NOTICE OF 30-DAY PERIOD
FOR PUBLIC COMMENT

Preliminary Findings Regarding a
Significant Revision to a Federally Enforceable State Operating Permit (FESOP)

for Dave O'Mara Contractor, Inc., Plant #6 in Scott County

FESOP Significant Permit Revision No.: 143-41779-03192

The Indiana Department of Environmental Management (IDEM) has received an application from Dave O'Mara Contractor, Inc., Plant #6, located at 313 South State Road 203, Lexington, Indiana 47170, for a significant revision of its FESOP issued on October 2, 2018. If approved by IDEM’s Office of Air Quality (OAQ), this proposed revision would allow Dave O'Mara Contractor, Inc., Plant #6 to make certain changes at its existing source. Dave O'Mara Contractor, Inc., Plant #6 has applied to construct and operate new drum mixer and material handling equipment.

The applicant intends to construct and operate new equipment that will emit air pollutants; therefore, the permit contains new or different permit conditions. In addition, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g., changes that add or modify synthetic minor emission limits). The potential to emit regulated air pollutants will continue to be limited to less than the Title V and PSD major threshold levels. IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow the applicant to make this change.

A copy of the permit application and IDEM’s preliminary findings are available at:

Scott County Public Library
108 S Main St
Scottsburg, IN 47170-1892

and

IDEM Southeast Regional Office
820 West Sweet Street
Brownstown, IN 47220-9557

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing,
IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number SPR 143-41779-03192 in all correspondence.

Comments should be sent to:

Mehul Sura
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Mehul Sura or (317) 233-6868
Or dial directly: (317) 233-6868
Fax: (317)-232-6749 attn: Mehul Sura
E-mail: msura@IDEM.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, at the IDEM Regional Office indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Mehul Sura of my staff at the above address.

Madhurima D. Moulik, Ph.D., Section Chief
Permits Branch
Office of Air Quality
Dear Amy Boswell:

Dave O’Mara Contractor, Inc., Plant #6 was issued a Federally Enforceable State Operating Permit (FESOP) Renewal No. F143-39694-03192, on October 2, 2018, for a stationary hot mix asphalt batch plant located at 313 South State Road 203, Lexington, Indiana 47170. On August 9, 2019, the Office of Air Quality (OAQ) received an application from the source requesting construct and operate new emission units specified below. Pursuant to the provisions of 326 IAC 2-8-11.1, these changes to the permit are required to be reviewed in accordance with the Significant Permit Revision (SPR) procedures of 326 IAC 2-8-11.1(f). Pursuant to the provisions of 326 IAC 2-8-11.1, a Significant Permit Revision to this permit is hereby approved as described in the attached Technical Support Document (TSD).

Pursuant to 326 IAC 2-8-11.1, the following emission units are approved for construction at the source:

(a) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(b) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(c) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

(d) One (1) cold aggregate feed system, identified as CA1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

The following construction conditions are applicable to the proposed project:

General Construction Conditions

1. The data and information supplied with the application shall be considered part of this permit revision approval. Prior to any proposed change in construction which may affect the potential to emit (PTE) of the proposed project, the change must be approved by the Office of Air Quality (OAQ).
2. This approval to construct does not relieve the Permittee of the responsibility to comply with the provisions of the Indiana Environmental Management Law (IC 13-11 through 13-20; 13-22 through 13-25; and 13-30), the Air Pollution Control Law (IC 13-17) and the rules promulgated thereunder, as well as other applicable local, state, and federal requirements.

Effective Date of the Permit

3. Pursuant to IC 13-15-5-3, this approval becomes effective upon its issuance.

Commenced Construction

4. Pursuant to 326 IAC 2-1.1-9 (Revocation), the Commissioner may revoke this approval if construction is not commenced within eighteen (18) months after receipt of this approval or if construction is suspended for a continuous period of one (1) year or more.

5. All requirements and conditions of this construction approval shall remain in effect unless modified in a manner consistent with procedures established pursuant to 326 IAC 2.

Pursuant to 326 IAC 2-8-11.1, this permit shall be revised by incorporating the Significant Permit Revision into the permit.

All other conditions of the permit shall remain unchanged and in effect. Please find attached the entire FESOP as revised, including the following new attachment:

Attachment B: 40 CFR 60, Subpart I, NSPS for Hot Mix Asphalt Facilities

The permit references the below listed attachment. Since this attachment has been provided in previously issued approvals for this source, IDEM OAQ has not included a copy of this attachment with this revision:

Attachment A: Fugitive Dust Control Plan

Previously issued approvals for this source containing these attachments are available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

Previously issued approvals for this source are also available via IDEM’s Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

A copy of the permit is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/. A copy of the permit is also available via IDEM’s Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria. For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

This decision is subject to the Indiana Administrative Orders and Procedures Act - IC 4-21.5-3-5.
If you have any questions regarding this matter, please contact Mehul Sura, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-6868 or (800) 451-6027, and ask for Mehul Sura or (317) 233-6868.

Sincerely,

Madhurima D. Moulik, Ph.D., Section Chief
Permits Branch
Office of Air Quality

Attachments: Revised permit and Technical Support Document.

cc: File - Scott County
Scott County Health Department
U.S. EPA, Region 5
Compliance and Enforcement Branch
IDEM Southeast Regional Office
Federally Enforceable State Operating Permit Renewal

OFFICE OF AIR QUALITY

DRAFT

Dave O'Mara Contractor, Inc., Plant #6
313 South State Road 203
Lexington, Indiana 47170

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-8 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17. This permit also addresses certain new source review requirements for existing equipment and is intended to fulfill the new source review procedures pursuant to 326 IAC 2-8-11.1, applicable to those conditions

Indiana statutes from IC 13 and rules from 326 IAC, quoted in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a FESOP under 326 IAC 2-8.
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY

A.1 General Information [326 IAC 2-8-3(b)]
A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]
A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]
A.4 Not Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]
A.5 FESOP Applicability [326 IAC 2-8-2]

SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-8-1]
B.2 Permit Term [326 IAC 2-8-4(2)][326 IAC 2-1.1-9.5][IC 13-15-3-6(a)]
B.3 Term of Conditions [326 IAC 2-1.1-9.5]
B.4 Enforceability [326 IAC 2-8-6][IC 13-17-12]
B.5 Severability [326 IAC 2-8-4(4)]
B.6 Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]
B.7 Duty to Provide Information [326 IAC 2-8-4(5)(E)]
B.8 Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]
B.9 Annual Compliance Certification [326 IAC 2-8-5(a)(1)]
B.10 Compliance Order Issuance [326 IAC 2-8-5(b)]
B.11 Preventive Maintenance Plan [326 IAC 1-6-3][326 IAC 2-8-4(9)]
B.12 Emergency Provisions [326 IAC 2-8-12]
B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5]
B.14 Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]
B.16 Permit Renewal [326 IAC 2-8-3(h)]
B.17 Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]
B.18 Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]
B.19 Source Modification Requirement [326 IAC 2-8-11.1]
B.20 Inspection and Entry [326 IAC 2-8-5(a)(2)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]
B.21 Transfer of Ownership or Operational Control [326 IAC 2-8-10]
B.22 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-8-4(6)][326 IAC 2-8-16][326 IAC 2-1.1-7]
B.23 Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314][326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-8-4(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
C.2 Overall Source Limit [326 IAC 2-8]
C.3 Opacity [326 IAC 5-1]
C.4 Open Burning [326 IAC 4-1][IC 13-17-9]
C.5 Incineration [326 IAC 4-2][326 IAC 9-1-2]
C.6 Fugitive Dust Emissions [326 IAC 6-4]
C.7 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
C.8 Stack Height [326 IAC 1-7]
C.9 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-8-4(3)]

C.10 Performance Testing [326 IAC 3-6]
Compliance Requirements [326 IAC 2-1.1-11] ... 20
C.11 Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)] 20
C.12 Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]
C.13 Instrument Specifications [326 IAC 2-8-4(3)][326 IAC 2-8-5(1)]

Corrective Actions and Response Steps [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)] 21
C.14 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]
C.15 Risk Management Plan [326 IAC 2-8-4][40 CFR 68]
C.16 Response to Excursions or Exceedances [326 IAC 2-8-4][326 IAC 2-8-5]
C.17 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4][326 IAC 2-8-5]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] 22
C.18 General Record Keeping Requirements [326 IAC 2-8-4(3)][326 IAC 2-8-5]
C.19 General Reporting Requirements [326 IAC 2-8-4(3)(C)][326 IAC 2-1.1-11]

Stratospheric Ozone Protection .. 23
C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS ... 24
Emission Limitations and Standards [326 IAC 2-8-4(1)] ... 24
D.1.1 PSD Minor Limits (PM) [326 IAC 2-2]
D.1.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]
D.1.3 FESOP Limits: SO2 and HAPs [326 IAC 2-8-4][326 IAC 2-4.1]
D.1.4 Particulate Emission Limitations [326 IAC 6-3-2]
D.1.5 Sulfur Dioxide (SO2) [326 IAC 7-1.1-1][326 IAC 7-2-1]
D.1.6 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

Compliance Determination Requirements [326 IAC 2-8-4(1)] ... 27
D.1.7 Particulate Control
D.1.8 Testing Requirements [326 IAC 2-1.1-11]
D.1.9 Sulfur Dioxide Emissions and Sulfur Content
D.1.10 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine, and Lead Content
D.1.11 Multiple Fuel Usage Limitations

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)] 29
D.1.12 Visible Emissions Notations
D.1.13 Parametric Monitoring
D.1.14 Broken or Failed Bag Detection

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] 30
D.1.15 Record Keeping Requirements
D.1.16 Reporting Requirements

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS ... 32
Emission Limitations and Standards [326 IAC 2-8-4(1)] ... 32
D.2.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]
D.2.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]
D.2.3 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)] 34
D.2.4 Record Keeping Requirements
D.2.5 Reporting Requirements

SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS ... 35
Emission Limitations and Standards [326 IAC 2-8-4(1)] ... 35
D.3.1 Particulate Emissions [326 IAC 6-2-4][326 IAC 6.5-1-2]
D.3.2 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

SECTION E.1 NSPS ... 36

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)] 36
E.1.2 Hot Mix Asphalt Facilities NSPS [326 IAC 12][40 CFR Part 60, Subpart I]

Compliance Determination Requirements [326 IAC 2-8-4(1)] .. 37
E.1.3 Testing Requirements [326 IAC 2-1.1-11]

CERTIFICATION .. 38

EMERGENCY OCCURRENCE REPORT .. 39
FESOP Quarterly Report .. 41
FESOP Quarterly Report .. 42
FESOP Quarterly Report .. 44
QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT 47

Attachment A - Fugitive Dust Control Plan
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-8-3(b)]

The Permittee owns and operates a stationary hot mix asphalt batch plant.

<table>
<thead>
<tr>
<th>Source Address:</th>
<th>313 South State Road 203, Lexington, Indiana 47170</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Source Phone Number:</td>
<td>(812) 346-4135</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>2951 (Asphalt Paving Mixtures and Blocks)</td>
</tr>
<tr>
<td>County Location:</td>
<td>Scott</td>
</tr>
<tr>
<td>Source Location Status:</td>
<td>Attainment for all criteria pollutants</td>
</tr>
<tr>
<td>Source Status:</td>
<td>Federally Enforceable State Operating Permit Program, Minor Source, under PSD Rules, Minor Source, Section 112 of the Clean Air Act, Not 1 of 28 Source Categories</td>
</tr>
</tbody>
</table>

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]

This stationary source consists of the following emission units and pollution control devices:

(a) One (1) rotary aggregate dryer/mixer, constructed prior to June 11, 1973, capable of processing 180 tons per hour of raw material, equipped with one (1) 66.0 million British thermal units per hour (MMBtu) burner with the capability to fire No. 2 fuel oil or No. 4 used oil, using a jetpulse baghouse as control, exhausting to one (1) stack, identified as SV-1.

(b) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(c) Cold-mix (stockpile mix) asphalt storage piles.

(d) Two (2) hot mix asphalt storage silos, installed in 2005, each with a maximum storage capacity of 150 tons, with one (1) 24” drag to transfer mix silo and one (1) lhlle slat on top of the silo to transfer to the mix silo.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)] [326 IAC 2-8-3(c)(3)(I)]

This stationary source also includes the following specifically regulated insignificant activities:
(a) One (1) cold aggregate feed system (Cold Mix Asphalt Operation), installed in 2005, modified between 2008 and 2018, consisting of seven (7) cold aggregate feeder bins with a total capacity of 220 tons and three (3) belt conveyors.

(b) One (1) twenty ton RAP bin with one (1) belt conveyer.

(c) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(d) One (1) cold aggregate feed system, identified as CA1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(f) Storage piles consisting of the following:

(1) Sand storage piles with a storage area of 0.75 acres.
(2) Limestone storage piles with a storage area of 0.75 acres.
(3) RAP storage piles with a storage area of 0.75 acres.
(4) Gravel storage piles with a storage area of 0.75 acres.

(g) One (1) No. 2 fuel oil or propane fired hot oil heater with a maximum rated capacity of 2.2 MMBtu per hour, exhausting at one (1) stack identified as SV9.

(h) Paved and unpaved roads and parking lots with public access.

A.4 Not Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(l)]

This stationary source also includes the following insignificant activities that are not specifically regulated:

(a) One (1) 8,000 gallon above ground #2 fuel storage tank.
(b) One (1) 12,000 gallon above ground #4 fuel storage tank.
(c) One (1) 25,000 gallon above ground asphalt tank.
(d) One (1) 15,000 gallon above ground asphalt tank.
(e) One (1) quality assurance laboratory.

A.5 FESOP Applicability [326 IAC 2-8-2]

This stationary source, otherwise required to have a Part 70 permit as described in 326 IAC 2-7-2(a), has applied to the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ) to renew a Federally Enforceable State Operating Permit (FESOP).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-8-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-8-4(2)][326 IAC 2-1.1-9.5][IC 13-15-3-6(a)]

(a) This permit, F143-39694-03192, is issued for a fixed term of ten (10) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-8-6][IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-8-4(4)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-8-4(5)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-8-4(5)(E)]

(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.

B.8 Certification [326 IAC 2-8-3(d)][326 IAC 2-8-4(3)(C)(i)][326 IAC 2-8-5(1)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-8-5(a)(1) if:
(1) it contains a certification by an "authorized individual", as defined by 326 IAC 2-1.1-1(1), and

(2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) An "authorized individual" is defined at 326 IAC 2-1.1-1(1).

B.9 Annual Compliance Certification [326 IAC 2-8-5(a)(1)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

(1) The appropriate identification of each term or condition of this permit that is the basis of the certification;

(2) The compliance status;

(3) Whether compliance was continuous or intermittent;

(4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-8-4(3); and

(5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

B.10 Compliance Order Issuance [326 IAC 2-8-5(b)]

IDEM, OAQ may issue a compliance order to this Permittee upon discovery that this permit is in nonconformance with an applicable requirement. The order may require immediate compliance or contain a schedule for expeditious compliance with the applicable requirement.
B.11 Preventive Maintenance Plan [326 IAC 1-6-3][326 IAC 2-8-4(9)]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).
(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.12 Emergency Provisions [326 IAC 2-8-12]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation except as provided in 326 IAC 2-8-12.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a health-based or technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

(1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;

(2) The permitted facility was at the time being properly operated;

(3) During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;

(4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ or Southeast Regional Office within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
Facsimile Number: 317-233-6865
Southeast Regional Office phone: (812) 358-2027; fax: (812) 358-2058.

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-8-4(3)(C)(ii) and must contain the following:

(A) A description of the emergency;

(B) Any steps taken to mitigate the emissions; and
(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-8-3(c)(6) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-8 and any other applicable rules.

(g) Operations may continue during an emergency only if the following conditions are met:

(1) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

(2) If an emergency situation causes a deviation from a health-based limit, the Permittee may not continue to operate the affected emissions facilities unless:

(A) The Permittee immediately takes all reasonable steps to correct the emergency situation and to minimize emissions; and

(B) Continued operation of the facilities is necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw material of substantial economic value.

Any operations shall continue no longer than the minimum time required to prevent the situations identified in (g)(2)(B) of this condition.

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5]

(a) All terms and conditions of permits established prior to F143-39694-03192 and issued pursuant to permitting programs approved into the state implementation plan have been either:

(1) incorporated as originally stated,

(2) revised,
(3) deleted.

(b) All previous registrations and permits are superseded by this permit.

B.14 Termination of Right to Operate [326 IAC 2-8-9][326 IAC 2-8-3(h)]

The Permittee’s right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source’s existing permit, consistent with 326 IAC 2-8-3(h) and 326 IAC 2-8-9.

B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-8-4(5)(C)][326 IAC 2-8-7(a)][326 IAC 2-8-8]

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Federally Enforceable State Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-8-4(5)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

1. That this permit contains a material mistake.
2. That inaccurate statements were made in establishing the emissions standards or other terms or conditions.
3. That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-8-8(a)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-8-8(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-8-8(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-8-8(c)]

B.16 Permit Renewal [326 IAC 2-8-3(h)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-8-3. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

Request for renewal shall be submitted to:
A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-8 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-8-3(g), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Revision [326 IAC 2-8-10][326 IAC 2-8-11.1]

(a) Permit amendments and revisions are governed by the requirements of 326 IAC 2-8-10 or 326 IAC 2-8-11.1 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-8-10(b)(3)]

B.18 Operational Flexibility [326 IAC 2-8-15][326 IAC 2-8-11.1]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-8-15(b) and (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;

(2) Any approval required by 326 IAC 2-8-11.1 has been obtained;

(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee’s copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-8-15(b)(1) and (c). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-8-15(b)(1) and (c).

(b) Emission Trades [326 IAC 2-8-15(b)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-8-15(b).

(c) Alternative Operating Scenarios [326 IAC 2-8-15(c)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-8-4(7). No prior notification of IDEM, OAQ or U.S. EPA is required.

(d) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.19 Source Modification Requirement [326 IAC 2-8-11.1]
A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.20 Inspection and Entry [326 IAC 2-8-5(a)(2)][IC 13-14-2-2][IC 13-17-3-2][IC 13-30-3-1]
Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee’s right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a FESOP source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect, at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor, at reasonable times, substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.21 Transfer of Ownership or Operational Control [326 IAC 2-8-10]

(a) The Permittee must comply with the requirements of 326 IAC 2-8-10 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-8-10(b)(3)]

B.22 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-8-4(6)][326 IAC 2-8-16][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ no later than thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.23 Credible Evidence [326 IAC 2-8-4(3)][326 IAC 2-8-5][62 FR 8314][326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall
preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C

SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-8-4(1)]

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.

C.2 Overall Source Limit [326 IAC 2-8]

The purpose of this permit is to limit this source’s potential to emit to less than major source levels for the purpose of Section 502(a) of the Clean Air Act.

(a) Pursuant to 326 IAC 2-8:

(1) The potential to emit any regulated pollutant, except particulate matter (PM), from the entire source shall be limited to less than one hundred (100) tons per twelve (12) consecutive month period.

(2) The potential to emit any individual hazardous air pollutant (HAP) from the entire source shall be limited to less than ten (10) tons per twelve (12) consecutive month period; and

(3) The potential to emit any combination of HAPs from the entire source shall be limited to less than twenty-five (25) tons per twelve (12) consecutive month period.

(b) Pursuant to 326 IAC 2-2 (PSD), potential to emit particulate matter (PM) from the entire source shall be limited to less than two hundred fifty (250) tons per twelve (12) consecutive month period.

(c) This condition shall include all emission points at this source including those that are insignificant as defined in 326 IAC 2-7-1(21). The source shall be allowed to add insignificant activities not already listed in this permit, provided that the source’s potential to emit does not exceed the above specified limits.

(d) Section D of this permit contains independently enforceable provisions to satisfy this requirement.

C.3 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A,
Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor in a six (6) hour period.

C.4 Open Burning [326 IAC 4-1][IC 13-17-9]
The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.5 Incineration [326 IAC 4-2][326 IAC 9-1-2]
The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.6 Fugitive Dust Emissions [326 IAC 6-4]
The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions).

C.7 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the attached plan as in Attachment A.

C.8 Stack Height [326 IAC 1-7]
The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted by using ambient air quality modeling pursuant to 326 IAC 1-7-4.

C.9 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]
(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;
(B) Removal or demolition contractor; or
(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).
(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos.

Testing Requirements [326 IAC 2-8-4(3)]

C.10 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).
Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.11 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)]

C.12 Compliance Monitoring [326 IAC 2-8-4(3)][326 IAC 2-8-5(a)(1)]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1).

C.13 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-8-4(3)][326 IAC 2-8-5(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.
Corrective Actions and Response Steps [326 IAC 2-8-4][326 IAC 2-8-5(a)(1)]

C.14 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.15 Risk Management Plan [326 IAC 2-8-4][40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.16 Response to Excursions or Exceedances [326 IAC 2-8-4][326 IAC 2-8-5]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.
C.17 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-8-4][326 IAC 2-8-5]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an “authorized individual” as defined by 326 IAC 2-1.1-1(1).

C.18 General Record Keeping Requirements [326 IAC 2-8-4(3)][326 IAC 2-8-5]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

(AA) All calibration and maintenance records.
(BB) All original strip chart recordings for continuous monitoring instrumentation.
(CC) Copies of all reports required by the FESOP.

Records of required monitoring information include the following, where applicable:

(AA) The date, place, as defined in this permit, and time of sampling or measurements.
(BB) The dates analyses were performed.
(CC) The company or entity that performed the analyses.
(DD) The analytical techniques or methods used.
(EE) The results of such analyses.
(FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.19 General Reporting Requirements [326 IAC 2-8-4(3)(C)][326 IAC 2-1.1-11]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B -Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to
an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by an "authorized individual" as defined by 326 IAC 2-1.1-1(1). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.20 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) One (1) rotary aggregate dryer/mixer, constructed prior to June 11, 1973, capable of processing 180 tons per hour of raw material, equipped with one (1) 66.0 million British thermal units per hour (MMBtu) burner with the capability to fire No. 2 fuel oil or No. 4 used oil, using a jetpulse baghouse as control, exhausting to one (1) stack, identified as SV-1.

(b) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

Specifically Regulated Insignificant Activities:

(b) One (1) twenty ton RAP bin with one (1) belt conveyer.

(c) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.1.1 PSD Minor Limits (PM) [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following:

(a) The total amount of hot-mix asphalt processed in the dryer/mixer and rotary aggregate drum mixer (R1) shall not exceed 487,551 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) PM emissions from the dryer/mixer shall not exceed 0.447 pounds per ton of asphalt processed.

(c) PM emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.447 pounds
per ton of asphalt processed.

Compliance with these limitations, combined with the PM emissions from all other emission units at this source, shall limit the source-wide total potential to emit PM to less than 250 tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 (PSD) not applicable.

D.1.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]

Pursuant to 326 IAC 2-8-4 and in order to render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following:

(a) The total amount of hot-mix asphalt processed in the dryer/mixer and rotary aggregate drum mixer (R1) shall not exceed 487,551 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) PM$_{10}$ emissions from the dryer/mixer shall not exceed 0.183 pounds per ton of asphalt processed.

(c) PM$_{2.5}$ emissions from the dryer/mixer shall not exceed 0.194 pounds per ton of asphalt processed.

