NOTICE OF 30-DAY PERIOD
FOR PUBLIC COMMENT

Preliminary Findings Regarding a
Significant Modification to a
Part 70 Operating Permit

for Sugar Creek Packing Co. in Wayne County

Part 70 Operating Permit Renewal No.: T177-41827-00121
Significant Source Modification No.: 177-41830-00121

The Indiana Department of Environmental Management (IDEM) has received an application from Sugar Creek Packing Co., located at 1200 Enterprise Road, Cambridge City, Indiana 47327, for a significant source modification and renewal of its Part 70 Operating Permit issued on May 20, 2015. If approved by IDEM’s Office of Air Quality (OAQ), this proposed permit would allow Sugar Creek Packing Co. to make certain changes at its existing source. Sugar Creek Packing Co. has applied to install new cooking units, modifying the heat input capacities of two boilers and numerous insignificant units.

The applicant intends to construct and operate new equipment that will emit air pollutants; therefore, the permit contains new or different permit conditions. In addition, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g. changes that add or modify synthetic minor emission limits). IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow the applicant to make this change.

A copy of the permit application and IDEM’s preliminary findings are available at:

Cambridge City Public Library
600 West Main Street
Cambridge City, IN 47327

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will
make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM's mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number T 177-41827-00121 and SSM 177-41830-00121 in all correspondence.

Comments should be sent to:

Tamera Wessel
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Tamera Wessel
Or dial directly: (317) 234-8530
Fax: (317) 232-6749 attn: Tamera Wessel
E-mail: twessel@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM's response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM's decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Tamera Wessel of my staff at the above address.

Heath Hartley, Section Chief
Permits Branch
Office of Air Quality
Ms. Lorie Brengelman
Sugar Creek Packing Co.
12021 Sheraton Lane
Cincinnati, OH 45246

Re: 177-41830-00121
Significant Source Modification

Dear Ms. Brengelman:

Sugar Creek Packing Co. was issued Part 70 Operating Permit No. T177-35253-00121 on May 20, 2015 for a stationary prepared meat facility located at 1200 Enterprise Road, Cambridge City, Indiana 47327. An application to modify the source was received on August 21, 2019. Pursuant to the provisions of 326 IAC 2-7-10.5, a Significant Source Modification is hereby approved as described in the attached Technical Support Document.

Pursuant to 326 IAC 2-7-10.5, the following emission units are approved for construction at the source:

(a) One (1) natural gas-fired impingement oven, identified as Impingement Oven #6, approved in 2019 for construction, with a maximum heat input capacity of 5 MMBtu/hr and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(b) One (1) electric infrared conveying oven, identified as Infrabaker #6, approved in 2019 for construction, with a maximum cooked product throughput rate of 1,500 pounds per hour, using no controls and exhausting to Stack S-12.

(c) One (1) steam-powered fryer, identified as Blentech #1, approved in 2019 for construction, with a maximum cooked product throughput rate of 7,000 pounds per hour, utilizing no control, and exhausting indoors.

The following construction conditions are applicable to the proposed modification:

General Construction Conditions

1. The data and information supplied with the application shall be considered part of this source modification approval. Prior to any proposed change in construction which may affect the potential to emit (PTE) of the proposed project, the change must be approved by the Office of Air Quality (OAQ).

2. This approval to construct does not relieve the Permittee of the responsibility to comply with the provisions of the Indiana Environmental Management Law (IC 13-11 through 13-20; 13-22 through 13-25; and 13-30), the Air Pollution Control Law (IC 13-17) and the rules promulgated thereunder, as well as other applicable local, state, and federal requirements.

3. Pursuant to IC 13-15-5-3, this approval becomes effective upon its issuance.
DRAFT

Commenced Construction

4. Pursuant to 326 IAC 2-1.1-9 and 326 IAC 2-7-10.5(j), the Commissioner may revoke this approval if construction is not commenced within eighteen (18) months after receipt of this approval or if construction is suspended for a continuous period of one (1) year or more.

5. All requirements and conditions of this construction approval shall remain in effect unless modified in a manner consistent with procedures established pursuant to 326 IAC 2.

Approval to Construct

6. Pursuant to 326 IAC 2-7-10.5(h)(2), this Significant Source Modification authorizes the construction of the new emission unit(s), when the Significant Source Modification has been issued.

Pursuant to 326 IAC 2-7-10.5(m), the emission units constructed under this approval shall not be placed into operation prior to revision of the source’s Part 70 Operating Permit to incorporate the required operation conditions.

Pursuant to 326 IAC 2-7-12, operation of the new emission unit(s) is not approved until the Significant Permit Modification has been issued. Operating conditions shall be incorporated into the Part 70 Operating Permit as a Significant Permit Modification in accordance with 326 IAC 2-7-10.5(m)(2) and 326 IAC 2-7-12 (Permit Modification).

For the purposes of this permitting action, the Significant Permit Modification has been combined with the current Part 70 Operating Permit Renewal. Therefore, operation is not approved until the Part 70 Operating Permit Renewal has been issued.

A copy of the permit is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/. A copy of the permit is also available via IDEM’s Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria. For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

This decision is subject to the Indiana Administrative Orders and Procedures Act - IC 4-21.5-3-5.

If you have any questions regarding this matter, please contact Tamera Wessel, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (800) 451-6027, and ask for Tamera Wessel or (317) 234-8530.

Sincerely,

Heath Hartley, Section Chief
Permits Branch
Office of Air Quality

Attachments: Significant Source Modification and Technical Support Document

cc: File - Wayne County
Wayne County Health Department
U.S. EPA, Region 5
Compliance and Enforcement Branch
Significant Source Modification
to a Part 70 Source

OFFICE OF AIR QUALITY

Sugar Creek Packing Co.
1200 Enterprise Road
Cambridge City, Indiana 47327

(herin known as the Permittee) is hereby authorized to construct subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17. This permit also addresses certain new source review requirements for new and/or existing equipment and is intended to fulfill the new source review procedures pursuant to 326 IAC 2-7-10.5, applicable to those conditions.

Significant Source Modification No.: 177-41830-00121
Master Agency Interest ID: 100405

Issued by:

Heath Hartley, Section Chief
Permits Branch
Office of Air Quality

Issuance Date:

Expiration Date:
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

A.4 Part 70 Permit Applicability [326 IAC 2-7-2]

SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

B.3 Term of Conditions [326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]

B.5 Severability [326 IAC 2-7-5(5)]

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]

B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

B.11 Emergency Provisions [326 IAC 2-7-16]

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

B.20 Source Modification Requirement [326 IAC 2-7-10.5]

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Opacity [326 IAC 5-1]

C.2 Open Burning [326 IAC 4-1][IC 13-17-9]

C.3 Incineration [326 IAC 4-2][326 IAC 9-1-2]

C.4 Fugitive Dust Emissions [326 IAC 6-4]

C.5 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)]

C.6 Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11]

C.7 Compliance Requirements [326 IAC 2-1.1-11]

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.8 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

C.9 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]
Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] 25
C.10 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]
C.11 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]
C.12 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]
C.13 Actions Related to Noncompliance Demonstrated by a Stack Test
[326 IAC 2-7-5][326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 26
C.14 Emission Statement
[326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]
C.15 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6]
C.16 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]

Stratospheric Ozone Protection ... 28
C.17 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS .. 29
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 33
D.1.1 PSD Minor Limit [326 IAC 2-2]
D.1.2 VOC Emission Limitation [326 IAC 8-1-6]
D.1.3 Particulate [326 IAC 6.5-1-2]
D.1.4 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Compliance Determination Requirements [326 IAC 2-7-5(1)].. 35
D.1.5 Volatile Organic Compounds
D.1.6 Particulate Control
D.1.7 Testing Requirements [326 IAC 2-1.1-11]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 36
D.1.8 Record Keeping Requirement
D.1.9 Reporting Requirement

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS .. 37
Emission Limitations and Standards [326 IAC 2-7-5(1)] .. 37
D.2.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC
8-3-2]
D.2.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]
D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

Record Keeping and Reporting Requirement [326 IAC 2-7-5(3)] [326 IAC 2-7-19] 38
D.2.4 Record Keeping Requirements

SECTION E.1 NSPS .. 39
New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)] 39
E.1.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1]
[40 CFR Part 60, Subpart A]
E.1.2 Small Industrial-Commercial-Institutional Steam Generating Units NSPS
[326 IAC 12] [40 CFR Part 60, Subpart Dc]

SECTION E.2 NSPS .. 41
New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)] 41
E.2.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1]
[40 CFR Part 60, Subpart A]
E.2.2 Stationary Spark Ignition Internal Combustion Engines NSPS [326 IAC 12]
[40 CFR Part 60, Subpart JJJJ]
SECTION E.3 NESHAP

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)]

E.3.2 Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

CERTIFICATION

EMERGENCY OCCURRENCE REPORT

Part 70 Quarterly Report

Part 70 Quarterly Report

QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Attachment A: 40 CFR 60, Subpart Dc, NSPS Small Industrial-Commercial-Institutional Steam Generating Units

Attachment B: 40 CFR 60, Subpart JJJJ, NSPS Stationary Spark Ignition Internal Combustion Engines

Attachment C: 40 CFR 63, Subpart ZZZZ, NESHAP Stationary Reciprocating Internal Combustion Engines
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary prepared meat facility.

- Source Address: 1200 Enterprise Road, Cambridge City, Indiana 47327
- General Source Phone Number: 513-551-5280
- SIC Code: 2013 (Sausages and Other Prepared Meats Products)
- County Location: Wayne
- Source Location Status: Attainment for all criteria pollutants
- Source Status: Part 70 Operating Permit Program
- Minor Source, under PSD and Emission Offset Rules
- Minor Source, Section 112 of the Clean Air Act
- Not 1 of 28 Source Categories

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

Cooking Units:

(a) One (1) electric infrared conveying oven, identified as Infrabaker #1, approved in 2015 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD05 and exhausting to Stack S-5.

(b) One (1) electric infrared conveying oven, identified as Infrabaker #2, permitted in 2016, with a maximum cooked product throughput rate of 2,425 pounds per hour, using no controls, and exhausting to Stack S-13.

(c) Two (2) natural gas-fired infrared conveying ovens, identified as Infrabaker (AFO) #3 and #4, each consisting of a grill and marker, approved in 2017 for construction, with a maximum cooked product throughput rate of 3,000 pounds per hour, each, and exhausting to Stacks S-25a & S-25b and S-26a & S-26b, respectively.

(d) One (1) electric infrared conveying oven, identified as Infrabaker #5, approved in 2018 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD07 and exhausting to stack S-07.

(e) One (1) electric infrared conveying oven, identified as Infrabaker #6, approved in 2019 for construction, with a maximum cooked product throughput rate of 1,500 pounds per hour, using no controls and exhausting to Stack S-12.

(f) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #1, approved in 2015 for construction, with a maximum heat input capacity of 3.20 MMBtu
per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

(g) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #2, approved in 2015 for construction, with a maximum rated heat input capacity of 3.20 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD03 and exhausting to Stack S-3.

(h) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #3, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD06 and exhausting to Stack S-6.

(i) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #4, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD06 and exhausting to Stack S-6.

(j) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #5, constructed in 2018 and approved in 2019 for modification, with a maximum heat input capacity of 7 MMBtu per hour, and a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD08, and exhausting to stack S-8.

(k) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #6, approved in 2018 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD10, and exhausting to stack S-10.

(l) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.00 MMBtu per hour and a maximum cooked product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD02 and CD03, respectively and exhausting to Stacks S-2 and S-3, respectively.

(m) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #3 and #4, constructed in 2018 and approved in 2019 for modification, each with a maximum heat input capacity of 2 MMBtu per hour and each with a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust systems, identified as CD09, and exhausting to stack S-9.

(n) One (1) natural gas-fired impingement oven, identified as Impingement Oven #5, approved in 2018 for construction, with a maximum heat input capacity of 5 MMBtu per hour and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(o) One (1) natural gas-fired impingement oven, identified as Impingement Oven #6, approved in 2019 for construction, with a maximum heat input capacity of 5 MMBtu/hr and a maximum cooked product throughput rate of 7,000 pounds per hour, with
particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(p) Two (2) natural gas-fired char markers, identified as Char Marker #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.20 MMBtu per hour and a maximum charred product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD04 and CD12, and exhausting to Stacks S-4 and S-14, respectively.

(q) One (1) natural gas-fired char marker, identified as Char Marker #3, approved in 2015 for construction, with a maximum heat input capacity of 4.20 MMBtu per hour, and a maximum charred product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(r) One (1) natural gas-fired fryer, identified as Fryer #1, approved in 2015 for construction, with a maximum heat input capacity of 1.56 MMBtu per hour and a maximum cooked product throughput rate of 5,980 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

Natural Gas-Fired Combustion - Hot Water Heaters

(s) Four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-15a, S-15b, S-16a, and S-16b, respectively. Under 40 CFR 60, Subpart Dc, Hot Water Heaters #1 through #4 are considered affected facilities.

Natural Gas-Fired Combustion - Boiler

(t) One (1) natural gas-fired boiler, identified as Boiler #5, constructed in 2017, with a maximum heat input capacity of 21 MMBtu per hour, and exhausting to stack S-24. Under 40 CFR 60, Subpart Dc, Boiler #5 is considered an affected facility.

(u) One (1) natural gas-fired boiler, identified as Boiler #6, approved in 2018 for construction, with a maximum heat input capacity of 24.8 MMBtu per hour, using no controls, and exhausting to stack S-27. Under 40 CFR 60, Subpart Dc, Boiler #6 is considered an affected facility.

