NOTICE OF 30-DAY PERIOD
FOR PUBLIC COMMENT

Preliminary Findings Regarding the Renewal of a
Part 70 Operating Permit

for Accra-Pac, Inc. in Elkhart County

Part 70 Operating Permit Renewal No.: T039-42472-00434

The Indiana Department of Environmental Management (IDEM) has received an application from Accra-Pac, Inc. located at 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, IN 46515 for a renewal of its Part 70 Operating Permit issued on October 28, 2015. If approved by IDEM’s Office of Air Quality (OAQ), this proposed renewal would allow Accra-Pac, Inc. to continue to operate its existing source.

This draft permit does not contain any new equipment that would emit air pollutants, and no conditions from previously issued permits/approvals have been changed.

A copy of the permit application and IDEM’s preliminary findings have been sent to:

Elkhart Public Library
300 South 2nd Street
Elkhart, IN 46516

and

IDEM Northern Regional Office
300 North Dr. Martin Luther King Jr. Boulevard, Suite 450
South Bend, IN 46601-1295

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the application and preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC). To access VFC, please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing,
you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number T039-4247200434 in all correspondence.

Comments should be sent to:

Chris Biehl
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Chris Biehl or (317) 233-8397
Or dial directly: (317) 233-8397
Fax: (317) 232-6749 attn: Chris Biehl
E-mail: CBiehl@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above and will also be sent to the local library indicated above, IDEM Northern Regional Office, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Chris Biehl of my staff at the above address.

Iryn Calilung, Section Chief
Permits Branch
Office of Air Quality
Part 70 Operating Permit Renewal
OFFICE OF AIR QUALITY

Accra-Pac, Inc.
2730 Middlebury Street, 2700 Middlebury Street, and
711 Middleton Run Road
Elkhart, Indiana 46515

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

<table>
<thead>
<tr>
<th>Operation Permit No.: T039-42472-00434</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Agency Interest ID: 12032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issued by:</th>
<th>Issuance Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iryn Calilung, Section Chief</td>
<td></td>
</tr>
<tr>
<td>Permits Branch</td>
<td></td>
</tr>
<tr>
<td>Office of Air Quality</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Expiration Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]</td>
<td>5</td>
</tr>
<tr>
<td>A.2</td>
<td>Part 70 Source Definition [326 IAC 2-7-1(22)]</td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]</td>
<td></td>
</tr>
<tr>
<td>A.4</td>
<td>Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]</td>
<td></td>
</tr>
<tr>
<td>A.5</td>
<td>Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]</td>
<td></td>
</tr>
<tr>
<td>A.6</td>
<td>Part 70 Permit Applicability [326 IAC 2-7-2]</td>
<td></td>
</tr>
</tbody>
</table>

SECTION B GENERAL CONDITIONS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Definitions [326 IAC 2-7-1]</td>
<td>12</td>
</tr>
<tr>
<td>B.2</td>
<td>Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]</td>
<td></td>
</tr>
<tr>
<td>B.3</td>
<td>Term of Conditions [326 IAC 2-1.1-9.5]</td>
<td></td>
</tr>
<tr>
<td>B.4</td>
<td>Enforceability [326 IAC 2-7-7][IC 13-17-12]</td>
<td></td>
</tr>
<tr>
<td>B.5</td>
<td>Severability [326 IAC 2-7-5(5)]</td>
<td></td>
</tr>
<tr>
<td>B.6</td>
<td>Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]</td>
<td></td>
</tr>
<tr>
<td>B.7</td>
<td>Duty to Provide Information [326 IAC 2-7-5(6)(E)]</td>
<td></td>
</tr>
<tr>
<td>B.8</td>
<td>Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]</td>
<td></td>
</tr>
<tr>
<td>B.9</td>
<td>Annual Compliance Certification [326 IAC 2-7-6(5)]</td>
<td></td>
</tr>
<tr>
<td>B.10</td>
<td>Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]</td>
<td></td>
</tr>
<tr>
<td>B.11</td>
<td>Emergency Provisions [326 IAC 2-7-16]</td>
<td></td>
</tr>
<tr>
<td>B.12</td>
<td>Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]</td>
<td></td>
</tr>
<tr>
<td>B.13</td>
<td>Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]</td>
<td></td>
</tr>
<tr>
<td>B.14</td>
<td>Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]</td>
<td></td>
</tr>
<tr>
<td>B.15</td>
<td>Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]</td>
<td></td>
</tr>
<tr>
<td>B.16</td>
<td>Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]</td>
<td></td>
</tr>
<tr>
<td>B.17</td>
<td>Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]</td>
<td></td>
</tr>
<tr>
<td>B.18</td>
<td>Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]</td>
<td></td>
</tr>
<tr>
<td>B.19</td>
<td>Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]</td>
<td></td>
</tr>
<tr>
<td>B.20</td>
<td>Source Modification Requirement [326 IAC 2-7-10.5]</td>
<td></td>
</tr>
<tr>
<td>B.21</td>
<td>Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]</td>
<td></td>
</tr>
<tr>
<td>B.22</td>
<td>Transfer of Ownership or Operational Control [326 IAC 2-7-11]</td>
<td></td>
</tr>
<tr>
<td>B.23</td>
<td>Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]</td>
<td></td>
</tr>
<tr>
<td>B.24</td>
<td>Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]</td>
<td></td>
</tr>
</tbody>
</table>

SECTION C SOURCE OPERATION CONDITIONS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Emission Limitations and Standards [326 IAC 2-7-5(1)]</td>
<td>23</td>
</tr>
<tr>
<td>C.2</td>
<td>Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]</td>
<td></td>
</tr>
<tr>
<td>C.3</td>
<td>Opacity [326 IAC 5-1]</td>
<td></td>
</tr>
<tr>
<td>C.4</td>
<td>Open Burning [326 IAC 4-4][IC 13-17-9]</td>
<td></td>
</tr>
<tr>
<td>C.5</td>
<td>Fugitive Dust Emissions [326 IAC 6-4]</td>
<td></td>
</tr>
<tr>
<td>C.6</td>
<td>Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]</td>
<td></td>
</tr>
<tr>
<td>C.7</td>
<td>Performance Testing [326 IAC 3-6]</td>
<td></td>
</tr>
<tr>
<td>C.8</td>
<td>Compliance Requirements [326 IAC 2-1.1-11]</td>
<td>25</td>
</tr>
<tr>
<td>C.9</td>
<td>Testing Requirements [326 IAC 2-7-6(1)]</td>
<td></td>
</tr>
<tr>
<td>C.10</td>
<td>Compliance Requirements [326 IAC 2-1.1-11]</td>
<td></td>
</tr>
</tbody>
</table>
Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)] 25
C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]
C.10 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] 26
C.11 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]
C.12 Risk Management Plan [326 IAC 2-7-5(11)][40 CFR 68]
C.13 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5][326 IAC 2-7-6]
C.14 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19] 29
C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]
C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-6]
C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)][326 IAC 2-1.1-11][40 CFR 64][326 IAC 3-8]

Stratospheric Ozone Protection ... 31
C.18 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS ... 32
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 34
D.1.2 PSD and VOC BACT Requirements - Lines 1-4 and 61-63 [326 IAC 2-2-3][326 IAC 8-1-6]
D.1.3 PSD and Volatile Organic Compounds (VOCs) Minor Limits [326 IAC 8-1-6][326 IAC 2-2]
D.1.4 VOC BACT Requirements - Lines 5, 6 and 7 [326 IAC 8-1-6]
D.1.5 HAP Minor Limit [326 IAC 2-4.1]

Compliance Determination Requirements ... 37
D.1.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2][326 IAC 8-1-4]
D.1.7 Hazardous Air Pollutants (HAPs)

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19] 39
D.1.8 Record Keeping Requirements
D.1.9 Reporting Requirements

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS .. 41
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 41
D.2.1 Particulate Emission Limitations for Sources of Indirect Heating [326 IAC 6-2-3]
D.2.2 Particulate Emission Limitations for Sources of Indirect Heating [326 IAC 6-2-4]

SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS .. 43
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 43
D.3.1 Cold Cleaner (Degreaser) Operations [326 IAC 8-3-2]
D.3.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19] 44
D.3.3 Record Keeping Requirements

SECTION D.4 EMISSIONS UNIT OPERATION CONDITIONS .. 45
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 45
D.4.1 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]
SECTION E.1 NSPS .. 46

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)] 46

E.2.2 Standards of Performance for Small Industrial - Commercial Institutional Steam Generating Units NSPS [326 IAC 12][40 CFR Part 60, Subpart DC]

SECTION E.2 NESHAP ... 47

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)] .. 47

E.2.2 Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ][326 IAC 20-82]

CERTIFICATION .. 49

EMERGENCY OCCURRENCE REPORT .. 50

Part 70 Quarterly Report ... 50

Part 70 Quarterly Report ... 52

Part 70 Quarterly Report ... 53

Part 70 Quarterly Report ... 54

Part 70 Quarterly Report ... 55

Part 70 Quarterly Report ... 56

QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT .. 57

Attachment A - NSPS 40 CFR 60, Subpart Dc

Attachment B - NESHAP 40 CFR 63, Subpart ZZZZ
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.4 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary liquid and aerosol can filling operation.

<table>
<thead>
<tr>
<th>Source Address:</th>
<th>2730 Middlebury Street, 2700 Middlebury Street, 711 Middle Run Road, Elkhart, Indiana 46515</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Source Phone Number:</td>
<td>574-295-0000</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>7389 (Business Services, Not Elsewhere Classified)</td>
</tr>
<tr>
<td>County Location:</td>
<td>Elkhart</td>
</tr>
<tr>
<td>Source Location Status:</td>
<td>Attainment for all criteria pollutants</td>
</tr>
<tr>
<td>Source Status:</td>
<td>Part 70 Operating Permit Program Major Source, under PSDRules Minor Source, Section 112 of the Clean Air Act Not 1 of 28 Source Categories</td>
</tr>
</tbody>
</table>

A.2 Part 70 Source Definition [326 IAC 2-7-1(22)]

This liquid and aerosol can filling operation consists of four (4) plants:

(a) Accra-Pac, Inc. - Main Plant is located at 2730 Middlebury Street, Elkhart, IN 46516;

(b) Accra-Pac, Inc. North Plant is located at 711 Middle Run Road, Elkhart, Indiana 46516; and

(c) Accra-Pac, Inc. Distribution Center is located at 2700 Middlebury Street, Elkhart, Indiana 46516.

These three (3) plants are located on one or more contiguous properties, have the same two digit SIC code, and are still under common control, therefore they are considered one (1) major source, as defined by 326 IAC 2-7-1(22). This conclusion was determined under First Part 70 Operating Permit Renewal, T039-21106-00434, issued on November 14, 2006, and Significant Permit Modification T039-26036-00434, issued on June 17, 2008.
This stationary source consists of the following emission units and pollution control devices:

(a) Manual Scrap Can Processing Operations, identified as manual can processing operations, constructed in 1994 and 1995, with a maximum capacity of 24,763,600 cans per year, using manual devices to recover contents and allow recycling of scrap metal from aerosol cans from the production operations that are unusable, using no control, and exhausting indoors.

(b) VOC-containing Propellant Handling Operation, constructed in 1994, 1995, and 2008, including bulk and smaller container unloading, storage, transfer and filling into aerosol product containers unless indicated below.

(c) VOC-containing Liquid Handling Operations including bulk and smaller container unloading, storage, transfer, mixing, and filling into liquid and aerosol product containers.

The source has one (1) liquid product filling line in addition to the nine (9) aerosol product filling lines and all ten (10) lines involve VOC-containing liquid handling, with no control.

The following 10 lines are used in the VOC-containing propellant handling, VOC-containing liquid handling and scrap can processing operations described above:

(1) Lines 1 and 2 aerosol can filling lines, constructed in 1976, which consist of:
 (A) Open and closed mixing tanks.
 (B) Product and propellant fillers.

(2) Line 3 aerosol can filling line, constructed in 1989, which consists of:
 (A) Two (2) closed bowl liquid product filler.
 (B) Two (2) non-VOC propellant filler.

(3) Line 4 aerosol can filling line, constructed in 1989, which consists of:
 (A) Five (5) closed top mix / run tanks.
 (B) One (1) closed bowl liquid product fillers.
 (C) Two (2) portable liquid product fillers.
 (D) Two (2) UTC VOC propellant fillers.
 (E) Two (2) VOC propellant pressure fillers.
 (F) Two (2) non-VOC propellant fillers.
(4) Lines 5, 6, and 7 aerosol can filling lines, permitted in 2008, uncontrolled, which consist of:

(A) Three (3) aerosol can filling lines using Through the Valve (TTV) propellant filling technology, exhausting to stacks S-5, SF-5, ST-5, S-6, SF-6, ST-6, S-7, SF-7, and ST-7.

(B) Thirteen (13) compounding tanks including the following:
 (i) One (1) 5,100-gallon tank.
 (ii) Four (4) 5,000-gallon tanks.
 (iii) Four (4) 3,000-gallon tanks
 (iv) Three (3) 1,500-gallon tanks.
 (v) One (1) 500-gallon tank.

(5) Line 61 aerosol can filling line, constructed in 1993, which consists of:

(A) Four (4) closed top mixing tanks.

(B) Two (2) closed liquid product fillers.

(C) One (1) UTC propellant filler.

(D) One (1) pressure propellant filler.

Line 61 is only used in the VOC-containing propellant handling and VOC-containing liquid handling operations.

(6) Line 62 liquid can filling lines, constructed in 1993, which consists of:

(A) Two (2) closed top mixing tanks.

(B) One (1) closed bowl liquid product filler.

Line 62 is only used in the VOC-containing liquid handling operations only.

(7) Line 63 aerosol can filling line, constructed in 1997, which consists of:

(A) Open and closed mixing tanks.

(B) Product and propellant fillers.

The table below summarizes the product type and maximum capacity of each line:

<table>
<thead>
<tr>
<th>Line</th>
<th>Construction Year</th>
<th>Product Filling Type</th>
<th>Maximum Throughput Capacity (cans/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>2</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>3</td>
<td>1989</td>
<td>aerosol</td>
<td>6,300</td>
</tr>
<tr>
<td>4</td>
<td>1989</td>
<td>aerosol</td>
<td>15,120</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>6</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>7</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>61</td>
<td>1993</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
<tr>
<td>62</td>
<td>1993</td>
<td>liquid</td>
<td>7,500</td>
</tr>
<tr>
<td>Line</td>
<td>Construction Year</td>
<td>Product Filling Type</td>
<td>Maximum Throughput Capacity (cans/hr)</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>63</td>
<td>1997</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Aerosol</td>
<td>78,905</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Liquid</td>
<td>7,500</td>
</tr>
</tbody>
</table>

(d) Accra Pac, Inc. Main, and North Plant facilities miscellaneous equipment, constructed in 1994 and 1995 and 2008, including:

Miscellaneous Equipment
- Thirty-six (36) bulk VOC and non-VOC liquid storage tanks.
- Twenty (20) bulk VOC and non-VOC propellant storage tanks.
- Seven (7) pre-mix tanks.
- Seven (7) run/storage tanks.
- Two (2) surge tanks for compounding areas.
- Four (4) spray-out booths.
- Nine (9) single-head recharge gassers.
- Secondary packaging operations.
- Labelers using hot melt adhesives.
- Can and carton coders

(e) Eleven (11) Volatile Organic Liquid (VOL) Storage Tanks:

1. Five (5) VOL storage tanks, constructed after July 23, 1984, identified as A1, A6, A7, A12 and A13, each with a maximum storage capacity of 15,000 gallons.
2. One (1) VOL storage tank, constructed after July 23, 1984, identified as P21, with a maximum storage capacity of 12,000 gallons.
3. Two (2) VOL storage tanks, constructed after July 23, 1984, identified as P18 and P20, each with a maximum storage capacity of 18,000 gallons.
4. Two (2) VOL storage tanks, constructed after May 19, 1978 and before July 23, 1984, identified as P16 and P17, each with a maximum storage capacity of 30,000 gallons.
5. One (1) VOL storage tank, constructed after July 23, 1984, identified as P19, with a maximum storage capacity of 30,000 gallons.

(f) One (1) natural gas-fired boiler, identified as B-1, permitted in 2008, and with a maximum heat input capacity of 16.70 MMBtu/hr, exhausting to stack B-1.

Boiler B-1 is an affected source under the NSPS for Small Industrial - Commercial Institutional Steam Generating Units 326 IAC 12 and 40 CFR Part 60, Subpart Dc.

(g) One (1) natural gas-fired boiler, identified as T-1, constructed in 2013, with a maximum heat input capacity of 10.5 MMBtu/hr, exhausting to stack T-1.

Boiler T-1 is an affected facility under the NSPS for Small Industrial - Commercial Institutional Steam Generating Units 40 CFR Part 60, Subpart Dc.

A.4 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):
(a) Three (3) Natural gas-fired boilers:

(1) One (1) natural gas-fired boiler, identified as M-2, installed on 1976, and with a maximum heat input capacity of 6.28 MMBtu/hr, exhausting to stack M-2.

(2) One (1) natural gas-fired boiler, identified as N-1, and installed in 1993, with a maximum heat input capacity of 8.37 MMBtu/hr, exhausting to stack N-1.

(3) One (1) natural gas-fired boiler, identified as N-2, installed on 1997, and with maximum heat input capacity of 7.00 MMBtu/hr, exhausting to stack N-2.

(b) Degreasing operations, existing after January 1, 1980, with maximum usage of 145 gallons per year.

(c) One (1) portable powder filling operation, identified as PPF1, which is used on any one of the ten (10) lines on an as-needed basis, with a process weight rate up to sixty thousand (60,000) pounds per hour.

(d) One (1) diesel-fired emergency fire pump, constructed prior to June 12, 2006, with a maximum capacity of 170 horsepower, uncontrolled, and exhausting to the outdoors.

This fire pump is considered an existing stationary reciprocating internal combustion engine at an area source of hazardous air pollutants under NESHAP for Stationary Reciprocating Internal Combustion Engines (40 CFR 63, Subpart ZZZZ).

A.5 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities, as defined in 326 IAC 2-7-1(21):

(a) Single-head recharge gassers used to add propellant to lightweight cans.

(b) Storage equipment and activities including pressurized storage tanks and associated piping for liquid petroleum gas (LPG); liquid natural gas (LNG) (propane).

(c) Twenty-two (22) pressurized tanks.

(d) Ink jet printers for small product code and box code printing.

(e) Combustion source flame safety purging on startup.

(f) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(g) Vessels storing lubricating oils, hydraulic oils, machining oils, and machining fluids.

(h) Packaging lubricants and greases.

(i) Filling drums, pails or other packaging containers with lubricating oils, waxes and greases.

(j) Cleaners and solvents characterized as follows.
(1) Having a vapor pressure equal to or less than 2 kPa; 15 mm Hg; or 0.3 psi measured at 38 degrees C (100°F) or;

(2) Having a vapor pressure equal to or less than 0.7 kPa; 5 mm Hg; or 0.1 psi measured at 20°C (68°F); the use of which for all cleaners and solvents combined does not exceed 145 gallons per 12 months.

(k) The following equipment related to manufacturing activities not resulting in the emissions of HAPs: brazing equipment, cutting torches, soldering equipment, and welding equipment.

(l) Closed loop heating and cooling systems.

(m) Solvent recycling systems with batch capacity less than or equal to 100 gallons.

(n) Activities associated with the treatment of wastewater streams with an oil and grease content less than or equal to 1% by volume.

(o) Any operation using aqueous solutions containing less than 1% by weight of VOCs excluding HAPs.

(p) Water based adhesives that are less than or equal to 5% by volume of VOCs excluding HAPs.

(q) Replacement or repair of electrostatic precipitators, bags in baghouses and filters in other air filtration equipment.

(r) Heat exchanger cleaning and repair.

(s) Process vessels degassing and cleaning to prepare for internal repairs.

(t) Stockpiled soils from soil remediation activities that are covered and waiting transport for disposal.

(u) Paved and unpaved roads and parking lots with public access.

(v) Purging of gas lines and vessels that is related to routine maintenance and repair of buildings, structures, or vehicles at the sources where air emissions from those activities would not be associated with any production process.

(w) Equipment used to collect any material that might be released during a malfunction, process upset, or spill cleanup, including catch tanks, temporary liquid separators, tanks and fluid handling equipment.

(x) Blowdown for any of the following: sight glass; boiler; compressors; pumps and cooling tower.

(y) Purge double block and bleed valves.

(z) Filter or coalesce media changeout.

(aa) A laboratory as defined in 326 IAC 2-7-1(21)(D).

(bb) Portable hot melt labelers and hot melt glue systems, which can be used on any one of the fourteen (14) lines on an as-needed basis.
Portable shrink wrap and bundler machines which can be used on any one of the fourteen (14) lines on an as-needed basis.

A.6 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

(a) It is a major source, as defined in 326 IAC 2-7-1(22);

(b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 - Applicability).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]
Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
(a) This permit, T039-42472-00434, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]
Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]
Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source’s potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]
The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-7-4(1)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

(1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and

(2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than April 15 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

(1) The appropriate identification of each term or condition of this permit that is the basis of the certification;

(2) The compliance status;

(3) Whether compliance was continuous or intermittent;

(4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
(5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance
causes or is the primary contributor to an exceedance of any limitation on emissions. The
PMPs and their submittal do not require a certification that meets the requirements of 326
IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation
Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the
PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an
action brought for noncompliance with a federal or state health-based emission limitation.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an
action brought for noncompliance with a technology-based emission limitation if the
affirmative defense of an emergency is demonstrated through properly signed,
contemporaneous operating logs or other relevant evidence that describe the following:

(1) An emergency occurred and the Permittee can, to the extent possible, identify
the causes of the emergency;

(2) The permitted facility was at the time being properly operated;

(3) During the period of an emergency, the Permittee took all reasonable steps to
minimize levels of emissions that exceeded the emission standards or other
requirements in this permit;

(4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM,
OAQ or Northern Regional Office within four (4) daytime business hours after the
beginning of the emergency, or after the emergency was discovered or
reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality,
Compliance and Enforcement Branch), or
Telephone Number: 317-233-0178 (ask for Office of Air Quality,
Compliance and Enforcement Branch)
Facsimile Number: 317-233-6865
Northern Regional Office phone: (574) 245-4870; fax: (574) 245-4877.