(d) CO emissions from the dryer/mixer shall not exceed 0.400 pounds per ton of asphalt processed.

(e) PM10 emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.183 pounds per ton of asphalt processed.

(f) PM2.5 emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.194 pounds per ton of asphalt processed.

Compliance with these limits, in combination with the potential to emit PM$_{10}$, PM$_{2.5}$, and CO from all other emission units at this source, shall limit the source-wide total potential to emit of PM$_{10}$, PM$_{2.5}$, and CO to less than 100 tons per twelve (12) consecutive month period, each, and shall render 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.3 FESOP Limits: SO2 and HAPs [326 IAC 2-8-4][326 IAC 2-4.1]

Pursuant to 326 IAC 2-8-4 (FESOP), and in order to render 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)), and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAPs)) not applicable, the Permittee shall comply with the following:

(a) Fuel Specifications

(1) The sulfur content of the No. 2 distillate fuel oil combusted in the dryer burner shall not exceed 0.50% by weight.

(2) The sulfur content of the waste oil combusted in the dryer burner shall not exceed 0.50% by weight.

(3) The waste oil combusted in the dryer burner shall not contain more than 0.50% ash, 0.250% chlorine, and 0.010% lead.

(4) HCl emissions from the dryer/mixer shall not exceed 16.5 pounds of HCl per 1,000 gallons of waste oil burned.
(b) **Single Fuel Limitations**
When combusting only one type of fuel per twelve (12) consecutive month period in the dryer/mixer burner, the usage of the fuel shall be limited as follows:

1. No. 2 fuel oil usage shall not exceed 2,651,075 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month;
2. Waste Oil usage shall not exceed 1,200,000 gallons per twelve (12) consecutive month period, with compliance determined at the end of each month;

The source is only permitted to burn the above-mentioned fuels in the dryer/mixer burner.

(c) **Multiple Fuel Usage Limitations**
When combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner, emissions from the dryer/mixer shall be limited as follows:

1. SO₂ emissions from the dryer/mixer burner shall not exceed 94.11 tons per twelve (12) month period, with compliance determined at the end of each month.
2. HCl emissions shall not exceed 9.90 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with these limits, in combination with the potential to emit SO₂ and HAPs from all other emission units at this source, shall limit the source-wide total potential to emit of SO₂ to less than 100 tons per twelve (12) consecutive month period, any single HAP to less than ten (10) tons per twelve (12) consecutive month period, and total HAPs to less than twenty-five (25) tons per twelve (12) consecutive month period and shall render 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP) not applicable.

D.1.4 **Particulate Emission Limitations [326 IAC 6-3-2]**

(a) Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), particulate emissions from the rotary aggregate dryer/mixer and asphalt batch tower shall not exceed 57.37 pounds per hour when operating at a process weight rate of 180 tons per hour.

The pounds per hour limitation was calculated with the following equation:

\[E = 55.0 P^{0.11} - 40 \]

Where \(E \) = rate of emission in pounds per hour; and
\(P \) = process weight rate in tons per hour

(b) Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), particulate emissions from the emission units listed below shall not exceed the limits as specified below.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>P (ton/hr)</th>
<th>E (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotary aggregate drum mixer (R1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>aggregate screen (AG1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>bucket elevator (BE1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>Process / Emission Unit</td>
<td>P (ton/hr)</td>
<td>E (lb/hr)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>RAP bin with one (1) belt conveyer (BC1)</td>
<td>180</td>
<td>57.37</td>
</tr>
</tbody>
</table>

The pounds per hour limitation was calculated with the following equation:

Interpolation and extrapolation of the data for the process weight rates in excess of sixty thousand (60,000) pounds per hour shall be accomplished by use of the equation:

\[
E = 55.0 P^{0.11} - 40
\]

Where \(E \) = rate of emission in pounds per hour; and \(P \) = process weight rate in tons per hour

D.1.5 Sulfur Dioxide (SO2) \([326 \text{ IAC 7-1.1-1}][326 \text{ IAC 7-2-1}]\)

(a) Pursuant to 326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations), sulfur dioxide emissions from the 66 million Btu per hour burner for the aggregate dryer shall be limited to 0.5 pounds per million Btu heat input when using distillate oil.

(b) Pursuant to 326 IAC 7-1.1 (Sulfur Dioxide Emission Limitations), sulfur dioxide emissions from the 66 million Btu per hour burner for the aggregate dryer shall be limited to 1.6 pounds per million Btu heat input when using residual oil or waste oil.

No. 2 fuel oil, No. 4 fuel oil, and diesel fuel oil are considered distillate oils, and waste oil, No. 5 fuel oil, No. 6 fuel oil, and refinery blend fuel oil are considered residual oils.

D.1.6 Preventive Maintenance Plan \([326 \text{ IAC 2-8-4(9)}]\)

A Preventive Maintenance Plan is required for these facilities and any corresponding control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements \([326 \text{ IAC 2-8-4(1)}]\)

D.1.7 Particulate Control

(a) In order to comply with Conditions D.1.1(b), D.1.2(b), D.1.2(c), and D.1.4, the jetpulse baghouse for particulate control shall be in operation and control emissions from the dryer/mixer at all times the dryer/mixer is in operation.

(b) In order to comply with Conditions D.1.1(c), D.1.2(e), D.1.2(f), and D.1.4, the baghouse for particulate control shall be in operation and control emissions from the rotary aggregate drum mixer (R1) at all times the rotary aggregate drum mixer (R1) is in operation.

(c) In the event that bag failure is observed in a multi-compartment baghouse, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.

D.1.8 Testing Requirements \([326 \text{ IAC 2-1.1-11}]\)

(a) In order to demonstrate compliance with Condition D.1.1(b), D.1.2(b) and D.1.2(c) the Permittee shall perform PM, PM10 and PM2.5 testing (after control) of the dryer/mixer no later than 180 days after the issuance of this permit 143-41779-03192, utilizing methods approved by the Commissioner. The test shall be repeated at least once every five (5)
years from the date of the most recent valid compliance demonstration, utilizing methods approved by the Commissioner. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C - Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition. PM10 and PM2.5 include filterable and condensable PM.

(a) In order to demonstrate compliance with Condition D.1.1(c), D.1.2(e) and D.1.2(f), the Permittee shall perform PM, PM10 and PM2.5 testing (after control) of the rotary aggregate drum mixer (R1) no later than 180 days after the initial startup of the rotary aggregate drum mixer (R1), utilizing methods approved by the Commissioner. The test shall be repeated at least once every five (5) years from the date of the most recent valid compliance demonstration, utilizing methods approved by the Commissioner. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C - Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition. PM10 and PM2.5 include filterable and condensable PM.

D.1.9 Sulfur Dioxide Emissions and Sulfur Content

Compliance with the fuel limitations established in Conditions D.1.3(a)(1), D.1.3(a)(2), D.1.3(a)(3), D.1.5(a), and D.1.5(b) shall be determined utilizing one of the following options.

(a) Pursuant to 326 IAC 3-7-4, the Permittee shall demonstrate that the sulfur dioxide emissions do not exceed 0.5 pounds per million British thermal units heat input when combusting distillate oil (No. 2 or No. 4 fuel oil), or 1.6 pounds per million British thermal units heat input when combusting residual oil or waste oil (waste oil, No. 5 fuel oil, No. 6 fuel oil, and refinery blend fuel oil), by:

(1) Providing vendor analysis of heat content and sulfur content of the fuel delivered, if accompanied by a vendor certification; or

(2) Analyzing the fuel sample to determine the sulfur content of the fuel via the procedures in 40 CFR 60, Appendix A, Method 19.

(A) Fuel samples may be collected from the fuel tank immediately after the fuel tank is filled and before any fuel is combusted; and

(B) If a partially empty fuel tank is refilled, a new sample and analysis would be required upon filling.

(b) Compliance may also be determined by conducting a stack test for sulfur dioxide emissions from the 66 MMBtu/hr aggregate dryer burner, using 40 CFR 60, Appendix A, Method 6 in accordance with the procedures in 326 IAC 3-6.

A determination of noncompliance pursuant to any of the methods specified above shall not be refuted by evidence of compliance pursuant to the other method.

D.1.10 Hydrogen Chloride (HCl) Emissions and Ash, Chlorine, and Lead Content

The Permittee shall demonstrate compliance with the waste oil ash, chlorine, and lead content limits established in Conditions D.1.3(a)(3) and D.1.3(a)(4), by providing a vendor analysis of each fuel delivery accompanied by a vendor certification.

D.1.11 Multiple Fuel Usage Limitations

(a) In order to comply with the Condition D.1.3(c)(1) when combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner, the Permittee shall limit fuel usage according to the following formulas:
Sulfur Dioxide (SO₂) Emission Calculation

\[S = \frac{O(E_O) + W(E_W)}{2,000 \text{ lbs/ton}} \]

where:

- \(S \) = tons of sulfur dioxide emissions for a 12-month consecutive period
- \(O \) = gallons of No. 2 fuel oil used in the last 12 months
- \(W \) = gallons of waste oil used in the last 12 months
- \(E_O \) = 0.071 lb SO₂/gallon of No. 2 fuel oil
- \(E_W \) = 0.147 lb SO₂/gallon of waste oil

(b) In order to comply with the Condition D.1.3(c)(2) when combusting more than one fuel per twelve (12) consecutive month period in the dryer/mixer burner, the Permittee shall limit fuel usage according to the following formulas:

Hydrogen Chloride (HCl) Emission Calculation

\[\text{HCl} = \frac{W(E_W)}{2,000 \text{ lbs/ton}} \]

where:

- \(\text{HCl} \) = tons of hydrogen chloride emissions for twelve (12) month consecutive period, with compliance determined at the end of each month
- \(W \) = gallons of waste oil used in the last 12 months
- \(E_W \) = 0.0264 lb HCl/gallon of waste oil

Compliance Monitoring Requirements [326 IAC 2-8-4(1)][326 IAC 2-8-5(a)(1)]

D.1.12 Visible Emissions Notations

(a) Visible emission notations of the conveyors, screens, and material transfer points shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C - Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.
D.1.13 Parametric Monitoring

The Permittee shall record the pressure drop across the baghouses used in conjunction with the dryer/mixer and rotary aggregate drum mixer (R1), at least once per day when the dryer/mixer and rotary aggregate drum mixer (R1) are in operation. When for any one reading, the pressure drop across any of the baghouses is outside the normal range the Permittee shall take a reasonable response. The normal range for this unit is a pressure drop between 3.0 and 6.0 inches of water unless a different upper-bound or lower-bound value for this range is determined during the latest stack test. Section C - Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

D.1.14 Broken or Failed Bag Detection

(a) For a single compartment baghouses controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.1.15 Record Keeping Requirements

(a) To document the compliance status with Condition D.1.1(a) and D.1.2(a) the Permittee shall keep records of the amount of asphalt processed through the dryer/mixer each month and each compliance period.

(b) To document the compliance status with Conditions D.1.3, D.1.5, D.1.9, D.1.10, and D.1.11 the Permittee shall maintain records in accordance with (1) through (6) below. Records maintained for (1) through (6) below shall be taken monthly and shall be complete and sufficient to establish compliance with the limits established in Conditions D.1.3 and D.1.5.

(1) Calendar dates covered in the compliance determination period;

(2) Actual fuel usage, sulfur content, heat content, and equivalent sulfur dioxide emission rates for each fuel used at the source each month and each compliance determination period;

(3) Actual waste oil usage, ash, chlorine, and lead content, and equivalent hydrogen chloride emission rate for waste oil used at the source each month and each
compliance determination period. Waste oil ash, chorine, and lead content records shall include a vendor analysis of each waste oil fuel delivery accompanied by a vendor certification;

(4) A certification, signed by the owner or operator, that the records of the fuel supplier certifications represent all of the fuel combusted during the period; and

(5) If the fuel supplier certification is used to demonstrate compliance the following, as a minimum, shall be maintained:

(A) Fuel supplier certifications;

(B) The name of the fuel supplier; and

(C) A statement from the fuel supplier that certifies the sulfur content of the No. 2 fuel oil and waste oil, and the chlorine content of waste oil.

(6) When combusting more than one fuel per twelve (12) consecutive month period, SO2 and HCl emissions each month and each compliance period;

(c) To document the compliance status with Condition D.1.12, the Permittee shall maintain records of the daily visible emission notations of the conveyors, screens, and material transfer points. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g., the process did not operate that day).

(d) To document the compliance status with Condition D.1.13, the Permittee shall maintain daily records of pressure drop for the baghouses. The Permittee shall include in its daily record when a pressure drop is not taken and the reason for the lack of pressure drop data (e.g., the process did not operate that day).

(e) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.1.16 Reporting Requirements

Quarterly summaries of the information to document compliance status with Conditions D.1.1(a), D.1.2(a), D.1.3, and D.1.11, shall be submitted using the reporting forms located at the end of this permit, or their equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The reports submitted by the Permittee do require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by the "authorized individual" as defined by 326 IAC 2-1.1-1(1).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Specifically Regulated Insignificant Activities:

(a) One (1) cold aggregate feed system (Cold Mix Asphalt Operation), installed in 2005, modified between 2008 and 2018, consisting of seven (7) cold aggregate feeder bins with a total capacity of 220 tons and three (3) belt conveyors.

(d) One (1) cold aggregate feed system (Cold Mix Asphalt Operation), identified as CA1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.2.1 Volatile Organic Compounds (VOC) [326 IAC 8-5-2]

Pursuant to 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving Rules), the use of cutback asphalt or asphalt emulsion shall not contain more than seven percent (7%) oil distillate by volume of emulsion as determined by ASTM D244-80a "Emulsific Asphalts" ASTM part 15, 1981 ASTM 1916 Race St., Philadelphia, PA 19103, Library of Congress Card Catalog #40-10712, for any paving application except as used for the following purposes:

(a) Penetrating prime coating

(b) Stockpile storage

(c) Application during the months of November, December, January, February, and March.

D.2.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]

Pursuant to 326 IAC 2-8-4 and in order to render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following for the cold aggregate feed systems:

(a) The total VOC emissions from the sum of the binders shall not exceed 54.27 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) Liquid binders used in the production of cold mix asphalt shall be defined as follows:

(1) Cut back asphalt rapid cure, containing a maximum of 25.3% of the liquid binder by weight of VOC solvent and 95.0% by weight of VOC solvent evaporating.

(2) Cut back asphalt medium cure, containing a maximum of 28.6% of the liquid binder by weight of VOC solvent and 70.0% by weight of VOC solvent evaporating.

(3) Cut back asphalt slow cure, containing a maximum of 20.0% of the liquid binder by weight of VOC solvent and 25.0% by weight of VOC solvent evaporating.

(4) Emulsified asphalt with solvent, containing a maximum of 15.0% of liquid binder by weight of VOC solvent and 46.4% by weight of the VOC solvent in the liquid blend evaporating. The percent oil distillate in emulsified asphalt with solvent
liquid, as determined by ASTM, must be seven percent (7%) or less of the total emulsion by volume.

(5) Other asphalt with solvent binder, containing a maximum 25.9% of the liquid binder of VOC solvent and 2.5% by weight of the VOC solvent evaporating.

(c) When using only one type of liquid binder per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

(1) The total amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 57.13 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) The total amount of VOC solvent used in medium cure cutback asphalt shall not exceed 77.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(3) The total amount of VOC solvent used in slow cure cutback asphalt shall not exceed 217.09 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(4) The total amount of VOC solvent used in emulsified asphalt shall not exceed 116.97 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(5) The total amount of VOC solvent used in all other asphalt shall not exceed 2,170.94 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) When using more than one liquid binder per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

(1) The VOC solvent allotments in (3)(A) through (3)(E) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
VOC\text{ emitted (tons/yr)} = \frac{VOC\text{ solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.000</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

When combined with the potential to emit VOC from all other emission units at this source, compliance with these limits shall limit the source-wide total potential to emit of VOC to less than 100 tons per twelve (12) consecutive month period, and shall render 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD), not applicable.
D.2.3 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

A Preventive Maintenance Plan is required for these facilities. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Record Keeping and Reporting Requirements [326 IAC 2-8-4(3)]

D.2.4 Record Keeping Requirements

(a) To document the compliance status with Condition D.2.2(c)(1) through (5), the Permittee shall maintain records in accordance with (1) through (4) below. Records maintained shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limits established in Condition D.2.2(c)(1) through (5).

1. Calendar dates covered in the compliance determination period;
2. Cutback asphalt binder usage in the production of cold mix asphalt since the last compliance determination period;
3. VOC solvent content by weight of the cutback asphalt binder used in the production of cold mix asphalt since the last compliance determination period; and
4. Amount of VOC solvent used in the production of cold mix asphalt, and the amount of VOC emitted since the last compliance determination period.

Records may include: delivery tickets, manufacturer's data, material safety data sheets (MSDS), and other documents necessary to verify the type and amount used. Test results of ASTM tests for asphalt cutback and asphalt emulsion may be used to document volatilization.

(b) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.

D.2.5 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.2.2 shall be submitted no later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-8-5(a)(1) by the “authorized individual” as defined by 326 IAC 2-1.1-1(1).
SECTION D.3 EMISSIONS UNIT OPERATION CONDITIONS

Specifically Regulated Insignificant Activities:

(e) One (1) No. 2 fuel oil or propane fired hot oil heater with a maximum rated capacity of 2.2 MMBtu per hour, exhausting at one (1) stack identified as SV9.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.3.1 Particulate Emissions [326 IAC 6-2-4][326 IAC 6.5-1-2]

Pursuant to 326 IAC 6-2-4 (Particulate Emission Limitations for Sources of Indirect Heating), particulate emissions from the No. 2 fuel oil or propane fired hot oil heater shall be limited to 0.6 pounds per MMBtu heat input.

D.3.2 Preventive Maintenance Plan [326 IAC 2-8-4(9)]

A Preventive Maintenance Plan is required for this facility. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.
SECTION E.1 NSPS

Emissions Unit Description:

(b) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

Specifically Regulated Insignificant Activities

(c) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A - General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart I.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 Hot Mix Asphalt Facilities NSPS [326 IAC 12][40 CFR Part 60, Subpart I]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart I (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:
(1) 40 CFR 60.90
(2) 40 CFR 60.91
(3) 40 CFR 60.92
(4) 40 CFR 60.93

Compliance Determination Requirements [326 IAC 2-8-4(1)]

E.1.3 Testing Requirements [326 IAC 2-1.1-11]

In order to document the compliance status with Condition E.1.2, the Permittee shall perform the testing required under 40 CFR 60, Subpart I, utilizing methods as approved by the Commissioner, at least once every five (5) years from the date of the most recent valid compliance demonstration. Section C - Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FEDERALLY ENFORCEABLE STATE OPERATING PERMIT (FESOP) CERTIFICATION

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Dave O'Mara Contractor, Inc., Plant #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address:</td>
<td>313 South State Road 203, Lexington, Indiana 47170</td>
</tr>
<tr>
<td>FESOP Permit No.:</td>
<td>F143-39694-03192</td>
</tr>
</tbody>
</table>

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

- [] Annual Compliance Certification Letter
- [] Test Result (specify) __
- [] Report (specify) __
- [] Notification (specify) ___
- [] Affidavit (specify) ___
- [] Other (specify) __

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature: __

Printed Name: __

Title/Position: __

Date: __________________________
This is an emergency as defined in 326 IAC 2-7-1(12)
• The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
• The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-8-12

If any of the following are not applicable, mark N/A

- Facility/Equipment/Operation:
- Control Equipment:
- Permit Condition or Operation Limitation in Permit:
- Description of the Emergency:
- Describe the cause of the Emergency:
If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
<td></td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
<td>Y</td>
</tr>
<tr>
<td>Describe:</td>
<td></td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
<td></td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
<td></td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
<td></td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
<td></td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
<td></td>
</tr>
</tbody>
</table>

If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:

Form Completed by: ____________________________
Title / Position: ____________________________
Date: ____________________________
Phone: ____________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

FESOP Quarterly Report

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192
Facility: Asphalt Batch Mixer/Dryer and rotary aggregate drum mixer (R1)
Parameter: Hot Mix Asphalt Production
Limit: The total amount of hot-mix asphalt processed in the dryer/mixer shall not exceed 491,051 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asphalt Production (tons)</td>
<td>Asphalt Production (tons)</td>
<td>Asphalt Production (tons)</td>
</tr>
<tr>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
</tr>
</tbody>
</table>

- No deviation occurred in this quarter.
- Deviation/s occurred in this quarter.
 Deviation has been reported on:___________________________

Submitted by: ___
Title / Position: ___
Signature: ___
Date: ___
Phone: ___
S = O(E_o) + W(E_w)
2,000 lbs/ton

where:

S = tons of sulfur dioxide emissions for a 12-month consecutive period
O = gallons of No. 2 fuel oil used in the last 12 months
W = gallons of waste oil used in the last 12 months
E_o = 0.071 lb SO_2/gallon of No. 2 fuel oil
E_w = 0.147 lb SO_2/gallon of waste oil

Hydrogen Chloride (HCl) shall not exceed 9.90 tons per twelve (12) consecutive month period, with compliance determined at the end of each month, using the equation found in Condition D1.12(b) and below.

HCl = _____ W(E_w)____
2,000 lbs/ton

where:

HCl = tons of hydrogen chloride emissions for twelve (12) month consecutive period, with compliance determined at the end of each month
W = gallons of waste oil used in the last 12 months
E_w = 0.0264 lb HCl/gallon of waste oil
FESOP Quarterly Report - Multiple Fuel Usage / SO₂ and HCl Emissions

QUARTER: ____________ YEAR: ____________

<table>
<thead>
<tr>
<th>Month</th>
<th>Fuel</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 +Column 2</th>
<th>Equation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Usage (gallons)</td>
<td>Usage (gallons)</td>
<td>Usage (gallons)</td>
<td>Sulfur Dioxide (SO₂) Emissions (tons per 12 months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
</tbody>
</table>

- No. 2 Fuel Oil
- Waste Fuel Oil
- No. 2 Fuel Oil
- Waste Fuel Oil
- No. 2 Fuel Oil
- Waste Fuel Oil

- No deviation occurred in this quarter.

- Deviation/s occurred in this quarter.
 Deviation has been reported on: ________________________________

Submitted by: ________________________________
Title / Position: ________________________________
Signature: ________________________________
Date: ________________________________
Phone: ________________________________
Volatile Organic Compound (VOC) emissions from the sum of the binders shall not exceed 54.27 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

When using only one type of liquid binder per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Binder Usage Limit (tons per 12 consecutive month period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>57.13</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>77.53</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>217.09</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>116.97</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>2,170.94</td>
</tr>
</tbody>
</table>
FESOP Quarterly Report - Binder Usage / VOC Emissions

Quarter: ______________ **Year:** ______________

<table>
<thead>
<tr>
<th>Month</th>
<th>Binder Types</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
<th>Equation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Usage (tons)</td>
<td>Usage (tons)</td>
<td>Usage (tons)</td>
<td>VOC Emissions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td>(tons per 12 months)</td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt rapid cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt medium cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutback asphalt slow cure liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emulsified asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other asphalt with solvent liquid binder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- □ No deviation occurred in this reporting period.
- □ Deviation/s occurred in this reporting period.