A.3 Specifically Regulated Insignificant Activities

[326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

Natural Gas-Fired Combustion Units:

(a) Natural Gas-Fired combustion sources with heat input less than ten (10) MMBtu/hr consisting of the following:

Boilers and Hot Water Heaters

(1) Two (2) natural gas-fired thermal boilers, identified as Thermal Boiler #1 and Thermal Boiler #2 (Hot Oil Heaters), each with a maximum heat input capacity of
4.00 MMBtu per hour and exhausting to stacks S-22 and S-23, respectively.

(2) Two (2) natural gas-fired boilers, identified as Boiler #1 and Boiler #2, each with a maximum heat input capacity of 6.00 MMBtu per hour and exhausting to stacks S-18 and S-19, respectively.

(3) Two (2) natural gas-fired boilers, identified as Boiler #3 and Boiler #4, approved in 2015 for construction, each with a maximum heat input capacity of 6.695 MMBtu per hour and exhausting to stacks S-20 and S-21, respectively.

(4) Two (2) natural gas-fired hot water heaters, identified as Hot Water Heaters #7 and #8, approved in 2015 for construction, each with a maximum heat input capacity of 1.00 MMBtu per hour and exhausting to stacks S-44 and S-45, respectively.

Make-Up Air Units

(5) One (1) natural gas-fired make-up air unit, identified as MAU-1, permitted in 2019, with a maximum heat input capacity of 0.12 MMBtu per hour.

(6) Two (2) natural gas-fired make-up air units, identified as E-MAU-12 and E-MAU-13, permitted in 2019, each with a maximum heat input capacity of 0.16 MMBtu per hour.

(7) Two (2) natural gas-fired make-up air units, identified as E-MAU-14 and E-MAU-16, permitted in 2019, each with a maximum heat input capacity of 0.40 MMBtu per hour.

(8) One (1) natural gas-fired make-up air unit, identified as E-MAU-15, permitted in 2019, with a maximum heat input capacity of 0.23 MMBtu per hour.

(9) One (1) natural gas-fired make-up air unit, identified as E-MAU-17, permitted in 2019, with a maximum heat input capacity of 1.75 MMBtu per hour.

(10) Two (2) natural gas-fired make-up air units, identified as MAU-20 and MAU-21, each with a maximum heat input capacity of 2.40 MMBtu per hour.

(11) Two (2) natural gas-fired make-up air units, identified as MAU-22 and MAU-23, each with a maximum heat input capacity of 0.30 MMBtu per hour.

(12) One (1) natural gas-fired make-up air unit, identified as MAU-24, permitted in 2019, with a maximum heat input capacity of 2.57 MMBtu per hour.

(13) One (1) natural gas-fired make-up air unit, identified as MAU-25, permitted in 2019, with a maximum heat input capacity of 1.29 MMBtu per hour.

(14) Three (3) natural gas-fired make-up air units, identified as MAU-26, MAU-27 and MAU-28, permitted in 2019, each with a maximum heat input capacity of 1.73 MMBtu per hour.

(15) Two (2) natural gas-fired make-up air units, identified as MAU-29 and MAU-30, permitted in 2019, each with a maximum heat input capacity of 1.80 MMBtu per hour.

HVAC Units
(16) Two (2) natural gas-fired HVAC units, identified as HVAC #1 and #3, each with a maximum heat input capacity of 1.92 MMBtu per hour.

(17) One (1) natural gas-fired HVAC units, identified as HVAC #2, with a maximum heat input capacity of 0.96 MMBtu per hour.

Heaters

(18) Twelve (12) natural gas-fired heaters, identified as GUH-1, GUH-2, GUH-7, GUH-8, GUH-9, GUH-10, GUH-11, GUH-12, GUH-13, GUH-14, GUH-15, and GUH-16, permitted in 2019, each with a maximum heat input capacity of 0.29 MMBtu per hour.

(19) Seven (7) natural gas-fired heaters, identified as E-GUH-2, E-GUH-5, E-GUH-8, E-GUH-9, E-GUH-10, E-GUH-11, and E-GUH-12, permitted in 2019, each with a maximum heat input capacity of 0.28 MMBtu per hour.

(20) Five (5) natural gas-fired heaters, identified as GUH-3, GUH-4, GUH-17, GUH-18, and GUH-19, permitted in 2019, each with a maximum heat input capacity of 0.51 MMBtu per hour.

(21) Five (5) natural gas-fired heaters, identified as E-GUH-1, E-GUH-3, E-GUH-4, E-GUH-6, and E-GUH-7, permitted in 2019, each with a maximum heat input capacity of 0.13 MMBtu per hour.

(22) Three (3) natural gas-fired heaters, identified as GUH-5, GUH-6, and GUH-20, permitted in 2019, each with a maximum heat input capacity of 0.38 MMBtu per hour.

(23) Two (2) natural gas-fired heaters, identified as GUH-21 and GUH-22, permitted in 2019, each with a maximum heat input capacity of 0.19 MMBtu per hour.

(24) Two (2) natural gas-fired heaters, identified as GUH-23 and GUH-24, permitted in 2019, each with a maximum heat input capacity of 0.10 MMBtu per hour.

Furnaces

(25) Three (3) direct natural gas-fired furnaces, identified as DGF-1 through DGF-3, permitted in 2019, each with a maximum heat input capacity of 1.30 MMBtu/hr.

(26) Six (6) indirect natural gas-fired furnaces, identified as IGF-1 through IGF-6, permitted in 2019, each with a maximum heat input capacity of 1.2 MMBtu/hr.

(27) Five (5) indirect natural gas-fired furnaces, identified as IGF-7 through IGF-11, permitted in 2019, each with a maximum heat input capacity of 1.16 MMBtu/hr.

(b) Combustion Engines - Activities associated with emergencies, including the following:

(1) One (1) natural gas-fired emergency generator, identified as Generator #1, with a rating of 605 HP, manufactured after 2009, installed in 2015.

Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility. Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

(2) One (1) natural gas fired emergency generator, identified as Generator #2, with a

Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility. Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

(3) One (1) natural gas fired emergency generator, identified as Generator #3, with a rating of 302 HP, manufactured in 2009, installed in 2019.

Under 40 CFR 60, Subpart JJJJ, Generator #3 is considered an affected facility. Under 40 CFR 63, Subpart ZZZZ, Generator #3 is considered a new affected facility.

Cold Cleaner Degreasing Operations:

(c) One (1) vat washer, identified as Vat Washer, with a maximum throughput of 1,800 gallons of solvent per year, exhausting to stacks S-39a and S-39b, respectively.

(d) Two (2) parts washers, identified as Parts Washers #1 and #2, each with a maximum throughput of 420 gallons of solvent per year, exhausting inside the building.

Printers:

(e) Ten (10) Inkjet printers, identified as Inkjet Printers, with a maximum total usage of 180 gallons per year of make-up fluid and 45 gallons per year of ink, exhausting inside the building.

Electric Units:

(f) One (1) electric smoke generator, identified as Smoke Generator #1, with a maximum wood chip usage rate of 35 pounds per hour and a maximum throughput of 6,000 pounds per batch, and exhausting to a water bath.

Fugitive Emissions:

(g) Paved roads and parking lots.

Miscellaneous Insignificant Activities:

(h) Pump filtration

(i) Wastewater treatment

(j) One (1) evaporative cooling system

(k) Four (4) bulk sanitation chemical tanks, each with capacity of 1,500 gallons.

A.4 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

(a) It is a major source, as defined in 326 IAC 2-7-1(22);

(b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 - Applicability).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]
Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
(a) This permit, T177-41827-00121, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]
Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]
Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]
The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U.S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

1. It contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and
2. The certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source's compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V
Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

1. The appropriate identification of each term or condition of this permit that is the basis of the certification;
2. The compliance status;
3. Whether compliance was continuous or intermittent;
4. The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
5. Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.
The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)[326 IAC 1-6-3]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

1. Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

2. A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

3. Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee's control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

1. An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
2. The permitted facility was at the time being properly operated;
3. During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
4. For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;
 Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or
 Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
 Facsimile Number: 317-233-6865
5. For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

(A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and
(C) Corrective actions taken.
The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.

(g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.

(c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to
be false, or in the exercise of reasonable care should have been known to be false, at the
time the information was submitted.

(d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:

(1) The provisions of Section 303 of the Clean Air Act (emergency orders), including
the authority of the U.S. EPA under Section 303 of the Clean Air Act;

(2) The liability of the Permittee for any violation of applicable requirements prior to
or at the time of this permit's issuance;

(3) The applicable requirements of the acid rain program, consistent with Section
408(a) of the Clean Air Act; and

(4) The ability of U.S. EPA to obtain information from the Permittee under Section
114 of the Clean Air Act.

(e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2)
(Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading
based on State Implementation Plan (SIP) provisions).

(f) This permit shield is not applicable to modifications eligible for group processing until
after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]

(g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM,
OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

(a) All terms and conditions of permits established prior to T177-41827-00121 and issued
pursuant to permitting programs approved into the state implementation plan have been
either:

(1) incorporated as originally stated,

(2) revised under 326 IAC 2-7-10.5, or

(3) deleted under 326 IAC 2-7-10.5.

(b) Provided that all terms and conditions are accurately reflected in this combined permit, all
previous registrations and permits are superseded by this combined new source review
and part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a
timely and complete renewal application is submitted at least nine (9) months prior to the date of
expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).

B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination
[326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause.
The filing of a request by the Permittee for a Part 70 Operating Permit modification,
revocation and reissuance, or termination, or of a notification of planned changes or
anticipated noncompliance does not stay any condition of this permit.
[326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that
meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

(1) That this permit contains a material mistake.

(2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.

(3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the
deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

(a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

(a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.

(b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:

1. The changes are not modifications under any provision of Title I of the Clean Air Act;

2. Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;

3. The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);
(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

(1) A brief description of the change within the source;

(2) The date on which the change will occur;

(3) Any change in emissions; and

(4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Emission Trades [326 IAC 2-7-20(c)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).

(d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.
(e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

B.20 Source Modification Requirement [326 IAC 2-7-10.5]

A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee’s right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
 Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).
(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.

C.2 Open Burning [326 IAC 4-1] [IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.3 Incineration [326 IAC 4-2] [326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.4 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.5 Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]

(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.

(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:

(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;
(B) Removal or demolition contractor; or

(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).

(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.

Testing Requirements [326 IAC 2-7-6(1)]

C.6 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.7 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.8 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee's control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.9 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than
twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.10 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.11 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.12 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.
(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

C.13 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

C.14 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(b)(2), starting in 2005 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

(1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);

(2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management
Technical Support and Modeling Section, Office of Air Quality
100 North Senate Avenue
MC 61-50 IGCN 1003
Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.15 General Record Keeping Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-6]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

(AA) All calibration and maintenance records.

(BB) All original strip chart recordings for continuous monitoring instrumentation.
(CC) Copies of all reports required by the Part 70 permit.
Records of required monitoring information include the following, where applicable:
(AA) The date, place, as defined in this permit, and time of sampling or measurements.
(BB) The dates analyses were performed.
(CC) The company or entity that performed the analyses.
(DD) The analytical techniques or methods used.
(EE) The results of such analyses.
(FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.16 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit "calendar year" means the twelve (12) month period from January 1 to December 31 inclusive.
Stratospheric Ozone Protection

C.17 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
Emissions Unit Description:

Cooking Units:

(a) One (1) electric infrared conveying oven, identified as Infrabaker #1, approved in 2015 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD05 and exhausting to Stack S-5.

(b) One (1) electric infrared conveying oven, identified as Infrabaker #2, permitted in 2016, with a maximum cooked product throughput rate of 2,425 pounds per hour, using no controls, and exhausting to Stack S-13.

(c) Two (2) natural gas-fired infrared conveying ovens, identified as Infrabaker (AFO) #3 and #4, each consisting of a grill and marker, approved in 2017 for construction, with a maximum cooked product throughput rate of 3,000 pounds per hour, each, and exhausting to Stacks S-25a & S-25b and S-26a & S-26b, respectively.

(d) One (1) electric infrared conveying oven, identified as Infrabaker #5, approved in 2018 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD07 and exhausting to stack S-07.

(e) One (1) electric infrared conveying oven, identified as Infrabaker #6, approved in 2019 for construction, with a maximum cooked product throughput rate of 1,500 pounds per hour, using no controls and exhausting to Stack S-12.

(f) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #1, approved in 2015 for construction, with a maximum heat input capacity of 3.20 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

(g) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #2, approved in 2015 for construction, with a maximum rated heat input capacity of 3.20 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD03 and exhausting to Stack S-3.

(h) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #3, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD06 and exhausting to Stack S-6.

(i) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #4, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD06 and exhausting to Stack S-6.

(j) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #5, constructed in 2018 and approved in 2019 for modification, with a maximum heat input capacity of 7...
MMBtu per hour, and a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD08, and exhausting to stack S-8.

(k) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #6, approved in 2018 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD10, and exhausting to stack S-10.

(l) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.00 MMBtu per hour and a maximum cooked product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD02 and CD03, respectively and exhausting to Stacks S-2 and S-3, respectively.

(m) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #3 and #4, constructed in 2018 and approved in 2019 for modification, each with a maximum heat input capacity of 2 MMBtu per hour and each with a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust systems, identified as CD09, and exhausting to stack S-9.

(n) One (1) natural gas-fired impingement oven, identified as Impingement Oven #5, approved in 2018 for construction, with a maximum heat input capacity of 5 MMBtu per hour and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(o) One (1) natural gas-fired impingement oven, identified as Impingement Oven #6, approved in 2019 for construction, with a maximum heat input capacity of 5 MMBtu/hr and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(p) Two (2) natural gas-fired char markers, identified as Char Marker #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.20 MMBtu per hour and a maximum charred product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD04 and CD12, and exhausting to Stacks S-4 and S-14, respectively.