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the
attached Emergency Occurrence Report Form or its equivalent, either by mail or
facsimile to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded
due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the
following:

(A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and

(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.

(g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable
requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.

(c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.

(d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:

1. The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;
2. The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;
3. The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and
4. The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.

(e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).

(f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]

(g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

(a) All terms and conditions of permits established prior to T039-42472-00434 and issued pursuant to permitting programs approved into the state implementation plan have been either:

1. incorporated as originally stated,
2. revised under 326 IAC 2-7-10.5, or
3. deleted under 326 IAC 2-7-10.5.

(b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this Part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee’s right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source’s existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

1. That this permit contains a material mistake.
2. That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
3. That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

1. Submitted at least nine (9) months prior to the date of the expiration of this permit; and
2. If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the
document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

(a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

(a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.

(b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;

(2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

(1) A brief description of the change within the source;

(2) The date on which the change will occur;

(3) Any change in emissions; and

(4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Emission Trades [326 IAC 2-7-20(c)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
(d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.

(e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.20 Source Modification Requirement [326 IAC 2-7-10.5]
A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-8590 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.3 Open Burning [326 IAC 4-1][IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.4 Incineration [326 IAC 4-2][326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.5 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.6 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:
(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;

(B) Removal or demolition contractor; or

(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(c).

(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(d).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.
Testing Requirements [326 IAC 2-7-6(1)]

C.7 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.8 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.

(d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.10 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.11 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.12 Risk Management Plan [326 IAC 2-7-5(11)][40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.
C.13 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5][326 IAC 2-7-6]

(I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

(II) CAM Response to excursions or exceedances.

(a) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal without operator action (such as through response by a computerized distribution control system), or any necessary follow-up actions to return operation to within the indicator range, designated condition, or below the applicable emission limitation or standard, as applicable.
(2) Determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include but is not limited to, monitoring results, review of operation and maintenance procedures and records, and inspection of the control device, associated capture system, and the process.

(b) If the Permittee identifies a failure to achieve compliance with an emission limitation, subject to CAM, or standard, subject to CAM, for which the approved monitoring did not provide an indication of an excursion or exceedance while providing valid data, or the results of compliance or performance testing document a need to modify the existing indicator ranges or designated conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary, submit a proposed significant permit modification to this permit to address the necessary monitoring changes. Such a modification may include, but is not limited to, reestablishing indicator ranges or designated conditions, modifying the frequency of conducting monitoring and collecting data, or the monitoring of additional parameters.

(c) Based on the results of a determination made under paragraph (II)(a)(2) of this condition, the EPA or IDEM, OAQ may require the Permittee to develop and implement a Quality Improvement Plan (QIP). The Permittee shall develop and implement a QIP if notified to in writing by the EPA or IDEM, OAQ.

(d) Elements of a QIP:
The Permittee shall maintain a written QIP, if required, and have it available for inspection. The plan shall conform to 40 CFR 64.8 b (2).

(e) If a QIP is required, the Permittee shall develop and implement a QIP as expeditiously as practicable and shall notify the IDEM, OAQ if the period for completing the improvements contained in the QIP exceeds 180 days from the date on which the need to implement the QIP was determined.

(f) Following implementation of a QIP, upon any subsequent determination pursuant to paragraph (II)(a)(2) of this condition the EPA or the IDEM, OAQ may require that the Permittee make reasonable changes to the QIP if the QIP is found to have:

(1) Failed to address the cause of the control device performance problems; or

(2) Failed to provide adequate procedures for correcting control device performance problems as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions.

(g) Implementation of a QIP shall not excuse the Permittee from compliance with any existing emission limitation or standard, or any existing monitoring, testing, reporting or recordkeeping requirement that may apply under federal, state, or local law, or any other applicable requirements under the Act.

(h) CAM recordkeeping requirements.

(1) The Permittee shall maintain records of monitoring data, monitor performance data, corrective actions taken, any written quality improvement plan required pursuant to paragraph (II)(c) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or
records of monitoring maintenance or corrective actions). Section C - General Record Keeping Requirements of this permit contains the Permittee’s obligations with regard to the records required by this condition.

(2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements.

C.14 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(a)(1), the Permittee shall submit by July 1 of each year an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

(1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);

(2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) (“Regulated pollutant, which is used only for purposes of Section 19 of this rule”) from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management
Technical Support and Modeling Section, Office of Air Quality
100 North Senate Avenue
MC 61-50 IGCN 1003
Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).
C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

- **AA** All calibration and maintenance records.
- **BB** All original strip chart recordings for continuous monitoring instrumentation.
- **CC** Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:

- **AA** The date, place, as defined in this permit, and time of sampling or measurements.
- **BB** The dates analyses were performed.
- **CC** The company or entity that performed the analyses.
- **DD** The analytical techniques or methods used.
- **EE** The results of such analyses.
- **FF** The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

On and after the date by which the Permittee must use monitoring that meets the requirements of 40 CFR Part 64 and 326 IAC 3-8, the Permittee shall submit CAM reports to the IDEM, OAQ.

A report for monitoring under 40 CFR Part 64 and 326 IAC 3-8 shall include, at a minimum, the information required under paragraph (a) of this condition and the following information, as applicable:

1. Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken;

2. Summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime
associated with zero and span or other daily calibration checks, if applicable); and

(3) A description of the actions taken to implement a QIP during the reporting period as specified in Section C-Response to Excursions or Exceedances. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring.

The Permittee may combine the Quarterly Deviation and Compliance Monitoring Report and a report pursuant to 40 CFR 64 and 326 IAC 3-8.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.18 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) Manual Scrap Can Processing Operations, identified as manual can processing operations, constructed in 1994 and 1995, with a maximum capacity of 24,763,600 cans per year, using manual devices to recover contents and allow recycling of scrap metal from aerosol cans from the production operations that are unusable, using no control, and exhausting indoors.

(b) VOC-containing Propellant Handling Operation, constructed in 1994, 1995, and 2008, including bulk and smaller container unloading, storage, transfer and filling into aerosol product containers unless indicated below.

(c) VOC-containing Liquid Handling Operations including bulk and smaller container unloading, storage, transfer, mixing, and filling into liquid and aerosol product containers.

The source has one (1) liquid product filling line in addition to the nine (9) aerosol product filling lines and all ten (10) lines involve VOC-containing liquid handling, with no control.

The following 10 lines are used in the VOC-containing propellant handling, VOC-containing liquid handling and scrap can processing operations described above:

(1) Lines 1 and 2 aerosol can filling lines, constructed in 1976, which consist of:
 (A) Open and closed mixing tanks.
 (B) Product and propellant fillers.

(2) Line 3 aerosol can filling line, constructed in 1989, which consists of:
 (A) Two (2) closed bowl liquid product filler.
 (B) Two (2) non-VOC propellant filler.

(3) Line 4 aerosol can filling line, constructed in 1989, which consists of:
 (A) Five (5) closed top mix / run tanks.
 (B) One (1) closed bowl liquid product fillers.
 (C) Two (2) portable liquid product fillers.
 (D) Two (2) UTC VOC propellant fillers.
 (E) Two (2) VOC propellant pressure fillers.
 (F) Two (2) non-VOC propellant fillers.

(4) Lines 5, 6, and 7 aerosol can filling lines, permitted in 2008, uncontrolled, which consist of:
Three (3) aerosol can filling lines using Through the Valve (TTV) propellant filling technology, exhausting to stacks S-5, SF-5, ST-5, S-6, SF-6, ST-6, S-7, SF-7, and ST-7.

Thirteen (13) compounding tanks including the following:
(i) One (1) 5,100-gallon tank.
(ii) Four (4) 5,000-gallon tanks.
(iii) Four (4) 3,000-gallon tanks
(iv) Three (3) 1,500-gallon tanks.
(v) One (1) 500-gallon tank.

Line 61 aerosol can filling line, constructed in 1993, which consists of:
(A) Four (4) closed top mixing tanks.
(B) Two (2) closed liquid product fillers.
(C) One (1) UTC propellant filler.
(D) One (1) pressure propellant filler.

Line 61 is only used in the VOC-containing propellant handling and VOC-containing liquid handling operations.

Line 62 liquid can filling lines, constructed in 1993, which consists of:
(A) Two (2) closed top mixing tanks.
(B) One (1) closed bowl liquid product filler.

Line 62 is only used in the VOC-containing liquid handling operations only.

Line 63 aerosol can filling line, constructed in 1997, which consists of:
(A) Open and closed mixing tanks.
(B) Product and propellant fillers.

The table below summarizes the product type and maximum capacity of each line:

<table>
<thead>
<tr>
<th>Line</th>
<th>Construction Year</th>
<th>Product Filling Type</th>
<th>Maximum Throughput Capacity (cans/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>2</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>3</td>
<td>1989</td>
<td>aerosol</td>
<td>6,300</td>
</tr>
<tr>
<td>4</td>
<td>1989</td>
<td>aerosol</td>
<td>15,120</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>6</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>7</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>61</td>
<td>1993</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
<tr>
<td>62</td>
<td>1993</td>
<td>liquid</td>
<td>7,500</td>
</tr>
<tr>
<td>63</td>
<td>1997</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Aerosol</td>
<td>78,905</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Liquid</td>
<td>7,500</td>
</tr>
</tbody>
</table>
Accra Pac, Inc. - Main and North Plant facilities miscellaneous equipment, constructed in 1994 and 1995 and 2008, including:

<table>
<thead>
<tr>
<th>Miscellaneous Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thirty-six (36) bulk VOC and non-VOC liquid storage tanks.</td>
</tr>
<tr>
<td>Twenty (20) bulk VOC and non-VOC propellant storage tanks.</td>
</tr>
<tr>
<td>Seven (7) pre-mix tanks.</td>
</tr>
<tr>
<td>Seven (7) run/storage tanks.</td>
</tr>
<tr>
<td>Two (2) surge tanks for compounding areas.</td>
</tr>
<tr>
<td>Four (4) spray-out booths.</td>
</tr>
<tr>
<td>Nine (9) single-head recharge gassers.</td>
</tr>
<tr>
<td>Secondary packaging operations.</td>
</tr>
<tr>
<td>Labelers using hot melt adhesives.</td>
</tr>
<tr>
<td>Can and carton coders</td>
</tr>
</tbody>
</table>

eleven (11) Volatile Organic Liquid (VOL) Storage Tanks:

1. Five (5) VOL storage tanks, constructed after July 23, 1984, identified as A1, A6, A7, A12 and A13, each with a maximum storage capacity of 15,000 gallons.

2. One (1) VOL storage tank, constructed after July 23, 1984, identified as P21, with a maximum storage capacity of 12,000 gallons.

3. Two (2) VOL storage tanks, constructed after July 23, 1984, identified as P18 and P20, each with a maximum storage capacity of 18,000 gallons.

4. Two (2) VOL storage tanks, constructed after May 19, 1978 and before July 23, 1984, identified as P16 and P17, each with a maximum storage capacity of 30,000 gallons.

5. One (1) VOL storage tank, constructed after July 23, 1984, identified as P19, with a maximum storage capacity of 30,000 gallons.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

In order to render the requirements of 326 IAC 8-1-6 not applicable, the manual scrap can processing operations shall be limited as follows:

(a) The number of cans crushed in the manual scrap can processing operations shall be less than 4,500,000 per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) VOC emissions shall be calculated using an emission factor of 0.011 pounds of VOC per can crushed.

Compliance with these limits shall limit the potential to emit VOC from the manual scrap can processing operations to less than twenty-five (25) tons per 12 consecutive month period and shall render the requirements of 326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities) not applicable.
D.1.2 PSD and VOC BACT Requirements - Lines 1-4 and 61-63 [326 IAC 2-2-3][326 IAC 8-1-6]

Pursuant to Part 70 Operating permit No T039-6875-00434, issued on February 9, 2001, 326 IAC 2-2-3(a)(2), and 326 IAC 8-1-6, the following Lines shall use BACT to control volatile organic compound (VOC) emissions as follows:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

(a) The gallons of VOC compounded and filled into containers per month; the number of cans filled with VOC propellant per month; and the number of cans filled with VOC that were crushed using manual can processing operations shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 440 tons per consecutive twelve-month period, with compliance determined at the end of each month.

(b) Pressure filling or through-the-valve filling method shall be utilized at all times when the product being filled allows for this method.

(c) When pressure filling cannot be utilized, Under the Cup fill method with vapor reclaim shall be utilized, or an equivalent means of reduction.

(d) Continue enclosure of open bowl liquid filling reservoirs, wherever possible.

(e) Utilize raw materials having the lowest feasible VOC content and vapor pressure, whenever possible.

(f) Continue movement toward consumer products that contain lower levels of VOCs and lower VOC composite partial vapor pressures.

Compliance with these PSD BACT Requirements shall demonstrate compliance with 326 IAC 8-1-6 (BACT) for Lines 1 to 4 and Lines 61 to 63.

D.1.3 PSD and Volatile Organic Compounds (VOCs) Minor Limits [326 IAC 8-1-6][326 IAC 2-2]

(a) Prior to 2008 Modification

Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008 and in order to render 326 IAC 2-2 (PSD) not applicable, the following: shall be limited as follows:

<table>
<thead>
<tr>
<th>manual scrap can processing operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
</tr>
<tr>
<td>Line 2</td>
</tr>
<tr>
<td>Line 3</td>
</tr>
<tr>
<td>Line 4</td>
</tr>
<tr>
<td>Line 61</td>
</tr>
<tr>
<td>Line 62</td>
</tr>
<tr>
<td>Line 63</td>
</tr>
</tbody>
</table>
The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 248.10 tons per consecutive twelve-month period, with compliance determined at the end of each month.

Compliance with this emission limit for the manual scrap can processing operation, Lines 1 to 4 and Lines 61 to 63, combined with the potential to emit VOC emissions from all other equipment constructed prior to 2008 will limit the potential to emit from these emission units to less than two hundred fifty (250) tons of VOC per year and, therefore, will render the requirements of 326 IAC 2-2 not applicable to the existing source constructed prior to 2008.

(b) 2008 Modification
Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008 and in order to render 326 IAC 2-2 (PSD) not applicable, the following shall be limited as follows:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 245.42 tons per consecutive twelve-month period, with compliance determined at the end of each month.

Compliance with this emission limit for Lines 5, 6 and 7 combined with the potential to emit VOC emissions from all other equipment associated with this 2008 modification will limit the potential to emit from this modification to less than two hundred fifty (250) tons of VOC per year and, therefore, will render the requirements of 326 IAC 2-2 (PSD) not applicable to the 2008 modification.

D.1.4 VOC BACT Requirements - Lines 5, 6 and 7 [326 IAC 8-1-6]
Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008, and 326 IAC 8-1-6, the following Lines shall use BACT to control volatile organic compound (VOC) emissions and shall be limited by the following:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

(a) The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 245.42 tons per consecutive twelve-month period, with compliance determined at the end of each month.

(b) Through-the-valve (TTV) pressure filling method shall be utilized at all times.

(c) Open bowl liquid filling reservoirs shall be enclosed wherever possible.

(d) Utilize raw materials having the lowest feasible VOC content and vapor pressure, whenever possible.
(e) Continue movement toward consumer products that contain lower levels of VOCs and lower VOC composite partial vapor pressures.

D.1.5 HAP Minor Limit [326 IAC 2-4.1]

Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008, and in order to render 326 IAC 2-4.1 not applicable, the following Lines shall be limited such that:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

(a) any single HAP emitted shall not exceed nine and five-tenths (9.5) tons per twelve (12) consecutive month period with compliance demonstrated at the end of each month.

(b) any combination of HAPs emitted shall not exceed twenty-three and seventy-five hundredths (23.75) tons per twelve (12) consecutive month period with compliance demonstrated at the end of each month.

Compliance with these emission limits combined with the potential to emit HAP emissions from all other equipment associated with this source will limit the potential to emit from this source to less than ten (10) tons per year of any single HAP and less than twenty-five (25) tons per year of any combination of HAPs and render the requirements of 326 IAC 2-4.1 not applicable to the entire source.

Compliance Determination Requirements

D.1.6 Volatile Organic Compounds (VOC) [326 IAC 8-1-2][326 IAC 8-1-4]

(a) Compliance with the VOC content limits contained in Conditions D.1.1, D.1.2, D.1.3, and D.1.4 shall be determined pursuant to 326 IAC 8-1-4(3) and 326 IAC 8-1-2(a) using formulation data supplied by the VOL manufacturer. However, IDEM, OAQ reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

(b) Compliance with the VOC emission limitation contained in Conditions D.1.2(a) and D.1.3(a) shall be determined using the following equation:

VOC Emissions = tons/month from the following:

<table>
<thead>
<tr>
<th>manual scrap can processing operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
</tr>
<tr>
<td>Line 2</td>
</tr>
<tr>
<td>Line 3</td>
</tr>
<tr>
<td>Line 4</td>
</tr>
<tr>
<td>Line 61</td>
</tr>
<tr>
<td>Line 62</td>
</tr>
<tr>
<td>Line 63</td>
</tr>
</tbody>
</table>
= [(gallons VOC compounded & filled into containers/month) x (0.03 lbs VOC/gal VOC)
+ (number of cans filled with VOC propellant/month) x (0.0013 lbs VOC/can)
+ (number of VOC-containing cans crushed using manual can processing operation/month) x (0.0111 lbs VOC/can)]
\times 1\ ton/2000\ lbs

(c) Compliance with the VOC emission limitations contained in Condition D.1.4(a) shall be determined using the following equation:

VOC Emissions = tons/month from the following:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

= [(gallons VOC compounded & filled into containers/month) x (0.03 lbs VOC/gal VOC)
+ (number of cans filled with VOC propellant/month) x (0.0013 lbs VOC/can)
+ (number of cans with VOC crushed using manual can processing operation/month) x (0.0111 lbs VOC/can)]
\times 1\ ton/2000\ lbs

(d) Compliance with the VOC emission limitations contained in Condition D.1.3(b) shall be determined using the following equation:

VOC Emissions = tons/month from the following:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

= [Y1 \times EF1 + Y2 \times EF2] \times 1\ ton/2000\ lbs

Where:
Y1 = Number of cans crushed that contain HC propellant only per month
EF1 = Emission factor for HC from permit No. 039-6875-00434, issued on February 9, 2001 = 0.0111 lb VOC/can
Y2 = Number of cans crushed that contains propellant blends of HFC and HC per month
EF2 = Emission factor of VOC from crushed cans that contains propellant blends of HFC and HC Blends based on maximum of 75 gram propellant/can, and VOC content in propellant of 65% = 0.107 lb VOC/can

D.1.7 Hazardous Air Pollutants (HAPs)
Compliance with the HAP emission limitation contained in Conditions D.1.5(a) and D.1.5(b) shall be determined using the following equation:
HAP Emissions (tons/month) = (0.03 pounds of HAP per gallon of VOC) x (weight % HAP/weight % VOC) x (gallons of HAP compounded and filled into containers/month) x 1 ton/2000 lbs

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.1.8 Record Keeping Requirements

(a) To document the compliance status with Condition D.1.1(a), the Permittee shall maintain records of the number cans crushed in the manual scrap can processing operations. Records maintained shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limitations established in Condition D.1.1(a).

(b) To document the compliance status with Conditions D.1.2(a), D.1.3(a), D.1.3(b), and D.1.4(a), the Permittee shall maintain records in accordance with (1) through (5) below for the following Lines:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

Records maintained for (1) through (5) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limits established in Conditions D.1.2(a), D.1.3(a), D.1.3(b), and D.1.4(a):

1. The amount and VOC content of the volatile organic liquid (VOL) product filled. Records shall include safety data sheets (SDS), product formulation information, VOL compounded/filled and company product records necessary to verify the type and amount used;

2. The total VOC compounded/filled for each month;

3. The number/amount of cans filled with VOC propellant;

4. The number/amount of VOC-containing cans crushed using manual can processing operation;

5. The weight of VOC emitted for each month and each compliance period.

(c) To document the compliance status with Conditions D.1.5(a) and D.1.5(b), the Permittee shall maintain records in accordance with (1) through (4) below for the following Lines:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>61</td>
</tr>
</tbody>
</table>
Records maintained for (1) through (4) shall be taken monthly and shall be complete and sufficient to establish compliance with the HAP emission limits established in Condition D.1.5.

1. The amount and HAP content of the volatile organic liquid (VOL) product filled. Records shall include safety data sheets (SDS), product formulation information, VOL compounded/filled and company product records necessary to verify the type and amount used;

2. The total HAP compounded/filled for each month;

3. The number/amount of cans filled with HAP propellant;

4. The weight of HAP emitted for each month and each compliance period.

(d) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the record keeping required by this condition.

D.1.9 Reporting Requirements

A quarterly summary of the information to document the compliance status with Conditions D.1.1(a), D.1.2(a), D.1.3(a), D.1.3(b), D.1.4(a), D.1.5(a) and D.1.5(b) shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported.

The Quarterly Report required to document compliance with Condition D.1.3(a) shall also document the compliance status with Condition D.1.2(a).

Section C - General Reporting Requirements contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official," as defined by 326 IAC 2-7-1(35).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Particulate Emission Limitations for Sources of Indirect Heating [326 IAC 6-2-3]

Pursuant to 326 IAC 6-2-3(e), particulate matter (PM) emissions from the boiler identified as M-2 shall not exceed 0.6 pounds of PM per million British thermal units.