Submitted by: ____________________________ Date: ____________

Title/Position: ____________________________ Phone: ____________

Deviation has been reported on: _________________ Signature: ____________________________

An Equal Opportunity Employer
Recycled Paper
VOC Emitted (tons/day) = VOC solvent used for each binder (tons/day) / Adjustment factor

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.0</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Indiana Department of Environmental Management

Office of Air Quality

Compliance and Enforcement Branch

Federally Enforceable State Operating Permit (FESOP)

Quarterly Deviation and Compliance Monitoring Report

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192

Months: _________ to _________ Year: _________

This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C - General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

- [] NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.

- [] THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Permit Requirement (specify permit condition #)

<table>
<thead>
<tr>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of Deviations:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Probable Cause of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Response Steps Taken:</th>
</tr>
</thead>
</table>

Permit Requirement (specify permit condition #)

<table>
<thead>
<tr>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of Deviations:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Probable Cause of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Response Steps Taken:</th>
</tr>
</thead>
</table>

Permit Requirement (specify permit condition #)

<table>
<thead>
<tr>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of Deviations:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Probable Cause of Deviation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Response Steps Taken:</th>
</tr>
</thead>
</table>

Form Completed by: __________________________

Title / Position: ___________________________

Date: __________________________

Phone: __________________________
PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart I—Standards of Performance for Hot Mix Asphalt Facilities

§ 60.90 Applicability and designation of affected facility.

(a) The affected facility to which the provisions of this subpart apply is each hot mix asphalt facility. For the purpose of this subpart, a hot mix asphalt facility is comprised only of any combination of the following: dryers; systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler, systems for mixing hot mix asphalt; and the loading, transfer, and storage systems associated with emission control systems.

(b) Any facility under paragraph (a) of this section that commences construction or modification after June 11, 1973, is subject to the requirements of this subpart.

§ 60.91 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and in subpart A of this part.

(a) Hot mix asphalt facility means any facility, as described in § 60.90, used to manufacture hot mix asphalt by heating and drying aggregate and mixing with asphalt cements.

[51 FR 12325, Apr. 10, 1986]

§ 60.92 Standard for particulate matter.

(a) On and after the date on which the performance test required to be conducted by § 60.8 is completed, no owner or operator subject to the provisions of this subpart shall discharge or cause the discharge into the atmosphere from any affected facility any gases which:

(1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf).

(2) Exhibit 20 percent opacity, or greater.

[39 FR 9314, Mar. 8, 1974, as amended at 40 FR 46259, Oct. 6, 1975]

§ 60.93 Test methods and procedures.

(a) In conducting the performance tests required in § 60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in § 60.8(b).
(b) The owner or operator shall determine compliance with the particulate matter standards in § 60.92 as follows:

(1) Method 5 shall be used to determine the particulate matter concentration. The sampling time and sample volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf).

(2) Method 9 and the procedures in § 60.11 shall be used to determine opacity.

[54 FR 6677, Feb. 14, 1989]
Source Description and Location

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Location: 313 South State Road 203, Lexington, IN 47170
County: Scott
SIC Code: 2951 (Asphalt Paving Mixtures and Blocks)
Operation Permit No.: F143-39694-03192
Operation Permit Issuance Date: October 2, 2018
Significant Permit Revision No.: 143-41779-03192
Permit Reviewer: Mehul Sura

Existing Approvals

The source was issued FESOP Renewal No. 143-39694-03192 on October 2, 2018. There have been no subsequent approvals issued.

County Attainment Status

The source is located in Scott County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective July 20, 2012, for the 2008 8-hour ozone standard.¹</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 5, 2005, for the annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective December 13, 2009, for the 24-hour PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Cannot be classified or better than national standards.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011.</td>
</tr>
</tbody>
</table>

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005.

(a) Ozone Standards
Volatile organic compounds (VOC) and Nitrogen Oxides (NOₓ) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOₓ emissions are considered when evaluating the rule applicability relating to ozone. Scott County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) PM₂.₅
Scott County has been classified as attainment for PM₂.₅. Therefore, direct PM₂.₅, SO₂, and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants
Scott County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.
Fugitive Emissions

This type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B). However, there is an applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980 (NSPS Subpart I, New Source Performance Standard for Hot Mix Asphalt Plants); therefore, fugitive emissions are counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of *Utility Air Regulatory Group v. EPA*, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Source Status - Existing Source

The table below summarizes the potential to emit of the entire source, prior to the proposed revision administrative amendment, after consideration of all enforceable limits established in the effective permits. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Source-Wide Emissions Prior to Revision (ton/year)</th>
<th>PM1</th>
<th>PM$_{10}$1</th>
<th>PM$_{2.5}$1,2</th>
<th>SO$_{2}$</th>
<th>NO$_{X}$</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP3</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE of Entire Source Including Fugitives*</td>
<td>249.00</td>
<td>99.00</td>
<td>99.00</td>
<td>99.00</td>
<td>30.63</td>
<td>67.50</td>
<td>99.00</td>
<td>9.9</td>
<td>24.9</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1Under the Part 70 Permit program (40 CFR 70), PM$_{10}$ and PM$_{2.5}$, not particulate matter (PM), are each considered as a "regulated air pollutant."

2PM$_{2.5}$ listed is direct PM$_{2.5}$.

3Single highest source-wide HAP

*Fugitive HAP emissions are always included in the source-wide emissions.

(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is
not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) This existing source is not a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs.

(c) These emissions are based on the TSD of FESOP Renewal No. 143-39694-03192, issued on October 2, 2018.

Description of Proposed Revision

The Office of Air Quality (OAQ) has reviewed an application, submitted by Dave O'Mara Contractor, Inc., Plant #6 on August 9, 2019, relating to:

(i) Removal of the following existing equipment:

(a) One (1) asphalt batch tower with a maximum capacity of 180 tons per hour of raw material, consisting of a hot aggregate elevator, screen, hot aggregate bins and weigh hopper, liquid asphalt weigh hopper, pug mill mixer, using a jetpulse baghouse as control, exhausting to one (1) stack, identified as SV-1.

(b) One (1) gasoline fuel transfer and dispensing operation handling less than or equal to 1,300 gallons per day.

(ii) Addition of the following new emission units:

(a) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

(b) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(c) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

(d) One (1) cold aggregate feed system, identified as CA1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(iii) Correct the Source Location address

There was a typographical error in the previously issued permits. The source location address was erroneously specified as Junction SR 203S & SR 56, Scottsburg, IN 47170. This address has been now corrected as 313 South State Road 203, Lexington, IN 47170.

The source has requested to use propane as backup fuel in the existing hot oil heater. The existing permit already specify that this existing hot oil heater can use propane fuel.

Enforcement Issues

There are no pending enforcement actions related to this revision.
Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

Permit Level Determination – FESOP Significant Permit Revision

Pursuant to 326 IAC 2-1.1-1(12), Potential to Emit is defined as “the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency.”

The following table is used to determine the appropriate permit level under 326 IAC 2-8-11.1 (Permit Revisions). This table reflects the PTE before controls of the proposed revision administrative amendment. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}1</th>
<th>SO\textsubscript{2}</th>
<th>NO\textsubscript{x}</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Single HAP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotary aggregate drum mixer (R1)</td>
<td>25,228.8</td>
<td>3,547.8</td>
<td>212.9</td>
<td>69.4</td>
<td>94.6</td>
<td>28.4</td>
<td>315.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>aggregate screen (AG1)</td>
<td>25.0</td>
<td>9.1</td>
<td>9.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bucket elevator (BE1), and RAP bin with one (1) belt conveyor (BC1)</td>
<td>5.1</td>
<td>2.4</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cold aggregate feed system (CA1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18,949.2</td>
<td>-</td>
<td>4,942.7</td>
<td>Xylene</td>
</tr>
<tr>
<td>Total PTE Before Controls of the New Emission Units:</td>
<td>25,258.9</td>
<td>3,559.3</td>
<td>222.4</td>
<td>69.4</td>
<td>94.6</td>
<td>18,977.6</td>
<td>315.4</td>
<td>4,942.7</td>
<td>1,705.4</td>
</tr>
</tbody>
</table>

1PM\textsubscript{2.5} listed is direct PM\textsubscript{2.5}.

2Single highest HAP.

Appendix A of this TSD reflects the detailed potential emissions of the proposed revision.

Pursuant to 326 IAC 2-8-11.1(f)(1)(A), this FESOP is being revised through a FESOP Significant Permit Revision because the proposed revision is not an Administrative Amendment or Minor Permit revision.

PTE of the Entire Source After Issuance of the FESOP Revision

The table below summarizes the after issuance source-wide potential to emit, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of the revision, and only to the extent that the effect of the control equipment is made practically enforceable in the permit. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.
<table>
<thead>
<tr>
<th>Source-Wide Emissions After Issuance (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁</td>
</tr>
<tr>
<td>Total PTE of Entire Source Including Fugitives*</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
</tr>
</tbody>
</table>

¹Under the Part 70 Permit program (40 CFR 70), PM₁₀ and PM₂,₅, not particulate matter (PM), are each considered as a “regulated air pollutant.”
²PM₂,₅ listed is direct PM₂,₅.
³Single highest source-wide HAP.
*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

The source opted to take PM, PM₁₀, PM₂,₅, and VOC limit(s) in order to render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable to this source and to render the source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA). See Technical Support Document (TSD) State Rule Applicability - Entire Source section, 326 IAC 2-2 (PSD) and 326 IAC 2-8 (FESOP), and 326 IAC 20 (Hazardous Air Pollutants) for more information regarding the limit(s).

(a) This existing Title V minor stationary source will continue to be minor under 326 IAC 2-7 because the potential to emit criteria pollutants and HAPs from the entire source will continue to be less than or limited to less than the Title V major source threshold levels. Therefore, the source is subject to the provisions of 326 IAC 2-8 (FESOP) and is an area source under Section 112 of the Clean Air Act (CAA).

(b) This existing minor PSD stationary source will continue to be minor under 326 IAC 2-2 because the potential to emit of all PSD regulated pollutants from the entire source will continue to be less than or limited to less than the PSD major source thresholds. Therefore, pursuant to 326 IAC 2-2, the PSD requirements do not apply.

Federal Rule Applicability Determination

Due to the proposed revision, federal rule applicability has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) Subpart I—Standards of Performance for Hot Mix Asphalt Facilities

Rotary aggregate drum mixer (R1), aggregate screen (AG1), bucket elevator (BE1), and RAP bin with one (1) belt conveyer (BC1) are subject to the requirements of NSPS, Subpart I, which is incorporated by reference as 326 IAC 12, because these emission units are considered hot mix asphalt facilities and have construction date after the Subpart I applicability date of June 11, 1973.

These emission units are subject to the following portions of Subpart I.

(1) 40 CFR 60.90
(2) 40 CFR 60.91
(3) 40 CFR 60.92
(4) 40 CFR 60.93

(b) Subpart OOO—Standards of Performance for Nonmetallic Mineral Processing Plants

Rotary aggregate drum mixer (R1), aggregate screen (AG1), bucket elevator (BE1), and RAP bin with one (1) belt conveyer (BC1) are not subject to the requirements of NSPS, Subpart OOO because these emission units are not sand crushing or grinding equipment. Therefore, these emission units are not subject to the requirements of this rule.

(c) There are no other NSPS (326 IAC 12 and 40 CFR Part 60) included in the permit for this proposed revision administrative amendment.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(a) Subpart AAAAAA—National Emission Standards for Hazardous Air Pollutants for Area sources: Asphalt Processing and Asphalt Roofing Manufacturing

The requirements of this NESHAP, Subpart AAAAAA applies to asphalt processing plant and asphalt roofing products. This source does not blow asphalt, therefore, this source is not an asphalt processing plant and this source does not produces asphalt roofing products, therefore, this source is not an asphalt roofing plant. As a result, this source is not subject to the requirements of NESHAP, Subpart AAAAAA.

(b) There are no National Emission Standards for Hazardous Air Pollutants (NESHAPs) (40 CFR Part 63, 326 IAC 14, and 326 IAC 20) included in the permit for this proposed revision administrative amendment.

Compliance Assurance Monitoring (CAM):

Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is not included in the permit, because the unlimited potential to emit of the source is limited to less than the Title V major source thresholds and the source is not required to obtain a Part 70 or Part 71 permit.

| State Rule Applicability - Entire Source |

Due to this revision administrative amendment, state rule applicability has been reviewed as follows:

326 IAC 2-2 (PSD) and 326 IAC 2-8-4 (FESOP)

PSD and Emission Offset applicability is discussed under the PTE of the Entire Source After Issuance of the FESOP RevisionAdministrative Amendment section of this document.

PM, PM10 and PM2.5 Limits

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 326 IAC 2-3 (Emission Offset) not applicable, the Permittee shall comply with the following:

(b) PM emissions from the existing dryer/mixer shall not exceed 0.447 pounds per ton of asphalt processed.

(b) PM10 emissions from the existing dryer/mixer shall not exceed 0.183 pounds per ton of asphalt processed.

(c) PM2.5 emissions from the existing dryer/mixer shall not exceed 0.194 pounds per ton of asphalt processed.

(b) PM emissions from the proposed rotary aggregate drum mixer (R1) shall not exceed 0.447 pounds per ton of asphalt processed.
(b) \(\text{PM}_{10} \) emissions from the proposed rotary aggregate drum mixer (R1) shall not exceed 0.183 pounds per ton of asphalt processed.

(c) \(\text{PM}_{2.5} \) emissions from the proposed rotary aggregate drum mixer (R1) shall not exceed 0.194 pounds per ton of asphalt processed.

Compliance with these limits, combined with the potential to emit PM from all other emission units at this source, shall limit the source-wide total potential to emit of PM to less than 250 tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-2 (PSD) not applicable.

Compliance with these limits, combined with the potential to emit \(\text{PM}_{10} \) and \(\text{PM}_{2.5} \) from all other emission units at this source, shall limit the source-wide total potential to emit \(\text{PM}_{10} \) and \(\text{PM}_{2.5} \), each, to less than 100 tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-2 (PSD) and 326 IAC 2-7 (Part 70 Permits) not applicable.

The \(\text{PM}, \text{PM}_{10} \) and \(\text{PM}_{2.5} \) limits of the existing dryer/mixer have been revised to include the rotary aggregate drum mixer (R1) emissions.

There are no changes in other existing \(\text{PM}, \text{PM}_{10} \) and \(\text{PM}_{2.5} \) limits specified in the existing permit.

VOC Limit

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) and 326 IAC 2-3 (Emission Offset) not applicable, the Permittee shall comply with the following for the existing and proposed cold aggregate feed systems:

(a) The total VOC emissions from the sum of the binders shall not exceed 54.27 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(b) Liquid binders used in the production of cold mix asphalt shall be defined as follows:

1. **Cut back asphalt rapid cure**, containing a maximum of 25.3% of the liquid binder by weight of VOC solvent and 95.0% by weight of VOC solvent evaporating.

2. **Cut back asphalt medium cure**, containing a maximum of 28.6% of the liquid binder by weight of VOC solvent and 70.0% by weight of VOC solvent evaporating.

3. **Cut back asphalt slow cure**, containing a maximum of 20.0% of the liquid binder by weight of VOC solvent and 25.0% by weight of VOC solvent evaporating.

4. **Emulsified asphalt with solvent**, containing a maximum of 15.0% of liquid binder by weight of VOC solvent and 46.4% by weight of the VOC solvent in the liquid blend evaporating. The percent oil distillate in emulsified asphalt with solvent liquid, as determined by ASTM, must be seven percent (7%) or less of the total emulsion by volume.

5. **Other asphalt with solvent binder**, containing a maximum 25.9% of the liquid binder of VOC solvent and 2.5% by weight of the VOC solvent evaporating.

(c) When using only one type of liquid binder per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

1. The total amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 57.13 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

2. The total amount of VOC solvent used in medium cure cutback asphalt shall not exceed 77.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
(3) The total amount of VOC solvent used in slow cure cutback asphalt shall not exceed 217.09 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(4) The total amount of VOC solvent used in emulsified asphalt shall not exceed 116.97 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(5) The total amount of VOC solvent used in all other asphalt shall not exceed 2,170.94 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) When using more than one liquid binder per twelve (12) consecutive month period, VOC emissions shall be limited as follows:

(1) The VOC solvent allotments in (3)(A) through (3)(E) above shall be adjusted when more than one type of binder is used per twelve (12) consecutive month period with compliance determined at the end of each month. In order to determine the tons of VOC emitted per each type of binder, use the following formula and divide the tons of VOC solvent used for each type of binder by the corresponding adjustment factor listed in the table that follows.

\[
\text{VOC emitted (tons/yr)} = \frac{\text{VOC solvent used for each binder (tons/yr)}}{\text{Adjustment factor}}
\]

<table>
<thead>
<tr>
<th>Type of Binder</th>
<th>Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutback Asphalt Rapid Cure</td>
<td>1.053</td>
</tr>
<tr>
<td>Cutback Asphalt Medium Cure</td>
<td>1.429</td>
</tr>
<tr>
<td>Cutback Asphalt Slow Cure</td>
<td>4.000</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td>2.155</td>
</tr>
<tr>
<td>Other Asphalt</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Compliance with these limits, combined with the potential to emit VOC from all other emission units at this source, shall limit the source-wide total potential to emit of VOC to less than 100 tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-2 (PSD) and 326 IAC 2-7 (Part 70 Permits) not applicable.

There are no changes in other existing VOC limits specified in the existing permit.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The new emission unit(s) will emit less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the facility/unit, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the emission units specified in the table below shall not exceed the pounds per hour specified in that table when operating at its process weight rates in tons per hour. The pound per hour limitation was calculated with the following equation:

Interpolation and extrapolation of the data for the process weight rate in excess of sixty thousand (60,000)
pounds per hour shall be accomplished by use of the equation:

\[E = 55.0 \ P^{0.11} - 40 \]

where \(E \) = rate of emission in pounds per hour; and
\(P \) = process weight rate in tons per hour

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>P (ton/hr)</th>
<th>E (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotary aggregate drum mixer (R1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>aggregate screen (AG1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>bucket elevator (BE1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>RAP bin with one (1) belt conveyer (BC1)</td>
<td>180</td>
<td>57.37</td>
</tr>
</tbody>
</table>

The baghouse equipped on rotary aggregate drum mixer (R1) shall be in operation at all times R1 is in operation, in order to comply with this limit.

326 IAC 8-5-2 (Asphalt Paving Rules)

Pursuant to 326 IAC 8-5-1(1), the proposed cold aggregate feed system (CA1) at this source is subject to the requirements of 326 IAC 8-5-2, since it is a paving operation and its construction date is after January 1, 1980.

Pursuant to 326 IAC 8-5-2 (Miscellaneous Operations: Asphalt Paving Rules), the use of cutback asphalt or asphalt emulsion shall not contain more than seven percent (7%) oil distillate by volume of emulsion as determined by ASTM D244-80a "Emulsific Asphalts" ASTM part 15, 1981 ASTM 1916 Race St., Philadelphia, PA 19103, Library of Congress Card Catalog #40-10712, for any paving application except as used for the following purposes:

(a) Penetrating prime coating
(b) Stockpile storage
(c) Application during the months of November, December, January, February, and March.

326 IAC 12 (New Source Performance Standards)

See Federal Rule Applicability Section of this TSD.

326 IAC 20 (Hazardous Air Pollutants)

See Federal Rule Applicability Section of this TSD.

Compliance Determination and Monitoring Requirements

(a) The Compliance Determination Requirements applicable to this revision administrative amendment are as follows:

Testing Requirements:

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>Timeframe for Testing</th>
<th>Pollutant/ Parameter</th>
<th>Frequency of Testing</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>proposed rotary aggregate drum mixer</td>
<td>baghouse</td>
<td>not later than one hundred eighty (180) days after the startup of R1</td>
<td>PM10 and PM2.5 (2)</td>
<td>Every 5 Years</td>
<td>326 IAC 2-8-4 and 326 IAC 2-2</td>
</tr>
</tbody>
</table>
Within 60 days after achieving the maximum production rate of R1 but not later than 180 days after initial startup of R1

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Emission Unit</th>
<th>Type of Parametric Monitoring</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>baghouse</td>
<td>rotary aggregate drum mixer (R1)</td>
<td>pressure drop</td>
<td>Daily</td>
</tr>
</tbody>
</table>

This monitoring condition is necessary because the baghouse for rotary aggregate drum mixer (R1) must operate properly to assure compliance with 326 IAC 2-8-4, 326 IAC 6-3-2 and 326 IAC 2-2.

Proposed Changes

The following changes listed below are due to the proposed revision. Deleted language appears as strikethrough text and new language appears as **bold** text:

A.1 General Information [326 IAC 2-8-3(b)]

The Permittee owns and operates a stationary hot mix asphalt batch plant.

Source Address: Junction SR 203S & SR 56, Scottsburg

313 South State Road 203, Lexington, Indiana 47170

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-8-3(c)(3)]

This stationary source consists of the following emission units and pollution control devices:

(b) One (1) asphalt batch tower with a maximum capacity of 180 tons per hour of raw material, consisting of a hot aggregate elevator, screen, hot aggregate bins and weigh hopper, liquid asphalt weigh hopper, pug mill mixer, using a jetpulse baghouse as control, exhausting to one (1) stack, identified as SV-1.

One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction,
capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-8-3(c)(3)(I)]

This stationary source also includes the following specifically regulated insignificant activities:

(a) One (1) cold aggregate feed system (Cold Mix Asphalt Operation), installed in 2005, modified between 2008 and 2018, consisting of seven (7) cold aggregate feeder bins with a total capacity of 220 tons and three (3) belt conveyors.

(b) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(d) One (1) cold aggregate feed system, identified as CA1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) Storage piles consisting of the following:

(f) One (1) gasoline fuel transfer and dispensing operation handling less than or equal to 1,300 gallons per day.

Under 40 CFR 63, Subpart CCCCCC, this unit is an affected gasoline dispensing facility (GDF).

(g) One (1) No. 2 fuel oil or propane fired hot oil heater with a maximum rated capacity of 2.2 MMBtu per hour, exhausting at one (1) stack identified as SV9.

(h) Paved and unpaved roads and parking lots with public access.

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(b) One (1) asphalt batch tower with a maximum capacity of 180 tons per hour of raw material, consisting of a hot aggregate elevator, screen, hot aggregate bins and weigh
hopper, liquid asphalt weigh hopper, pug mill mixer, using a jet pulse baghouse as control, exhausting to one (1) stack, identified as SV-1.

One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

Specifically Regulated Insignificant Activities:

(b) One (1) twenty ton RAP bin with one (1) belt conveyer.

(c) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-8-4(1)]

D.1.1 PSD Minor Limits (PM) [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following:

(a) The total amount of hot-mix asphalt processed in the dryer/mixer and rotary aggregate drum mixer (R1) shall not exceed 487,551 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) PM emissions from the dryer/mixer shall not exceed 0.8940.447 pounds per ton of asphalt processed.

(c) PM emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.447 pounds per ton of asphalt processed.

Compliance with these limitations, combined with the PM emissions from all other emission units at this source, shall limit the source-wide total potential to emit PM to less than 250 tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 (PSD) not applicable.

D.1.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]

Pursuant to 326 IAC 2-8-4 and in order to render the requirements of 326 IAC 2-7 (Part 70
Permits) and 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following:

(a) The total amount of hot-mix asphalt processed in the dryer/mixer and rotary aggregate drum mixer (R1) shall not exceed 487,551 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(b) PM\(_{10}\) emissions from the dryer/mixer shall not exceed 0.3660.183 pounds per ton of asphalt processed.

