visible Emissions Notations
D.1.5 Semi-Annual Filter Inspections

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 29
D.1.6 Record Keeping Requirement

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS .. 30

Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 30
D.2.1 Particulate Emission Limitations [326 IAC 6-3-2(d)]
D.2.2 Volatile Organic Compounds (VOC) [326 IAC 8-2-12]
D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)] 31
D.2.4 Monitoring

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 31
D.2.5 Record Keeping Requirements

SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS .. 33

Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 33
D.3.1 Particulate Emission Limitations [326 IAC 6-3-2]
D.3.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements [326 IAC 2-7-5(1)].. 34
D.3.3 Particulate Control

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)] 34
D.3.4 Broken or Failed Bag Detection
SECTION E.1 NESHAPO.. 35

 National Emission Standards for Hazardous Air Pollutants (NESHAPO) Requirements
 [326 IAC 2-7-5(1)]... 36
 E.1.1 General Provisions Relating to National Emission Standards for Hazardous Air
 Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]
 E.1.2 Surface Coating of Wood Building Products NESHAPO [40 CFR Part 63, Subpart
 QQQQ] [326 IAC 20-79]

CERTIFICATION .. 38

EMERGENCY OCCURRENCE REPORT .. 39

QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT .. 41

Attachment A: 60 CFR 63, Subpart QQQQ
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.4 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary wood moulding and coating operation.

Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
General Source Phone Number: 574-264-3129
SIC Code: 2431 (Millwork)
County Location: Elkhart
Source Location Status: Attainment for all criteria pollutants
Source Status: Part 70 Operating Permit Program
Minor Source, under PSD Rules
Minor Source, Section 112 of the Clean Air Act
Not 1 of 28 Source Categories

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

(a) Woodworking operations, consisting of the following:

(1) One (1) woodworking operation, identified as WW1, constructed in 1994, including a belt sander BS-1 constructed in 2008, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC1 and exhausting to Stack DC1S only when the outside ambient air temperature exceeds 85°F, and a portable dust collector/vacuum cleaner, identified as DC5, consisting of the following:

(2) One (1) woodworking operation, identified as WW2, constructed in 1995, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC2, and exhausting to Stack DC2S only when the outside ambient air temperature exceeds 85°F;

(3) One (1) woodworking operation, identified as WW3, constructed in 2004, with a maximum capacity of fifty nine thousand four hundred (59,400) pounds of wood panels per hour, using an integral dust collector as control, identified as DC3, and exhausting to Stack DC3S;

(4) One (1) woodworking operation, identified as WW4, constructed in 2015, with a maximum capacity of three thousand (3,000) pounds of wood parts per hour, using an integral dust collector as control, identified as DC9, and exhausting indoors; and

(5) One (1) woodworking operation, identified as WW5, constructed in 2018, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood parts per hour, using an integral dust collector as control, identified as DC10, and exhausting indoors.

(b) Surface coating operations, consisting of the following:
(1) Five (5) high-volume low-pressure spraying machines, identified as Spray Machines 1 through 5, constructed in 1994, 1995, 1995, 1995 and 2016, respectively, each with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing non-atomizing flow coating spray applicators, using dry filters for particulate control, and exhausting to Stacks E6, E7, E8, E9 and E16, respectively;

(2) One (1) spray repair booth, identified as Spray Booth 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14; and

(3) One (1) patina spray machine, identified as PSM1, constructed in 1995, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

A.3 Specifically Regulated Insignificant Activities

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(a) Grinding and machining operations, constructed in 1994 and exhausting indoors, consisting of the following:

(1) Two (2) kerf machines, identified as K1 and K2, with a combined maximum capacity of one hundred fifty (150) pounds of wood per hour, and using a portable dust collector as control, identified as DC4.

(2) Four (4) tool room grinders, identified as GR1 through GR4, with a combined maximum capacity of two hundred fifty (250) pounds of wood per hour, and using a portable dust collector as control, identified as DC6.

(3) One (1) scuff sander, identified as SS1, for the U-V coating line, with a maximum capacity of one thousand forty (1,040) pounds of wood per hour, and using a portable dust collector as control, identified as DC7.

(4) One (1) scuff sander, identified as SS2, for the Spray Machine 1, with a maximum capacity of one thousand forty (1,040) pounds of wood per hour, and using a portable dust collector as control, identified as DC8.

(b) Surface coating operations, consisting of the following:

(1) Three (3) flood coat vacuum coater machines, identified as Stainer Machines 1 through 3, constructed in 1994, 1994 and 2016, respectively, each with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing non-atomizing flow coating spray applicators, using no control, and exhausting to Stacks E13, E12 and E15, respectively.

(2) One (1) portable striper machine, identified as Striper Machine 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.
(3) One (1) striper machine, identified as Striper Machine 2, constructed in 1995, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.

(4) One (1) stain hand wiping area, identified as Stain Wipe 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing hand application, using no control, and exhausting indoors.

(5) One (1) UV coater machine, identified as UV1, constructed in 2000, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour each, or two (2) gallons per hour, utilizing non-atomizing flow coating spray applicators, using no control, and exhausting indoors.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

(c) Laminating operations, consisting of the following:

(1) Three (3) laminating wrappers, identified as L1 through L3, constructed in 2004, with a combined maximum capacity of seventy-five (75.0) pounds of polyurethane adhesive per hour, using no control, and exhausting indoors.

(2) Two (2) foil laminating wrappers, identified as L4 and L5, constructed in 2004, not applying adhesive, using no control, and exhausting indoors.

(3) One (1) laminating wrapper, identified as L6, permitted in 2018, with a maximum capacity of two thousand five hundred (2,500) square feet per hour, using no control, and exhausting indoors.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities, as defined in 326 IAC 2-7-1(21):

(a) Two (2) electric embosser machines, identified as Embosser 1 and 2, constructed in 1999 and 1994, respectively, using no control, and exhausting indoors.

(b) Bag dumping of Sorbond, used for waste paint processing, with a maximum usage rate of twenty-five (25) pounds per hour.

(c) Natural gas-fired combustion sources with heat input equal to or less than ten (10) MMBtu per hour, using no control and exhausting indoors, consisting of the following:

(1) Ten (10) radiant heaters, identified as H1 through H10, with a maximum heat input capacity of one-tenth (0.10) million British thermal units per hour (MMBtu/hr), each.

(2) One (1) radiant heater, identified as H11, with a maximum heat input capacity of one hundred seventy-five thousandths (0.175) MMBtu/hr.

(3) One (1) drying oven, identified as E3, with a maximum heat input capacity of five-tenths (0.50) MMBtu/hr.
(4) Two (2) radiant heaters, identified as RH1 and RH2, with a maximum heat input capacity of eight-tenths (0.80) MMBtu/hr, each.

(5) Two (2) surface coating drying ovens, identified as DO1 and DO2, with a maximum heat input capacity of one and one hundred twenty-five thousandths (1.125) MMBtu/hr, each.

(6) Two (2) air makeup units, identified as AM1 and AM2, with a maximum heat input capacity of one and five tenths (1.50) MMBtu/hr, each.

(7) One (1) water heater, identified as WH1, constructed in 1994, with a maximum heat input capacity of thirteen thousandths (0.013) MMBtu/hr.

(8) Four (4) forced air furnaces, identified as FH1 through FH4, with a maximum heat input capacity of two-tenths (0.20) MMBtu/hr, each.

(d) Paved and unpaved roads and parking lots with public access.

(A.5) Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

(a) It is a major source, as defined in 326 IAC 2-7-1(22);

(b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 - Applicability).

(c) It is an affected source under Title IV (Acid Deposition Control) of the Clean Air Act, as defined in 326 IAC 2-7-1(3);
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]
Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

(a) This permit, T039-43199-00174, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit or of permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control).

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]
Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]
Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]
The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]

(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

(1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and

(2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than April 15 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

(1) The appropriate identification of each term or condition of this permit that is the basis of the certification;

(2) The compliance status;

(3) Whether compliance was continuous or intermittent;

(4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
(5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance
causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

1. An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
2. The permitted facility was at the time being properly operated;
3. During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
4. For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ or Northern Regional Office within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

 Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or
 Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
 Facsimile Number: 317-233-6865
 Northern Regional Office phone: (574) 245-4870; fax: (574) 245-4877.

5. For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

 Indiana Department of Environmental Management
 Compliance and Enforcement Branch, Office of Air Quality
 100 North Senate Avenue
 MC 61-53 IGCN 1003
 Indianapolis, Indiana 46204-2251

 within two (2) working days of the time when emission limitations were exceeded due to the emergency.

 The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

 (A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and

(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.

g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable
requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.

(c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application.Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.

(d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:

(1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;

(2) The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;

(3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and

(4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.

(e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).

(f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]

(g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

(a) All terms and conditions of permits established prior to T039-43199-00174 and issued pursuant to permitting programs approved into the state implementation plan have been either:

(1) incorporated as originally stated,

(2) revised under 326 IAC 2-7-10.5, or

(3) deleted under 326 IAC 2-7-10.5.

(b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this Part 70 operating permit, except for permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control)

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee’s right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source’s existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination
[326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

(1) That this permit contains a material mistake.

(2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.

(3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the
document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]

(a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.

(b) Pursuant to 326 IAC 2-7-11(b) and 326 IAC 2-7-12(a), administrative Part 70 operating permit amendments and permit modifications for purposes of the acid rain portion of a Part 70 permit shall be governed by regulations promulgated under Title IV of the Clean Air Act. [40 CFR 72]

(c) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(d) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

(a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.

(b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:
(1) The changes are not modifications under any provision of Title I of the Clean Air Act;

(2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;

(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

(1) A brief description of the change within the source;

(2) The date on which the change will occur;

(3) Any change in emissions; and

(4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
(c) Emission Trades [326 IAC 2-7-20(c)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).

(d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.

(e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

(f) This condition does not apply to emission trades of SO\(_2\) or NO\(_x\) under 326 IAC 21.

B.20 Source Modification Requirement [326 IAC 2-7-10.5]
A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:
Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-8590 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.3 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.4 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.5 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.6 Stack Height [326 IAC 1-7]

The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted. The provisions of 326 IAC 1-7-1(3), 326 IAC 1-7-2, 326 IAC 1-7-3(c) and (d), 326 IAC 1-7-4, and 326 IAC 1-7-5(a), (b), and (d) are not federally enforceable.

C.7 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least
thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;

(B) Removal or demolition contractor; or

(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(c).

(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(d).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to
thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

C.8 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.9 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:
in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.11 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

- When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

- The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.12 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

- The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

- Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.13 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.14 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

- The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

- The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

 1. initial inspection and evaluation;
(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

C.16 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(b)(1), starting in 2004 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

(1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);

(2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) (“Regulated pollutant, which is used only for purposes of Section 19 of this rule”) from the source, for purpose of fee assessment.
The statement must be submitted to:

Indiana Department of Environmental Management
Technical Support and Modeling Section, Office of Air Quality
100 North Senate Avenue
MC 61-50 IGCN 1003
Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

 (AA) All calibration and maintenance records.
 (BB) All original strip chart recordings for continuous monitoring instrumentation.
 (CC) Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:

 (AA) The date, place, as defined in this permit, and time of sampling or measurements.
 (BB) The dates analyses were performed.
 (CC) The company or entity that performed the analyses.
 (DD) The analytical techniques or methods used.
 (EE) The results of such analyses.
 (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.
(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) Woodworking operations, consisting of the following:

(1) One (1) woodworking operation, identified as WW1, constructed in 1994, including a belt sander BS-1 constructed in 2008, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC1 and exhausting to Stack DC1S only when the outside ambient air temperature exceeds 85°F, and a portable dust collector/vacuum cleaner, identified as DC5, consisting of the following:

(2) One (1) woodworking operation, identified as WW2, constructed in 1995, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC2, and exhausting to Stack DC2S only when the outside ambient air temperature exceeds 85°F;

(3) One (1) woodworking operation, identified as WW3, constructed in 2004, with a maximum capacity of fifty nine thousand four hundred (59,400) pounds of wood panels per hour, using an integral dust collector as control, identified as DC3, and exhausting to Stack DC3S;

(4) One (1) woodworking operation, identified as WW4, constructed in 2015, with a maximum capacity of three thousand (3,000) pounds of wood parts per hour, using an integral dust collector as control, identified as DC9, and exhausting indoors; and

(5) One (1) woodworking operation, identified as WW5, constructed in 2018, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood parts per hour, using an integral dust collector as control, identified as DC10, and exhausting indoors.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.1.1 Particulate Emission Limitations [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the woodworking operations, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the woodworking operations shall not exceed 53.93 pounds per hour when operating at a process weight rate of 46.8 tons per hour. The pound per hour limitation was calculated with the following equation:

\[E = 4.10 \ P^{0.67} \]

where \(E \) = rate of emission in pounds per hour and \(P \) = process weight rate in tons per hour.

Interpolation of the data for the process weight rate up to sixty thousand (60,000) pounds per hour shall be accomplished by use of the equation:
Summary of Process Weight Rate Limits

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>P (ton/hr)</th>
<th>E (lb/hr)</th>
<th>Dust Collector</th>
<th>PTE (lb/hr) (after integral control)</th>
<th>326 IAC 6-3-2 applies (>0.551 lb/hr)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodworking Operation WW1</td>
<td>5.2</td>
<td>12.37</td>
<td>DC1 and DC5</td>
<td>1.08</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW2</td>
<td>5.2</td>
<td>12.37</td>
<td>DC2</td>
<td>1.13</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW3</td>
<td>9.7</td>
<td>39.77</td>
<td>DC3</td>
<td>1.35</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW4</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
<td>No</td>
</tr>
<tr>
<td>Woodworking Operation WW5</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>No</td>
</tr>
</tbody>
</table>

(b) In order to assure that the woodworking operations (WW4 and WW5) are exempt from the requirements of 326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes), dust collectors DC9 and DC10 shall be in operation and control emissions from the woodworking operations (WW4 and WW5) at all times the woodworking operations (WW4 and WW5) are in operation.

D.1.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.1.3 Particulate Control

(a) In order to comply with Conditions D.1.1, the dust collectors for particulate control shall be in operation and control emissions from the woodworking operations at all times the woodworking operations are in operation.

(b) In the event that bag failure is observed in a multi-compartment dust collector, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.1.4 Visible Emissions Notations

(a) Daily visible emission notations of the woodworking operations stack exhausts (Stack DC1S, DC5S2, and DC5S3) shall be performed during normal daylight operations when exhausting to the atmosphere. A trained employee shall record whether emissions are normal or abnormal.
(b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C – Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response required by this condition. Failure to take a reasonable response shall be considered a deviation from this permit.

D.1.5 Semi-Annual Filter Inspections

The Permittee shall perform semi-annual inspections of the filters associated with the dust collectors DC1, DC2, DC9, and DC10 controlling the woodworking operations WW1, WW2, WW4, and WW5 when venting indoors, to verify that they are being operated and maintained in accordance with the manufacturer’s specifications. All defective filters shall be replaced. A record shall be kept of the results of each inspection.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.1.6 Record Keeping Requirement

(a) To document the compliance status with Condition D.1.4, the Permittee shall maintain daily records of the visible emission notations of the woodworking operations stack exhausts. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of a visible emission notation (e.g., the process did not operate that day).

(b) To document the compliance status with Condition D.1.5, the Permittee shall maintain records of the semi-annual inspections required under Condition D.1.5.

(c) Documentation of the dates vents are redirected.

(d) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(b) Surface coating operations, consisting of the following:

(1) Five (5) high-volume low-pressure spraying machines, identified as Spray Machines 1 through 5, constructed in 1994, 1995, 1995, 1995, and approved in 2016 for construction, with a maximum throughput capacity of 7,500 board feet of wood per hour, each, utilizing non-atomizing flow coating spray applicators, using dry filters for particulate control, and exhausting to Stacks E6, E7, E8, E9, and E16, respectively.

(2) One (1) spray repair booth, identified as Spray Booth 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14.

(3) One (1) patina spray machine, identified as PSM1, constructed in 1995, with a maximum capacity of 7,500 board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, exhausting to Stack E14.

Each facility is an affected unit under the provisions of 40 CFR 63, Subpart QQQQ.

Specifically Regulated Insignificant Activities:

(f) Surface coating operations, consisting of the following:

(1) Three (3) flood coat vacuum coater machines, identified as Stainer Machines 1, 2, and 3, constructed in 1994, 1994, and approved in 2016 for construction, respectively, with a maximum capacity of 7,500 board feet of wood per hour each, utilizing non-atomizing flow coating spray applicators, and exhausting to Stack E13, E12, and E15, respectively.

(2) One (1) portable striper machine, identified as Striper Machine 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, and exhausting indoors.

(3) One (1) striper machine, identified as Striper Machine 2, constructed in 1995, equipped with a non-atomizing flow-coat applicator, with a maximum capacity of 7,500 board feet of wood per hour, and exhausting indoors.

(4) One (1) stain hand wiping area, identified as Stain Wipe 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, utilizing hand application, and exhausting indoors.

Each facility is an affected unit under the provisions of 40 CFR 63, Subpart QQQQ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Particulate Emission Limitations [326 IAC 6-3-2(d)]

Pursuant to 326 IAC 6-3-2(d), particulate from Spray Machines 1 through 4, Spray Booth 1, and the Patina Spray Machine, shall be controlled by a dry particulate filter, and the Permittee shall operate the control device in accordance with manufacturer’s specifications.
D.2.2 Volatile Organic Compounds (VOC) [326 IAC 8-2-12]

Pursuant to 326 IAC 8-2-12 (Wood Furniture and Cabinet Coating), for Spray Machines 1 through 5, Spray Booth 1, Patina Spray Machine, Stainer Machines 1 through 3, Stripper Machines 1 and 2, and Stain Wipe 1, the Permittee shall perform the surface coating of wood furniture and cabinets, with the exception of no more than ten (10) gallons of coating per day used for touch-up and repair operations, using one (1) or more of the following application methods:

- Airless Spray Application
- Air Assisted Airless Spray Application
- Electrostatic Spray Application
- Electrostatic Bell or Disc Application
- Heated Airless Spray Application
- Roller Coating
- Brush or Wipe Application
- Dip-and-Drain Application

High Volume Low Pressure (HVLP) Spray Application is an accepted alternative method of application for Air Assisted Airless Spray Application. HVLP spray is the technology used to apply coating to substrate by means of coating application equipment which operates between one-tenth (0.1) and ten (10) pounds per square inch gauge (psig) air pressure measured dynamically at the center of the air cap and at the air horns of the spray system.

D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.2.4 Monitoring

(a) Daily inspections shall be performed to verify the placement, integrity and particle loading of the filters. To monitor the performance of the dry filters, weekly observations shall be made of the overspray from the Spray Machines 1 through 4, Spray Booth 1, and the Patina Spray Machine stacks E6, E7, E8, E9, and E14 while one or more of the booths are in operation. If a condition exists which should result in a response, the Permittee shall take a reasonable response. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response required by this condition. Failure to take a reasonable response shall be considered a deviation from this permit.

(b) Monthly inspections shall be performed of the coating emissions from the stack and the presence of overspray on the rooftops and the nearby ground. When there is a noticeable change in overspray emissions, or when evidence of overspray emissions is observed, the Permittee shall take a reasonable response. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response required by this condition. Failure to take a reasonable response shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.5 Record Keeping Requirements

(a) To document the compliance status with Condition D.2.4, the Permittee shall maintain a log of weekly overspray observations, and daily and monthly inspections.
(b) Section C – General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS

Specifically Regulated Insignificant Activities:

(e) Grinding and machining operations controller with fabric filters, scrubbers, mist collectors, wet collectors and electrostatic precipitators with a design grain loading of less than or equal to 0.03 grains per actual cubic foot and a gas flow rate less than or equal to 4,000 actual cubic feet per minute, including the following: deburring; buffing; polishing; abrasive blasting; pneumatic conveying; and woodworking operations including:

(1) Two (2) kerf machines, identified as K1 and K2, equipped with a portable dust collector, identified as DC4, with a maximum capacity of 150 pounds of wood per hour total, and exhausting indoors.

(2) One (1) portable dust collector, identified as DC5, utilized as a vacuum cleaner in the woodworking operation, identified as WW1, with a maximum capacity of 10,400 pounds of wood per hour, and exhausting indoors.

(3) Four (4) tool room grinders, identified as GR1 through GR4, equipped with a portable dust collector, identified as DC6, with a maximum capacity of 250 pounds of wood per hour total, and exhausting indoors.

(4) One (1) scuff sander, identified as SS1, for the U-V coating line, equipped with a portable dust collector, identified as DC7, with a maximum capacity of 1,040 pounds of wood per hour, and exhausting indoors.

(5) One (1) scuff sander, identified as SS2, for the Spray Machine 1, equipped with a portable dust collector, identified as DC8, with a maximum capacity of 1,040 pounds of wood per hour, and exhausting indoors.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.3.1 Particulate Emission Limitations [326 IAC 6-3-2] Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), particulate emissions from the grinding and machining operation shall not exceed their respective allowable particulate emission limit in the following table:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Dust Collector ID</th>
<th>Process Weight Rate, lbs/hr</th>
<th>Allowable Particulate Emissions Limit, lb/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerf Machines K1 and K2</td>
<td>DC4</td>
<td>150 (total)</td>
<td>0.72 (total)</td>
</tr>
<tr>
<td>Portable Dust Collector</td>
<td>DC5</td>
<td>10,400</td>
<td>12.37</td>
</tr>
<tr>
<td>(DC5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool Rm Grinders GR1</td>
<td>DC6</td>
<td>250 (total)</td>
<td>1.02 (total)</td>
</tr>
<tr>
<td>through GR4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scuff Sander SS1</td>
<td>DC7</td>
<td>1,040</td>
<td>2.65</td>
</tr>
<tr>
<td>Scuff Sander SS2</td>
<td>DC8</td>
<td>1,040</td>
<td>2.65</td>
</tr>
</tbody>
</table>

The pounds per hour limitations were calculated with the following equation:

Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:
\[E = 4.10 P^{0.67} \]

Where \(E \) = rate of emission in pounds per hour; and \(P \) = process weight rate in tons per hour

D.3.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.3.3 Particulate Control

(a) In order to comply with Condition D.3.1, the dust collectors DC4, DC6, DC7, and DC8 shall be in operation and control emissions from at all times the associated units are in operation.

(b) In the event that bag failure is observed in a multi-compartment dust collector, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

Compliance Monitoring Requirements [326 IAC 2-7-6(1)] [326 IAC 2-7-5(1)]

D.3.4 Broken or Failed Bag Detection

(a) For a single compartment baghouse controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse’s pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, or dust traces.
Emissions Unit Description:

(b) Surface coating operations, consisting of the following:

(1) Five (5) high-volume low-pressure spraying machines, identified as Spray Machines 1 through 5, constructed in 1994, 1995, 1995, and 1995, and approved in 2016 for construction, with a maximum throughput capacity of 7,500 board feet of wood per hour, each, utilizing non-atomizing flow coating spray applicators, using dry filters for particulate control, and exhausting to Stacks E6, E7, E8, E9, and E16, respectively.

(2) One (1) spray repair booth, identified as Spray Booth 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14.

(3) One (1) patina spray machine, identified as PSM1, constructed in 1995, with a maximum capacity of 7,500 board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, exhausting to Stack E14.

Each facility is an affected unit under the provisions of 40 CFR 63, Subpart QQQQ.

Specifically Regulated Insignificant Activities:

(f) Surface coating operations, consisting of the following:

(1) Three (3) flood coat vacuum coater machines, identified as Stainer Machines 1, 2, and 3, constructed in 1994, 1994, and approved in 2016 for construction, respectively, with a maximum capacity of 7,500 board feet of wood per hour each, utilizing non-atomizing flow coating spray applicators, and exhausting to Stack E13, E12, and E15, respectively.

(2) One (1) portable striper machine, identified as Striper Machine 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, and exhausting indoors.

(3) One (1) striper machine, identified as Striper Machine 2, constructed in 1995, equipped with a non-atomizing flow-coat applicator, with a maximum capacity of 7,500 board feet of wood per hour, and exhausting indoors.

(4) One (1) stain hand wiping area, identified as Stain Wipe 1, constructed in 1994, with a maximum capacity of 7,500 board feet of wood per hour, utilizing hand application, and exhausting indoors.

(5) One (1) UV coater machine, identified as UV1, constructed in 2000, with a maximum throughput of 7,500 board feet of wood per hour each, or two (2) gallons per hour, utilizing non-atomizing flow coating spray applicators, and exhausting indoors.

(6) Three (3) laminating wrappers, identified as L1 through L3, constructed in 2004, with a maximum capacity of 75.0 pounds of polyurethane adhesive per hour, total, and exhausting indoors.

(7) Two (2) foil laminating wrappers, identified as L4 and L5, constructed in 2004, not applying adhesive, and exhausting indoors.
(8) One (1) laminating wrapper, identified as L6, permitted in 2018, with a maximum throughput of 2,500 square feet per hour, using no controls, and exhausting indoors.

Each facility is an affected unit under the provisions of 40 CFR 63, Subpart QQQQ.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

| (a) | Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart QQQQ. |
| (b) | Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to: Indiana Department of Environmental Management Compliance and Enforcement Branch, Office of Air Quality 100 North Senate Avenue MC 61-53 IGCN 1003 Indianapolis, Indiana 46204-2251 |

E.1.2 Surface Coating of Wood Building Products NESHAP [40 CFR Part 63, Subpart QQQQ] [326 IAC 20-79]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart QQQQ (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 20-79, for the emission unit(s) listed above:

(1)	40 CFR 63.4680
(2)	40 CFR 63.4681(a)(1), (b),(c) and (d)
(3)	40 CFR 63.4682
(4)	40 CFR 63.4683(b) and (d)
(5)	40 CFR 63.4690(b)
(6)	40 CFR 63.4691(a) and (b)
(7)	40 CFR 63.4692(a)
(8)	40 CFR 63.4693(a)
(9)	40 CFR 63.4700(a)(1) and (b)
(10)	40 CFR 63.4701
(11)	40 CFR 63.4710(a)(b)(c)(1 through 7)(c)(8)(i) and (ii)
(12)	40 CFR 63.4720(a)(1 through 3)(a)(4) (first part)(5) and (6)
(13)	40 CFR 63.4730(a)(b)(c)(1 through 3)(d through h and j)
(14)	40 CFR 63.4731
(15)	40 CFR 63.4740
(16)	40 CFR 63.4741
(17)	40 CFR 63.4742
(18)	40 CFR 63.4750
(19)	40 CFR 63.4751
(20)	40 CFR 63.4752
(21) 40 CFR 63.4780
(22) 40 CFR 63.4781
(23) Table 2 Item 5
(24) Table 4
(25) Table 5
(26) Table 6
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
CERTIFICATION

Source Name: Patrick Industries, Inc. dba Nickell Moulding Company
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Permit No.: T039-43199-00174

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter

☐ Test Result (specify) ___

☐ Report (specify) __

☐ Notification (specify) ___

☐ Affidavit (specify) __

☐ Other (specify) ___

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature:

Printed Name:

Title/Position:

Phone:

Date:
PART 70 OPERATING PERMIT
EMERGENCY OCCURRENCE REPORT

Source Name: Patrick Industries, Inc. dba Nickell Moulding Company
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Permit No.: T039-43199-00174

This form consists of 2 pages

☐ This is an emergency as defined in 326 IAC 2-7-1(12)
 • The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 • The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:
If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
</tr>
</tbody>
</table>

If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:

Form Completed by: ________________________________
Title / Position: ________________________________
Date: ________________________________
Phone: ________________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name: Patrick Industries, Inc. dba Nickell Moulding Company
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Permit No.: T039-43199-00174
Months: ___________ to ____________ Year: ______________

This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

☐ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.

☐ THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ___
Title / Position: ___
Date: ___
Phone: ___
Subpart QQQQ—National Emission Standards for Hazardous Air Pollutants: Surface Coating of Wood Building Products

Source: 68 FR 31760, May 28, 2003, unless otherwise noted.

What This Subpart Covers

§ 63.4680 What is the purpose of this subpart?

This subpart establishes national emission standards for hazardous air pollutants (NESHAP) for wood building products surface coating sources. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations.

§ 63.4681 Am I subject to this subpart?

(a) Except as provided in paragraphs (c) and (d) of this section, the source category to which this subpart applies is surface coating of wood building products, which means the application of coatings using, for example, roll coaters or curtain coaters in the finishing or laminating of any wood building product that contains more than 50 percent by weight wood or wood fiber excluding the weight of any glass components, and is used in the construction, either interior or exterior, of a residential, commercial, or institutional building. The wood building products source category includes the subcategories listed in paragraphs (a)(1) through (5) of this section.

(1) Doors, windows, and miscellaneous. The doors, windows, and miscellaneous subcategory includes doors, windows, finished doorskins, and door and window components such as millwork, moulding, or trim, and other miscellaneous wood building products including, but not limited to, all moulding and trim, shingles, and shutters.

(2) Flooring. The flooring subcategory includes solid wood flooring, engineered wood flooring, and wood laminate flooring.

(3) Interior wall paneling and tileboard. The interior wall paneling and tileboard subcategory includes interior wall paneling products. Tileboard is a premium interior wall paneling product.

(4) Other interior panels. The other interior panel subcategory includes panels that are sold for uses other than interior wall paneling, such as coated particleboard, hardboard, and perforated panels.

(5) Exterior siding and primed doorskins. The exterior siding and primed doorskins subcategory includes lap or panel siding, trimboard, and primed doorskins. Doorskins that are coated with more than primer are included in the doors, windows, and miscellaneous subcategory.