D.2.2 Particulate Emission Limitations for Sources of Indirect Heating [326 IAC 6-2-4]

Pursuant to 326 IAC 6-2-4, particulate matter (PM) emissions from the following boilers shall be limited as follows:

<table>
<thead>
<tr>
<th>Boiler ID</th>
<th>Q (MMBtu/hr)</th>
<th>PM Allowable Emissions (lbs/MMBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td>23.02</td>
<td>0.48</td>
</tr>
<tr>
<td>N-2</td>
<td>31.52</td>
<td>0.44</td>
</tr>
<tr>
<td>B-1</td>
<td>51.41</td>
<td>0.39</td>
</tr>
<tr>
<td>T-1</td>
<td>53.54</td>
<td>0.387</td>
</tr>
</tbody>
</table>

The limits were calculated using the equation below:
Pt = \frac{1.09}{Q^{0.26}}

Where:
Pt = Pounds of particulate matter emitted per million Btu (lb/MMBtu) heat input; and
Q = Total source maximum operating capacity (MMBtu/hr)
SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

Insignificant Activities

(b) Degreasing operations that do not exceed 145 gallons per 12 months.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.3.1 Cold Cleaner (Degreaser) Operations [326 IAC 8-3-2]

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Operations), for cold cleaning operations constructed after January 1, 1980:

(a) Pursuant to 326 IAC 8-3-2(a), the owner or operator of a cold cleaner degreaser shall ensure the following control equipment and operating requirements are met:

1. Equip the degreaser with a cover.
2. Equip the degreaser with a device for draining cleaned parts.
3. Close the degreaser cover whenever parts are not being handled in the degreaser.
4. Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases.
5. Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (3), (4), (6), and (7).
6. Store waste solvent only in closed containers.
7. Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

(b) Pursuant to 326 IAC 8-3-2(b), the owner or operator of a cold cleaner degreaser subject to this subsection shall ensure the following additional control equipment and operating requirements are met:

1. Equip the degreaser with one (1) of the following control devices if the solvent is heated to a temperature of greater than forty-eight and nine-tenths (48.9) degrees Celsius (one hundred twenty (120) degrees Fahrenheit):

 A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.
 A water cover when solvent used is insoluble in, and heavier than, water.
 A refrigerated chiller.
 Carbon adsorption.
An alternative system of demonstrated equivalent or better control as those outlined in clauses (A) through (D) that is approved by the department. An alternative system shall be submitted to the U.S. EPA as a SIP revision.

2. Ensure the degreaser cover is designed so that it can be easily operated with one (1) hand if the solvent is agitated or heated.

3. If used, solvent spray:

(A) must be a solid, fluid stream; and

(B) shall be applied at a pressure that does not cause excessive splashing.

D.3.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Pursuant to 326 IAC 8-3-8(b)(2), the Permittee shall not operate a cold cleaner degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty eight (68) degrees Fahrenheit).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.3.3 Record Keeping Requirements

(a) Pursuant to 326 IAC 8-3-8(c)(2) and to document the compliance status with Condition D.3.2, the Permittee shall maintain each of the following records for each purchase:

1. The name and address of the solvent supplier.

2. The date of purchase (or invoice/bill date of contract servicer indicating service date).

3. The type of solvent purchased.

4. The total volume of the solvent purchased.

5. The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty eight (68) degrees Fahrenheit).

6. All records required by Condition D.3.3(a)(1) through (5) shall be:

(A) retained on-site or accessible electronically from the site for the most recent three (3) year period; and

(B) reasonably accessible for an additional two (2) year period.

(b) Section C - General Record Keeping Requirements, of this permit contains the Permittee's obligations with regard to the records required by this condition.
SECTION D.4 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

Insignificant Activities

(c) One (1) portable powder filling operation, identified as PPF1, which is used on any one of the fourteen (14) lines on an as-needed basis, with a process weight rate up to sixty thousand (60,000) pounds per hour.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.4.1 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the portable powder filler, identified as PPF1, shall not exceed 1.44 pounds per hour when operating at a process weight rate of 0.21 tons per hour. The pound per hour limitation was calculated with the following equation:

\[E = 4.10 \times P^{0.67} \]

where \(E \) = rate of emission in pounds per hour and

\(P \) = process weight rate in tons per hour
SECTION E.1 NSPS

Emissions Unit Description:

(f) One (1) natural gas-fired boiler, identified as B-1, permitted in 2008, and with a maximum heat input capacity of 16.70 MMBtu/hr, exhausting to stack B-1.

Boiler B-1 is an affected source under the NSPS for Small Industrial - Commercial Institutional Steam Generating Units 326 IAC 12 and 40 CFR Part 60, Subpart Dc.

(g) One (1) natural gas-fired boiler, identified as T-1, constructed in 2013, with a maximum heat input capacity of 10.5 MMBtu/hr, exhausting to stack T-1.

Boiler T-1 is an affected facility under the NSPS for Small Industrial - Commercial Institutional Steam Generating Units 40 CFR Part 60, Subpart Dc

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart A

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 Standards of Performance for Small Industrial - Commercial Institutional Steam Generating Units NSPS [326 IAC 12][40 CFR Part 60, Subpart Dc]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart Dc (included as Attachment A to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

(1) 40 CFR 60.40c
(2) 40 CFR 60.41c
(3) 40 CFR 60.48c
SECTION E.2 NESHAP

Emissions Unit Description:

(d) One (1) diesel-fired emergency fire pump, constructed prior to June 12, 2006, with a maximum capacity of 170 horsepower, uncontrolled, and exhausting to the outdoors.

This fire pump is considered an existing stationary reciprocating internal combustion engine at an area source of hazardous air pollutants under NESHAP for Stationary Reciprocating Internal Combustion Engines (40 CFR 63, Subpart ZZZZ).

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart ZZZZ.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ][326 IAC 20-82]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 20-82, for the emission unit(s) listed above:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(iii) and (iv)
(4) 40 CFR 63.6595(a)(1), (b), and (c)
(5) 40 CFR 63.6603(a)
(6) 40 CFR 63.6605
(7) 40 CFR 63.6625(e)(3), (f), (h), and (i)
(8) 40 CFR 63.6635
(9) 40 CFR 63.6640(a), (b), (e), and (f)
(10) 40 CFR 63.6645(a)(5)
(11) 40 CFR 63.6650
(12) 40 CFR 63.6655
(13) 40 CFR 63.6660
(14) 40 CFR 63.6665
(15) 40 CFR 63.6670
(16) 40 CFR 63.6675
(17) Table 2d (item 4)
(18) Table 6 (item 9)
(19) Table 8
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
CERTIFICATION

Source Name: Accra-Pac, Inc.
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road,
Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter
☐ Test Result (specify) __
☐ Report (specify) ___
☐ Notification (specify) ___
☐ Affidavit (specify) ___
☐ Other (specify) __

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature: ________________________________
Printed Name: ________________________________
Title/Position: ________________________________
Phone: ________________________________
Date: ________________________________
PART 70 OPERATING PERMIT
EMERGENCY OCCURRENCE REPORT

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Accra-Pac, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address:</td>
<td>2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, Indiana 46515</td>
</tr>
<tr>
<td>Part 70 Permit No.:</td>
<td>T039-42472-00434</td>
</tr>
</tbody>
</table>

This form consists of 2 pages

- This is an emergency as defined in 326 IAC 2-7-1(12)
 - The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 - The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

- Facility/Equipment/Operation:

- Control Equipment:

- Permit Condition or Operation Limitation in Permit:

- Description of the Emergency:

- Describe the cause of the Emergency:
If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
</tr>
<tr>
<td>If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:</td>
</tr>
</tbody>
</table>

Form Completed by: __
Title / Position: __
Date: __
Phone: ___
Part 70 Quarterly Report

Source Name: Accra-Pac, Inc.
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434
Facility: manual scrap can processing operations
Limit: The number of cans crushed in the manual scrap can processing operations shall be less than 4,500,000 per twelve (12) consecutive month period, with compliance determined at the end of each month.

<table>
<thead>
<tr>
<th>QUARTER:</th>
<th>EACH MONTH</th>
<th>YEAR:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cans crushed</td>
<td>Number of cans crushed</td>
<td>Number of cans crushed</td>
</tr>
<tr>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.
☐ Deviation/s occurred in this quarter.
 Deviation has been reported on: ___________________

Submitted by: __
Title / Position: __
Signature: __
Date: ___
Phone: ___
Part 70 Quarterly Report

Source Name: Accra-Pac, Inc
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434
Facility:

<table>
<thead>
<tr>
<th>Line</th>
<th>Parameter: VOC emissions</th>
<th>Limits: Shall not exceed 248.10 tons of VOC emissions per consecutive 12-month period, with compliance determined at the end of each month. Shall not exceed 440 tons per consecutive twelve-month period, with compliance determined at the end of each month.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>QUARTER</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>Column 1 VOC emissions (tons)</td>
</tr>
<tr>
<td>This Month</td>
<td>Previous 11 Months</td>
</tr>
</tbody>
</table>

- □ No deviation occurred in this quarter.
- □ Deviation/s occurred in this quarter.
 Deviation has been reported on:
 Submitted by: __________________________
 Title / Position: __________________________
 Signature: __________________________
 Date: __________________________
 Phone: __________________________
Indiana Department of Environmental Management
Office of Air Quality
Compliance and Enforcement Branch

Part 70 Quarterly Report

Source Name: Accra-Pac, Inc
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434
Facility:

<table>
<thead>
<tr>
<th>Line</th>
<th>Parameter: VOC emissions</th>
<th>Limit: Shall not exceed 245.42 tons of VOC emissions per consecutive 12-month period, with compliance determined at the end of each month.</th>
</tr>
</thead>
</table>

QUARTER:

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1 VOC emissions (tons)</th>
<th>Column 2 VOC emissions (tons)</th>
<th>Column 1 + Column 2 VOC emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
</tbody>
</table>

- □ No deviation occurred in this quarter.
- □ Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by: ____________________________
Title / Position: ____________________________
Signature: ____________________________
Date: ____________________________
Phone: ____________________________
Part 70 Quarterly Report

Source Name: Accra-Pac, Inc
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434

<table>
<thead>
<tr>
<th>Line</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>61</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
</table>

Parameter: Single HAP Emissions
Limit: Shall not exceed 9.5 tons of any single HAP per consecutive 12-month period, with compliance determined at the end of each month.

QUARTER: \ YEAR:

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1 HAP emissions (tons)</th>
<th>Column 2 HAP emissions (tons)</th>
<th>Column 1 + Column 2 HAP emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
</tbody>
</table>

- [] No deviation occurred in this quarter.
- [] Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by: ____________________________
Title / Position: ____________________________
Signature: ____________________________
Date: ____________________________
Phone: ____________________________
Part 70 Quarterly Report

Source Name: Accra-Pac, Inc
Source Address: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434
Facility:

<table>
<thead>
<tr>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>62</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>

Parameter: Total HAPs Emissions
Limit: Shall not exceed 23.75 tons of total HAP emissions per consecutive 12-month period, with compliance determined at the end of each month.

QUARTER :
YEAR:

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1 HAP emissions (tons)</th>
<th>Column 2 HAP emissions (tons)</th>
<th>Column 1 + Column 2 HAP emissions (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous 11 Months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Month Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
Deviation has been reported on:

Submitted by: ____________________________
Title / Position: ____________________________
Signature: ____________________________
Date: ____________________________
Phone: ____________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name: Accra Pac, Inc
Source Address: 2730 Middlebury Street, 2700 Middlebury Street,
711 Middleton Run Road, Elkhart, Indiana 46515
Part 70 Permit No.: T039-42472-00434

Months: _________ to __________ Year: __________

This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C - General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

☐ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.

☐ THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ____________________________
Title / Position: ____________________________
Date: ____________________________
Phone: ____________________________
Part 70 Operating Permit No: 039-42472-00434

[Downloaded from the eCFR on May 13, 2013]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

§ 60.40c Applicability and delegation of authority.

(a) Except as provided in paragraphs (d), (e), (f), and (g) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/h)) or less, but greater than or equal to 2.9 MW (10 MMBtu/h).

(b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, § 60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.

(c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO2) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§ 60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in § 60.41c.

(d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under § 60.14.

(e) Affected facilities (i.e., heat recovery steam generators and fuel heaters) that are associated with stationary combustion turbines and meet the applicability requirements of subpart KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators, fuel heaters, and other affected facilities that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam generator, fuel heater, or other affected facility is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The stationary combustion turbine emissions are subject to subpart GG or KKKK, as applicable, of this part.)

(f) Any affected facility that meets the applicability requirements of and is subject to subpart AAAA or subpart CCCC of this part is not subject to this subpart.

(g) Any facility that meets the applicability requirements and is subject to an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBBB of this part is not subject to this subpart.

(h) Affected facilities that also meet the applicability requirements under subpart J or subpart Ja of this part are subject to the PM and NOX standards under this subpart and the SO2 standards under subpart J or subpart Ja of this part, as applicable.

(i) Temporary boilers are not subject to this subpart.
§ 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see § 60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal not meeting the definition of natural gas, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb) on a dry basis.

Combined cycle system means a system in which a separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (i.e., the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see § 60.17), diesel fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see § 60.17), kerosine, as defined by the American Society of Testing and Materials in ASTM D3699 (incorporated by reference, see § 60.17), biodiesel as defined by the American Society of Testing and Materials in ASTM D6751 (incorporated by reference, see § 60.17), or biodiesel blends as defined by the American Society of Testing and Materials in ASTM D7467 (incorporated by reference, see § 60.17).

Dry flue gas desulfurization technology means a SO2 control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.
Emerging technology means any SO₂ control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under § 60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bed combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

Natural gas means:

(1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or

(2) Liquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see § 60.17); or

(3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 34 and 43 megajoules (MJ) per dry standard cubic meter (910 and 1,150 Btu per dry standard cubic foot).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Marianas Islands.

Oil means crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO₂ emissions (nanograms per joule (ng/J) or lb/MMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

Process heater means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see § 60.17).
Steam generating unit means a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Temporary boiler means a steam generating unit that combusts natural gas or distillate oil with a potential SO2 emissions rate no greater than 26 ng/J (0.060 lb/MMBtu), and the unit is designed to, and is capable of, being carried or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A steam generating unit is not a temporary boiler if any one of the following conditions exists:

(1) The equipment is attached to a foundation.

(2) The steam generating unit or a replacement remains at a location for more than 180 consecutive days. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.

(3) The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.

(4) The equipment is moved from one location to another in an attempt to circumvent the residence time requirements of this definition.

Wet flue gas desulfurization technology means an SO2 control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or SO2.

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sanderdust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

§ 60.42c Standard for sulfur dioxide (SO2).

(a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO2 emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO2 in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain SO2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential SO2 emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain SO2 in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.

(b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that:
(1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO₂ emission rate (80 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO₂ emissions limit or the 90 percent SO₂ reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.

(2) Combusts only coal and that uses an emerging technology for the control of SO₂ emissions shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 50 percent (0.50) of the potential SO₂ emission rate (50 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO₂ reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.

(c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of the emission limit determined pursuant to paragraph (e)(2) of this section. Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).

(1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/h) or less;

(2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.

(3) Affected facilities located in a noncontinental area; or

(4) Affected facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.

(d) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal oil shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of 215 ng/J (0.50 lb/MMBtu) heat input from oil; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.

(e) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO₂ in excess of the following:

(1) The percent of potential SO₂ emission rate or numerical SO₂ emission rate required under paragraph (a) or (b)(2) of this section, as applicable, for any affected facility that

(i) Combusts coal in combination with any other fuel;
(ii) Has a heat input capacity greater than 22 MW (75 MMBtu/h); and

(iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and

(2) The emission limit determined according to the following formula for any affected facility that combusts coal, oil, or coal and oil with any other fuel:

\[
E_s = \frac{K_a H_a + K_b H_b + K_c H_c}{H_a + H_b + H_c}
\]

Where:

\(E_s = \) SO\(_2\) emission limit, expressed in ng/J or lb/MMBtu heat input;

\(K_a = 520 \) ng/J (1.2 lb/MMBtu);

\(K_b = 260 \) ng/J (0.60 lb/MMBtu);

\(K_c = 215 \) ng/J (0.50 lb/MMBtu);

\(H_a = \) Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];

\(H_b = \) Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and

\(H_c = \) Heat input from the combustion of oil, in J (MMBtu).

(f) Reduction in the potential \(\text{SO}_2 \) emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:

(1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential \(\text{SO}_2 \) emission rate; and

(2) Emissions from the pretreated fuel (without either combustion or post-combustion \(\text{SO}_2 \) control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.

(g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.

(h) For affected facilities listed under paragraphs (h)(1), (2), (3), or (4) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under § 60.48c(f), as applicable.

(1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).

(2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).

(3) Coal-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).

(4) Other fuels-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).

(i) The \(\text{SO}_2 \) emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.
(j) For affected facilities located in noncontinental areas and affected facilities complying with the percent reduction standard, only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

§ 60.43c Standard for particulate matter (PM).

(a) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:

(1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.

(2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.

(b) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:

(1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or

(2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.

(c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. Owners and operators of an affected facility that elect to install, calibrate, maintain, and operate a continuous emissions monitoring system (CEMS) for measuring PM emissions according to the requirements of this subpart and are subject to a federally enforceable PM limit of 0.030 lb/MMBtu or less are exempt from the opacity standard specified in this paragraph (c).

(d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.

(e)(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.

(2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification
after February 28, 2005 shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of both:

(i) 22 ng/J (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels; and

(ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.

(3) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.

(4) An owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under § 60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO2 emissions is not subject to the PM limit in this section.

§ 60.44c Compliance and performance test methods and procedures for sulfur dioxide.

(a) Except as provided in paragraphs (g) and (h) of this section and § 60.8(b), performance tests required under § 60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not apply to this section. The 30-day notice required in § 60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.

(b) The initial performance test required under § 60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO2 emission limits under § 60.42c shall be determined using a 30-day average. The first operating day included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.

(c) After the initial performance test required under paragraph (b) of this section and § 60.8, compliance with the percent reduction requirements and SO2 emission limits under § 60.42c is based on the average percent reduction and the average SO2 emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO2 emission rate are calculated to show compliance with the standard.

(d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly SO2 emission rate (Eho) and the 30-day average SO2 emission rate (Eao). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate Eao when using daily fuel sampling or Method 6B of appendix A of this part.

(e) If coal, oil, or coal and oil are combusted with other fuels:

(1) An adjusted Eho (Eho o) is used in Equation 19-19 of Method 19 of appendix A of this part to compute the adjusted Eao (Eao o). The Eho o is computed using the following formula:

\[
E_{ho, o} = \frac{E_{ho} - E_{w}(1-X_o)}{X_o}
\]
Where:

\[E_{wo} = \text{Adjusted } E_{wo}, \text{ ng/J (lb/MMBtu)}; \]

\[E_{wo} = \text{Hourly SO}_2 \text{ emission rate, ng/J (lb/MMBtu)}; \]

\[E_w = \text{SO}_2 \text{ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu). The value } E_w \text{ for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure } E_w \text{ if the owner or operator elects to assume } E_w = 0. \]

\[X_k = \text{Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.} \]

(2) The owner or operator of an affected facility that qualifies under the provisions of § 60.42c(c) or (d) (where percent reduction is not required) does not have to measure the parameters \(E_w \) or \(X_k \) if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.

\(X_k = \frac{\text{Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.}}{\text{}} \)

(f) Affected facilities subject to the percent reduction requirements under § 60.42c(a) or (b) shall determine compliance with the SO\(_2\) emission limits under § 60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:

(1) If only coal is combusted, the percent of potential SO\(_2\) emission rate is computed using the following formula:

\[\%P_s = 100 \left(1 - \frac{\%R_g}{100} \right) \left(1 - \frac{\%R_f}{100} \right) \]

Where:

\[\%P_s = \text{Potential SO}_2 \text{ emission rate, in percent;} \]

\[\%R_g = \text{SO}_2 \text{ removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent; and} \]

\[\%R_f = \text{SO}_2 \text{ removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent.} \]

(2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:

(i) To compute the \(\%P_s \), an adjusted \(\%R_g \) (\(\%R_g^o \)) is computed from \(E_{wo} \) from paragraph (e)(1) of this section and an adjusted average SO\(_2\) inlet rate \((E_{ai}^o) \) using the following formula:

\[\%R_g^o = 100 \left(1 - \frac{E_{ai}^o}{E_{ai}} \right) \]

Where:

\[\%R_g = \text{Adjusted } \%R_g, \text{ in percent;} \]

\[E_{wo} = \text{Adjusted } E_{wo}, \text{ ng/J (lb/MMBtu); and} \]

\[E_{ai} = \text{Adjusted average SO}_2 \text{ inlet rate, ng/J (lb/MMBtu).} \]
(ii) To compute $E_{\text{hi} o}$, an adjusted hourly SO$_2$ inlet rate ($E_{\text{hi} o}$) is used. The $E_{\text{hi} o}$ is computed using the following formula:

$$E_{\text{hi} o} = \frac{E_{\text{hi}} - E_w (1 - X_k)}{X_k}$$

Where:

$E_{\text{hi} o}$ = Adjusted E_{hi}, ng/J (lb/MMBtu);

E_{hi} = Hourly SO$_2$ inlet rate, ng/J (lb/MMBtu);

E_w = SO$_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$; and

X_k = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

(g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under § 60.46c(d)(2).

(h) For affected facilities subject to § 60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO$_2$ standards based on fuel supplier certification, the performance test shall consist of the certification from the fuel supplier, as described in § 60.48c(f), as applicable.

(i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO$_2$ standards under § 60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(j) The owner or operator of an affected facility shall use all valid SO$_2$ emissions data in calculating $\%P_s$ and E_{ho} under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under § 60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating $\%P_s$ or E_{ho} pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

§ 60.45c Compliance and performance test methods and procedures for particulate matter.

(a) The owner or operator of an affected facility subject to the PM and/or opacity standards under § 60.43c shall conduct an initial performance test as required under § 60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.

(1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.
(2) Method 3A or 3B of appendix A-2 of this part shall be used for gas analysis when applying Method 5 or 5B of appendix A-3 of this part or 17 of appendix A-6 of this part.

(3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:

(i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.

(ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part only if Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.

(iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.

(4) The sampling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.

(5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at 160 ±14 °C (320±25 °F).

(6) For determination of PM emissions, an oxygen (O2) or carbon dioxide (CO2) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.

(7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:

(i) The O2 or CO2 measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and

(iii) The dry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.

(8) Method 9 of appendix A-4 of this part shall be used for determining the opacity of stack emissions.

(b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under § 60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(c) In place of PM testing with Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(14) of this section.