(q) One (1) natural gas-fired char marker, identified as Char Marker #3, approved in 2015 for construction, with a maximum heat input capacity of 4.20 MMBtu per hour, and a maximum charred product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(r) One (1) natural gas-fired fryer, identified as Fryer #1, approved in 2015 for construction, with a maximum heat input capacity of 1.56 MMBtu per hour and a maximum cooked product throughput rate of 5,980 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

Natural Gas-Fired Combustion - Hot Water Heaters

(s) Four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-15a, S-15b, S-16a, and S-16b, respectively.

Under 40 CFR 60, Subpart Dc, Hot Water Heaters #1 through #4 are considered affected facilities.
Natural Gas-Fired Combustion - Boiler

(t) One (1) natural gas-fired boiler, identified as Boiler #5, constructed in 2017, with a maximum heat input capacity of 21 MMBtu per hour, and exhausting to stack S-24.

Under 40 CFR 60, Subpart Dc, Boiler #5 is considered an affected facility.

(u) One (1) natural gas-fired boiler, identified as Boiler #6, approved in 2018 for construction, with a maximum heat input capacity of 24.8 MMBtu per hour, using no controls, and exhausting to stack S-27.

Under 40 CFR 60, Subpart Dc, Boiler #6 is considered an affected facility.

Insignificant Activities:

Natural Gas-Fired Combustion Units:

(a) Natural Gas-Fired combustion sources with heat input less than ten (10) MMBtu/hr consisting of the following:

 Boilers and Hot Water Heaters

 (1) Two (2) natural gas-fired thermal boilers, identified as Thermal Boiler #1 and Thermal Boiler #2 (Hot Oil Heaters), each with a maximum heat input capacity of 4.00 MMBtu per hour and exhausting to stacks S-22 and S-23, respectively.

 (2) Two (2) natural gas-fired boilers, identified as Boiler #1 and Boiler #2, each with a maximum heat input capacity of 6.00 MMBtu per hour and exhausting to stacks S-18 and S-19, respectively.

 (3) Two (2) natural gas-fired boilers, identified as Boiler #3 and Boiler #4, approved in 2015 for construction, each with a maximum heat input capacity of 6.695 MMBtu per hour and exhausting to stacks S-20 and S-21, respectively.

 (4) Two (2) natural gas-fired hot water heaters, identified as Hot Water Heaters #7 and #8, approved in 2015 for construction, each with a maximum heat input capacity of 1.00 MMBtu per hour and exhausting to stacks S-44 and S-45, respectively.

 Make-Up Air Units

 (5) One (1) natural gas-fired make-up air unit, identified as MAU-1, permitted in 2019, with a maximum heat input capacity of 0.12 MMBtu per hour.

 (6) Two (2) natural gas-fired make-up air units, identified as E-MAU-12 and E-MAU-13, permitted in 2019, each with a maximum heat input capacity of 0.16 MMBtu per hour.

 (7) Two (2) natural gas-fired make-up air units, identified as E-MAU-14 and E-MAU-16, permitted in 2019, each with a maximum heat input capacity of 0.40 MMBtu per hour.

 (8) One (1) natural gas-fired make-up air unit, identified as E-MAU-15, permitted in 2019, with a maximum heat input capacity of 0.23 MMBtu per hour.

 (9) One (1) natural gas-fired make-up air unit, identified as E-MAU-17, permitted in 2019, with a maximum heat input capacity of 1.75 MMBtu per hour.
(10) Two (2) natural gas-fired make-up air units, identified as MAU-20 and MAU-21, each with a maximum heat input capacity of 2.40 MMBtu per hour.

(11) Two (2) natural gas-fired make-up air units, identified as MAU-22 and MAU-23, each with a maximum heat input capacity of 0.30 MMBtu per hour.

(12) One (1) natural gas-fired make-up air unit, identified as MAU-24, permitted in 2019, with a maximum heat input capacity of 2.57 MMBtu per hour.

(13) One (1) natural gas-fired make-up air unit, identified as MAU-25, permitted in 2019, with a maximum heat input capacity of 1.29 MMBtu per hour.

(14) Three (3) natural gas-fired make-up air units, identified as MAU-26, MAU-27 and MAU-28, permitted in 2019, each with a maximum heat input capacity of 1.73 MMBtu per hour.

(15) Two (2) natural gas-fired make-up air units, identified as MAU-29 and MAU-30, permitted in 2019, each with a maximum heat input capacity of 1.80 MMBtu per hour.

HVAC Units

(16) Two (2) natural gas-fired HVAC units, identified as HVAC #1 and #3, each with a maximum heat input capacity of 1.92 MMBtu per hour.

(17) One (1) natural gas-fired HVAC units, identified as HVAC #2, with a maximum heat input capacity of 0.96 MMBtu per hour.

Heaters

(18) Twelve (12) natural gas-fired heaters, identified as GUH-1, GUH-2, GUH-7, GUH-8, GUH-9, GUH-10, GUH-11, GUH-12, GUH-13, GUH-14, GUH-15, and GUH-16, permitted in 2019, each with a maximum heat input capacity of 0.29 MMBtu per hour.

(19) Seven (7) natural gas-fired heaters, identified as E-GUH-2, E-GUH-5, E-GUH-8, E-GUH-9, E-GUH-10, E-GUH-11, and E-GUH-12, permitted in 2019, each with a maximum heat input capacity of 0.28 MMBtu per hour.

(20) Five (5) natural gas-fired heaters, identified as GUH-3, GUH-4, GUH-17, GUH-18, and GUH-19, permitted in 2019, each with a maximum heat input capacity of 0.51 MMBtu per hour.

(21) Five (5) natural gas-fired heaters, identified as E-GUH-1, E-GUH-3, E-GUH-4, E-GUH-6, and E-GUH-7, permitted in 2019, each with a maximum heat input capacity of 0.13 MMBtu per hour.

(22) Three (3) natural gas-fired heaters, identified as GUH-5, GUH-6, and GUH-20, permitted in 2019, each with a maximum heat input capacity of 0.38 MMBtu per hour.

(23) Two (2) natural gas-fired heaters, identified as GUH-21 and GUH-22, permitted in 2019, each with a maximum heat input capacity of 0.19 MMBtu per hour.

(24) Two (2) natural gas-fired heaters, identified as GUH-23 and GUH-24, permitted in 2019, each with a maximum heat input capacity of 0.10 MMBtu per hour.

Furnaces
D.1.1 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 not applicable, the Permittee shall comply with the following:

(a) The total amount of cooked product shall not exceed 100,000 tons per twelve (12) consecutive month period, for multipurpose ovens #1 through #6 and impingement ovens #1 through #6, combined.

(b) The PM emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 1.49 pounds per ton of cooked product.

(c) The PM10 emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 1.34 pounds per ton of cooked product.
(d) The VOC emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 3.14 pounds per ton of cooked product.

Compliance with these limits, combined with the potential to emit PM, PM10, and VOC from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM10, and VOC to less than two-hundred fifty (250) tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.2 VOC Emission Limitation [326 IAC 8-1-6]

In order to render the requirements of 326 IAC 8-1-6 (New Facilities; General Reduction Requirements) not applicable, the VOC emissions from the Multipurpose Ovens #1, #2, #3, #4, #5, #6, and Impingement Ovens #1, #2, #3, #4, #5, and #6, shall each not exceed 24.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

Compliance with this limit, shall limit the potential to emit of VOC to less than twenty-five (25) tons per twelve (12) consecutive month period from Multipurpose Ovens #1, #2, #3, #4, #5, #6, and Impingement Ovens #1, #2, #3, #4, #5, and #6 and shall render the requirements of 326 IAC 8-1-6 not applicable to Multipurpose Ovens #1, #2, #3, #4, #5, and #6.

D.1.3 Particulate [326 IAC 6.5-1-2]

(a) Pursuant to 326 IAC 6.5-1-2(b)(3), particulate emissions from the boilers, Boiler #1, Boiler #2, Boiler #3, Boiler #4, Boiler #5, and Boiler #6, Thermal Boiler #1 and Thermal Boiler #2, and hot water heaters, Hot Water Heater #1-#4, and Hot Water Heater #7 and #8, shall each not exceed 0.01 grains per dry standard cubic foot (dscf).

(b) Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)) for each of the following:

<table>
<thead>
<tr>
<th>Facility</th>
<th>Unit ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared Conveying Ovens</td>
<td>Infrabaker #1 through Infrabaker #6</td>
</tr>
<tr>
<td>Multipurpose Ovens</td>
<td>Multipurpose Oven #1 through Multipurpose Oven #6</td>
</tr>
<tr>
<td>Impingement Ovens</td>
<td>Impingement Oven #1 through Impingement Oven #6</td>
</tr>
<tr>
<td>Char Markers</td>
<td>Char Marker #1 through Char Marker #3</td>
</tr>
<tr>
<td>Fryers</td>
<td>Fryer #1</td>
</tr>
<tr>
<td>Make-Up Air Units</td>
<td>MAU-1, E-MAU-12 through E-MAU-17, MAU-20 through MAU-27, MAU-29, MAU-30</td>
</tr>
<tr>
<td>HVAC Units</td>
<td>HVAC #1, HVAC #2, and HVAC #3</td>
</tr>
<tr>
<td>Heaters</td>
<td>GUH-1 through GUH-18, E-GUH-1 through E-GUH-12, GUH-20 through GUH-24</td>
</tr>
<tr>
<td>Furnaces</td>
<td>DGF-1 through DGF-3, IGF-1 through IGF-6, and IGF-7 through IGF-11</td>
</tr>
<tr>
<td>Emergency Generators</td>
<td>Generators #1, #2, and #3</td>
</tr>
<tr>
<td>Smoke Generator</td>
<td>Smoke Generator #1</td>
</tr>
</tbody>
</table>

D.1.4 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and any associated control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.
Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.1.5 Volatile Organic Compounds

Compliance with the VOC limit contained in Condition D.1.2 shall be determined by the following equation for each oven:

\[
VOC = \sum_{n=1}^{12} \left(\frac{EF(\text{CP}) \times A(\text{CP})}{2000 \text{ lb/ton}} \right) + \sum_{n=1}^{12} \left(\frac{EF(\text{NG}) \times A(\text{NG})}{2000 \text{ lb/ton}} \right)
\]

Where:
- \(VOC\) = The VOC emissions from the respective oven (tons per month);
- \(EF(\text{CP})\) = The VOC emission factor (lb of VOC/ton of cooked product). This value shall be 3.14, or a value as determined from the most recent IDEM approved stack test;
- \(A(\text{CP})\) = The amount of cooked product produced by Multipurpose Oven #1, #2, #3, #4, #5, #6, or Impingement Oven #1, #2, #3, #4, #5, or #6 during month \(n\) (tons/month);
- \(EF(\text{NG})\) = The VOC emission factor for natural gas combustion (5.5 lb/MMcf);
- \(A(\text{NG})\) = The natural gas throughput of Multipurpose Oven #1, #2, #3, #4, #5, #6, or Impingement Oven #1, #2, #3, #4, #5, or #6 (MMcf/month); and
- \(n\) = Each calendar month within the twelve (12) consecutive month period.

D.1.6 Particulate Control

In order to assure compliance with Condition D.1.3(b), the Quick Draft exhaust systems for particulate control shall be in operation and control emissions from the Infrabaker #1, Infrabaker #5, Multipurpose Oven #1 through Multipurpose Oven #6, Impingement Oven #1 through Impingement Oven #6, Char Marker #1 through Char Marker #3, and Fryer #1 at all times these facilities are in operation.

D.1.7 Testing Requirements [326 IAC 2-1.1-11]

(a) In order to demonstrate compliance with Conditions D.1.1 and D.1.2, the Permittee shall perform VOC testing of any one (1) of the following emission units stack exhausts:
 - Multipurpose Oven #1;
 - Multipurpose Oven #2;
 - Multipurpose Oven #3;
 - Multipurpose Oven #4;
 - Impingement Oven #1;
 - Impingement Oven #2;
 - Impingement Oven #6;
 - Multipurpose Oven #5;
 - Multipurpose Oven #6;
 - Impingement Oven #3;
 - Impingement Oven #4; and
 - Impingement Oven #5;
 utilizing methods approved by the commissioner at least once every 5 years from the date of the most recent valid compliance demonstration. Testing shall be alternated between ovens for each test cycle, such that testing on an oven shall not be repeated until all ovens have been tested. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

(b) Not later than 180 days after the startup of
 - Multipurpose Oven #5;
 - Multipurpose Oven #6;
 - Impingement Oven #3;
 - Impingement Oven #4; and
 - Impingement Oven #5,
 the Permittee shall perform VOC testing of any one (1) of the emission units stack
exhausts listed above utilizing methods approved by the commissioner at least once every 5 years from the date of the most recent valid compliance demonstration with rotating tests between emission units. Testing shall be alternated between ovens for each test cycle, such that testing on an oven shall not be repeated until all ovens have been tested. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.1.8 Record Keeping Requirement

(a) To document the compliance status with Conditions D.1.1 and D.1.2, the Permittee shall maintain records in accordance with (1) through (4) below. Records maintained for (1) through (4) shall be taken as stated below and shall be complete and sufficient to establish compliance with Condition D.1.2

(1) The dates of the compliance period.

(2) The amount of total cooked product during each month and compliance period.

(3) The amount of natural gas consumed during each month and compliance period.

(4) The VOC emissions for each month and each compliance period.