(c) PM\(_{2.5}\) emissions from the dryer/mixer shall not exceed 0.3680.194 pounds per ton of asphalt processed.

(d) CO emissions from the dryer/mixer shall not exceed 0.400 pounds per ton of asphalt processed.

(e) PM10 emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.183 pounds per ton of asphalt processed.

(f) PM2.5 emissions from the rotary aggregate drum mixer (R1) shall not exceed 0.194 pounds per ton of asphalt processed.

Compliance with these limits, in combination with the potential to emit PM10, PM2.5, and CO from all other emission units at this source, shall limit the source-wide total potential to emit of PM10, PM2.5, and CO to less than 100 tons per twelve (12) consecutive month period, each, and shall render 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

\[E = 55.0 \times P^{0.11} - 40 \]

D.1.4 Particulate Emission Limitations [326 IAC 6-3-2]

(a) Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), particulate emissions from the rotary aggregate dryer/mixer and asphalt batch tower shall not exceed 57.37 pounds per hour when operating at a process weight rate of 180 tons per hour.

(b) Pursuant to 326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes), particulate emissions from the emission units listed below shall not exceed the limits as specified below.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>P (ton/hr)</th>
<th>E (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotary aggregate drum mixer (R1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>aggregate screen (AG1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>bucket elevator (BE1)</td>
<td>180</td>
<td>57.37</td>
</tr>
<tr>
<td>RAP bin with one (1) belt conveyer (BC1)</td>
<td>180</td>
<td>57.37</td>
</tr>
</tbody>
</table>

The pounds per hour limitation was calculated with the following equation:

\[E = 55.0 \times P^{0.11} - 40 \]
Where \(E \) = rate of emission in pounds per hour; and
\(P \) = process weight rate in tons per hour

D.1.7 Particulate Control
(a)
(b) In order to comply with Conditions D.1.1(c), D.1.2(e), D.1.2(f), and D.1.4, the baghouse for particulate control shall be in operation and control emissions from the rotary aggregate drum mixer (R1) at all times the rotary aggregate drum mixer (R1) is in operation.

D.1.8 Testing Requirements [326 IAC 2-1.1-11]
(a) In order to demonstrate compliance with Condition D.1.1(b), D.1.2(b) and D.1.2(c) the Permittee shall perform PM, PM10 and PM2.5 testing (after control) of the dryer/mixer no later than 180 days after the issuance of this permit 143-39694-03192 143-41779-03192, utilizing methods approved by the Commissioner. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C - Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition. PM10 and PM2.5 include filterable and condensable PM.

(b) In order to demonstrate compliance with Condition D.1.1(c), D.1.2(e) and D.1.2(f), the Permittee shall perform PM, PM10 and PM2.5 testing (after control) of the rotary aggregate drum mixer (R1) no later than 180 days after the initial startup of the rotary aggregate drum mixer (R1), utilizing methods approved by the Commissioner. The test shall be repeated at least once every five (5) years from the date of the most recent valid compliance demonstration, utilizing methods approved by the Commissioner. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C - Performance Testing contains the Permittee's obligation with regard to the performance testing required by this condition. PM10 and PM2.5 include filterable and condensable PM.

D.1.13 Parametric Monitoring
The Permittee shall record the pressure drop across the jetpulse baghouses used in conjunction with the dryer/mixer and rotary aggregate drum mixer (R1), at least once per day when the dryer/mixer and rotary aggregate drum mixer (R1) is in operation. When for any one reading, the pressure drop across any the jetpulse of the baghouses is outside the normal range the Permittee shall take a reasonable response. The normal range for this unit is a pressure drop between 3.0 and 6.0 inches of water unless a different upper-bound or lower-bound value for this range is determined during the latest stack test. Section C – Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.
The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

D.1.15 Record Keeping Requirements

(d) To document the compliance status with Condition D.1.13, the Permittee shall maintain daily records of pressure drop for the dryer/mixer jetpulse baghouses. The Permittee shall include in its daily record when a pressure drop is not taken and the reason for the lack of pressure drop data (e.g., the process did not operate that day).

D.2.2 FESOP and PSD Minor Limits [326 IAC 2-8-4][326 IAC 2-2]

Pursuant to 326 IAC 2-8-4 and in order to render the requirements of 326 IAC 2-7 (Part 70 Permits) and 326 IAC 2-2 (PSD) not applicable, the Permittee shall comply with the following for the cold aggregate feed systems:

(a) The total VOC emissions from the sum of the binders shall not exceed 54.27 tons per twelve (12) consecutive month period with compliance determined at the end of each month.

(c) When using only one type of liquid binder per twelve (12) consecutive month period, the usage of liquid binder shall be limited as follows:

(1) The total amount of VOC solvent used in rapid cure cutback asphalt shall not exceed 57.13 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(2) The total amount of VOC solvent used in medium cure cutback asphalt shall not exceed 77.53 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
The total amount of VOC solvent used in slow cure cutback asphalt shall not exceed 217.09 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

The total amount of VOC solvent used in emulsified asphalt shall not exceed 116.97 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

The total amount of VOC solvent used in all other asphalt shall not exceed 2,170.94 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

(d) ...
(2) If the owner or employees of the owner of a gasoline dispensing facility are not present during loading, it shall be the responsibility of the owner or the operator of the transport to make certain the vapor balance system is:

(A) Connected between the transport and the storage tank; and

(B) Operating according to manufacturer’s specifications.

D.4.2 Volatile Organic Compounds (VOC) [326 IAC 8-4-7]

Pursuant to 326 IAC 8-4-7, the Permittee shall comply with the following:

(a) No owner or operator of a gasoline transport shall cause, allow, or permit the transfer of gasoline between transports and storage tanks that are equipped with a vapor balance system or vapor recovery system unless:

(1) the vapor balance system or vapor recovery system is connected and operating according to manufacturers’ specifications;

(2) gasoline transport compartment hatches are closed at all times during loading operations;

(3) except as provided in section 9(i) of this rule (stack testing) and for sources subject to 40 CFR 60.503(b)* (Standards of Performance for New Stationary Sources) or 40 CFR 63.425(a)* (National Emission Standards for Hazardous Air Pollutants) requirements, there are no visible leaks, or otherwise detectable leaks (measured at twenty-one thousand (21,000) parts per million as propane as specified in 40 CFR 63.425(f)(1)*), in the gasoline transport’s pressure/vacuum relief valves, hatch cover, trailer compartments, storage tanks, or associated vapor and liquid lines during loading or unloading; and

(4) the pressure relief valves on gasoline transports are set to release at no less than four and eight-tenths (4.8) kilo Pascals (seven-tenths (0.7) pounds per square inch).

(b) Tank wagons are exempt from vapor balance requirements.

(c) When employees of the owner of a bulk gasoline terminal are present to supervise or perform loading, the owner of the terminal shall be responsible for compliance with subsection (a)(1) through (a)(3). The owner of the terminal shall also ensure that owners of gasoline transports loading at the terminal during unsupervised times comply with this section.

(d) Gasoline transports must be designed, maintained, and operated so as to be vapor-tight.

(e) Transfer of gasoline between a gasoline transport and a storage tank that is not equipped with a vapor balance system or vapor recovery system is not subject to this section.

D.4.3 Volatile Organic Compounds (VOC) [326 IAC 8-4-9]

Pursuant to 326 IAC 8-4-9, the Permittee shall comply with the following:

(a) The owner or operator of a vapor balance system or vapor control system subject to this rule shall:

(1) Design and operate the applicable system and the gasoline loading equipment in a manner that prevents:

(A) gauge pressure from exceeding four thousand five hundred (4,500)
pascals (eighteen (18) inches of H2O) and a vacuum from exceeding one thousand five hundred (1,500) pascals (six (6) inches of H2O) in the gasoline transport;

(B) except for sources subject to 40 CFR 60.503(b)* (Standards of Performance for New Stationary Sources) or 40 CFR 63.425(a)* (National Emission Standards for Hazardous Air Pollutants) requirements, a reading equal to or greater than twenty-one thousand (21,000) parts per million as propane, from all points on the perimeter of a potential leak source when measured by the method referenced in 40 CFR 60, Appendix A, Method 21*, or an equivalent procedure approved by the commissioner during loading or unloading operations at gasoline dispensing facilities, bulk plants, and bulk terminals; and

(C) avoidable visible liquid leaks during loading or unloading operations at gasoline dispensing facilities, bulk plants, and bulk terminals; and

(2) Within fifteen (15) days, repair and retest a vapor balance, collection, or control system that exceeds the limits in subdivision (1).

(b) The owner or operator of a vapor balance or vapor control system subject to this section shall maintain records of all certification testing. The records shall identify the following:

(1) The vapor balance, vapor collection, or vapor control system.

(2) The date of the test and, if applicable, retest.

(3) The results of the test and, if applicable, retest.

The records shall be maintained in a legible, readily available condition for at least two (2) years after the date the testing and, if applicable, retesting were completed.
SECTION E.1 NESHAP

Emissions Unit Description:

(d) One (1) gasoline fuel transfer and dispensing operation handling less than or equal to 1,300 gallons per day.

Under 40 CFR 63, Subpart CCCCC, this unit is an affected gasoline dispensing facility (GDF).

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-8-4(1)]

(a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart CCCCC.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart CCCCC (included as Attachment B to the operating permit), for the emission unit(s) listed above:

(1) 40 CFR 63.11110
(2) 40 CFR 63.11111(a), (c), (e), (f), (h), (l), (j), (k)
(3) 40 CFR 63.11112(a), (d)
(4) 40 CFR 63.11113(b), (c), (f)
(5) 40 CFR 63.11115
(6) 40 CFR 63.11117
(7) 40 CFR 63.11124(a)
(8) 40 CFR 63.11125(d)
(9) 40 CFR 63.11126(b)
(10) 40 CFR 63.11130
(11) 40 CFR 63.11134
(12) 40 CFR 63.11132
(13) Table 3
SECTION E.1 NSPS

Emissions Unit Description:

(b) One (1) rotary aggregate drum mixer, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) aggregate screen, identified as AG1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, using a baghouse as control, exhausting to one (1) stack, identified as SV-2.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

Specifically Regulated Insignificant Activities

(c) One (1) bucket elevator, identified as BE1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(e) One (1) twenty ton RAP bin with one (1) belt conveyer, identified as BC1, approved in 2019 for construction, capable of processing 180 tons per hour of raw material, without control, exhausting outside.

Under NSPS Subpart I, this is considered an affected hot mix asphalt facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-8-4(1)]

E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart I.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 Hot Mix Asphalt Facilities NSPS [326 IAC 12] [40 CFR Part 60, Subpart I]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart I (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

1. 40 CFR 60.90
2. 40 CFR 60.91
(3) 40 CFR 60.92
(4) 40 CFR 60.93

Compliance Determination Requirements [326 IAC 2-8-4(1)]

E.1.3 Testing Requirements [326 IAC 2-1.1-11]

In order to document the compliance status with Condition E.1.2, the Permittee shall perform the testing required under 40 CFR 60, Subpart I, utilizing methods as approved by the Commissioner, at least once every five (5) years from the date of the most recent valid compliance demonstration. Section C - Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

. . .

CERTIFICATION

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: Junction SR 203S & SR56, Scottsburg 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192
. . .

EMERGENCY OCCURRENCE REPORT

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: Junction SR 203S & SR56, Scottsburg 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192
. . .

FESOP Quarterly Report

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: Junction SR 203S & SR56, Scottsburg 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192
Facility: Asphalt Batch Mixer/Dryer and rotary aggregate drum mixer (R1)
Parameter: Hot Mix Asphalt Production
Limit: The total amount of hot-mix asphalt processed in the dryer/mixer shall not exceed 491,051 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

. . .

FESOP Quarterly Report

Source Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: Junction SR 203S & SR56, Scottsburg 313 South State Road 203, Lexington, Indiana 47170
FESOP Permit No.: F143-39694-03192
Facility: Asphalt Batch Mixer/Dryer Cold Aggregate Feed Systems (Cold Mix Asphalt Operations)
Parameter: Binder Usage / VOC Emissions

. . .
Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on August 9, 2019.

The construction and operation of this proposed revision shall be subject to the conditions of the attached proposed FESOP MinorSignificant Permit Revision No. 143-41779-03192. The staff recommends to the Commissioner that the FESOP Significant Permit Revision be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Mehul Sura, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-6868 or toll free at 1-800-451-6027, and ask for Mehul Sura or (317) 233-6868.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
Modification Summary

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Unlimited/Uncontrolled Potential to Emit

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Emission units</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum mixer</td>
<td>rotary aggregate drum mixer (R1)</td>
<td>25,228.8</td>
<td>3,547.8</td>
<td>212.9</td>
<td>69.4</td>
<td>94.6</td>
<td>28.4</td>
<td>315.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Screening</td>
<td>aggregate screen (AS21)</td>
<td>25.0</td>
<td>9.1</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Processing and Handling</td>
<td>bucket elevator (BE1), and RAP bin with one (1) belt conveyer (BC1)</td>
<td>5.1</td>
<td>2.4</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cold Mix Operation</td>
<td>cold aggregate feed system (CA1)</td>
<td>18,949.2</td>
<td>4,942.7</td>
<td>1,705.4</td>
<td>Xylenes</td>
<td></td>
<td></td>
<td></td>
<td>1,705.4</td>
<td>1,705.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25,258.9</td>
<td>3,559.3</td>
<td>222.4</td>
<td>69.4</td>
<td>94.6</td>
<td>18,977.6</td>
<td>315.4</td>
<td>4,942.7</td>
<td>1,705.4</td>
</tr>
</tbody>
</table>
Appendix A.1: Unlimited Emissions Calculations

Entire Source - Batch Mix

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Asphalt Plant Maximum Capacity - Batch Mix

- **Maximum Hourly Asphalt Production:** 180 ton/hr
- **Maximum Annual Blast Furnace Slag Usage:** 0 ton/yr 1.5% sulfur
- **Maximum Annual Steel Slag Usage:** 0 ton/yr 0.66% sulfur
- **Maximum Dryer Fuel Input Rate:** 66.0 MMBtu/hr
- **Natural Gas Usage:** 0 MMCF/yr
- **No. 2 Fuel Oil Usage:** 4,129,714 gal/yr, and 0.50% sulfur
- **No. 4 Fuel Oil Usage:** 0 gal/yr, and 0.50% sulfur
- **Residual (No. 5 or No. 6) Fuel Oil Usage:** 0 gal/yr, and 0.50% sulfur
- **Propane Usage:** 0 gal/yr, and 0.20 gr/100 ft³ sulfur
- **Butane Usage:** 0 gal/yr, and 0.22 gr/100 ft³ sulfur
- **Used/Waste Oil Usage:** 4,129,714 gal/yr, and 0.50% sulfur
 - 0.50% ash
 - 0.250% chlorine
 - 0.010% lead

Unlimited PM Dryer/Mixer Emission Factor: 32.0 lb/ton of asphalt production
Unlimited PM10 Dryer/Mixer Emission Factor: 4.5 lb/ton of asphalt production
Unlimited PM2.5 Dryer/Mixer Emission Factor: 0.27 lb/ton of asphalt production
Unlimited VOC Dryer/Mixer Emission Factor: 0.4 lb/ton of asphalt production
Unlimited CO Dryer/Mixer Emission Factor: 0.74 lb/ton of slag processed
Unlimited Steel Slag SO2 Dryer/Mixer Emission Factor: 0.0014 lb/ton of slag processed

Process Description

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAP</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer Fuel Combustion (worst case)</td>
<td>66.08</td>
<td>52.65</td>
<td>52.65</td>
<td>151.77</td>
<td>41.30</td>
<td>2.06</td>
<td>10.32</td>
<td>35.89</td>
<td>34.07 (hydrogen chloride)</td>
</tr>
<tr>
<td>Dryer/Mixer and Batch Tower (Process)</td>
<td>25,228.89</td>
<td>3,547.80</td>
<td>212.87</td>
<td>69.38</td>
<td>34.61</td>
<td>28.38</td>
<td>315.38</td>
<td>6.12</td>
<td>2.13 (formaldehyde)</td>
</tr>
<tr>
<td>Dryer/Mixer Slag Processing (worst case)</td>
<td>0.14</td>
<td>0.23</td>
<td>0.23</td>
<td>4.89</td>
<td>0.11</td>
<td>0.79</td>
<td>0.005</td>
<td>0.004 (hexane)</td>
<td></td>
</tr>
<tr>
<td>Hot Oil Heater Fuel Combustion/Process (worst case)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Worst Case Emissions</td>
<td>25,228.94</td>
<td>3,548.03</td>
<td>213.10</td>
<td>156.65</td>
<td>95.98</td>
<td>28.49</td>
<td>316.15</td>
<td>35.89</td>
<td>34.07 (hydrogen chloride)</td>
</tr>
</tbody>
</table>

Fugitive Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAP</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Load-Out, Silo Filling, On-Site Yard</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0</td>
<td>0</td>
<td>13.51</td>
<td>2.27</td>
<td>0.23</td>
<td>0.07 (formaldehyde)</td>
</tr>
<tr>
<td>Material Storage Piles</td>
<td>1.00</td>
<td>0.35</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Processing and Handling</td>
<td>5.09</td>
<td>2.41</td>
<td>0.36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Material Crushing, Screening, and Conveying</td>
<td>0.02</td>
<td>9.14</td>
<td>9.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unpaved and Paved Roads (worst case)</td>
<td>66.48</td>
<td>7.45</td>
<td>7.45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hot Mix Asphalt Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatile Organic Liquid Storage Vessels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Fugitive Emissions</td>
<td>97.45</td>
<td>30.22</td>
<td>12.47</td>
<td>0.00</td>
<td>0.00</td>
<td>18.991</td>
<td>2.27</td>
<td>6,492.88</td>
<td>#REF! (xylenes)</td>
</tr>
</tbody>
</table>

Totals Unlimited/Uncontrolled PTE | 25,326.39 | 3,578.24 | 225.56 | 156.65 | 95.98 | 18,991.19 | 318.42 | 4,978.77 | #REF! (xylenes)

negl = negligible
Worst Case Fuel Combustion is based on the fuel with the highest emissions for each specific pollutant.

*Worst Case Emissions (tons/yr) = Worst Case Emissions from Dryer Fuel Combustion and Dryer/Mixer + Worst Case Emissions From Dryer/Mixer Slag Processing + Worst Case Emissions from Hot Oil Heater Fuel Combustion and Hot Oil Heating System Fuel component percentages provided by the source.
The following calculations determine the unlimited/uncontrolled emissions created from the combustion of natural gas, fuel oil, propane, butane, or used/waste oil in the dryer/mixer at the source.

Maximum Capacity

Natural Gas

- **Maximum Fuel Input Rate =** 66 MMBtu/hr
- **Natural Gas Usage =** 0 MMCF/yr

Fuel Oil

- **No. 2 Fuel Oil Usage =** 4,129,714 gal/yr, and 0.50 % sulfur
- **No. 4 Fuel Oil Usage =** 0 gal/yr, and 0.50 % sulfur

Propane

- **Propane Usage =** 0 gal/yr, and 0.20 gr/100 ft³ sulfur

Butane

- **Butane Usage =** 0 gal/yr, and 0.22 gr/100 ft³ sulfur

Used/Waste Oil

- **Used/Waste Oil Usage =** 4,129,714 gal/yr, and 0.50 % sulfur

Exhaust gas emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/MMCF)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (lb/gal)</th>
<th>Propane (lb/gal)</th>
<th>Butane (lb/gal)</th>
<th>Used/Waste Oil (lb/gal)</th>
<th>Natural Gas (ton/year)</th>
<th>No. 2 Fuel Oil (ton/year)</th>
<th>Residual (No. 5 or No. 6) Fuel Oil (ton/year)</th>
<th>Propane (ton/year)</th>
<th>Butane (ton/year)</th>
<th>Used/Waste Oil (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>100</td>
<td>0.00</td>
<td>35.75</td>
<td>151.77</td>
<td>0.00</td>
<td>8.74</td>
<td>35.89</td>
<td>35.89</td>
<td>151.77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CO</td>
<td>5.5</td>
<td>35.0</td>
<td>1.40</td>
<td>8.74</td>
<td>2.00</td>
<td>8.74</td>
<td>35.89</td>
<td>35.89</td>
<td>151.77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>VOC</td>
<td>0.20</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>71.0</td>
<td>75.0</td>
<td>78.5</td>
<td>0.02</td>
<td>0.02</td>
<td>146.60</td>
<td>146.60</td>
<td>146.60</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>0.00</td>
<td>35.75</td>
<td>151.77</td>
<td>0.00</td>
<td>8.74</td>
<td>35.89</td>
<td>35.89</td>
<td>151.77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CO</td>
<td>5.5</td>
<td>35.0</td>
<td>1.40</td>
<td>8.74</td>
<td>2.00</td>
<td>8.74</td>
<td>35.89</td>
<td>35.89</td>
<td>151.77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>VOC</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Methodology

- **Natural Gas Usage** (MMCF/yr) = Maximum Fuel Input Rate (MMCF/hr) / (8,760 hrs/yr) [1 MCF/1,000 MMBtu]
- **Oil Usage** (gal/yr) = Maximum Fuel Input Rate (MMBtu/hr) / [8,760 hrs/yr] [1 gal/140 MMBtu]
- **Propane Usage** (gal/yr) = Maximum Fuel Input Rate (MMBtu/hr) / [8,760 hrs/yr] [1 gal/0.095 MMBtu]
- **Butane Usage** (gal/yr) = Maximum Fuel Input Rate (MMBtu/hr) / [8,760 hrs/yr] [1 gal/0.092 MMBtu]
- **Oil** = Maximum Fuel Input Rate (MMBtu/hr) / [8,760 hrs/yr] [1 gal/0.092 MMBtu]
- **Waste Oil** = Maximum Fuel Input Rate (MMBtu/hr) / [8,760 hrs/yr] [1 gal/0.092 MMBtu]

HAP Emission Factors

<table>
<thead>
<tr>
<th>HAP</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Trichloroethane</td>
<td>3.30E-03</td>
<td>6.81E-03</td>
<td>3.30E-02</td>
<td>3.30E-02</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Butane</td>
<td>0.00</td>
<td>0.55</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.16E-03</td>
<td>5.0</td>
<td>1.10</td>
<td>1.10</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Propane</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethylene</td>
<td>7.5E-02</td>
<td>6.10E-02</td>
<td>3.30E-02</td>
<td>3.30E-02</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Formic acid</td>
<td>1.2E-03</td>
<td>3.30E-03</td>
<td>3.30E-03</td>
<td>3.30E-03</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Hydrogen chloride</td>
<td>1.51E-03</td>
<td>3.00E-03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Manganese</td>
<td>1.2E-05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1.51E-03</td>
<td>3.00E-03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Antimony</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>2.1E-05</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Polycyclic Aromatic</td>
<td>3.30E-03</td>
<td>6.81E-03</td>
<td>3.30E-02</td>
<td>3.30E-02</td>
<td>0.00</td>
<td>1.26E-01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.2E-04</td>
<td>3.00E-04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Total HAPs

- **Total HAPs** = 0.00

Notes

- Since there are no specific AP-42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.
Appendix A.1: Unlimited Emissions Calculations

Dryer/Mixer and Batch Tower - Process Emissions

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-0192
Reviewer: Mehul Sura

The following calculations determine the unlimited/uncontrolled emissions from the aggregate drying/mixing and the batch tower.