(1) Notify the Administrator 1 month before starting use of the system.

(2) Notify the Administrator 1 month before stopping use of the system.
(3) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.

(5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under § 60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.

(6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using CEMS outlet data.

(7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (c)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) [Reserved]

(8) The 1-hour arithmetic averages required under paragraph (c)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (c)(7) of this section are not met.

(10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part.

(11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O₂ (or CO₂) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and performance tests conducted using the following test methods.

(i) For PM, Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall be used; and

(ii) For O₂ (or CO₂), Method 3A or 3B of appendix A-2 of this part, as applicable shall be used.

(12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.

(13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.

(14) As of January 1, 2012, and within 90 days after the date of completing each performance test, as defined in § 60.8, conducted to demonstrate compliance with this subpart, you must submit relative accuracy test audit (i.e., reference method) data and performance test (i.e., compliance test) data, except opacity data, electronically to EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/erttool.html/) or other compatible electronic spreadsheet. Only data collected using test methods compatible with ERT are subject to this requirement to be submitted electronically into EPA's WebFIRE database.
(d) The owner or operator of an affected facility seeking to demonstrate compliance under §60.43c(e)(4) shall follow the applicable procedures under §60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/h).

§ 60.46c Emission monitoring for sulfur dioxide.

(a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO₂ emission limits under §60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO₂ concentrations and either O₂ or CO₂ concentrations at the outlet of the SO₂ control device (or the outlet of the steam generating unit if no SO₂ control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under §60.42c shall measure SO₂ concentrations and either O₂ or CO₂ concentrations at both the inlet and outlet of the SO₂ control device.

(b) The 1-hour average SO₂ emission rates measured by a CEMS shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the average emission rates under §60.42c. Each 1-hour average SO₂ emission rate must be based on at least 30 minutes of operation, and shall be calculated using the data points required under §60.13(h)(2). Hourly SO₂ emission rates are not calculated if the affected facility is operated less than 30 minutes in a 1-hour period and are not counted toward determination of a steam generating unit operating day.

(c) The procedures under §60.13 shall be followed for installation, evaluation, and operation of the CEMS.

(1) All CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.

(2) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.

(3) For affected facilities subject to the percent reduction requirements under §60.42c, the span value of the SO₂ CEMS at the inlet to the SO₂ control device shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted, and the span value of the SO₂ CEMS at the outlet from the SO₂ control device shall be 50 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.

(4) For affected facilities that are not subject to the percent reduction requirements of §60.42c, the span value of the SO₂ CEMS at the outlet from the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.

(d) As an alternative to operating a CEMS at the inlet to the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO₂ emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO₂ emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.

(1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO₂ input rate.

(2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when
calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content of subsequent oil shipments is low enough to cause the 30-day rolling average sulfur content to be 0.5 weight percent sulfur or less.

(3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO\textsubscript{2} at the inlet or outlet of the SO\textsubscript{2} control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO\textsubscript{2} and CO\textsubscript{2} measurement train operated at the candidate location and a second similar train operated according to the procedures in § 3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part, Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).

(e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to § 60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO\textsubscript{2} standards based on fuel supplier certification, as described under § 60.48c(f), as applicable.

(f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

§ 60.47c Emission monitoring for particulate matter.

(a) Except as provided in paragraphs (c), (d), (e), and (f) of this section, the owner or operator of an affected facility combusting coal, oil, or wood that is subject to the opacity standards under § 60.43c shall install, calibrate, maintain, and operate a continuous opacity monitoring system (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility subject to an opacity standard in § 60.43c(c) that is not required to use a COMS due to paragraphs (c), (d), (e), or (f) of this section that elects not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the procedures in § 60.11 to demonstrate compliance with the applicable limit in § 60.43c by April 29, 2011, within 45 days of stopping use of an existing COMS, or within 180 days after initial startup of the facility, whichever is later, and shall comply with either paragraphs (a)(1), (a)(2), or (a)(3) of this section. The observation period for Method 9 of appendix A-4 of this part performance tests may be reduced from 3 hours to 60 minutes if all 6-minute averages are less than 10 percent and all individual 15-second observations are less than or equal to 20 percent during the initial 60 minutes of observation.

(1) Except as provided in paragraph (a)(2) and (a)(3) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (a) of this section according to the applicable schedule in paragraphs (a)(1)(i) through (a)(1)(iv) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results.

(i) If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;

(ii) If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;

(iii) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from
the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an
opacity standard is combusted, whichever is later; or

(iv) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of
this part performance test must be completed within 45 calendar days from the date that the most recent performance
test was conducted.

(2) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this
part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix
A-4 of this part performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this
part according to the procedures specified in paragraphs (a)(2)(i) and (ii) of this section.

(i) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the
affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and
demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation
period (i.e., 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than
30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the
occurrence of visible emissions is greater than 5 percent of the observation period (i.e., 90 seconds per 30 minute
period), the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24
hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute
observation (i.e., 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the
procedures in paragraph (a) of this section within 45 calendar days according to the requirements in § 60.45c(a)(8).

(ii) If no visible emissions are observed for 10 operating days during which an opacity standard is applicable,
observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any
visible emissions are observed, daily observations shall be resumed.

(3) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this
part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix
A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according
to a site-specific monitoring plan approved by the Administrator. The observations shall be similar, but not necessarily
identical, to the requirements in paragraph (a)(2) of this section. For reference purposes in preparing the monitoring
plan, see OAQPS “Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based
Photographic Analysis Systems.” This document is available from the U.S. Environmental Protection Agency (U.S.
EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy
Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer
Network (TTN) under Emission Measurement Center Preliminary Methods.

(b) All COMS shall be operated in accordance with the applicable procedures under Performance Specification 1 of
appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.

(c) Owners and operators of an affected facilities that burn only distillate oil that contains no more than 0.5 weight
percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.060 lb/MMBtu)
heat input or less and that do not use a post-combustion technology to reduce SO2 or PM emissions and that are
subject to an opacity standard in § 60.43c(c) are not required to operate a COMS if they follow the applicable
procedures in § 60.48c(f).

(d) Owners or operators complying with the PM emission limit by using a PM CEMS must calibrate, maintain,
operate, and record the output of the system for PM emissions discharged to the atmosphere as specified in
§ 60.45c(c). The CEMS specified in paragraph § 60.45c(c) shall be operated and data recorded during all periods of
operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration
checks, and zero and span adjustments.

(e) Owners and operators of an affected facility that is subject to an opacity standard in § 60.43c(c) and that does not
use post-combustion technology (except a wet scrubber) for reducing PM, SO2 , or carbon monoxide (CO) emissions,
burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur, and is operated such
that emissions of CO discharged to the atmosphere from the affected facility are maintained at levels less than or
equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS. Owners and
operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section; or

(1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.

(i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(j)(3) of subpart Eb of this part.

(ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).

(iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. The 1-hour averages are calculated using the data points required in §60.13(h)(2).

(iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.

(2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.

(3) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.

(4) You must record the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action.

(f) An owner or operator of an affected facility that is subject to an opacity standard in §60.43c(c) is not required to operate a COMS provided that the affected facility meets the conditions in either paragraphs (f)(1), (2), or (3) of this section.

(1) The affected facility uses a fabric filter (baghouse) as the primary PM control device and, the owner or operator operates a bag leak detection system to monitor the performance of the fabric filter according to the requirements in section §60.48Da of this part.

(2) The affected facility uses an ESP as the primary PM control device, and the owner or operator uses an ESP predictive model to monitor the performance of the ESP developed in accordance and operated according to the requirements in section §60.48Da of this part.

(3) The affected facility burns only gaseous fuels and/or fuel oils that contain no greater than 0.5 weight percent sulfur, and the owner or operator operates the unit according to a written site-specific monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing performed as part of this site-specific monitoring plan, the permitting authority may require as an alternative to the notification and reporting requirements specified in §§60.8 and 60.11 that the owner or operator submit any deviations with the excess emissions report required under §60.48c(c).
§ 60.48c Reporting and recordkeeping requirements.

(a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by § 60.7 of this part. This notification shall include:

(1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility.

(2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under § 60.42c, or § 60.43c.

(3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.

(4) Notification if an emerging technology will be used for controlling SO2 emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of § 60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.

(b) The owner or operator of each affected facility subject to the SO2 emission limits of § 60.42c, or the PM or opacity limits of § 60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.

(c) In addition to the applicable requirements in § 60.7, the owner or operator of an affected facility subject to the opacity limits in § 60.43c(c) shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraphs (c)(1) through (3) of this section, as applicable to the visible emissions monitoring method used.

(1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(1)(i) through (iii) of this section.

(i) Dates and time intervals of all opacity observation periods;

(ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and

(iii) Copies of all visible emission observer opacity field data sheets;

(2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(2)(i) through (iv) of this section.

(i) Dates and time intervals of all visible emissions observation periods;

(ii) Name and affiliation for each visible emission observer participating in the performance test;

(iii) Copies of all visible emission observer opacity field data sheets; and

(iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements.
(3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator.

(d) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall submit reports to the Administrator.

(e) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.

(1) Calendar dates covered in the reporting period.

(2) Each 30-day average SO₂ emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.

(3) Each 30-day average percent of potential SO₂ emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.

(4) Identification of any steam generating unit operating days for which SO₂ or diluent (O₂ or CO₂) data have not been obtained by an approved method for at least 75 percent of the operating hours; justification for not obtaining sufficient data; and a description of corrective actions taken.

(5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.

(6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.

(7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.

(8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.

(9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.

(10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.

(11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.

(f) Fuel supplier certification shall include the following information:

(1) For distillate oil:

(i) The name of the oil supplier;

(ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in § 60.41c; and

(iii) The sulfur content or maximum sulfur content of the oil.
(2) For residual oil:

(i) The name of the oil supplier;

(ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil, specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier's or oil refiner's facility, or other location;

(iii) The sulfur content of the oil from which the shipment came (or of the shipment itself); and

(iv) The method used to determine the sulfur content of the oil.

(3) For coal:

(i) The name of the coal supplier;

(ii) The location of the coal when the sample was collected for analysis to determine the properties of the coal, specifically including whether the coal was sampled as delivered to the affected facility or whether the sample was collected from coal in storage at the mine, at a coal preparation plant, at a coal supplier's facility, or at another location. The certification shall include the name of the coal mine (and coal seam), coal storage facility, or coal preparation plant (where the sample was collected);

(iii) The results of the analysis of the coal from which the shipment came (or of the shipment itself) including the sulfur content, moisture content, ash content, and heat content; and

(iv) The methods used to determine the properties of the coal.

(4) For other fuels:

(i) The name of the supplier of the fuel;

(ii) The potential sulfur emissions rate or maximum potential sulfur emissions rate of the fuel in ng/J heat input; and

(iii) The method used to determine the potential sulfur emissions rate of the fuel.

(g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.

(2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility thatcombusts only natural gas, wood, fuels using fuel certification in § 60.48c(f) to demonstrate compliance with the SO$_2$ standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.

(3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in § 60.42C to use fuel certification to demonstrate compliance with the SO$_2$ standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.

(h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under § 60.42c or § 60.43c shall calculate the annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.
(i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.

(j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]
Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 63—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Source: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.
(f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in §63.6675, which includes operating according to the provisions specified in §63.6640(f).

(1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

§63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.
(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(b) Stationary RICE subject to limited requirements. (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of §63.6645(f) and the requirements of §§63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(c) Stationary RICE subject to Regulations under 40 CFR Part 60. An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

§63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.

(2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.

(3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.
(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.

(c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

Emission and Operating Limitations

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.

(b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

(1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).

(2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.

(i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.

(c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:

(1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement.

(2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.
(4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in §63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in §63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

(e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart III instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.

(f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

(a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.

(b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2), or are on offshore vessels that meet §63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013]

General Compliance Requirements

§63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

Testing and Initial Compliance Requirements

§63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.
(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

§63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.
§63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

1. Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

2. New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

3. New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

4. New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad (Eq. 1)
\]

Where:

- \(C_i\) = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,
- \(C_o\) = concentration of CO, THC, or formaldehyde at the control device outlet, and
- \(R\) = percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO2). If pollutant concentrations are to be corrected to 15 percent oxygen and CO2 concentration is measured in lieu of oxygen concentration measurement, a CO2 correction factor is needed. Calculate the CO2 correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific \(F_o\) value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

\[
F_o = \frac{0.209}{F_c} \quad (Eq. 2)
\]

Where:
\(F_0 = \) Fuel factor based on the ratio of oxygen volume to the ultimate \(\text{CO}_2 \) volume produced by the fuel at zero percent excess air.

0.209 = Fraction of air that is oxygen, percent/100.

\(F_d = \) Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

\(F_c = \) Ratio of the volume of \(\text{CO}_2 \) produced to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu)

(ii) Calculate the \(\text{CO}_2 \) correction factor for correcting measurement data to 15 percent \(O_2 \), as follows:

\[
X_{\text{CO}_2} = \frac{5.9}{F_0} \quad (Eq. \ 3)
\]

Where:

\(X_{\text{CO}_2} = \) \(\text{CO}_2 \) correction factor, percent.

5.9 = 20.9 percent \(O_2 \)–15 percent \(O_2 \), the defined \(O_2 \) correction value, percent.

(iii) Calculate the \(\text{CO}, \text{THC}, \) and formaldehyde gas concentrations adjusted to 15 percent \(O_2 \) using \(\text{CO}_2 \) as follows:

\[
C_{\text{adj}} = C_d \times \frac{X_{\text{CO}_2}}{\%\text{CO}_2} \quad (Eq. \ 4)
\]

Where:

\(C_{\text{adj}} = \) Calculated concentration of \(\text{CO}, \text{THC}, \) or formaldehyde adjusted to 15 percent \(O_2 \).

\(C_d = \) Measured concentration of \(\text{CO}, \text{THC}, \) or formaldehyde, uncorrected.

\(X_{\text{CO}_2} = \) \(\text{CO}_2 \) correction factor, percent.

\(\%\text{CO}_2 = \) Measured \(\text{CO}_2 \) concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce \(\text{CO} \) and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O2 or CO2 according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR
part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO2 concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.

(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in §63.8(c)(1)(ii) and (c)(3); and

(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in §63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.

(3) The CPMS must collect data at least once every 15 minutes (see also §63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.
(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.

(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.
(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least three test runs.
(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O2 using one of the O2 measurement methods specified in Table 4 of this subpart. Measurements to determine O2 concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O2 emissions simultaneously at the inlet and outlet of the control device.

Continuous Compliance Requirements

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.

(b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
(1) The compliance demonstration must consist of at least one test run.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O₂ using one of the O₂ measurement methods specified in Table 4 of this subpart. Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

(7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

(d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

(f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary RICE in emergency situations.
(2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

(ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

(ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the
engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

Notifications, Reports, and Records

§63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following:

1. An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

2. An existing stationary RICE located at an area source of HAP emissions.

3. A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

4. A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

5. This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.

(c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.

(e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).
(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in §63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in §63.6603(d) and identifying the state or local regulation that the engine is subject to.

§63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.
(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission and operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS
downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during
that reporting period.

(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all
deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40
CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along
with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A),
and the Compliance report includes all required information concerning deviations from any emission or operating
limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the
same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not
otherwise affect any obligation the affected source may have to report deviations from permit requirements to the
permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent
to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to
Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to
the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in
(g)(1) through (g)(3) of this section.

1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate
that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the
total fuel consumption on an annual basis.

2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.

3) Any problems or errors suspected with the meters.

(h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or
is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in
§63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must submit an annual
report according to the requirements in paragraphs (h)(1) through (3) of this section.

1) The report must contain the following information:

i) Company name and address where the engine is located.

ii) Date of the report and beginning and ending dates of the reporting period.

iii) Engine site rating and model year.

iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

v) Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time
for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).
(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vii) Hours spent for operation for the purpose specified in §63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(viii) If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

(ix) If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

§63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).

(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;

1. An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

2. An existing stationary emergency RICE.

3. An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in §63.6640(f)(2)(ii) or (iii) or §63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

1. An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.

2. An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

§63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

Other Requirements and Information

§63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a
site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

(1) Approval of alternatives to the non-opacity emission limitations and operating limitations in §63.6600 under §63.6(g).

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

(5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(l)(5) (incorporated by reference, see §63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).
Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by §63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO₂.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

(1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.

(2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §63.6640(f).
(3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §63.6640(f)(2)(ii) or (iii) and §63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes “rich” glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The “lean” glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Istitutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2, except that:

(1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

(2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated;
(3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

(4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NOX) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NOX, CO, and volatile organic compounds (VOC) into CO2, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C3H8.
Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

(2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

(i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.

(ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.

(iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

(3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOx (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.
Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4SRB stationary RICE</td>
<td>a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td></td>
<td>b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvcd or less at 15 percent O₂</td>
<td></td>
</tr>
</tbody>
</table>

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O<sub>2</sub> and using NSCR;</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.¹</td>
</tr>
<tr>
<td>2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O<sub>2</sub> and not using NSCR.</td>
<td>Comply with any operating limitations approved by the Administrator.</td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB stationary RICE</td>
<td>a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O<sub>2</sub>. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O<sub>2</sub> until June 15, 2007</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td>2. 4SLB stationary RICE</td>
<td>a. Reduce CO emissions by 93 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O<sub>2</sub></td>
<td></td>
</tr>
</tbody>
</table>
For each . . . You must meet the following emission limitation, except during periods of startup . . . During periods of startup you must . . .

<table>
<thead>
<tr>
<th>3. CI stationary RICE</th>
<th>a. Reduce CO emissions by 70 percent or more; or</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O₂</td>
</tr>
</tbody>
</table>

Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and</td>
</tr>
<tr>
<td>2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
<tr>
<td>3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and Comply with any operating limitations approved by the Administrator.</td>
<td>b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.
For each . . .	You must meet the following operating limitation, except during periods of startup . . .
existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst. |

1Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Emergency stationary CI RICE and black start stationary CI RICE¹ | a. Change oil and filter every 500 hours of operation or annually, whichever comes first.²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.³ |
| 2. Non-Emergency, non-black start stationary CI RICE <100 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first.²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
<p>| 3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP | Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O<sub>2</sub>. | |</p>
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 4. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 5. Non-Emergency, non-black start stationary CI RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 6. Emergency stationary SI RICE and black start stationary SI RICE.¹ | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;²
b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
| 7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE | a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;²
b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
| 8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP | a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;²
b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
For each . . . | You must meet the following requirement, except during periods of startup . . . | During periods of startup you must . . .
--- | --- | ---
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O₂. |
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O₂. |
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500 | Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O₂. |
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combuts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis | Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O₂. |

1If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

2Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

3Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]
Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Non-Emergency, non-black start CI stationary RICE ≤300 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. |
| 2. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 3. Non-Emergency, non-black start CI stationary RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 4. Emergency stationary CI RICE and black start stationary CI RICE. | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year.²</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>6. Non-emergency, non-black start 2SLB stationary RICE</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
</tbody>
</table>
For each . . . | You must meet the following requirement, except during periods of startup . . . | During periods of startup you must . . .
---|---|---
| c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. |

1Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

2If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources</td>
<td>Reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE ≥5,000 HP located at major sources</td>
<td>Reduce formaldehyde emissions</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources</td>
<td>Limit the concentration of formaldehyde in the stationary RICE exhaust</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.</td>
</tr>
<tr>
<td>5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.</td>
</tr>
</tbody>
</table>

¹After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]
Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
<th>Using . . .</th>
<th>According to the following requirements . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB, 4SLB, and CI stationary RICE</td>
<td>a. reduce CO emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(a) For CO and O\textsubscript{2} measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Measurements to determine O\textsubscript{2} must be made at the same time as the measurements for CO concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure the O\textsubscript{2} at the inlet and outlet of the control device; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)ac (heated probe not necessary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) The CO concentration must be at 15 percent O\textsubscript{2}, dry basis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure the CO at the inlet and the outlet of the control device</td>
<td>(1) ASTM D6522-00 (Reapproved 2005)abc (heated probe not necessary) or Method 10 of 40 CFR part 60, appendix A-4</td>
<td></td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must . . .</td>
<td>Using . . .</td>
<td>According to the following requirements . . .</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>2. 4SRB station RICE</td>
<td>a. reduce formaldehyde emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)a (heated probe not necessary)</td>
<td>(a) For formaldehyde, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure O₂ at the inlet and outlet of the control device; and</td>
<td>(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03a</td>
<td>(a) Measurements to determine O₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure moisture content at the inlet and outlet of the control device; and</td>
<td>(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130</td>
<td>(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device</td>
<td>(1) Method 25A, reported as propane, of 40 CFR part 60, appendix A-7</td>
<td>(a) THC concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must . . .</td>
<td>Using . . .</td>
<td>According to the following requirements . . .</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>3. Stationary RICE</td>
<td>a. limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)^a (heated probe not necessary)</td>
<td>(a) For formaldehyde, CO, O\textsubscript{2}, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a) Measurements to determine O\textsubscript{2} concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration.</td>
</tr>
<tr>
<td></td>
<td>ii. Determine the O\textsubscript{2} concentration of the stationary RICE exhaust at the sampling port location; and</td>
<td></td>
<td>(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03^a</td>
<td>(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or CO concentration.</td>
</tr>
<tr>
<td></td>
<td>iii. Measure moisture content of the stationary RICE exhaust at the sampling port location; and</td>
<td></td>
<td>(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03^a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130</td>
<td>(a) Formaldehyde concentration must be at 15% O\textsubscript{2}, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td>iv. Measure formaldehyde at the exhaust of the stationary RICE; or</td>
<td></td>
<td>(1) Method 10 of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (2005)^ac, Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03^a</td>
<td>(a) CO concentration must be at 15% O\textsubscript{2}, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td>v. measure CO at the exhaust of the stationary RICE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You may also use Methods 3A and 10 as options to ASTM-D6522-00 (2005). You may obtain a copy of ASTM-D6522-00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

You may obtain a copy of ASTM-D6348-03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and using oxidation catalyst, and using a CPMS</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and not using oxidation catalyst</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You have demonstrated initial compliance if . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP | a. Limit the concentration of CO, and not using oxidation catalyst | i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and
ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and
iii. You have recorded the approved operating parameters (if any) during the initial performance test. |
| 5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP | a. Reduce CO emissions, and using a CEMS | i. You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and
ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
iii. The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period. |
| 6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP | a. Limit the concentration of CO, and using a CEMS | i. You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at the outlet of the oxidation catalyst according to the requirements in §63.6625(a); and
ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and
iii. The average concentration of CO calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period. |
<p>| 7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Reduce formaldehyde emissions and using NSCR | i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and |</p>
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and not using NSCR</td>
<td>i. The average reduction of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
</tbody>
</table>

9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR | i. The average formaldehyde concentration, corrected to 15 percent O2, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and |
| | | ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and |
| | | iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. |

10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR | i. The average formaldehyde concentration, corrected to 15 percent O2, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and |
| | | ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and |
| | | iii. You have recorded the approved operating parameters (if any) during the initial performance test. |

11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300≤HP≤500 located at an area source of HAP | a. Reduce CO emissions | i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction. |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Existing non-emergency stationary RICE 100<HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP</td>
<td>a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td>
<td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂ dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td>
</tr>
<tr>
<td>13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install an oxidation catalyst</td>
<td>i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O₂; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
<tr>
<td>14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install NSCR</td>
<td>i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
</tr>
</tbody>
</table>

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS</td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS</td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and using NSCR</td>
<td>i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and</td>
</tr>
</tbody>
</table>

iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and not using NSCR</td>
<td>i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions</td>
<td>Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent.</td>
</tr>
<tr>
<td>7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency stationary SI RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE</td>
<td>a. Work or Management practices</td>
<td>i. Operating and maintaining the stationary RICE according to the manufacturer’s emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.</td>
</tr>
<tr>
<td>10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE</td>
<td>a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
</tbody>
</table>
| 11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE | a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst | i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ii. Reducing these data to 4-hour rolling averages; and</td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
</tbody>
</table>

12. Existing limited use CI stationary RICE >500 HP

a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst

i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.