(b) You are subject to this subpart if you own or operate a new, reconstructed, or existing affected source, as defined in §63.4682, that uses 4,170 liters (1,100 gallons) per year, or more, of coatings in the source category defined in paragraph (a) of this section and that is a major source, is located at a major source, or is part of a major source of emissions of hazardous air pollutants (HAP). A major source of HAP emissions is any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit any single HAP at a rate of 9.07 megagrams
(Mg) (10 tons) or more per year or any combination of HAP at a rate of 22.68 Mg (25 tons) or more per year.

(c) This subpart does not apply to surface coating and other operations that meet the criteria of paragraphs (c)(1) through (5) of this section.

1) Surface coating in the processes identified in paragraphs (c)(1)(i) through (xi) of this section that are part of plywood and composite wood product manufacturing and would be subject to subpart DDDD of this part when promulgated:

(i) Edge seals applied to a reconstituted wood product or plywood.

(ii) Anti-skid coatings applied to reconstituted wood products.

(iii) Primers applied to waferboard or oriented strand board (OSB) siding at the site of manufacture of the waferboard or OSB siding.

(iv) Surface coating that occurs during the manufacture of fiberboard, including application of clay slurry, titanium dioxide, or asphalt coatings to fiberboard.

(v) Painting of company logo information on plywood or reconstituted wood products.

(vi) Application of trademarks and grade stamp to reconstituted wood products or plywood.

(vii) Application of nail lines to reconstituted wood products.

(viii) Synthetic patches, wood patches, and wood putty applied to plywood.

(ix) Application of concrete forming and other drying or tempering oils to wood building products.

(x) Veneer composing.

(xi) Application of shelving edge fillers to reconstituted wood products.

2) Surface coating of wood furniture subject to subpart JJ of this part, including finishing, gluing, cleaning, and washoff operations associated with the production of wood furniture or wood furniture components. The surface coating of millwork and trim associated with cabinet manufacturing is also subject to subpart JJ of this part and not to this subpart.

3) Surface coating that occurs during the manufacture of prefabricated homes and mobile/modular homes.

4) Surface coating that occurs at research or laboratory facilities; janitorial, building, and facility construction or maintenance operations; or hobby shops that are operated for personal rather than for commercial purposes. The source category also does not include non-commercial coating operations or coating applications using handheld nonrefillable aerosol containers.

5) Wood treatment or fire retardant operations located at wood building products sources that involve impregnating the wood product with the wood treatment chemicals or fire retardant by using a retort or other pressure vessel.
(d) If you have an affected source with surface coating operations subject to the requirements of another subpart of this part that account for at least 95 percent of the total (annual) coating usage for the affected source, you may demonstrate compliance with the requirements, including all applicable emission limit(s), for that subpart for the entire affected source.

§ 63.4682 What parts of my plant does this subpart cover?

(a) This subpart applies to each new, reconstructed, and existing affected source.

(b) The affected source is the collection of all of the items listed in paragraphs (b)(1) through (4) of this section that are used for surface coating of wood building products:

(1) All coating operations as defined in §63.4781;

(2) All storage containers and mixing vessels in which coatings, thinners, and cleaning materials are stored or mixed;

(3) All manual and automated equipment and containers used for conveying coatings, thinners, and cleaning materials; and

(4) All storage containers and all manual and automated equipment and containers used for conveying waste materials generated by a coating operation.

(c) An affected source is a new affected source if its construction commenced after June 21, 2002, and the construction is of a completely new wood building products surface coating source where previously no wood building products surface coating source had existed.

(d) An affected source is reconstructed if you meet the criteria as defined in §63.2.

(e) An affected source is existing if it is not new or reconstructed.

§ 63.4683 When do I have to comply with this subpart?

The date by which you must comply with this subpart is called the compliance date. The compliance date for each type of affected source is specified in paragraphs (a) through (c) of this section. The compliance date begins the initial compliance period during which you conduct the initial compliance demonstration described in §§63.4740, 63.4750, and 63.4760.

(a) For a new or reconstructed affected source, the compliance date is the applicable date in paragraph (a)(1) or (2) of this section:

(1) If the initial startup of your new or reconstructed affected source is before May 28, 2003, the compliance date is May 28, 2003.

(2) If the initial startup of your new or reconstructed affected source occurs after May 28, 2003, the compliance date is the date of initial startup of your affected source.

(b) For an existing affected source, the compliance date is the date 3 years after May 28, 2003.

(c) For an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP emissions, the compliance date is specified in paragraphs (c)(1) and (2) of this section.
(1) For any portion of the source that becomes a new or reconstructed affected source subject to this subpart, the compliance date is the date of initial startup of the affected source or May 28, 2003, whichever is later.

(2) For any portion of the source that becomes an existing affected source subject to this subpart, the compliance date is the date 1 year after the area source becomes a major source or 3 years after May 28, 2003, whichever is later.

(d) You must meet the notification requirements in §63.4710 according to the dates specified in that section and in subpart A of this part. Some of the notifications must be submitted before the compliance dates described in paragraphs (a) through (c) of this section.

Emission Limitations

§ 63.4690 What emission limits must I meet?

(a) For a new or reconstructed affected source, you must limit organic HAP emissions to the atmosphere to no more than the applicable emission limit(s) in Table 1 to this subpart, determined according to the requirements in §§63.4741, 63.4751, or 63.4761.

(b) For an existing affected source, you must limit organic HAP emissions to the atmosphere to no more than the applicable emission limit(s) in Table 2 to this subpart, determined according to the requirements in §63.4741, §63.4751, or §63.4761.

(c) If the affected source applies coatings to products that are in different subcategories as described in §63.4681(a), then you must demonstrate initial and continuous compliance by selecting one of the approaches described in paragraphs (c)(1) and (2) of this section.

(1) Conduct separate compliance demonstrations for each applicable subcategory emission limit and reflect these separate determinations in notifications, reports, and records required by §§63.4710, 63.4720, and 63.4730, respectively.

(2) Demonstrate compliance with the most stringent of the applicable subcategory emission limits.

§ 63.4691 What are my options for meeting the emission limits?

You must include all coatings, thinners, and cleaning materials used in the affected source when determining whether the organic HAP emission rate is equal to or less than the applicable emission limit in §63.4690. To make this determination, you must use at least one of the three compliance options listed in paragraphs (a) through (c) of this section. You may apply any of the compliance options to an individual coating operation or to multiple coating operations as a group or to the entire affected source. You may use different compliance options for different coating operations or at different times on the same coating operation. However, you may not use different compliance options at the same time on the same coating operation. If you switch between compliance options for any coating operation or group of coating operations, you must document this switch as required by §63.4730(c), and you must report it in the next semiannual compliance report required in §63.4720.

(a) Compliant material option. Demonstrate that the organic HAP content of each coating used in the coating operation(s) is less than or equal to the applicable emission limit(s) in §63.4690, and that each thinner and each cleaning material used contains no organic HAP. You must meet all the requirements of §§63.4740, 63.4741, and 63.4742 to demonstrate compliance with the emission limit using this option.
(b) **Emission rate without add-on controls option.** Demonstrate that, based on the coatings, thinners, and cleaning materials used in the coating operation(s), the organic HAP emission rate for the coating operation(s) is less than or equal to the applicable emission limit(s) in §63.4690, calculated as a rolling 12-month emission rate and determined on a monthly basis. You must meet all the requirements of §§63.4750, 63.4751, and 63.4752 to demonstrate compliance with the emission limit using this option.

(c) **Emission rate with add-on controls option.** Demonstrate that, based on the coatings, thinners, and cleaning materials used in the coating operation(s) and the emission reductions achieved by emission capture systems and add-on controls, the organic HAP emission rate for the coating operation(s) is less than or equal to the applicable emission limit(s) in §63.4690, calculated as a rolling 12-month emission rate and determined on a monthly basis. If you use this compliance option, you must also demonstrate that all emission capture systems and add-on control devices for the coating operation(s) meet the operating limits required in §63.4692, except for solvent recovery systems for which you conduct liquid-liquid material balances according to §63.4761(j), and that you meet the work practice standards required in §63.4693. You must meet all the requirements of §§63.4760 through 63.4768 to demonstrate compliance with the emission limits, operating limits, and work practice standards using this option.

§ 63.4692 What operating limits must I meet?

(a) For any coating operation(s) on which you use the compliant material option or the emission rate without add-on controls option, you are not required to meet any operating limits.

(b) For any controlled coating operation(s) on which you use the emission rate with add-on controls option, except those for which you use a solvent recovery system and conduct a liquid-liquid material balance according to §63.4761(j), you must meet the operating limits specified in Table 3 to this subpart. These operating limits apply to the emission capture and control systems on the coating operation(s) for which you use this option, and you must establish the operating limits during the performance test according to the requirements in §63.4767. You must meet the operating limits at all times after you establish them.

(c) If you use an add-on control device other than those listed in Table 3 to this subpart, or wish to monitor an alternative parameter and comply with a different operating limit, you must apply to the Administrator for approval of alternative monitoring under §63.8(f).

§ 63.4693 What work practice standards must I meet?

(a) For any coating operation(s) on which you use the compliant material option or the emission rate without add-on controls option, you are not required to meet any work practice standards.

(b) If you use the emission rate with add-on controls option, you must develop and implement a work practice plan to minimize organic HAP emissions from the storage, mixing, and conveying of coatings, thinners, and cleaning materials used in, and waste materials generated by, the coating operation(s); or you must meet an alternative standard as provided in paragraph (d) of this section. The plan must specify practices and procedures to ensure that, at a minimum, the elements specified in paragraphs (b)(1) through (5) of this section are implemented. You must make the plan available upon request for inspection by the Administrator.

(1) All organic-HAP coatings, thinners, cleaning materials, and waste materials must be stored in closed containers.

(2) Spills of organic-HAP coatings, thinners, cleaning materials, and waste materials must be minimized.
(3) Organic-HAP coatings, thinners, cleaning materials, and waste materials must be conveyed from one location to another in closed containers or pipes.

(4) Mixing vessels that contain organic-HAP coatings and other materials must be closed except when adding to, removing, or mixing the contents.

(5) Emissions of organic-HAP must be minimized during cleaning of storage, mixing, and conveying equipment.

c) If your affected source has an existing documented plan that incorporates steps taken to minimize emissions from the sources specified in paragraphs (b)(1) through (5) of this section, then your existing plan can be used to meet the requirement for a work practice plan as specified in paragraph (b) of this section.

d) As provided in §63.6(g), we, the U.S. Environmental Protection Agency (U.S. EPA), may choose to grant you permission to use an alternative to the work practice standards in this section.

General Compliance Requirements

§ 63.4700 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations in this subpart as specified in paragraphs (a)(1) and (2) of this section.

(1) Any coating operation(s) for which you use the compliant material option or the emission rate without add-on controls option, as specified in §63.4691(a) and (b), must be in compliance with the applicable emission limit in §63.4690 at all times.

(2) Any coating operation(s) for which you use the emission rate with add-on controls option, as specified in §63.4691(c), must be in compliance with the emission limitations as specified in paragraphs (a)(2)(i) through (iii) of this section.

(i) The coating operation(s) must be in compliance with the applicable emission limit in §63.4690 at all times, except during periods of startup, shutdown, and malfunction (SSM).

(ii) The coating operation(s) must be in compliance with the operating limits for emission capture systems and add-on control devices required by §63.4692 at all times, except during periods of SSM, and except for solvent recovery systems for which you conduct liquid-liquid material balances according to §63.4761(j).

(iii) The coating operation(s) must be in compliance with the work practice standards in §63.4693 at all times.

(b) You must always operate and maintain your affected source, including all air pollution control and monitoring equipment you use for purposes of complying with this subpart, according to the provisions in §63.6(e)(1)(i).

(c) If your affected source uses an emission capture system and add-on control device, you must maintain a log detailing the operation and maintenance of the emission capture system, add-on control device, and continuous parameter monitors during the period between the compliance date specified for your affected source in §63.4683 and the date when the initial emission capture system and add-on control device performance tests have been completed, as specified in §63.4760. This requirement does
not apply to a solvent recovery system for which you conduct liquid-liquid material balances according to §63.4761(j) in lieu of conducting performance tests.

(d) If your affected source uses an emission capture system and add-on control device, you must develop a written startup, shutdown, and malfunction plan (SSMP) according to the provisions in §63.6(e)(3). The SSMP must address startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation equipment that may cause increased emissions or that would affect capture efficiency if the process equipment malfunctions, such as conveyors that move parts among enclosures.

§ 63.4701 What parts of the General Provisions apply to me?

Table 4 to this subpart indicates which parts of the General Provisions in §§63.1 through 63.15 apply to you.

Notifications, Reports, and Records

§ 63.4710 What notifications must I submit?

(a) General. You must submit the notifications in §§63.7(b) and (c), 63.8(f)(4), and 63.9(b) through (e) and (h) that apply to you by the dates specified in those sections, except as provided in paragraphs (b) and (c) of this section.

(b) Initial Notification. You must submit the Initial Notification required by §63.9(b) for a new or reconstructed affected source no later than 120 days after initial startup or 120 days after May 28, 2003, whichever is later. For an existing affected source, you must submit the Initial Notification no later than 120 days after May 28, 2003.

(c) Notification of Compliance Status. You must submit the Notification of Compliance Status required by §63.9(h) no later than 30 calendar days following the end of the initial compliance period described in §63.4740, §63.4750, or §63.4760 that applies to your affected source. The Notification of Compliance Status must contain the information specified in paragraphs (c)(1) through (9) of this section and in §63.9(h).

(1) Company name and address.

(2) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.

(3) Date of the report and beginning and ending dates of the reporting period. The reporting period is the initial compliance period described in §63.4740, §63.4750, or §63.4760 that applies to your affected source.

(4) Identification of the compliance option or options specified in §63.4691 that you used on each coating operation in the affected source during the initial compliance period.

(5) Statement of whether or not the affected source achieved the emission limitations for the initial compliance period.

(6) If you had a deviation, include the information in paragraphs (c)(6)(i) and (ii) of this section.
(i) A description and statement of the cause of the deviation.

(ii) If you failed to meet the applicable emission limit in §63.4690, include all the calculations you used to determine the grams organic HAP emitted per liter of coating solids used (pounds (lb) organic HAP emitted per gallon of coating solids used). You do not need to submit information provided by the materials suppliers or manufacturers, or test reports.

(7) For each of the data items listed in paragraphs (c)(7)(i) through (iv) of this section that is required by the compliance option(s) you used to demonstrate compliance with the emission limit, include an example of how you determined the value, including calculations and supporting data. Supporting data can include a copy of the information provided by the supplier or manufacturer of the example coating or material or a summary of the results of testing conducted according to §63.4741(a), (b), or (c). You do not need to submit copies of any test reports.

(i) Mass fraction of organic HAP for one coating, for one thinner, and for one cleaning material.

(ii) Volume fraction of coating solids for one coating.

(iii) Density for one coating, one thinner, and one cleaning material, except that if you use the compliant material option, only the example coating density is required.

(iv) The amount of waste materials and the mass of organic HAP contained in the waste materials for which you are claiming an allowance in Equation 1 of §63.4751.

(8) The calculation of grams organic HAP emitted per liter coating solids used (lb organic HAP emitted per gallon coating solids used) for the compliance option(s) you used, as specified in paragraphs (c)(8)(i) through (iii) of this section.

(i) For the compliant material option, provide an example calculation of the organic HAP content for one coating, using Equation 2 of §63.4741.

(ii) For the emission rate without add-on controls option, provide the calculation of the total mass of organic HAP emissions for each month; the calculation of the total volume of coating solids used each month; and the calculation of the 12-month organic HAP emission rate, using Equations 1 and 1A through 1C, 2, and 3, respectively, of §63.4751.

(iii) For the emission rate with add-on controls option, provide the calculation of the total mass of organic HAP emissions for the coatings, thinners, and cleaning materials used each month, using Equations 1 and 1A through 1C of §63.4751; the calculation of the total volume of coating solids used each month, using Equation 2 of §63.4751; the calculation of the mass of organic HAP emission reduction each month by emission capture systems and add-on control devices, using Equations 1, 1A through 1D, 2, 3, and 3A through 3C of §63.4761, as applicable; the calculation of the total mass of organic HAP emissions each month, using Equation 4 of §63.4761; and the calculation of the 12-month organic HAP emission rate, using Equation 5 of §63.4761.

(9) For the emission rate with add-on controls option, you must include the information specified in paragraphs (c)(9)(i) through (iv) of this section, except that the requirements in paragraphs (c)(9)(i) through (iii) of this section do not apply to solvent recovery systems for which you conduct liquid-liquid material balances according to §63.4761(j).

(i) For each emission capture system, a summary of the data and copies of the calculations supporting the determination that the emission capture system is a permanent total enclosure (PTE) or a measurement of the emission capture system efficiency. Include a description of the protocol followed for
measuring capture efficiency, summaries of any capture efficiency tests conducted, and any calculations supporting the capture efficiency determination. If you use the data quality objective (DQO) or lower confidence limit (LCL) approach, you must also include the statistical calculations to show you meet the DQO or LCL criteria in appendix A to subpart KK of this part. You do not need to submit complete test reports.

(ii) A summary of the results of each add-on control device performance test. You do not need to submit complete test reports.

(iii) A list of each emission capture system and add-on control device operating limits and a summary of the data used to calculate those limits.

(iv) A statement of whether or not you developed and implemented the work practice plan required by §63.4693.

§ 63.4720 What reports must I submit?

(a) Semiannual compliance reports. You must submit semiannual compliance reports for each affected source according to the requirements of paragraphs (a)(1) through (7) of this section. The semiannual compliance reporting requirements may be satisfied by reports required under other parts of the Clean Air Act (CAA), as specified in paragraph (a)(2) of this section.

(1) Dates. Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must prepare and submit each semiannual compliance report according to the dates specified in paragraphs (a)(1)(i) through (iv) of this section. Note that the information reported for each of the months in the reporting period will be based on the last 12 months of data prior to the date of each monthly calculation.

(i) The first semiannual compliance report must cover the first semiannual reporting period which begins the day after the end of the initial compliance period described in §63.4740, §63.4750, or §63.4760 that applies to your affected source and ends on June 30 or December 31, whichever occurs first following the end of the initial compliance period.

(ii) Each subsequent semiannual compliance report must cover the subsequent semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(iii) Each semiannual compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(iv) For each affected source that is subject to permitting regulations pursuant to 40 CFR part 70 or 40 CFR part 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the date specified in paragraph (a)(1)(i) of this section.

(2) Inclusion with title V report. Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 40 CFR part 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a semiannual compliance report pursuant to this section along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the semiannual compliance report includes all required information concerning deviations from any emission limitation in this subpart, its submission shall be deemed to satisfy any obligation to report the
same deviations in the semiannual monitoring report. However, submission of a semiannual compliance
report shall not otherwise affect any obligation the affected source may have to report deviations from
permit requirements to the permitting authority.

(3) General requirements. The semiannual compliance report must contain the information specified in
paragraphs (a)(3)(i) through (v) of this section, and the information specified in paragraphs (a)(4) through
(7) and (c)(1) of this section that is applicable to your affected source.

(i) Company name and address.

(ii) Statement by a responsible official with that official's name, title, and signature, certifying the truth,
accuracy, and completeness of the content of the report.

(iii) Date of report and beginning and ending dates of the reporting period. The reporting period is the 6-
month period ending on June 30 or December 31. Note that the information reported for each of the 6
months in the reporting period will be based on the last 12 months of data prior to the date of each
monthly calculation.

(iv) Identification of the compliance option or options specified in §63.4691 that you used on each coating
operation during the reporting period. If you switched between compliance options during the reporting
period, you must report the beginning and ending dates you used each option.

(v) If you used the emission rate without add-on controls or the emission rate with add-on controls
compliance option (§63.4691(b) or (c)), the calculation results for each rolling 12-month organic HAP
emission rate during the 6-month reporting period.

(4) No deviations. If there were no deviations from the emission limitations in §§63.4690, 63.4692, and
63.4693 that apply to you, the semiannual compliance report must include a statement that there were no
deviations from the emission limitations during the reporting period. If you used the emission rate with
add-on controls option and there were no periods during which the continuous parameter monitoring
systems (CPMS) were out-of-control as specified in §63.8(c)(7), the semiannual compliance report must
include a statement that there were no periods during which the CPMS were out-of-control during the
reporting period.

(5) Deviations: compliant material option. If you used the compliant material option, and there was a
deviation from the applicable emission limit in §63.4690, the semiannual compliance report must contain
the information in paragraphs (a)(5)(i) through (iv) of this section.

(i) Identification of each coating used that deviated from the emission limit, each thinner and cleaning
material used that contained organic HAP, and the dates and time periods each was used.

(ii) The calculation of the organic HAP content (using Equation 2 of §63.4741) for each coating identified
in paragraph (a)(5)(i) of this section. You do not need to submit background data supporting this
calculation (e.g., information provided by coating suppliers or manufacturers, or test reports).

(iii) The determination of mass fraction of organic HAP for each coating, thinner, and cleaning material
identified in paragraph (a)(5)(i) of this section. You do not need to submit background data supporting this
calculation (e.g., information provided by material suppliers or manufacturers, or test reports).

(iv) A statement of the cause of each deviation.
(6) Deviations: emission rate without add-on controls option. If you used the emission rate without add-on controls option and there was a deviation from the applicable emission limit in §63.4690, the semiannual compliance report must contain the information in paragraphs (a)(6)(i) through (iii) of this section.

(i) The beginning and ending dates of each compliance period during which the 12-month organic HAP emission rate exceeded the applicable emission limit in §63.4690.

(ii) The calculations used to determine the 12-month organic HAP emission rate for the compliance period in which the deviation occurred. You must provide the calculations for Equations 1, 1A through 1C, 2, and 3 in §63.4751; and if applicable, the calculation used to determine mass of organic HAP in waste materials according to §63.4751(e)(4). You do not need to submit background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).

(iii) A statement of the cause of each deviation.

(7) Deviations: emission rate with add-on controls option. If you used the emission rate with add-on controls option and there was a deviation from an emission limitation (including any periods when emissions bypassed the add-on control device and were diverted to the atmosphere), the semiannual compliance report must contain the information in paragraphs (a)(7)(i) through (xiv) of this section. This includes periods of SSM during which deviations occurred.

(i) The beginning and ending dates of each compliance period during which the 12-month organic HAP emission rate exceeded the applicable emission limit in §63.4690.

(ii) The calculations used to determine the 12-month organic HAP emission rate for each compliance period in which a deviation occurred. You must provide the calculation of the total mass of organic HAP emissions for the coatings, thinners, and cleaning materials used each month, using Equations 1 and 1A through 1C of §63.4751; and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to §63.4751(e)(4); the calculation of the total volume of coating solids used each month, using Equation 2 of §63.4751; the calculation of the mass of organic HAP emission reduction each month by emission capture systems and add-on control devices, using Equations 1 and 1A through 1D of §63.4761, and Equations 2, 3, and 3A through 3C of §63.4761, as applicable; the calculation of the total mass of organic HAP emissions each month, using Equation 4 of §63.4761; and the calculation of the 12-month organic HAP emission rate, using Equation 5 of §63.4761. You do not need to submit the background data supporting these calculations (e.g., information provided by materials suppliers or manufacturers, or test reports).

(iii) The date and time that each malfunction started and stopped.

(iv) A brief description of the CPMS.

(v) The date of the latest CPMS certification or audit.

(vi) The date and time that each CPMS was inoperative, except for zero (low-level) and high-level checks.

(vii) The date, time, and duration that each CPMS was out-of-control, including the information in §63.8(c)(8).

(viii) The date and time period of each deviation from an operating limit in Table 3 to this subpart, date and time period of any bypass of the add-on control device, and whether each deviation occurred during a period of SSM or during another period.
(ix) A summary of the total duration of each deviation from an operating limit in Table 3 to this subpart, each bypass of the add-on control device during the semiannual reporting period, and the total duration as a percent of the total source operating time during that semiannual reporting period.

(x) A breakdown of the total duration of the deviations from the operating limits in Table 3 to this subpart and bypasses of the add-on control device during the semiannual reporting period by identifying deviations due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes.

(xi) A summary of the total duration of CPMS downtime during the semiannual reporting period and the total duration of CPMS downtime as a percent of the total source operating time during that semiannual reporting period.

(xii) A description of any changes in the CPMS, coating operation, emission capture system, or add-on control device since the last semiannual reporting period.

(xiii) For each deviation from the work practice standards, a description of the deviation, the date and time period of the deviation, and the actions you took to correct the deviation.

(xiv) A statement of the cause of each deviation.

(b) Performance test reports. If you use the emission rate with add-on controls option, you must submit reports of performance test results for emission capture systems and add-on control devices no later than 60 days after completing the tests as specified in §63.10(d)(2).

(c) SSM reports. If you used the emission rate with add-on controls option and you had an SSM during the semiannual reporting period, you must submit the reports specified in paragraphs (c)(1) and (2) of this section.

(1) If your actions were consistent with your SSMP, you must include the information specified in §63.10(d) in the semiannual compliance report required by paragraph (a) of this section.

(2) If your actions were not consistent with your SSMP, you must submit an immediate SSM report as described in paragraphs (c)(2)(i) and (ii) of this section.

(i) You must describe the actions taken during the event in a report delivered by facsimile, telephone, or other means to the Administrator within 2 working days after starting actions that are inconsistent with the plan.

(ii) You must submit a letter to the Administrator within 7 working days after the end of the event, unless you have made alternative arrangements with the Administrator as specified in §63.10(d)(5)(ii). The letter must contain the information specified in §63.10(d)(5)(ii).

§ 63.4730 What records must I keep?

You must collect and keep records of the data and information specified in this section. Failure to collect and keep these records is a deviation from the applicable standard.

(a) A copy of each notification and report that you submitted to comply with this subpart, and the documentation supporting each notification and report.
(b) A current copy of information provided by materials suppliers or manufacturers, such as manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of the complete test report. If you use information provided to you by the manufacturer or supplier of the material that was based on testing, you must keep the summary sheet of results provided to you by the manufacturer or supplier. You are not required to obtain the test report or other supporting documentation from the manufacturer or supplier.

(c) For each compliance period, the records specified in paragraphs (c)(1) through (4) of this section.

(1) A record of the coating operations at which you used each compliance option and the time periods (beginning and ending dates and times) you used each option.

(2) For the compliant material option, a record of the calculation of the organic HAP content for each coating, using Equation 2 of §63.4741.

(3) For the emission rate without add-on controls option, a record of the calculation of the total mass of organic HAP emissions for the coatings, thinners, and cleaning materials used each month, using Equations 1, 1A through 1C, and 2 of §63.4751; and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to §63.4751(e)(4); the calculation of the total volume of coating solids used each month, using Equation 2 of §63.4751; and the calculation of each 12-month organic HAP emission rate, using Equation 3 of §63.4751.

(4) For the emission rate with add-on controls option, records of the calculations specified in paragraphs (c)(4)(i) through (v) of this section.

(i) The calculation of the total mass of organic HAP emissions for the coatings, thinners, and cleaning materials used each month, using Equations 1 and 1A through 1C of §63.4751; and, if applicable, the calculation used to determine mass of organic HAP in waste materials according to §63.4751(e)(4).

(ii) The calculation of the total volume of coating solids used each month, using Equation 2 of §63.4751.

(iii) The calculation of the mass of organic HAP emission reduction by emission capture systems and add-on control devices, using Equations 1 and 1A through 1D of §63.4761, and Equations 2, 3, and 3A through 3C of §63.4761, as applicable.

(iv) The calculation of the total mass of organic HAP emissions each month, using Equation 4 of §63.4761.

(v) The calculation of each 12-month organic HAP emission rate, using Equation 5 of §63.4761.

(d) A record of the name and volume of each coating, thinner, and cleaning material used during each compliance period.

(e) A record of the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each compliance period.

(f) A record of the volume fraction of coating solids for each coating used during each compliance period.
(g) A record of the density for each coating used during each compliance period; and, if you use either the emission rate without add-on controls or the emission rate with add-on controls compliance option, the density for each thinner and cleaning material used during each compliance period.

(h) If you use an allowance in Equation 1 of §63.4751 for organic HAP contained in waste materials sent to or designated for shipment to a treatment, storage, and disposal facility (TSDF) according to §63.4751(e)(4), you must keep records of the information specified in paragraphs (h)(1) through (3) of this section.

(1) The name and address of each TSDF to which you sent waste materials for which you use an allowance in Equation 1 of §63.4751; a statement of which subparts under 40 CFR parts 262, 264, 265, and 266 apply to the facility; and the date of each shipment.

(2) Identification of the coating operations producing waste materials included in each shipment and the month or months in which you used the allowance for these materials in Equation 1 of §63.4751.

(3) The methodology used in accordance with §63.4751(e)(4) to determine the total amount of waste materials sent to or the amount collected, stored, and designated for transport to a TSDF each month; and the methodology to determine the mass of organic HAP contained in these waste materials. This must include the sources for all data used in the determination, methods used to generate the data, frequency of testing or monitoring, and supporting calculations and documentation, including the waste manifest for each shipment.

(i) [Reserved]

(j) You must keep records of the date, time, and duration of each deviation.

(k) If you use the emission rate with add-on controls option, you must keep the records specified in paragraphs (k)(1) through (8) of this section.

(1) For each deviation, a record of whether the deviation occurred during a period of SSM.

(2) The records in §63.6(e)(3)(iii) through (v) related to SSM.

(3) The records required to show continuous compliance with each operating limit specified in Table 3 to this subpart that applies to you.