Maximum Hourly Asphalt Production = 180 ton/hr
Maximum Annual Asphalt Production = 1,576,800 ton/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM*</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>25228.8</td>
<td>25228.8</td>
<td>25228.8</td>
<td>25228.8</td>
</tr>
<tr>
<td>PM2.5*</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>212.868</td>
<td>212.868</td>
<td>212.868</td>
<td>212.868</td>
</tr>
<tr>
<td>SO2**</td>
<td>0.0046</td>
<td>0.086</td>
<td>0.086</td>
<td>3.6</td>
<td>69.4</td>
<td>69.4</td>
<td>69.4</td>
</tr>
<tr>
<td>NOx**</td>
<td>0.025</td>
<td>0.12</td>
<td>0.12</td>
<td>19.7</td>
<td>94.9</td>
<td>94.9</td>
<td>94.9</td>
</tr>
<tr>
<td>VOC**</td>
<td>0.0082</td>
<td>0.0082</td>
<td>0.036</td>
<td>6.5</td>
<td>6.5</td>
<td>28.4</td>
<td>28.4</td>
</tr>
<tr>
<td>CO***</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>315.4</td>
<td>315.4</td>
<td>315.4</td>
<td>315.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazardous Air Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>4.6E-07</td>
<td>4.6E-07</td>
<td>4.6E-07</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.5E-07</td>
<td>1.5E-07</td>
<td>1.5E-07</td>
<td>1.1E-04</td>
<td>1.1E-04</td>
<td>1.1E-04</td>
<td>1.1E-04</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.7E-07</td>
<td>5.7E-07</td>
<td>5.7E-07</td>
<td>4.4E-04</td>
<td>4.4E-04</td>
<td>4.4E-04</td>
<td>4.4E-04</td>
</tr>
<tr>
<td>Lead</td>
<td>8.9E-07</td>
<td>8.9E-07</td>
<td>1.0E-05</td>
<td>7.0E-04</td>
<td>7.0E-04</td>
<td>7.8E-03</td>
<td>7.8E-03</td>
</tr>
<tr>
<td>Manganese</td>
<td>6.9E-08</td>
<td>6.9E-09</td>
<td>6.9E-08</td>
<td>5.4E-03</td>
<td>5.4E-03</td>
<td>5.4E-03</td>
<td>5.4E-03</td>
</tr>
<tr>
<td>Mercury</td>
<td>4.1E-07</td>
<td>4.1E-07</td>
<td>4.1E-07</td>
<td>3.2E-04</td>
<td>3.2E-04</td>
<td>3.2E-04</td>
<td>3.2E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>3.0E-06</td>
<td>3.0E-06</td>
<td>3.0E-06</td>
<td>2.3E-03</td>
<td>2.3E-03</td>
<td>2.3E-03</td>
<td>2.3E-03</td>
</tr>
<tr>
<td>Selenium</td>
<td>4.9E-07</td>
<td>4.9E-07</td>
<td>4.9E-07</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
<td>3.6E-04</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>3.2E-04</td>
<td>3.2E-04</td>
<td>3.2E-04</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.8E-04</td>
<td>2.8E-04</td>
<td>2.8E-04</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>2.2E-03</td>
<td>2.2E-03</td>
<td>2.2E-03</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.4E-04</td>
<td>7.4E-04</td>
<td>7.4E-04</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Guaiacol</td>
<td>2.7E-04</td>
<td>2.7E-04</td>
<td>2.7E-04</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Tolueno</td>
<td>1.0E-03</td>
<td>1.0E-03</td>
<td>1.0E-03</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Total PAH Haps</td>
<td>1.1E-04</td>
<td>1.1E-04</td>
<td>2.3E-04</td>
<td>0.09</td>
<td>0.09</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Xylene</td>
<td>2.7E-03</td>
<td>2.7E-03</td>
<td>2.7E-03</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Total HAPs 6.12

Methodology

Worst Single HAP 2.13 (formaldehyde)

Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.

* SO2, NOx, and VOC AP-42 emission factors are for natural gas, No. 2 fuel oil, and waste oil only.
** CO AP-42 emission factor determined by combining data from drum mix dryer fired with natural gas, propane, fuel oil, and waste oil.
*** PM, PM10, and PM2.5 AP-42 emission factors based on drum mix dryer fired with natural gas, propane, fuel oil, and waste oil.

Abbreviations
PM = Particulate Matter
SO2 = Sulfur Dioxide
CO = Carbon Monoxide
NOx = Nitrous Oxides
PAH = Polycyclic Aromatic Hydrocarbon
HAP = Hazardous Air Pollutant
PM10 = Particulate Matter (<10 um)
VOC = Volatile Organic Compounds
PM2.5 = Particulate Matter (< 2.5 um)
NO = Nitric Oxides
HCl = Hydrogen Chloride
Appendix A.1: Unlimited Emissions Calculations
Dryer/Mixer Slag Processing

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the unlimited emissions from the processing of slag in the aggregate drying/mixing

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)</th>
<th>Unlimited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag*</td>
<td>0.74</td>
<td>0</td>
</tr>
<tr>
<td>Steel Slag**</td>
<td>0.0014</td>
<td>0</td>
</tr>
</tbody>
</table>

Methodology
The maximum annual slag usage was provided by the source.

* Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.

** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Unlimited Potential to Emit SO2 from Slag (tons/yr) = [(Maximum Annual Slag Usage (ton/yr)) * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations
SO2 = Sulfur Dioxide
Appendix A.1: Unlimited Emissions Calculations

Hot Oil Heater

Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Location: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Maximum Hot Oil Heater Fuel Input Rate = 2.20 MMBtu/hr
Natural Gas Usage = 0 MMCF/yr
No. 2 Fuel Oil Usage = 137,677 gal/yr, and 0.50 % sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas (lb/MMCF)</td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
</tr>
<tr>
<td></td>
<td>Natural Gas (tons/yr)</td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (tons/yr)</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.6</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
</tr>
<tr>
<td>NOx</td>
<td>0.000</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
</tr>
<tr>
<td>CO</td>
<td>94</td>
</tr>
</tbody>
</table>

Emission Factor (units)

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural Gas (lb/MMCF)</td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
</tr>
<tr>
<td></td>
<td>Natural Gas (tons/yr)</td>
</tr>
<tr>
<td></td>
<td>No. 2 Fuel Oil (tons/yr)</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.6</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
</tr>
<tr>
<td>NOx</td>
<td>0.000</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
</tr>
<tr>
<td>CO</td>
<td>94</td>
</tr>
</tbody>
</table>

Methodology

Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/MMBtu]

Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]

Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/MMBtu] / [2000 lbs]

All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gal/kgal)] * [Emission Factor (lb/kgal)] * [kgal/MMBtu] / [2000 lbs]

Sources of AP-42 Emission Factors for fuel combustion:

- Natural Gas: AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
- No. 2 Fuel Oil: AP-42 Chapter 1.3 (dated 5/10), Tables 1.3-1, 1.3-2, 1.3-3, 1.3-8, 1.3-9, 1.3-10, and 1.3-11

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- SO2 = Sulfur Dioxide
- NOx = Nitrous Oxides
- VOC = Volatile Organic Compounds
- CO = Carbon Monoxide
- HAP = Hazardous Air Pollutant
- HCl = Hydrogen Chloride
- PAH = Polycyclic Hydrocarbon
- Abbreviations (Hexane)
The following calculations determine the unlimited/uncontrolled emissions from the combustion of natural gas and No. 2 fuel oil in the hot oil heating system, which is used to heat a specially designed transfer oil. The hot transfer oil is then pumped through a piping system that passes through the asphalt cement storage tanks, in order to keep the asphalt cement at the correct temperature.

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/CF)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>2.60E-08</td>
<td>2.65E-05</td>
<td>0.00E+00</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>CO</td>
<td>8.90E-06</td>
<td>0.0012</td>
<td>0.000</td>
<td>0.083</td>
<td>0.083</td>
</tr>
<tr>
<td>Greenhouse Gas as CO2e*</td>
<td>0.20</td>
<td>28.00</td>
<td>0.00</td>
<td>1927.20</td>
<td>1927.20</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>2.60E-08</td>
<td>3.50E-06</td>
<td>0.00E+00</td>
<td>2.41E-04</td>
<td>2.41E-04</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>5.30E-07</td>
<td>3.65E-05</td>
<td></td>
<td>3.65E-05</td>
<td>3.65E-05</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>2.00E-07</td>
<td>1.38E-05</td>
<td></td>
<td>1.38E-05</td>
<td>1.38E-05</td>
</tr>
<tr>
<td>Anthracene</td>
<td>1.80E-07</td>
<td>1.24E-05</td>
<td></td>
<td>1.24E-05</td>
<td>1.24E-05</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.00E-07</td>
<td>8.88E-06</td>
<td></td>
<td>8.88E-06</td>
<td>8.88E-06</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>4.40E-08</td>
<td>3.03E-06</td>
<td></td>
<td>3.03E-06</td>
<td>3.03E-06</td>
</tr>
<tr>
<td>Fluorene</td>
<td>3.20E-08</td>
<td>2.20E-06</td>
<td></td>
<td>2.20E-06</td>
<td>2.20E-06</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1.70E-05</td>
<td>1.17E-03</td>
<td></td>
<td>1.17E-03</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>Pyrene</td>
<td>3.20E-08</td>
<td>2.20E-06</td>
<td></td>
<td>2.20E-06</td>
<td>2.20E-06</td>
</tr>
<tr>
<td>Total HAPs</td>
<td></td>
<td></td>
<td></td>
<td>1.83E-03</td>
<td>1.83E-03</td>
</tr>
</tbody>
</table>

Worst Single HAP 1.17E-03 (Naphthalene)

Methodology
Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * (8,760 hrs/yr) * (1 MMCF/1,000 MMBtu)
No. 2 Fuel Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * (8,760 hrs/yr) * (1 gal/0.140 MMBtu)
Natural Gas: Potential to Emit (tons/yr) = (Natural Gas Usage (MMCF/yr))*(Emission Factor (lb/CF))*(1000000 CF/MMCF)*(ton/2000 lbs)
No. 2 Fuel Oil: Potential to Emit (tons/yr) = (No. 2 Fuel Oil Usage (gals/yr))*(Emission Factor (lb/gal))*(ton/2000 lbs)
Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 (ton/yr) x CO2 GWP (1)
1 gallon of No. 2 Fuel Oil has a heating value of 140,000 Btu

Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Table 11.1-13
*Note: There are no emission factors for CH4 and N2O available in either 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no CH4 and N2O emission anticipated from this process.

Abbreviations
CO = Carbon Monoxide
VOC = Volatile Organic Compound
CO2 = Carbon Dioxide
Appendix A.1: Unlimited Emissions Calculations
LPG-Propane - Industrial Boilers
(Heat input capacity: > 10 MMBtu/hr and < 100 MMBtu/hr)

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/kgal</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5**</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission in tons/yr</td>
<td>0.02</td>
<td>0.07</td>
<td>0.07</td>
<td>0.00 (0.10S)</td>
<td>13.0</td>
<td>1.0</td>
<td>7.5</td>
<td>**TOC value</td>
</tr>
</tbody>
</table>

*PM emission factor is filterable PM only. PM emissions are stated to be all less than 10 microns in aerodynamic equivalent diameter, footnote in Table 1.5-1, therefore PM10 is based on the filterable and condensable PM emission factors.
** No direct PM2.5 emission factor was given. Direct PM2.5 is a subset of PM10. If one assumes all PM10 to be all direct PM2.5, then a worst case assumption of direct PM2.5 can be made.

The VOC value given is TOC. The methane emission factor is 0.2 lb/kgal.

Methodology

1 gallon of LPG has a heating value of 94,000 Btu
1 gallon of propane has a heating value of 91,500 Btu (use this to convert emission factors to an energy basis for propane)
(Source - AP-42 (Supplement B 10/96) page 1.5-1)

Potential Throughput (kgals/year) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 gallon per 1000 gallon x 1 gal per 0.0915 MMBtu

Emission Factors are from AP42 (7/08), Table 1.5-1 (SCC #1-02-010-02)

Propane Emission Factors shown. Please see AP-42 for butane.

Emission (tons/yr) = Throughput (kgals/yr) x Emission Factor (lb/kgal) / 2,000 lb/ton
Appendix A.1: Unlimited Emissions Calculations

Asphalt Load-Out, Silo Filling, and Yard Emissions

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the unlimited/uncontrolled fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Load-Out</th>
<th>Silo Filling</th>
<th>On-Site Yard</th>
<th>Load-Out</th>
<th>Silo Filling</th>
<th>On-Site Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PM*</td>
<td>5.2E-04</td>
<td>5.9E-04</td>
<td>NA</td>
<td>0.41</td>
<td>0.46</td>
<td>NA</td>
<td>0.87</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
<td>2.5E-04</td>
<td>NA</td>
<td>0.27</td>
<td>0.200</td>
<td>NA</td>
<td>0.47</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
<td>0.012</td>
<td>0.001</td>
<td>3.28</td>
<td>9.51</td>
<td>0.867</td>
<td>13.8</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
<td>0.001</td>
<td>3.5E-04</td>
<td>1.08</td>
<td>0.930</td>
<td>0.276</td>
<td>2.27</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):
- Total PM/PM10/PM2.5 Ef = 0.000181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)
- Organic PM Ef = 0.00141(-V)e^((0.0251)(T+460)-20.43)
- TOC Ef = 0.0172(-V)e^((0.0251)(T+460)-20.43)
- CO Ef = 0.00558(-V)e^((0.0251)(T+460)-20.43)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):
- PM/PM10 Ef = 0.000332 + 0.00105(-V)e^((0.0251)(T+460)-20.43)
- Organic PM Ef = 0.00105(-V)e^((0.0251)(T+460)-20.43)
- TOC Ef = 0.00504(-V)e^((0.0251)(T+460)-20.43)
- CO Ef = 0.00488(-V)e^((0.0251)(T+460)-20.43)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

*No emission factors available for PM10 or PM2.5, therefore IDEM assumes PM10 and PM2.5 are equivalent to Total PM.

Abbreviations
- TOC = Total Organic Compounds
- CO = Carbon Monoxide
- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- HAP = Hazardous Air Pollutant
- VOC = Volatile Organic Compound

Methodology
The asphalt temperature and volatility factor were provided by the source.
Unlimited/Uncontrolled Potential to Emit (tons/yr) = (Maximum Annual Asphalt Production (tons/yr)) * (Emission Factor (lb/ton asphalt)) * (ton/2000 lbs)
Asphalt Load-Out, Silo Filling, and Yard Emissions (continued)

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Speciation Profile</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out and Onsite Yard (% by weight of Total Organic PM)</td>
<td>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</td>
<td>Load-out</td>
</tr>
<tr>
<td>PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.26%</td>
<td>0.47%</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.028%</td>
<td>0.014%</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.07%</td>
<td>0.13%</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56-55-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.019%</td>
<td>0.056%</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0076%</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207-08-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0022%</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>191-24-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0019%</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0023%</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(c)pyrene</td>
<td>192-97-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.0078%</td>
<td>0.0095%</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.103%</td>
<td>0.21%</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53-70-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.00037%</td>
<td>0</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.05%</td>
<td>0.15%</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.77%</td>
<td>1.01%</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.00047%</td>
<td>0</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91-57-6</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>2.38%</td>
<td>5.27%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>1.25%</td>
<td>1.82%</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85-01-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.81%</td>
<td>1.80%</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td>0.15%</td>
<td>0.44%</td>
</tr>
<tr>
<td>Total PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.016</td>
</tr>
<tr>
<td>Other semi-volatile HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.016</td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td>PM/HAP</td>
<td>---</td>
<td>Organic PM</td>
<td>1.18%</td>
<td>0</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Speciation Profile (%)] * [Organic PM (tons/yr)]

Abbreviations
PM = Particulate Matter
HAP = Hazardous Air Pollutant
POM = Polycyclic Organic Matter
Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Speciation Profile</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out and Onsite Yard (% by weight of TOC)</td>
<td>Silo Filling and Asphalt Storage Tank (% by weight of TOC)</td>
</tr>
<tr>
<td>VOC</td>
<td></td>
<td>---</td>
<td>TOC</td>
<td>94%</td>
<td>100%</td>
<td>3.08</td>
</tr>
<tr>
<td>non-VOC/non-HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>6.50%</td>
<td>0.26%</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.048%</td>
<td>0.058%</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.71%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Total non-VOC/non-HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.30%</td>
<td>1.40%</td>
</tr>
<tr>
<td>Volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.052%</td>
<td>0.032%</td>
</tr>
<tr>
<td>Bromoform</td>
<td>74-83-9</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.006%</td>
<td>0.0043%</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>78-93-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.049%</td>
<td>0.039%</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.013%</td>
<td>0.016%</td>
</tr>
<tr>
<td>Chloroform</td>
<td>75-00-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0021%</td>
<td>0.004%</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.015%</td>
<td>0.023%</td>
</tr>
<tr>
<td>Cumene</td>
<td>92-82-8</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.11%</td>
<td>0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.28%</td>
<td>0.038%</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.089%</td>
<td>0.095%</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>100-54-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.15%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Isocynane</td>
<td>540-84-1</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0018%</td>
<td>0.00031%</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>75-09-2</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0.00027%</td>
</tr>
<tr>
<td>MTBE</td>
<td>1634-04-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0073%</td>
<td>0.0054%</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0077%</td>
<td>0</td>
</tr>
<tr>
<td>Toluene</td>
<td>100-88-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.21%</td>
<td>0.062%</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0013%</td>
<td>0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.24%</td>
<td>0.020%</td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>1330-20-7</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.41%</td>
<td>0.057%</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.08%</td>
<td>0.052%</td>
</tr>
<tr>
<td>Total volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50%</td>
<td>1.30%</td>
</tr>
</tbody>
</table>

Methodology

Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Speciation Profile (%)] * [TOC (tons/yr)]

Abbreviations

TOC = Total Organic Compounds
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
MTBE = Methyl tert butyl ether
Appendix A.1: Unlimited Emissions Calculations

Material Storage Piles

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA's AP-42 (Pre 1983 Edition), Section 11.2.3.

\[Ef = 1.7 \times \left(\frac{s}{1.5} \right) \times \left(\frac{365-p}{235} \right) \times \left(\frac{f}{15} \right) \]

where
- \(Ef \) = emission factor (lb/acre/day)
- \(s \) = silt content (wt %)
- \(p \) = 125 days of rain greater than or equal to 0.01 inches
- \(f \) = 15% of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>0.75</td>
<td>0.412</td>
<td>0.144</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>0.75</td>
<td>0.253</td>
<td>0.089</td>
</tr>
<tr>
<td>RAP</td>
<td>0.5</td>
<td>0.58</td>
<td>0.75</td>
<td>0.079</td>
<td>0.028</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>0.75</td>
<td>0.253</td>
<td>0.089</td>
</tr>
<tr>
<td>Shingles</td>
<td>0.5</td>
<td>0.58</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.40</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Totals 1.00 0.35

Methodology

PTE of PM (tons/yr) = (Emission Factor (lb/acre/day)) \times (Maximum Pile Size (acres)) \times (ton/2000 lbs) \times (8760 hours/yr)

PTE of PM10/PM2.5 (tons/yr) = (Potential PM Emissions (tons/yr)) \times 35%

*Silt content values obtained from AP-42 Table 13.2.4-1 (dated 1/95)

**Maximum anticipated pile size (acres) provided by the source.

PM2.5 = PM10

Abbreviations

RAP - recycled asphalt pavement
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations

Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)

To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1/95) are utilized.

\[
Ef = k*(0.0032)*[(U/5)^1.3 / (M/2)^1.4]
\]

where:
- \(k \) (PM) = 0.74 = particle size multiplier (0.74 assumed for aerodynamic diameter <=100 um)
- \(k \) (PM10) = 0.35 = particle size multiplier (0.35 assumed for aerodynamic diameter <=10 um)
- \(k \) (PM2.5) = 0.053 = particle size multiplier (0.053 assumed for aerodynamic diameter <=2.5 um)
- \(U \) = 10.2 = worst case annual mean wind speed (Source: NOAA, 2006*)
- \(M \) = 4.0 = material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1)

\[
Ef \text{ (PM)} = 2.27E-03 \text{ lb PM/ton of material handled}
\]
\[
Ef \text{ (PM10)} = 1.07E-03 \text{ lb PM10/ton of material handled}
\]
\[
Ef \text{ (PM2.5)} = 1.62E-04 \text{ lb PM2.5/ton of material handled}
\]

Maximum Annual Asphalt Production = 1,576,800 tons/yr

Percent Asphalt Cement/Binder (weight %) = 5.0%

Maximum Material Handling Throughput = 1,497,960 tons/yr

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10 (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>1.70</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>1.70</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>1.70</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>5.09</td>
<td>2.41</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Methodology

The percent asphalt cement/binder provided by the source.

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Unlimited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * (Emission Factor (lb/ton)) * (ton/2000 lbs)

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006

Material Screening and Conveying (AP-42 Section 11.19.2)

To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 11.19.2 (dated 8/04) are utilized.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lbs/ton)*</th>
<th>Uncontrolled Emission Factor for PM10 (lbs/ton)*</th>
<th>Unlimited/Uncontrolled PTE of PM (tons/yr)</th>
<th>Unlimited/Uncontrolled PTE of PM10/PM2.5 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0054</td>
<td>0.0024</td>
<td>4.04</td>
<td>1.80</td>
</tr>
<tr>
<td>Screening</td>
<td>0.025</td>
<td>0.0087</td>
<td>18.72</td>
<td>6.52</td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0011</td>
<td>2.25</td>
<td>0.82</td>
</tr>
<tr>
<td>Unlimited Potential to Emit (tons/yr)</td>
<td>25.52</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Unlimited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * (ton/2000 lbs)

Raw materials may include stone/gravel, slag, and recycled asphalt pavement (RAP). The bulk moisture content of aggregate in the storage piles at a hot mix asphalt production plant typically stabilizes between 3 to 5 percent by weight (Source: AP-42 Section 11.1.1.1).

*Uncontrolled emissions factors for PM/PM10 represent tertiary crushing of stone with moisture content ranging from 0.21 to 1.3 percent by weight (Table 11.19.2-2). The bulk moisture content of aggregate in the storage piles at a hot mix asphalt production plant typically stabilizes between 3 to 5 percent by weight (Source: AP-42 Section 11.1.1.1).

** Assumes PM10 = PM2.5

Abbreviations
- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate matter (< 2.5 um)
- PTE = Potential to Emit
Affected Site

Unpaved Roads

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch 13.2.2 (12/2003).