13. Existing limited use CI stationary RICE >500 HP

a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst

i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and

ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install an oxidation catalyst</td>
<td>i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O(_2); and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
</tbody>
</table>

| 15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year | a. Install NSCR | i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O\(_2\), or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F. |

After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]
Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in §63.6650, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must submit a . . .</th>
<th>The report must contain . . .</th>
<th>You must submit the report . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP</td>
<td>Compliance report</td>
<td>a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in §63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), the information in §63.6650(e); or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. If you had a malfunction during the reporting period, the information in §63.6650(c)(4).</td>
<td>i. Semiannually according to the requirements in §63.6650(b).</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>Report</td>
<td>a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and</td>
<td>i. Annually, according to the requirements in §63.6650.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and</td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Any problems or errors suspected with the meters.</td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td>3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Compliance report</td>
<td>a. The results of the annual compliance demonstration, if conducted during the reporting period.</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5).</td>
</tr>
</tbody>
</table>
For each . . . | You must submit a . . . | The report must contain . . . | You must submit the report . . .
---|---|---|---
4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in §63.6640(f)(4)(ii) | Report | a. The information in §63.6650(h)(1) | i. annually according to the requirements in §63.6650(h)(2)-(3).

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §63.6675.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and abbreviations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.4</td>
<td>Prohibited activities and circumvention</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.5</td>
<td>Construction and reconstruction</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Applicability</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)-(4)</td>
<td>Compliance dates for new and reconstructed sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(5)</td>
<td>Notification</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(6)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(7)</td>
<td>Compliance dates for new and reconstructed area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(1)-(2)</td>
<td>Compliance dates for existing sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(3)-(4)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(5)</td>
<td>Compliance dates for existing area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(d)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(e)</td>
<td>Operation and maintenance</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(1)</td>
<td>Applicability of standards</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2)</td>
<td>Methods for determining compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(3)</td>
<td>Finding of compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)-(3)</td>
<td>Use of alternate standard</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Opacity and visible emission standards</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.6(i)</td>
<td>Compliance extension procedures and criteria</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Presidential compliance exemption</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)-(2)</td>
<td>Performance test dates</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
</tr>
<tr>
<td>§63.7(a)(3)</td>
<td>CAA section 114 authority</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)(1)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.7(b)(1) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(b)(2)</td>
<td>Notification of rescheduling</td>
<td>Yes</td>
<td>Except that §63.7(b)(2) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(c)</td>
<td>Quality assurance/test plan</td>
<td>Yes</td>
<td>Except that §63.7(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(d)</td>
<td>Testing facilities</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(1)</td>
<td>Conditions for conducting performance tests</td>
<td>No.</td>
<td>Subpart ZZZZ specifies conditions for conducting performance tests at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(2)</td>
<td>Conduct of performance tests and reduction of data</td>
<td>Yes</td>
<td>Subpart ZZZZ specifies test methods at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(3)</td>
<td>Test run duration</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(4)</td>
<td>Administrator may require other testing under section 114 of the CAA</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(f)</td>
<td>Alternative test method provisions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(g)</td>
<td>Performance test data analysis, recordkeeping, and reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(h)</td>
<td>Waiver of tests</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1)</td>
<td>Applicability of monitoring requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
</tr>
<tr>
<td>§63.8(a)(2)</td>
<td>Performance specifications</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(3)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td>Monitoring for control devices</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(1)</td>
<td>Monitoring</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2)-(3)</td>
<td>Multiple effluents and multiple monitoring systems</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)</td>
<td>Monitoring system operation and maintenance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(i)</td>
<td>Routine and predictable SSM</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(ii)</td>
<td>SSM not in Startup Shutdown Malfunction Plan</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(iii)</td>
<td>Compliance with operation and maintenance requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(2)-(3)</td>
<td>Monitoring system installation</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(4)</td>
<td>Continuous monitoring system (CMS) requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).</td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>COMS minimum procedures</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(c)(6)-(8)</td>
<td>CMS requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>CMS quality control</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS performance evaluation</td>
<td>Yes</td>
<td>Except for §63.8(e)(5)(ii), which applies to COMS.</td>
</tr>
<tr>
<td>§63.8(f)(1)-(5)</td>
<td>Alternative monitoring method</td>
<td>Yes</td>
<td>Except that §63.8(f)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to relative accuracy test</td>
<td>Yes</td>
<td>Except that §63.8(f)(6) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data reduction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Applicability and State delegation of notification requirements</td>
<td>Yes.</td>
<td>Except that §63.9(b)(3) is reserved.</td>
</tr>
<tr>
<td>§63.9(b)(1)-(5)</td>
<td>Initial notifications</td>
<td>Yes</td>
<td>Except that §63.9(b)(1) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for compliance extension</td>
<td>Yes</td>
<td>Except that §63.9(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification of special compliance requirements for new sources</td>
<td>Yes</td>
<td>Except that §63.9(d) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.9(e) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of visible emission (VE)/opacity test</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(1)</td>
<td>Notification of performance evaluation</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(g)(2)</td>
<td>Notification of use of COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(3)</td>
<td>Notification that criterion for alternative to RATA is exceeded</td>
<td>Yes</td>
<td>If alternative is in use.</td>
</tr>
<tr>
<td>§63.9(h)(1)-(6)</td>
<td>Notification of compliance status</td>
<td>Yes</td>
<td>Except that §63.9(h)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of submittal deadlines</td>
<td>Yes.</td>
<td>Except that §63.9(h)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in previous information</td>
<td>Yes.</td>
<td>Except that §63.9(h)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Administrative provisions for recordkeeping/reporting</td>
<td>Yes.</td>
<td>Except that §63.9(h)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>Record retention</td>
<td>Yes</td>
<td>Except that the most recent 2 years of data do not have to be retained on site.</td>
</tr>
<tr>
<td>§63.10(b)(2)(i)-(v)</td>
<td>Records related to SSM</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(vi)-(xi)</td>
<td>Records</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Record when under waiver</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xiii)</td>
<td>Records when using alternative to RATA</td>
<td>Yes.</td>
<td>For CO standard if using RATA alternative.</td>
</tr>
<tr>
<td>§63.10(b)(2)(xiv)</td>
<td>Records of supporting documentation</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Records of applicability determination</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)</td>
<td>Additional records for sources using CEMS</td>
<td>Yes</td>
<td>Except that §63.10(c)(2)-(4) and (9) are reserved.</td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General reporting requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Report of performance test results</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Reporting opacity or VE observations</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>Startup, shutdown, and malfunction reports</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(1) and (2)(i)</td>
<td>Additional CMS Reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(2)(ii)</td>
<td>COMS-related report</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess emission and parameter exceedances reports</td>
<td>Yes.</td>
<td>Except that §63.10(e)(3)(i) (C) is reserved.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>Reporting COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Waiver for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Flares</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.12</td>
<td>State authority and delegations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorporation by reference</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of information</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O_2) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O_2).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>630-08-0</td>
<td>Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.</td>
</tr>
<tr>
<td>Oxygen (O_2)</td>
<td>7782-44-7</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O_2, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O_2 gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

3.1 Measurement System. The total equipment required for the measurement of CO and O_2 concentrations. The measurement system consists of the following major subsystems:
3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.

3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.

3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.

3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.

3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.

3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O2 and moisture in the electrolyte reserve and provides a mechanism to degas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre-sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.
3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO₂ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O₂ concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.
6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 Reagents and Standards. What calibration gases are needed?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O₂. Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ±5 percent of the label value. Dry ambient air (20.9 percent O₂) is acceptable for calibration of the O₂ cell. If needed, any lower percentage O₂ calibration gas must be a mixture of O₂ in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O₂ Calibration Gas Concentration.

Select an O₂ gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O₂. When the average exhaust gas O₂ readings are above 6 percent, you may use dry ambient air (20.9 percent O₂) for the up-scale O₂ calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO₂).

8.0 Sample Collection and Analysis

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct that the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the “sample conditioning phase” once per minute until constant readings are obtained. Then begin the “measurement data phase” and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the “measurement data phase” readings to calculate the average stack gas CO and O₂ concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ±3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)
10.0 Calibration and Standardization

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

10.1.1 Zero Calibration. For both the \(\text{O}_2 \) and \(\text{CO} \) cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to \(\pm 3 \) percent of the up-scale gas value or \(\pm 1 \) ppm, whichever is less restrictive, for the \(\text{CO} \) channel and less than or equal to \(\pm 0.3 \) percent \(\text{O}_2 \) for the \(\text{O}_2 \) channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this “sample conditioning phase” once per minute until readings are constant for at least two minutes. Then begin the “measurement data phase” and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the “refresh phase” by introducing dry air, free from \(\text{CO} \) and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the “measurement data phase” readings from the reported standard gas value must be less than or equal to \(\pm 5 \) percent or \(\pm 1 \) ppm for \(\text{CO} \) or \(\pm 0.5 \) percent \(\text{O}_2 \), whichever is less restrictive. The maximum allowable deviation from the mean measured value of any single “measurement data phase” reading must be less than or equal to \(\pm 2 \) percent or \(\pm 1 \) ppm for \(\text{CO} \) or \(\pm 0.5 \) percent \(\text{O}_2 \), whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the \(\text{CO} \) and \(\text{O}_2 \) concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the “measurement data phase”.

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the “measurement data phase”. The maximum allowable deviation from the mean for each of the individual readings is \(\pm 2 \) percent, or \(\pm 1 \) ppm,
whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ±2 percent or ±1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed).

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO\textsubscript{2} gas standards that are generally recognized as representative of diesel-fueled engine NO and NO\textsubscript{2} emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO\textsubscript{2} interference response should be less than or equal to ±5 percent of the up-scale CO calibration gas concentration.

13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average “measurement data phase” CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 Pollution Prevention (Reserved)

15.0 Waste Management (Reserved)

16.0 Alternative Procedures (Reserved)

17.0 References

(3) "ICAC Test Protocol for Periodic Monitoring", EMC Conditional Test Protocol 34 (CTM-034), The Institute of Clean Air Companies, September 8, 1999.

Table 1: Appendix A—Sampling Run Data.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Engine I.D.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run Type:</th>
<th>Pre-Sample Calibration</th>
<th>Stack Gas Sample</th>
<th>Post-Sample Cal. Check</th>
<th>Repeatability Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run #</td>
<td>1 1 2 2 3 3 4 4</td>
<td>Time</td>
<td>Scrub. OK</td>
<td>Flow- Rate</td>
</tr>
<tr>
<td>Gas</td>
<td>O2 CO O2 CO O2 CO CO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Cond. Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement Data Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Refresh Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

[78 FR 6721, Jan. 30, 2013]
Source Description and Location

Source Name: Accra-Pac, Inc.
Source Location: 2730 Middlebury Street, 2700 Middlebury Street, 711 Middleton Run Road, Elkhart, IN 46515
County: Elkhart
SIC Code: 7389 (Business Services, Not Elsewhere Classified)
Permit Renewal No.: T039-42472-00434
Permit Reviewer: Chris Biehl

On January 24, 2020, Accra-Pac, Inc. submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Accra-Pac, Inc. relating to the operation of a stationary liquid and aerosol can filing operation. Accra-Pac, Inc. was issued its second Part 70 Operating Permit (T039-35745-00434) on October 28, 2015.

The existing Part 70 operating permit was issued under the name APG, Inc./KIK Custom Products. The company name changed to Accra-Pac, Inc. in this renewal.

Source Definition

This source definition from the First Part 70 Operating Permit Renewal, T039-21106-00434, issued on November 14, 2006, and Significant Permit Modification T039-26036-00434 issued on June 17, 2008 was incorporated into this permit as follows:

This liquid and aerosol can filling operation consists of four (4) plants:

(a) Accra-Pac, Inc. Main Plant is located at 2730 Middlebury Street, Elkhart, IN 46516;
(b) Accra-Pac, Inc. North Plant is located at 711 Middleton Run Road, Elkhart, Indiana 46516; and
(c) Accra-Pac, Inc. Distribution Center is located at 2700 Middlebury Street, Elkhart, Indiana 46516.

These three (3) plants are located on one or more contiguous properties, have the same two digit SIC code, and are still under common control, therefore they are considered one (1) major source, as defined by 326 IAC 2-7-1(22). This conclusion was determined under First Part 70 Operating Permit Renewal, T039-21106-00434, issued on November 14, 2006, and Significant Permit Modification T039-26036-00434, issued on June 17, 2008.

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. T039-35745-00434 on October 28, 2015. There have been no subsequent approvals issued.

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:
(a) Manual Scrap Can Processing Operations, identified as manual can processing operations, constructed in 1994 and 1995, with a maximum capacity of 24,763,600 cans per year, using manual devices to recover contents and allow recycling of scrap metal from aerosol cans from the production operations that are unusable, using no control, and exhausting indoors.

(b) VOC-containing Propellant Handling Operation, constructed in 1994, 1995, and 2008, including bulk and smaller container unloading, storage, transfer and filling into aerosol product containers unless indicated below.

(c) VOC-containing Liquid Handling Operations including bulk and smaller container unloading, storage, transfer, mixing, and filling into liquid and aerosol product containers.

The source has one (1) liquid product filling line in addition to the nine (9) aerosol product filling lines and all ten (10) lines involve VOC-containing liquid handling, with no control.

The following lines are used in the VOC-containing propellant handling, VOC-containing liquid handling and scrap can processing operations described above:

(1) Lines 1 and 2 aerosol can filling lines, constructed in 1976, which consist of:

 (A) Open and closed mixing tanks.

 (B) Product and propellant fillers.

(2) Line 3 aerosol can filling line, constructed in 1989, which consists of:

 (A) Two (2) closed bowl liquid product filler.

 (B) Two (2) non-VOC propellant filler.

(3) Line 4 aerosol can filling line, constructed in 1989, which consists of:

 (A) Five (5) closed top mix / run tanks.

 (B) One (1) closed bowl liquid product fillers.

 (C) Two (2) portable liquid product fillers.

 (D) Two (2) UTC VOC propellant fillers.

 (E) Two (2) VOC propellant pressure fillers.

 (F) Two (2) non-VOC propellant fillers.

(4) Lines 5-7 aerosol can filling lines, permitted in 2008, uncontrolled, which consist of:

 (A) Three (3) aerosol can filling lines using Through the Valve (TTV) propellant filling technology, exhausting to stacks S-5, SF-5, ST-5, S-6, SF-6, ST-6, S-7, SF-7, and ST-7.

 These 17 tanks have been updated to 13 tanks:

 (B) Seventeen (17) compounding tanks including:

 (i) Twelve (12) 6,000-gallon batch/run tanks.

 (ii) Five (5) pre-mix tanks consisting of:

 (a) One (1) 2,000-gallon tank.

 (b) Two (2) 1,500-gallon tanks.

 (c) One (1) 1,000-gallon tank.
(d) One (1) 500-gallon tank.

(B) Thirteen (13) compounding tanks including:
 (i) One (1) 5,100-gallon tank.
 (ii) Four (4) 5,000-gallon tanks.
 (iii) Four (4) 3,000-gallon tanks
 (iv) Three (3) 1,500-gallon tanks.
 (v) One (1) 500-gallon tank.

(5) Line 61 aerosol can filling line, constructed in 1993, which consists of:
 (A) Four (4) closed top mixing tanks.
 (B) Two (2) closed liquid product fillers.
 (C) One (1) UTC propellant filler.
 (D) One (1) pressure propellant filler.

This line is only used in the VOC-containing propellant handling and VOC-containing liquid handling operations.

(6) Line 62 liquid can filling lines, constructed in 1993, which consists of:
 (A) Two (2) closed top mixing tanks.
 (B) One (1) closed bowl liquid product filler.

This line is only used in the VOC-containing liquid handling operations.

(7) Line 63 aerosol can filling line, constructed in 1997, which consists of:
 (A) Open and closed mixing tanks.
 (B) Product and propellant fillers

The table below describes the product type and maximum capacity of each Line used in the VOC-containing propellant handling, VOC-containing liquid handling and scrap can processing operations:

<table>
<thead>
<tr>
<th>Line</th>
<th>Construction Year</th>
<th>Product Filling Type</th>
<th>Maximum Throughput Capacity (cans/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>2</td>
<td>1976</td>
<td>aerosol</td>
<td>8,400</td>
</tr>
<tr>
<td>3</td>
<td>1989</td>
<td>aerosol</td>
<td>6,300</td>
</tr>
<tr>
<td>4</td>
<td>1989</td>
<td>aerosol</td>
<td>15,120</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>6</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>7</td>
<td>2008</td>
<td>aerosol</td>
<td>8,562</td>
</tr>
<tr>
<td>61</td>
<td>1993</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
<tr>
<td>62</td>
<td>1993</td>
<td>liquid</td>
<td>7,500</td>
</tr>
<tr>
<td>63</td>
<td>1997</td>
<td>aerosol</td>
<td>7,500</td>
</tr>
</tbody>
</table>

Total | Aerosol | 78,905 |
Total | Liquid | 7,500 |
(d) Accra-Pac, Inc. Main and North Plant facilities miscellaneous equipment, constructed in 1994 and 1995 and 2008, including:

<table>
<thead>
<tr>
<th>Miscellaneous Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thirty-six (36) bulk VOC and non-VOC liquid storage tanks.</td>
</tr>
<tr>
<td>Twenty (20) bulk VOC and non-VOC propellant storage tanks.</td>
</tr>
<tr>
<td>Seven (7) pre-mix tanks.</td>
</tr>
<tr>
<td>Seven (7) run/storage tanks.</td>
</tr>
<tr>
<td>Two (2) surge tanks for compounding areas.</td>
</tr>
<tr>
<td>Four (4) spray-out booths.</td>
</tr>
<tr>
<td>Nine (9) single-head recharge gassers.</td>
</tr>
<tr>
<td>Secondary packaging operations.</td>
</tr>
<tr>
<td>Labelers using hot melt adhesives.</td>
</tr>
<tr>
<td>Can and carton coders</td>
</tr>
</tbody>
</table>

(e) Eleven (11) Volatile Organic Liquid (VOL) Storage Tanks:

1. Five (5) VOL storage tanks, constructed after July 23, 1984, identified as A1, A6, A7, A12 and A13, each with a storage capacity of 15,000 gallons.

2. One (1) VOL storage tank, constructed after July 23, 1984, identified as P21, with a storage capacity of 12,000 gallons.

3. Two (2) VOL storage tanks, constructed after July 23, 1984, identified as P18 and P20, each with a storage capacity of 18,000 gallons.

4. Two (2) VOL storage tanks, constructed after May 19, 1978 and before July 23, 1984, identified as P16 and P17, each with a storage capacity of 30,000 gallons.

5. One (1) VOL storage tank, constructed after July 23, 1984, identified as P19, with a storage capacity of 30,000 gallons.

(f) One (1) natural gas-fired boiler, identified as B-1, permitted in 2008, and with a maximum heat input capacity of 16.70 MMBtu/hr, exhausting to stack B-1.

Boiler B-1 is an affected source under the Standards of Performance for Small Industrial - Commercial Institutional Steam Generating Units [326 IAC 12 and 40 CFR Part 60, Subpart Dc].

(g) One (1) natural gas-fired boiler, identified as T-1, constructed in 2013, with a maximum heat input capacity of 10.5 MMBtu/hr, exhausting to stack T-1.

Boiler T-1 is an affected facility under the Standards of Performance for Small Industrial - Commercial Institutional Steam Generating Units [40 CFR Part 60, Subpart Dc].

Insignificant Activities

The source consists of the following specifically regulated insignificant activities:

(a) Three (3) Natural gas-fired boilers:

1. One (1) natural gas-fired boiler, identified as M-2, installed on 1976, and with a maximum heat input capacity of 6.28 MMBtu/hr, exhausting to stack M-2.

2. One (1) natural gas-fired boiler, identified as N-1, and installed in 1993, with a maximum heat input capacity of 8.37 MMBtu/hr, exhausting to stack N-1.
(3) One (1) natural gas-fired boiler, identified as N-2, installed on 1997, and with maximum heat input capacity of 7.00 MMBtu/hr, exhausting to stack N-2.

(b) Degreasing operations, existing after January 1, 1980, with maximum usage of 145 gallons per year.