(4) For each capture system that is a PTE, the data and documentation you used to support a determination that the capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and has a capture efficiency of 100 percent, as specified in §63.4765(a).

(5) For each capture system that is not a PTE, the data and documentation you used to determine capture efficiency according to the requirements specified in §§63.4764 and 63.4765(b) through (e), including the records specified in paragraphs (k)(5)(i) through (iii) of this section that apply to you.

(i) Records for a liquid-to-uncaptured-gas protocol using a temporary total enclosure or building enclosure. Records of the mass of total volatile hydrocarbon (TVH) as measured by Method 204A or F of appendix M to 40 CFR part 51 for each material used in the coating operation, and the total TVH for all materials used during each capture efficiency test run, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run as measured by Method 204D or E of appendix M to 40 CFR part 51, including a copy of the test report. Records documenting that the enclosure used for
the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure.

(ii) Records for a gas-to-gas protocol using a temporary total enclosure or a building enclosure. Records of the mass of TVH emissions captured by the emission capture system as measured by Method 204B or C of appendix M to 40 CFR part 51 at the inlet to the add-on control device, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run as measured by Method 204D or E of appendix M to 40 CFR part 51, including a copy of the test report. Records documenting that the enclosure used for the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure.

(iii) Records for an alternative protocol. Records needed to document a capture efficiency determination using an alternative method or protocol as specified in §63.4765(e), if applicable.

(6) The records specified in paragraphs (k)(6)(i) and (ii) of this section for each add-on control device organic HAP destruction or removal efficiency determination as specified in §63.4766.

(i) Records of each add-on control device performance test conducted according to §§63.4764 and 63.4766.

(ii) Records of the coating operation conditions during the add-on control device performance test showing that the performance test was conducted under representative operating conditions.

(7) Records of the data and calculations you used to establish the emission capture and add-on control device operating limits as specified in §63.4767 and to document compliance with the operating limits as specified in Table 3 to this subpart.

(8) A record of the work practice plan required by §63.4693, and documentation that you are implementing the plan on a continuous basis.

§ 63.4731 In what form and for how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review, according to §63.10(b)(1). Where appropriate, the records may be maintained as electronic spreadsheets or as a database.

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record on-site for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1). You may keep the records off-site for the remaining 3 years.

Compliance Requirements for the Compliant Material Option

§ 63.4740 By what date must I conduct the initial compliance demonstration?

You must complete the initial compliance demonstration for the initial compliance period according to the requirements in §63.4741. The initial compliance period begins on the applicable compliance date specified in §63.4683 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period
extends through the end of that month plus the next 12 months. The initial compliance demonstration includes the calculations according to §63.4741 and supporting documentation showing that during the initial compliance period, you used no coating with an organic HAP content that exceeded the applicable emission limit in §63.4690, and that you used no thinners or cleaning materials that contained organic HAP.

§ 63.4741 How do I demonstrate initial compliance with the emission limitations?

You may use the compliant material option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source. You must use either the emission rate without add-on controls option or the emission rate with add-on controls option for any coating operation in the affected source for which you do not use this option. To demonstrate initial compliance using the compliant material option, the coating operation or group of coating operations must use no coating with an organic HAP content that exceeds the applicable emission limit in §63.4690 and must use no thinner or cleaning material that contains organic HAP as determined according to this section. Any coating operation for which you use the compliant material option is not required to meet the operating limits or work practice standards required in §§63.4692 and 63.4693, respectively. To demonstrate initial compliance with the emission limitations using the compliant material option, you must meet all the requirements of this section for the coating operation or group of coating operations using this option. Use the procedures in this section on each coating, thinner, and cleaning material in the condition it is in when it is received from its manufacturer or supplier and prior to any alteration. You do not need to redetermine the mass of organic HAP in coatings, thinners, or cleaning materials that have been reclaimed onsite and reused in the coating operation(s) for which you use the compliant material option, provided these materials in their condition as received were demonstrated to comply with the compliant material option. If the mass fraction of organic HAP of a coating equals zero, determined according to paragraph (a) of this section, and you use the compliant material option, you are not required to comply with paragraphs (b) and (c) of this section for that coating.

(a) **Determine the mass fraction of organic HAP for each material used.** You must determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during the compliance period by using one of the options in paragraphs (a)(1) through (5) of this section.

(1) **Method 311 (appendix A to 40 CFR part 63).** You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs (a)(1)(i) and (ii) of this section when performing a Method 311 test. If these values cannot be determined using Method 311, the owner or operator shall submit an alternative technique for determining their values for approval by the Administrator.

(i) Count each organic HAP that is measured to be present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4), and at 1.0 percent by mass or more for other organic HAP compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of each organic HAP you count as a value truncated to four places after the decimal point (e.g., 0.379178412 truncates to 0.3791).

(ii) Calculate the total mass fraction of organic HAP in the test material by adding up the individual organic HAP mass fractions and truncating the result to three places after the decimal point (e.g., 0.763).

(2) **Method 24 (appendix A to 40 CFR part 60).** For coatings, you may use Method 24 to determine the mass fraction of nonaqueous volatile matter and use that value as a substitute for mass fraction of organic HAP. (Note: Method 24 is not appropriate for those coatings with a water content that would result in an effective detection limit greater than the applicable emission limit.)
(3) **Alternative method.** You may use an alternative test method for determining the mass fraction of organic HAP once the Administrator has approved it. You must follow the procedure in §63.7(f) to submit an alternative test method for approval.

(4) **Information from the supplier or manufacturer of the material.** You may rely on information other than that generated by the test methods specified in paragraphs (a)(1) through (3) of this section, such as manufacturer's formulation data, if it represents each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4), and at 1.0 percent by mass or more for other organic HAP compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to count it. If there is a disagreement between such information and results of a test conducted according to paragraphs (a)(1) through (3) of this section, then the test method results will take precedence unless, after consultation, a regulated source could demonstrate to the satisfaction of the enforcement agency that the formulation data were correct.

(5) **Solvent blends.** Solvent blends may be listed as single components for some materials in data provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP mass fraction of the materials. When test data and manufacturer's data for solvent blends are not available, you may use the default values for the mass fraction of organic HAP in these solvent blends listed in Table 5 or Table 6 to this subpart. If you use the tables, you must use the values in Table 5 for all solvent blends that match Table 5 entries, and you may only use Table 6 if the solvent blends in the materials you use do not match any of the solvent blends in Table 5 and you only know whether the blend is aliphatic or aromatic. However, if the results of a Method 311 (40 CFR part 63, appendix A) test indicate higher values than those listed on Table 5 or Table 6 to this subpart, the Method 311 results will take precedence.

(b) **Determine the volume fraction of coating solids for each coating.** You must determine the volume fraction of coating solids (liters of coating solids per liter of coating) for each coating used during the compliance period by one of the methods specified in paragraph (b)(1), (2), or (3) of this section.

(1) **ASTM Method D2697–86 (Reapproved 1998) or D6093–97.** You may use ASTM Method D2697–86 (Reapproved 1998), "Standard Test Method for Volume Nonvolatile Matter in Clear or Pigmented Coatings" (incorporated by reference, see §63.14), or D6093–97, "Standard Test Method for Percent Volume Nonvolatile Matter in Clear or Pigmented Coatings Using a Helium Gas Pycnometer" (incorporated by reference, see §63.14), to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids. If these values cannot be determined using these methods, the owner operator may submit an alternative technique for determining their values for approval by the Administrator.

(2) **Information from the supplier or manufacturer of the material.** You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer.

(3) **Calculation of volume fraction of coating solids.** If the volume fraction of coating solids cannot be determined using the options in paragraphs (b)(1) and (2) of this section, you must determine it using Equation 1 of this section:

\[
V_s = 1 - \left(\frac{m_{\text{volatile}}}{D_{\text{arg}}} \right) \quad \text{(Eq. 1)}
\]

Where:

\[V_s=\text{Volume fraction of coating solids, liters coating solids per liter coating.}\]
m_{\text{volatiles}} = \text{Total volatile matter content of the coating, including HAP, volatile organic compounds (VOC), water, and exempt compounds, determined according to Method 24 in appendix A of 40 CFR part 60, grams volatile matter per liter coating.}

D_{\text{avg}} = \text{Average density of volatile matter in the coating, grams volatile matter per liter volatile matter, determined from test results using ASTM Method D1475–90 or information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475–90 test results and other information sources, the test results will take precedence.}

(c) Determine the density of each coating. Determine the density of each coating used during the compliance period from test results using ASTM Method D1475–90 or information from the supplier or manufacturer of the material. If there is disagreement between ASTM Method D1475–90 test results and other information sources, the test results will take precedence.

(d) Calculate the organic HAP content of each coating. Calculate the organic HAP content, grams organic HAP per liter coating solids, of each coating used during the compliance period, using Equation 2 of this section:

$$H_c = \frac{D_c}{V_s} \cdot W_c$$

Where:

$H_c = \text{Organic HAP content of the coating, grams organic HAP per liter coating solids.}$

$D_c = \text{Density of coating, grams coating per liter coating, determined according to paragraph (c) of this section.}$

$W_c = \text{Mass fraction of organic HAP in the coating, grams organic HAP per gram coating, determined according to paragraph (a) of this section.}$

$V_s = \text{Volume fraction of coating solids, liter coating solids per liter coating, determined according to paragraph (b) of this section.}$

(e) Compliance demonstration. The organic HAP content for each coating used during the initial compliance period, determined using Equation 2 of this section, must be less than or equal to the applicable emission limit in §63.4690; and each thinner and cleaning material used during the initial compliance period must contain no organic HAP, determined according to paragraph (a) of this section. You must keep all records required by §§63.4730 and 63.4731. As part of the Notification of Compliance Status required in §63.4710, you must identify the coating operation(s) for which you used the compliant material option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because you used no coatings for which the organic HAP content exceeded the applicable emission limit in §63.4690, and you used no thinners or cleaning materials that contained organic HAP, determined according to paragraph (a) of this section.

§ 63.4742 How do I demonstrate continuous compliance with the emission limitations?

(a) For each compliance period to demonstrate continuous compliance, you must use no coating for which the organic HAP content determined using Equation 2 of §63.4741 exceeds the applicable emission limit in §63.4690; and use no thinner or cleaning material that contains organic HAP, determined according to §63.4741(a). A compliance period consists of 12 months. Each month after the end of the
initial compliance period described in §63.4740 is the end of a compliance period consisting of that month and the preceding 11 months.

(b) If you choose to comply with the emission limitations by using the compliant material option, the use of any coating, thinner, or cleaning material that does not meet the criteria specified in paragraph (a) of this section is a deviation from the emission limitations that must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(5).

(c) As part of each semiannual compliance report required by §63.4720, you must identify the coating operation(s) for which you used the compliant material option. If there were no deviations from the emission limitations in §63.4690, submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the reporting period because you used no coating for which the organic HAP content exceeded the applicable emission limit in §63.4690, and you used no thinner or cleaning material that contained organic HAP, determined according to §63.4741(a).

(d) You must maintain records as specified in §§63.4730 and 63.4731.

Compliance Requirements for the Emission Rate Without Add-On Controls Option

§ 63.4750 By what date must I conduct the initial compliance demonstration?

You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.4751. The initial compliance period begins on the applicable compliance date specified in §63.4683 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coating solids used each month and then calculate a 12-month organic HAP emission rate at the end of the initial 12-month compliance period. The initial compliance demonstration includes the calculations according to §63.4751 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the applicable emission limit in §63.4690.

§ 63.4751 How do I demonstrate initial compliance with the emission limitations?

You may use the emission rate without add-on controls option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source. You must use either the compliant material option or the emission rate with add-on controls option for any coating operation in the affected source for which you do not use this option. To demonstrate initial compliance using the emission rate without add-on controls option, the coating operation or group of coating operations must meet the applicable emission limit in §63.4690. Any coating operation for which you use the emission rate without add-on controls option is not required to meet the operating limits or work practice standards required in §§63.4692 and 63.4693, respectively. You must meet all the requirements of this section to demonstrate initial compliance with the applicable emission limit in §63.4690 for the coating operation(s). When calculating the organic HAP emission rate according to this section, do not include any coatings, thinners, or cleaning materials used on coating operations for which you use the compliant material option or the emission rate with add-on controls option. You do not need to redetermine the mass of organic HAP in coatings, thinners, or cleaning materials that have been reclaimed onsite and reused in the coating operation(s) for which you use the emission rate without add-on controls option.

(a) **Determine the mass fraction of organic HAP for each material.** Determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each month according to the requirements in §63.4741(a).
(b) **Determine the volume fraction of coating solids for each coating.** Determine the volume fraction of coating solids for each coating used during each month according to the requirements in §63.4741(b).

(c) **Determine the density of each material.** Determine the density of each coating, thinner, and cleaning material used during each month from test results using ASTM Method D1475–90, information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475–90 test results and such other information sources, the test results will take precedence.

(d) **Determine the volume of each material used.** Determine the volume (liters) of each coating, thinner, and cleaning material used during each month by measurement or usage records.

(e) **Calculate the mass of organic HAP emissions.** The mass of organic HAP emissions is the combined mass of organic HAP contained in all coatings, thinners, and cleaning materials used during each month minus the organic HAP in certain waste materials. Calculate it using Equation 1 of this section.

\[
H_e = A + B + C - R_w \quad (\text{Eq. 1})
\]

Where:

- \(H_e\) = Total mass of organic HAP emissions during the month, grams.
- \(A\) = Total mass of organic HAP in the coatings used during the month, grams, as calculated in Equation 1A of this section.
- \(B\) = Total mass of organic HAP in the thinners used during the month, grams, as calculated in Equation 1B of this section.
- \(C\) = Total mass of organic HAP in the cleaning materials used during the month, grams, as calculated in Equation 1C of this section.
- \(R_w\) = Total mass of organic HAP in waste materials sent or designated for shipment to a hazardous waste TSDF for treatment or disposal during the month, grams, determined according to paragraph (e)(4) of this section. (You may assign a value of zero to \(R_w\) if you do not wish to use this allowance.)

(1) Calculate the mass of organic HAP in the coatings used during the month, using Equation 1A of this section:

\[
A = \sum_{i=1}^{n} \left(\text{Vol}_{c,i} \times D_{c,i} \times W_{c,i} \right) \quad (\text{Eq. 1A})
\]

Where:

- \(A\) = Total mass of organic HAP in the coatings used during the month, grams.
- \(\text{Vol}_{c,i}\) = Total volume of coating, \(i\), used during the month, liters.
- \(D_{c,i}\) = Density of coating, \(i\), grams coating per liter coating.
- \(W_{c,i}\) = Mass fraction of organic HAP in coating, \(i\), grams organic HAP per gram coating.
m = Number of different coatings used during the month.

(2) Calculate the mass of organic HAP in the thinners used during the month, using Equation 1B of this section:

\[B = \sum_{j=1}^{n} \left(\text{Vol}_{t,j} \times \text{Dt}_{t,j} \times \text{Wt}_{t,j} \right) \]
(Eq. 1B)

Where:

- \(B \) = Total mass of organic HAP in the thinners used during the month, grams.
- \(\text{Vol}_{t,j} \) = Total volume of thinner, \(j \), used during the month, liters.
- \(\text{Dt}_{t,j} \) = Density of thinner, \(j \), grams per liter.
- \(\text{Wt}_{t,j} \) = Mass fraction of organic HAP in thinner, \(j \), grams organic HAP per gram thinner.
- \(n \) = Number of different thinners used during the month.

(3) Calculate the mass of organic HAP in the cleaning materials used during the month using Equation 1C of this section:

\[C = \sum_{k=1}^{p} \left(\text{Vol}_{s,k} \times \text{Ds}_{s,k} \times \text{Ws}_{s,k} \right) \]
(Eq. 1C)

Where:

- \(C \) = Total mass of organic HAP in the cleaning materials used during the month, grams.
- \(\text{Vol}_{s,k} \) = Total volume of cleaning material, \(k \), used during the month, liters.
- \(\text{Ds}_{s,k} \) = Density of cleaning material, \(k \), grams per liter.
- \(\text{Ws}_{s,k} \) = Mass fraction of organic HAP in cleaning material, \(k \), grams organic HAP per gram material.
- \(p \) = Number of different cleaning materials used during the month.

(4) If you choose to account for the mass of organic HAP contained in waste materials sent or designated for shipment to a hazardous waste TSDF in Equation 1 of this section, then you must determine it according to paragraphs (e)(4)(i) through (iv) of this section.

(i) You may include in the determination only waste materials that are generated by coating operations for which you use Equation 1 of this section and that will be treated or disposed of by a facility regulated as a TSDF under 40 CFR part 262, 264, 265, or 266. The TSDF may be either off-site or on-site. You may not include organic HAP contained in wastewater.

(ii) You must determine either the amount of the waste materials sent to a TSDF during the month or the amount collected and stored during the month and designated for future transport to a TSDF. Do not
include in your determination any waste materials sent to a TSDF during a month if you have already included them in the amount collected and stored during that month or a previous month.

(iii) Determine the total mass of organic HAP contained in the waste materials specified in paragraph (e)(4)(ii) of this section.

(iv) You may use any reasonable methodology to determine the amount of waste materials and the total mass of organic HAP they contain, and you must document your methodology as required in §63.4730(h). To the extent that waste manifests include this information, they may be used as part of the documentation of the amount of waste materials and mass of organic HAP contained in them.

(f) **Calculate the total volume of coating solids used.** Determine the total volume of coating solids used which is the combined volume of coating solids for all the coatings used during each month, using Equation 2 of this section:

\[
V_{st} = \sum_{i=1}^{m}\left(V_{ol,c,i}\right)\left(V_{c,i}\right)
\]

(\text{Eq. 2})

Where:

- \(V_{st}\) = Total volume of coating solids used during the month, liters.
- \(V_{ol,c,i}\) = Total volume of coating, i, used during the month, liters.
- \(V_{c,i}\) = Volume fraction of coating solids for coating, i, liter solids per liter coating, determined according to §63.4741(b).
- \(m\) = Number of coatings used during the month.

(g) **Calculate the organic HAP emission rate.** Calculate the organic HAP emission rate for the 12-month compliance period, grams organic HAP per liter coating solids used, using Equation 3 of this section:

\[
H_{yr} = \frac{\sum_{y=1}^{12}H_{y}}{\sum_{y=1}^{12}V_{st}}
\]

(\text{Eq. 3})

Where:

- \(H_{yr}\) = Organic HAP emission rate for the 12-month compliance period, grams organic HAP per liter coating solids.
- \(H_{y}\) = Total mass of organic HAP emissions, grams, from all materials used during month, y, as calculated by Equation 1 of this section.
- \(V_{st}\) = Total volume of coating solids used during month, y, liters, as calculated by Equation 2 of this section.
- \(y\) = Identifier for months.
(h) **Compliance demonstration.** The organic HAP emission rate for the initial 12-month compliance period, calculated using Equation 3 of this section, must be less than or equal to the applicable emission limit in §63.4690. You must keep all records as required by §§63.4730 and 63.4731. As part of the Notification of Compliance Status required by §63.4710, you must identify the coating operation(s) for which you used the emission rate without add-on controls option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in §63.4690, determined according to this section.

§ 63.4752 How do I demonstrate continuous compliance with the emission limitations?

(a) To demonstrate continuous compliance, the organic HAP emission rate for each compliance period, calculated using Equation 3 of §63.4751, must be less than or equal to the applicable emission limit in §63.4690. A compliance period consists of 12 months. Each month after the end of the initial compliance period described in §63.4750 is the end of a compliance period consisting of that month and the preceding 11 months. You must perform the calculations in §63.4751(a) through (g) on a monthly basis using data from the previous 12 months of operation.

(b) If the organic HAP emission rate for any 12-month compliance period exceeded the applicable emission limit in §63.4690, this is a deviation from the emission limitations for that compliance period and must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(6).

(c) As part of each semiannual compliance report required by §63.4720, you must identify the coating operation(s) for which you used the emission rate without add-on controls option. If there were no deviations from the emission limitations, you must submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in §63.4690, determined according to §63.4751(a) through (g).

(d) You must maintain records as specified in §§63.4730 and 63.4731.

Compliance Requirements for the Emission Rate With Add-On Controls Option

§ 63.4760 By what date must I conduct performance tests and other initial compliance demonstrations?

(a) **New and reconstructed affected sources.** For a new or reconstructed affected source, you must meet the requirements of paragraphs (a)(1) through (4) of this section.

(1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in §63.4683. Except for solvent recovery systems for which you conduct liquid-liquid material balances according to §63.4761(j), you must conduct a performance test of each capture system and add-on control device according to §§63.4764, 63.4765, and 63.4766, and establish the operating limits required by §63.4692 no later than 180 days after the applicable compliance date specified in §63.4683. For a solvent recovery system for which you conduct liquid-liquid material balances according to §63.4761(j), you must initiate the first material balance no later than 180 days after the applicable compliance date specified in §63.4683.

(2) You must develop and begin implementing the work practice plan required by §63.4693 no later than the compliance date specified in §63.4683.

(3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.4761. The initial compliance period begins on the applicable compliance date.
specified in §63.4683 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coating solids used each month and then calculate a 12-month organic HAP emission rate at the end of the initial 12-month compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§63.4764, 63.4765, and 63.4766; results of liquid-liquid material balances conducted according to §63.4761(j); calculations according to §63.4761 and supporting documentation showing that during the initial compliance period, the organic HAP emission rate was equal to or less than the emission limit in §63.4690(a); the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.4768; and documentation of whether you developed and implemented the work practice plan required by §63.4693.

You do not need to comply with the operating limits for the emission capture system and add-on control device required by §63.4692 until after you have completed the performance tests specified in paragraph (a)(1) of this section. Instead, you must maintain a log detailing the operation and maintenance of the emission capture system, add-on control device, and continuous parameter monitors during the period between the compliance date and the performance test. You must begin complying with the operating limits for your affected source on the date you complete the performance tests specified in paragraph (a)(1) of this section. The requirements in this paragraph (a)(4) do not apply to solvent recovery systems for which you conduct liquid-liquid material balances according to the requirements in §63.4761(j).

(b) Existing affected sources. For an existing affected source, you must meet the requirements of paragraphs (b)(1) through (3) of this section.

(1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in §63.4683. Except for solvent recovery systems for which you conduct liquid-liquid material balances according to §63.4761(j), you must conduct a performance test of each capture system and add-on control device according to the procedures in §§63.4764, 63.4765, and 63.4766 and establish the operating limits required by §63.4692 no later than the applicable compliance date specified in §63.4683. For a solvent recovery system for which you conduct liquid-liquid material balances according to §63.4761(j), you must initiate the first material balance no later than the compliance date specified in §63.4683.

(2) You must develop and begin implementing the work practice plan required by §63.4693 no later than the compliance date specified in §63.4683.

(3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.4761. The initial compliance period begins on the applicable compliance date specified in §63.4683 and ends on the last day of the 12th month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next 12 months. You must determine the mass of organic HAP emissions and volume of coating solids used each month and then calculate a 12-month organic HAP emission rate at the end of the initial 12-month compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§63.4764, 63.4765, and 63.4766; results of liquid-liquid material balances conducted according to §63.4761(j); calculations according to §63.4761 and supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the emission limit in §63.4690(b); the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.4768; and documentation of whether you developed and implemented the work practice plan required by §63.4693.

§ 63.4761 How do I demonstrate initial compliance?
(a) You may use the emission rate with add-on controls option for any coating operation, for any group of coating operations in the affected source, or for all of the coating operations in the affected source. You may include both controlled and uncontrolled coating operations in a group for which you use this option. You must use either the compliant material option or the emission rate without add-on controls option for any coating operation in the affected source for which you do not use the emission rate with add-on controls option. To demonstrate initial compliance, the coating operation(s) for which you use the emission rate with add-on controls option must meet the applicable emission limitations in §§63.4690, 63.4692, and 63.4693. You must meet all the requirements of this section to demonstrate initial compliance with the emission limitations. When calculating the organic HAP emission rate according to this section, do not include any coatings, thinners, or cleaning materials used on coating operations for which you use the compliant material option or the emission rate without add-on controls option. You do not need to redetermine the mass of organic HAP in coatings, thinners, or cleaning materials that have been reclaimed and reused in the coating operation(s) for which you use the emission rate with add-on controls option.

(b) Compliance with operating limits. Except as provided in §63.4760(a)(4), and except for solvent recovery systems for which you conduct liquid-liquid material balances according to the requirements of §63.4761(j), you must establish and demonstrate continuous compliance during the initial compliance period with the operating limits required by §63.4692, using the procedures specified in §§63.4767 and 63.4768.

(c) Compliance with work practice requirements. You must develop, implement, and document your implementation of the work practice plan required by §63.4693 during the initial compliance period, as specified in §63.4730.

(d) Compliance with emission limits. You must follow the procedures in paragraphs (e) through (n) of this section to demonstrate compliance with the applicable emission limit in §63.4690.

(e) Determine the mass fraction of organic HAP, density, volume used, and volume fraction of coating solids. Follow the procedures specified in §63.4751(a) through (d) to determine the mass fraction of organic HAP, density, and volume of each coating, thinner, and cleaning material used during each month; and the volume fraction of coating solids for each coating used during each month.

(f) Calculate the total mass of organic HAP emissions before add-on controls. Using Equation 1 of §63.4751, calculate the total mass of organic HAP emissions before add-on controls from all coatings, thinners, and cleaning materials used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option.

(g) Calculate the organic HAP emission reduction for each controlled coating operation. Determine the mass of organic HAP emissions reduced for each controlled coating operation during each month. The emission reduction determination quantifies the total organic HAP emissions that pass through the emission capture system and are destroyed or removed by the add-on control device. Use the procedures in paragraph (h) of this section to calculate the mass of organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct a liquid-liquid material balance, use the procedures in paragraph (j) of this section to calculate the organic HAP emission reduction.

(h) Calculate the organic HAP emission reduction for each controlled coating operation not using liquid-liquid material balances. For each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emission reduction, using Equation 1 of this section. The calculation applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coatings, thinners, and cleaning materials that are used in the coating
operation served by the emission capture system and add-on control device during each month. For any period of time a deviation specified in §63.4763(c) or (d) occurs in the controlled coating operation, including a deviation during a period of SSM, you must assume zero efficiency for the emission capture system and add-on control device. Equation 1 of this section treats the materials used during such a deviation as if they were used on an uncontrolled coating operation for the time period of the deviation.

\[
H_c = (A_c + B_c + C_c - H_{unc}) \left(\frac{CE \times DRE}{100} \right) \tag{Eq. 1}
\]

Where:

- \(H_c\) = Mass of organic HAP emission reduction for the controlled coating operation during the month, grams.
- \(A_c\) = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams.
- \(B_c\) = Total mass of organic HAP in the thinners used in the controlled coating operation during the month, grams, as calculated in Equation 1B of this section.
- \(C_c\) = Total mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, grams, as calculated in Equation 1C of this section.
- \(H_{unc}\) = Total mass of organic HAP in the coatings, thinners, and cleaning materials used during all deviations specified in §63.4763(c) and (d) that occurred during the month in the controlled coating operation, grams, as calculated in Equation 1D of this section.

- \(CE\) = Capture efficiency of the emission capture system vented to the add-on control device, percent. Use the test methods and procedures specified in §§63.4764 and 63.4765 to measure and record capture efficiency.
- \(DRE\) = Organic HAP destruction or removal efficiency of the add-on control device, percent. Use the test methods and procedures in §§63.4764 and 63.4766 to measure and record the organic HAP destruction or removal efficiency.

(1) Calculate the mass of organic HAP in the coatings used in the controlled coating operation, grams, using Equation 1A of this section:

\[
A_c = \sum_{i=1}^{n} (Vol_{c,i})(D_{c,i})(W_{c,i}) \tag{Eq. 1A}
\]

Where:

- \(A_c\) = Total mass of organic HAP in the coatings used in the controlled coating operation, grams.
- \(Vol_{c,i}\) = Total volume of coating, i, used during the month, liters.
- \(D_{c,i}\) = Density of coating, i, grams per liter.
- \(W_{c,i}\) = Mass fraction of organic HAP in coating, i, grams per gram.
m = Number of different coatings used.

(2) Calculate the mass of organic HAP in the thinners used in the controlled coating operation, grams, using Equation 1B of this section:

\[B_c = \sum_{j=1}^{n} (Vol_{t,j})(D_{t,j})(W_{t,j}) \]

(Eq. 1B)

Where:

- \(B_c \) = Total mass of organic HAP in the thinners used in the controlled coating operation during the month, grams.
- \(Vol_{t,j} \) = Total volume of thinner, \(j \), used during the month, liters.
- \(D_{t,j} \) = Density of thinner, \(j \), grams per liter.
- \(W_{t,j} \) = Mass fraction of organic HAP in thinner, \(j \), grams per gram.

- \(n \) = Number of different thinners used.

(3) Calculate the mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, grams, using Equation 1C of this section:

\[C_c = \sum_{k=1}^{p} (Vol_{s,k})(D_{s,k})(W_{s,k}) \]

(Eq. 1C)

Where:

- \(C_c \) = Total mass of organic HAP in the cleaning materials used in the controlled coating operation during the month, grams.
- \(Vol_{s,k} \) = Total volume of cleaning material, \(k \), used during the month, liters.
- \(D_{s,k} \) = Density of cleaning material, \(k \), grams per liter.
- \(W_{s,k} \) = Mass fraction of organic HAP in cleaning material, \(k \), grams per gram.

- \(p \) = Number of different cleaning materials used.