Emission Factors

- **PM = Particulate Matter**
- **PM10 = Particulate Matter (>10 um)**
- **PM2.5 = Particulate Matter (<2.5 um)**
- **PM1 = Particulate Matter (<1 um)**
- **PM0.1 = Particulate Matter (<0.1 um)**

Maximum Emission Factors

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (tons)</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum Trips per Year (trip/yr)</th>
<th>Maximum Weight Driven per Year (ton/yr)</th>
<th>Maximum Weight Driven per Day (ton/day)</th>
<th>Maximum one-way distance (miles/trip)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphlt Concrete Truck Enter Empty</td>
<td>Asphalt</td>
<td>17.0</td>
<td>17.0</td>
<td>4.37E+04</td>
<td>1.18E+06</td>
<td>200</td>
<td>1.17</td>
</tr>
<tr>
<td>Asphlt Concrete Truck Leave Full</td>
<td>ASPHALT</td>
<td>3.63</td>
<td>3.63</td>
<td>2.68E+04</td>
<td>1.28E+04</td>
<td>1.17</td>
<td>300</td>
</tr>
<tr>
<td>Asphlt Concrete Binder Truck Enter Empty</td>
<td>ASPHALT</td>
<td>3.63</td>
<td>3.63</td>
<td>2.68E+04</td>
<td>1.28E+04</td>
<td>1.17</td>
<td>300</td>
</tr>
<tr>
<td>Asphlt Concrete Binder Truck Leave Empty</td>
<td>ASPHALT</td>
<td>3.63</td>
<td>3.63</td>
<td>2.68E+04</td>
<td>1.28E+04</td>
<td>1.17</td>
<td>300</td>
</tr>
<tr>
<td>Fuel Oil Truck Enter Full</td>
<td></td>
<td>6.24</td>
<td>6.24</td>
<td>4.48E+04</td>
<td>1.98E+04</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Fuel Oil Truck Leave Full</td>
<td></td>
<td>6.24</td>
<td>6.24</td>
<td>4.48E+04</td>
<td>1.98E+04</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Asphlt Concrete Binder Loader Empty</td>
<td></td>
<td>4.85</td>
<td>4.85</td>
<td>3.65E+04</td>
<td>1.68E+04</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Asphlt Concrete Binder Loader Full</td>
<td></td>
<td>4.85</td>
<td>4.85</td>
<td>3.65E+04</td>
<td>1.68E+04</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Aggregate Truck Leave Empty</td>
<td>Aggregate</td>
<td>17.0</td>
<td>17.0</td>
<td>4.37E+04</td>
<td>1.18E+06</td>
<td>200</td>
<td>1.17</td>
</tr>
<tr>
<td>Aggregate Truck Enter Empty</td>
<td>Aggregate</td>
<td>17.0</td>
<td>17.0</td>
<td>4.37E+04</td>
<td>1.18E+06</td>
<td>200</td>
<td>1.17</td>
</tr>
<tr>
<td>Aggregate Truck Leave Full</td>
<td>Aggregate</td>
<td>17.0</td>
<td>17.0</td>
<td>4.37E+04</td>
<td>1.18E+06</td>
<td>200</td>
<td>1.17</td>
</tr>
<tr>
<td>Aggregate Truck Enter Empty</td>
<td>Aggregate</td>
<td>17.0</td>
<td>17.0</td>
<td>4.37E+04</td>
<td>1.18E+06</td>
<td>200</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Mitigated Emission Factors

- **Mitigated Emission Factor, Ef = \(E \times \left(1 - \frac{P}{365} \right) \)**
- **Mitigated Emission Factor, E_{ext} = \(E \times \left(1 - \frac{P}{365} \right) \)**

Methodology

- **Maximum Material Handling Throughput** = Maximum Asphalt Production Limitation (tons/yr) + Maximum Material Handling Throughput (tons/yr)
- **Maximum Weight of Vehicle and Load** = Maximum Weight of Vehicle (tons) + Maximum Weight of Load (tons)
- **Total Weight Driven per Year (ton/yr)** = Maximum Weight of Vehicle and Load (tons) \times [Average Vehicle Weight per Trip (ton/trip)]
- **Maximum one-way distance (miles/trip)** = Maximum one-way distance (feet/trip) \times 0.000621
- **Average Miles Per Trip** = [Maximum one-way distance (miles/trip)] + [Average Vehicle Weight per Trip (ton/trip) \times 52.8 (ton/mile)]
- **Average Vehicle Weight Per Trip** = [Average Miles Per Trip] / [Average Trips per Year (trip/yr)]
- **Maximum Trips per Year (trip/yr)** = [Maximum Weight of Vehicle and Load (tons)] / [Average Vehicle Weight per Trip (ton/trip)]
- **Maximum one-way distance (miles/trip)** = [Maximum one-way distance (miles/trip)] / [Average Trips per Year (trip/yr)]

Abbreviations

- **PM** = Particulate Matter
- **PM10** = Particulate Matter (>10 um)
- **PM2.5** = Particulate Matter (<2.5 um)
- **PTE** = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations

Paved Roads

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41179-03182
Reviewer: Mehul Sura

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (12/2003).

Calculations

Maximum Annual Asphalt Production

- Asphalt, per year (tons/yr): 1,584,900
- Percent Asphalt Cement/Binder (weight %): 40%
- Maximum Material Handling Throughput (tons/yr): 6,000
- Percent Asphalt Cement/Binder Thruput (tons/yr): 2,400
- Maximum No. 2 Fuel Oil Usage (gallons/yr): 124,400

Emissions Calculations

Mitigated Emission Factor (tons/yr)

- Mitigated PTE of PM: 20.3
- Mitigated PTE of PM10: 22.4
- Mitigated PTE of PM2.5: 20.3

Dust Control Efficiency

- Mitigated Emission Factor, dust: 0.43

Methodology

- Maximum Material Handling Throughput = Maximum Asphalt Production Limitation (tons/yr) * (Percent Asphalt Cement/Binder (weight %))
- Maximum Weight of Vehicle and Load (tons/yr) = Maximum Weight of Vehicle (tons/trip) + Maximum Weight of Load (tons/trip)
- Maximum one-way miles (miles/yr) = [Maximum trips per year (trip/yr)] * [Maximum one-way distance (mi/trip)]
- Maximum Weight driven per year (ton/yr) = [Maximum Weight of Vehicle and Load (tons/yr)] * [Maximum one-way distance (miles/yr)]

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (>10 um)
- PM2.5 = Particulate Matter (>2.5 um)
- PTE = Potential to Emit
Appendix A.1: Unlimited Emissions Calculations
Cold Mix Asphalt Production and Stockpiles

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the amount of VOC and HAP emissions created from volatilization of solvent used as diluent in the liquid binder for cold mix asphalt production:

\[
\text{Maximum Annual Asphalt Production} = 1,576,800 \text{ tons/yr}
\]
\[
\text{Percent Asphalt Cement/Binder (weight %)} = 5.0\%
\]
\[
\text{Maximum Asphalt Cement/Binder Throughput} = 78,840 \text{ tons/yr}
\]

Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>Maximum weight % of VOC solvent in binder*</th>
<th>Weight % VOC solvent in binder that evaporates</th>
<th>Maximum VOC Solvent Usage (tons/yr)</th>
<th>PTE of VOC (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt rapid cure (assuming gasoline or naphtha solvent)</td>
<td>25.3%</td>
<td>95.0%</td>
<td>19,946.5</td>
<td>18,949.2</td>
</tr>
<tr>
<td>Cut back asphalt medium cure (assuming kerosene solvent)</td>
<td>28.6%</td>
<td>70.0%</td>
<td>22,548.2</td>
<td>15,783.8</td>
</tr>
<tr>
<td>Cut back asphalt slow cure (assuming fuel oil solvent)</td>
<td>20.0%</td>
<td>25.0%</td>
<td>15,768.0</td>
<td>3,942.0</td>
</tr>
<tr>
<td>Emulsified asphalt with solvent (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>46.4%</td>
<td>11,826.0</td>
<td>5,487.3</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.9%</td>
<td>2.5%</td>
<td>20,419.6</td>
<td>510.5</td>
</tr>
</tbody>
</table>

Worst Case PTE of VOC = 18,949.2

Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Solvent Type</th>
<th>Worst Case Total HAP Content of VOC solvent (weight %)*</th>
<th>26.08%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTE of Total HAPs (tons/yr) = 4,942.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTE of Single HAP (tons/yr) = 1,705.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous Air Pollutant (HAP) Content (% by weight) For Various Petroleum Solvents*

<table>
<thead>
<tr>
<th>Volatile Organic HAP</th>
<th>CAS#</th>
<th>Hazardous Air Pollutant (HAP) Content (% by weight)*</th>
<th>For Various Petroleum Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>108-99-0</td>
<td>3.70E-5%</td>
<td>Gasoline, Kerosene, Diesel #2, No. 2 Fuel Oil, No. 6 Fuel Oil</td>
</tr>
<tr>
<td>2,3,4-Trimethylpentane</td>
<td>649-84-1</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>120-12-7</td>
<td>1.0E-6%</td>
<td></td>
</tr>
<tr>
<td>Aceanaphthylene</td>
<td>208-96-8</td>
<td>4.9E-5%</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>92-02-4</td>
<td>6.30E-4%</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>92-52-4</td>
<td>0.07%</td>
<td></td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>66-55-3</td>
<td>0.31%</td>
<td></td>
</tr>
<tr>
<td>Benz(b)pyrene</td>
<td>55-32-8</td>
<td>0.40E-5%</td>
<td></td>
</tr>
<tr>
<td>Benzol(b)naphtalene</td>
<td>191-24-2</td>
<td>6.00E-4%</td>
<td></td>
</tr>
<tr>
<td>Biphenyl</td>
<td>218-01-9</td>
<td>4.60E-4%</td>
<td></td>
</tr>
<tr>
<td>Chrysene</td>
<td>85-01-8</td>
<td>8.80E-4%</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>1.70%</td>
<td></td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
<td>7.10E-6%</td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>4.20E-6%</td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-38-5</td>
<td>1.50E-7%</td>
<td></td>
</tr>
<tr>
<td>Methyl-tert-butylether</td>
<td>1934-04-4</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>0.25%</td>
<td></td>
</tr>
<tr>
<td>n-Xylene</td>
<td>110-54-3</td>
<td>2.40%</td>
<td></td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>95-01-8</td>
<td>8.60E-6%</td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-90-0</td>
<td>4.60E-5%</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>8.10%</td>
<td></td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>1330-20-7</td>
<td>0.50%</td>
<td></td>
</tr>
</tbody>
</table>

Total Organic HAPs = 26.08%

Worst Single HAP

<table>
<thead>
<tr>
<th>HAP</th>
<th>Xylenes</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>Xylenes</th>
<th>Xylenes</th>
<th>Naphthalene</th>
<th>Xylenes</th>
<th>CHXene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td>0.33%</td>
<td>0.22%</td>
<td>0.24%</td>
<td>0.29%</td>
<td>0.28%</td>
<td>0.2%</td>
<td>0.24%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.07%</td>
<td>0.23%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.50%</td>
<td>0.31%</td>
<td>0.31%</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.23%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.19%</td>
<td>0.19%</td>
<td></td>
</tr>
</tbody>
</table>

Methodology

\[
\text{Maximum Asphalt Cement/Binder Throughput} = \left[\frac{\text{Maximum Annual Asphalt Production Limitation (tons/yr)}}{\text{Percent Asphalt Cement/Binder (weight %)}} \right] * \left[\frac{\text{Maximum Asphalt Cement/Binder Throughput (tons/yr)}}{\text{Maximum Asphalt Cement/Binder Throughput (tons/yr)}} \right]
\]

\[
\text{Maximum VOC Solvent Usage (tons/yr)} = \left[\frac{\text{Maximum Asphalt Cement/Binder Throughput (tons/yr)}}{\text{Maximum Weight % of VOC Solvent in Binder}} \right]
\]

\[
\text{PTE of VOC (tons/yr)} = \left[\frac{\text{Maximum VOC Solvent Usage (tons/yr)}}{\text{Weight % VOC solvent in binder that evaporates}} \right] * \left[\frac{\text{Maximum VOC Solvent Usage (tons/yr)}}{\text{Maximum Asphalt Cement/Binder Throughput (tons/yr)}} \right]
\]

\[
\text{PTE of Single HAP (tons/yr)} = \left[\frac{\text{Worst Case Single HAP Content of VOC solvent (weight %)}}{\text{Worst Case Limited PTE of VOC (tons/yr)}} \right]
\]

Abbreviations

VOC = Volatile Organic Compounds
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Entire Source - Batch Mix

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Maximum Hourly Asphalt Production = 180 ton/hr
Annual Asphalt Production Limitation = 487,551 ton/yr
Blast Furnace Slag Usage Limitation = 0 ton/yr 1.50 % sulfur
Steel Slag Usage Limitation = 0 ton/yr 0.66 % sulfur
Maximum Dryer Fuel Input Rate = 66 MMBtu/hr
Natural Gas Limitation = 0 MMCF/yr
No. 2 Fuel Oil Limitation = 2,651,075 gal/yr, and 0.50 % sulfur
No. 4 Fuel Oil Limitation = 0 gal/yr, and 0.50 % sulfur
Residual (No. 5 or No. 6) Fuel Oil Limitation = 0 gal/yr, and 0.50 % sulfur
Propane Limitation = 0 gal/yr, and 0.20 gr/100 ft³ sulfur
Butane Limitation = 0 gal/yr, and 0.22 gr/100 ft³ sulfur
Used/Waste Oil Limitation = 1,200,000 gal/yr, and 0.50 % sulfur 0.50 % ash 0.250 % chlorine, 0.010 % lead

Asphalt Plant Limitations - Batch Mix

Process Description

<table>
<thead>
<tr>
<th>Limited/Controlled Potential Emissions (tons/year)</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dryer/Mixer Limitation</td>
<td>1.80</td>
<td>0.94</td>
<td>0.94</td>
<td>0.90</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>10.48</td>
</tr>
<tr>
<td>PM10 Dryer/Mixer Limitation</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>PM2.5 Dryer/Mixer Limitation</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
</tr>
<tr>
<td>CO Dryer/Mixer Limitation</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>Blast Furnace Slag SO2 Dryer/Mixer Limitation</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Steel Slag SO2 Dryer/Mixer Limitation</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Cold Mix Asphalt VOC Limitation</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
<td>54.3</td>
</tr>
<tr>
<td>HCl Limitation</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Worst Case Emissions

<table>
<thead>
<tr>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.16</td>
<td>89.41</td>
<td>94.90</td>
<td>99.00</td>
<td>30.63</td>
<td>8.88</td>
<td>98.30</td>
<td>10.48</td>
<td>9.90</td>
</tr>
</tbody>
</table>

Fugitive Emissions

<table>
<thead>
<tr>
<th>Limited/Controlled Potential Emissions (tons/year)</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Load-Out, Silo Filling, On-Site Yard</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Material Storage Piles</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Material Handling and Processing</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
</tr>
<tr>
<td>Unpaved and Paved Roads (worst case)</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
<td>20.27</td>
</tr>
<tr>
<td>Cold Mix Asphalt Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatile Organic Liquid Storage Vessels</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Fugitive Emissions</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
<td>30.54</td>
</tr>
</tbody>
</table>

Total Fugitive Emissions

<table>
<thead>
<tr>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst Case HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>249.00</td>
<td>98.00</td>
<td>98.00</td>
<td>98.00</td>
<td>35.63</td>
<td>67.33</td>
<td>99.00</td>
<td>24.71</td>
<td>9.90</td>
</tr>
</tbody>
</table>

Neg = negligible

Worst Case Emissions is based on the fuel with the highest emissions for each specific pollutant.

*Worst Case Emissions (tons/yr) = Worst Case Emissions from Dryer Fuel Combustion and Dryer/Mixer + Dryer/Mixer Slag Processing + Worst Case Emissions from Hot Oil Heater Fuel Combustion and Hot Oil Heating System + Diesel-Fired Generator < 600 HP + Diesel-Fired Generator > 600 HP

Fuel component percentages provided by the source.
Fuel Limitations

Maximum Fuel Input Rate: 8.4E-04 MMbtu/hr

Natural Gas Limitation: 0.000 MCF/yr

No. 2 Fuel Oil Limitation: 2.50E-02 gal/yr, and 2.1E-03 % sulfur

No. 4 Fuel Oil Limitation: 0.000 gal/yr, and 0.50 % sulfur

Residual (No. 5 or No. 6) Fuel Oil Limitation: 2.1E-03 gal/yr, and 0.50 % sulfur

Propane Limitation: 0.50 gal/yr, and 0.20 g/100 ft³ sulfur

Butane Limitation: 0.50 gal/yr, and 0.20 g/100 ft³ sulfur

Used/Waste Oil Limitation: 1,200,000 gal/yr, and 0.50 % sulfur, 0.50 % ash, 0.250 % chlorine, and 0.010 % lead

Limited Emissions

<table>
<thead>
<tr>
<th>Emission Factor (units)</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria Pollutant</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td></td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.6</td>
</tr>
<tr>
<td>SO2</td>
<td>0.0</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
</tr>
<tr>
<td>CO</td>
<td>84.0</td>
</tr>
</tbody>
</table>

Methodology

Natural Gas: Limited Potential to Emit (tons/yr) = (Natural Gas Limitation (MMCF/yr)) * (Emission Factor (lb/MMCF)) * (ton/2000 lbs)

All Other Fuels: Limited Potential to Emit (tons/yr) = (Fuel Limitation (gals/yr)) * (Emission Factor (lb/kgal)) * (kgal/1000 gal) * (ton/2000 lbs)

Sources of AP42 Emission Factors:

- **Natural Gas**:
 - AP-42 Chapter 1.4 (dated 7/96), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4

- **Natural Gas**:
 - AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4

- **Used/Waste Oil**:
 - AP-42 Chapter 1.5 (dated 7/08), Tables 1.5-1 (assuming PM = PM10)

- **Propane and Butane**:
 - AP-42 Chapter 1.5 (dated 7/08), Tables 1.5-1 (assuming PM = PM10)

Abbreviations

- **PM** = Particulate Matter
- **PM10** = Particulate Matter (<10 um)
- **PM2.5** = Particulate Matter (< 2.5 um)
- **HAP** = Hazardous Air Pollutant
- **HCl** = Hydrochloric Acid
- **SO2** = Sulfur Dioxide
- **NOx** = Nitrous Oxides
- **PAH** = Polynuclear Aromatic Hydrocarbons
- **VOC** = Volatile Organic Compounds

Notes

- Since there are no specific AP42 HAP emission factors for combustion of No. 4 fuel oil, it was assumed that HAP emissions from combustion of No. 4 fuel oil were equal to combustion of residual or No. 6 fuel oil.
Appendix A.2: Limited Emissions Summary

Dryer/Mixer and Batch Tower - Process Emissions

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the limited emissions from the aggregate drying/mixing and the batch tower.

Maximum Hourly Asphalt Production = 180 ton/hr
Annual Asphalt Production Limitation = 487,551 ton/yr
PM Dryer/Mixer Limitation = 0.447 lb/ton of asphalt production
PM10 Dryer/Mixer Limitation = 0.183 lb/ton of asphalt production
PM2.5 Dryer/Mixer Limitation = 0.194 lb/ton of asphalt production
CO Dryer/Mixer Limitation = 0.400 lb/ton of asphalt production
VOC Dryer/Mixer Emission Factor = 0.036 lb/ton of asphalt production

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>WPL</th>
<th>No. 2 Fuel Oil</th>
<th>Waste Oil</th>
<th>PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.447</td>
<td>0.447</td>
<td>109.0</td>
<td>109.0</td>
<td>109.0</td>
<td>109.0</td>
<td>109.0</td>
</tr>
<tr>
<td>PM10</td>
<td>0.183</td>
<td>0.183</td>
<td>44.6</td>
<td>44.6</td>
<td>44.6</td>
<td>44.6</td>
<td>44.6</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.194</td>
<td>0.194</td>
<td>47.3</td>
<td>47.3</td>
<td>47.3</td>
<td>47.3</td>
<td>47.3</td>
</tr>
<tr>
<td>SO2*</td>
<td>0.0046</td>
<td>0.0046</td>
<td>1.1</td>
<td>21.5</td>
<td>21.5</td>
<td>21.5</td>
<td>21.5</td>
</tr>
<tr>
<td>NOx*</td>
<td>0.025</td>
<td>0.12</td>
<td>6.1</td>
<td>29.3</td>
<td>29.3</td>
<td>29.3</td>
<td>29.3</td>
</tr>
<tr>
<td>VOC</td>
<td>0.036</td>
<td>0.036</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>CO**</td>
<td>0.400</td>
<td>0.400</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Total PAH Haps = 1.10E-04 + 2.30E-04 + 2.00E-04 + 2.30E-04 + 3.00E-06 + 3.70E-05 + 2.00E-06 + 7.90E-07 + 4.90E-07 + 4.90E-07 + 3.50E-07 + 3.50E-07 + 3.50E-07 + 6.90E-07 + 2.70E-04 = 1.19E-04

Total HAPs = 1.89

Methodology

Limited/Controlled Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Natural gas, No. 2 fuel oil, and waste oil represent the worst possible emissions scenario. AP-42 did not provide emission factors for any other fuels.

* SO2 and NOx AP-42 emission factors are for natural gas, No. 2 fuel oil, and waste oil only.

** CO AP-42 emission factor determined by combining data from batch mix dryer fired with natural gas, No. 6 fuel oil, and No. 2 fuel oil to develop single CO emission factor.

Abbreviations
PM = Particulate Matter
SO2 = Sulfur Dioxide
CO = Carbon Monoxide
PAH = Polynuclear Hydrocarbon
NOx = Nitrous Oxides
PM10 = Particulate Matter (>10 um)
HAP = Hazardous Air Pollutant
PM2.5 = Particulate Matter (< 2.5 um)
VOC = Volatile Organic Compounds
HCl = Hydrogen Chloride
Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the limited emissions from the processing of slag in the aggregate drying/mixing

Limited Blast Furnace Slag Usage = 0 ton/yr
Limited Annual Steel Slag Usage = 0 ton/yr

<table>
<thead>
<tr>
<th>Type of Slag</th>
<th>SO2 Emission Factor (lb/ton)</th>
<th>Limited Potential to Emit SO2 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Furnace Slag*</td>
<td>0.0000</td>
<td>0.0</td>
</tr>
<tr>
<td>Steel Slag**</td>
<td>0.0000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Methodology

* Testing results for blast furnace slag, obtained January 9, 2009 from similar operations at Rieth-Riley Construction Co., Inc. facility located in Valparaiso, IN (permit #127-27075-05241), produced an Emission Factor of 0.54 lb/ton from blast furnace slag containing 1.10% sulfur content. The source has requested a safety factor of 0.20 lb/ton be added to the tested value for use at this location to allow for a sulfur content up to 1.5%.

** Testing results for steel slag, obtained June 2009 from E & B Paving, Inc. facility located in Huntington, IN. The testing results showed a steel slag emission factor of 0.0007 lb/ton from slag containing 0.33% sulfur content.