(c) One (1) portable powder filling operation, identified as PPF1, which is used on any one of the ten (10) lines on an as-needed basis, with a process weight rate up to sixty thousand (60,000) pounds per hour.

(d) One (1) diesel-fired emergency fire pump, constructed prior to June 12, 2006, with a maximum capacity of 170 horsepower, uncontrolled, and exhausting to the outdoors.

This fire pump is considered an existing stationary reciprocating internal combustion engine at an area source of hazardous air pollutants under NESHAP for Stationary Reciprocating Internal Combustion Engines (40 CFR 63, Subpart ZZZZ).

The source consists of the following insignificant activities:

(a) Single-head recharge gassers used to add propellant to lightweight cans.

(b) Storage equipment and activities including pressurized storage tanks and associated piping for liquid petroleum gas (LPG); liquid natural gas (LNG) (propane).

(c) Twenty-two (22) pressurized tanks.

(d) Ink jet printers for small product code and box code printing.

(e) Combustion source flame safety purging on startup.

(f) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(g) Vessels storing lubricating oils, hydraulic oils, machining oils, and machining fluids.

(h) Packaging lubricants and greases.

(i) Filling drums, pails or other packaging containers with lubricating oils, waxes and greases.

(j) Cleaners and solvents characterized as follows.

(1) Having a vapor pressure equal to or less than 2 kPa; 15 mm Hg; or 0.3 psi measured at 38 degrees C (100°F) or;

(2) Having a vapor pressure equal to or less than 0.7 kPa; 5 mm Hg; or 0.1 psi measured at 20°C (68°F); the use of which for all cleaners and solvents combined does not exceed 145 gallons per 12 months.

(k) The following equipment related to manufacturing activities not resulting in the emissions of HAPs: brazing equipment, cutting torches, soldering equipment, and welding equipment.

(l) Closed loop heating and cooling systems.

(m) Solvent recycling systems with batch capacity less than or equal to 100 gallons.

(n) Activities associated with the treatment of wastewater streams with an oil and grease content less than or equal to 1% by volume.
(o) Any operation using aqueous solutions containing less than 1% by weight of VOCs excluding HAPs.

(p) Water based adhesives that are less than or equal to 5% by volume of VOCs excluding HAPs.

(q) Replacement or repair of electrostatic precipitators, bags in baghouses and filters in other air filtration equipment.

(r) Heat exchanger cleaning and repair.

(s) Process vessels degassing and cleaning to prepare for internal repairs.

(t) Stockpiled soils from soil remediation activities that are covered and waiting transport for disposal.

(u) Paved and unpaved roads and parking lots with public access.

(v) Purging of gas lines and vessels that is related to routine maintenance and repair of buildings, structures, or vehicles at the sources where air emissions from those activities would not be associated with any production process.

(w) Equipment used to collect any material that might be released during a malfunction, process upset, or spill cleanup, including catch tanks, temporary liquid separators, tanks and fluid handling equipment.

(x) Blowdown for any of the following: sight glass; boiler; compressors; pumps and cooling tower.

(y) Purge double block and bleed valves.

(z) Filter or coalesce media changeout.

(aa) A laboratory as defined in 326 IAC 2-7-1(21)(D).

(bb) Portable hot melt labelers and hot melt glue systems, which can be used on any one of the fourteen (14) lines on an as-needed basis.

(cc) Portable shrink wrap and bundler machines which can be used on any one of the fourteen (14) lines on an as-needed basis.

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

County Attainment Status

The source is located in Elkhart County.

326 IAC 1-4-21 Elkhart County

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective August 3, 2018, for the 2015 8-hour ozone standard.</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Designation</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM$_{2.5}$ standard.</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Unclassifiable or attainment effective December 13, 2009, for the 2006 24-hour PM$_{2.5}$ standard.</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Unclassifiable or attainment effective January 29, 2012, for the 2010 NO$_2$ standard.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.</td>
</tr>
</tbody>
</table>

(a) **Ozone Standards**

Volatile organic compounds (VOC) and Nitrogen Oxides (NO$_x$) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NO$_x$ emissions are considered when evaluating the rule applicability relating to ozone. Elkhart County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NO$_x$ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) **PM$_{2.5}$**

Elkhart County has been classified as attainment for PM$_{2.5}$. Therefore, direct PM$_{2.5}$, SO$_2$, and NO$_x$ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) **Other Criteria Pollutants**

Elkhart County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of Utility Air Regulatory Group v. EPA, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.
Unrestricted Potential Emissions

This table reflects the unrestricted potential emissions of the source.

<table>
<thead>
<tr>
<th>Unrestricted Potential Emissions (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM¹</td>
</tr>
<tr>
<td>Total PTE of Entire Source Excluding Fugitive Emissions*</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
</tr>
</tbody>
</table>

¹Under the Part 70 Permit program (40 CFR 70), PM₁₀ and PM₂.₅, not particulate matter (PM), are each considered as a "regulated air pollutant."
²PM₂.₅ listed is direct PM₂.₅.
³Single highest source-wide HAP
*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

(a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of VOC is equal to or greater than one hundred (100) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.

(b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and/or the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. The source will be issued a Part 70 Operating Permit Renewal.

Part 70 Permit Conditions

This source is subject to the requirements of 326 IAC 2-7, because the source met the following:

(a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.

(b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.
Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE of Entire Source Excluding Fugitive Emissions*</td>
<td>0.49</td>
<td>1.69</td>
<td>1.69</td>
<td>0.21</td>
<td>22.29</td>
<td>501.68</td>
<td>17.90</td>
<td>9.50</td>
<td>24.15</td>
</tr>
<tr>
<td>Total PTE of Entire Source</td>
<td>0.49</td>
<td>1.69</td>
<td>1.69</td>
<td>0.21</td>
<td>22.29</td>
<td>501.68</td>
<td>17.90</td>
<td>9.50</td>
<td>24.15</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Under the Part 70 Permit program (40 CFR 70), PM10 and PM2.5, not particulate matter (PM), are each considered as a "regulated air pollutant."

2PM2.5 listed is direct PM2.5.

3Single highest source-wide HAP.

*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

(a) This existing source is a major stationary source, under PSD (326 IAC 2-2), because a PSD regulated pollutant is emitted at a rate of 250 tons per year or more, and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) This source is not a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) Boilers B-1 and T-1

The two (2) natural gas-fired boilers, identified as B-1 and T-1, are subject to the New Source Performance Standards for Small Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12, because each boiler was constructed after June 9, 1989 and has a maximum heat input capacity greater than 10 MMBtu/hr.

Applicable portions of the NSPS are the following:

1. 40 CFR 60.40c
2. 40 CFR 60.41c
3. 40 CFR 60.48c

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the boilers, identified as B-1 and T-1 except as otherwise specified in 40 CFR 60, Subpart Dc.

These are existing applicable requirements and no change has been made in this renewal.

(b) Boiler M-2
The requirements of the New Source Performance Standard for Industrial-Commercial-
Institutional Steam Generating Units 40 CFR 60, Subpart Db and 326 IAC 12, are not included in
the permit for the natural gas fired boiler identified as M-2, because this boiler was constructed
before June 19, 1984 and has a maximum heat input of capacity less than 100 MMBtu/hr.

(c) Boilers N-1 and N-2
The requirements of the New Source Performance Standard for Small Industrial-Commercial-
Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12, are not included in
this permit for the natural gas-fired boilers, identified a N-1 and N-2 because none of the boilers
have a maximum heat input capacity greater than or equal to 2.9 megawatts (10 mmBtu/hr).

(d) Storage tanks P16 and P17
The requirements of the New Source Performance Standard for Storage Vessels for Petroleum
Liquids for Which Construction, Reconstruction, or Modification Commenced After May 18, 1978,
and Prior to July 23, 1984), 40 CFR 60, Subpart Ka and 326 IAC 12, are not included in this
permit for the storage tanks, P16 and P17, which were constructed after May 19, 1978 and before
July 23, 1984 because these storage vessels have capacities less than 151,412 liters (40,000
gallons)

(e) Storage tanks P18, P19, P20, P21 and P22,
Pursuant to 40 CFR 60.110b(d)(2), P18, P19, P20, P21 and P22, are not subject to NSPS,
Subpart Kb because although they were constructed after July 23, 1984 and have capacities
greater than 75 m³, they are pressurized tanks that operate in excess to 204.9 kPa (kiloPascals).

(f) Storage tanks A1, A6, A7, A12 and A13
The requirements of the New Source Performance Standard for Volatile Organic Liquid Storage
Vessels (including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction or
Modification Commenced after July 23, 1984), 40 CFR 60, Subpart Kb and 326 IAC 12, are not
included in this permit for storage tanks A1, A6, A7, A12 and A13, because each tank has a
capacity less than 75 cubic meters (19,810 gallons).

(g) Diesel-fired emergency fire pump
The requirements of the New Source Performance Standard for Stationary Compression Ignition
Internal Combustion Engines, 40 CFR 60, Subpart III and 326 IAC 12, are not included in this
permit for the diesel-fired emergency fire pump because it was not constructed after July 11,
2005 or manufactured after April 1, 2006.

(h) There are no other New Source Performance Standards (40 CFR Part 60) and 326 IAC 12
included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(a) The diesel-fired emergency fire pump is subject the requirements of the 40 CFR 63, Subpart
ZZZZ, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary
Reciprocating Internal Combustion Engines (326 IAC 20-82), because it is considered an existing
stationary reciprocating internal combustion engine (RICE) (construction commenced before June
12, 2006) at an area source of hazardous air pollutants (HAP). Construction of the diesel-fired
emergency fire pump commenced prior to June 12, 2006.

The diesel-fired emergency fire pump is subject the following applicable portions of the NESHAP
for existing emergency stationary RICE (construction commenced before June 12, 2006) at an
area source of HAP:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(iii) and (iv)
(4) 40 CFR 63.6595(a)(1), (b), and (c)
(5) 40 CFR 63.6603(a)
Existing emergency compression ignition (CI) stationary RICE located at an area source of HAP are not subject to numerical CO or formaldehyde emission limitations but are only subject to work and management practices under Table 2d and Table 6.

The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to the source except as otherwise specified in 40 CFR 63, Subpart ZZZZ.

These are existing applicable requirements and no change has been made in this renewal.

(b) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Industrial, Commercial, and Institutional Boilers Area Sources, 40 CFR 63, Subpart JJJJJJ and 326 IAC 20 are not included in the permit for the natural gas-fired boilers, which are located at an area source of HAPs because each boiler is exempt from this NESHAP pursuant to 40 CFR 63.11195(e).

(c) Pursuant to 40 CFR 63.7881(a), 40 CFR 63, Subpart GGGGG (National Emission Standards for Hazardous Air Pollutants: Site Remediation) applies to site remediation that is co-located at a facility with another stationary source that emits hazardous air pollutants (HAP) and meets an affected source definition for a source category regulated by another subpart under 40 CFR 63. The source has not conducted any remediation operation since that time. If remediation operations commence, the source shall submit an application for a Significant Permit Modification (SPM) to IDEM within ninety (90) days after commencement occurs and will be subject to the requirements of 40 CFR 63, Subpart GGGGG.

(d) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:

1. has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved.

2. is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and

3. uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

(b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt
from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.

The emission units at the source do not have any active control devices; therefore, the requirements of 40 CFR Part 64, CAM, is not applicable to any of the emission units at this source.

This is the same determination made in the previous renewal and no changes have been made in this renewal.

State Rule Applicability - Entire Source

State rule applicability for this source has been reviewed as follows:

326 IAC 1-6-3 (Preventive Maintenance Plan)
The source is subject to 326 IAC 1-6-3.

326 IAC 1-5-2 (Emergency Reduction Plans)
The source is subject to 326 IAC 1-5-2.

326 IAC 2-6.1 (Minor Source Operating Permits (MSOP))
MSOP applicability is discussed under the Potential to Emit After Issuance section of this document.

326 IAC 2-2 (PSD) and 326 IAC 2-3 (Emission Offset)
PSD and Emission Offset applicability is discussed under the Potential to Emit After Issuance section of this document.

(I) 2001 PSD Permit and Part 70 Operating Permit
Pursuant to Part 70 Operating Permit No. T039-6875-00434, issued on February 9, 2001 and 326 IAC 2-2-3(a)(2), the source shall apply the best available control technology (BACT) for each pollutant subject to the regulation under the provisions of the Clean Air Act for which said source has the potential to emit in significant amounts as defined in 326 IAC 2-2-1.

A BACT determination was made for VOC emissions from Lines 1-4, 50-58, and 61-63.

Lines 50-58 were removed from the source in 2015.

Pursuant to 326 IAC 2-2-3(a)(2), Lines 1-4 and 61-63 shall use BACT to control volatile organic compound (VOC) emissions as follows:

(a) The pounds of VOC compounded and filled, including the propellant filled into containers per month; the number of cans filled with VOC per month; the number of can crushed that were filled with VOC shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 440 tons per twelve month period, with compliance determined at the end of each month.

The following equation will be used to calculate the VOC emissions:

\[
\text{VOC Emission} = \left(\frac{\text{lbs VOC compounded & filled/month}}{\text{months}}\right) \times (\text{Ef, 0.03 lbs VOC/gal VOC})
+ \left(\frac{\text{# cans filled with VOC propellant/month}}{\text{months}}\right) \times (\text{Ef, 0.0013 lbs VOC/can})
+ \left(\frac{\text{# VOC-containing cans crushed using manual can processing operation/month}}{\text{months}}\right) \times (\text{Ef, 0.0111 lbs VOC/can})
\]

(b) Pressure filling or through-the-valve filling method shall be utilized at all times when the product being filled allows for this method.

(c) When pressure filling cannot be utilized, Under the Cup fill method with vapor reclaim shall be utilized, or an equivalent means of reduction.
(d) Continue enclosure of open bowl liquid filling reservoirs, wherever possible.

(e) Utilize raw materials having the lowest feasible VOC content and vapor pressure, whenever possible.

(f) Continue movement toward consumer products that contain lower levels of VOCs and lower VOC composite partial vapor pressures.

This is an existing requirement and is not being modified in this permit renewal. The initial BACT determination made in Part 70 Operating Permit No. T039-6875-00434, issued on February 9, 2001, did not specify which Lines were included in these BACT requirements. However, the BACT evaluation in the TSD for this permit included references to Lines 1-4, and Lines 61-63. Lines 1 and 2 were both constructed prior to August 7, 1977, but appear to be included in this BACT evaluation. In the permit renewal 039-35745-00434, IDEM has clarified which lines are subject to this limit.

These are existing applicable requirements and no changes have been made in this renewal.

(II) Prior to 2008 Modification

On January 25, 2008, this source submitted a modification application to add four (4) aerosol can filling lines and associated equipment. In order to render this a PSD minor modification, the source demonstrated that the actual VOC emissions from the source were less than 250 tons per year from 1995 through 2006. As a result, the source agreed to limit the VOC emissions from the existing units to less than 250 tons per year in order to render 326 IAC 2-2 (PSD) not applicable to the source. Since BACT is "once in always in," the PSD BACT limits identified above cannot be removed from the permit.

Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008 and in order to render 326 IAC 2-2 (PSD) not applicable, the manual scrap can processing operation and Lines 1-4 and Lines 61-63 shall be limited as follows:

The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 248.10 tons per consecutive twelve-month period, with compliance determined at the end of each month.

The following equation will be used to calculate the VOC emissions:

\[\text{VOC Emissions} = [(\text{gallons VOC compounded & filled/month}) \times (\text{Ef}, 0.03 \text{ lbs VOC/gal VOC}) + (\# \text{ cans filled with VOC propellant/month}) \times (\text{Ef}, 0.0013 \text{ lbs VOC/can}) + (\# \text{ cans with VOC crushed using manual can processing operation/month}) \times (\text{Ef}, 0.0111 \text{ lbs VOC/can})] \]

Compliance with this emission limit for the manual scrap can processing operation and Lines 1-4 and 61-63, combined with the potential to emit VOC emissions from all other equipment constructed prior to 2008 will limit the potential to emit from these emission units to less than two hundred fifty (250) tons of VOC per year and, therefore, will render the requirements of 326 IAC 2-2 not applicable to the existing source constructed prior to 2008.

This is an existing requirement and the VOC emission limit is not being modified in this permit renewal.

Under this permitting action for all units prior to 2008, the source was considered a PSD minor source.

(III) 2008 Modification
Since the unrestricted potential to emit of the 2008 modification is greater than two hundred fifty (250) tons of VOC per year, this source elected to limit the potential to emit of Lines 5-7 to less than two hundred fifty (250) tons of VOC per year.

Pursuant to Significant Source Modification No. 039-25992-00434, issued on June 17, 2008 and in order to render 326 IAC 2-2 (PSD) not applicable, Lines 5-7 shall be limited as follows:

The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 245.42 tons per consecutive twelve-month period, with compliance determined at the end of each month.

The following equation will be used to calculate the VOC emissions:

\[
\text{VOC Emissions} = \left[\left(\text{gallons VOC compounded & filled/month} \times (E\text{f, 0.03 lbs VOC/gal VOC}) + \right) \left(\# \text{ cans filled with VOC propellant/month} \times (E\text{f, 0.0013 lbs VOC/can}) + \right) \left(\# \text{ cans with VOC crushed using manual can processing operation/month} \times (E\text{f, 0.0111 lbs VOC/can})\right)\right]
\]

Compliance with this emission limit for Lines 5-7 combined with the potential to emit VOC emissions from all other equipment associated with this 2008 modification will limit the potential to emit from this modification to less than two hundred fifty (250) tons of VOC per year and, therefore, will render the requirements of 326 IAC 2-2 (PSD) not applicable to the 2008 modification.

This is an existing requirement and is not being modified in this permit renewal.

This 2008 modification was considered as a PSD minor modification to an existing PSD minor source.

After this permitting action, the source was considered a PSD major source.

These are existing applicable requirements and no change has been made in this renewal.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))

The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of Lines 1-7 and 61-63 and supporting operations will emit equal to or greater than ten (10) tons per year for a single HAP AND equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 would apply to this source. However, pursuant to 326 IAC 2-4.1-1(b)(2), the operations of Lines 1-7 and 61-63 and supporting operations have limited HAP emissions to less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply.

In order to render the requirements of 326 IAC 2-4.1 not applicable, Lines 1-7 and 61-63 shall be limited such that:

(a) Any single HAP emitted shall not exceed nine and five-tenths (9.5) tons per twelve (12) consecutive month period with compliance demonstrated at the end of each month. This usage limit is required to limit the potential to emit of each HAP to less than ten (10) tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
(b) Any combination of HAPs emitted shall not exceed twenty-three and seventy-five hundredths (23.75) tons per twelve (12) consecutive month period with compliance demonstrated at the end of each month. This usage limit is required to limit the potential to emit of total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with these emission limits for Lines 1-7 and Lines 61-63 combined with the potential to emit HAP emissions from all other equipment associated with this source will limit the potential to emit from this source to less than ten (10) tons per year of any single HAP and less than twenty-five (25) tons per year of any combination of HAPs and render the requirements of 326 IAC 2-4.1 not applicable to the entire source.

These are existing requirements and are not being modified in this permit renewal

326 IAC 2-6 (Emission Reporting)
This source is subject to the requirements of 326 IAC 2-6 (Emission Reporting), since it has the potential to emit has the potential to emit PM10/VOC equal to or greater than two hundred fifty (250) tons per year. Pursuant to 326 IAC 2-6-3(a)(1), the Permittee shall submit annually, by July 1, an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

326 IAC 2-7-6(5) (Annual Compliance Certification)
The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)
This source is subject to the opacity limitations specified in 326 IAC 5-1-2(2)

326 IAC 6-4 (Fugitive Dust Emissions Limitations)
The source is subject to the requirements of 326 IAC 6-4, because they have the potential to emit fugitive particulate emissions. Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
This source is not subject to the requirements of 326 IAC 6-5, because the source has potential fugitive particulate emissions of less than twenty-five (25) tons per year.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a), this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.5 because it is not located in one of the following counties: Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo or Wayne.

State Rule Applicability – Individual Facilities

State rule applicability has been reviewed as follows:

326 IAC 6-2-3 (Particulate Emissions Limitations for Sources of Indirect Heating)
The boilers, identified as Boiler M-1 and Boiler M-2, are subject to this rule, because they were constructed before September 21, 1983. Pursuant to this rule, PM emissions shall be limited as indicated below by the following equation:
Accra-Pac, Inc. Elkhart, Indiana

Permit Reviewer: Chris Biehl

Page 16 of 23
TSD for Part 70 Renewal T039-42472-00434

<table>
<thead>
<tr>
<th>Boiler ID</th>
<th>Capacity (mmBtu/hr)</th>
<th>Date of Construction</th>
<th>Rule Applicability</th>
<th>Q (mmBtu/hr)*</th>
<th>PM Allowable Emissions (lbs/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-2</td>
<td>6.28</td>
<td>1976</td>
<td>326 IAC 6-2-3</td>
<td>14.65</td>
<td>0.60</td>
</tr>
</tbody>
</table>

*Source consisted of two (2) boilers constructed in 1976. M-1 had a capacity of 8.37 MMBtu/hr and was removed in 2013.

\[Pt = \frac{C \times a \times h}{76.5 \times Q^{0.75} \times N^{0.25}} \]

\[Pt = \frac{50 \times 0.67 \times 30.0}{76.5 \times 14.65^{0.75} \times 3^{0.25}} = 1.33 \text{ pounds per hour} \]

Where:
- \(C \) = Maximum ground level concentration with respect to distance from the point source at the critical wind speed for level terrain. This shall equal 50 µg.
- \(Pt \) = Pounds of particulate matter emitted per million Btu per heat input (lb/mmBtu)
- \(Q \) = Total source maximum operating capacity rating in mmBtu/hr heat input (14.65 mmBtu/hr)
- \(N \) = Number of stacks in fuel burning operation (3)
- \(a \) = Plume rise factor which is used to make allowance for less than theoretical plume rise. The value of 0.67 shall be used for \(Q \) less than 1,000 mmBtu/hr.