(4) Calculate the mass of organic HAP in the coatings, thinners, and cleaning materials used in the controlled coating operation during deviations specified in §63.4763(c) and (d), using Equation 1D of this section:

\[H_{mc} = \sum_{h=1}^{q} (Vol_{h})(D_{h})(W_{h}) \]

(Eq. 1D)

Where:
H_{unc}= \text{Total mass of organic HAP in the coatings, thinners, and cleaning materials used during all deviations specified in §63.4763(c) and (d) that occurred during the month in the controlled coating operation, grams.}

Vol_{h}= \text{Total volume of coating, thinner, or cleaning material, h, used in the controlled coating operation during deviations, liters.}

D_{h}= \text{Density of coating, thinner, or cleaning material, h, grams per liter.}

W_{h}= \text{mass fraction of organic HAP in coating, thinner, or cleaning material, h, grams organic HAP per gram coating.}

q = \text{Number of different coatings, thinners, or cleaning materials.}

(i) [Reserved]

(j) \text{Calculate the organic HAP emission reduction for each controlled coating operation using liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct liquid-liquid material balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the coatings, thinners, and cleaning materials that are used in the coating operation controlled by the solvent recovery system during each month. Perform a liquid-liquid material balance for each month as specified in paragraphs (j)(1) through (6) of this section. Calculate the mass of organic HAP emission reduction by the solvent recovery system as specified in paragraph (j)(7) of this section.}

(1) For each solvent recovery system, install, calibrate, maintain, and operate according to the manufacturer's specifications, a device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device must be initially certified by the manufacturer to be accurate to within ±2.0 percent of the mass of volatile organic matter recovered.

(2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, grams, based on measurement with the device required in paragraph (j)(1) of this section.

(3) Determine the mass fraction of volatile organic matter for each coating, thinner, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, grams volatile organic matter per gram coating. You may determine the volatile organic matter mass fraction using Method 24 of 40 CFR part 60, appendix A, or an EPA approved alternative method, or you may use information provided by the manufacturer or supplier of the coating. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24 of 40 CFR part 60, appendix A, or an approved alternative method, the test method results will take precedence unless after consultation, a regulated source could demonstrate to the satisfaction of the enforcement agency that the formulation data were correct.

(4) Determine the density of each coating, thinner, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, grams per liter, according to §63.4751(c).

(5) Measure the volume of each coating, thinner, and cleaning material used in the coating operation controlled by the solvent recovery system during the month, liters.

(6) Each month, calculate the solvent recovery system's volatile organic matter collection and recovery efficiency, using Equation 2 of this section:
Where:

\(R_v \) = Volatile organic matter collection and recovery efficiency of the solvent recovery system during the month, percent.

\(M_v \) = Mass of volatile organic matter recovered by the solvent recovery system during the month, grams.

\(V_{oi} \) = Volume of coating, \(i \), used in the coating operation controlled by the solvent recovery system during the month, liters.

\(D_i \) = Density of coating, \(i \), grams per liter.

\(W_{Vc,i} \) = Mass fraction of volatile organic matter for coating, \(i \), grams volatile organic matter per gram coating.

\(V_{ol} \) = Volume of thinner, \(j \), used in the coating operation controlled by the solvent recovery system during the month, liters.

\(D_j \) = Density of thinner, \(j \), grams per liter.

\(W_{Vt,j} \) = Mass fraction of volatile organic matter for thinner, \(j \), grams volatile organic matter per gram thinner.

\(V_{ok} \) = Volume of cleaning material, \(k \), used in the coating operation controlled by the solvent recovery system during the month, liters.

\(D_k \) = Density of cleaning material, \(k \), grams per liter.

\(W_{Vs,k} \) = Mass fraction of volatile organic matter for cleaning material, \(k \), grams volatile organic matter per gram cleaning material.

\(m \) = Number of different coatings used in the coating operation controlled by the solvent recovery system during the month.

\(n \) = Number of different thinners used in the coating operation controlled by the solvent recovery system during the month.

\(p \) = Number of different cleaning materials used in the coating operation controlled by the solvent recovery system during the month.

(7) Calculate the mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system during the month, using Equation 3 of this section:

\[
H_{CSR} = (A_{CSR} + B_{CSR} + C_{CSR}) \left(\frac{R_v}{100} \right) \quad (Eq. 3)
\]
Where:

\[H_{CSR} = \text{Mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system during the month, grams.} \]

\[A_{CSR} = \text{Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, grams, calculated using Equation 3A of this section.} \]

\[B_{CSR} = \text{Total mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery system, grams, calculated using Equation 3B of this section.} \]

\[C_{CSR} = \text{Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system, grams, calculated using Equation 3C of this section.} \]

\[R_V = \text{Volatile organic matter collection and recovery efficiency of the solvent recovery system, percent, from Equation 2 of this section.} \]

(i) Calculate the mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, grams, using Equation 3A of this section:

\[A_{CSR} = \sum_{i=1}^{m} (V_{Ci})(D_{Ci})(W_{Ci}) \quad (\text{Eq. 3A}) \]

Where:

\[A_{CSR} = \text{Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system during the month, grams.} \]

\[V_{Ci} = \text{Total volume of coating, i, used during the month in the coating operation controlled by the solvent recovery system, liters.} \]

\[D_{Ci} = \text{Density of coating, i, grams per liter.} \]

\[W_{Ci} = \text{Mass fraction of organic HAP in coating, i, grams per gram.} \]

\[m = \text{Number of different coatings used.} \]

(ii) Calculate the mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery system, grams, using Equation 3B of this section:

\[B_{CSR} = \sum_{j=1}^{n} (V_{tj})(D_{tj})(W_{tj}) \quad (\text{Eq. 3B}) \]

Where:

\[B_{CSR} = \text{Total mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery system during the month, grams.} \]
Vol\(_{i,j}\) = Total volume of thinner, \(j\), used during the month in the coating operation controlled by the solvent recovery system, liters.

\(D_{i,j}\) = Density of thinner, \(j\), grams per liter.

\(W_{i,j}\) = Mass fraction of organic HAP in thinner, \(j\), grams per gram.

\(n\) = Number of different thinners used.

(iii) Calculate the mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the month, grams, using Equation 3C of this section.

\[
C_{CSR} = \sum_{k=1}^{p} \left(Vol_{k} \right) \left(D_{s,k} \right) \left(W_{s,k} \right) \quad \text{(Eq. 3C)}
\]

Where:

\(C_{CSR}\) = Total mass of organic HAP in the cleaning materials used in the coating operation controlled by the solvent recovery system during the month, grams.

\(Vol_{k}\) = Total volume of cleaning material, \(k\), used during the month in the coating operation controlled by the solvent recovery system, liters.

\(D_{s,k}\) = Density of cleaning material, \(k\), grams per liter.

\(W_{s,k}\) = Mass fraction of organic HAP in cleaning material, \(k\), grams per gram.

\(p\) = Number of different cleaning materials used.

(k) Calculate the total volume of coating solids used. Determine the total volume of coating solids used, liters, which is the combined volume of coating solids for all the coatings used during each month in the coating operation or group of coating operations for which you use the emission rate with add-on controls option, using Equation 2 of §63.4751.

(l) Calculate the mass of organic HAP emissions for each month. Determine the mass of organic HAP emissions, grams, during each month, using Equation 4 of this section.

\[
H_{HAP} = H_{e} - \sum_{i=1}^{R} \left(H_{c,i} \right) - \sum_{i=1}^{R} \left(H_{CSR,i} \right) \quad \text{(Eq. 4)}
\]

Where:

\(H_{HAP}\) = Total mass of organic HAP emissions for the month, grams.

\(H_{e}\) = Total mass of organic HAP emissions before add-on controls from all the coatings, thinners, and cleaning materials used during the month, grams, determined according to paragraph (f) of this section.

\(H_{c,i}\) = Total mass of organic HAP emission reduction for controlled coating operation, \(i\), not using a liquid-liquid material balance, during the month, grams, from Equation 1 of this section.
H_{CSR,j} = \text{Total mass of organic HAP emission reduction for coating operation, } j, \text{ controlled by a solvent recovery system using a liquid-liquid material balance, during the month, grams, from Equation 3 of this section.}

q = \text{Number of controlled coating operations not using a liquid-liquid material balance.}

r = \text{Number of coating operations controlled by a solvent recovery system using a liquid-liquid material balance.}

(m) \text{Calculate the organic HAP emission rate for the 12-month compliance period. Determine the organic HAP emission rate for the 12-month compliance period, grams organic HAP per liter coating solids used, using Equation 5 of this section:}

\[H_{\text{annual}} = \frac{\sum_{j=1}^{q} H_{HAP,y} \sum_{y=1}^{12} V_{s,t,y}}{\sum_{y=1}^{12} V_{s,t,y}} \quad \text{(Eq. 5)} \]

Where:

\(H_{\text{annual}} \) = Organic HAP emission rate for the 12-month compliance period, grams organic HAP per liter coating solids.

\(H_{HAP,y} \) = Organic HAP emission rate for month, y, determined according to Equation 4 of this section.

\(V_{s,t,y} \) = Total volume of coating solids, liters, used during month, y, from Equation 2 of §63.4751.

\(y \) = Identifier for months.

(n) \text{Compliance demonstration. To demonstrate initial compliance with the emission limit, the organic HAP emission rate, calculated using Equation 5 of this section, must be less than or equal to the applicable emission limit in §63.4690. You must keep all records as required by §§63.4730 and 63.4731. As part of the Notification of Compliance Status required by §63.4710, you must identify the coating operation(s) for which you used the emission rate with add-on controls option and submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in §63.4690, and you achieved the operating limits required by §63.4692 and the work practice standards required by §63.4693.}

§ 63.4762 [Reserved]

§ 63.4763 \text{How do I demonstrate continuous compliance with the emission limitations?}

(a) To demonstrate continuous compliance with the applicable emission limit in §63.4690, the organic HAP emission rate for each compliance period, calculated using Equation 5 of §63.4761, must be equal to or less than the applicable emission limit in §63.4690. A compliance period consists of 12 months. Each month after the end of the initial compliance period described in §63.4760 is the end of a compliance period consisting of that month and the preceding 11 months. You must perform the calculations in §63.4761 on a monthly basis using data from the previous 12 months of operation.
(b) If the organic HAP emission rate for any 12-month compliance period exceeded the applicable emission limit in §63.4690, this is a deviation from the emission limitation for that compliance period and must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(7).

(c) You must demonstrate continuous compliance with each operating limit required by §63.4692 that applies to you, as specified in Table 3 to this subpart.

(1) If an operating parameter is out of the allowed range specified in Table 3 to this subpart, this is a deviation from the operating limit that must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(7).

(2) If an operating parameter deviates from the operating limit specified in Table 3 to this subpart, then you must assume that the emission capture system and add-on control device were achieving zero efficiency during the time period of the deviation. For the purposes of completing the compliance calculations specified in §63.4761(h), you must treat the materials used during a deviation on a controlled coating operation as if they were used on an uncontrolled coating operation for the time period of the deviation, as indicated in Equation 1 of §63.4761.

(d) You must meet the requirements for bypass lines in §63.4768(b) for controlled coating operations for which you do not conduct liquid-liquid material balances. If any bypass line is opened and emissions are diverted to the atmosphere when a controlled coating operation is running, this is a deviation that must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(7). For the purposes of completing the compliance calculations specified in §63.4761(h), you must treat the materials used during a deviation on a controlled coating operation as if they were used on an uncontrolled coating operation for the time period of the deviation, as indicated in Equation 1 of §63.4761.

(e) You must demonstrate continuous compliance with the work practice standards in §63.4693. If you did not develop a work practice plan, or you did not implement the plan, or you did not keep the records required by §63.4730(k)(8), this is a deviation from the work practice standards that must be reported as specified in §§63.4710(c)(6) and 63.4720(a)(7).

(f) As part of each semiannual compliance report required in §63.4720, you must identify the coating operation(s) for which you used the emission rate with add-on controls option. If there were no deviations from the emission limitations, submit a statement that you were in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in §63.4690, and you achieved the operating limits required by §63.4692 and the work practice standards required by §63.4693 during each compliance period.

(g) [Reserved]

(h) Consistent with §§63.6(e) and 63.7(e)(1), deviations that occur during a period of SSM of the emission capture system, add-on control device, or coating operation that may affect emission capture or control device efficiency are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with §63.6(e)(1). The Administrator will determine whether deviations that occur during a period you identify as an SSM are violations, according to the provisions in §63.6(e).

(i) [Reserved]

(j) You must maintain records as specified in §§63.4730 and 63.4731.

§ 63.4764 What are the general requirements for performance tests?

(a) You must conduct each performance test required by §63.4670 according to the requirements in §63.4760 and under the conditions in this section unless you obtain a waiver of the performance test according to the provisions in §63.476(h).

(1) Representative coating operation operating conditions. You must conduct the performance test under representative operating conditions for the coating operation. Operations during periods of SSM, and during periods of nonoperation do not constitute representative conditions. You must record the process information that is necessary to document operating conditions during the test and explain why the conditions represent normal operation.

(2) Representative emission capture system and add-on control device operating conditions. You must conduct the performance test when the emission capture system and add-on control device are operating at a representative flow rate, and the add-on control device is operating at a representative inlet concentration. You must record information that is necessary to document emission capture system and add-on control device operating conditions during the test and explain why the conditions represent normal operation.

(b) You must conduct each performance test of an emission capture system according to the requirements in §63.4765. You must conduct each performance test of an add-on control device according to the requirements in §63.4766.

§ 63.4765 How do I determine the emission capture system efficiency?

You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by §63.4670.

(a) Assuming 100 percent capture efficiency. You may assume the capture system efficiency is 100 percent if both of the conditions in paragraphs (a)(1) and (2) of this section are met:

(1) The capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and directs all the exhaust gases from the enclosure to an add-on control device.

(2) All coatings, thinners, and cleaning materials used in the coating operation are applied within the capture system; coating solvent flash-off and coating, curing, and drying occurs within the capture system; and the removal or evaporation of cleaning materials from the surfaces they are applied to occurs within the capture system. For example, this criterion is not met if parts enter the open shop environment when being moved between a spray booth and a curing oven.

(b) Measuring capture efficiency. If the capture system does not meet both of the criteria in paragraphs (a)(1) and (2) of this section, you must use one of the three protocols described in paragraphs (c), (d), and (e) of this section to measure capture efficiency. The capture efficiency measurements use TVH capture efficiency as a surrogate for organic HAP capture efficiency. For the protocols in paragraphs (c) and (d) of this section, the capture efficiency measurement must consist of three test runs. Each test run must be at least 3 hours in duration or the length of a production run, whichever is longer, up to 8 hours. For the purposes of this test, a production run means the time required for a single part to go from the beginning to the end of production, which includes surface preparation activities and drying or curing time.

(c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not captured by the emission capture system. Use a temporary total
enclosure or a building enclosure and the procedures in paragraphs (c)(1) through (6) of this section to measure emission capture system efficiency using the liquid-to-uncaptured-gas protocol.

(1) Either use a building enclosure or construct an enclosure around the coating operation where coatings, thinners, and cleaning materials are applied, and all areas where emissions from these applied coatings and materials subsequently occur, such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions for routing to an add-on control device, such as the entrance and exit areas of an oven or spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51.

(2) Use Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and cleaning material used in the coating operation during each capture efficiency test run. To make the determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods.

(3) Use Equation 1 of this section to calculate the total mass of TVH liquid input from all the coatings, thinners, and cleaning materials used in the coating operation during each capture efficiency test run.

\[
TVH_{\text{used}} = \sum_{i=1}^{n} (TVH_i) (Vol_i) (D_i)
\]
(Eq. 1)

Where:

- \(TVH_{\text{used}}\) = Mass of liquid TVH in materials used in the coating operation during the capture efficiency test run, grams.
- \(TVH_i\) = Mass fraction of TVH in coating, thinner, or cleaning material, \(i\), that is used in the coating operation during the capture efficiency test run, grams TVH per gram material.
- \(Vol_i\) = Total volume of coating, thinner, or cleaning material, \(i\), used in the coating operation during the capture efficiency test run, liters.
- \(D_i\) = Density of coating, thinner, or cleaning material, \(i\), grams material per liter material.
- \(n\) = Number of different coatings, thinners, and cleaning materials used in the coating operation during the capture efficiency test run.

(4) Use Method 204D or E of appendix M to 40 CFR part 51 to measure the total mass, grams, of TVH emissions that are not captured by the emission capture system; they are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.

(i) Use Method 204D of appendix M to 40 CFR part 51 if the enclosure is a temporary total enclosure.

(ii) Use Method 204E of appendix M to 40 CFR part 51 if the enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally.
(5) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 2 of this section:

\[
CE = \left(\frac{TVH_{\text{used}} - TVH_{\text{uncaptured}}}{TVH_{\text{used}}} \right) \times 100 \quad (\text{Eq. 2})
\]

Where:

\(CE \) = Capture efficiency of the emission capture system vented to the add-on control device, percent.

\(TVH_{\text{used}} \) = Total mass of TVH liquid input used in the coating operation during the capture efficiency test run, grams.

\(TVH_{\text{uncaptured}} \) = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, grams, determined according to paragraph (c)(4) of this section.

(6) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs.

(d) Gas-to-gas protocol using a temporary total enclosure or a building enclosure. The gas-to-gas protocol compares the mass of TVH emissions captured by the emission capture system to the mass of TVH emissions not captured. Use a temporary total enclosure or a building enclosure and the procedures in paragraphs (d)(1) through (5) of this section to measure emission capture system efficiency using the gas-to-gas protocol.

(1) Either use a building enclosure or construct an enclosure around the coating operation where coatings, thinners, and cleaning materials are applied, and all areas where emissions from these applied coatings and materials subsequently occur, such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions generated by the coating operation for routing to an add-on control device, such as the entrance and exit areas of an oven or a spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51.

(2) Use Method 204B or 204C of appendix M to 40 CFR part 51 to measure the total mass, grams, of TVH emissions captured by the emission capture system during each capture efficiency test run as measured at the inlet to the add-on control device. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.

(i) The sampling points for the Method 204B or 204C of appendix M to 40 CFR part 51 measurement must be upstream from the add-on control device and must represent total emissions routed from the capture system and entering the add-on control device.

(ii) If multiple emission streams from the capture system enter the add-on control device without a single common duct, then the emissions entering the add-on control device must be simultaneously measured in each duct, and the total emissions entering the add-on control device must be determined.

(3) Use Method 204D or 204E of appendix M to 40 CFR part 51 to measure the total mass, grams, of TVH emissions that are not captured by the emission capture system; they are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods.
(i) Use Method 204D of appendix M to 40 CFR part 51 if the enclosure is a temporary total enclosure.

(ii) Use Method 204E of appendix M to 40 CFR part 51 if the enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally.

(4) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 3 of this section:

\[
CE = \frac{TVH_{\text{captured}}}{(TVH_{\text{captured}} + TVH_{\text{uncaptured}})} \times 100 \quad \text{(Eq. 3)}
\]

Where:

\(CE\) = Capture efficiency of the emission capture system vented to the add-on control device, percent.

\(TVH_{\text{captured}}\) = Total mass of TVH captured by the emission capture system as measured at the inlet to the add-on control device during the emission capture efficiency test run, grams, determined according to paragraph (d)(2) of this section.

\(TVH_{\text{uncaptured}}\) = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, grams, determined according to paragraph (d)(3) of this section.

(5) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs.

(e) Alternative capture efficiency protocol. As an alternative to the procedures specified in paragraphs (c) and (d) of this section, you may determine capture efficiency using any other capture efficiency protocol and test methods that satisfy the criteria of either the DQO or LCL approach as described in appendix A to subpart KK of this part.

§ 63.4766 How do I determine the add-on control device emission destruction or removal efficiency?

You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by §63.4760. You must conduct three test runs as specified in §63.7(e)(3), and each test run must last at least 1 hour.

(a) For all types of add-on control devices, use the test methods specified in paragraphs (a)(1) through (5) of this section.

(1) Use Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select sampling sites and velocity traverse points.

(2) Use Method 2, 2A, 2C, 2D, 2F, or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.

(3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight. You may also use as an alternative to Method 3B, the manual method

(4) Use Method 4 of appendix A to 40 CFR part 60 to determine stack gas moisture.

(5) Methods for determining gas volumetric flow rate, dry molecular weight, and stack gas moisture must be performed, as applicable, during each test run.

(b) Measure total gaseous organic mass emissions as carbon at the inlet and outlet of the add-on control device simultaneously, using either Method 25 or 25A of appendix A to 40 CFR part 60, as specified in paragraphs (b)(1) through (3) of this section. You must use the same method for both the inlet and outlet measurements.

(1) Use Method 25 of appendix A to 40 CFR part 60 if the add-on control device is an oxidizer, and you expect the total gaseous organic concentration as carbon to be more than 50 parts per million (ppm) at the control device outlet.

(2) Use Method 25A of appendix A to 40 CFR part 60 if the add-on control device is an oxidizer, and you expect the total gaseous organic concentration as carbon to be 50 ppm or less at the control device outlet.

(3) Use Method 25A of appendix A to 40 CFR part 60 if the add-on control device is not an oxidizer.

(c) If two or more add-on control devices are used for the same emission stream, then you must measure emissions at the outlet of each device. For example, if one add-on control device is a concentrator with an outlet for the high-volume, dilute stream that has been treated by the concentrator, and a second add-on control device is an oxidizer with an outlet for the low-volume, concentrated stream that is treated with the oxidizer, you must measure emissions at the outlet of the oxidizer and the high volume dilute stream outlet of the concentrator.

(d) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 1 of this section. If there is more than one inlet or outlet to the add-on control device, you must calculate the total gaseous organic mass flow rate using Equation 1 of this section for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions.

\[M_f = Q_{sd} C_c (12)(41.6)(10^{-5}) \]
\[\text{(Eq. 1)} \]

Where:

- \(M_f \) = Total gaseous organic emissions mass flow rate, grams per hour (h).
- \(C_c \) = Concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A, parts per million by volume (ppmv), dry basis.
- \(Q_{sd} \) = Volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F, or 2G, dry standard cubic meters/hour (dscm/h).
- 41.6 = Conversion factor for molar volume, gram-moles per cubic meter (mol/m\(^3\)) @ 293 Kelvin (K) and 760 millimeters of mercury (mmHg)).
(e) For each test run, determine the add-on control device organic emissions destruction or removal efficiency, using Equation 2 of this section:

\[DRE = 100 \times \frac{M_f - M_o}{M_f} \]

(Eq 2)

Where:

\(DRE \) = Organic emissions destruction or removal efficiency of the add-on control device, percent.

\(M_f \) = Total gaseous organic emissions mass flow rate at the inlet(s) to the add-on control device, using Equation 1 of this section, grams/h.

\(M_o \) = Total gaseous organic emissions mass flow rate at the outlet(s) of the add-on control device, using Equation 1 of this section, grams/h.

(f) Determine the emission destruction or removal efficiency of the add-on control device as the average of the efficiencies determined in the three test runs and calculated in Equation 2 of this section.

§ 63.4767 How do I establish the emission capture system and add-on control device operating limits during the performance test?

During the performance test required by §63.4760 and described in §§63.4764, 63.4765, and 63.4766, you must establish the operating limits required by §63.4692 according to this section, unless you have received approval for alternative monitoring and operating limits under §63.8(f) as specified in §63.4692.

(a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating limits according to paragraphs (a)(1) and (2) of this section.

(1) During the performance test, you must monitor and record the combustion temperature at least once every 15 minutes during each of the three test runs. You must monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs.

(2) Use the data collected during the performance test to calculate and record the average combustion temperature maintained during the performance test. This average combustion temperature is the minimum operating limit for your thermal oxidizer.

(b) Catalytic oxidizers. If your add-on control device is a catalytic oxidizer, establish the operating limits according to either paragraphs (b)(1) and (2) or paragraphs (b)(3) and (4) of this section.

(1) During the performance test, you must monitor and record the temperature before the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test runs.

(2) Use the data collected during the performance test to calculate and record the average temperature difference across the catalyst bed maintained during the performance test. This is the minimum operating limit for your catalytic oxidizer.

(3) As an alternative to monitoring the temperature difference across the catalyst bed, you may monitor the temperature at the inlet to the catalyst bed and implement a site-specific inspection and maintenance
plan for your catalytic oxidizer as specified in paragraph (b)(4) of this section. During the performance test, you must monitor and record the temperature before the catalyst bed at least once every 15 minutes during each of the three test runs. Use the data collected during the performance test to calculate and record the average temperature before the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer. (Note: For regenerative catalytic oxidizers, the inlet to the catalyst is defined as the general zone between the inlets to the catalyst beds located in the multiple regeneration towers; select either a monitoring location or multiple monitoring locations. If multiple monitoring locations are selected, either establish separate operating limits for each location or calculate an average of the multiple measurements and set a single operating limit.)

(4) You must develop and implement an inspection and maintenance plan for your catalytic oxidizer(s) for which you elect to monitor according to paragraph (b)(3) of this section. The plan must address, at a minimum, the elements specified in paragraphs (b)(4)(i) through (iii) of this section.

(i) Annual sampling and analysis of the catalyst activity (i.e., conversion efficiency) following the recommended procedures from the manufacturer, the catalyst supplier, or the catalyst test provider.

(ii) Monthly inspection of the oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures.

(iii) Annual internal and monthly external visual inspection of the catalyst bed to check for channeling, abrasion, and settling. If problems are found, you must take corrective action consistent with the manufacturer's recommendation and conduct a new performance test to determine destruction efficiency according to §63.4766.

(c) Carbon adsorbers. If your add-on control device is a carbon adsorber, establish the operating limits according to paragraphs (c)(1) and (2) of this section.

(1) You must monitor and record the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, and the carbon bed temperature after each carbon bed regeneration and cooling cycle for the regeneration cycle either immediately preceding or immediately following the performance test.

(2) The operating limits for your carbon adsorber are the minimum total desorbing gas mass flow recorded during the regeneration cycle, and the maximum carbon bed temperature recorded after the cooling cycle.

(d) Condensers. If your add-on control device is a condenser, establish the operating limits according to paragraphs (d)(1) and (2) of this section.

(1) During the performance test, you must monitor and record the condenser outlet (product side) gas temperature at least once every 15 minutes during each of the three test runs.

(2) Use the data collected during the performance test to calculate and record the average condenser outlet (product side) gas temperature maintained during the performance test. This average condenser outlet gas temperature is the maximum operating limit for your condenser.

(e) Concentrators. If your add-on control device includes a concentrator, you must establish operating limits for the concentrator according to paragraphs (e)(1) through (4) of this section.

(1) During the performance test, you must monitor and record the desorption concentrate stream gas temperature at least once every 15 minutes during each of the three runs of the performance test.
(2) Use the data collected during the performance test to calculate and record the average temperature. This is the minimum operating limit for the desorption concentrate gas stream temperature.

(3) During the performance test, you must monitor and record the pressure drop of the dilute stream across the concentrator at least once every 15 minutes during each of the three runs of the performance test.

(4) Use the data collected during the performance test to calculate and record the average pressure drop. This is the maximum operating limit for the dilute stream across the concentrator.

(f) Emission capture system. For each capture device that is not part of a PTE that meets the criteria of §63.4765(a), establish an operating limit for either the gas volumetric flow rate or duct static pressure, as specified in paragraphs (f)(1) and (2) of this section. The operating limit for a PTE is specified in Table 3 to this subpart.

(1) During the capture efficiency determination required by §63.4760 and described in §§63.4764 and 63.4765, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate capture device in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the capture device and the add-on control device inlet.

(2) Calculate and record the average gas volumetric flow rate or duct static pressure for the three test runs for each capture device. This average gas volumetric flow rate or duct static pressure is the minimum operating limit for that specific capture device.

§ 63.4768 What are the requirements for continuous parameter monitoring system installation, operation, and maintenance?

(a) General. You must install, operate, and maintain each CPMS specified in paragraphs (c), (e), (f), and (g) of this section according to paragraphs (a)(1) through (6) of this section. You must install, operate, and maintain each CPMS specified in paragraphs (b) and (d) of this section according to paragraphs (a)(3) through (5) of this section.

(1) The CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four equally spaced successive cycles of CPMS operation in 1 hour.

(2) You must determine the average of all recorded readings for each successive 3-hour period of the emission capture system and add-on control device operation.

(3) You must record the results of each inspection, calibration, and validation check of the CPMS.

(4) You must maintain the CPMS at all times and have available necessary parts for routine repairs of the monitoring equipment.

(5) You must operate the CPMS and collect emission capture system and add-on control device parameter data at all times that a controlled coating operation is operating, except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments).

(6) You must not use emission capture system or add-on control device parameter data recorded during periods when the control device is not receiving emissions, monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities when calculating data averages.
You must use all the data collected during all other periods in calculating the data averages for determining compliance with the emission capture system and add-on control device operating limits.

(7) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the CPMS to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions. Any period for which the monitoring system is out-of-control and data are not available for required calculations is a deviation from the monitoring requirements.

(b) Capture system bypass line. You must meet the requirements of paragraphs (b)(1) and (2) of this section for each emission capture system that contains bypass lines that could divert emissions away from the add-on control device to the atmosphere.

(1) You must monitor or secure the valve or closure mechanism controlling the bypass line in a nondiverting position in such a way that the valve or closure mechanism cannot be opened without creating a record that the valve was opened. The method used to monitor or secure the valve or closure mechanism must meet one of the requirements specified in paragraphs (b)(1)(i) through (iv) of this section.

(i) Flow control position indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow control position indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. The time of occurrence and flow control position must be recorded, as well as every time the flow direction is changed. The flow control position indicator must be installed at the entrance to any bypass line that could divert the emissions away from the add-on control device to the atmosphere.

(ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal or closure mechanism at least once every month to ensure that the valve is maintained in the closed position, and the emissions are not diverted away from the add-on control device to the atmosphere.

(iii) Valve closure monitoring. Ensure that any bypass line valve is in the closed (non-diverting) position through monitoring of valve position at least once every 15 minutes. You must inspect the monitoring system at least once every month to verify that the monitor will indicate valve position.

(iv) Automatic shutdown system. Use an automatic shutdown system in which the coating operation is stopped when flow is diverted by the bypass line away from the add-on control device to the atmosphere when the coating operation is running. You must inspect the automatic shutdown system at least once every month to verify that it will detect diversions of flow and shut down the coating operation.

(2) If any bypass line is opened and there was a deviation from the applicable emission limitation, you must include a description of why the bypass line was opened and the length of time it remained open in the semiannual compliance reports required in §63.4720.

(c) Thermal oxidizers and catalytic oxidizers. If you are using a thermal oxidizer or catalytic oxidizer as an add-on control device (including those used with concentrators or with carbon adsorbers to treat desorbed concentrate streams), you must comply with the requirements in paragraphs (c)(1) through (3) of this section:

(1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately downstream of the firebox before any substantial heat exchange occurs.
(2) For a catalytic oxidizer, you must install a gas temperature monitor in the gas stream immediately before the catalyst bed, and if you established operating limits according to §63.4767(b)(1) and (2), also install a gas temperature monitor in the gas stream immediately after the catalyst bed.

(i) If you establish operating limits according to §63.4767(b)(1) and (2), then you must install the gas temperature monitors both upstream and downstream of the catalyst bed. The temperature monitors must be in the gas stream immediately before and after the catalyst bed to measure the temperature difference across the bed.

(ii) If you establish operating limits according to §63.4767(b)(3) and (4), then you must install a gas temperature monitor upstream of the catalyst bed. The temperature monitor must be in the gas stream immediately before the catalyst bed to measure the temperature.

(3) For all thermal oxidizers and catalytic oxidizers, you must meet the requirements in paragraphs (a) and (c)(3)(i) through (vii) of this section for each gas temperature monitoring device.

(i) Locate the temperature sensor in a position that provides a representative temperature.

(ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger.

(iii) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.

(iv) If a gas temperature chart recorder is used, it must have a measurement sensitivity in the minor division of at least 20 degrees Fahrenheit.

(v) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor must yield a reading within 30 degrees Fahrenheit of the process temperature sensor reading.

(vi) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor.

(vii) At least monthly, inspect components for integrity and electrical connections for continuity, oxidation, and galvanic corrosion.

(d) Carbon adsorbers. If you are using a carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section.

(1) The regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of plus or minus 10 percent capable of recording the total regeneration desorbing gas mass flow for each regeneration cycle.

(2) The carbon bed temperature monitor must have a measurement sensitivity of 1 percent of the temperature recorded or 1 degree Fahrenheit, whichever is greater, and must be capable of recording the temperature within 15 minutes of completing any carbon bed cooling cycle.
(e) **Condensers.** If you are using a condenser, you must monitor the condenser outlet (product side) gas temperature and comply with paragraphs (a) and (e)(1) and (2) of this section.

1. The gas temperature monitor must have a measurement sensitivity of 1 percent of the temperature recorded or 1 degree Fahrenheit, whichever is greater.

2. The temperature monitor must provide a gas temperature record at least once every 15 minutes.

(f) **Concentrators.** If you are using a concentrator, such as a zeolite wheel or rotary carbon bed concentrator, you must comply with the requirements in paragraphs (f)(1) and (2) of this section.

1. You must install a temperature monitor in the desorption gas stream. The temperature monitor must meet the requirements in paragraphs (a) and (c)(3) of this section.

2. You must install a device to monitor pressure drop across the zeolite wheel or rotary carbon bed. The pressure monitoring device must meet the requirements in paragraphs (a) and (f)(2)(i) through (vii) of this section.

 i. Locate the pressure sensor(s) in or as close to a position that provides a representative measurement of the pressure.

 ii. Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.

 iii. Use a gauge with a minimum tolerance of 0.5 inch of water or a transducer with a minimum tolerance of 1 percent of the pressure range.

 iv. Check the pressure tap daily.

 v. Using a manometer, check gauge calibration quarterly and transducer calibration monthly.

 vi. Conduct calibration checks any time the sensor exceeds the manufacturer’s specified maximum operating pressure range or install a new pressure sensor.

 vii. At least monthly, inspect components for integrity, electrical connections for continuity, and mechanical connections for leakage.

(g) **Emission capture systems.** The capture system monitoring system must comply with the applicable requirements in paragraphs (g)(1) and (2) of this section.

1. For each flow measurement device, you must meet the requirements in paragraphs (a) and (g)(1)(i) through (iv) of this section.

 i. Locate a flow sensor in a position that provides a representative flow measurement in the duct from each capture device in the emission capture system to the add-on control device.

 ii. Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

 iii. Conduct a flow sensor calibration check at least semiannually.

 iv. At least monthly, inspect components for integrity, electrical connections for continuity, and mechanical connections for leakage.
(2) For each pressure drop measurement device, you must comply with the requirements in paragraphs (a) and (g)(2)(i) through (vi) of this section.

(i) Locate the pressure sensor(s) in or as close to a position that provides a representative measurement of the pressure drop across each opening you are monitoring.

(ii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.

(iii) Check pressure tap pluggage daily.

(iv) Using an inclined manometer with a measurement sensitivity of 0.0002 inch water, check gauge calibration quarterly and transducer calibration monthly.

(v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range or install a new pressure sensor.

(vi) At least monthly, inspect components for integrity, electrical connections for continuity, and mechanical connections for leakage.

Other Requirements and Information

§ 63.4780 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by us, the EPA, or a delegated authority such as your State, local, or tribal agency. If the EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency, in addition to the EPA, has the authority to implement and enforce this subpart. You should contact your EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the EPA Administrator and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section:

(1) Approval of alternatives to the work practice standards under §63.4693.

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major changes to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

§ 63.4781 What definitions apply to this subpart?

Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows:

Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere.
Adhesive means any chemical substance that is applied for the purpose of bonding two surfaces together.

Block average is an average of data points collected over any specified, continuous 180-minute block of time (e.g., a 3-hour block could be noon to 3 p.m., with a subsequent total of eight 3-hour blocks within a 24-hour period).

Capture device means a hood, enclosure, room, floor sweep, or other means of containing or collecting emissions and directing those emissions into an add-on air pollution control device.

Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device.

Capture system means one or more capture devices intended to collect emissions generated by a coating operation in the use of coatings or cleaning materials, both at the point of application and at subsequent points where emissions from the coatings or cleaning materials occur, such as flashoff, drying, or curing. As used in this subpart, multiple capture devices that collect emissions generated by a coating operation are considered a single capture system.

Cleaning material means a solvent used to remove contaminants and other materials, such as dirt, grease, oil, and dried or wet coating (e.g., depainting), from a substrate before or after coating application or from equipment associated with a coating operation, such as spray booths, spray guns, racks, tanks, and hangers. Thus, it includes any cleaning material used on substrates or equipment or both.

Coating means a material applied to a substrate for decorative, protective, or functional purposes. Such materials include, but are not limited to, paints, sealants, caulks, inks, adhesives, and maskants. Decorative, protective, or functional materials that consist only of protective oils for metal, acids, bases, or any combination of these substances are not considered coatings for the purposes of this subpart.

Coating operation means equipment used to apply cleaning materials to a substrate to prepare it for coating application or to remove dried coating (surface preparation), to apply coating to a substrate (coating application) and to dry or cure the coating after application, or to clean coating operation equipment (equipment cleaning). A single coating operation may include any combination of these types of equipment, but always includes at least the point at which a coating or cleaning material is applied and all subsequent points in the affected source where organic HAP emissions from that coating or cleaning material occur. There may be multiple coating operations in an affected source. Coating application with hand-held nonrefillable aerosol containers, touchup markers, or marking pens is not a coating operation for the purposes of this subpart.

Coating solids means the nonvolatile portion of the coating that makes up the dry film.

Continuous parameter monitoring system (CPMS) means the total equipment that may be required to meet the data acquisition and availability requirements of this subpart used to sample, condition (if applicable), analyze, and provide a record of coating operation, or capture system, or add-on control device parameters.

Controlled coating operation means a coating operation from which some or all of the organic HAP emissions are routed through an emission capture system and add-on control device.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:
(1) Fails to meet any requirement or obligation established by this subpart including, but not limited to any emission limit, or operating limit, or work practice standard;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limit, or operating limit, or work practice standard in this subpart during SSM, regardless of whether or not such failure is permitted by this subpart.

Emission limitation means an emission limit, operating limit, or work practice standard.

Enclosure means a structure that surrounds a source of emissions and captures and directs the emissions to an add-on control device.

Exempt compound means a specific compound that is not considered a VOC due to negligible photochemical reactivity. The exempt compounds are listed in 40 CFR 51.100(s).

Finished wood product means any wood building product to which a protective, decorative, or functional layer has been applied. Materials used include, but are not limited to, paints, stains, sealers, topcoats, basecoats, primers, enamels, inks, and adhesives.

Laminated wood product means any wood building product to which a protective, decorative, or functional layer has been bonded with an adhesive. Products that are produced by bonding layers to the substrate as a part of the substrate manufacturing process (prior to pressing) are not considered laminated products under this subpart.

Manufacturer's formulation data means data on a material (such as a coating) that are supplied by the material manufacturer based on knowledge of the ingredients used to manufacture that material, rather than based on testing of the material with the test methods specified in §63.4741. Manufacturer's formulation data may include, but are not limited to, information on density, organic HAP content, volatile organic matter content, and coating solids content.

Mass fraction of organic HAP means the ratio of the mass of organic HAP to the mass of a material in which it is contained, expressed as grams of organic HAP per gram of material.

Millwork means lumber that has been remanufactured into a wood building product or component such as door, window, and staircase part(s), or decorative trim.

Month means a calendar month or a pre-specified period of 28 days to 35 days to allow for flexibility in recordkeeping when data are based on a business accounting period.

Organic HAP content means the mass of organic HAP per volume of coating solids for a coating calculated using Equation 2 of §63.4741. The organic HAP content is determined for the coating in the condition it is in when received from its manufacturer or supplier and does not account for any alteration after receipt.

Permanent total enclosure (PTE) means a permanently installed enclosure that meets the criteria of Method 204 of appendix M, 40 CFR part 51, for a PTE and that directs all the exhaust gases from the enclosure to an add-on control device.
Protective oil means an organic material that is applied to metal for the purpose of providing lubrication or protection from corrosion without forming a solid film. This definition of protective oil includes, but is not limited to, lubricating oils, evaporative oils (including those that evaporate completely), and extrusion oils.

Research or laboratory facility means a facility whose primary purpose is for research and development of new processes and products, that is conducted under the close supervision of technically trained personnel, and is not engaged in the manufacture of final or intermediate products for commercial purposes, except in a de minimis manner.

Responsible official means responsible official as defined in 40 CFR 70.2.

Startup, initial means the first time equipment is brought online in a source.

Surface preparation means use of a cleaning material on a portion of or all of a substrate. This includes use of a cleaning material to remove dried coating, which is sometimes called “depainting.”

Temporary total enclosure means an enclosure constructed for the purpose of measuring the capture efficiency of pollutants emitted from a given source as defined in Method 204 of appendix M, 40 CFR part 51.

Thinner means an organic solvent that is added to a coating after the coating is received from the supplier.

Tileboard means hardboard that meets the specifications for Class I given by the standard ANSI/AHA A135.4–1995 as approved by the American National Standards Institute. The standard specifies requirements and test methods for water absorption, thickness swelling, modulus of rupture, tensile strength, surface finish, dimensions, squareness, edge straightness, and moisture content for five classes of hardboard. Tileboard is also known as Class I hardboard or tempered hardboard.

Total volatile hydrocarbon (TVH) means the total amount of nonaqueous volatile organic matter determined according to Methods 204 and 204A through 204F of appendix M to 40 CFR part 51 and substituting the term TVH each place in the methods where the term VOC is used. The TVH includes both VOC and non-VOC.

Uncontrolled coating operation means a coating operation from which none of the organic HAP emissions are routed through an emission capture system and add-on control device.

Volatile organic compound (VOC) means any compound defined as VOC in 40 CFR 51.100(s).

Volume fraction of coating solids means the ratio of the volume of coating solids (also known as volume of nonvolatiles) to the volume of coating; liters of coating solids per liter of coating.

Wastewater means water that is generated in a coating operation and is collected, stored, or treated prior to being discarded or discharged.

Wood building product means any product that contains more than 50 percent by weight wood or wood fiber, excluding the weight of any glass components, and is used in the construction, either interior or exterior, of a residential, commercial, or institutional building.

Table 1 to Subpart QQQQ of Part 63—Emission Limits for New or Reconstructed Affected Sources
You must comply with the emission limits that apply to your affected source in the following table as required by §63.4690.

<table>
<thead>
<tr>
<th>If the affected source applies coating to products in the following subcategory. . .</th>
<th>Then, the organic HAP emission limit for the affected source, in grams HAP/liter solids (lb HAP/gal solids)¹² is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exterior siding and primed doorskins</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>2. Flooring</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>3. Interior wall paneling or tileboard</td>
<td>5 (0.04)</td>
</tr>
<tr>
<td>4. Other interior panels</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>5. Doors, windows, and miscellaneous</td>
<td>57 (0.48)</td>
</tr>
</tbody>
</table>

¹Determined as a rolling 12-month emission rate according to the requirements in §63.4741, §63.4751, or §63.4761, as applicable.

²If the affected source applies coatings to products in more than one of the subcategories listed in the table, then you must determine the applicable emission limit according to §63.4690(c).

Table 2 to Subpart QQQQ of Part 63—Emission Limits for Existing Affected Sources

You must comply with the emission limits that apply to your affected source in the following table as required by §63.4690.

<table>
<thead>
<tr>
<th>If the affected source applies coating to products in the following subcategory. . .</th>
<th>Then, the organic HAP emission limit for the affected source, in grams HAP/liter solids (lb HAP/gal solids)¹² is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exterior siding and primed doorskins</td>
<td>7 (0.06)</td>
</tr>
<tr>
<td>2. Flooring</td>
<td>93 (0.78)</td>
</tr>
<tr>
<td>3. Interior wall paneling or tileboard</td>
<td>183 (1.53)</td>
</tr>
<tr>
<td>4. Other interior panels</td>
<td>20 (0.17)</td>
</tr>
<tr>
<td>5. Doors, windows, and miscellaneous</td>
<td>231 (1.93)</td>
</tr>
</tbody>
</table>

¹Determined as a rolling 12-month emission rate according to the requirements in §63.4741, §63.4751, or §63.4761, as applicable.

²If the affected source applies coatings to products in more than one of the subcategories listed in the table, then you must determine the applicable emission limit according to §63.4690(c).

Table 3 to Subpart QQQQ of Part 63—Operating Limits if Using the Emission Rate With Add-On Controls Option

If you are required to comply with operating limits by §63.4692, you must comply with the applicable operating limits in the following table:
<table>
<thead>
<tr>
<th>For the following device . . .</th>
<th>You must meet the following operating limit . . .</th>
<th>And you must demonstrate continuous compliance with the operating limit by . . .</th>
</tr>
</thead>
</table>
| 1. Thermal oxidizer | a. The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to §63.4767(a) | i. Collecting the combustion temperature data according to §63.4768(c);
ii. Reducing the data to 3-hour block averages; and
iii. Maintaining the 3-hour block average combustion temperature at or above the temperature limit. |
| | b. Ensure that the inlet temperature of the catalyst bed in any 3-hour period does not fall below the temperature limit established according to §63.4767(b)(2) and develop and implement an inspection and maintenance plan according to §63.4767(b)(3) and (4) | i. Collecting the temperature data according to §63.4768(c), reducing the data to 3-hour block averages, and maintaining the 3-hour average temperature at or above the temperature limit; and
 ii. Complying with the inspection and maintenance plan developed according to §63.4767(b)(3) and (4). |
| 2. Catalytic oxidizer | a. The average temperature difference measured across the catalyst bed in any 3-hour period must not fall below the limit established according to §63.4767(b); or | |
| | i. Collecting the temperature data according to §63.4768(c);
ii. Reducing the data to 3-hour block averages; and
iii. Maintaining the 3-hour block average temperature difference across the catalyst bed at or above the temperature limit. |
| | b. The temperature of the catalyst bed, after completing each regeneration and any cooling cycle, must not exceed the carbon bed temperature limit established according to §63.4767(c) | i. Measuring the temperature of the carbon bed, after completing each regeneration cycle according to §63.4768(d); and
 ii. Operating and carbon beds such that each carbon bed is not returned to service until completing each regeneration and any cooling cycle until the recorded temperature of the carbon bed is at or below the temperature limit. |
| 3. Carbon absorber | a. The total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each carbon bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to §63.4767(c) | i. Measuring the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle according to §63.4768(d); and
 ii. Maintaining the total regeneration desorbing gas mass flow at or above the mass flow limit. |
| | b. The temperature of the carbon bed, after completing each regeneration and any cooling cycle, must not exceed the carbon bed temperature limit established according to §63.4767(c) | |
| 4. Condenser | a. The average condenser outlet (product side) gas temperature in any 3-hour period must not exceed the temperature limit established according to §63.4767(d) | i. Collecting the condenser outlet (product side) gas temperature according to §63.4768(e);
ii. Reducing the data to 3-hour block averages; and
iii. Maintaining the 3-hour block average gas temperature at the outlet at or below the temperature limit. |
5. Emission capture system that is a PTE according to §63.4765(a)

| 5. Emission capture system that is a PTE according to §63.4765(a) | a. The direction of the air flow at all times must be into the enclosure; and either i. Collecting the direction of the air flow; and either the facial velocity of air through all natural draft openings according to §63.4768(g)(1) or the pressure drop across the enclosure according to §63.4768(g)(2); and

<table>
<thead>
<tr>
<th></th>
<th>ii. Maintaining the facial velocity of air flow through all natural draft openings or the pressure drop at or above the facial velocity limit or pressure drop limit, and maintaining the direction of air flow into the enclosure at all times.</th>
</tr>
</thead>
</table>
| b. The average facial velocity of air through all natural draft openings in the enclosure must be at least 200 feet per minute; or
| i. See items 5.a.i and 5.a.ii. |
| c. The pressure drop across the enclosure must be at least 0.007 inch H₂O, as established in Method 204 of appendix M to 40 CFR part 51
| i. See items 5.a.i and 5.a.ii. |

6. Emission capture system that is not a PTE according to §63.4765(a)

| 6. Emission capture system that is not a PTE according to §63.4765(a) | a. The average gas volumetric flow rate or duct static pressure in each duct between a capture device and add-on control device inlet in any 3-hour period must not fall below the average volumetric flow rate or duct static pressure limit established for that capture device according to §63.4767(f)
| i. Collecting the gas volumetric flow gas or duct static pressure for each capture device according to §63.4768(f);
| ii. Reducing the data to 3-hour block averages; and
| iii. Maintaining the 3-hour block average gas volumetric flow rate or duct static pressure for each capture device at or above the gas volumetric flow rate or duct static pressure limit |
| b. The average pressure drop of the dilute stream across the concentrator in any 3-hour period must not exceed the limit established according to §63.4767(e)
| i. Collecting the pressure drop data according to §63.4768(f); and
| ii. Reducing the pressure drop data to 3-hour block averages; and
| iii. Maintaining the 3-hour block average pressure drop at or below the pressure drop limit |

7. Concentrators, including zeolite wheels and rotary carbon absorbers

| 7. Concentrators, including zeolite wheels and rotary carbon absorbers | The average gas temperature of the desorption concentrate stream in any 3-hour period must not fall below the limit established according to §63.4767(e); and
| i. Collecting the temperature data according to §63.4768(f);
| ii. Reducing the data to 3-hour block averages; and
| iii. Maintaining the 3-hour block average temperature at or above the temperature limit. |
| b. The average pressure drop of the dilute stream across the concentrator in any 3-hour period must not exceed the limit established according to §63.4767(e)
| i. Collecting the pressure drop data according to §63.4768(f); and
| ii. Reducing the pressure drop data to 3-hour block averages; and
| iii. Maintaining the 3-hour block average pressure drop at or below the pressure drop limit. |

Table 4 to Subpart QQQQ of Part 63—Applicability of General Provisions to Subpart QQQQ of Part 63

You must comply with the applicable General Provisions requirements according to the following table:
<table>
<thead>
<tr>
<th>Citation</th>
<th>Subject</th>
<th>Applicable to subpart QQQQ</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1(a)(1)–(14)</td>
<td>General Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(b)(1)–(3)</td>
<td>Initial Applicability Determination</td>
<td>Yes</td>
<td>Applicability to subpart QQQQ is also specified in §63.4681.</td>
</tr>
<tr>
<td>§63.1(c)(1)</td>
<td>Applicability After Standard Established</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(c)(2)–(3)</td>
<td>Applicability of Permit Program for Area Sources</td>
<td>No</td>
<td>Area sources are not subject to subpart QQQQ.</td>
</tr>
<tr>
<td>§63.1(c)(4)–(5)</td>
<td>Extensions and Notifications</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(e)</td>
<td>Applicability of Permit Program Before Relevant Standard is Set</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional definitions are specified in §63.4781.</td>
</tr>
<tr>
<td>§63.3(a)–(c)</td>
<td>Units and Abbreviations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.4(a)(1)–(5)</td>
<td>Prohibited Activities</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.4(b)–(c)</td>
<td>Circumvention/Severability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(a)</td>
<td>Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(b)(1)–(6)</td>
<td>Requirements for Existing, Newly Constructed, and Reconstructed Sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(d)</td>
<td>Application for Approval of Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(e)</td>
<td>Approval of Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(f)</td>
<td>Approval of Construction/Reconstruction Based on Prior State Review</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Compliance With Standards and Maintenance Requirements—Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)–(7)</td>
<td>Compliance Dates for New and Reconstructed Sources</td>
<td>Yes</td>
<td>§63.4683 specifies the compliance dates.</td>
</tr>
<tr>
<td>§63.6(c)(1)–(5)</td>
<td>Compliance Dates for Existing Sources</td>
<td>Yes</td>
<td>§63.4683 specifies the compliance dates.</td>
</tr>
<tr>
<td>§63.6(e)(1)–(2)</td>
<td>Operation and Maintenance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(e)(3)</td>
<td>SSMP</td>
<td>Yes</td>
<td>Only sources using an add-on control device to comply with the standard must complete SSMP.</td>
</tr>
<tr>
<td>§63.6(f)(1)</td>
<td>Compliance Except During SSM</td>
<td>Yes</td>
<td>Applies only to sources using an add-on control device to comply with the standard.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2)-(3)</td>
<td>Methods for Determining Compliance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)-(3)</td>
<td>Use of an Alternative Standard</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Compliance With Opacity/Visible Emission Standards</td>
<td>No</td>
<td>Subpart QQQQ does not establish opacity standards and does not require continuous opacity monitoring systems (COMS).</td>
</tr>
<tr>
<td>§63.6(i)(1)-(16)</td>
<td>Extension of Compliance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Presidential Compliance Exemption</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)</td>
<td>Performance Test Requirements—Applicability</td>
<td>Yes</td>
<td>Applies only to performance tests for capture system and control device efficiency at sources using these to comply with the standard. §63.4760 specifies the schedule for performance test requirements that are earlier than those specified in §63.7(a)(2).</td>
</tr>
<tr>
<td>§63.7(a)(2)</td>
<td>Performance Test Requirements—Dates</td>
<td>Yes</td>
<td>Applies only to performance tests for capture system and control device efficiency at sources using these to comply with the standard. §63.4760 specifies the schedule for performance test requirements that are earlier than those specified in §63.7(a)(2).</td>
</tr>
<tr>
<td>§63.7(a)(3)</td>
<td>Performance Tests Required By the Administrator</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)-(e)</td>
<td>Performance Test Requirements—Notification, Quality Assurance, Facilities Necessary for Safe Testing, Conditions During Test</td>
<td>Yes</td>
<td>Applies only to performance tests for capture system and add-on control device efficiency at sources using these to comply with the standard.</td>
</tr>
<tr>
<td>§63.7(f)</td>
<td>Performance Test Requirements—Use of Alternative Test Method</td>
<td>Yes</td>
<td>Applies only to all test methods except those used to determine capture system efficiency.</td>
</tr>
<tr>
<td>§63.7(g)-(h)</td>
<td>Performance Test Requirements—Data Analysis, Recordkeeping, Reporting, Waiver of Test</td>
<td>Yes</td>
<td>Applies only to performance tests for capture system and add-on control device efficiency at sources using these to comply with the standard.</td>
</tr>
<tr>
<td>§63.8(a)(1)-(3)</td>
<td>Monitoring Requirements—Applicability</td>
<td>Yes</td>
<td>Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standard. Additional requirements for monitoring are specified in §63.4768.</td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td>Additional Monitoring Requirements</td>
<td>No</td>
<td>Subpart QQQQ does not have monitoring requirements for flares.</td>
</tr>
<tr>
<td>§63.8(b)</td>
<td>Conduct of Monitoring</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)-(3)</td>
<td>Continuous Monitoring System (CMS) Operation and Maintenance</td>
<td>Yes</td>
<td>Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standard. Additional</td>
</tr>
<tr>
<td>Section</td>
<td>Requirement Description</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(4)</td>
<td>CMSs</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§63.4768 specifies the requirements for the operation of CMS for capture systems and add-on control devices at sources using these to comply.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>COMS</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subpart QQQQ does not have opacity for visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(6)</td>
<td>CMS Requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§63.4768 specifies the requirements for monitoring systems for capture systems and add-on control devices at sources using these to comply.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(7)</td>
<td>CMS Out-of-Control Periods</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(8)</td>
<td>CMS Out-of-Control Periods Reporting</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§63.4720 requires reporting of CMS out-of-control periods.</td>
<td></td>
</tr>
<tr>
<td>§63.8(d)–(e)</td>
<td>Quality Control Program and CMS Performance Evaluation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subpart QQQQ does not require the use of continuous emissions monitoring systems.</td>
<td></td>
</tr>
<tr>
<td>§63.8(f)(1)–(5)</td>
<td>Use of an Alternative Monitoring Method</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to Relative Accuracy Test</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subpart QQQQ does not require the use of continuous emissions monitoring systems.</td>
<td></td>
</tr>
<tr>
<td>§63.8(g)(1)–(5)</td>
<td>Data Reduction</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§§63.4767 and 63.4768 specify monitoring data reduction.</td>
<td></td>
</tr>
<tr>
<td>§63.9(a)–(d)</td>
<td>Notification Requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of Performance Test</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applies only to capture system and add-on control device performance tests at sources using these to comply with the standard.</td>
<td></td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of Visible Emissions/Opaquity Test</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subpart QQQQ does not have opacity or visible emission standards.</td>
<td></td>
</tr>
<tr>
<td>§63.9(g)(1)–(3)</td>
<td>Additional Notifications When Using CMS</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subpart QQQQ does require the use of continuous emissions monitoring systems.</td>
<td></td>
</tr>
<tr>
<td>§63.9(h)</td>
<td>Notification of Compliance Status</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>§63.4710 specifies the dates for submitting the notification of compliance status.</td>
<td></td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of Submittal Deadlines</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in Previous Information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Recordkeeping/Reporting—Applicability and General Information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>General Recordkeeping Requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Additional requirements are specified in §§63.4730 and 63.4731.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Requirement</td>
<td>Yes/No</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.10(b)(2)(i)–(v)</td>
<td>Recordkeeping Relevant to SSM Periods and CMS</td>
<td>Yes</td>
<td>Requirements for SSM records only apply to add-on control devices used to comply with the standard.</td>
</tr>
<tr>
<td>§63.10(b)(2)(vi)–(xi)</td>
<td>Records</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Yes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xiii)</td>
<td>No</td>
<td>Subpart QQQQ does not require the use of continuous emissions monitoring systems.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xiv)</td>
<td>Yes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Recordkeeping Requirements for Applicability Determinations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)(1)–(6)</td>
<td>Additional Recordkeeping Requirements for Sources with CMS</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)(7)–(8)</td>
<td>No</td>
<td>The same records are required in §63.4720(a) (7).</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)(9)–(15)</td>
<td>Yes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General Reporting Requirements</td>
<td>Yes</td>
<td>Additional requirements are specified in §63.4720.</td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Report of Performance Test Results</td>
<td>Yes</td>
<td>Additional requirements are specified in §63.4720(b).</td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Reporting Opacity or Visible Emissions Observations</td>
<td>No</td>
<td>Subpart QQQQ does not require opacity or visible emissions observations.</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress Reports for Sources With Compliance Extensions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>SSM Reports</td>
<td>Yes</td>
<td>Applies only to add-on control devices at sources using these to comply with the standard.</td>
</tr>
<tr>
<td>§63.10(e)(1)–(2)</td>
<td>Additional CMS Reports</td>
<td>No</td>
<td>Subpart QQQQ does not require the use of continuous emissions monitoring systems.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess Emissions/CMS Performance Reports</td>
<td>No</td>
<td>§63.4720(b) specifies the contents of periodic compliance reports.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>COMS Data Reports</td>
<td>No</td>
<td>Subpart QQQQ does not specify requirements for opacity or COMS.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Recordkeeping/Reporting Waiver</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Control Device Requirements/Flares</td>
<td>No</td>
<td>Subpart QQQQ does not specify use of flares for compliance.</td>
</tr>
<tr>
<td>§63.12</td>
<td>State Authority and Delegations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

§63.15 Availability of Information/Confidentiality Yes.