(b) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.1.9 Reporting Requirement

A quarterly summary of the information to document the compliance status with Conditions D.1.1(a) and D.1.2 shall be submitted using the reporting form located at the end of this permit, or its equivalent, no later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official,” as defined by 326 IAC 2-7-1(35).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Insignificant Activities:

Cold Cleaner Degreasing Operations:

(d) Two (2) parts washers, identified as Parts Washers #1 and #2, each with a maximum throughput of 420 gallons of solvent per year, exhausting inside the building.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Cold Cleaner Degreaser Control Equipment and Operating Requirements [326 IAC 8-3-2]

Pursuant to 326 IAC 8-3-2 (Cold Cleaner Degreaser Control Equipment and Operating Requirements), the Permittee shall:

(a) Ensure the following control equipment and operating requirements are met:

(1) Equip the degreaser with a cover.

(2) Equip the degreaser with a device for draining cleaned parts.

(3) Close the degreaser cover whenever parts are not being handled in the degreaser.

(4) Drain cleaned parts for at least fifteen (15) seconds or until dripping ceases;

(5) Provide a permanent, conspicuous label that lists the operating requirements in subdivisions (3), (4), (6), and (7).

(6) Store waste solvent only in closed containers.

(7) Prohibit the disposal or transfer of waste solvent in such a manner that could allow greater than twenty percent (20%) of the waste solvent (by weight) to evaporate into the atmosphere.

(b) Ensure the following additional control equipment and operating requirements are met:

(1) Equip the degreaser with one (1) of the following control devices if the solvent is heated to a temperature of greater than forty-eight and nine-tenths (48.9) degrees Celsius (one hundred twenty (120) degrees Fahrenheit):

(A) A freeboard that attains a freeboard ratio of seventy-five hundredths (0.75) or greater.

(B) A water cover when solvent used is insoluble in, and heavier than, water.

(C) A refrigerated chiller.

(D) Carbon adsorption.

(E) An alternative system of demonstrated equivalent or better control as those outlined in clauses (A) through (D) that is approved by the department. An alternative system shall be submitted to the U.S. EPA as a SIP revision.
(2) Ensure the degreaser cover is designed so that it can be easily operated with one (1) hand if the solvent is agitated or heated.

(3) If used, solvent spray:
 (A) must be a solid, fluid stream; and
 (B) shall be applied at a pressure that does not cause excessive splashing.

D.2.2 Material Requirements for Cold Cleaner Degreasers [326 IAC 8-3-8]

Pursuant to 326 IAC 8-3-8 (Material Requirements for Cold Cleaner Degreasers), the Permittee shall not operate a cold cleaning degreaser with a solvent that has a VOC composite partial vapor pressure that exceeds one (1) millimeter of mercury (nineteen-thousandths (0.019) pound per square inch) measured at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

D.2.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their associated control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Record Keeping and Reporting Requirement [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.4 Record Keeping Requirements

(a) To document the compliance status with Condition D.2.2, the Permittee shall maintain the following records for each purchase of solvent used in the cold cleaner degreasing operations. These records shall be retained on-site or accessible electronically for the most recent three (3) year period and shall be reasonably accessible for an additional two (2) year period.

 (1) The name and address of the solvent supplier.

 (2) The date of purchase (or invoice/bill dates of contract servicer indicating service date).

 (3) The type of solvent purchased.

 (4) The total volume of the solvent purchased.

 (5) The true vapor pressure of the solvent measured in millimeters of mercury at twenty (20) degrees Celsius (sixty-eight (68) degrees Fahrenheit).

(b) Section C - General Record Keeping Requirements contains the Permittee's obligations with regard to the records required by this condition.
SECTION E.1 NSPS

Emissions Unit Description:

Natural Gas-Fired Combustion - Hot Water Heaters

(s) Four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-15a, S-15b, S-16a, and S-16b, respectively.

Under 40 CFR 60, Subpart Dc, Hot Water Heaters #1 through #4 are considered affected facilities.

Natural Gas-Fired Combustion - Boiler

(t) One (1) natural gas-fired boiler, identified as Boiler #5, constructed in 2017, with a maximum heat input capacity of 21 MMBtu per hour, and exhausting to stack S-24.

Under 40 CFR 60, Subpart Dc, Boiler #5 is considered an affected facility.

(u) One (1) natural gas-fired boiler, identified as Boiler #6, approved in 2018 for construction, with a maximum heat input capacity of 24.8 MMBtu per hour, using no controls, and exhausting to stack S-27.

Under 40 CFR 60, Subpart Dc, Boiler #6 is considered an affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

E.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart Dc.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 Small Industrial-Commercial-Institutional Steam Generating Units NSPS [326 IAC 12] [40 CFR Part 60, Subpart Dc]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart Dc (included as Attachment A to the operating permit), which are incorporated by reference as 326 IAC 12.
Hot Water Heaters #1 through #4, and Boiler #6, are subject to the following portions of 40 CFR 60, Subpart Dc:

1. 40 CFR 60.40c (a) and (b)
2. 40 CFR 60.41c
3. 40 CFR 60.48c (a), (g) and (i)

Boiler #5, is subject to the following portions of 40 CFR 60, Subpart Dc:

1. 40 CFR 60.40c
2. 40 CFR 60.41c
3. 40 CFR 60.48c(a)(1), (a)(3), (g)(2), (i), (j)
SECTION E.2 NSPS

Emissions Unit Description:

Insignificant Activities:

(b) Combustion Engines - Activities associated with emergencies, including the following:

1. One (1) natural gas-fired emergency generator, identified as Generator #1, with a rating of 605 HP, manufactured after 2009, installed in 2015.
 Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility.
 Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

2. One (1) natural gas fired emergency generator, identified as Generator #2, with a rating of 134 HP, manufactured in 2009, installed in 2019.
 Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility.
 Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

3. One (1) natural gas fired emergency generator, identified as Generator #3, with a rating of 302 HP, manufactured in 2009, installed in 2019.
 Under 40 CFR 60, Subpart JJJJ, Generator #3 is considered an affected facility.
 Under 40 CFR 63, Subpart ZZZZ, Generator #3 is considered a new affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

E.2.1 General Provisions Relating to New Source Performance Standards [326 IAC 12-1] [40 CFR Part 60, Subpart A]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart JJJJ.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

 Indiana Department of Environmental Management
 Compliance and Enforcement Branch, Office of Air Quality
 100 North Senate Avenue
 MC 61-53 IGCN 1003
 Indianapolis, Indiana 46204-2251

E.2.2 Stationary Spark Ignition Internal Combustion Engines NSPS [326 IAC 12] [40 CFR Part 60, Subpart JJJJ]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart JJJJ (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission unit(s) listed above:

Generator #1 is subject to the following portions of Subpart JJJJ.
(1) 40 CFR Part 60.4230 (a)(iv),(c) and (e)
(2) 40 CFR Part 60.4233 (e)
(3) 40 CFR Part 60.4234
(4) 40 CFR Part 60.4236 (a)
(5) 40 CFR Part 60.4237 (a)
(6) 40 CFR Part 60.4243 (b), (d) and (e)
(7) 40 CFR Part 60.4245 (a), (b) and (c)
(8) 40 CFR Part 60.4246
(9) 40 CFR Part 60.4248
(10) Table 1

Generators #2 and #3 are subject to the following portions of Subpart JJJJ.

(1) 40 CFR Part 60.4230 (a)(iv),(c) and (e)
(2) 40 CFR Part 60.4233 (e)
(3) 40 CFR Part 60.4234
(4) 40 CFR Part 60.4236 (c)
(5) 40 CFR Part 60.4237 (b)
(6) 40 CFR Part 60.4243 (b), (d) and (e)
(7) 40 CFR Part 60.4245 (a) and (b)
(8) 40 CFR Part 60.4246
(9) 40 CFR Part 60.4248
(10) Table 1
SECTION E.3 NESHAP

Emissions Unit Description:

Insignificant Activities:

(b) Combustion Engines - Activities associated with emergencies, including the following:

(1) One (1) natural gas-fired emergency generator, identified as Generator #1, with a rating of 605 HP, manufactured after 2009, installed in 2015.

Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

(2) One (1) natural gas fired emergency generator, identified as Generator #2, with a rating of 134 HP, manufactured in 2009, installed in 2019.

Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

(3) One (1) natural gas fired emergency generator, identified as Generator #3, with a rating of 302 HP, manufactured in 2009, installed in 2019.

Under 40 CFR 60, Subpart JJJJ, Generator #3 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #3 is considered a new affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart ZZZZ.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.3.2 Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as Attachment C to the operating permit), which are incorporated by reference as 326 IAC 20-82, for the emission unit(s) listed above:

(1) 40 CFR 63.6580
<table>
<thead>
<tr>
<th></th>
<th>Regulation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>40 CFR 63.6585</td>
</tr>
<tr>
<td>3</td>
<td>40 CFR 63.6590 (a)(2)(iii),(c)(1)</td>
</tr>
<tr>
<td>4</td>
<td>40 CFR 63.6595(a)(7)</td>
</tr>
<tr>
<td>5</td>
<td>40 CFR 63.6665</td>
</tr>
<tr>
<td>6</td>
<td>40 CFR 63.6670</td>
</tr>
<tr>
<td>7</td>
<td>40 CFR 63.6675</td>
</tr>
</tbody>
</table>
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
CERTIFICATION

Source Name: Sugar Creek Packing Co.
Source Address: 1200 Enterprise Road, Cambridge City, Indiana 47327
Part 70 Permit No.: T177-41827-00121

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter

☐ Test Result (specify) __

☐ Report (specify) ___

☐ Notification (specify) __

☐ Affidavit (specify) ___

☐ Other (specify) ___

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature:

Printed Name:

Title/Position:

Phone:

Date:
PART 70 OPERATING PERMIT
EMERGENCY OCCURRENCE REPORT

Source Name: Sugar Creek Packing Co.
Source Address: 1200 Enterprise Road, Cambridge City, Indiana 47327
Part 70 Permit No.: T177-41827-00121

This form consists of 2 pages

☐ This is an emergency as defined in 326 IAC 2-7-1(12)
 • The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 • The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:

If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
<td></td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
<td>Y N</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
<td></td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
<td></td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
<td></td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
<td></td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
<td></td>
</tr>
<tr>
<td>If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: __
Title / Position: __
Date: ___
Phone: ___
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Sugar Creek Packing Co.
Source Address: 1200 Enterprise Road, Cambridge City, Indiana 47327
Part 70 Permit No.: T177-41827-00121
Facility: Multipurpose Oven #1, Multipurpose Oven #2, Multipurpose Oven #3, Multipurpose Oven #4, Multipurpose Oven #5, Multipurpose Oven #6, Impingement Oven #1, Impingement Oven #2, Impingement Oven #3, Impingement Oven #4, Impingement Oven #5, Impingement Oven #6
Parameter: Total Process Rate - Cooked
Limit: The total process rate - cooked shall not exceed 100,000 tons per twelve (12) consecutive month period, for multipurpose ovens #1 through #6 and impingement ovens #1 through #6, combined.

<table>
<thead>
<tr>
<th>QUARTER:</th>
<th>YEAR:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Process Rate - Cooked</td>
<td>Total Process Rate - Cooked</td>
<td>Total Process Rate - Cooked</td>
</tr>
<tr>
<td></td>
<td>(tons)</td>
<td>(tons)</td>
<td>(tons)</td>
</tr>
<tr>
<td></td>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.
☐ Deviation/s occurred in this quarter.
Deviation has been reported on: ___________________

Submitted by: __

Title / Position: ___

Signature: ___

Date: ___

Phone: ___
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Sugar Creek Packing Co.
Source Address: 1200 Enterprise Road, Cambridge City, Indiana 47327
Part 70 Permit No.: T177-41827-00121
Facility: Multipurpose Oven #1, Multipurpose Oven #2, Multipurpose Oven #3,
Multipurpose Oven #4, Multipurpose Oven #5, Multipurpose Oven #6,
Impingement Oven #1, Impingement Oven #2, Impingement Oven #3,
Impingement Oven #4, Impingement Oven #5, Impingement Oven #6
Parameter: VOC Emissions
Limit: VOC emissions from each of the emission units listed above, shall each not exceed 24.9 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.
Note: Use one report for each unit listed above.

<table>
<thead>
<tr>
<th>QUARTER: ___________________</th>
<th>YEAR: ___________________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC Emissions (tons)</td>
<td>VOC Emissions (tons)</td>
<td>VOC Emissions (tons)</td>
<td></td>
</tr>
<tr>
<td>This Month</td>
<td>Previous 11 Months</td>
<td>12 Month Total</td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.
☐ Deviation/s occurred in this quarter.
 Deviation has been reported on: ___________________

Submitted by: ___
Title / Position: __
Signature: __
Date: __
Phone: ___
This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B - Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

- **NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.**
- **THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD**

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation</th>
<th>Duration of Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Deviations:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation</th>
<th>Duration of Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Deviations:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ___
Title / Position: ___
Date: ___
Phone: ___
Attachment A

Part 70 Operating Permit Renewal No: T177-41827-00121

[Downloaded from the eCFR on May 13, 2013]

Electronic Code of Federal Regulations

Title 40: Protection of Environment

PART 60—STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES

Subpart Dc—Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Source: 72 FR 32759, June 13, 2007, unless otherwise noted.

§ 60.40c Applicability and delegation of authority.

(a) Except as provided in paragraphs (d), (e), (f), and (g) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/h)) or less, but greater than or equal to 2.9 MW (10 MMBtu/h).

(b) In delegating implementation and enforcement authority to a State under section 111(c) of the Clean Air Act, § 60.48c(a)(4) shall be retained by the Administrator and not transferred to a State.