Pursuant to Section (e) of this rule, for \(Q \) of 250 mmBtu/hr or less, which began operation after June 8, 1972, the PM emission limit shall in no case exceed 0.6 lb/mmBtu heat input. Based on the calculations below, this boiler can comply with this limit.

When burning natural gas:
PM Emissions = 1.9 lb PM/MMSCF * MMSCF/1,020 MMBtu = 0.0019 lbs/MMBtu

326 IAC 6-2-4 (Particulate Emissions Limitations for Indirect Heating Facilities)
The boilers, identified as Boiler N-1, Boiler N-2, Boiler B-1, and Boiler T-1 are subject to this rule, because they were constructed after September 21, 1983. Pursuant to this rule, the particulate matter emissions from these boilers shall be limited as follows:

<table>
<thead>
<tr>
<th>Boiler ID</th>
<th>Capacity (mmBtu/hr)</th>
<th>Date of Construction</th>
<th>Rule Applicability</th>
<th>Q (mmBtu/hr)*</th>
<th>PM Allowable Emissions (lbs/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td>8.37</td>
<td>1993</td>
<td>326 IAC 6-2-4</td>
<td>23.02</td>
<td>0.48</td>
</tr>
<tr>
<td>N-2</td>
<td>7.00</td>
<td>1997</td>
<td>326 IAC 6-2-4</td>
<td>31.52</td>
<td>0.44</td>
</tr>
<tr>
<td>B-1</td>
<td>16.70</td>
<td>2008</td>
<td>326 IAC 6-2-4</td>
<td>51.41</td>
<td>0.39</td>
</tr>
<tr>
<td>T-1</td>
<td>10.50</td>
<td>2013</td>
<td>326 IAC 6-2-4</td>
<td>53.54**</td>
<td>0.387</td>
</tr>
</tbody>
</table>

*Unless otherwise noted, the Q value includes the following boilers that have been removed from the source: Boiler M-1 (8.37 MMBtu/hr), which was constructed in 1976 and removed in 2013, Boiler S-1 (1.50 MMBtu/hr), which was constructed in 1995 and removed in 2015, and Boiler S-2 (3.19 MMBtu/hr), which was constructed in 2001 and removed in 2015.

**Source consisted of two (2) boilers constructed in 1976. M-1 had a capacity of 8.37 MMBtu/hr and was removed in 2013 and replaced by T-1. Therefore, the total source maximum operating capacity (Q) reflects the removal of M-1.

The above values for these boilers were determined from the following equation:
\[Pt = \frac{1.09}{Q^{0.26}} \]

Where:
- \(Pt \) = pounds of particulate matter emitted per million Btu (lb/mmBtu) heat input.
- \(Q \) = total source maximum operating capacity

Based on the calculations below, each boiler identified above can comply with this limit.

When burning natural gas:
\[\text{PM Emissions} = 1.9 \text{ lb PM/MMSCF} \times \frac{\text{MMSCF}}{1,020 \text{ MMBtu}} = 0.0019 \text{ lbs/MMBtu} \]

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the portable powder filler, identified as PPF1, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the portable powder filler, identified as PPF1, shall not exceed 1.44 pounds per hour when operating at a process weight rate of 0.21 tons per hour. The pound per hour limitation was calculated with the following equation:

\[E = 4.10 \times P^{0.67} \]

where
- \(E \) = rate of emission in pounds per hour and
- \(P \) = process weight rate in tons per hour

(a) The manual scrap cans processing operations and aerosol filling lines are not subject to the requirements of 326 IAC 6-3-2 because these processes do not emit particulate matter (PM).

(b) The powder filling operation rated at 411 pounds per hour does not have any particulate matter emissions because the powder is immediately dissolved into a liquid. Therefore, the operation is not subject to 326 IAC 6-3-2.

(c) Pursuant to 326 IAC 6-3-1(b)(9), welding activities at this source are not subject to 326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes) because less than six hundred twenty-five (625) pounds of rod or wire is consumed per day.

(d) The provisions of 326 IAC 6-3-2(d) (Particulate Emission Limitations for Manufacturing Processes) do not apply to the spray out booth because particulate matter (PM) will not be emitted from this operation.

(e) The natural gas-fired combustion units and emergency diesel-fired generator are exempt from the requirements of 326 IAC 6-3, because, pursuant to 326 IAC 1-2-59, liquid and gaseous fuels and combustion air are not considered as part of the process weight.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

This manual scrap can processing operation was constructed after January 1, 1980, and its unlimited VOC potential emissions are equal to or greater than twenty-five (25) tons per year and is not regulated by other rules in 326 IAC 8. The source has opted to limit the potential to emit VOC from the manual scrap processing operation to less than twenty-five (25) tons per twelve (12) consecutive month period in order to render the requirements of 326 IAC 8-1-6 not applicable. Therefore, the manual scrap processing operation is not subject to the requirements of 326 IAC 8-1-6.

In order to render the requirements of 326 IAC 8-1-6 not applicable, Permittee shall comply with the following:
(1) The number of cans crushed in the manual scrap can processing operations shall be less than 4,500,000 per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) VOC emissions shall be calculated using an emission factor of 0.011 pounds of VOC per can crushed.

Compliance with these limits shall limit the potential to emit VOC from the manual scrap can processing operations to less than twenty-five (25) tons per 12 consecutive month period and shall render the requirements of 326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities) not applicable.

This is an existing limit and no change has been made in this renewal.

Lines 1 and 2
326 IAC 8-1-6 (General Reduction Requirements) applies to new facilities existing as of January 1, 1980, which have potential VOC emissions of twenty-five (25) tons per year.

Lines 1 and 2 each have potential VOC emissions greater than twenty-five (25) tons per year. However, Lines 1 and 2 were each constructed before January 1, 1980. Therefore, Lines 1 and 2 are not subject to the requirements of 326 IAC 8-1-6.

Lines 3, 4, and 61 through 63
326 IAC 8-1-6 (General Reduction Requirements) applies to new facilities existing as of January 1, 1980, which have potential VOC emissions of twenty-five (25) tons per year. Lines 3, 4, and 61-63 were constructed after January 1, 1980 and have potential VOC emissions greater than 25 tons per year each. Therefore, 326 IAC 8-1-6 applies to these facilities. The PSD (Prevention of Significant Deterioration) BACT satisfies the requirements of 326 IAC 8-1-6 BACT for Lines 3, 4, and 61-63.

Lines 5-7
Each of the three lines, Lines 5-7 have potential VOC emission in excess of 25 tons per year; therefore, a Best Available Control Technology (BACT) analysis under 326 IAC 8 1 6 was performed for the new equipment in Significant Source Modification No. 039-25992-00434, issued on June 17, 2008. The BACT established for these emission units was as follows:

(1) The gallons of VOC compounded and filled into containers per month and the number of cans filled with VOC propellant per month shall be limited such that the summation of the emissions shall not exceed a VOC emissions limit of 245.42 tons per consecutive twelve month period, with compliance determined at the end of each month.

The following equation will be used to calculate the VOC emissions:

\[
\text{VOC Emissions} = \left(\text{gallons VOC compounded & filled/month} \times (\text{Ef, 0.03 lbs VOC/gal VOC}) + (\text{# cans filled with VOC propellant/month}) \times (\text{Ef, 0.0013 lbs VOC/can}) + (\text{# cans with VOC crushed/month}) \times (\text{Ef, 0.0111 lbs VOC/can})\right)
\]

(2) Through the valve (TTV) pressure filling method shall be utilized at all times.

(3) Open bowl liquid filling reservoirs shall be enclosed wherever possible.

(4) Utilize raw materials having the lowest feasible VOC content and vapor pressure, whenever possible.

(5) Continue movement toward consumer products that contain lower levels of VOCs and lower VOC composite partial vapor pressures.

These are existing requirements and are not being modified in this permit renewal.
Spray out booths
Each spray out booth is not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from each spray out booth is less than twenty-five (25) tons per year.

Storage tanks
The storage tanks have potential VOC emissions of less than twenty-five (25) tons per year. Therefore 326 IAC 8-1-6 is not applicable to the storage tanks.

326 IAC 8-3-2 (Cold Cleaner Operations)
This cold cleaner degreasing facility is used to perform organic solvent degreasing operations, is located in Elkhart County, and was constructed after January 1, 1980, is located at a source that has potential emissions of 100 tons per year or greater of VOC and is not equipped with a remote solvent reservoir. Pursuant to 326 IAC 8-3-1(c)(2)(A), section 2 of this rule applies to the degreaser.

Pursuant to 326 IAC 8-3-2(a), the owner or operator of a cold cleaner degreaser shall ensure the following control equipment and operating requirements are met:

1. Equip the degreaser with a cover.
2. Equip the degreaser with a device for draining cleaned parts.
3. Close the degreaser cover whenever parts are not being handled in the degreaser.
4. Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases.
5. Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (3), (4), (6), and (7).
6. Store waste solvent only in closed containers.
7. Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

This rule was revised on January 30, 2013. Therefore, this renewal will include new requirements.

Pursuant to 326 IAC 8-3-2(b), the owner or operator of a cold cleaner degreaser subject to this subsection shall ensure the following additional control equipment and operating requirements are met:

1. Equip the degreaser with one (1) of the following control devices if the solvent is heated to a temperature of greater than forty-eight and nine-tenths (48.9) degrees Celsius (one hundred twenty (120) degrees Fahrenheit):
 (A) A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.
 (B) A water cover when solvent used is insoluble in, and heavier than, water.
 (C) A refrigerated chiller.
 (D) Carbon adsorption.
 (E) An alternative system of demonstrated equivalent or better control as those outlined in clauses (A) through (D) that is approved by the department. An alternative system shall be submitted to the U.S. EPA as a SIP revision.

2. Ensure the degreaser cover is designed so that it can be easily operated with one (1) hand if the solvent is agitated or heated.
3. If used, solvent spray:
must be a solid, fluid stream; and
(B) shall be applied at a pressure that does not cause excessive splashing.

These are existing requirements and are not being modified in this permit renewal.

326 IAC 8-3-5 (Cold cleaner degreaser operation and control)
The degreasing operation was previously subject to 326 IAC 8-3-5. However, on January 30, 2013, this rule was repealed. Therefore, the degreasing operation is no longer subject to this rule and the requirements of this rule will no longer be included in the permit.

326 IAC 8-3-8 (Material Requirements for cold cleaner degreasers)
326 IAC 8-3-8 applies to any person who sells, offers for sale, uses, or manufacturers solvent for use in cold cleaner degreasers before January 1, 2015, in Clark, Floyd, Lake or Porter Counties or on and after January 1, 2015, anywhere in the state. This source is located in Elkhart County and uses solvent in cold cleaner degreasers. Therefore, effective January 1, 2015, the degreasing operation is subject to the requirements of 326 IAC 8-3-8.

(a) Material requirements are as follows:

(1) No person shall operate a cold cleaner degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

(b) Record keeping requirements are as follows:

(1) All persons subject to the requirements of subsection (a)(1) shall maintain each of the following records for each purchase:

(A) The name and address of the solvent supplier.

(B) The date of purchase (or invoice/bill date of contract servicer indicating service date).

(C) The type of solvent purchased.

(D) The total volume of the solvent purchased.

(E) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

(c) All records required by subsection (b) shall be:

(1) retained on-site or accessible electronically from the site for the most recent three (3) year period; and

(2) reasonably accessible for an additional two (2) year period.

326 IAC 8-4-3 (Petroleum liquid storage facilities)
This rule applies to all petroleum liquid storage vessels with capacities greater than one hundred fifty thousand (150,000) liters (thirty-nine thousand (39,000) gallons) containing volatile organic compounds whose true vapor pressure is greater than 10.5 kPa (1.52 psi). This source does not have any storage tanks with capacities greater than 39,000 gallons. In addition, the storage tanks do not store petroleum-based liquids. Therefore, the requirements of 326 IAC 8-4-3 do not apply to the storage tanks at this source.

326 IAC 8-6 (Organic Solvent Emission Limitations)
This rule applies to sources whose operations commenced after October 7, 1974 and prior to January 1, 1980 with potential emissions of 100 tons or greater per year. This source is not subject to 326 IAC 8-6 because this source’s operations commenced after January 1, 1980.

326 IAC 8-9 (Volatile Organic Liquid Storage Vessels)
This rule applies on and after October 1, 1995 to stationary vessels used to store volatile organic liquid (VOL) that are located in Clark, Floyd, Lake, or Porter Counties. This source is located in Elkhart County; therefore, the requirements of 326 IAC 8-9 are not applicable to the VOL storage vessels at this source.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source’s failure to take the appropriate corrective actions within a specific time period.

There are no compliance monitoring requirements included in this permit because the source demonstrates compliance with VOC emissions limitations through record keeping and reporting.

The VOC emission factors were developed in combination with stack testing results from CCL Custom Manufacturing Barr/Niles Company located in Illinois. These stack test results provided much of the baseline data for Illinois EPA’s aerosol can filling RACT standards that were approved by the USEPA as a revision to the Illinois SIP. CCL Custom Manufacturing Barr/Niles Company utilized the same type of propellant filling equipment and used the under the cup (UTC) and through-the-valve (or pressure fill) aerosol filling technologies.

Using these test results and source specific information, the source developed a predictive model to determine the potential VOC emissions based on standard engineering calculations and the physical and chemical properties of the worst-case materials as they are processed through all of the storage, handling, and filling operational steps. A worst-case VOC emissions factor was developed that is based on this model. In order to represent the worst-case VOC emissions this factor is applied to all VOC-containing materials, regardless of their actual VOC content or vapor pressure. Therefore, there are no testing requirements included in this permit. This determination was originally made in PSD Permit and Part 70 Operating Permit No. 039-6875-00434, issued on February 9, 2001.

There is no change in these information and assumptions made in this renewal.

Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.

The following changes were made to conditions contained previously issued permits/approvals (these changes may include Title I changes):
(1) The company name has been revised throughout the permit as follows:

Company Name: Accra-Pac, Inc.
APG, Inc/KIK Custom Products - Indiana Plant

(2) Descriptions in Section A.3 have been updated to alter the listing of compounding tanks for Lines 5-7 listed in permit item A.3(c)(4)(B) to reflect the current tanks onsite. Emission calculations are not altered by this change.

A.3 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

... (c) VOC-containing Liquid Handling Operations including bulk and smaller container unloading, storage, transfer, mixing, and filling into liquid and aerosol product containers.

The source has one (1) liquid product filling line in addition to the nine (9) aerosol product filling lines and all ten (10) lines involve VOC-containing liquid handling, with no control.

The following lines are used in the VOC containing propellant handling, VOC containing liquid handling and scrap can processing operations described above:

(4) Lines 5-7 aerosol can filling lines, permitted in 2008, uncontrolled, which consist of:

... (B) Seventeen (17) compounding tanks including:
(i) Twelve (12) 6,000-gallon batch/run tanks.
(ii) Five (5) pre-mix tanks consisting of:
 (a) One (1) 2,000-gallon tank.
 (b) Two (2) 1,500-gallon tanks.
 (c) One (1) 1,000-gallon tank.
 (d) One (1) 500-gallon tank.

(B) Thirteen (13) compounding tanks including:
(i) One (1) 5,100-gallon tank.
(ii) Four (4) 5,000-gallon tanks.
(iii) Four (4) 3,000-gallon tanks
(iv) Three (3) 1,500-gallon tanks.
(v) One (1) 500-gallon tank.

...
(B) Seventeen (17) compounding tanks including:
 (i) Twelve (12) 6,000-gallon batch/run tanks.
 (ii) Five (5) pre-mix tanks consisting of:
 (a) One (1) 2,000-gallon tank.
 (b) Two (2) 1,500-gallon tanks.
 (c) One (1) 1,000-gallon tank.
 (d) One (1) 500-gallon tank.

(B) Thirteen (13) compounding tanks including the following:
 (i) One (1) 5,100-gallon tank.
 (ii) Four (4) 5,000-gallon tanks.
 (iii) Four (4) 3,000-gallon tanks.
 (iv) Three (3) 1,500-gallon tanks.
 (v) One (1) 500-gallon tank.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

(3) Descriptive changes in condition D.1.7 have been updated as following:

D.1.7 Hazardous Air Pollutants (HAPs)

Compliance with the HAP emission limitation contained in Conditions D.1.5(a) and D.1.5(b) shall be determined using the following equation:

\[\text{HAP Emissions} = (E_f, 0.03 \text{ pounds per gallon of HAP containing VOC}) \times \frac{\text{weight} \% \text{ HAP}}{\text{weight} \% \text{ VOC}} \]

\[\text{HAP Emissions} (\text{tons/month}) = (0.03 \text{ pounds of HAP per gallon of VOC}) \times \frac{\text{weight} \% \text{ HAP}}{\text{weight} \% \text{ VOC}} \times (\text{gallons of HAP compounded and filled/month}) \times 1 \text{ ton/2000 lbs} \]

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on January 24, 2020.

The operation of this stationary liquid and aerosol can filing operation shall be subject to the conditions of the attached proposed Part 70 Operating Permit Renewal No. T039-42472-00434.

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Chris Biehl, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-8397 or (800) 451-6027, and ask for Chris Biehl or (317) 233-8397.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
Appendix A: Emissions Calculations
Summary of Emissions

Company Name: Accra-Pac, Inc.
Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T039-42472-00434
Permit Reviewer Chris Biehl

Unlimited/Uncontrolled Potential to Emit (tons/year)

<table>
<thead>
<tr>
<th>Emission units/operations</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>Manual Scrap Can Processing (Crushing)</td>
<td>0</td>
</tr>
<tr>
<td>Line (1-4, 61-63) & Miscellaneous Equipment constructed prior to 2008**</td>
<td>0</td>
</tr>
<tr>
<td>Aerosol Filling Line 5**</td>
<td>0</td>
</tr>
<tr>
<td>Aerosol Filling Line 6**</td>
<td>0</td>
</tr>
<tr>
<td>Storage Tanks***</td>
<td>0</td>
</tr>
<tr>
<td>Spray-out Booth (2008 modification)***</td>
<td>0</td>
</tr>
<tr>
<td>Boiler B-1</td>
<td>0.14</td>
</tr>
<tr>
<td>Boiler T-1</td>
<td>0.09</td>
</tr>
<tr>
<td>Boiler N-1</td>
<td>0.07</td>
</tr>
<tr>
<td>Boiler M-2</td>
<td>0.05</td>
</tr>
<tr>
<td>Boiler N-2</td>
<td>0.06</td>
</tr>
<tr>
<td>Totals Unlimited Emissions</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Limited/Controlled Emissions

<table>
<thead>
<tr>
<th>Emission units/operations</th>
<th>Limited Potential to Emit (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>Manual Scrap Can Processing (Crushing)</td>
<td>0</td>
</tr>
<tr>
<td>Line (1-4, 61-63) & Miscellaneous Equipment constructed prior to 2008**</td>
<td>0</td>
</tr>
<tr>
<td>Aerosol Filling Line 5**</td>
<td>0</td>
</tr>
<tr>
<td>Aerosol Filling Line 6**</td>
<td>0</td>
</tr>
<tr>
<td>Storage Tanks***</td>
<td>0</td>
</tr>
<tr>
<td>Spray-out Booth (2008 modification)***</td>
<td>0</td>
</tr>
<tr>
<td>Boiler B-1</td>
<td>0.14</td>
</tr>
<tr>
<td>Boiler T-1</td>
<td>0.09</td>
</tr>
<tr>
<td>Boiler N-1</td>
<td>0.07</td>
</tr>
<tr>
<td>Boiler M-2</td>
<td>0.05</td>
</tr>
<tr>
<td>Boiler N-2</td>
<td>0.06</td>
</tr>
<tr>
<td>Totals Limited/Controlled Emissions</td>
<td>0.49</td>
</tr>
</tbody>
</table>

**Miscellaneous equipment includes the following: 36 bulk VOC and non-VOC liquid storage tanks, 15 bulk VOC and non-VOC propellant storage tanks, 7 pre-mix tanks, 7 run/storage tanks, 2 surge tanks for compounding areas, 3 spray-out booths, 5 single-head recharge gassers, secondary packaging operations, labelers using hot melt adhesives, can and carton coders, 28 VOC and non-VOC liquid pre-mix, run, and storage tanks, 2 VOC propellant storage tanks, and 12 volatile organic liquid storage tanks.