Limited Potential to Emit SO2 from Slag (tons/yr) = [(Limited Slag Usage (ton/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Abbreviations

SO2 = Sulfur Dioxide
Appendix A.2: Limited Emissions Summary

Fuel Combustion with Maximum Capacity < 100 MMBtu/hr

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Location: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Maximum Hot Oil Heater Fuel Input Rate = 2.20 MMBtu/hr
Natural Gas Usage = 0 MMCF/yr
No. 2 Fuel Oil Usage = 137,657 gal/yr, and 0.50 % sulfur

Unlimited/Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Emission Factor (units)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot Oil Heater</td>
<td>Hot Oil Heater</td>
</tr>
<tr>
<td>Natural Gas (lb/MMCF)</td>
<td>No. 2 Fuel Oil (lb/kgal)</td>
<td>Natural Gas (tons/yr)</td>
</tr>
<tr>
<td>PM</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>PM10/PM2.5</td>
<td>7.8</td>
<td>3.3</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>7.10</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>20.0</td>
</tr>
<tr>
<td>VOC</td>
<td>5.3</td>
<td>2.0</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazardous Air Pollutant</th>
<th>Emission Factor (lb/MMCF)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2.0E-04</td>
<td>5.0E-04</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1.2E-05</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.1E-03</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.4E-03</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Cobalt</td>
<td>8.4E-05</td>
<td>7.0E-05</td>
</tr>
<tr>
<td>Lead</td>
<td>5.0E-04</td>
<td>1.3E-03</td>
</tr>
<tr>
<td>Manganese</td>
<td>3.8E-04</td>
<td>8.4E-04</td>
</tr>
<tr>
<td>Mercury</td>
<td>2.6E-04</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>Selenium</td>
<td>2.4E-05</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>1.2E-03</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>Ethylenebenzene</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.5E-02</td>
<td>6.1E-02</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.8E+00</td>
<td>0.00</td>
</tr>
<tr>
<td>Phenol</td>
<td>3.4E-03</td>
<td>0.0E+00</td>
</tr>
<tr>
<td>Total PAH Haps</td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>Polycyclic Organic Matter</td>
<td>3.3E-03</td>
<td>2.27E-04</td>
</tr>
</tbody>
</table>

Total HAPs = 0.0E+00 4.9E-03 0.0E+00 4.2E-03 4.2E-03

Worst Single HAP = 0.0E+00 4.2E-03 4.2E-03

Methodology

Equivalent Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] / [8,760 hrs/yr] / [1 MMBtu/1,000 MMCF]
Equivalent Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] / [8,760 hrs/yr] / [1 gal/0.140 MMBtu]

Natural Gas: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Natural Gas Usage (MMCF/yr)] * [Emission Factor (lb/MMCF)] * [ton/2000 lbs]
All Other Fuels: Unlimited/Uncontrolled Potential to Emit (tons/yr) = [Maximum Fuel Usage (gals/yr)] * [Emission Factor (lb/kgal)] * [kgal/1000 gal] * [ton/2000 lbs]

Sources of AP-42 Emission Factors for fuel combustion:

Natural Gas: AP-42 Chapter 1.4 (dated 7/98), Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4
No. 2 Fuel Oil: AP-42 Chapter 1.3 (dated 5/10), Tables 1.3-1, 1.3-2, 1.3-3, 1.3-8, 1.3-9, 1.3-10, and 1.3-11

Abbreviations

PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
SO2 = Sulfur Dioxide
NOx = Nitrous Oxides
VOC = Volatile Organic Compounds

CO = Carbon Monoxide
HAP = Hazardous Air Pollutant
HCl = Hydrogen Chloride
PAH = Polyaromatic Hydrocarbon
The following calculations determine the unlimited/uncontrolled emissions from the combustion of natural gas and No. 2 fuel oil in the hot oil heating system, which is used to heat a specially designed transfer oil. The hot transfer oil is then pumped through a piping system that passes through the asphalt cement storage tanks, in order to keep the asphalt cement at the correct temperature.

Maximum Fuel Input Rate To Hot Oil Heater = 2.20 MMBtu/hr
Natural Gas Usage = 0.00 MMCF/yr, and
No. 2 Fuel Oil Usage = 137,657.14 gal/yr

<table>
<thead>
<tr>
<th>Criteria Pollutant</th>
<th>Natural Gas (lb/ft³)</th>
<th>No. 2 Fuel Oil (lb/gal)</th>
<th>Unlimited/Uncontrolled Potential to Emit (tons/yr)</th>
<th>Worse Case PTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>2.60E-08</td>
<td>2.65E-05</td>
<td>0.00E+00</td>
<td>0.002</td>
</tr>
<tr>
<td>CO</td>
<td>8.90E-06</td>
<td>0.0012</td>
<td>0.00</td>
<td>0.083</td>
</tr>
<tr>
<td>CO2</td>
<td>0.20</td>
<td>28.00</td>
<td>0.00</td>
<td>1,927.20</td>
</tr>
<tr>
<td>Greenhouse Gas as CO2e*</td>
<td></td>
<td></td>
<td>1927.20</td>
<td></td>
</tr>
<tr>
<td>Hazardous Air Pollutant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>2.60E-08</td>
<td>3.50E-06</td>
<td>0.00E+00</td>
<td>2.41E-04</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>5.30E-07</td>
<td>3.65E-05</td>
<td>1.38E-05</td>
<td>3.65E-05</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>2.00E-07</td>
<td>1.38E-05</td>
<td></td>
<td>1.38E-05</td>
</tr>
<tr>
<td>Anthracene</td>
<td>1.80E-07</td>
<td>1.24E-05</td>
<td></td>
<td>1.24E-05</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>1.00E-07</td>
<td>6.88E-06</td>
<td></td>
<td>6.88E-06</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>4.40E-08</td>
<td>3.03E-06</td>
<td></td>
<td>3.03E-06</td>
</tr>
<tr>
<td>Fluorene</td>
<td>3.20E-08</td>
<td>2.20E-06</td>
<td></td>
<td>2.20E-06</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>1.70E-05</td>
<td>1.17E-03</td>
<td></td>
<td>1.17E-03</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>4.90E-06</td>
<td>3.37E-04</td>
<td></td>
<td>3.37E-04</td>
</tr>
<tr>
<td>Pyrene</td>
<td>3.20E-08</td>
<td>2.20E-06</td>
<td></td>
<td>2.20E-06</td>
</tr>
</tbody>
</table>

Total HAPs = 1.86E-03
Worst Single HAP = 1.17E-03 (Naphthalene)

Methodology
Natural Gas Usage (MMCF/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 MMCF/1,000 MMBtu]
No. 2 Fuel Oil Usage (gal/yr) = [Maximum Fuel Input Rate (MMBtu/hr)] * [8,760 hrs/yr] * [1 gal/0.140 MMBtu]
Natural Gas: Potential to Emit (tons/yr) = (Natural Gas Usage (MMCF/yr)) * (Emission Factor (lb/MMCF)) * (ton/MMCF/Lb)
No. 2 Fuel Oil: Potential to Emit (tons/yr) = (No. 2 Fuel Oil Usage (gals/yr)) * (Emission Factor (lb/gal)) * (ton/MMCF/Lb)
Unlimited Potential to Emit CO2e (tons/yr) = Unlimited Potential to Emit CO2 (tons/yr) * CO2 GWP (1)
1 gallon of No. 2 Fuel Oil has a heating value of 140,000 Btu
Emission Factors from AP-42 Chapter 11.1 (dated 3/04), Table 11.1-13

*Note: There are no emission factors for CH4 and N20 available in either 40 CFR 98, Subpart C or AP-42 Chapter 11.1. Therefore, it is assumed that there are no CH4 and N20 emission anticipated from this process.

Abbreviations
CO = Carbon Monoxide
VOC = Volatile Organic Compound
CO2 = Carbon Dioxide
Company Name:
Dave O'Mara Contractor, Inc., Plant #6

Source Address:
313 South State Road 203, Lexington, IN 47170

SPR Number:
143-41779-03192

Reviewer:
Mehul Sura

Heat Input Capacity
<table>
<thead>
<tr>
<th>MMBtu/hr</th>
<th>Potential Throughput (kgals/year)</th>
<th>SO2 Emission factor = 0.10 x S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>210.6</td>
<td>S = Sulfur Content = 0.00 grains/100ft³</td>
</tr>
</tbody>
</table>

Emission Factors

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5**</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
<td>0.10S</td>
<td>1.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.02</td>
<td>0.07</td>
<td>0.07</td>
<td>0.00</td>
<td>1.37</td>
<td>0.11</td>
<td>0.79</td>
</tr>
</tbody>
</table>

*PM emission factor is filterable PM only. PM emissions are stated to be all less than 10 microns in aerodynamic equivalent diameter, footnote in Table 1.5-1, therefore PM10 is based on the filterable and condensable PM emission factors.** No direct PM2.5 emission factor was given. Direct PM2.5 is a subset of PM10. If one assumes all PM10 to be all direct PM2.5, then a worst case assumption of direct PM2.5 can be made.

**The VOC value given is TOC. The methane emission factor is 0.2 lb/kgal.

Methodology

1 gallon of LPG has a heating value of 94,000 Btu
1 gallon of propane has a heating value of 91,500 Btu (use this to convert emission factors to an energy basis for propane)
(Source - AP-42 (Supplement B 10/96) page 1.5-1)

Potential Throughput (kgals/year) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 gallon per 1000 gallon x 1 gal per 0.0915 MMBtu

Emission Factors are from AP42 (7/08), Table 1.5-1 (SCC #1-02-010-02)

Propane Emission Factors shown. Please see AP-42 for butane.

Emission (tons/yr) = Throughput (kgals/yr) x Emission Factor (lb/kgal) / 2,000 lb/ton
Appendix A.2: Limited Emissions Summary

Reciprocating Internal Combustion Engines - Diesel Fuel
Output Rating (<600 HP)

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
Permit Number: F143-39694-03192
Reviewer: Natalie Moore

Output Horsepower Rating (hp) 0.0
Limited Hours Operated per Year 0
Limited Throughput (hp-hr/yr) 0
Limited Diesel Fuel Usage (gal/yr) 0

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0021</td>
<td>0.0310</td>
<td>0.0025</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>43.07</td>
<td>43.07</td>
<td>43.07</td>
<td>40.13</td>
<td>808.85</td>
<td>48.22</td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1 The AP-42 Chapter 3.3-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Emission factor (lb/kgal) = AP-42 EF (lb/hp-hr) * 1/7,000 (hp-hr/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Total PAH (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>Acrolein</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Limited Emission of Total HAPs (tons/yr) 0.00E+00
Limited Emission of Worst Case HAPs (tons/yr) 0.00E+00

Green House Gas Emissions (GHG)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>1.15</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Emission Factor in kg/MMBtu</td>
<td>NA</td>
<td>0.003</td>
<td>0.0006</td>
</tr>
<tr>
<td>Emission Factor in lb/kgal</td>
<td>22.512.07</td>
<td>0.91</td>
<td>0.18</td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

5 The AP-42 Chapter 3.3-1 emission factor in lb/hp-hr was converted to lb/kgal emission factor using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

6 The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4.1) since the source will limit the emissions from this unit by limiting the fuel usage.

Summed Limited Emissions in tons/yr 0.00
CO2e Total in tons/yr 0.00

Methodology

Limited Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Limited Hours Operated per Year]
Limited Diesel Fuel Usage (gal/yr) = Limited Throughput (hp-hr/yr) * 7000 (Btu/hp-hr) * 1/19300 (Btu/lb) * 1/7.1 (gal/lb)

Emission Factors are from AP42 (Supplement B 10/96), Tables 3.3-1 and 3.3-2 and have been converted to lb/kgal

CH4 and N2O Emission Factor from 40 CFR 98 Subpart C Table C-2 and have been converted to lb/kgal

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Limited Emissions (tons/yr) = Limited Diesel Fuel Usage (gal/yr) x Emission Factor (lb/kgal) / (1,000 gal/kgal) / (2,000 lb/ton)

CO2e (tons/yr) = CO2 Potential Emission ton/yr x CO2 GWP (1) + CH4 Potential Emission ton/yr x CH4 GWP (25) + N2O Potential Emission ton/yr x N2O GWP (298).
Appendix A.2: Limited Emissions Summary

Large Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (>600 HP)

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
Permit Number: F143-39694-03192
Reviewer: Natalie Moore

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM</th>
<th>PM10<sup>2</sup></th>
<th>direct PM2.5<sup>3</sup></th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>7.00E-04</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.80E-02</td>
<td>7.00E-04</td>
<td>5.00E-03</td>
<td>3.00E-03</td>
</tr>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>0.0573</td>
<td>0.0573</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>469.82</td>
<td>13.80</td>
<td>107.67</td>
</tr>
</tbody>
</table>

1. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.

2. Emission factors in lb/kgal were converted from the AP-42 Chapter 3.4-1 emission factors in lb/MMBtu using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>7.76E-04</td>
<td>2.81E-04</td>
<td>1.93E-04</td>
<td>7.86E-05</td>
<td>2.52E-05</td>
<td>7.86E-06</td>
<td>2.12E-04</td>
</tr>
<tr>
<td>CO<sub>2</sub> (lbs/ton)</td>
<td>1.16</td>
<td>6.38E-05</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO<sub>2</sub>e (lbs/ton)</td>
<td>22.70E03</td>
<td>1.24</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited Emission in tons/yr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. The AP-42 Chapter 3.4-1 emission factors in lb/hp-hr were converted to lb/kgal emission factors using an average brake specific fuel consumption of 7,000 Btu / hp-hr, diesel heating value of 19,300 Btu / lb, and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.

6. Emission factor (lb/kgal) = AP-42 EF (lb/mmBtu) / 10⁻⁶ (MMBtu/Btu) * 19,300 (Btu/lb) * 7.1 (lb/gal) * 1,000 (gal/kgal)

7. The 40 CFR 98 Subpart C emission factors in kg/MMBtu were converted to lb/kgal emission factors using an average diesel heating value of 19,300 Btu / lb and diesel fuel density of 7.1 lb / gal (AP-42 Tables 3.3-1 and 3.4-1) since the source will limit the emissions from this unit by limiting the fuel usage.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CO<sub>2</sub></th>
<th>CH<sub>4</sub></th>
<th>N<sub>2</sub>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMBtu</td>
<td>1.16</td>
<td>6.38E-05</td>
<td>NA</td>
</tr>
<tr>
<td>CO<sub>2</sub> (lbs/ton)</td>
<td>22.70E03</td>
<td>1.24</td>
<td>0.18</td>
</tr>
<tr>
<td>CO<sub>2</sub>e (lbs/ton)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Methodology

Limited Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * (Limited Hours Operated per Year)
Limited Diesel Fuel Usage (gal/yr) = Limited Throughput (hp-hr/yr) * 7000 (Btu/hp-hr) * 1/19300 (Btu/lb) * 7.1 (gal/lb)
Emission Factors are from AP-42 (Supplement B 10/96) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4 and have been converted to lb/kgal.

N2O Emission Factor from 40 CFR 98 Subpart C Table C-2 and have been converted to lb/kgal.

Global Warming Potentials (GWP) from Table A-1 of 40 CFR Part 98 Subpart A.

Limited Emissions (tons/yr) = [Limited Diesel Fuel Usage (gal/yr) x Emission Factor (lb/kgal)] / (1,000 ga/kgal) / (2,000 lb/ton)
CO2e (tons/yr) = CO2 Potential Emission (tons/yr) x CO2 GWP (1) + CH4 Potential Emission (tons/yr) x CH4 GWP (25) + N2O Potential Emission (tons/yr) x N2O GWP (298).
Appendix A.2: Limited Emissions Summary

Asphalt Load-Out, Silo Filling, and Yard Emissions

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

The following calculations determine the limited fugitive emissions from hot asphalt mix load-out, silo filling, and on-site yard for a drum mix hot mix asphalt plant.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Load-Out</th>
<th>Silo Filling</th>
<th>On-Site Yard</th>
<th>Load-Out</th>
<th>Silo Filling</th>
<th>On-Site Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PM*</td>
<td>5.2E-04</td>
<td>5.9E-04</td>
<td>NA</td>
<td>0.13</td>
<td>0.14</td>
<td>NA</td>
<td>0.27</td>
</tr>
<tr>
<td>Organic PM</td>
<td>3.4E-04</td>
<td>2.5E-04</td>
<td>NA</td>
<td>0.08</td>
<td>0.062</td>
<td>NA</td>
<td>0.15</td>
</tr>
<tr>
<td>TOC</td>
<td>0.004</td>
<td>0.012</td>
<td>0.001</td>
<td>1.01</td>
<td>2.97</td>
<td>0.268</td>
<td>4.3</td>
</tr>
<tr>
<td>CO</td>
<td>0.001</td>
<td>0.001</td>
<td>3.5E-04</td>
<td>0.33</td>
<td>0.286</td>
<td>0.086</td>
<td>0.70</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology
The asphalt temperature and volatility factor were provided by the source.

Limited Potential to Emit (tons/yr) = (Annual Asphalt Production Limitation (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Plant Load-Out Emission Factor Equations (AP-42 Table 11.1-14):

Total PM/PM10 EF = 0.000181 + 0.00141(-V)e^((0.0251)(T+460)-20.43)

Organic PM EF = 0.00141(-V)e^((0.0251)(T+460)-20.43)

TOC EF = 0.0172(-V)e^((0.0251)(T+460)-20.43)

CO EF = 0.00558(-V)e^((0.0251)(T+460)-20.43)

Silo Filling Emission Factor Equations (AP-42 Table 11.1-14):

PM/PM10 EF = 0.000032 + 0.00105(-V)e^((0.0251)(T+460)-20.43)

Organic PM EF = 0.00105(-V)e^((0.0251)(T+460)-20.43)

TOC EF = 0.00289(-V)e^((0.0251)(T+460)-20.43)

CO EF = 0.00488(-V)e^((0.0251)(T+460)-20.43)

On Site Yard CO emissions estimated by multiplying the TOC emissions by 0.32

*No emission factors available for PM10 or PM2.5, therefore IDEM assumes PM10 and PM2.5 are equivalent to Total PM.

Abbreviations
TOC = Total Organic Compounds
CO = Carbon Monoxide
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
Organic Particulate-Based Compounds (Table 11.1-15)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Speciation Profile</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Load-out and Onsite Yard (% by weight of Total Organic PM)</td>
<td>Silo Filling and Asphalt Storage Tank (% by weight of Total Organic PM)</td>
<td>Load-out</td>
</tr>
<tr>
<td>PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.26%</td>
</tr>
<tr>
<td>Acenaphthenylene</td>
<td>203-96-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.028%</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.07%</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>120-12-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.019%</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0076%</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207-08-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0022%</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>191-24-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0019%</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0023%</td>
</tr>
<tr>
<td>Benzo(e)pyrene</td>
<td>192-97-2</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0078%</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.103%</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>53-70-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0037%</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>204-44-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.05%</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.77%</td>
</tr>
<tr>
<td>Indenol(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.0047%</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91-57-6</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>2.38%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>1.2%</td>
</tr>
<tr>
<td>Perylene</td>
<td>198-55-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.022%</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85-01-8</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.81%</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-90-0</td>
<td>PM/HAP</td>
<td>POM</td>
<td>Organic PM</td>
<td></td>
<td>0.15%</td>
</tr>
<tr>
<td>Total PAH HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.005</td>
</tr>
</tbody>
</table>

Other semi-volatile HAPs

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Speciation Profile</th>
<th>Limited Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
<td>PM/HAP</td>
<td>1.18%</td>
<td>0</td>
</tr>
</tbody>
</table>

NA = Not Applicable (no AP-42 Emission Factor)

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [Organic PM (tons/yr)]

Abbreviations

- **PM** = Particulate Matter
- **HAP** = Hazardous Air Pollutant
- **POM** = Polycyclic Organic Matter
Organic Volatile-Based Compounds (Table 11.1-16)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CASRN</th>
<th>Category</th>
<th>HAP Type</th>
<th>Source</th>
<th>Load-out and Onsite Yard (% by weight of TOC)</th>
<th>Silo Filling and Asphalt Storage Tank (% by weight of TOC)</th>
<th>Load-out</th>
<th>Silo Filling</th>
<th>Onsite Yard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>VOC</td>
<td>---</td>
<td>TOC</td>
<td></td>
<td>94%</td>
<td>100%</td>
<td>0.95</td>
<td>2.97</td>
<td>0.25</td>
<td>4.18</td>
</tr>
<tr>
<td>non-VOC/non-HAPS</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>74-82-8</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>6.60%</td>
<td>0.26%</td>
<td>6.6E-02</td>
<td>7.7E-03</td>
<td>1.7E-02</td>
<td>0.091</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.046%</td>
<td>0.055%</td>
<td>4.7E-04</td>
<td>1.6E-03</td>
<td>1.2E-04</td>
<td>0.002</td>
</tr>
<tr>
<td>Ethylene</td>
<td>74-85-1</td>
<td>non-VOC/non-HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.71%</td>
<td>1.10%</td>
<td>7.2E-03</td>
<td>3.3E-02</td>
<td>1.9E-03</td>
<td>0.042</td>
</tr>
<tr>
<td>Total non-VOC/non-HAPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.30%</td>
<td>1.40%</td>
<td>0.074</td>
<td>0.042</td>
<td>0.020</td>
<td>0.14</td>
</tr>
<tr>
<td>Volatile organic HAPs</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.052%</td>
<td>0.032%</td>
<td>5.3E-04</td>
<td>9.5E-04</td>
<td>1.4E-04</td>
<td>1.6E-03</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0096%</td>
<td>0.0049%</td>
<td>9.7E-05</td>
<td>1.5E-04</td>
<td>2.6E-05</td>
<td>2.7E-04</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>78-93-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.049%</td>
<td>0.039%</td>
<td>5.0E-04</td>
<td>1.2E-03</td>
<td>1.3E-04</td>
<td>1.6E-03</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.013%</td>
<td>0.016%</td>
<td>1.3E-04</td>
<td>4.8E-04</td>
<td>3.5E-05</td>
<td>6.4E-04</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0021%</td>
<td>0.004%</td>
<td>2.1E-06</td>
<td>1.2E-04</td>
<td>5.6E-07</td>
<td>1.2E-04</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.015%</td>
<td>0.023%</td>
<td>1.5E-04</td>
<td>6.8E-04</td>
<td>4.0E-05</td>
<td>8.8E-04</td>
</tr>
<tr>
<td>Cynene</td>
<td>92-82-8</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.11%</td>
<td>0</td>
<td>1.1E-03</td>
<td>0</td>
<td>2.9E-04</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.28%</td>
<td>0.038%</td>
<td>2.8E-03</td>
<td>1.1E-03</td>
<td>7.5E-04</td>
<td>0.005</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.088%</td>
<td>0.69%</td>
<td>8.9E-04</td>
<td>2.0E-02</td>
<td>2.4E-04</td>
<td>0.022</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>100-54-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.15%</td>
<td>0.10%</td>
<td>1.5E-03</td>
<td>3.0E-03</td>
<td>4.0E-04</td>
<td>0.005</td>
</tr>
<tr>
<td>Isocyanate</td>
<td>540-84-1</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.001%</td>
<td>0.0031%</td>
<td>1.8E-05</td>
<td>9.2E-06</td>
<td>4.8E-06</td>
<td>3.2E-05</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>75-09-2</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0.00027%</td>
<td>0</td>
<td>8.0E-06</td>
<td>0</td>
<td>8.0E-06</td>
</tr>
<tr>
<td>MTBE</td>
<td>1634-04-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0073%</td>
<td>0.0054%</td>
<td>7.4E-05</td>
<td>1.6E-04</td>
<td>2.0E-05</td>
<td>2.5E-04</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td>non-VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0677%</td>
<td>0</td>
<td>7.8E-05</td>
<td>0</td>
<td>2.1E-05</td>
<td>9.8E-05</td>
</tr>
<tr>
<td>Toluene</td>
<td>100-88-3</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.21%</td>
<td>0.062%</td>
<td>2.1E-03</td>
<td>1.8E-03</td>
<td>5.6E-04</td>
<td>0.005</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.0013%</td>
<td>0</td>
<td>1.3E-05</td>
<td>0</td>
<td>3.5E-06</td>
<td>1.7E-05</td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>1330-20-7</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.41%</td>
<td>0.20%</td>
<td>4.2E-03</td>
<td>5.9E-03</td>
<td>1.1E-03</td>
<td>0.011</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>VOC/HAP</td>
<td>---</td>
<td>TOC</td>
<td>0.08%</td>
<td>0.057%</td>
<td>8.1E-04</td>
<td>1.7E-03</td>
<td>2.1E-04</td>
<td>2.7E-03</td>
</tr>
<tr>
<td>Total volatile organic HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50%</td>
<td>1.30%</td>
<td>0.015</td>
<td>0.039</td>
<td>0.004</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Methodology

Limited Potential to Emit (tons/yr) = [Speciation Profile (%)] * [TOC (tons/yr)]

Abbreviations

TOC = Total Organic Compounds
HAP = Hazardous Air Pollutant
VOC = Volatile Organic Compound
MTBE = Methyl tert butyl ether
Appendix A.2: Limited Emissions Summary

Material Storage Piles

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Note: Since the emissions from the storage piles are minimal, the limited emissions are equal to the unlimited emissions.