(c) Steam generating units that meet the applicability requirements in paragraph (a) of this section are not subject to the sulfur dioxide (SO2) or particulate matter (PM) emission limits, performance testing requirements, or monitoring requirements under this subpart (§§ 60.42c, 60.43c, 60.44c, 60.45c, 60.46c, or 60.47c) during periods of combustion research, as defined in § 60.41c.

(d) Any temporary change to an existing steam generating unit for the purpose of conducting combustion research is not considered a modification under § 60.14.

(e) Affected facilities (i.e. heat recovery steam generators and fuel heaters) that are associated with stationary combustion turbines and meet the applicability requirements of subpart KKKK of this part are not subject to this subpart. This subpart will continue to apply to all other heat recovery steam generators, fuel heaters, and other affected facilities that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam generator, fuel heater, or other affected facility is subject to this subpart, only emissions resulting from combustion of fuels in the steam generating unit are subject to this subpart. (The stationary combustion turbine emissions are subject to subpart GG or KKKK, as applicable, of this part.)

(f) Any affected facility that meets the applicability requirements of and is subject to subpart AAAA or subpart CCCC of this part is not subject to this subpart.

(g) Any facility that meets the applicability requirements and is subject to an EPA approved State or Federal section 111(d)/129 plan implementing subpart BBBB of this part is not subject to this subpart.

(h) Affected facilities that also meet the applicability requirements under subpart J or subpart Ja of this part are subject to the PM and NOx standards under this subpart and the SO2 standards under subpart J or subpart Ja of this part, as applicable.

(i) Temporary boilers are not subject to this subpart.
§ 60.41c Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act and in subpart A of this part.

Annual capacity factor means the ratio between the actual heat input to a steam generating unit from an individual fuel or combination of fuels during a period of 12 consecutive calendar months and the potential heat input to the steam generating unit from all fuels had the steam generating unit been operated for 8,760 hours during that 12-month period at the maximum design heat input capacity. In the case of steam generating units that are rented or leased, the actual heat input shall be determined based on the combined heat input from all operations of the affected facility during a period of 12 consecutive calendar months.

Coal means all solid fuels classified as anthracite, bituminous, subbituminous, or lignite by the American Society of Testing and Materials in ASTM D388 (incorporated by reference, see §60.17), coal refuse, and petroleum coke. Coal-derived synthetic fuels derived from coal for the purposes of creating useful heat, including but not limited to solvent refined coal, gasified coal not meeting the definition of natural gas, coal-oil mixtures, and coal-water mixtures, are also included in this definition for the purposes of this subpart.

Coal refuse means any by-product of coal mining or coal cleaning operations with an ash content greater than 50 percent (by weight) and a heating value less than 13,900 kilojoules per kilogram (kJ/kg) (6,000 Btu per pound (Btu/lb)) on a dry basis.

Combined cycle system means a system in which a separate source (such as a stationary gas turbine, internal combustion engine, or kiln) provides exhaust gas to a steam generating unit.

Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient combustion or more effective prevention or control of air pollutant emissions from combustion, provided that, during these periods of research and development, the heat generated is not used for any purpose other than preheating combustion air for use by that steam generating unit (i.e., the heat generated is released to the atmosphere without being used for space heating, process heating, driving pumps, preheating combustion air for other units, generating electricity, or any other purpose).

Conventional technology means wet flue gas desulfurization technology, dry flue gas desulfurization technology, atmospheric fluidized bed combustion technology, and oil hydrodesulfurization technology.

Distillate oil means fuel oil that complies with the specifications for fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see §60.17), diesel fuel oil numbers 1 or 2, as defined by the American Society for Testing and Materials in ASTM D975 (incorporated by reference, see §60.17), kerosine, as defined by the American Society of Testing and Materials in ASTM D3699 (incorporated by reference, see §60.17), biodiesel as defined by the American Society of Testing and Materials in ASTM D6751 (incorporated by reference, see §60.17), or biodiesel blends as defined by the American Society of Testing and Materials in ASTM D7467 (incorporated by reference, see §60.17).

Dry flue gas desulfurization technology means a SO2 control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution and forming a dry powder material. This definition includes devices where the dry powder material is subsequently converted to another form. Alkaline reagents used in dry flue gas desulfurization systems include, but are not limited to, lime and sodium compounds.

Duct burner means a device that combusts fuel and that is placed in the exhaust duct from another source (such as a stationary gas turbine, internal combustion engine, kiln, etc.) to allow the firing of additional fuel to heat the exhaust gases before the exhaust gases enter a steam generating unit.
Emerging technology means any SO₂ control system that is not defined as a conventional technology under this section, and for which the owner or operator of the affected facility has received approval from the Administrator to operate as an emerging technology under § 60.48c(a)(4).

Federally enforceable means all limitations and conditions that are enforceable by the Administrator, including the requirements of 40 CFR parts 60 and 61, requirements within any applicable State implementation plan, and any permit requirements established under 40 CFR 52.21 or under 40 CFR 51.18 and 51.24.

Fluidized bed combustion technology means a device wherein fuel is distributed onto a bed (or series of beds) of limestone aggregate (or other sorbent materials) for combustion; and these materials are forced upward in the device by the flow of combustion air and the gaseous products of combustion. Fluidized bed combustion technology includes, but is not limited to, bubbling bed units and circulating bed units.

Fuel pretreatment means a process that removes a portion of the sulfur in a fuel before combustion of the fuel in a steam generating unit.

Heat input means heat derived from combustion of fuel in a steam generating unit and does not include the heat derived from preheated combustion air, recirculated flue gases, or exhaust gases from other sources (such as stationary gas turbines, internal combustion engines, and kilns).

Heat transfer medium means any material that is used to transfer heat from one point to another point.

Maximum design heat input capacity means the ability of a steam generating unit to combust a stated maximum amount of fuel (or combination of fuels) on a steady state basis as determined by the physical design and characteristics of the steam generating unit.

Natural gas means:

(1) A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in geologic formations beneath the earth's surface, of which the principal constituent is methane; or

(2) Liquefied petroleum (LP) gas, as defined by the American Society for Testing and Materials in ASTM D1835 (incorporated by reference, see § 60.17); or

(3) A mixture of hydrocarbons that maintains a gaseous state at ISO conditions. Additionally, natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 34 and 43 megajoules (MJ) per dry standard cubic meter (910 and 1,150 Btu per dry standard cubic foot).

Noncontinental area means the State of Hawaii, the Virgin Islands, Guam, American Samoa, the Commonwealth of Puerto Rico, or the Northern Mariana Islands.

Oil means crude oil or petroleum, or a liquid fuel derived from crude oil or petroleum, including distillate oil and residual oil.

Potential sulfur dioxide emission rate means the theoretical SO₂ emissions (nanograms per joule (ng/J) or lb/MMBtu heat input) that would result from combusting fuel in an uncleaned state and without using emission control systems.

Process heater means a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst.

Residual oil means crude oil, fuel oil that does not comply with the specifications under the definition of distillate oil, and all fuel oil numbers 4, 5, and 6, as defined by the American Society for Testing and Materials in ASTM D396 (incorporated by reference, see § 60.17).
Steam generating unit means a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart.

Steam generating unit operating day means a 24-hour period between 12:00 midnight and the following midnight during which any fuel is combusted at any time in the steam generating unit. It is not necessary for fuel to be combusted continuously for the entire 24-hour period.

Temporary boiler means a steam generating unit that combusts natural gas or distillate oil with a potential \(\text{SO}_2 \) emissions rate no greater than 26 ng/J (0.060 lb/MMBtu), and the unit is designed to, and is capable of, being carried or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A steam generating unit is not a temporary boiler if any one of the following conditions exists:

1. The equipment is attached to a foundation.
2. The steam generating unit or a replacement remains at a location for more than 180 consecutive days. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.
3. The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.
4. The equipment is moved from one location to another in an attempt to circumvent the residence time requirements of this definition.

Wet flue gas desulfurization technology means an \(\text{SO}_2 \) control system that is located between the steam generating unit and the exhaust vent or stack, and that removes sulfur oxides from the combustion gases of the steam generating unit by contacting the combustion gases with an alkaline slurry or solution and forming a liquid material. This definition includes devices where the liquid material is subsequently converted to another form. Alkaline reagents used in wet flue gas desulfurization systems include, but are not limited to, lime, limestone, and sodium compounds.

Wet scrubber system means any emission control device that mixes an aqueous stream or slurry with the exhaust gases from a steam generating unit to control emissions of PM or \(\text{SO}_2 \).

Wood means wood, wood residue, bark, or any derivative fuel or residue thereof, in any form, including but not limited to sawdust, sander dust, wood chips, scraps, slabs, millings, shavings, and processed pellets made from wood or other forest residues.

§ 60.42c Standard for sulfur dioxide (SO2).

(a) Except as provided in paragraphs (b), (c), and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that combusts only coal shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain \(\text{SO}_2 \) in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential \(\text{SO}_2 \) emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain \(\text{SO}_2 \) in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither: cause to be discharged into the atmosphere from the affected facility any gases that contain \(\text{SO}_2 \) in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 10 percent (0.10) of the potential \(\text{SO}_2 \) emission rate (90 percent reduction), nor cause to be discharged into the atmosphere from the affected facility any gases that contain \(\text{SO}_2 \) in excess of the emission limit is determined pursuant to paragraph (e)(2) of this section.

(b) Except as provided in paragraphs (c) and (e) of this section, on and after the date on which the performance test is completed or required to be completed under § 60.8, whichever date comes first, the owner or operator of an affected facility that:
(1) Combusts only coal refuse alone in a fluidized bed combustion steam generating unit shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 87 ng/J (0.20 lb/MMBtu) heat input or 20 percent (0.20) of the potential SO2 emission rate (80 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility subject to paragraph (a) of this section. If oil or any other fuel (except coal) is fired with coal refuse, the affected facility is subject to the 87 ng/J (0.20 lb/MMBtu) heat input SO2 emissions limit or the 90 percent SO2 reduction requirement specified in paragraph (a) of this section and the emission limit is determined pursuant to paragraph (e)(2) of this section.

(2) Combusts only coal and that uses an emerging technology for the control of SO2 emissions shall neither:

(i) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 50 percent (0.50) of the potential SO2 emission rate (50 percent reduction); nor

(ii) Cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 260 ng/J (0.60 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50 percent SO2 reduction requirement specified in this paragraph and the emission limit determined pursuant to paragraph (e)(2) of this section.

(c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, alone or in combination with any other fuel, and is listed in paragraphs (c)(1), (2), (3), or (4) of this section shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of the emission limit determined pursuant to paragraph (e)(2) of this section. Percent reduction requirements are not applicable to affected facilities under paragraphs (c)(1), (2), (3), or (4).

(1) Affected facilities that have a heat input capacity of 22 MW (75 MMBtu/h) or less;

(2) Affected facilities that have an annual capacity for coal of 55 percent (0.55) or less and are subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for coal of 55 percent (0.55) or less.

(3) Affected facilities located in a noncontinental area; or

(4) Affected facilities that combust coal in a duct burner as part of a combined cycle system where 30 percent (0.30) or less of the heat entering the steam generating unit is from combustion of coal in the duct burner and 70 percent (0.70) or more of the heat entering the steam generating unit is from exhaust gases entering the duct burner.

(d) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of 215 ng/J (0.50 lb/MMBtu) heat input from oil; or, as an alternative, no owner or operator of an affected facility that combusts oil shall combust oil in the affected facility that contains greater than 0.5 weight percent sulfur. The percent reduction requirements are not applicable to affected facilities under this paragraph.

(e) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, oil, or coal and oil with any other fuel shall cause to be discharged into the atmosphere from that affected facility any gases that contain SO2 in excess of the following:

(1) The percent of potential SO2 emission rate or numerical SO2 emission rate required under paragraph (a) or (b)(2) of this section, as applicable, for any affected facility that

(i) Combusts coal in combination with any other fuel;
(ii) Has a heat input capacity greater than 22 MW (75 MMBtu/h); and

(iii) Has an annual capacity factor for coal greater than 55 percent (0.55); and

(2) The emission limit determined according to the following formula for any affected facility that combusts coal, oil, or coal and oil with any other fuel:

\[
E_s = \frac{K_a H_a + K_b H_b + K_c H_c}{H_a + H_b + H_c}
\]

Where:

- \(E_s\) = \(SO_2\) emission limit, expressed in ng/J or lb/MMBtu heat input;
- \(K_a = 520\) ng/J (1.2 lb/MMBtu);
- \(K_b = 260\) ng/J (0.60 lb/MMBtu);
- \(K_c = 215\) ng/J (0.50 lb/MMBtu);
- \(H_a\) = Heat input from the combustion of coal, except coal combusted in an affected facility subject to paragraph (b)(2) of this section, in Joules (J) [MMBtu];
- \(H_b\) = Heat input from the combustion of coal in an affected facility subject to paragraph (b)(2) of this section, in J (MMBtu); and
- \(H_c\) = Heat input from the combustion of oil, in J (MMBtu).

(f) Reduction in the potential SO2 emission rate through fuel pretreatment is not credited toward the percent reduction requirement under paragraph (b)(2) of this section unless:

(1) Fuel pretreatment results in a 50 percent (0.50) or greater reduction in the potential SO2 emission rate; and

(2) Emissions from the pretreated fuel (without either combustion or post-combustion SO2 control) are equal to or less than the emission limits specified under paragraph (b)(2) of this section.

(g) Except as provided in paragraph (h) of this section, compliance with the percent reduction requirements, fuel oil sulfur limits, and emission limits of this section shall be determined on a 30-day rolling average basis.