Table 5 to Subpart QQQQ of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends

You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer's formulation data.

<table>
<thead>
<tr>
<th>Solvent/solvent blend</th>
<th>CAS. No.</th>
<th>Average organic HAP mass fraction</th>
<th>Typical organic HAP, percent by mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Xylene(s)</td>
<td>1330–20–7</td>
<td>1.0</td>
<td>Xylenes, ethylbenzene.</td>
</tr>
<tr>
<td>3. Hexane</td>
<td>110–54–3</td>
<td>0.5 n-hexane.</td>
<td></td>
</tr>
<tr>
<td>4. n-Hexane</td>
<td>110–54–3</td>
<td>1.0 n-hexane.</td>
<td></td>
</tr>
<tr>
<td>5. Ethylbenzene</td>
<td>100–41–4</td>
<td>1.0 Ethylbenzene.</td>
<td></td>
</tr>
<tr>
<td>6. Aliphatic 140</td>
<td>0</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td>7. Aromatic 100</td>
<td>0.02</td>
<td>1% xylene, 1% cumene.</td>
<td></td>
</tr>
<tr>
<td>8. Aromatic 150</td>
<td>0.09</td>
<td>Naphthalene.</td>
<td></td>
</tr>
<tr>
<td>9. Aromatic naphtha</td>
<td>64742–95–6</td>
<td>0.02 1% xylene, 1% cumene.</td>
<td></td>
</tr>
<tr>
<td>10. Aromatic solvent</td>
<td>64742–94–5</td>
<td>0.1 Naphthalene.</td>
<td></td>
</tr>
<tr>
<td>11. Exempt mineral spirits</td>
<td>8032–32–4</td>
<td>0 None.</td>
<td></td>
</tr>
<tr>
<td>12. Ligroines (VM & P)</td>
<td>8032–32–4</td>
<td>0 None.</td>
<td></td>
</tr>
<tr>
<td>13. Lactol spirits</td>
<td>64742–89–6</td>
<td>0.15 Toluene.</td>
<td></td>
</tr>
<tr>
<td>14. Low aromatic white spirit</td>
<td>64742–82–1</td>
<td>0 None.</td>
<td></td>
</tr>
<tr>
<td>15. Mineral spirits</td>
<td>64742–88–7</td>
<td>0.01 Xylenes.</td>
<td></td>
</tr>
<tr>
<td>16. Hydrotreated naphtha</td>
<td>64742–48–9</td>
<td>0 None.</td>
<td></td>
</tr>
<tr>
<td>17. Hydrotreated light distillate</td>
<td>64742–47–8</td>
<td>0.001 Toluene.</td>
<td></td>
</tr>
<tr>
<td>18. Stoddard solvent</td>
<td>8052–41–3</td>
<td>0.01 Xylenes.</td>
<td></td>
</tr>
<tr>
<td>Solvent Type</td>
<td>Average Organic HAP Mass Fraction</td>
<td>Typical Organic HAP, Percent by Mass</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Aliphatic (^b)</td>
<td>0.03%</td>
<td>1% xylene, 1% toluene, and 1% ethylbenzene.</td>
<td></td>
</tr>
<tr>
<td>Aromatic (^c)</td>
<td>0.064%</td>
<td>4% naphthalene, 4% biphenyl.</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Use this table only if the solvent blend does not match any of the solvent blends in Table 5 to this subpart and you only know whether the blend is aliphatic or aromatic.

Source Description and Location

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Location:</td>
<td>3015 Mobile Drive, Elkhart, IN 46514</td>
</tr>
<tr>
<td>County:</td>
<td>Elkhart County</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>2431 (Millwork)</td>
</tr>
<tr>
<td>Permit Renewal No.:</td>
<td>T039-43199-00174</td>
</tr>
<tr>
<td>Permit Reviewer:</td>
<td>L. David Cohen</td>
</tr>
</tbody>
</table>

On August 26, 2020, Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc. submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc. relating to the operation of a stationary wood moulding and coating operation. Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc. was issued its third Part 70 Operating Permit Renewal (T039-36728-00174) on September 6, 2016.

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. T039-36728-00174 on September 6, 2016. The source has since received the following approval:

Part 70 SPM No. 039-39188-00174 on April 25, 2018.

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:

(a) Woodworking operations, consisting of the following:

(1) One (1) woodworking operation, identified as WW1, constructed in 1994, including a belt sander BS-1 constructed in 2008, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC1 and exhausting to Stack DC1S only when the outside ambient air temperature exceeds 85°F, and a portable dust collector/vacuum cleaner, identified as DC5, consisting of the following:

(2) One (1) woodworking operation, identified as WW2, constructed in 1995, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood boards per hour, using an integral dust collector as control, identified as DC2, and exhausting to Stack DC2S only when the outside ambient air temperature exceeds 85°F;

(3) One (1) woodworking operation, identified as WW3, constructed in 2004, with a maximum capacity of fifty nine thousand four hundred (59,400) pounds of wood panels per hour, using an integral dust collector as control, identified as DC3, and exhausting to Stack DC3S;
(4) One (1) woodworking operation, identified as WW4, constructed in 2015, with a maximum capacity of three thousand (3,000) pounds of wood parts per hour, using an integral dust collector as control, identified as DC9, and exhausting indoors; and

(5) One (1) woodworking operation, identified as WW5, constructed in 2018, with a maximum capacity of ten thousand four hundred (10,400) pounds of wood parts per hour, using an integral dust collector as control, identified as DC10, and exhausting indoors.

(b) Surface coating operations, consisting of the following:

(1) Five (5) high-volume low-pressure spraying machines, identified as Spray Machines 1 through 5, constructed in 1994, 1995, 1995, 1995 and 2016, respectively, each with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing non-atomizing flow coating spray applicators, using dry filters for particulate control, and exhausting to Stacks E6, E7, E8, E9 and E16, respectively;

(2) One (1) spray repair booth, identified as Spray Booth 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14; and

(3) One (1) patina spray machine, identified as PSM1, constructed in 1995, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing HVLP spray applicators, using dry filters for particulate control, and exhausting to Stack E14.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

Insignificant Activities

The source also consists of the following insignificant activities:

(e) Grinding and machining operations, constructed in 1994 and exhausting indoors, consisting of the following:

(1) Two (2) kerf machines, identified as K1 and K2, with a combined maximum capacity of one hundred fifty (150) pounds of wood per hour, and using a portable dust collector as control, identified as DC4.

(2) Four (4) tool room grinders, identified as GR1 through GR4, with a combined maximum capacity of two hundred fifty (250) pounds of wood per hour, and using a portable dust collector as control, identified as DC6.

(3) One (1) scuff sander, identified as SS1, for the U-V coating line, with a maximum capacity of one thousand forty (1,040) pounds of wood per hour, and using a portable dust collector as control, identified as DC7.

(4) One (1) scuff sander, identified as SS2, for the Spray Machine 1, with a maximum capacity of one thousand forty (1,040) pounds of wood per hour, and using a portable dust collector as control, identified as DC8.

(f) Surface coating operations, consisting of the following:

(1) Three (3) flood coat vacuum coater machines, identified as Stainer Machines 1 through 3, constructed in 1994, 1994 and 2016, respectively, each with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing non-atomizing
flow coating spray applicators, using no control, and exhausting to Stacks E13, E12 and E15, respectively.

(2) One (1) portable striper machine, identified as Striper Machine 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.

(3) One (1) striper machine, identified as Striper Machine 2, constructed in 1995, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.

(4) One (1) stain hand wiping area, identified as Stain Wipe 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing hand application, using no control, and exhausting indoors.

(5) One (1) UV coater machine, identified as UV1, constructed in 2000, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, or two (2) gallons per hour, utilizing non-atomizing flow coating spray applicators, using no control, and exhausting indoors.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

(g) Laminating operations, consisting of the following:

(1) Three (3) laminating wrappers, identified as L1 through L3, constructed in 2004, with a combined maximum capacity of seventy-five (75.0) pounds of polyurethane adhesive per hour, using no control, and exhausting indoors.

(2) Two (2) foil laminating wrappers, identified as L4 and L5, constructed in 2004, not applying adhesive, using no control, and exhausting indoors.

(3) One (1) laminating wrapper, identified as L6, permitted in 2018, with a maximum capacity of two thousand five hundred (2,500) square feet per hour, using no control, and exhausting indoors.

Under 40 CFR 63, Subpart QQQQ, these are considered affected units.

(h) Two (2) electric embosser machines, identified as Embosser 1 and 2, constructed in 1999 and 1994, respectively, using no control, and exhausting indoors.

(i) Bag dumping of Sorbond, used for waste paint processing, with a maximum usage rate of twenty-five (25) pounds per hour.

(j) Natural gas-fired combustion sources with heat input equal to or less than ten (10) MMBtu per hour, using no control and exhausting indoors, consisting of the following:

(1) Ten (10) radiant heaters, identified as H1 through H10, with a maximum heat input capacity of one-tenth (0.10) million British thermal units per hour (MMBtu/hr), each.

(2) One (1) radiant heater, identified as H11, with a maximum heat input capacity of one hundred seventy-five thousandths (0.175) MMBtu/hr.

(3) One (1) drying oven, identified as E3, with a maximum heat input capacity of five-tenths (0.50) MMBtu/hr.
(4) Two (2) radiant heaters, identified as RH1 and RH2, with a maximum heat input capacity of eight-tenths (0.80) MMBtu/hr, each.

(5) Two (2) surface coating drying ovens, identified as DO1 and DO2, with a maximum heat input capacity of one and one hundred twenty-five thousandths (1.125) MMBtu/hr, each.

(6) Two (2) air makeup units, identified as AM1 and AM2, with a maximum heat input capacity of one and five tenths (1.50) MMBtu/hr, each.

(7) One (1) water heater, identified as WH1, constructed in 1994, with a maximum heat input capacity of thirteen thousandths (0.013) MMBtu/hr.

(8) Four (4) forced air furnaces, identified as FH1 through FH4, with a maximum heat input capacity of two-tenths (0.20) MMBtu/hr, each.

(k) Paved and unpaved roads and parking lots with public access.

“Integral Part of the Process” Determination

In October 1993 a Final Order Granting Summary Judgment was signed by Administrative Law Judge (“ALJ”) Garrettson resolving an appeal filed by Kimball Hospitality Furniture Inc. (Cause Nos. 92-A-J-730 and 92-A-J-833) related to the method by which IDEM calculated potential emissions from woodworking operations. In his findings, the ALJ determined that particulate controls are necessary for the facility to produce its normal product and are integral to the normal operation of the facility, and therefore, potential emissions should be calculated after controls. Based on this ruling, the potential to emit particulate matter from the woodworking operations was calculated after control for purposes of determining permitting level and applicability of 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)).

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

County Attainment Status

The source is located in Elkhart County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective August 3, 2018, for the 2015 8-hour ozone standard.</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Unclassifiable or attainment effective January 29, 2012, for the 2010 NO₂ standard.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.</td>
</tr>
</tbody>
</table>

(a) Ozone Standards
Volatile organic compounds (VOC) and Nitrogen Oxides (NOₓ) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality
Standards (NAAQS) for ozone. Therefore, VOC and NOx emissions are considered when evaluating the rule applicability relating to ozone. Elkhart County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) PM$_{2.5}$
Elkhart County has been classified as attainment for PM$_{2.5}$. Therefore, direct PM$_{2.5}$, SO$_2$, and NOx emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants
Elkhart County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions
Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions
On June 23, 2014, in the case of Utility Air Regulatory Group v. EPA, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Unrestricted Potential Emissions
This table reflects the unrestricted potential emissions of the source.
<table>
<thead>
<tr>
<th>Unrestricted Potential Emissions (ton/year)</th>
<th>PM^1</th>
<th>PM_{10}^1</th>
<th>PM_{2.5}^1,2</th>
<th>SO_{2}</th>
<th>NO_{X}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP^3</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>25</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1 Under the Part 70 Permit program (40 CFR 70), PM_{10}, and PM_{2.5}, not particulate matter (PM), are each considered as a "regulated air pollutant."

2 PM_{2.5} listed is direct PM_{2.5}.

3 Single highest source-wide HAP.

*Fugitive HAP emissions are always included in the source-wide emissions.

The potential to emit (PTE) is after consideration of integral woodworking controls.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

(a) The potential to emit of each regulated air pollutant is less than one hundred (100) tons per year.

(b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and/or the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. The source will be issued a Part 70 Operating Permit Renewal.

Part 70 Permit Conditions

This source is subject to the requirements of 326 IAC 2-7, because the source met the following:

(a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.

(b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

<table>
<thead>
<tr>
<th>Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)</th>
<th>PM^1</th>
<th>PM_{10}^1</th>
<th>PM_{2.5}^1,2</th>
<th>SO_{2}</th>
<th>NO_{X}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP^3</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE of Entire Source Excluding Fugitives*</td>
<td>98.66</td>
<td>98.89</td>
<td>98.89</td>
<td>0.02</td>
<td>4.01</td>
<td>55.95</td>
<td>3.37</td>
<td>20.71</td>
<td>20.86</td>
</tr>
<tr>
<td>(Glycol Ethers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PTE of Entire Source</td>
<td>100.76</td>
<td>99.31</td>
<td>99.31</td>
<td>0.02</td>
<td>4.01</td>
<td>55.95</td>
<td>3.37</td>
<td>20.71</td>
<td>20.86</td>
</tr>
<tr>
<td>(Glycol Ethers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)

<table>
<thead>
<tr>
<th>PM¹</th>
<th>PM₁₀¹</th>
<th>PM₂.₅¹,₂</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP³</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

¹Under the Part 70 Permit program (40 CFR 70), PM₁₀ and PM₂.₅, not particulate matter (PM), are each considered as a "regulated air pollutant."
²PM₂.₅ listed is direct PM₂.₅.
³Single highest source-wide HAP.
*Fugitive HAP emissions are always included in the source-wide emissions.
The potential to emit (PTE) is after consideration of integral woodworking controls.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) This source is a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are equal to or greater than ten (10) tons per year for a single HAP. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) The requirements of the New Source Performance Standard for Small Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12, are still not included in the permit for the natural gas-fired water heater, because it is rated at less than ten (10) MMBtu per hour.

(b) The requirements of the New Source Performance Standard for Surface Coating of Metal Furniture, 40 CFR 60, Subpart EE and 326 IAC 12, are still not included in the permit for this source, because the source does not coat metal furniture. The source manufactures wood mouldings, doors, windows, and miscellaneous wood parts.

(c) The requirements of the New Source Performance Standard for Industrial Surface Coating: Large Appliances, 40 CFR 60, Subpart SS and 326 IAC 12, are still not included in the permit for this source, because this source does not coat large appliances. The source manufactures wood mouldings, doors, windows, and miscellaneous wood parts.

(d) There are no other New Source Performance Standards (40 CFR Part 60) and 326 IAC 12 included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(e) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Halogenated Solvent Cleaning, 40 CFR 63, Subpart T and 326 IAC 20-6 are still not included in the permit for this source, since this source does not use a cold solvent cleaning machine or any degreasing solvent that contains any of the halogenated compounds listed under 40 CFR 63.460(a).

(f) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Wood Furniture Manufacturing Operations, 40 CFR 63, Subpart JJ and 326 IAC 20-14 are still
not included in the permit for this source, since facilities that meet the applicability criteria for
wood building products surface coating operations and are subject to the requirements of 40 CFR
63, Subpart QQQQ are exempt from the requirements of Subpart JJ, as specified in
§63.800(c)(3). The facility's primary purpose is to apply surface coating to wood mouldings,
doors, windows and miscellaneous wood parts and it is subject to the requirements of 40 CFR 63,
Subpart QQQQ, as specified in §63.4681(a)(1).

As described above, this source is subject to the requirements of Subpart QQQQ, because it
primarily applies surface coatings to wood mouldings, doors, windows, and miscellaneous wood
parts. Although each of the aforementioned facilities may be considered part of an incidental
wood furniture manufacturer, as specified in §63.800(a) and defined in §63.801, they are each
not subject to the requirements of Subpart JJ, as specified in §63.800(c)(3).

(g) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs)
for Plywood and Composite Wood Products, 40 CFR 63, Subpart DDDD are still not included in
the permit for this source, since the woodworking operation is not a plywood and composite wood
products (PCWP) manufacturing facility.

(h) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs)
for Surface Coating of Miscellaneous Metal Parts and Products, 40 CFR 63, Subpart MMMM and
326 IAC 20-80 are not included in the permit for this source, since the source does not engage in
the coating of miscellaneous metal parts and products. The source manufactures wood
mouldings, doors, windows, and miscellaneous wood parts.

(i) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs)
for Surface Coating of Plastic Parts and Products, 40 CFR 63, Subpart PPPP and 326 IAC 20-81
are not included in the permit for this source, since the source does not perform surface coating
of plastic parts or plastic products. The source manufactures wood mouldings, doors, windows,
and miscellaneous wood parts.

(j) This source is still subject to the National Emission Standards for Hazardous Air Pollutants for
Surface Coating of Wood Building Products, 40 CFR 63, Subpart QQQQ, which is incorporated
by reference as 326 IAC 20-79, because this source coats doors, windows, and miscellaneous
products that are defined in 40 CFR 63.4681(a)(1). The surface coating units at this source are
capable of coating doors, windows, and miscellaneous wood building products. The surface
coating units subject to this rule include the following:

(b) Surface coating operations, consisting of the following:

(1) Five (5) high-volume low-pressure spraying machines, identified as Spray
respectively, each with a maximum capacity of seven thousand five hundred
(7,500) board feet of wood per hour, utilizing non-atomizing flow coating spray
applicators, using dry filters for particulate control, and exhausting to Stacks E6,
E7, E8, E9 and E16, respectively.

(2) One (1) spray repair booth, identified as Spray Booth 1, constructed in 1994, with
a maximum capacity of seven thousand five hundred (7,500) board feet of wood
per hour, utilizing HVLP spray applicators, using dry filters for particulate control,
and exhausting to Stack E14.

(3) One (1) patina spray machine, identified as PSM1, constructed in 1995, with a
maximum capacity of seven thousand five hundred (7,500) board feet of wood
per hour, utilizing HVLP spray applicators, using dry filters for particulate control,
and exhausting to Stack E14.
Insignificant Units:

(f) Surface coating operations, consisting of the following:

(1) Three (3) flood coat vacuum coater machines, identified as Stainer Machines 1 through 3, constructed in 1994, 1994 and 2016, respectively, each with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing non-atomizing flow coating spray applicators, using no control, and exhausting to Stacks E13, E12 and E15, respectively.

(2) One (1) portable striper machine, identified as Striper Machine 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.

(3) One (1) striper machine, identified as Striper Machine 2, constructed in 1995, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, equipped with a non-atomizing flow-coat applicator, using no control, and exhausting indoors.

(4) One (1) stain hand wiping area, identified as Stain Wipe 1, constructed in 1994, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour, utilizing hand application, using no control, and exhausting indoors.

(5) One (1) UV coater machine, identified as UV1, constructed in 2000, with a maximum capacity of seven thousand five hundred (7,500) board feet of wood per hour each, or two (2) gallons per hour, utilizing non-atomizing flow coating spray applicators, using no control, and exhausting indoors.

(6) Three (3) laminating wrappers, identified as L1 through L3, constructed in 2004, with a combined maximum capacity of seventy-five (75.0) pounds of polyurethane adhesive per hour, using no control, and exhausting indoors.

(7) Two (2) foil laminating wrappers, identified as L4 and L5, constructed in 2004, not applying adhesive, using no control, and exhausting indoors.

(8) One (1) laminating wrapper, identified as L6, permitted in 2018, with a maximum capacity of two thousand five hundred (2,500) square feet per hour, using no control, and exhausting indoors.

This source is subject to the following portions of Subpart QQQQ:

(1) 40 CFR 63.4680
(2) 40 CFR 63.4681(a), (b),(c), (d) and (e)
(3) 40 CFR 63.4682
(4) 40 CFR 63.4683(b) and (d)
(5) 40 CFR 63.4690(b)
(6) 40 CFR 63.4691(a) and (b)
(7) 40 CFR 63.4692(a)
(8) 40 CFR 63.4693(a)
(9) 40 CFR 63.4700(a)(1) and (b)
(10) 40 CFR 63.4701
(11) 40 CFR 63.4710(a)(b)(c)1 through 7)(c)(8)(i) and (ii)
(12) 40 CFR 63.4720(a)(1 through 3)(a)(4) (first part)(5) and (6)
(13) 40 CFR 63.4730(a)(b)(c)(1 through 3)(d through h and j)
(14) 40 CFR 63.4731
(15) 40 CFR 63.4740
The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to the source except as otherwise specified in 40 CFR 63, Subpart QQQQ.

(k) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Metal Furniture, 40 CFR 63, Subpart RRRR and 326 IAC 20-78 are still not included in the permit for this source, since the source does not engage in the surface coating of metal furniture. The source manufactures wood mouldings, doors, windows, and miscellaneous wood parts.

(l) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Industrial, Commercial, and Institutional Boilers and Process Heaters, 40 CFR 63, Subpart DDDDD and 326 IAC 20-95 are still not included in the permit for this source, since the water heater (WH1) is a hot water heater, as defined by 40 CFR 63.7575.

(m) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Industrial, Commercial, and Institutional Boilers Area Sources, 40 CFR 63, Subpart JJJJJJ are not included in the permit for this source, since the water heater is natural gas-fired.

(n) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:

(1) has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;

(2) is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and

(3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

(b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.

The following table is used to identify the applicability of CAM to each emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:
Emission Unit/Pollutant

<table>
<thead>
<tr>
<th>Emission Unit/Pollutant</th>
<th>Control Device</th>
<th>Applicable Emission Limitation</th>
<th>Uncontrolled PTE (tons/year)</th>
<th>Controlled PTE (tons/year)</th>
<th>CAM Applicable (Y/N)</th>
<th>Large Unit (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodworking WW1 / PM</td>
<td>DC (DC1)</td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW1 / PM*</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW1 / PM10</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW1 / PM2.5</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW2 / PM</td>
<td>DC (DC2)</td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW2 / PM*</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW2 / PM10</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW2 / PM2.5</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW3 / PM</td>
<td>DC (DC3)</td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW3 / PM*</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW3 / PM10</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW3 / PM2.5</td>
<td></td>
<td>N/A</td>
<td>>100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW4 / PM</td>
<td>DC (DC9)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW4 / PM*</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW4 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW4 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW5 / PM</td>
<td>DC (DC10)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW5 / PM*</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW5 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Woodworking WW5 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ²</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 1 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 1 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 1 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 2 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 2 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 2 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 2 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 3 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 3 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 3 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 3 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 4 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 4 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 4 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 4 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Emission Unit/Pollutant</td>
<td>Control Device</td>
<td>Applicable Emission Limitation</td>
<td>Uncontrolled PTE (tons/year)</td>
<td>Controlled PTE (tons/year)</td>
<td>CAM Applicable (Y/N)</td>
<td>Large Unit (Y/N)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Spray Machine 4 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 5 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 5 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 5 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Machine 5 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Booth 1 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Booth 1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spray Booth 1 / PM PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>PSM1 / PM</td>
<td>DF</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>PSM1 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>PSM1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>PSM1 / PM PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K1 / PM</td>
<td>DC (DC4)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K1 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K1 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K2 / PM</td>
<td>DC (DC4)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K2 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K2 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kerf Machine K2 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Portable Dust Collector / PM</td>
<td>DC (DC5)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Portable Dust Collector / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Portable Dust Collector / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Portable Dust Collector / PM PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR1 / PM</td>
<td>DC (DC6)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR1 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR1 / PM</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR2 / PM</td>
<td>DC (DC6)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR2 / PM</td>
<td></td>
<td>326 IAC 6-3-2</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR2 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>
Emission Unit/Pollutant Control Device Applicable Emission Limitation Uncontrolled PTE (tons/year) Controlled PTE (tons/year) CAM Applicable (Y/N) Large Unit (Y/N)

<table>
<thead>
<tr>
<th>Emission Unit/Pollutant</th>
<th>Control Device</th>
<th>Applicable Emission Limitation</th>
<th>Uncontrolled PTE (tons/year)</th>
<th>Controlled PTE (tons/year)</th>
<th>CAM Applicable (Y/N)</th>
<th>Large Unit (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool RM Grinder GR2 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR3 / PM</td>
<td>DC (DC6)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR3 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR3 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR4 / PM</td>
<td>DC (DC6)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Tool RM Grinder GR4 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS1 / PM</td>
<td>DC (DC7)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS1 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS1 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS2 / PM</td>
<td>DC (DC8)</td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS2 / PM10</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
<tr>
<td>Scuff Sander SS2 / PM2.5</td>
<td></td>
<td>N/A</td>
<td><100</td>
<td><100</td>
<td>N ¹</td>
<td>N</td>
</tr>
</tbody>
</table>

Under the Part 70 Permit program (40 CFR 70), PM is not a regulated air pollutant.

Uncontrolled PTE (tpy) and controlled PTE (tpy) are evaluated against the Major Source Threshold for each pollutant. Major Source Threshold for regulated air pollutants (PM10, PM2.5, SO2, NOx, VOC, and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy.

PM

For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.

N ¹ CAM does not apply for particulates because the uncontrolled PTE of particulates is less than the major source threshold.

N ² Pursuant to 40 CFR Part 64.1, the control devices are considered to be inherent process equipment. Therefore, based on the evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable.

Controls: BH = Baghouse, C = Cyclone, DC = Dust Collection System, RTO = Regenerative or Recuperative Thermal Oxidizer, WS = Wet Scrubber, ESP = Electrostatic Precipitator, DF = Dry Filters

Emission units without air pollution controls are not subject to CAM. Therefore, they are not listed.

Inherent Process Equipment (Woodworking)

Pursuant to 40 CFR Part 64.1, the definition of inherent process equipment is “equipment that is necessary for the proper or safe functioning of the process, or material recovery equipment that the owner or operator documents is installed and operated primarily for purposes other than compliance with air pollution regulations. Equipment that must be operated at an efficiency higher than that achieved during normal process operations in order to comply with the applicable emission limitation or standard is not inherent process equipment. For the purposes of this part, inherent process equipment is not considered subject to CAM.”

The woodworking baghouse controls are determined to be necessary for the normal and proper operation of the woodworking operations (see the “Integral Part of the Process” Determination” section above for
more detail). Therefore, the woodworking baghouses meet the criteria for inherent to the process for the purpose of determining CAM applicability, and are not considered control devices. Therefore, the requirements of 40 CFR Part 64.2, CAM, do not apply to the woodworking operations.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable to any of the existing units as part of this Part 70 permit renewal.

State Rule Applicability - Entire Source

State rule applicability for this source has been reviewed as follows:

326 IAC 1-6-3 (Preventive Maintenance Plan)
The source is subject to 326 IAC 1-6-3.

326 IAC 2-2 (PSD)
PSD applicability is discussed under the Potential to Emit After Issuance section of this document.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of this source will emit less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply.

326 IAC 2-6 (Emission Reporting)
This source is subject to the requirements of 326 IAC 2-6 (Emission Reporting), since it is required to have an operating permit under 326 IAC 2-7, Part 70 Permit Program. Pursuant to 326 IAC 2-6-3(a)(2), the Permittee shall submit triennially, by July 1, an emission statement covering the previous calendar year in accordance with the compliance schedule in 326 IAC 2-6-3. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

326 IAC 2-7-6(5) (Annual Compliance Certification)
The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)
This source is subject to the opacity limitations specified in 326 IAC 5-1-2(1).

326 IAC 6-4 (Fugitive Dust Emissions Limitations)
The source is subject to the requirements of 326 IAC 6-4, because the roads have the potential to emit fugitive particulate emissions. Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
This source is not subject to the requirements of 326 IAC 6-5, because the source has potential fugitive particulate emissions of less than twenty-five (25) tons per year.
326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a), this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.5 because it is not located in one of the following counties: Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo or Wayne.

326 IAC 6.8 (Particulate Matter Limitations for Lake County)
Pursuant to 326 IAC 6.8-1-1(a), this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.8 because it is not located in Lake County.

<table>
<thead>
<tr>
<th>State Rule Applicability – Individual Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>State rule applicability has been reviewed as follows:</td>
</tr>
</tbody>
</table>

Woodworking

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the woodworking operations, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the woodworking operations shall not exceed 53.93 pounds per hour when operating at a process weight rate of 46.8 tons per hour. The pound per hour limitation was calculated with the following equation:

\[E = 4.10 P^{0.67} \]

where \(E \) = rate of emission in pounds per hour and \(P \) = process weight rate in tons per hour

Summary of Process Weight Rate Limits

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>(P) (ton/hr)</th>
<th>(E) (lb/hr)</th>
<th>Dust Collector</th>
<th>PTE (lb/hr) (after integral control)</th>
<th>326 IAC 6-3-2 applies (>0.551 lb/hr)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodworking Operation WW1</td>
<td>5.2</td>
<td>12.37</td>
<td>DC1 and DC5</td>
<td>1.08</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW2</td>
<td>5.2</td>
<td>12.37</td>
<td>DC2</td>
<td>1.13</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW3</td>
<td>9.7</td>
<td>39.77</td>
<td>DC3</td>
<td>1.35</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodworking Operation WW4</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
<td>No</td>
</tr>
<tr>
<td>Woodworking Operation WW5</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>No</td>
</tr>
</tbody>
</table>

The integral dust collectors DC1, DC2, DC3, DC5 shall be in operation at all times the associated woodworking is in operation, in order to comply with these limits.