The following calculations determine the amount of emissions created by wind erosion of storage stockpiles, based on 8,760 hours of use and USEPA’s AP-42 (Pre 1983 Edition), Section 11.2.3.

\[
Ef = 1.7 \times (s/1.5) \times (365-p)/235 \times (f/15)
\]

where

- \(Ef \) = emission factor (lb/acre/day)
- \(s \) = silt content (wt %)
- \(p \) = 125 days of rain greater than or equal to 0.01 inches
- \(f \) = 15% of wind greater than or equal to 12 mph

<table>
<thead>
<tr>
<th>Material</th>
<th>Silt Content (wt %)*</th>
<th>Emission Factor (lb/acre/day)</th>
<th>Maximum Anticipated Pile Size (acres)**</th>
<th>PTE of PM (tons/yr)</th>
<th>PTE of PM10/PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>2.6</td>
<td>3.01</td>
<td>0.75</td>
<td>0.412</td>
<td>0.144</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.6</td>
<td>1.85</td>
<td>0.75</td>
<td>0.253</td>
<td>0.089</td>
</tr>
<tr>
<td>RAP</td>
<td>0.5</td>
<td>0.58</td>
<td>0.75</td>
<td>0.079</td>
<td>0.028</td>
</tr>
<tr>
<td>Gravel</td>
<td>1.6</td>
<td>1.85</td>
<td>0.75</td>
<td>0.253</td>
<td>0.089</td>
</tr>
<tr>
<td>Shingles</td>
<td>0.5</td>
<td>0.58</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Slag</td>
<td>3.8</td>
<td>4.40</td>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Totals 1.00 0.35

Methodology

PTE of PM (tons/yr) = \((Emission Factor (lb/acre/day)) \times (Maximum Pile Size (acres)) \times (ton/2000 lbs) \times (8760 hours/yr)

PTE of PM10/PM2.5 (tons/yr) = \((Potential PM Emissions (tons/yr)) \times 35\%

**Maximum anticipated pile size (acres) provided by the source.

PM2.5 = PM10

Abbreviations

RAP = recycled asphalt pavement
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit
Appendix A.2: Limited Emissions Summary

Material Processing, Handling, Crushing, Screening, and Conveying

Company Name: Dave O’Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SPR Number: 143-41779-03192
Reviewer: Mehul Sura

Batch or Continuous Drop Operations (AP-42 Section 13.2.4)

To estimate potential fugitive dust emissions from processing and handling of raw materials (batch or continuous drop operations), AP-42 emission factors for Aggregate Handling, Section 13.2.4 (fifth edition, 1/95) are utilized.

\[\text{Ef} = k \times \left(\frac{0.0032}{(U/5)^{1.3}} \right) \left(\frac{1}{(M/2)^{1.4}} \right) \]

where:

- \(\text{Ef} \) = Emission factor (lb/ton)
- \(k \) = particle size multiplier (0.74 assumed for aerodynamic diameter <=100 um)
- \(k \) (PM10) = particle size multiplier (0.35 assumed for aerodynamic diameter <=10 um)
- \(k \) (PM2.5) = particle size multiplier (0.053 assumed for aerodynamic diameter <=2.5 um)
- \(U \) = 10.2 = worst case annual mean wind speed (Source: NOAA, 2006*)
- \(M \) = 4.0 = material % moisture content of aggregate (Source: AP-42 Section 11.1.1.1)

\[\text{Ef} \] (PM) = 2.27E-03 lb PM/ton of material handled
\[\text{Ef} \] (PM10) = 1.07E-03 lb PM10/ton of material handled
\[\text{Ef} \] (PM2.5) = 1.62E-04 lb PM2.5/ton of material handled

Annual Asphalt Production Limitation = 487,551 tons/yr
Percent Asphalt Cement/Binder (weight %) = 5.0%
Maximum Material Handling Throughput = 463,173 tons/yr

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Limited PTE of PM (tons/yr)</th>
<th>Limited PTE of PM10 (tons/yr)</th>
<th>Limited PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck unloading of materials into storage piles</td>
<td>0.53</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>Front-end loader dumping of materials into feeder bins</td>
<td>0.53</td>
<td>0.26</td>
<td>0.04</td>
</tr>
<tr>
<td>Conveyor dropping material into dryer/mixer or batch tower</td>
<td>0.53</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>1.58</td>
<td>0.74</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Methodology

The percent asphalt cement/binder provided by the source.

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = (Maximum Material Handling Throughput (tons/yr)) * (Emission Factor (lb/ton)) * (ton/2000 lbs)

Raw materials may include stone/gravel, sand, recycled asphalt pavement (RAP), gravel, slag, and other additives

Material Screening and Conveying (AP-42 Section 19.2.2)

To estimate potential fugitive dust emissions from raw material crushing, screening, and conveying, AP-42 emission factors for Crushed Stone Processing Operations, Section 19.2.2 (dated 8/04) are utilized.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Uncontrolled Emission Factor for PM (lbs/ton)*</th>
<th>Uncontrolled Emission Factor for PM10 (lbs/ton)*</th>
<th>Limited PTE of PM (tons/yr)</th>
<th>Limited PTE of PM10/PM2.5 (tons/yr)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushing</td>
<td>0.0054</td>
<td>0.0024</td>
<td>1.25</td>
<td>0.56</td>
</tr>
<tr>
<td>Screening</td>
<td>0.025</td>
<td>0.0087</td>
<td>5.79</td>
<td>2.01</td>
</tr>
<tr>
<td>Conveying</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.69</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Limited Potential to Emit (tons/yr) = 7.73 2.83

Methodology

Maximum Material Handling Throughput (tons/yr) = [Annual Asphalt Production Limitation (tons/yr)] * [1 - Percent Asphalt Cement/Binder (weight %)]

Limited Potential to Emit (tons/yr) = [Maximum Material Handling Throughput (tons/yr)] * [Emission Factor (lb/ton)] * [ton/2000 lbs]

Raw materials may include stone/gravel, sand, recycled asphalt pavement (RAP)

Emission Factors from AP-42 Chapter 11.19.2 (dated 8/04), Table 11.19.2-2

*Uncontrolled emissions factors for PM/PM10 represent tertiary crushing of stone with moisture content ranging from 0.21 to 1.3 percent by weight (Table 11.19.2-2). The bulk moisture content of aggregate in the storage piles at a hot mix asphalt production plant typically stabilizes between 3 to 5 percent by weight (Source: AP-42 Section 11.1.1.1).

**Assumes PM10 = PM2.5

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particulate Matter (<2.5 um)
PTE = Potential to Emit

*Worst case annual mean wind speed (Indianapolis, IN) from "Comparative Climatic Data", National Climatic Data Center, NOAA, 2006
Unpaved Roads at Industrial Site

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch. 13.2.2 (12/2003).

Unmitigated Emission Factor, \(E = 385 \) (Equation 1a from AP-42 13.2.2)

\[
k = [s/(12)]^a \times [W/(3)]^b
\]

\(k \) is particle size multiplier (AP-42 Table 13.2.2-2 for Industrial Roads)
\(a = 0.1 \)
\(b = 0.45 \)
\(s = \text{percent asphalt cement/binder (weight %)} \)
\(W = \text{maximum one-way distance (feet/trip)} \)

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{\text{ext}} = E \times [(365 - P)/365] \)

\(P \) is number of rain days greater than or equal to 0.01 inches (see Fig. 13.2.2-1).

Methodology

Maximum Material Handling Throughput = \(\text{Maximum Asphalt Production Limitation} \times (1 - \text{Percent Asphalt Cement/Binder (weight %)}) \)

Maximum Asphalt Cement/Binder Throughput = \(\text{Maximum Asphalt Production Limitation} \times (1 - \text{Percent Asphalt Cement/Binder (weight %)}) \)

Maximum Weight of Vehicle and Load = \(\text{Maximum Weight of Vehicle (tons/trip)} \times \text{Maximum trips per year (trip/yr)} \)

Maximum trips per year (trip/yr) = \(\text{Maximum Material Handling Throughput (tons/yr)} \)

Maximum one-way distance (miles) = \(\text{Maximum one-way distance (feet/trip)} / (5280 \text{ ft/mile}) \)

Automatic Vehicle Weight Per Trip = Average Miles Per Trip / Average Vehicle Weight Per Trip

Mitigated Emission Factor, \(E_{\text{mit}} = E_{\text{ext}} \times \text{Mitigated dust control efficiency} \)

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PTE = Potential to Emit

Process and Vehicle Types

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle (tons)</th>
<th>Maximum Weight of Load (tons)</th>
<th>Maximum trips per year (trip/yr)</th>
<th>Total Weight driven per year (ton/yr)</th>
<th>Maximum one-way distance (miles)</th>
<th>Maximum one-way miles (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt/RAF Truck Enter Full</td>
<td>Dump truck (15 CY)</td>
<td>17.0</td>
<td>32.4</td>
<td>8.54</td>
<td>1.18E+04</td>
<td>1.18E+04</td>
<td>150</td>
</tr>
<tr>
<td>Asphalt/RAF Truck Leave Empty</td>
<td>Dump truck (15 CY)</td>
<td>17.0</td>
<td>32.4</td>
<td>8.54</td>
<td>1.18E+04</td>
<td>1.18E+04</td>
<td>150</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Enter Full</td>
<td>Dump truck (2000 gal)</td>
<td>12.0</td>
<td>32.0</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
<tr>
<td>Asphalt Cement/Binder Truck Leave Empty</td>
<td>Dump truck (2000 gal)</td>
<td>12.0</td>
<td>32.0</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
<tr>
<td>Full Oil Truck Enter Full</td>
<td>Tanker truck (6000 gal)</td>
<td>12.0</td>
<td>32.0</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
<tr>
<td>Full Oil Truck Leave Empty</td>
<td>Tanker truck (6000 gal)</td>
<td>12.0</td>
<td>32.0</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
<tr>
<td>Aggregate/RAF Loaded Full</td>
<td>Front end loader (3 CY)</td>
<td>13.0</td>
<td>4.2</td>
<td>19.7</td>
<td>7.1E+05</td>
<td>1.7E+05</td>
<td>1.7E+05</td>
</tr>
<tr>
<td>Aggregate/RAF Loaded Empty</td>
<td>Front end loader (3 CY)</td>
<td>13.0</td>
<td>4.2</td>
<td>19.7</td>
<td>7.1E+05</td>
<td>1.7E+05</td>
<td>1.7E+05</td>
</tr>
<tr>
<td>Aggregate Concrete Truck Enter Full</td>
<td>Dump truck (15 CY)</td>
<td>17.0</td>
<td>32.4</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
<tr>
<td>Aggregate Concrete Truck Leave Empty</td>
<td>Dump truck (15 CY)</td>
<td>17.0</td>
<td>32.4</td>
<td>4.0</td>
<td>5.2E+02</td>
<td>1.25E+02</td>
<td>1.25E+02</td>
</tr>
</tbody>
</table>

Totals

- Average Vehicle Weight Per Trip = 20.3 (ton/trip)
- Average Miles Per Trip = 15.0 (miles/yr)
- Unmitigated Emission Factor, \(E = 385 \)
- Mitigated Emission Factor, \(E_{\text{ext}} = 0.72 \)
- Mitigated Emission Factor, \(E_{\text{mit}} = 0.72 \)
Appendix A.2: Limited Emissions Summary

Paved Roads

Company Name: Dave O'Mara Contractor, Inc., Plant #6
Source Address: 313 South State Road 203, Lexington, IN 47170
SIR Number: 143-6177-03192
Reviewer: Mehul Sura

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch. 12.3.1 (12/2003).

Methodology

- **Annual Asphalt Production Limitation**
- **Percent Asphalt Cement/Binder (weight %)**
- **Maximum Material Handling Throughput**
- **Maximum Asphalt Cement/Binder Throughput**

Calculation Formulas

1. **Mitigated Emission Factor, \(E_{f} \):**
 \[
 E_{f} = \frac{k \times (sL)^{0.91} \times (W)^{1.02}}{\text{Equation 1 from AP-42 13.2.1}}
 \]

 \(sL \) = Annual Asphalt Production Limitation (tons/yr)

 \(W \) = Average Vehicle Weight Per Trip (tons)

 \(k \) = Particle size multiplier (AP-42 Table 13.2.1-1)

2. **Maximum Distance One-Way**

 \[
 \text{Maximum one-way distance (miles)} = \frac{\text{Maximum trips per year (trip/yr)}}{\text{Average Miles Per Trip (miles/trip)}}
 \]

3. **Maximum Weight**

 \[
 \text{Maximum Weight (tons/trip)} = \text{Maximum Weight of Vehicle (tons/trip)} + \text{Maximum Weight of Load (tons/trip)}
 \]

4. **Maximum Asphalt Cement/Binder Throughput**

 \[
 \text{Maximum Asphalt Cement/Binder Throughput} = \text{Annual Asphalt Production Limitation (tons/yr)} \times \text{Percent Asphalt Cement/Binder (weight %)}
 \]

5. **Maximum Weight of Vehicle and Load**

 \[
 \text{Maximum Weight of Vehicle and Load (tons/trip)} = \text{Maximum Weight of Vehicle (tons/trip)} + \text{Maximum Weight of Load (tons/trip)}
 \]

6. **Maximum Weight Driven Per Year**

 \[
 \text{Maximum Weight driven per year (ton/yr)} = \text{Maximum Weight of Vehicle and Load (tons/trip)} \times \text{Maximum trips per year (trip/yr)}
 \]

Emission Calculations

<table>
<thead>
<tr>
<th>Process</th>
<th>Vehicle Type</th>
<th>Maximum Weight of Vehicle & Load (tons/trip)</th>
<th>Maximum Weight of Vehicle (tons/trip)</th>
<th>Maximum Weight of Load (tons/trip)</th>
<th>Maximum Weight Driven Per Year (ton/yr)</th>
<th>Mitigated PTE of PM10 (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (Before Control) (tons/yr)</th>
<th>Total Weight Driven (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Full</td>
<td>Aggregate/AMP Truck Loader Full</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
<tr>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>Aggregate/AMP Truck Loader Empty</td>
<td>17.0</td>
<td>15.0</td>
<td>2.00</td>
<td>1.70</td>
<td>16.70</td>
<td>1.48</td>
<td>16.70</td>
</tr>
</tbody>
</table>

Totals: 14.61 2.96 0.73 7.48 1.48 2.36
Volatile Organic Compounds

<table>
<thead>
<tr>
<th>Substance Description</th>
<th>Maximum weight % of VOC solvent in binder</th>
<th>Weight % VOC solvent in binder that evaporates</th>
<th>VOC Solvent Usage Limitation (tons/yr)</th>
<th>Limited PTE of VOC (tons/yr)</th>
<th>Liquid Binder Adjustment Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut back asphalt rapid cure (assuming gasoline or naphtha solvent)</td>
<td>25.3%</td>
<td>95.0%</td>
<td>57.13</td>
<td>54.3</td>
<td>1.053</td>
</tr>
<tr>
<td>Cut back asphalt medium cure (assuming kerosene solvent)</td>
<td>26.8%</td>
<td>70.0%</td>
<td>77.53</td>
<td>54.3</td>
<td>1.429</td>
</tr>
<tr>
<td>Cut back asphalt slow cure (assuming fuel oil solvent)</td>
<td>20.0%</td>
<td>25.0%</td>
<td>217.08</td>
<td>54.3</td>
<td>4.000</td>
</tr>
<tr>
<td>Emulsified asphalt with solvent (assuming water, emulsifying agent, and 15% fuel oil solvent)</td>
<td>15.0%</td>
<td>46.4%</td>
<td>116.96</td>
<td>54.3</td>
<td>2.155</td>
</tr>
<tr>
<td>Other asphalt with solvent binder</td>
<td>25.9%</td>
<td>2.5%</td>
<td>2170.80</td>
<td>54.3</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Worst Case Limited PTE of VOC = 54.3

Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Substance Description</th>
<th>Worst Case Total HAP Content of VOC solvent (weight %)*</th>
<th>26.08%</th>
<th>Worst Case Single HAP Content of VOC solvent (weight %)*</th>
<th>9.0% Xylenes</th>
<th>Limited PTE of Total HAPs (tons/yr)</th>
<th>14.16</th>
<th>Limited PTE of Single HAP (tons/yr)</th>
<th>4.88 Xylenes</th>
</tr>
</thead>
</table>

Hazardous Air Pollutant (HAP) Content (% by weight) For Various Petroleum Solvents

<table>
<thead>
<tr>
<th>Substance Description</th>
<th>CAS#</th>
<th>Hazardous Air Pollutant (HAP) Content (% by weight)* For Various Petroleum Solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-Butadiene</td>
<td>106-99-0</td>
<td>Gasoline: 3.70E-5% Kerosene: 2.50E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>2,3,4-Trimethylpentane</td>
<td>125-34-1</td>
<td>Gasoline: 2.40% Kerosene: 1.90E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
<td>Gasoline: 4.70E-5% Kerosene: 3.20E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-86-8</td>
<td>Gasoline: 4.50E-5% Kerosene: 3.00E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
<td>Gasoline: 1.20E-6% Kerosene: 8.30E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>Gasoline: 1.90E-5% Kerosene: 1.20E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56-55-3</td>
<td>Gasoline: 9.60E-7% Kerosene: 6.00E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>55-52-8</td>
<td>Gasoline: 2.20E-6% Kerosene: 1.40E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Benzo(g,h,i)pyrene</td>
<td>191-24-2</td>
<td>Gasoline: 1.20E-7% Kerosene: 8.60E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>92-52-4</td>
<td>Gasoline: 6.30E-4% Kerosene: 4.30E-3% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>Gasoline: 4.50E-5% Kerosene: 3.00E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>106-41-4</td>
<td>Gasoline: 1.70E-6% Kerosene: 1.10E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
<td>Gasoline: 7.10E-6% Kerosene: 5.90E-5% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
<td>Gasoline: 4.20E-5% Kerosene: 3.00E-4% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
<td>Gasoline: 1.60E-7% Kerosene: 1.00E-6% Diesel (#2): 1.00E-5% No. 2 Fuel Oil: 1.90E-6% No. 6 Fuel Oil: 1.20E-7%</td>
</tr>
<tr>
<td>Methyl-tetrahydrotetrahydrofuran</td>
<td>10324-04-4</td>
<td>Gasoline: 0.33% Kerosene: 0.23% Diesel (#2): 0.13% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>Gasoline: 0.25% Kerosene: 0.15% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>110-54-3</td>
<td>Gasoline: 2.40% Kerosene: 1.50E-4% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85-01-8</td>
<td>Gasoline: 8.60E-6% Kerosene: 6.00E-5% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
<td>Gasoline: 2.40E-6% Kerosene: 1.60E-5% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-86-3</td>
<td>Gasoline: 8.10% Kerosene: 5.40E-4% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Total Xylenes</td>
<td>1330-20-7</td>
<td>Gasoline: 9.00% Kerosene: 5.70E-4% Diesel (#2): 0.10% No. 2 Fuel Oil: 0.20E-5% No. 6 Fuel Oil: 0.13%</td>
</tr>
<tr>
<td>Total Organic HAPs</td>
<td>28.18%</td>
<td>0.33% 1.29% 0.68% 0.19%</td>
</tr>
<tr>
<td>Worst Single HAP Xylenes</td>
<td>9.00%</td>
<td>0.31% 0.50% 0.23% 0.07%</td>
</tr>
<tr>
<td>Worst Single HAP Naphthalene</td>
<td>0.31%</td>
<td>0.50% 0.23% 0.07%</td>
</tr>
<tr>
<td>Abbreviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC = Volatile Organic Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTE = Potential to Emit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Limited PTE of VOC (tons/yr) = [Weight % VOC solvent in binder that evaporates] * [VOC Solvent Usage Limitation (tons/yr)]

Limited PTE of Total HAPs (tons/yr) = [Worst Case Total HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]

Limited PTE of Single HAP (tons/yr) = [Worst Case Single HAP Content of VOC solvent (weight %)] * [Worst Case Limited PTE of VOC (tons/yr)]

January 6, 2020

Ms. Amy Boswell
Dave O’Mara Contractor, Inc., Plant #6
1100 East O & M Avenue
North Vernon, IN 47265

Re: Public Notice
Dave O’Mara Contractor, Inc., Plant #6
Permit Level: FESOP – Significant Permit Revision
Permit Number: 143-41779-03192

Dear Ms. Boswell:

Enclosed is a copy of your draft FESOP – Significant Permit Revision, Technical Support Document, emission calculations, and the Public Notice.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Scott County Public Library, 108 S. Main Street in Scottsburg, IN 47170-1892. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Mehul Sura, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 3-6868 or dial (317) 233-6868.

Sincerely,

Vicki Biddle

Vicki Biddle
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover Letter 4/12/19
January 6, 2020

To: Scott County Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Dave O'Mara Contractor, Inc., Plant #6
Permit Number: 143-41779-03192

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

January 6, 2020
Dave O'Mara Contractor, Inc., Plant #6
143-41779-03192

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure
PN AAA Cover Letter 4/12/2019
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>VBIDDLE 1/6/2020</th>
<th>Dave O'Mara Contractor Inc Plant 6</th>
<th>143-41779-03192</th>
<th>DRAFT</th>
<th>AFFIX STAMP HERE IF USED AS CERTIFICATE OF MAILING ONLY</th>
</tr>
</thead>
</table>

Name and address of Sender

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Rest. Del. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Amy Boswell, Dave O'Mara Contractor Inc Plant 6 1100 E O & M Ave North Vernon IN 472651139 (Source CAATS)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Scott County Health Department 1296 N. Gardner St Scottsburg IN 47170-1400 (Health Department)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Scottsburg City Council and Mayors Office 2 E. McLain Street Scottsburg IN 47170 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Scott County Public Library 108 S Main St Scottsburg IN 47170-1892 (Library)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Kathy Moore Keramida Environmental, Inc. 401 North College Indianapolis IN 46202 (Consultant)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Scott County Commissioners 1 E. McClain Ave., County Courthouse Scottsburg IN 47170 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender

| 6 |

The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $900. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See [Domestic Mail Manual R900, S913, and S921](#) for limitations of coverage on insured and COD mail. See [International Mail Manual](#) for limitations on coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.