(h) For affected facilities listed under paragraphs (h)(1), (2), (3), or (4) of this section, compliance with the emission limits or fuel oil sulfur limits under this section may be determined based on a certification from the fuel supplier, as described under § 60.48c(f), as applicable.

(1) Distillate oil-fired affected facilities with heat input capacities between 2.9 and 29 MW (10 and 100 MMBtu/hr).

(2) Residual oil-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/hr).

(3) Coal-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).

(4) Other fuels-fired affected facilities with heat input capacities between 2.9 and 8.7 MW (10 and 30 MMBtu/h).

(i) The \(SO_2\) emission limits, fuel oil sulfur limits, and percent reduction requirements under this section apply at all times, including periods of startup, shutdown, and malfunction.
(j) For affected facilities located in noncontinental areas and affected facilities complying with the percent reduction standard, only the heat input supplied to the affected facility from the combustion of coal and oil is counted under this section. No credit is provided for the heat input to the affected facility from wood or other fuels or for heat derived from exhaust gases from other sources, such as stationary gas turbines, internal combustion engines, and kilns.

§ 60.43c Standard for particulate matter (PM).

(a) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emission limits:

(1) 22 ng/J (0.051 lb/MMBtu) heat input if the affected facility combusts only coal, or combusts coal with other fuels and has an annual capacity factor for the other fuels of 10 percent (0.10) or less.

(2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal with other fuels, has an annual capacity factor for the other fuels greater than 10 percent (0.10), and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor greater than 10 percent (0.10) for fuels other than coal.

(b) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commenced construction, reconstruction, or modification on or before February 28, 2005, that combusts wood or combusts mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater, shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of the following emissions limits:

(1) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood greater than 30 percent (0.30); or

(2) 130 ng/J (0.30 lb/MMBtu) heat input if the affected facility has an annual capacity factor for wood of 30 percent (0.30) or less and is subject to a federally enforceable requirement limiting operation of the affected facility to an annual capacity factor for wood of 30 percent (0.30) or less.

(c) On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that combusts coal, wood, or oil and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that exhibit greater than 20 percent opacity (6-minute average), except for one 6-minute period per hour of not more than 27 percent opacity. Owners and operators of an affected facility that elect to install, calibrate, maintain, and operate a continuous emissions monitoring system (CEMS) for measuring PM emissions according to the requirements of this subpart and are subject to a federally enforceable PM limit of 0.030 lb/MMBtu or less are exempt from the opacity standard specified in this paragraph (c).

(d) The PM and opacity standards under this section apply at all times, except during periods of startup, shutdown, or malfunction.

(e)(1) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 13 ng/J (0.030 lb/MMBtu) heat input, except as provided in paragraphs (e)(2), (e)(3), and (e)(4) of this section.

(2) As an alternative to meeting the requirements of paragraph (e)(1) of this section, the owner or operator of an affected facility for which modification commenced after February 28, 2005, may elect to meet the requirements of this paragraph. On and after the date on which the initial performance test is completed or required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification...
after February 28, 2005 shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of both:

(i) 22 ng/J (0.051 lb/MMBtu) heat input derived from the combustion of coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels; and

(ii) 0.2 percent of the combustion concentration (99.8 percent reduction) when combusting coal, oil, wood, a mixture of these fuels, or a mixture of these fuels with any other fuels.

(3) On and after the date on which the initial performance test is completed or is required to be completed under § 60.8, whichever date comes first, no owner or operator of an affected facility that commences modification after February 28, 2005, and that combusts over 30 percent wood (by heat input) on an annual basis and has a heat input capacity of 8.7 MW (30 MMBtu/h) or greater shall cause to be discharged into the atmosphere from that affected facility any gases that contain PM in excess of 43 ng/J (0.10 lb/MMBtu) heat input.

(4) An owner or operator of an affected facility that commences construction, reconstruction, or modification after February 28, 2005, and that combusts only oil that contains no more than 0.50 weight percent sulfur or a mixture of 0.50 weight percent sulfur oil with other fuels not subject to a PM standard under § 60.43c and not using a post-combustion technology (except a wet scrubber) to reduce PM or SO₂ emissions is not subject to the PM limit in this section.

§ 60.44c Compliance and performance test methods and procedures for sulfur dioxide.

(a) Except as provided in paragraphs (g) and (h) of this section and § 60.8(b), performance tests required under § 60.8 shall be conducted following the procedures specified in paragraphs (b), (c), (d), (e), and (f) of this section, as applicable. Section 60.8(f) does not apply to this section. The 30-day notice required in § 60.8(d) applies only to the initial performance test unless otherwise specified by the Administrator.

(b) The initial performance test required under § 60.8 shall be conducted over 30 consecutive operating days of the steam generating unit. Compliance with the percent reduction requirements and SO₂ emission limits under § 60.42c shall be determined using a 30-day average. The first operating day included in the initial performance test shall be scheduled within 30 days after achieving the maximum production rate at which the affect facility will be operated, but not later than 180 days after the initial startup of the facility. The steam generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but must be representative of future operating conditions.

(c) After the initial performance test required under paragraph (b) of this section and § 60.8, compliance with the percent reduction requirements and SO₂ emission limits under § 60.42c is based on the average percent reduction and the average SO₂ emission rates for 30 consecutive steam generating unit operating days. A separate performance test is completed at the end of each steam generating unit operating day, and a new 30-day average percent reduction and SO₂ emission rate are calculated to show compliance with the standard.

(d) If only coal, only oil, or a mixture of coal and oil is combusted in an affected facility, the procedures in Method 19 of appendix A of this part are used to determine the hourly SO₂ emission rate (Eho) and the 30-day average SO₂ emission rate (Eao). The hourly averages used to compute the 30-day averages are obtained from the CEMS. Method 19 of appendix A of this part shall be used to calculate Eao when using daily fuel sampling or Method 6B of appendix A of this part.

(e) If coal, oil, or coal and oil are combusted with other fuels:

(1) An adjusted Eao (Eao o) is used in Equation 19-19 of Method 19 of appendix A of this part to compute the adjusted Eao (Eao o). The Eao o is computed using the following formula:

\[E_{ao}^{o} = \frac{E_{ao} - E_{w}(1 - X_{1})}{X_{3}} \]
Where:

\[E_{ho} = \text{Adjusted E}_{ho}, \text{ ng/J (lb/MMBtu)}; \]

\[E_{ho} = \text{Hourly SO}_2 \text{ emission rate, ng/J (lb/MMBtu)}; \]

\[E_w = \text{SO}_2 \text{ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 9 of appendix A of this part, ng/J (lb/MMBtu)}. \]

The value \(E_w \) for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure \(E_w \) if the owner or operator elects to assume \(E_w = 0 \).

\[X_k = \text{Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part}. \]

(2) The owner or operator of an affected facility that qualifies under the provisions of § 60.42c(c) or (d) (where percent reduction is not required) does not have to measure the parameters \(E_w \) or \(X_k \) if the owner or operator of the affected facility elects to measure emission rates of the coal or oil using the fuel sampling and analysis procedures under Method 19 of appendix A of this part.

(f) Affected facilities subject to the percent reduction requirements under § 60.42c(a) or (b) shall determine compliance with the SO\(_2\) emission limits under § 60.42c pursuant to paragraphs (d) or (e) of this section, and shall determine compliance with the percent reduction requirements using the following procedures:

(1) If only coal is combusted, the percent of potential SO\(_2\) emission rate is computed using the following formula:

\[\%P_s = 100 \left(1 - \frac{\%R_g}{100} \right) \left(1 - \frac{\%R_f}{100} \right) \]

Where:

\[\%P_s = \text{Potential SO}_2 \text{ emission rate, in percent}; \]

\[\%R_g = \text{SO}_2 \text{ removal efficiency of the control device as determined by Method 19 of appendix A of this part, in percent}; \]

\[\%R_f = \text{SO}_2 \text{ removal efficiency of fuel pretreatment as determined by Method 19 of appendix A of this part, in percent}. \]

(2) If coal, oil, or coal and oil are combusted with other fuels, the same procedures required in paragraph (f)(1) of this section are used, except as provided for in the following:

(i) To compute the \(\%P_s \), an adjusted \(\%R_g (\%R_g^o) \) is computed from \(E_{ao} \) from paragraph (e)(1) of this section and an adjusted average SO\(_2\) inlet rate (\(E_{ai} \)) using the following formula:

\[\%R_g^o = 100 \left(1 - \frac{E_{ao}}{E_{ai}} \right) \]

Where:

\[\%R_g^o = \text{Adjusted } \%R_g, \text{ in percent}; \]

\[E_{ao} = \text{Adjusted } E_{ao}, \text{ ng/J (lb/MMBtu)}; \]

\[E_{ai} = \text{Adjusted average SO}_2 \text{ inlet rate, ng/J (lb/MMBtu)}. \]
(ii) To compute $E_{\text{hi} o}$, an adjusted hourly SO$_2$ inlet rate ($E_{\text{hi} o}$) is used. The $E_{\text{hi} o}$ is computed using the following formula:

$$E_{\text{hi} o} = \frac{E_{\text{hi}} - E_w (1 - X_k)}{X_k}$$

Where:

$E_{\text{hi} o} = $ Adjusted E_{hi}, ng/J (lb/MMBtu);

$E_{\text{hi}} = $ Hourly SO$_2$ inlet rate, ng/J (lb/MMBtu);

$E_w = $ SO$_2$ concentration in fuels other than coal and oil combusted in the affected facility, as determined by fuel sampling and analysis procedures in Method 19 of appendix A of this part, ng/J (lb/MMBtu). The value E_w for each fuel lot is used for each hourly average during the time that the lot is being combusted. The owner or operator does not have to measure E_w if the owner or operator elects to assume $E_w = 0$; and

$X_k = $ Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures in Method 19 of appendix A of this part.

(g) For oil-fired affected facilities where the owner or operator seeks to demonstrate compliance with the fuel oil sulfur limits under § 60.42c based on shipment fuel sampling, the initial performance test shall consist of sampling and analyzing the oil in the initial tank of oil to be fired in the steam generating unit to demonstrate that the oil contains 0.5 weight percent sulfur or less. Thereafter, the owner or operator of the affected facility shall sample the oil in the fuel tank after each new shipment of oil is received, as described under § 60.46c(d)(2).

(h) For affected facilities subject to § 60.42c(h)(1), (2), or (3) where the owner or operator seeks to demonstrate compliance with the SO$_2$ standards based on fuel supplier certification, the performance test shall consist of the certification from the fuel supplier, as described in § 60.48c(f), as applicable.

(i) The owner or operator of an affected facility seeking to demonstrate compliance with the SO$_2$ standards under § 60.42c(c)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(j) The owner or operator of an affected facility shall use all valid SO$_2$ emissions data in calculating $\%P_s$ and E_{ho} under paragraphs (d), (e), or (f) of this section, as applicable, whether or not the minimum emissions data requirements under § 60.46c(f) are achieved. All valid emissions data, including valid data collected during periods of startup, shutdown, and malfunction, shall be used in calculating $\%P_s$ or E_{ho} pursuant to paragraphs (d), (e), or (f) of this section, as applicable.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]

§ 60.45c Compliance and performance test methods and procedures for particulate matter.

(a) The owner or operator of an affected facility subject to the PM and/or opacity standards under § 60.43c shall conduct an initial performance test as required under § 60.8, and shall conduct subsequent performance tests as requested by the Administrator, to determine compliance with the standards using the following procedures and reference methods, except as specified in paragraph (c) of this section.

(1) Method 1 of appendix A of this part shall be used to select the sampling site and the number of traverse sampling points.
(2) Method 3A or 3B of appendix A-2 of this part shall be used for gas analysis when applying Method 5 or 5B of appendix A-3 of this part or 17 of appendix A-6 of this part.

(3) Method 5, 5B, or 17 of appendix A of this part shall be used to measure the concentration of PM as follows:

(i) Method 5 of appendix A of this part may be used only at affected facilities without wet scrubber systems.

(ii) Method 17 of appendix A of this part may be used at affected facilities with or without wet scrubber systems provided the stack gas temperature does not exceed a temperature of 160 °C (320 °F). The procedures of Sections 8.1 and 11.1 of Method 5B of appendix A of this part may be used in Method 17 of appendix A of this part only if Method 17 of appendix A of this part is used in conjunction with a wet scrubber system. Method 17 of appendix A of this part shall not be used in conjunction with a wet scrubber system if the effluent is saturated or laden with water droplets.

(iii) Method 5B of appendix A of this part may be used in conjunction with a wet scrubber system.

(4) The sampling time for each run shall be at least 120 minutes and the minimum sampling volume shall be 1.7 dry standard cubic meters (dscm) [60 dry standard cubic feet (dscf)] except that smaller sampling times or volumes may be approved by the Administrator when necessitated by process variables or other factors.

(5) For Method 5 or 5B of appendix A of this part, the temperature of the sample gas in the probe and filter holder shall be monitored and maintained at 160 ±14 °C (320±25 °F).

(6) For determination of PM emissions, an oxygen (O₂) or carbon dioxide (CO₂) measurement shall be obtained simultaneously with each run of Method 5, 5B, or 17 of appendix A of this part by traversing the duct at the same sampling location.

(7) For each run using Method 5, 5B, or 17 of appendix A of this part, the emission rates expressed in ng/J (lb/MMBtu) heat input shall be determined using:

(i) The O₂ or CO₂ measurements and PM measurements obtained under this section, (ii) The dry basis F factor, and

(iii) The dry basis emission rate calculation procedure contained in Method 19 of appendix A of this part.