Surface Coating

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to Spray Machines 1 through 4, Spray Booth 1, and the Patina Spray Machine, since they are manufacturing processes not
exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Particulate from the surface coating shall be controlled by a dry particulate filter and the Permittee shall operate the control device in accordance with manufacturer’s specifications.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The surface coating units, identified as Spray Machines 1 through 5, Spray Booth 1, Patina Spray Machine, Stainer Machines 1 through 3, Stripper Machines 1 and 2, and Stain Wipe 1, are not subject to the requirements of 326 IAC 8-1-6 because they are regulated by other rules in 326 IAC 8. The units are subject to the requirements of 326 IAC 8-2-12.

326 IAC 8-2-10 (Flat Wood Panels: Manufacturing Operations)
Pursuant to 326 IAC 8-2-10(a), the requirements of 326 IAC 8-2-10 are not applicable to this source, since this source does not perform finishing of flat wood panels. All surface coating units apply surface coatings or laminates to wood trim, mouldings, windows, doors, and miscellaneous wood products.

This rule applies to facilities existing as of July 1, 1990, located in any county, that perform surface finishing of flat wood panels, as defined by 326 IAC 8-2-10(a), and which have actual emissions of greater than fifteen (15) pounds of VOC per day before add-on controls.

326 IAC 8-2-12 (Wood Furniture and Cabinet Coating)
Pursuant to 326 IAC 8-2-12 (Wood Furniture and Cabinet Coating), for Spray Machines 1 through 5, Spray Booth 1, Patina Spray Machine, Stainer Machines 1 through 3, Stripper Machines 1 and 2, and Stain Wipe 1, the Permittee shall perform the surface coating of wood furniture and cabinets, with the exception of no more than ten (10) gallons of coating per day used for touch-up and repair operations, using one (1) or more of the following application methods:

Airless Spray Application
Air Assisted Airless Spray Application
Electrostatic Spray Application
Electrostatic Bell or Disc Application
Heated Airless Spray Application
Roller Coating
Brush or Wipe Application
Dip-and-Drain Application

High Volume Low Pressure (HVLP) Spray Application is an accepted alternative method of application for Air Assisted Airless Spray Application. HVLP spray is the technology used to apply coating to substrate by means of coating application equipment which operates between one-tenth (0.1) and ten (10) pounds per square inch gauge (psig) air pressure measured dynamically at the center of the air cap and at the air horns of the spray system.

326 IAC 8-11 (Wood Furniture Cabinet Coatings)
Pursuant to 326 IAC 8-11-1, this source is not subject to the requirements of 326 IAC 8-11 because the source is not located in one of the following counties: Lake, Porter, Clark, or Floyd County.

Grinding and Machining

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the grinding and machining operations, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).
Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the grinding and machining operations shall not exceed the following pounds per hour when operating at a process weight rate of the following tons per hour. The pound per hour limitation was calculated with the following equation:

\[E = 4.10 P^{0.67} \]

where

\[E = \text{rate of emission in pounds per hour} \]

\[P = \text{process weight rate in tons per hour} \]

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>P (ton/hr)</th>
<th>E (lb/hr)</th>
<th>PTE (lb/hr) (before control)</th>
<th>326 IAC 6-3-2 applies (>0.551 lb/hr)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerf Machines K1 and K2</td>
<td>0.075</td>
<td>0.72</td>
<td>0.94</td>
<td>Yes</td>
</tr>
<tr>
<td>Tool Room Grinders GR1 through GR4</td>
<td>0.125</td>
<td>1.02</td>
<td>0.92</td>
<td>Yes</td>
</tr>
<tr>
<td>Scuff Sander SS1</td>
<td>0.52</td>
<td>2.65</td>
<td>0.86</td>
<td>Yes</td>
</tr>
<tr>
<td>Scuff Sander SS2</td>
<td>0.52</td>
<td>2.65</td>
<td>0.86</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The dust collectors DC4, DC6, DC7, and DC8 shall be in operation at all times the associated units are in operation, in order to comply with this limit.

The dust collectors DC6 shall be in operation when the tool room grinders are in operation. The dust collectors DC7 and DC8 shall be in operation when the sanders are in operation.

Drying Ovens

326 IAC 4-2-2 (Incinerators)

Pursuant to 326 IAC 1-2-34, the requirements of 326 IAC 4-2-2 are not included in the permit for the natural gas-fired drying ovens, identified as E3, DO1 and DO2, since they do not meet the definition of a waste incinerator.

326 IAC 6-2-1 (Particulate Emission Limitations for Sources of Indirect Heating)

Pursuant to 326 IAC 6-2-1(a), the requirements of 326 IAC 6-2-1 are not included in the permit for the natural gas-fired drying ovens, identified as E3, DO1 and DO2, since they are not sources of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(b)(14), the natural gas-fired drying ovens, identified as E3, DO1 and DO2, are not subject to the requirements of 326 IAC 6-3, since they each have potential particulate emissions of less than five hundred fifty-one thousandths (0.551) pound per hour.

326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations)

The natural gas-fired drying ovens, identified as E3, DO1 and DO2, are not subject to 326 IAC 326 IAC 7-1.1 because they each have a potential to emit (or limited potential to emit) sulfur dioxide (SO2) of less than 25 tons per year or 10 pounds per hour.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

Even though, the natural gas-fired drying ovens, identified as E3, DO1 and DO2, were each constructed after January 1, 1980, they are not subject to the requirements of 326 IAC 8-1-6 because their unlimited VOC potential emissions are each less than twenty-five (25) tons per year.

326 IAC 9-1 (Carbon Monoxide Emission Limits)

The requirements of 326 IAC 9-1 do not apply to the source, because this source does not operate a catalyst regeneration petroleum cracking system or a petroleum fluid coker, grey iron cupola, blast furnace, basic oxygen steel furnace, or other ferrous metal smelting equipment.
326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Categories)

The requirements of 326 IAC 10-3 do not apply to the natural gas-fired drying ovens, identified as E3, DO1 and DO2, since these units are not a blast furnace gas-fired boiler, a Portland cement kiln, or a facility specifically listed under 326 IAC 10-3-1(a)(2).

Natural Gas-Fired Combustion Units

326 IAC 6-2-1 (Particulate Emission Limitations for Sources of Indirect Heating)

Pursuant to 326 IAC 6-2-1(a), indirect heating facilities which received permit to construct after September 21, 1983 are subject to the requirements of 326 IAC 6-2-4.

The particulate matter emissions (Pt) shall be limited by the following equation:

\[
Pt = \frac{1.09}{Q^{0.26}}
\]

Where:

- \(Pt\) = Pounds of particulate matter emitted per million British thermal units (lb/MMBtu).
- \(Q\) = Total source maximum operating capacity rating in MMBtu/hr heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility’s permit application, except when some lower capacity is contained in the facility’s operation permit; in which case, the capacity specified in the operation.

| Indirect Heating Units Which Began Operation After September 21, 1983 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Facility | Construction Date (Removal Date) | Operating Capacity (MMBtu/hr) | \(Q\) (MMBtu/hr) | Calculated Pt (lb/MMBtu) | Particulate Limitation, (Pt) (lb/MMBtu) | PM PTE based on AP-42 (lb/MMBtu) |
| Water heater (WH1) | 1994 | 0.013 | 0.013 | 3.37 | 0.6 | 0.002 |

Where: \(Q\) = Includes the capacity (MMBtu/hr) of the new unit(s) and the capacities for those unit(s) which were in operation at the source at the time the new unit(s) was constructed.

Note: Emission units shown in strikethrough were subsequently removed from the source. The effect of removing these units on "Q" is shown in the year the boiler was removed.

Pursuant to 326 IAC 6-2-4(a), for \(Q\) less than 10 MMBtu/hr, Pt shall not exceed 0.6 lb/MMBtu for each of the following units:

(a) One (1) water heater, identified as WH1.

Pursuant to 326 IAC 6-2-1(a), the thirteen (13) radiant heaters (H1 through H11, RH1, RH2), two (2) air makeup units (AM1 and AM2), and four (4) forced air furnaces (FH1 through FH4) are not subject to 326 IAC 6-2, since each is not a source of indirect heating, as defined by 326 IAC 1-2-19.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(b)(14), the natural gas-fired units are not subject to the requirements of 326 IAC 6-3, since these units do not meet the definition of manufacturing process.
326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations)
The natural gas-fired combustion units are not subject to 326 IAC 7-1.1 because they each have a potential to emit (or limited potential to emit) sulfur dioxide (SO2) of less than 25 tons per year or 10 pounds per hour.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
Even though, the natural gas-fired combustion units, were each constructed after January 1, 1980, they are not subject to the requirements of 326 IAC 8-1-6 because their unlimited VOC potential emissions are each less than twenty-five (25) tons per year.

326 IAC 9-1 (Carbon Monoxide Emission Limits)
The requirements of 326 IAC 9-1 do not apply to the source, because this source does not operate a catalyst regeneration petroleum cracking system or a petroleum fluid coker, grey iron cupola, blast furnace, basic oxygen steel furnace, or other ferrous metal smelting equipment.

326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Categories)
The requirements of 326 IAC 10-3 do not apply to the natural gas-fired combustion units, since these units are not a blast furnace gas-fired boiler, a Portland cement kiln, or a facility specifically listed under 326 IAC 10-3-1(a)(2).

Laminating Wrappers

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
Even though, the laminating wrappers, identified as L1 through L6, were each constructed after January 1, 1980, they are not subject to the requirements of 326 IAC 8-1-6 because their unlimited VOC potential emissions are each less than twenty-five (25) tons per year.

326 IAC 8-2-10 (Flat Wood Panels: Manufacturing Operations)
Pursuant to 326 IAC 8-2-10(a), the requirements of 326 IAC 8-2-10 are not applicable to this source, since this source does not perform finishing of flat wood panels. All surface coating units apply surface coatings or laminates to wood trim, mouldings, windows, doors, and miscellaneous wood products.

This rule applies to facilities existing as of July 1, 1990, located in any county, that perform surface finishing of flat wood panels, as defined by 326 IAC 8-2-10(a), and which have actual emissions of greater than fifteen (15) pounds of VOC per day before add-on controls.

326 IAC 8-2-12 (Wood Furniture and Cabinet Coating)
Pursuant to 326 IAC 8-2-12(b), the requirements of 326 IAC 8-2-12 are not included in the permit for the laminating wrappers, identified as L1 through L6, since these units each have a potential to emit VOC of less than fifteen (15) pounds per day.

326 IAC 8-11 (Wood Furniture Cabinet Coatings)
Pursuant to 326 IAC 8-11-1, this source is not subject to the requirements of 326 IAC 8-11 because the source is not located in one of the following counties: Lake, Porter, Clark, or Floyd County.

Sorbond Usage

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-2(b)(14), the sorbond usage operation is not subject to the requirements of 326 IAC 6-3, since it has potential particulate emissions less than five hundred fifty-one thousandths (0.551) pound per hour.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific
conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source’s failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Monitoring Requirements applicable to this source are as follows:

<table>
<thead>
<tr>
<th>Emission Unit (Control Device)</th>
<th>Type of Parametric Monitoring</th>
<th>Frequency</th>
<th>Range or Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW1 (DC1), WW2 (DC2), WW3 (DC3), WW5 (DC10)</td>
<td>Control Device Inspections (when exhausting indoors)</td>
<td>Semi-annually</td>
<td>Normal or abnormal</td>
</tr>
<tr>
<td></td>
<td>Visible emission notations (when exhausting outdoors)</td>
<td>Daily</td>
<td>Normal or abnormal</td>
</tr>
<tr>
<td>Spray Machines 1 through 4 (Dry Filters)</td>
<td>Dry Filter Inspections</td>
<td>Daily</td>
<td>Normal or abnormal</td>
</tr>
<tr>
<td>Spray Booth 1 (Dry Filters)</td>
<td>Observations for stack overspray</td>
<td>Weekly</td>
<td>Verify if there is an overspray condition that should result in a response</td>
</tr>
<tr>
<td>Patina Spray Machine (Dry Filters)</td>
<td>Inspections for stack emissions and presence of overspray</td>
<td>Monthly</td>
<td>Verify if there is a noticeable change in overspray emissions or evidence of overspray</td>
</tr>
</tbody>
</table>

(1) These monitoring conditions are necessary because the dust collectors for the woodworking operations, identified as WW1, WW2, WW3 and WW5, must operate properly to assure compliance with 326 IAC 6-3-2.

(2) These monitoring conditions are necessary because the dry filters for the Spray Machines 1 through 4, Spray Booth 1 and Patina Spray Machine must operate properly to assure compliance with 326 IAC 6-3-2.

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on August 26, 2020.

The operation of this stationary wood moulding and coating operation shall be subject to the conditions of the attached proposed Part 70 Operating Permit Renewal No. T039-43199-00174.

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal be approved.
(a) If you have any questions regarding this permit, please contact L. David Cohen, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-9327 or (800) 451-6027, and ask for L. David Cohen or (317) 233-9327.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
Summary Emissions

Company Name: Patrick Industries, Inc. dba Nickell Moulding Company, Inc.
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-45199-0017
Reviewer: L. David Cohen

Unlimited Potential to Emit Before Integral Controls (tons/year)

<table>
<thead>
<tr>
<th>Emission Units</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>*Highest Single HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combustion Units</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.60</td>
<td>6.60 Glycol Ethers</td>
</tr>
<tr>
<td>Spray Coating (Spray Booth 1)</td>
<td>43.46</td>
<td>43.46</td>
<td>43.46</td>
<td>-</td>
<td>-</td>
<td>23.13</td>
<td>-</td>
<td>4.60</td>
<td>4.60 Glycol Ethers</td>
</tr>
<tr>
<td>Patina Spray Machine (PSM1)</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>-</td>
<td>-</td>
<td>4.63</td>
<td>-</td>
<td>2.30</td>
<td>2.30 Glycol Ethers</td>
</tr>
<tr>
<td>Patina Spray Machine (PSM2)</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>-</td>
<td>-</td>
<td>4.63</td>
<td>-</td>
<td>2.30</td>
<td>2.30 Glycol Ethers</td>
</tr>
</tbody>
</table>

Insignificant Emissions Units/Activities

<table>
<thead>
<tr>
<th>Emission Units</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>*Highest Single HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combustion Units</td>
<td>10.41</td>
<td>10.41</td>
<td>10.41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.60</td>
<td>6.60 Glycol Ethers</td>
</tr>
<tr>
<td>Spray Coating (Spray Booth 1)</td>
<td>43.46</td>
<td>43.46</td>
<td>43.46</td>
<td>-</td>
<td>-</td>
<td>23.13</td>
<td>-</td>
<td>4.60</td>
<td>4.60 Glycol Ethers</td>
</tr>
<tr>
<td>Patina Spray Machine (PSM1)</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>-</td>
<td>-</td>
<td>4.63</td>
<td>-</td>
<td>2.30</td>
<td>2.30 Glycol Ethers</td>
</tr>
</tbody>
</table>
| Insignificant Emission Units/Activities

Limited Potential to Emit After Integral Woodworking Controls (tons/year)

<table>
<thead>
<tr>
<th>Emission Units</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>*Highest Single HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combustion Units</td>
<td>5.89</td>
<td>5.89</td>
<td>5.89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.60</td>
<td>6.60 Glycol Ethers</td>
</tr>
<tr>
<td>Spray Coating (Spray Booth 1)</td>
<td>43.46</td>
<td>43.46</td>
<td>43.46</td>
<td>-</td>
<td>-</td>
<td>23.13</td>
<td>-</td>
<td>4.60</td>
<td>4.60 Glycol Ethers</td>
</tr>
<tr>
<td>Patina Spray Machine (PSM1)</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>-</td>
<td>-</td>
<td>4.63</td>
<td>-</td>
<td>2.30</td>
<td>2.30 Glycol Ethers</td>
</tr>
</tbody>
</table>
| Insignificant Emissions Units/Activities

Summary

Page 1 of 14, TSD App. A
Appendix A: Emissions Calculations

Woodworking Operations (WW1, WW2, WW3, WW4, WW5)

Company Name: Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc.
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen

Uncontrolled Potential to Emit (tons/year)

<table>
<thead>
<tr>
<th>Process - ID (Dust Collector Id.)</th>
<th>No. of Units</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>Control Efficiency</th>
<th>PM/PM10/PM10.25 Emissions (lbs/hr)</th>
<th>PM/PM10/PM10.25 Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodworking - WW1 (DC1)</td>
<td>1.00</td>
<td>28,700.00</td>
<td>4.37E-03</td>
<td>0.99</td>
<td>107.50</td>
<td>470.86</td>
</tr>
<tr>
<td>Woodworking - WW2 (DC2)</td>
<td>1.00</td>
<td>30,180.00</td>
<td>4.37E-03</td>
<td>0.99</td>
<td>113.05</td>
<td>495.14</td>
</tr>
<tr>
<td>Woodworking - WW3 (DC3)</td>
<td>1.00</td>
<td>35,910.00</td>
<td>4.37E-03</td>
<td>0.99</td>
<td>134.51</td>
<td>589.15</td>
</tr>
<tr>
<td>Woodworking - WW4* (DC9)</td>
<td>1.00</td>
<td>8,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>6.86</td>
<td>30.03</td>
</tr>
<tr>
<td>Woodworking - WW5 (DC10)</td>
<td>1.00</td>
<td>12,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>10.29</td>
<td>45.05</td>
</tr>
</tbody>
</table>

Total Uncontrolled PTE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>372.20</td>
<td>1,630.23</td>
</tr>
</tbody>
</table>

Controlled Potential to Emit (tons/year)

<table>
<thead>
<tr>
<th>Process - ID (Dust Collector Id.)</th>
<th>No. of Units</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>PM/PM10/PM10.25 Emissions (lbs/hr)</th>
<th>PM/PM10/PM10.25 Emissions (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodworking - WW1 (DC1)</td>
<td>1.00</td>
<td>28,700.00</td>
<td>4.37E-03</td>
<td>1.08</td>
<td>4.71</td>
</tr>
<tr>
<td>Woodworking - WW2 (DC2)</td>
<td>1.00</td>
<td>30,180.00</td>
<td>4.37E-03</td>
<td>1.13</td>
<td>4.95</td>
</tr>
<tr>
<td>Woodworking - WW3 (DC3)</td>
<td>1.00</td>
<td>35,910.00</td>
<td>4.37E-03</td>
<td>1.35</td>
<td>5.89</td>
</tr>
<tr>
<td>Woodworking - WW4* (DC9)</td>
<td>1.00</td>
<td>8,000.00</td>
<td>1.00E-03</td>
<td>0.07</td>
<td>0.30</td>
</tr>
<tr>
<td>Woodworking - WW5 (DC10)</td>
<td>1.00</td>
<td>12,000.00</td>
<td>1.00E-03</td>
<td>0.10</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Total Controlled PTE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.72</td>
<td>16.30</td>
</tr>
</tbody>
</table>

Allowable PM Emission Rates Pursuant to 326 IAC 6-3-2

<table>
<thead>
<tr>
<th></th>
<th>Woodworking - WW1 (DC1)</th>
<th>Woodworking - WW2 (DC2)</th>
<th>Woodworking - WW3 (DC3)</th>
<th>Woodworking - WW4* (DC9)</th>
<th>Woodworking - WW5 (DC10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Emission (lbs/hr)</td>
<td>4.10 x [Process Weight Rate] ** = 12.37</td>
<td>12.37</td>
<td>39.77</td>
<td>NA**</td>
<td>NA**</td>
</tr>
<tr>
<td>Material Input Rate (lbs/hr)</td>
<td>10,400.00</td>
<td>10,400.00</td>
<td>59,400.00</td>
<td>NA**</td>
<td>NA**</td>
</tr>
<tr>
<td>Material Input Rate (tons/hr)</td>
<td>5.20</td>
<td>5.20</td>
<td>29.70</td>
<td>NA**</td>
<td>NA**</td>
</tr>
<tr>
<td>Potential PM Emissions After Controls (lbs/hr)</td>
<td>1.08</td>
<td>1.13</td>
<td>1.35</td>
<td>0.07</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*WW4 was created using previously permitted and existing units operating at different woodworking operations at the facility (WW1 through WW3).
**NA = not applicable. Pursuant to 326 IAC 6-3-1(14), the woodworking operation (WW4) is not subject to the requirements of 326 IAC 6-3, since it has potential particulate emissions (after integral woodworking controls) of less than 0.551 pounds per hour.

Methodology:

Uncontrolled PM/PM10/PM10.25 Emissions (tons/yr) = [No. Units * Loading (grains/acfm) * Flow Rate (acfm) * 1 lb/7,000 grains * 60 min/hr * 8760 hr/yr * 1 ton/2,000 lbs * 1/(1-Control Efficiency)]
Controlled PM/PM10/PM10.25 Emissions (tons/yr) = [No. Units * Loading (grains/acfm) * Flow Rate (acfm) ** * 1 lb/7,000 grains * 60 min/hr * 8760 hr/yr * 1 ton/2,000 lbs]

In October 1993 a Final Order Granting Summary Judgment was signed by Administrative Law Judge (“ALJ”) Garrettson resolving an appeal filed by Kimball Hospitality Furniture Inc. (Cause Nos. 92-A-J-730 and 92-A-J-833) related to the method by which IDEM calculated potential emissions from woodworking operations. In his findings, the ALJ determined that particulate controls are necessary for the facility to produce its normal product and are integral to the normal operation of the facility, and therefore, potential emissions should be calculated after controls. Based on this ruling, potential emissions for particulate matter were calculated after consideration of the controls for purposes of determining operating permit level and applicability of 326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)).
| Process | Use | Description | Density (lb/gal) | Weight % Glycol Ethers | Weight % Water & Exempt | Weight % Organics | Volume % Non-Volatiles (solids) | Volume % Water & Exempt | Gal of Mat (gal/unit) | Maximum (unithour) | Pounds VOC per gallon of coating less water | Pounds VOC per gallon of coating | Potential VOC pounds per day | Potential VOC tons per year | Potential VOC Tons per Year | Pounds VOC per gallon of Solids | Transfer Efficiency (See Notes Below) | Substrate |
|----------|---------|----------------------|------------------|------------------------|-------------------------|-------------------|-------------------------------|-------------------------|---------------------|------------------|---------------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|-----------------------------|
| Spray Machines 1 to 4 | Stain | Chroma Chem Titanium White | 17.51 | 0.10 | - | 0.10 | 0.07 | 8.00E-05 | 7.500.00 | 1.76 | 1.76 | 1.06 | 25.34 | 4.63 | 10.35 | 2.30 | 0.75 | Wood |
| or | | | | | | | | | | | | | | | | | | |
| Spray Machines 1 to 4 | Topcoat | Hi Build SG Topcoat | 8.55 | 0.67 | 0.58 | 0.09 | 0.80 | 3.00E-05 | 7.500.00 | 1.82 | 0.74 | 0.46 | 10.56 | 1.95 | 1.87 | 2.46 | 0.76 | Wood |
| Spray Machine 5 | Stain | Chroma Chem Titanium White | 17.51 | 0.10 | - | 0.10 | 0.07 | 8.00E-05 | 7.500.00 | 1.76 | 1.76 | 1.06 | 25.34 | 4.63 | 10.35 | 2.30 | 0.95 | Wood |

Potential to Emit (add worst case coating to all solvents)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Gallons of Material (gal/unit)</th>
<th>Maximum Throughput (unithr)</th>
<th>Weight % Glycol Ethers</th>
<th>Potential to Emit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
<td>2.30</td>
</tr>
<tr>
<td>Hi Build SG Topcoat</td>
<td>8.55</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

METHODOLOGY

Pounds of VOC per gallon of coating less Water = (Density (lb/gal) * Weight % Organics) / (1- Volume % water)

Potential VOC Tons per Year = Pounds of VOC per gallon of coating (lb/gal) * Gal of Material (gal/unit) * Maximum (unithr) * (8760 hrs/yr) * (1 ton/2000 lbs)

Potential VOC Tons per Year = Potential VOC Pounds per Day * (1 ton/2000 lbs)

Potential to Emit = Worst Case Coating + Cleanup Solvent

HAZARDOUS AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Process</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Gallons of Material (gal/unit)</th>
<th>Maximum Throughput (unithr)</th>
<th>Weight % Glycol Ethers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray Machines 1 to 4</td>
<td>Chrome Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
</tr>
<tr>
<td>or</td>
<td>Hi Build SG Topcoat</td>
<td>8.55</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>-</td>
</tr>
</tbody>
</table>

METHODOLOGY

PTE HAPs (tons/yr) = Density (lbs/gal) * Gal of Material (gal/unit) * Maximum Throughput (unithr) * Weight % HAP * 8,760 hrs/yr * (1 ton/2000 lbs)

Potential to Emit = Worst Case Coating + Cleanup Solvent
Process Emissions Calculations

VOC and Particulate

One (1) Spray Repair Booth (Spray Booth 1)

Company Name: Patrick Industries, Inc. dba Nickell Moulding Company, Inc.
Source Address: 3915 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen

<table>
<thead>
<tr>
<th>Process</th>
<th>Manufacturer</th>
<th>Product Number</th>
<th>Use</th>
<th>Description</th>
<th>Density (Lb/Gal)</th>
<th>Weight % Non-Volatiles (H2O & Org)</th>
<th>Weight % Exempt</th>
<th>Volume % Water & Exempt</th>
<th>Volume % Non-Volatiles (solids)</th>
<th>Gal of Mtl (gal/unit)</th>
<th>Maximum (units/hr)</th>
<th>Pounds VOC per gallon of coating less water</th>
<th>Pounds VOC per gallon of coating</th>
<th>Pounds VOC per hour</th>
<th>Pounds VOC per day</th>
<th>Potential VOC pounds per year</th>
<th>Potential VOC tons per year</th>
<th>Potential VOC tons per day</th>
<th>Potential VOC tons per hour</th>
<th>Pounds VOC per gallon of Solids</th>
<th>Transfer Efficiency</th>
<th>PM Control Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray Booth 1</td>
<td>Crenova</td>
<td>ATW Stain Aqua Chem Titanium White</td>
<td>17.51</td>
<td>0.10</td>
<td>0.77</td>
<td>8.00E-05</td>
<td>7,500.00</td>
<td>3.79</td>
<td>1.05</td>
<td>1.19</td>
<td>10.35</td>
<td>2.09</td>
<td>7.36</td>
<td>2.76</td>
<td>8.00E-05</td>
<td>3.79</td>
<td>7.36</td>
<td>9.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray Booth 1</td>
<td>Mid America</td>
<td>S-1529 Topcoat Hi Build SG Topcoat</td>
<td>8.55</td>
<td>0.67</td>
<td>0.58</td>
<td>0.09</td>
<td>0.60</td>
<td>8.00E-05</td>
<td>7,500.00</td>
<td>3.82</td>
<td>1.14</td>
<td>0.44</td>
<td>10.58</td>
<td>1.93</td>
<td>1.87</td>
<td>2.48</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential to Emit (add worst case coating to all solvents): 2.30 2.30 2.30 2.30

Transfer Efficiency - HVLP Application: 75%
PM Control Efficiency: 0.90

Methodology

- **Pounds of VOC per Gallon Coating less Water** = (Density (lb/gal) * Weight % Organics) / (1 - Volume % water)
- **Pounds of VOC per Gallon Coating** = (Density (lb/gal) * Weight % Organics)
- **Potential VOC Pounds per Hour** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr)
- **Potential VOC Pounds per Day** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (24 hr/day)
- **Potential VOC Tons per Year** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (8760 hr/yr) * (1 ton/2000 lbs)
- **Particulate Potential Tons per Year** = (units/hour) * (gal/unit) * (lbs/gal) * (1 - Weight % Volatiles) * (1 - Transfer efficiency) * (8760 hrs/yr) * (1 ton/2000 lbs)
- **Pounds VOC per Gallon of Solids** = (Density (lbs/gal) * Weight % organics) / (Volume % solids)

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lbs/gal)</th>
<th>Volume % Material (gal/unit)</th>
<th>Maximum Throughput (units/hr)</th>
<th>Weight % Glycol Ethers</th>
<th>PTE Glycol Ethers (tons/yr)</th>
<th>Total PTE HAPs (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Chem Titanium White</td>
<td>17.51</td>
<td>2,000-65</td>
<td>7,500.00</td>
<td>0.05</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Mid America S-1529 Topcoat Hi Build SG Topcoat</td>
<td>8.55</td>
<td>2,000-65</td>
<td>7,500.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology

- **PTE HAPs (tons/yr) = Density (lbs/gal) * Gal of Material (gal/unit) * Maximum Throughput (units/hr) * Weight % Glycol Ethers / 8,760 hrs/yr / 2,000 lbs**

- **Potential to Emit = Worst Case Coating + Cleanup Solvent**

Reviewer: L. David Cohen

Appendix A: Emissions Calculations

VOC and Particulate

One (1) Spray Repair Booth (Spray Booth 1)

Company Name: Patrick Industries, Inc. dba Nickell Moulding Company, Inc.
Source Address: 3915 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen
HAZARDOUS AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Gallons of Material</th>
<th>Maximum Throughput (unit/hr)</th>
<th>Weight % Glycols Exempt</th>
<th>TFE Glycol Exempt</th>
<th>Total TFE HAPs (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.60G.00</td>
<td>0.05</td>
<td>2.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Hi Build SG Topcoat</td>
<td>8.55</td>
<td>8.00E-05</td>
<td>7.60G.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METHODOLOGY

Pounds of VOC per Gallon Coating less Water = (Density (lb/gal) * Weight % Organics) / (1-Volume % water)

Potential VOC Pounds per Hour = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr)