***Provided by source in Significant Source Modification No. 039-25992-00434, issued on June 17, 2008.
Appendix A: Emissions Calculations

Manual Can Crushing

Company Name: Accra-Pac, Inc.
Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T039-42472-00434
Permit Reviewer Chris Biehl

PTE

<table>
<thead>
<tr>
<th>Maximum Capacity Total:</th>
<th>Crushed Cans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24,763,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Unit/Operation</th>
<th>Cans Crushed (cans/yr)</th>
<th>VOC Emission Factor (lb/can)</th>
<th>PTE VOC (Tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Can Crushing Operations</td>
<td>24,763,600</td>
<td>0.011</td>
<td>136</td>
</tr>
<tr>
<td>Limited Can Crushed</td>
<td>4,500,000</td>
<td>0.011</td>
<td>25</td>
</tr>
</tbody>
</table>

Can Crushing Emissions:
VOC Emissions (Tons/yr) = 24,763,600 can/yr X 0.011 lbs VOC/can X 1 ton/2000 lb
= 136 tons per year

These Emission Factors are from permit renewal No. 039-29970-00434 issued on March 7, 2011.
Potential Emissions from Existing Lines 1-4 and 61-83

<table>
<thead>
<tr>
<th>Year</th>
<th>Aerosol</th>
<th>Liquid</th>
<th>Total</th>
<th>Propellant</th>
<th>VOC PTE</th>
<th>Crushing</th>
<th>VOC PTE</th>
<th>VOC PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>8,562</td>
<td>75,000,000</td>
<td>97,500</td>
<td>210,938</td>
<td>308,438</td>
<td>154.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>8,400</td>
<td>73,584,000</td>
<td>95,659</td>
<td>206,955</td>
<td>302,614</td>
<td>151.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>7,500</td>
<td>65,700,000</td>
<td>85,410</td>
<td>184,781</td>
<td>270,191</td>
<td>135.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology
Therefore, the number of cans crushed by the manual device = 24,763,600 - 4,380,000 = 20,383,600

Emission Emissions from Existing Lines 1-4 and 61-83

<table>
<thead>
<tr>
<th>Line</th>
<th>Throughput (cans/year)</th>
<th>VOC Content</th>
<th>Size of Can (oz)</th>
<th>VOC Emissions (lb VOC/yr)</th>
<th>VOC PTE (lb/year)</th>
<th>Crushing Emissions (lb/year)</th>
<th>VOC PTE (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>244,615,000</td>
<td>80%</td>
<td>8 oz</td>
<td>200,645</td>
<td>240,645</td>
<td>179.90</td>
<td>250,645</td>
</tr>
<tr>
<td>5-8</td>
<td>204,615,000</td>
<td>60%</td>
<td>8 oz</td>
<td>140,430</td>
<td>140,430</td>
<td>115.29</td>
<td>140,430</td>
</tr>
<tr>
<td>9-12</td>
<td>46,615,000</td>
<td>80%</td>
<td>8 oz</td>
<td>30,842</td>
<td>30,842</td>
<td>23.19</td>
<td>30,842</td>
</tr>
<tr>
<td>13-16</td>
<td>4,500,000</td>
<td>100%</td>
<td>12 oz</td>
<td>3,600</td>
<td>3,600</td>
<td>2.64</td>
<td>3,600</td>
</tr>
<tr>
<td>17-20</td>
<td>1,500,000</td>
<td>60%</td>
<td>8 oz</td>
<td>9,000</td>
<td>9,000</td>
<td>0.69</td>
<td>9,000</td>
</tr>
<tr>
<td>21-24</td>
<td>1,500,000</td>
<td>80%</td>
<td>8 oz</td>
<td>12,000</td>
<td>12,000</td>
<td>0.87</td>
<td>12,000</td>
</tr>
<tr>
<td>25-28</td>
<td>1,500,000</td>
<td>100%</td>
<td>12 oz</td>
<td>1,500</td>
<td>1,500</td>
<td>0.11</td>
<td>1,500</td>
</tr>
<tr>
<td>29-32</td>
<td>1,500,000</td>
<td>60%</td>
<td>8 oz</td>
<td>9,000</td>
<td>9,000</td>
<td>0.69</td>
<td>9,000</td>
</tr>
</tbody>
</table>

PSD Minor Limit

<table>
<thead>
<tr>
<th>Line</th>
<th>Throughput (cans/year)</th>
<th>VOC Content</th>
<th>Size of Can (oz)</th>
<th>VOC Emissions (lb VOC/yr)</th>
<th>VOC PTE (lb/year)</th>
<th>Crushing Emissions (lb/year)</th>
<th>VOC PTE (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>204,615,000</td>
<td>80%</td>
<td>8 oz</td>
<td>194,045</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
</tr>
<tr>
<td>5-8</td>
<td>204,615,000</td>
<td>60%</td>
<td>8 oz</td>
<td>136,644</td>
<td>160,666</td>
<td>115.29</td>
<td>180,666</td>
</tr>
<tr>
<td>9-12</td>
<td>46,615,000</td>
<td>80%</td>
<td>8 oz</td>
<td>28,082</td>
<td>33,700</td>
<td>23.19</td>
<td>33,700</td>
</tr>
<tr>
<td>13-16</td>
<td>4,500,000</td>
<td>100%</td>
<td>12 oz</td>
<td>3,600</td>
<td>3,600</td>
<td>2.64</td>
<td>3,600</td>
</tr>
<tr>
<td>17-20</td>
<td>1,500,000</td>
<td>60%</td>
<td>8 oz</td>
<td>9,000</td>
<td>9,000</td>
<td>0.69</td>
<td>9,000</td>
</tr>
<tr>
<td>21-24</td>
<td>1,500,000</td>
<td>80%</td>
<td>8 oz</td>
<td>12,000</td>
<td>12,000</td>
<td>0.87</td>
<td>12,000</td>
</tr>
<tr>
<td>25-28</td>
<td>1,500,000</td>
<td>100%</td>
<td>12 oz</td>
<td>1,500</td>
<td>1,500</td>
<td>0.11</td>
<td>1,500</td>
</tr>
<tr>
<td>29-32</td>
<td>1,500,000</td>
<td>60%</td>
<td>8 oz</td>
<td>9,000</td>
<td>9,000</td>
<td>0.69</td>
<td>9,000</td>
</tr>
</tbody>
</table>

PTE from All Filling Lines

<table>
<thead>
<tr>
<th>Line</th>
<th>Installation Year</th>
<th>Filling Type</th>
<th>Throughput Capacity</th>
<th>VOC PTE</th>
<th>VOC Emissions - Compounding (lb/year)</th>
<th>VOC Emissions - Crushing (lb/year)</th>
<th>Total VOC Emissions (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>2</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>3</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>4</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>5</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>6</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>7</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>8</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>9</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>10</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>11</td>
<td>1993</td>
<td>Liquid</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
<tr>
<td>12</td>
<td>1993</td>
<td>Aerosol</td>
<td>204,615,000</td>
<td>232,500</td>
<td>117.29</td>
<td>244,645</td>
<td>360,145</td>
</tr>
</tbody>
</table>

Summary of All Product Lines - Uncontrolled PTE

- **Total Throughput (cans/year):** 78,905,200
- **Potential Emissions (lb VOC):** 9,981,200
- **PTE from All Filling Lines:** 7,750

Note: The above calculations are from permit renewal no. 039-29970-00434 issued on March 7, 2011.
Appendix A: Emissions Calculations

Filling Lines

Company Name: Accra-Pac, Inc.
Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T039-42472-00434
Permit Reviewer: Chris Biehl

Total Maximum Annual Throughput:
- 225,000,000 cans/yr

Maximum Annual Throughput per line:
- 75,000,000 cans/yr/line

Maximum Hourly Throughput per line:
- 8,562 cans/hr/line

Propellant emission factor:
- 0.0013 lb of VOC/can

Compound & Filled emission factor:
- 0.03 lb of VOC/gal of VOC in filled product

Theoretical VOC Content:
- 100% for each can

Theoretical Fillable Volume:
- 12 oz/can

Can Crushing emission factor:
- 0.0111 lb of VOC/can

Annual Amount of Cans Crushed:
- 0 cans punctured or rejected/year

Potential To Emit from Aerosol Filling Lines 5, 6 and 7

Unlimited PTE

<table>
<thead>
<tr>
<th>Line</th>
<th>Throughput (cans/year)</th>
<th>VOC Content</th>
<th>Size of Can (gallons)</th>
<th>Gallons of VOC filled/year</th>
<th>VOC Emissions - Propellant (tpy)</th>
<th>VOC Emissions - Compounding (tpy)</th>
<th>VOC Emissions - Crushing (tpy)</th>
<th>VOC Emissions (lb/year)</th>
<th>VOC Emissions (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>75,000,000</td>
<td>100%</td>
<td>0.09375</td>
<td>7,031,250</td>
<td>48.75</td>
<td>105.47</td>
<td>0.00</td>
<td>308,438</td>
<td>154.22</td>
</tr>
<tr>
<td>6</td>
<td>75,000,000</td>
<td>100%</td>
<td>0.09375</td>
<td>7,031,250</td>
<td>48.75</td>
<td>105.47</td>
<td>0.00</td>
<td>308,438</td>
<td>154.22</td>
</tr>
<tr>
<td>7</td>
<td>75,000,000</td>
<td>100%</td>
<td>0.09375</td>
<td>7,031,250</td>
<td>48.75</td>
<td>105.47</td>
<td>0.00</td>
<td>308,438</td>
<td>154.22</td>
</tr>
</tbody>
</table>

Therefore, the number of cans crushed by the manual device = 24,763,600 - 4,380,000 = 20,383,600

The emissions from the aerosol filling lines include supporting operations such as the batch tanks and pre-mix tanks.

Methodology

VOC Emission equation from the current Title V permit 039-21106-00434

VOC Emissions = \[(gallons VOC compounded & filled/month) \times (0.03 lb VOC/gal VOC) + (# cans filled with VOC propellant/month) \times (0.0013 lbs VOC/can) + (# cans with VOC crushed/month) \times (0.0111 lbs VOC/can)\]

*These calculations are based on a worst-case theoretical 12 ounce can which contains 100% VOC.

Limited PTE

<table>
<thead>
<tr>
<th>Line</th>
<th>Throughput (cans/year)</th>
<th>VOC Content</th>
<th>Size of Can (gallons)</th>
<th>Gallons of VOC filled/year</th>
<th>VOC Emissions - Propellant (tpy)</th>
<th>VOC Emissions - Compounding (tpy)</th>
<th>VOC Emissions - Crushing (tpy)</th>
<th>VOC Emissions (lb/year)</th>
<th>VOC Emissions (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>202,412,000</td>
<td>60%</td>
<td>0.0625</td>
<td>7,590,450</td>
<td>131.57</td>
<td>113.86</td>
<td>490,849</td>
<td>245.42</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>202,412,000</td>
<td>60%</td>
<td>0.0625</td>
<td>7,590,450</td>
<td>131.57</td>
<td>113.86</td>
<td>490,849</td>
<td>245.42</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>202,412,000</td>
<td>60%</td>
<td>0.0625</td>
<td>7,590,450</td>
<td>131.57</td>
<td>113.86</td>
<td>490,849</td>
<td>245.42</td>
<td></td>
</tr>
</tbody>
</table>

Limited Annual Throughput: 263,136 lb VOC-containing liquid per year

Methodology

VOC Emissions = \[(gallons VOC compounded & filled/month) \times (0.03 lb VOC/gal VOC) + (# cans filled with VOC propellant/month) \times (0.0013 lbs VOC/can)\]

These calculations are based on a typical can filled to 8 ounces containing 60% VOC.
Appendix A: Emissions Calculations

Company Name: Accra-Pac, Inc.
Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T039-42472-00434
Permit Reviewer Chris Biehl

METHODOLOGY

CAA Section 112 Major Source Thresholds: 10 tons per year for single HAP; 25 tons per year for total HAPs

Minor Source Limit (tons per year) = 95% x CAA major source threshold (tons per year)

Minor Source Limit (pounds per hour) = Minor Source Limit (tons per year) x 2000 pound per ton / 8760 hours per year

ASSUMPTIONS

95% CAA Section 112 threshold is sufficient to establish minor HAP limit for 112(g) applicability

<table>
<thead>
<tr>
<th></th>
<th>Single HAP</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA Section 112 Major Source Thresholds (potential to emit in tons per year):</td>
<td>10.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Minor Source Limits (tons per year):</td>
<td>9.50</td>
<td>23.75</td>
</tr>
</tbody>
</table>

Note:
The above calculations are from permit renewal No. 039-29970-00434 issued on March 7, 2011.
Appendix A: Emission Calculations

Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (<=600 HP)

Maximum Input Rate (<=4.2 MMBtu/hr)

Company Name: Accra-Pac, Inc.

Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515

TV Permit Number: T039-42472-00434

Permit Reviewer Chris Biehl

<table>
<thead>
<tr>
<th>Output Horsepower Rating (hp)</th>
<th>170.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hours Operated per Year</td>
<td>500</td>
</tr>
<tr>
<td>Potential Throughput (hp-hr/yr)</td>
<td>85,000</td>
</tr>
</tbody>
</table>

Pollutant Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5*</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0021</td>
<td>0.0310</td>
<td>0.0025</td>
<td>0.0067</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>1.32</td>
<td>0.11</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr****</td>
<td>6.53E-06</td>
<td>2.86E-06</td>
<td>2.00E-06</td>
<td>2.74E-07</td>
<td>8.26E-06</td>
<td>5.37E-06</td>
<td>6.48E-07</td>
<td>1.18E-06</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>2.78E-04</td>
<td>1.22E-04</td>
<td>8.48E-05</td>
<td>1.16E-05</td>
<td>3.51E-04</td>
<td>2.28E-04</td>
<td>2.75E-05</td>
<td>5.00E-05</td>
</tr>
</tbody>
</table>

***PAH = Polyaromatic Hydrocarbon (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

****Emission factors in lb/hp-hr were calculated using emission factors in lb/MMBtu and a brake specific fuel consumption of 7,000 Btu / hp-hr (AP-42 Table 3.3-1).

Potential Emission of Total HAPs (tons/yr)

| Potential Emission of Total HAPs (tons/yr) | 1.15E-03 |

Methodology

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4.

Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year]

Potential Emission (tons/yr) = [Potential Throughput (hp-hr/yr)] * [Emission Factor (lb/hp-hr)] / [2,000 lb/ton]
Appendix A: Emission Calculations

Natural Gas Combustion Only

Company Name: Accra-Pac, Inc.
Address City Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T038-42472-00434
Permit Reviewer: Chris Biehl

1. Process Description

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Heat Input Capacity (MMBtu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler B-1</td>
<td>16.70</td>
</tr>
<tr>
<td>Boiler T-1</td>
<td>10.50</td>
</tr>
<tr>
<td>Boiler N-1</td>
<td>8.37</td>
</tr>
<tr>
<td>Boiler N-2</td>
<td>6.38</td>
</tr>
<tr>
<td>Boiler M-2</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Total: 48.85

2. Combustion Emissions - Criteria Pollutants

<table>
<thead>
<tr>
<th>NOx Burner Type</th>
<th>Fuel Heat Value (MMBtu/MMCF)</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx**</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Burners</td>
<td>1.020</td>
<td>1.9</td>
<td>7.6</td>
<td>0.6</td>
<td>100</td>
<td>5.5</td>
<td>84.0</td>
<td></td>
</tr>
</tbody>
</table>

* PM emission factor is for filterable PM only. PM10 emission factor is for condensable PM10 and filterable PM combined.
** Emission factors for NOx: Uncontrolled = 100 lbs/MMCF, Low NOx Burners = 50 lbs/MMCF.
Emission factors are from AP 42, Chapter 1.4, Tables 1.4-1, and 1.4-2, SCC 1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03. (7/98)

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Potential Throughput (MMCF/yr)</th>
<th>PM</th>
<th>PM10</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx**</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler B-1</td>
<td>143.42</td>
<td>0.14</td>
<td>0.55</td>
<td>0.55</td>
<td>0.04</td>
<td>7.17</td>
<td>0.39</td>
<td>6.02</td>
</tr>
<tr>
<td>Boiler T-1</td>
<td>90.18</td>
<td>0.09</td>
<td>0.34</td>
<td>0.34</td>
<td>0.027</td>
<td>4.51</td>
<td>0.25</td>
<td>3.79</td>
</tr>
<tr>
<td>Boiler N-1</td>
<td>71.88</td>
<td>0.068</td>
<td>0.27</td>
<td>0.27</td>
<td>0.02</td>
<td>3.59</td>
<td>0.20</td>
<td>3.02</td>
</tr>
<tr>
<td>Boiler M-2</td>
<td>53.93</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>2.70</td>
<td>0.15</td>
<td>2.27</td>
</tr>
<tr>
<td>Boiler N-2</td>
<td>60.12</td>
<td>0.057</td>
<td>0.228</td>
<td>0.228</td>
<td>0.0180</td>
<td>3.01</td>
<td>0.105</td>
<td>2.52</td>
</tr>
</tbody>
</table>

Total: 419.54

Methodology:
Maximum Potential Throughput (MMCF/yr) = Heat Input Capacity (MMBtu/hr) x 8,760 (hrs/yr) x 1 MMCF/1,000 MMBtu
Potential To Emit (tons/year) = Throughput (MMCF/yr) x Emission Factor (lbs/MMCF) x 1 ton/2,000 lbs

3. Combustion Emissions - HAP Pollutants

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Benzen</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Mercury</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1E-03</td>
<td>1.2E-03</td>
<td>7.5E-02</td>
<td>1.8E+00</td>
<td>3.4E-03</td>
<td>1.1E-03</td>
<td>1.4E-03</td>
<td>3.8E-04</td>
<td>2.6E-04</td>
<td>2.1E-03</td>
</tr>
</tbody>
</table>

EAP emission factors are from AP 42, Chapter 1.4, Tables 1.4-3 and 1.4-4. (7/98)

Methodology:
Potential To Emit (tons/year) = Throughput (MMCF/yr) x Emission Factor (lbs/MMCF) x 1 ton/2,000 lbs
Appendix A: Emissions Calculations
326 IAC 6-2-4 Evaluation

Company Name: Accra-Pac, Inc.
Address City IN Zip: 2700 Middlebury Street, 2730 Middlebury Street, and 711 Middleton Run Road, Elkhart, Indiana 46515
TV Permit Number: T039-42472-00434
Permit Reviewer Chris Biehl

<table>
<thead>
<tr>
<th>Boilers</th>
<th>Date of Construction</th>
<th>Rating (MMBtu/hr)</th>
<th>Q (MMBtu/hr)*</th>
<th>Pt (lb/MMBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler N-1</td>
<td>1993</td>
<td>8.37</td>
<td>23.02</td>
<td>0.482</td>
</tr>
<tr>
<td>Boiler N-2</td>
<td>1997</td>
<td>7.00</td>
<td>31.52</td>
<td>0.444</td>
</tr>
<tr>
<td>Boiler B-1</td>
<td>2008</td>
<td>16.70</td>
<td>51.41</td>
<td>0.391</td>
</tr>
<tr>
<td>Boiler T-1**</td>
<td>2013</td>
<td>10.50</td>
<td>53.54</td>
<td>0.387</td>
</tr>
</tbody>
</table>

*Unless otherwise noted, the Q value includes the following boilers that have been removed from the source. Boiler M-1 (8.37 MMBtu/hr), which was constructed in 1976 and removed in 2013. Boiler S-1 (1.50 MMBtu/hr), which was constructed in 1995 and removed in 2015. Boiler S-2 (3.19 MMBtu/hr), which was constructed in 2001 and removed in 2015.

**Boiler M-1 (8.37 MMBtu/hr), which was constructed in 1976 and removed in 2013. Therefore, the Q value for Boiler T-1 does not include Boiler M-2 since this boiler replaced M-2.

Pt (lb/MMBtu) = 1.09 / Q^0.26
Q = total source maximum operating capacity
January 6, 2021

Kathy Whitney
Accra-Pac, Inc.
PO Box 2988
Elkhart, IN 46515

Re: Public Notice
Accra-Pac, Inc.
Permit Level: Title V - Renewal
Permit Number: 039-42472-00434

Dear Ms. Kathy Whitney:

Enclosed is the Notice of 30-Day Period for Public Comment for your draft air permit.

Our records indicate that you are the contact person for this application. However, if you are not the appropriate person within your company to receive this document, please forward it to the correct person. The Notice of 30-Day Period for Public Comment has also been sent to the OAQ Permits Branch Interested Parties List and, if applicable, your Consultant/Agent and/or Responsible Official/Authorized Individual.

The preliminary findings, including the draft permit, technical support document, emission calculations, and other supporting documents, are available electronically at:

IDEM's online searchable database: http://www.in.gov/apps/idem/caats/ . Choose Search Option by Permit Number, then enter permit 42472

and

IDEM's Virtual File Cabinet (VFC): http://www.IN.gov/idem . Enter VFC in the search box, then search for permit documents using a variety of criteria, such as Program area, date range, permit #, Agency Interest Number, or Source ID.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Elkhart Public Library, 300 South 2nd Street in Elkhart, IN 46516. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.
Please review the draft permit documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Chris Biehl, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 3-8397 or dial (317) 233-8397.

Sincerely,

Kathy Bourquein

Kathy Bourquein
Permits Branch
Office of Air Quality

Enclosures

PN Applicant Cover Letter access via website 8/10/2020
January 6, 2021

To: Elkhart Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Accra-Pac, Inc.
Permit Number: 039-42472-00434

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

January 6, 2021
Accra-Pac, Inc.
039-42472-00434

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Joanne Smiddie-Brush with the Air Permits Administration Section at 1-800-451-6027, ext. 3-0185 or via e-mail at JBRUSH@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.
AFFECTED STATE NOTIFICATION OF PUBLIC COMMENT PERIOD
DRAFT INDIANA AIR PERMIT

January 6, 2021

A 30-day public comment period has been initiated for:

Permit Number: 039-42472-00434
Applicant Name: Accra-Pac, Inc.
Location: Elkhart, Elkhart County, Indiana

The public notice, draft permit and technical support documents can be accessed via the IDEM Air Permits Online site at:
http://www.in.gov/ai/appfiles/idem-caats/

Questions or comments on this draft permit should be directed to the person identified in the public notice by telephone or in writing to:

Indiana Department of Environmental Management
Office of Air Quality, Permits Branch
100 North Senate Avenue
Indianapolis, IN 46204

Questions or comments regarding this email notification or access to this information from the EPA Internet site can be directed to Chris Hammack at chammack@idem.IN.gov or (317) 233-2414.

Affected States Notification 1/9/2017
Mail Code 61-53

<table>
<thead>
<tr>
<th>Name and address of Sender</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handling Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Rest. Del. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathy Whitney</td>
<td>Accra Pac Incorporated PO Box 2988 Elkhart IN 46515 (Source CAATS)</td>
<td></td>
</tr>
<tr>
<td>Elkhart City Council and Mayors Office</td>
<td>229 South Second Street Elkhart IN 46516 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>Elkhart Public Library</td>
<td>300 S 2nd St Elkhart IN 46516-3184 (Library)</td>
<td></td>
</tr>
<tr>
<td>Elkhart County Health Department</td>
<td>608 Oakland Avenue Elkhart IN 46516 (Health Department)</td>
<td></td>
</tr>
<tr>
<td>Elkhart County Board of Commissioners</td>
<td>117 North Second St. Goshen IN 46526 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>Jeri Seely</td>
<td>The Mail-Journal PO Box 188 Milford IN 46542 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>Mr. Roger Schneider</td>
<td>The Goshen News 114 S. Main St Goshen IN 46526 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>Zach Ziemke</td>
<td>U.S. Compliance 520 Third Street, Suite 100 Excelsior MN 55331 (Consultant)</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender: 15

Total number of Pieces Received at Post Office: 15

Postmaster, Per (Name of Receiving employee): The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See Domestic Mail Manual R900, S913, and S921 for limitations of coverage on insured and COD mail. See International Mail Manual for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.