(8) Method 9 of appendix A-4 of this part shall be used for determining the opacity of stack emissions.

(b) The owner or operator of an affected facility seeking to demonstrate compliance with the PM standards under § 60.43c(b)(2) shall demonstrate the maximum design heat input capacity of the steam generating unit by operating the steam generating unit at this capacity for 24 hours. This demonstration shall be made during the initial performance test, and a subsequent demonstration may be requested at any other time. If the demonstrated 24-hour average firing rate for the affected facility is less than the maximum design heat input capacity stated by the manufacturer of the affected facility, the demonstrated 24-hour average firing rate shall be used to determine the annual capacity factor for the affected facility; otherwise, the maximum design heat input capacity provided by the manufacturer shall be used.

(c) In place of PM testing with Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part, an owner or operator may elect to install, calibrate, maintain, and operate a CEMS for monitoring PM emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility who elects to continuously monitor PM emissions instead of conducting performance testing using Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall install, calibrate, maintain, and operate a CEMS and shall comply with the requirements specified in paragraphs (c)(1) through (c)(14) of this section.

(1) Notify the Administrator 1 month before starting use of the system.

(2) Notify the Administrator 1 month before stopping use of the system.
(3) The monitor shall be installed, evaluated, and operated in accordance with § 60.13 of subpart A of this part.

(4) The initial performance evaluation shall be completed no later than 180 days after the date of initial startup of the affected facility, as specified under § 60.8 of subpart A of this part or within 180 days of notification to the Administrator of use of CEMS if the owner or operator was previously determining compliance by Method 5, 5B, or 17 of appendix A of this part performance tests, whichever is later.

(5) The owner or operator of an affected facility shall conduct an initial performance test for PM emissions as required under § 60.8 of subpart A of this part. Compliance with the PM emission limit shall be determined by using the CEMS specified in paragraph (d) of this section to measure PM and calculating a 24-hour block arithmetic average emission concentration using EPA Reference Method 19 of appendix A of this part, section 4.1.

(6) Compliance with the PM emission limit shall be determined based on the 24-hour daily (block) average of the hourly arithmetic average emission concentrations using CEMS outlet data.

(7) At a minimum, valid CEMS hourly averages shall be obtained as specified in paragraph (c)(7)(i) of this section for 75 percent of the total operating hours per 30-day rolling average.

(i) At least two data points per hour shall be used to calculate each 1-hour arithmetic average.

(ii) [Reserved]

(8) The 1-hour arithmetic averages required under paragraph (c)(7) of this section shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the boiler operating day daily arithmetic average emission concentrations. The 1-hour arithmetic averages shall be calculated using the data points required under § 60.13(e)(2) of subpart A of this part.

(9) All valid CEMS data shall be used in calculating average emission concentrations even if the minimum CEMS data requirements of paragraph (c)(7) of this section are not met.

(10) The CEMS shall be operated according to Performance Specification 11 in appendix B of this part.

(11) During the correlation testing runs of the CEMS required by Performance Specification 11 in appendix B of this part, PM and O2 (or CO2) data shall be collected concurrently (or within a 30- to 60-minute period) by both the continuous emission monitors and performance tests conducted using the following test methods.

(i) For PM, Method 5 or 5B of appendix A-3 of this part or Method 17 of appendix A-6 of this part shall be used; and

(ii) For O2 (or CO2), Method 3A or 3B of appendix A-2 of this part, as applicable shall be used.

(12) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with procedure 2 in appendix F of this part. Relative Response Audit's must be performed annually and Response Correlation Audits must be performed every 3 years.

(13) When PM emissions data are not obtained because of CEMS breakdowns, repairs, calibration checks, and zero and span adjustments, emissions data shall be obtained by using other monitoring systems as approved by the Administrator or EPA Reference Method 19 of appendix A of this part to provide, as necessary, valid emissions data for a minimum of 75 percent of total operating hours on a 30-day rolling average.

(14) As of January 1, 2012, and within 90 days after the date of completing each performance test, as defined in § 60.8, conducted to demonstrate compliance with this subpart, you must submit relative accuracy test audit (i.e., reference method) data and performance test (i.e., compliance test) data, except opacity data, electronically to EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html/) or other compatible electronic spreadsheet. Only data collected using test methods compatible with ERT are subject to this requirement to be submitted electronically into EPA's WebFIRE database.
(d) The owner or operator of an affected facility seeking to demonstrate compliance under § 60.43c(e)(4) shall follow the applicable procedures under § 60.48c(f). For residual oil-fired affected facilities, fuel supplier certifications are only allowed for facilities with heat input capacities between 2.9 and 8.7 MW (10 to 30 MMBtu/h).

§ 60.46c Emission monitoring for sulfur dioxide.

(a) Except as provided in paragraphs (d) and (e) of this section, the owner or operator of an affected facility subject to the SO₂ emission limits under § 60.42c shall install, calibrate, maintain, and operate a CEMS for measuring SO₂ concentrations and either O₂ or CO₂ concentrations at the outlet of the SO₂ control device (or the outlet of the steam generating unit if no SO₂ control device is used), and shall record the output of the system. The owner or operator of an affected facility subject to the percent reduction requirements under § 60.42c shall measure SO₂ concentrations and either O₂ or CO₂ concentrations at both the inlet and outlet of the SO₂ control device.

(b) The 1-hour average SO₂ emission rates measured by a CEMS shall be expressed in ng/J or lb/MMBtu heat input and shall be used to calculate the average emission rates under § 60.42c. Each 1-hour average SO₂ emission rate must be based on at least 30 minutes of operation, and shall be calculated using the data points required under § 60.13(h)(2). Hourly SO₂ emission rates are not calculated if the affected facility is operated less than 30 minutes in a 1-hour period and are not counted toward determination of a steam generating unit operating day.

(c) The procedures under § 60.13 shall be followed for installation, evaluation, and operation of the CEMS.

(1) All CEMS shall be operated in accordance with the applicable procedures under Performance Specifications 1, 2, and 3 of appendix B of this part.

(2) Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of appendix F of this part.

(3) For affected facilities subject to the percent reduction requirements under § 60.42c, the span value of the SO₂ CEMS at the inlet to the SO₂ control device shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted, and the span value of the SO₂ CEMS at the outlet from the SO₂ control device shall be 50 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.

(4) For affected facilities that are not subject to the percent reduction requirements of § 60.42c, the span value of the SO₂ CEMS at the outlet from the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) shall be 125 percent of the maximum estimated hourly potential SO₂ emission rate of the fuel combusted.

(d) As an alternative to operating a CEMS at the inlet to the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO₂ emission rate by sampling the fuel prior to combustion. As an alternative to operating a CEMS at the outlet from the SO₂ control device (or outlet of the steam generating unit if no SO₂ control device is used) as required under paragraph (a) of this section, an owner or operator may elect to determine the average SO₂ emission rate by using Method 6B of appendix A of this part. Fuel sampling shall be conducted pursuant to either paragraph (d)(1) or (d)(2) of this section. Method 6B of appendix A of this part shall be conducted pursuant to paragraph (d)(3) of this section.

(1) For affected facilities combusting coal or oil, coal or oil samples shall be collected daily in an as-fired condition at the inlet to the steam generating unit and analyzed for sulfur content and heat content according the Method 19 of appendix A of this part. Method 19 of appendix A of this part provides procedures for converting these measurements into the format to be used in calculating the average SO₂ input rate.

(2) As an alternative fuel sampling procedure for affected facilities combusting oil, oil samples may be collected from the fuel tank for each steam generating unit immediately after the fuel tank is filled and before any oil is combusted. The owner or operator of the affected facility shall analyze the oil sample to determine the sulfur content of the oil. If a partially empty fuel tank is refilled, a new sample and analysis of the fuel in the tank would be required upon filling. Results of the fuel analysis taken after each new shipment of oil is received shall be used as the daily value when
calculating the 30-day rolling average until the next shipment is received. If the fuel analysis shows that the sulfur content in the fuel tank is greater than 0.5 weight percent sulfur, the owner or operator shall ensure that the sulfur content of subsequent oil shipments is low enough to cause the 30-day rolling average sulfur content to be 0.5 weight percent sulfur or less.

(3) Method 6B of appendix A of this part may be used in lieu of CEMS to measure SO2 at the inlet or outlet of the SO2 control system. An initial stratification test is required to verify the adequacy of the Method 6B of appendix A of this part sampling location. The stratification test shall consist of three paired runs of a suitable SO2 and CO2 measurement train operated at the candidate location and a second similar train operated according to the procedures in § 3.2 and the applicable procedures in section 7 of Performance Specification 2 of appendix B of this part. Method 6B of appendix A of this part, Method 6A of appendix A of this part, or a combination of Methods 6 and 3 of appendix A of this part or Methods 6C and 3A of appendix A of this part are suitable measurement techniques. If Method 6B of appendix A of this part is used for the second train, sampling time and timer operation may be adjusted for the stratification test as long as an adequate sample volume is collected; however, both sampling trains are to be operated similarly. For the location to be adequate for Method 6B of appendix A of this part 24-hour tests, the mean of the absolute difference between the three paired runs must be less than 10 percent (0.10).

(e) The monitoring requirements of paragraphs (a) and (d) of this section shall not apply to affected facilities subject to § 60.42c(h) (1), (2), or (3) where the owner or operator of the affected facility seeks to demonstrate compliance with the SO2 standards based on fuel supplier certification, as described under § 60.48c(f), as applicable.

(f) The owner or operator of an affected facility operating a CEMS pursuant to paragraph (a) of this section, or conducting as-fired fuel sampling pursuant to paragraph (d)(1) of this section, shall obtain emission data for at least 75 percent of the operating hours in at least 22 out of 30 successive steam generating unit operating days. If this minimum data requirement is not met with a single monitoring system, the owner or operator of the affected facility shall supplement the emission data with data collected with other monitoring systems as approved by the Administrator.

§ 60.47c Emission monitoring for particulate matter.

(a) Except as provided in paragraphs (c), (d), (e), and (f) of this section, the owner or operator of an affected facility combusting coal, oil, or wood that is subject to the opacity standards under § 60.43c shall install, calibrate, maintain, and operate a continuous opacity monitoring system (COMS) for measuring the opacity of the emissions discharged to the atmosphere and record the output of the system. The owner or operator of an affected facility subject to an opacity standard in § 60.43c(c) that is not required to use a COMS due to paragraphs (c), (d), (e), or (f) of this section that elects not to use a COMS shall conduct a performance test using Method 9 of appendix A-4 of this part and the procedures in § 60.11 to demonstrate compliance with the applicable limit in § 60.43c by April 29, 2011, within 45 days of stopping use of an existing COMS, or within 180 days after initial startup of the facility, whichever is later, and shall comply with either paragraphs (a)(1), (a)(2), or (a)(3) of this section. The observation period for Method 9 of appendix A-4 of this part performance tests may be reduced from 3 hours to 60 minutes if all 6-minute averages are less than 10 percent and all individual 15-second observations are less than or equal to 20 percent during the initial 60 minutes of observation.

(1) Except as provided in paragraph (a)(2) and (a)(3) of this section, the owner or operator shall conduct subsequent Method 9 of appendix A-4 of this part performance tests using the procedures in paragraph (a) of this section according to the applicable schedule in paragraphs (a)(1)(i) through (a)(1)(iv) of this section, as determined by the most recent Method 9 of appendix A-4 of this part performance test results.

(i) If no visible emissions are observed, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 12 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;

(ii) If visible emissions are observed but the maximum 6-minute average opacity is less than or equal to 5 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 6 calendar months from the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later;

(iii) If the maximum 6-minute average opacity is greater than 5 percent but less than or equal to 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 3 calendar months from
the date that the most recent performance test was conducted or within 45 days of the next day that fuel with an opacity standard is combusted, whichever is later; or

(iv) If the maximum 6-minute average opacity is greater than 10 percent, a subsequent Method 9 of appendix A-4 of this part performance test must be completed within 45 calendar days from the date that the most recent performance test was conducted.

(2) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 of this part performance tests, elect to perform subsequent monitoring using Method 22 of appendix A-7 of this part according to the procedures specified in paragraphs (a)(2)(i) and (ii) of this section.

(i) The owner or operator shall conduct 10 minute observations (during normal operation) each operating day the affected facility fires fuel for which an opacity standard is applicable using Method 22 of appendix A-7 of this part and demonstrate that the sum of the occurrences of any visible emissions is not in excess of 5 percent of the observation period (i.e., 30 seconds per 10 minute period). If the sum of the occurrence of any visible emissions is greater than 30 seconds during the initial 10 minute observation, immediately conduct a 30 minute observation. If the sum of the occurrence of visible emissions is greater than 5 percent of the observation period (i.e., 90 seconds per 30 minute period), the owner or operator shall either document and adjust the operation of the facility and demonstrate within 24 hours that the sum of the occurrence of visible emissions is equal to or less than 5 percent during a 30 minute observation (i.e., 90 seconds) or conduct a new Method 9 of appendix A-4 of this part performance test using the procedures in paragraph (a) of this section within 45 calendar days according to the requirements in § 60.45c(a)(8).

(ii) If no visible emissions are observed for 10 operating days during which an opacity standard is applicable, observations can be reduced to once every 7 operating days during which an opacity standard is applicable. If any visible emissions are observed, daily observations shall be resumed.