Potential VOC Pounds per Day = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (24 hr/day)

Potential VOC Tons per Year = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (8760 hrs/yr) * (1 ton/2000 lbs)

Pounds VOC per Gallon of Solids = (Density (lbs/gal) * Weight % organics) / (Volume % solids)

Potential to Emit = Worst Case Coating + Cleanup Solvent

Transfer Efficiency - M/LP Application = 75%

METHODOLOGY

Pounds of VOC per Gallon Coating less Water = (Density (lb/gal) * Weight % Organics) / (1-Volume % water)

Potential VOC Pounds per Hour = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr)

Potential VOC Pounds per Day = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (24 hr/day)

Potential VOC Tons per Year = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (8760 hrs/yr) * (1 ton/2000 lbs)

Pounds VOC per Gallon of Solids = (Density (lbs/gal) * Weight % organics) / (Volume % solids)

Potential to Emit = Worst Case Coating + Cleanup Solvent
Grinding and Machining Insignificant Activities

Uncontrolled Potential Emissions (tons/year)

<table>
<thead>
<tr>
<th>Process - Id (Dust Collector Id.)</th>
<th>No. of Units</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>Control Efficiency</th>
<th>Total (tons/yr)</th>
<th>Total Uncontrolled (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kerf Machines, K1 & K2 (DC4)</td>
<td>1.00</td>
<td>1,100.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>4.13</td>
<td>0.94</td>
</tr>
<tr>
<td>Portable Dust Collector (DC5)</td>
<td>1.00</td>
<td>650.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>2.44</td>
<td>DC5 is a control device</td>
</tr>
<tr>
<td>Tool Rm Grinders GR1 - GR4 (DC6)</td>
<td>1.00</td>
<td>1,070.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>4.02</td>
<td>0.92</td>
</tr>
<tr>
<td>Scuff Sander SS1 (DC7)</td>
<td>1.00</td>
<td>1,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>3.75</td>
<td>0.86</td>
</tr>
<tr>
<td>Scuff Sander SS2 (DC8)</td>
<td>1.00</td>
<td>1,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>3.75</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Total Emissions Based on Rated Capacity at 8,760 Hours/Year (tons/year) 18.10
Total Emissions Based on Rated Capacity (lb/hr) 4.13

Controlled Potential Emissions (tons/year)

<table>
<thead>
<tr>
<th>Process - Id (Dust Collector Id.)</th>
<th>No. of Units</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>Control Efficiency</th>
<th>Total (tons/yr)</th>
<th>Total (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kerf Machines, K1 & K2 (DC4)</td>
<td>1.00</td>
<td>1,100.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Portable Dust Collector (DC5)</td>
<td>1.00</td>
<td>650.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Tool Rm Grinders GR1 - GR4 (DC6)</td>
<td>1.00</td>
<td>1,070.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Scuff Sander SS1 (DC7)</td>
<td>1.00</td>
<td>1,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Scuff Sander SS2 (DC8)</td>
<td>1.00</td>
<td>1,000.00</td>
<td>1.00E-03</td>
<td>0.99</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Total Emissions Based on 8,760 Hours/Year and controls (tons/year) 0.18
Total Emissions Based on 8,760 Hours/Year and controls (lb/hr) 0.04

Allowable PM Emission Rates

<table>
<thead>
<tr>
<th></th>
<th>2 Kerf Machines, K1 & K2 (DC4)</th>
<th>Portable Dust Collector (DC5)</th>
<th>Tool Rm Grinders GR1 - GR4 (DC6)</th>
<th>Scuff Sander SS1 (DC7)</th>
<th>Scuff Sander SS2 (DC8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Emission (lb/hr)</td>
<td>4.10 x [Process Weight Rate]^0.67</td>
<td>0.72</td>
<td>12.37</td>
<td>1.02</td>
<td>2.65</td>
</tr>
<tr>
<td>Material Input Rate (lb/hr)</td>
<td>150.00</td>
<td>10,400.00</td>
<td>250.00</td>
<td>1,040.00</td>
<td>1,040.00</td>
</tr>
<tr>
<td>Potential PM Emissions After Controls (lb/hr)</td>
<td>9.43E-03</td>
<td>5.57E-03</td>
<td>9.17E-03</td>
<td>8.57E-03</td>
<td>8.57E-03</td>
</tr>
</tbody>
</table>

Total Limited Emissions 19.41

Methodology:

Potential Emission (uncontrolled):
Potential Emission (tons/yr) = [No. Units * Loading (grains/acfm) * Flow Rate (acfm) * 1 lb/7,000 grains * 60 min/hr * 8,760 hr/yr * 1 ton/2,000 lbs * 1/(1-Control Efficiency)]

Potential Emission (controlled):
Potential Emission (tons/yr) = [No. Units * Loading (grains/acfm) * Flow Rate (acfm) * 1 lb/7,000 grains * 60 min/hr * 8,760 hr/yr * 1 ton/2,000 lbs] x Potential Emissions After Controls (tons/yr) x 2,000 lbs/ton x 1 year/8,760 hrs
Appendix A: Emissions Calculations

VOC and Particulate Matter

Two (2) Flood Coat Vacuum Coater (Stainer Machines 1 and 2)

Company Name: Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc.
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen

METHODOLOGY

- **Pounds of VOC per Gallon Coating less Water**: $(\text{Density (lb/gal)} \times \text{Weight \% Organics}) / (1-\text{Volume \% Water})$
- **Pounds of VOC per Gallon Coating**: $(\text{Density (lb/gal)} \times \text{Weight \% Organics})$
- **Potential VOC Pounds per Hour**: $\text{Pounds of VOC per Gallon coating (lb/gal)} \times \text{Gal of Material (gal/unit)} \times \text{Maximum (units/hr)}$
- **Potential VOC Pounds per Day**: $\text{Pounds of VOC per Gallon coating (lb/gal)} \times \text{Gal of Material (gal/unit)} \times \text{Maximum (units/hr)} \times (24 \text{ hr/day})$
- **Potential VOC Tons per Year**: $\text{Pounds of VOC per Gallon of Solids} = (\text{Density (lbs/gal)} \times \text{Weight % organics}) / (\text{Volume % solids})$

HAZARDOUS AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Process</th>
<th>Use</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Gallons of Material (gal/unit)</th>
<th>Maximum Throughput (units/hr)</th>
<th>Weight % Glycol Ethers</th>
<th>PTE Glycol Ethers (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainer Machine 1</td>
<td>Stain</td>
<td>Chroma Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
<td>2.30</td>
</tr>
<tr>
<td>Stainer Machine 2</td>
<td>Stain</td>
<td>Chroma Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
<td>2.30</td>
</tr>
<tr>
<td>Stainer Machine 3</td>
<td>Stain</td>
<td>Chroma Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
<td>2.30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.10</td>
<td>6.90</td>
</tr>
</tbody>
</table>

METHODOLOGY

- **PTE HAPs (tons/yr) = Density (lb/gal) \times \text{Gal of Material (gal/unit)} \times \text{Maximum Throughput (units/hr)} \times \text{Weight % HAP} \times 8,760 \text{ hrs/yr} \times 1 \text{ ton/2,000 lbs}**
Potential to Emit (PTE) VOC and Particulate

Transfer Efficiency - Non-Atomizing Flow Coating and Hand/Manual Application = 100%

METHODOLOGY

- **Pounds of VOC per Gallon Coating less Water = (Density (lb/gal) * Weight % Organics) / (1-Volume % water)**
- **Pounds of VOC per Gallon Coating = (Density (lb/gal) * Weight % Organics)**
- **Potential VOC Pounds per Hour = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr)**
- **Potential VOC Pounds per Day = Potential VOC Pounds per Hour * 24 hr/day**
- **Potential VOC Tons per Year = Potential VOC Pounds per Day / 2000 lbs**
- **Particulate Potential Tons per Year = (units/hour) * (gal/unit) * (lbs/gal) * (1- Weight % Volatiles) * (1-Transfer efficiency) * (8760 hrs/yr) / (1 ton/2000 lbs)**
- **Pounds VOC per Gallon of Solids = (Density (lb/gal)) * Weight % organics) / (Volume % solids)**

Potential to Emit (PTE) Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Gallons of Material (gal/unit)</th>
<th>Maximum Throughput (units/hr)</th>
<th>Weight % Solvents (units/hr)</th>
<th>Total PTE HAPs (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7.500.00</td>
<td>0.05</td>
<td>2.30</td>
</tr>
<tr>
<td>Water</td>
<td>8.34</td>
<td>5.00E-05</td>
<td>7.500.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.30</td>
</tr>
</tbody>
</table>

METHODOLOGY

- **PTE HAPs (tons/yr) = Density (lb/gal) * Gall of Material (gal/unit) * Maximum Throughput (units/hr) * Weight % HAP * 8,760 hrs/yr / 1 ton/2,000 lbs**
CRITERIA POLLUTANTS

Process	Manufacturer	Product Number	Use	Description	Density (Lb/Gal)	Weight % Volatile (VOC & Organics)	Weight % Water & Exempt	Weight % Organic	Volume % Water & Exempt	Volume % Non-Volatile (solids)	Volume % Non-Volatile (solids)	Volume % Non-Volatile (solids)	Maximum (Unit/hr)	Pounds VOC per gallon of coating less water	Pounds VOC per gallon of coating	Potential VOC pounds per hour	Potential VOC pounds per day	Potential VOC pounds per year	Potential VOC tons per year	Particulate Potential Tons per Year	S-VOC/gal solids	Transfer Efficiency (See Notes Below)	Substrate		
Stain Wipe 1	Crenova	ATW	Stain	Aqua Chem Titanium White	17.51	0.10	0.10	0.10	0.10	0.10	0.10	0.10	17.51	7,500.00	7,500.00	7,500.00	---	---	---	---	---	---	7.50	---	---
Stain Wipe 1	NA	NA	Cleaning	Water	8.34	1.00	1.00	1.00	1.00	1.00	1.00	1.00	8.34	7,500.00	7,500.00	7,500.00	---	---	---	---	---	---	---	---	---

Total: 1.06 25.34 4.63 --

Transfer Efficiency - Hand/Manual Application = 100%

METHODOLOGY

Pounds of VOC per Gallon Coating less Water = (Density (Lb/gal) * Weight % Organics) / (1-Volume % water)

Pounds of VOC per Gallon Coating = (Density (Lb/gal) * Weight % Organics)

Potential VOC Pounds per Hour = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr)

Potential VOC Pounds per Day = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (24 hr/day)

Potential VOC Tons per Year = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gal/unit) * Maximum (units/hr) * (8760 hr/yr) * (1 ton/2000 lbs)

Particulate Potential Tons per Year = (units/hour) * (gal/unit) * (lbs/gal) * (1-Weight % Volatiles) * (1-Transfer efficiency) * (8760 hrs/yr) * (1 ton/2000 lbs)

Pounds VOC per Gallon of Solids = (Density (lbs/gal) * Weight % organics) / (Volume % solids)

HAZARDOUS AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lbs/gal)</th>
<th>Gallons of Material (gal/unit)</th>
<th>Maximum Throughput (units/hr)</th>
<th>Weight % Glycol Ethers</th>
<th>PTE Glycol Ethers (tons/yr)</th>
<th>Total PTE HAP (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Chem Titanium White</td>
<td>17.51</td>
<td>8.00E-05</td>
<td>7,500.00</td>
<td>0.10</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>Water</td>
<td>8.34</td>
<td>5.00E-05</td>
<td>7,500.00</td>
<td>---</td>
<td>2.30</td>
<td>2.30</td>
</tr>
</tbody>
</table>

PTE HAP (tons/yr) = Density (lbs/gal) * Gal of Material (gal/unit) * Maximum Throughput (units/hr) * Weight % HAP * 8,760 hrs/yr * 1 ton/2,000 lbs
Process, Manufacturer, and Product Number

<table>
<thead>
<tr>
<th>Process</th>
<th>Manufacturer</th>
<th>Product Number</th>
<th>Use</th>
<th>Description</th>
<th>Density (lb/gal)</th>
<th>Weight %</th>
<th>Weight %</th>
<th>Volume %</th>
<th>Gal of Mat (gallons)</th>
<th>Pounds VOC</th>
<th>Potential VOC</th>
<th>Potential VOC</th>
<th>Potential VOC</th>
<th>Potential VOC</th>
<th>Potential VOC</th>
<th>% VOC/gal</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Coater</td>
<td>Mid America</td>
<td>UV-1012 Topcoat</td>
<td>10 Sheen Clear UV Topcoat</td>
<td></td>
<td>0.74</td>
<td>1.10E-03</td>
<td>1.10E-03</td>
<td>1.10E-03</td>
<td>0.98</td>
<td>2.76E-05</td>
<td>7,300.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.83</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>UV Coater</td>
<td>N/A</td>
<td>N/A</td>
<td>Cleanup Water</td>
<td></td>
<td>8.34</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>-</td>
<td>5.00E-05</td>
<td>7,500.00</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Potential to Emit

	Pounds VOC							
	per gallon of coating less water	per gallon of coating	per hour	per day	tons per year	pounds of coating less water	pounds of coating	pounds of coating

Transfer Efficiency - Non-Atomizing Flow Coat and Hand/Manual Application = 100%

METHODOLOGY

- **Pounds of VOC per Gallon Coating less Water** = (Density (lb/gal) * Weight % Organics) / (1 - Volume % water)
- **Pounds of VOC per Gallon Coating** = (Density (lb/gal) * Weight % Organics)
- **Potential VOC Pounds per Hour** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gallons) * Maximum (units/hr)
- **Potential VOC Pounds per Day** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gallons) * Maximum (units/hr) * (24 hr/day)
- **Potential VOC Tons per Year** = Pounds of VOC per Gallon coating (lb/gal) * Gal of Material (gallons) * Maximum (units/hr) * (8760 hrs/yr) * (1 ton/2000 lbs)
- **Particulate Potential Tons per Year** = (units/hour) * (gallons) / (lbs/gal) * (1 - Transfer efficiency) / (8760 hrs/yr) * (1 ton/2000 lbs)

HAZARDOUS AIR POLLUTANTS

There are no hazardous air pollutants in the coating.
Appendix A: Emissions Calculations

VOC/MDI
Laminating Wrappers L1 - L6

Company Name: Patrick Industries, Inc. dba Nickell Moulding Company, Inc.
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen

The three (3) laminating wrappers, identified as L1 through L3, installed in 2004, and one (1) laminating wrapper, identified as L6, constructed in 2018, with a total capacity of one hundred (100) pounds of polyurethane adhesive per hour and ten thousand (10,000) square feet per hour coated, use a material that contains the HAP MDI. The potential to emit MDI, a VOC from the four (4) laminating wrappers has been calculated with the equation provided by the Society of the Plastics Industry's Polyurethane Division under the provisions of the Emergency Planning and Community Right-to-Know Act (EPCRA) as shown below:

Total Number of Units: 4.00

Maximum Potential Emissions

<table>
<thead>
<tr>
<th>Formula</th>
<th>W (MDI) = 25.40 (Pt’ Mt) u0.78 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of Calculation</td>
<td>From Society of the Plastic's Industry's Polyurethane Division under the provisions of Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA)</td>
</tr>
<tr>
<td>Liquid Vapor Pressure (Pt)</td>
<td>Temperature (T)</td>
</tr>
<tr>
<td>mm Hg</td>
<td>Atmopsheres</td>
</tr>
<tr>
<td>1.25E-03</td>
<td>1.64E-06</td>
</tr>
<tr>
<td>Feet/Minute</td>
<td>Meters/Sec</td>
</tr>
<tr>
<td>Units per Hour (4 total)</td>
<td>1.200.00</td>
</tr>
<tr>
<td>Square Feet per Unit</td>
<td>8.33</td>
</tr>
<tr>
<td>Square Feet Coated per Hour</td>
<td>10,000.00</td>
</tr>
<tr>
<td>Square Meters Coated per Hour</td>
<td>929.37</td>
</tr>
</tbody>
</table>

Emissions Estimate

| W = 2.30E-03 grams/second |
| W = 8.27 grams/hour |
| W = 0.02 pounds/hour |
| Operating Hours per Year | 8,760 hours/year |
| Total (4 units) |

Total Emissions for One (1) Unit: 0.02 tons/year (each unit)

MDI = 4,4’-Methylene diphenyl Disocyanate
Pressure (atmospheres) = Pressure (mm Hg) x 1 atmosphere / 760 mm Hg
Temperature (Kelvin) = (Temperature (Fahrenheit) - 32)* 5/9 + 273
meters/second = feet/minute x 1 meter / 3.281 feet x 1 minute / 60 seconds
square meters = units/hour x square feet/unit x (1 meter / 3.281 feet)²
tons/year = grams / second x 3,600 seconds/ hour x 1 pound / 453.5 grams x 8,760 hours/year x 1 ton / 2,000 pounds
Uncontrolled Potential Emissions (tons/year)

<table>
<thead>
<tr>
<th>Material</th>
<th>Material Usage (lb/hr)</th>
<th>Emission Factor (lb/ton)</th>
<th>PM/PM10 Emissions (lb/hr)</th>
<th>PM/PM10 Emissions (lb/day)</th>
<th>PM/PM10 Emissions (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbond Bentonite</td>
<td>25.00</td>
<td>0.54</td>
<td>6.80E-03</td>
<td>0.16</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Methodology:

Potential Emission (uncontrolled):
- Potential Emissions (lb/hr) = Material Usage (lb/hr) x 1/2,000 (lb/ton) x Emission Factor (lb/ton)
- Potential Emissions (lb/day) = Potential Emissions (lb/hr) x 24 (hr/day)
- Potential Emission(tons/yr) = Potential Emissions (lb/hr) x 8760 hr/yr x 1 ton/2,000 lbs

Emission Factor from AP-42, Chapter 11.12, Table 11.12-2 for Cement Mixer Loading, SCC 3-05-011-09
Appendix A: Emissions Calculations

Natural Gas Combustion Only

MM BTU/HR <100

Company Name: Patrick Industries, Inc. d/b/a Nickell Moulding Company, Inc.
Source Address: 3015 Mobile Drive, Elkhart, Indiana 46514
Part 70 Renewal No.: T039-43199-0017
Reviewer: L. David Cohen

Heat Input Capacity

<table>
<thead>
<tr>
<th>ID</th>
<th># of units</th>
<th>Heat Input Capacity (MMBtu/hr) each</th>
<th>Total MMBtu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 through H10</td>
<td>10.00</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>H11</td>
<td>1.00</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>E3</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>RH1 and RH2</td>
<td>2.00</td>
<td>0.80</td>
<td>1.60</td>
</tr>
<tr>
<td>D01 and D02</td>
<td>2.00</td>
<td>1.13</td>
<td>2.25</td>
</tr>
<tr>
<td>AM1 and AM2</td>
<td>2.00</td>
<td>1.50</td>
<td>3.00</td>
</tr>
<tr>
<td>WH1</td>
<td>1.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FH1 through FH4</td>
<td>4.00</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9.34</td>
<td>1.020.00</td>
</tr>
</tbody>
</table>

HHV Potential Throughput

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/MMCF</th>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM*</td>
<td>1.90</td>
<td>0.08</td>
</tr>
<tr>
<td>PM10*</td>
<td>7.60</td>
<td>0.30</td>
</tr>
<tr>
<td>direct PM2.5*</td>
<td>7.60</td>
<td>0.30</td>
</tr>
<tr>
<td>SO2</td>
<td>0.60</td>
<td>0.02</td>
</tr>
<tr>
<td>NOx</td>
<td>100.00</td>
<td>4.01</td>
</tr>
<tr>
<td>VOC</td>
<td>5.50</td>
<td>0.22</td>
</tr>
<tr>
<td>CO</td>
<td>84.00</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Methodology

All emission factors are based on normal firing.

MM BTU = 1,000,000 Btu
MMCF = 1,000,000 Cubic Feet of Gas
Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03
Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu
Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

HAPS Calculations

HAPs - Organics

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMcf</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Total - Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10E-03</td>
<td>2.10E-03</td>
<td>1.20E-03</td>
<td>0.08</td>
<td>1.80</td>
<td>3.40E-03</td>
<td>0.08</td>
</tr>
<tr>
<td>8.42E-05</td>
<td>4.81E-05</td>
<td>3.01E-03</td>
<td>0.07</td>
<td>1.36E-04</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMcf</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total - Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00E-04</td>
<td>1.10E-03</td>
<td>1.40E-03</td>
<td>3.80E-04</td>
<td>2.10E-03</td>
<td></td>
<td>2.20E-04</td>
</tr>
<tr>
<td>2.00E-05</td>
<td>4.41E-05</td>
<td>5.61E-05</td>
<td>1.52E-05</td>
<td>8.42E-05</td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>

Methodology is the same as above.
The five highest organic and metal HAPs emission factors are provided above.
Additional HAPs emission factors are available in AP-42, Chapter 1.4.
Paved Roads at Industrial Site
The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

Vehicle Information (provided by source)

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum number of vehicles per day</th>
<th>Number of one-way trips per day (vehicle)</th>
<th>Maximum Weight Loaded (tons/trip)</th>
<th>Total Weight driven per day (ton/day)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Maximum one-way distance (miles/trip)</th>
<th>Maximum one-way distance (miles/day)</th>
<th>Maximum one-way distance (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi Tractor Trailer (Entry)</td>
<td>8.00</td>
<td>1.00</td>
<td>8.00</td>
<td>80.00</td>
<td>640.00</td>
<td>500.00</td>
<td>0.09</td>
<td>0.76</td>
</tr>
<tr>
<td>Semi Tractor Trailer (Departure)</td>
<td>8.00</td>
<td>1.00</td>
<td>8.00</td>
<td>80.00</td>
<td>640.00</td>
<td>500.00</td>
<td>0.09</td>
<td>0.76</td>
</tr>
<tr>
<td>Freight Truck - 3 Axel (Entry)</td>
<td>4.00</td>
<td>1.00</td>
<td>4.00</td>
<td>16.00</td>
<td>64.00</td>
<td>500.00</td>
<td>0.09</td>
<td>0.36</td>
</tr>
<tr>
<td>Freight Truck - 3 Axel (Departure)</td>
<td>4.00</td>
<td>1.00</td>
<td>4.00</td>
<td>16.00</td>
<td>64.00</td>
<td>500.00</td>
<td>0.09</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Totals: 24.00
Average Vehicle Weight Per Trip = 58.67 tons/trip
Average Miles Per Trip = 0.09 miles/trip

Unmitigated Emission Factor, \(E_f = \left[k \cdot (sL)^{0.91} \cdot W^{1.02}\right] \) (Equation 1 from AP-42 13.2.1)

\[
\begin{align*}
PM & = 0.01 \times 2.20E-03 \\
PM10 & = 5.40E-04 \\
PM2.5 & = 58.67 \\
W & = 58.67 \\
sL & = 9.7
\end{align*}
\]

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{ext} = E_f \cdot \left[1 - \frac{p}{4N}\right] \) (Equation 2 from AP-42 13.2.1)

\[
\begin{align*}
PM & = 5.53 \\
PM10 & = 1.11 \\
PM2.5 & = 0.27
\end{align*}
\]

Mitigated Emission Factor, \(E_{ext} = E_f \cdot \left[1 - \frac{p}{4N}\right] \) (Equation 2 from AP-42 13.2.1)

\[
\begin{align*}
PM & = 5.06 \\
PM10 & = 1.01 \\
PM2.5 & = 0.25
\end{align*}
\]

Process	Unmitigated PTE of PM (tons/yr)	Unmitigated PTE of PM10 (tons/yr)	Unmitigated PTE of PM2.5 (tons/yr)	Mitigated PTE of PM (tons/yr)	Mitigated PTE of PM10 (tons/yr)	Mitigated PTE of PM2.5 (tons/yr)
Semi Tractor Trailer (Entry) | 0.77 | 0.15 | 0.04 | 0.70 | 0.14 | 0.03
Semi Tractor Trailer (Departure) | 0.77 | 0.15 | 0.04 | 0.70 | 0.14 | 0.03
Freight Truck - 3 Axel (Entry) | 0.38 | 0.08 | 0.02 | 0.35 | 0.07 | 0.02
Freight Truck - 3 Axel (Departure) | 0.38 | 0.08 | 0.02 | 0.35 | 0.07 | 0.02

Totals: 2.30

Methodology

- Total Weight driven per day (ton/day) = [Maximum Weight Loaded (tons/trip)] * [Maximum trips per day (trip/day)]
- Maximum one-way distance (mi/trip) = [Maximum trips per year (trip/day)] * [Maximum one-way distance (miles/trip)] / [5280 ft/mile]
- Average Vehicle Weight Per Trip (ton/trip) = [Maximum Weight Loaded (ton/day)] / [Maximum trips per day (trip/day)]
- Average Miles Per Trip (miles/trip) = [Maximum one-way distance (miles/day)] / [Maximum trips per year (trip/day)]
- Unmitigated PTE (tons/yr) = [Maximum one-way miles (miles/yr)] * [Unmitigated Emission Factor (lb/mile)] * [ton(2000 lbs)]
- Mitigated PTE (tons/yr) = [Maximum one-way miles (miles/yr)] * [Mitigated Emission Factor (lb/mile)] * [ton(2000 lbs)]
- Controlled PTE (tons/yr) = [Mitigated PTE (tons/yr)] * [1 - Dual Control Efficiency]

Abbreviations
- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PTE = Potential to Emit
January 27, 2021

Dustin Geyer
Patrick Industries, Inc. DBA Nickell Moulding Company
PO Box 1502
Elkhart, IN 46151

Re: Public Notice
Patrick Industries, Inc. DBA Nickell Moulding Company
Permit Level: Title V - Renewal
Permit Number: 039-43199-00174

Dear Mr. Dustin Geyer:

Enclosed is the Notice of 30-Day Period for Public Comment for your draft air permit.

Our records indicate that you are the contact person for this application. However, if you are not the appropriate person within your company to receive this document, please forward it to the correct person. The Notice of 30-Day Period for Public Comment has also been sent to the OAQ Permits Branch Interested Parties List and, if applicable, your Consultant/Agent and/or Responsible Official/Authorized Individual.

The preliminary findings, including the draft permit, technical support document, emission calculations, and other supporting documents, are available electronically at:

IDEM’s online searchable database: http://www.in.gov/apps/idem/caats/. Choose Search Option by Permit Number, then enter permit 43199

and

IDEM’s Virtual File Cabinet (VFC): http://www.IN.gov/idem. Enter VFC in the search box, then search for permit documents using a variety of criteria, such as Program area, date range, permit #, Agency Interest Number, or Source ID.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Elkhart Public Library, 300 South 2nd Street in Elkhart, IN 46516. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.
Please review the draft permit documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to L. David Cohen, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 3-9327 or dial (317) 233-9327.

Sincerely,

Kathy Bourquein

Kathy Bourquein
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover Letter access via website 8/10/2020
January 27, 2021

To: Elkhart Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Patrick Industries, Inc. DBA Nickell Moulding Company
Permit Number: 039-43199-00174

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

January 27, 2021
Patrick Industries, Inc. DBA Nickell Moulding Company
039-43199-00174

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Joanne Smiddie-Brush with the Air Permits Administration Section at 1-800-451-6027, ext. 3-0185 or via e-mail at JBRUSH@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.
AFFECTED STATE NOTIFICATION OF PUBLIC COMMENT PERIOD
DRAFT INDIANA AIR PERMIT

January 27, 2021

A 30-day public comment period has been initiated for:

Permit Number: 039-43199-00174
Applicant Name: Patrick Industries, Inc. DBA Nickell Moulding Company
Location: Elkhart, Elkhart County, Indiana

The public notice, draft permit and technical support documents can be accessed via the IDEM Air Permits Online site at:
http://www.in.gov/ai/appfiles/idem-caats/

Questions or comments on this draft permit should be directed to the person identified in the public notice by telephone or in writing to:

Indiana Department of Environmental Management
Office of Air Quality, Permits Branch
100 North Senate Avenue
Indianapolis, IN 46204

Questions or comments regarding this email notification or access to this information from the EPA Internet site can be directed to Chris Hammack at chammack@idem.IN.gov or (317) 233-2414.

Affected States Notification 1/9/2017
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>KBOURQUE 1/27/2021 Patrick Industries DBA Nickell Moulding Company 039-43199-00174 (draft)</th>
<th>AFFIX STAMP HERE IF USED AS CERTIFICATE OF MAILING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of Sender</td>
<td>Indiana Department of Environmental Management Office of Air Quality – Permits Branch 100 N. Senate Indianapolis, IN 46204</td>
<td>Type of Mail: CERTIFICATE OF MAILING ONLY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Dustin Geyer Patrick Industries DBA Nickell Moulding Company PO Box 1502 Elkhart IN 46151502 (Source CAATS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Elkhart City Council and Mayors Office 229 South Second Street Elkhart IN 46516 (Local Official)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elkhart Public Library 300 S 2nd St Elkhart IN 46516-3184 (Library)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Elkhart County Health Department 608 Oakland Avenue Elkhart IN 46516 (Health Department)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elkhart County Board of Commissioners 117 North Second St. Goshen IN 46526 (Local Official)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Mr. Kevin Parks D & B Environmental Services, Inc. 401 Lincoln Way West Osceola IN 46561 (Consultant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Jen Seely The Mail-Journal PO Box 188 Milford IN 46542 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Mr. Roger Schneider The Goshen News 114 S. Main St Goshen IN 46526 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender | Total number of Pieces Received at Post Office | Postmaster, Per (Name of Receiving employee) | The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See Domestic Mail Manual R900, S913, and S921 for limitations of coverage on insured and COD mail. See International Mail Manual for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels. |