(3) If the maximum 6-minute opacity is less than 10 percent during the most recent Method 9 of appendix A-4 of this part performance test, the owner or operator may, as an alternative to performing subsequent Method 9 of appendix A-4 performance tests, elect to perform subsequent monitoring using a digital opacity compliance system according to a site-specific monitoring plan approved by the Administrator. The observations shall be similar, but not necessarily identical, to the requirements in paragraph (a)(2) of this section. For reference purposes in preparing the monitoring plan, see OAQPS “Determination of Visible Emission Opacity from Stationary Sources Using Computer-Based Photographic Analysis Systems.” This document is available from the U.S. Environmental Protection Agency (U.S. EPA); Office of Air Quality and Planning Standards; Sector Policies and Programs Division; Measurement Policy Group (D243-02), Research Triangle Park, NC 27711. This document is also available on the Technology Transfer Network (TTN) under Emission Measurement Center Preliminary Methods.

(b) All COMS shall be operated in accordance with the applicable procedures under Performance Specification 1 of appendix B of this part. The span value of the opacity COMS shall be between 60 and 80 percent.

(c) Owners and operators of an affected facilities that burn only distillate oil that contains no more than 0.5 weight percent sulfur and/or liquid or gaseous fuels with potential sulfur dioxide emission rates of 26 ng/J (0.060 lb/MMBtu) heat input or less and that do not use a post-combustion technology to reduce SO2 or PM emissions and that are subject to an opacity standard in § 60.43c(c) are not required to operate a COMS if they follow the applicable procedures in § 60.48c(f).

(d) Owners or operators complying with the PM emission limit by using a PM CEMS must calibrate, maintain, operate, and record the output of the system for PM emissions discharged to the atmosphere as specified in § 60.45c(c). The CEMS specified in paragraph § 60.45c(c) shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments.

(e) Owners and operators of an affected facility that is subject to an opacity standard in § 60.43c(c) and that does not use post-combustion technology (except a wet scrubber) for reducing PM, SO2 , or carbon monoxide (CO) emissions, burns only gaseous fuels or fuel oils that contain less than or equal to 0.5 weight percent sulfur, and is operated such that emissions of CO discharged to the atmosphere from the affected facility are maintained at levels less than or equal to 0.15 lb/MMBtu on a boiler operating day average basis is not required to operate a COMS. Owners and
operators of affected facilities electing to comply with this paragraph must demonstrate compliance according to the procedures specified in paragraphs (e)(1) through (4) of this section; or

(1) You must monitor CO emissions using a CEMS according to the procedures specified in paragraphs (e)(1)(i) through (iv) of this section.

(i) The CO CEMS must be installed, certified, maintained, and operated according to the provisions in §60.58b(i)(3) of subpart Eb of this part.

(ii) Each 1-hour CO emissions average is calculated using the data points generated by the CO CEMS expressed in parts per million by volume corrected to 3 percent oxygen (dry basis).

(iii) At a minimum, valid 1-hour CO emissions averages must be obtained for at least 90 percent of the operating hours on a 30-day rolling average basis. The 1-hour averages are calculated using the data points required in §60.13(h)(2).

(iv) Quarterly accuracy determinations and daily calibration drift tests for the CO CEMS must be performed in accordance with procedure 1 in appendix F of this part.

(2) You must calculate the 1-hour average CO emissions levels for each steam generating unit operating day by multiplying the average hourly CO output concentration measured by the CO CEMS times the corresponding average hourly flue gas flow rate and divided by the corresponding average hourly heat input to the affected source. The 24-hour average CO emission level is determined by calculating the arithmetic average of the hourly CO emission levels computed for each steam generating unit operating day.

(3) You must evaluate the preceding 24-hour average CO emission level each steam generating unit operating day excluding periods of affected source startup, shutdown, or malfunction. If the 24-hour average CO emission level is greater than 0.15 lb/MMBtu, you must initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery of the high emission incident and, take the appropriate corrective action as soon as practicable to adjust control settings or repair equipment to reduce the 24-hour average CO emission level to 0.15 lb/MMBtu or less.

(4) You must record the CO measurements and calculations performed according to paragraph (e) of this section and any corrective actions taken. The record of corrective action taken must include the date and time during which the 24-hour average CO emission level was greater than 0.15 lb/MMBtu, and the date, time, and description of the corrective action.

(f) An owner or operator of an affected facility that is subject to an opacity standard in §60.43c(c) is not required to operate a CO MDS provided that the affected facility meets the conditions in either paragraphs (f)(1), (2), or (3) of this section.

(1) The affected facility uses a fabric filter (baghouse) as the primary PM control device and, the owner or operator operates a bag leak detection system to monitor the performance of the fabric filter according to the requirements in section §60.48Da of this part.

(2) The affected facility uses an ESP as the primary PM control device, and the owner or operator uses an ESP predictive model to monitor the performance of the ESP developed in accordance and operated according to the requirements in section §60.48Da of this part.

(3) The affected facility burns only gaseous fuels and/or fuel oils that contain no greater than 0.5 weight percent sulfur, and the owner or operator operates the unit according to a written site-specific monitoring plan approved by the permitting authority. This monitoring plan must include procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard. For testing performed as part of this site-specific monitoring plan, the permitting authority may require as an alternative to the notification and reporting requirements specified in §§60.8 and 60.11 that the owner or operator submit any deviations with the excess emissions report required under §60.48c(c).
§ 60.48c Reporting and recordkeeping requirements.

(a) The owner or operator of each affected facility shall submit notification of the date of construction or reconstruction and actual startup, as provided by § 60.7 of this part. This notification shall include:

(1) The design heat input capacity of the affected facility and identification of fuels to be combusted in the affected facility.

(2) If applicable, a copy of any federally enforceable requirement that limits the annual capacity factor for any fuel or mixture of fuels under § 60.42c, or § 60.43c.

(3) The annual capacity factor at which the owner or operator anticipates operating the affected facility based on all fuels fired and based on each individual fuel fired.

(4) Notification if an emerging technology will be used for controlling SO₂ emissions. The Administrator will examine the description of the control device and will determine whether the technology qualifies as an emerging technology. In making this determination, the Administrator may require the owner or operator of the affected facility to submit additional information concerning the control device. The affected facility is subject to the provisions of § 60.42c(a) or (b)(1), unless and until this determination is made by the Administrator.

(b) The owner or operator of each affected facility subject to the SO₂ emission limits of § 60.42c, or the PM or opacity limits of § 60.43c, shall submit to the Administrator the performance test data from the initial and any subsequent performance tests and, if applicable, the performance evaluation of the CEMS and/or COMS using the applicable performance specifications in appendix B of this part.

(c) In addition to the applicable requirements in § 60.7, the owner or operator of an affected facility subject to the opacity limits in § 60.43c(c) shall submit excess emission reports for any excess emissions from the affected facility that occur during the reporting period and maintain records according to the requirements specified in paragraphs (c)(1) through (3) of this section, as applicable to the visible emissions monitoring method used.

(1) For each performance test conducted using Method 9 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(1)(i) through (iii) of this section.

(i) Dates and time intervals of all opacity observation periods;

(ii) Name, affiliation, and copy of current visible emission reading certification for each visible emission observer participating in the performance test; and

(iii) Copies of all visible emission observer opacity field data sheets;

(2) For each performance test conducted using Method 22 of appendix A-4 of this part, the owner or operator shall keep the records including the information specified in paragraphs (c)(2)(i) through (iv) of this section.

(i) Dates and time intervals of all visible emissions observation periods;

(ii) Name and affiliation for each visible emission observer participating in the performance test;

(iii) Copies of all visible emission observer opacity field data sheets; and

(iv) Documentation of any adjustments made and the time the adjustments were completed to the affected facility operation by the owner or operator to demonstrate compliance with the applicable monitoring requirements.
(3) For each digital opacity compliance system, the owner or operator shall maintain records and submit reports according to the requirements specified in the site-specific monitoring plan approved by the Administrator.

(d) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall submit reports to the Administrator.

(e) The owner or operator of each affected facility subject to the SO₂ emission limits, fuel oil sulfur limits, or percent reduction requirements under § 60.42c shall keep records and submit reports as required under paragraph (d) of this section, including the following information, as applicable.

(1) Calendar dates covered in the reporting period.

(2) Each 30-day average SO₂ emission rate (ng/J or lb/MMBtu), or 30-day average sulfur content (weight percent), calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of corrective actions taken.

(3) Each 30-day average percent of potential SO₂ emission rate calculated during the reporting period, ending with the last 30-day period; reasons for any noncompliance with the emission standards; and a description of the corrective actions taken.

(4) Identification of any steam generating unit operating days for which SO₂ or diluent (O₂ or CO₂) data have not been obtained by an approved method for at least 75 percent of the operating hours; justification for not obtaining sufficient data; and a description of corrective actions taken.

(5) Identification of any times when emissions data have been excluded from the calculation of average emission rates; justification for excluding data; and a description of corrective actions taken if data have been excluded for periods other than those during which coal or oil were not combusted in the steam generating unit.

(6) Identification of the F factor used in calculations, method of determination, and type of fuel combusted.

(7) Identification of whether averages have been obtained based on CEMS rather than manual sampling methods.

(8) If a CEMS is used, identification of any times when the pollutant concentration exceeded the full span of the CEMS.

(9) If a CEMS is used, description of any modifications to the CEMS that could affect the ability of the CEMS to comply with Performance Specifications 2 or 3 of appendix B of this part.

(10) If a CEMS is used, results of daily CEMS drift tests and quarterly accuracy assessments as required under appendix F, Procedure 1 of this part.

(11) If fuel supplier certification is used to demonstrate compliance, records of fuel supplier certification as described under paragraph (f)(1), (2), (3), or (4) of this section, as applicable. In addition to records of fuel supplier certifications, the report shall include a certified statement signed by the owner or operator of the affected facility that the records of fuel supplier certifications submitted represent all of the fuel combusted during the reporting period.

(f) Fuel supplier certification shall include the following information:

(1) For distillate oil:

(i) The name of the oil supplier;

(ii) A statement from the oil supplier that the oil complies with the specifications under the definition of distillate oil in § 60.41c; and

(iii) The sulfur content or maximum sulfur content of the oil.
(2) For residual oil:

(i) The name of the oil supplier;

(ii) The location of the oil when the sample was drawn for analysis to determine the sulfur content of the oil, specifically including whether the oil was sampled as delivered to the affected facility, or whether the sample was drawn from oil in storage at the oil supplier’s or oil refiner’s facility, or other location;

(iii) The sulfur content of the oil from which the shipment came (or of the shipment itself); and

(iv) The method used to determine the sulfur content of the oil.

(3) For coal:

(i) The name of the coal supplier;

(ii) The location of the coal when the sample was collected for analysis to determine the properties of the coal, specifically including whether the coal was sampled as delivered to the affected facility or whether the sample was collected from coal in storage at the mine, at a coal preparation plant, at a coal supplier's facility, or at another location. The certification shall include the name of the coal mine (and coal seam), coal storage facility, or coal preparation plant (where the sample was collected);

(iii) The results of the analysis of the coal from which the shipment came (or of the shipment itself) including the sulfur content, moisture content, ash content, and heat content; and

(iv) The methods used to determine the properties of the coal.

(4) For other fuels:

(i) The name of the supplier of the fuel;

(ii) The potential sulfur emissions rate or maximum potential sulfur emissions rate of the fuel in ng/J heat input; and

(iii) The method used to determine the potential sulfur emissions rate of the fuel.

(g)(1) Except as provided under paragraphs (g)(2) and (g)(3) of this section, the owner or operator of each affected facility shall record and maintain records of the amount of each fuel combusted during each operating day.

(2) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility that combusts only natural gas, wood, fuels using fuel certification in § 60.48c(f) to demonstrate compliance with the SO₂ standard, fuels not subject to an emissions standard (excluding opacity), or a mixture of these fuels may elect to record and maintain records of the amount of each fuel combusted during each calendar month.

(3) As an alternative to meeting the requirements of paragraph (g)(1) of this section, the owner or operator of an affected facility or multiple affected facilities located on a contiguous property unit where the only fuels combusted in any steam generating unit (including steam generating units not subject to this subpart) at that property are natural gas, wood, distillate oil meeting the most current requirements in § 60.42C to use fuel certification to demonstrate compliance with the SO₂ standard, and/or fuels, excluding coal and residual oil, not subject to an emissions standard (excluding opacity) may elect to record and maintain records of the total amount of each steam generating unit fuel delivered to that property during each calendar month.

(h) The owner or operator of each affected facility subject to a federally enforceable requirement limiting the annual capacity factor for any fuel or mixture of fuels under § 60.42c or § 60.43c shall calculate the annual capacity factor individually for each fuel combusted. The annual capacity factor is determined on a 12-month rolling average basis with a new annual capacity factor calculated at the end of the calendar month.
(i) All records required under this section shall be maintained by the owner or operator of the affected facility for a period of two years following the date of such record.

(j) The reporting period for the reports required under this subpart is each six-month period. All reports shall be submitted to the Administrator and shall be postmarked by the 30th day following the end of the reporting period.

[72 FR 32759, June 13, 2007, as amended at 74 FR 5091, Jan. 28, 2009]
What This Subpart Covers

§60.4230 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(1) Manufacturers of stationary SI ICE with a maximum engine power less than or equal to 19 kilowatt (KW) (25 horsepower (HP)) that are manufactured on or after July 1, 2008.

(2) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are gasoline fueled or that are rich burn engines fueled by liquefied petroleum gas (LPG), where the date of manufacture is:

(i) On or after July 1, 2008; or

(ii) On or after January 1, 2009, for emergency engines.

(3) Manufacturers of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are not gasoline fueled and are not rich burn engines fueled by LPG, where the manufacturer participates in the voluntary manufacturer certification program described in this subpart and where the date of manufacture is:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);

(ii) On or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

(iii) On or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or

(iv) On or after January 1, 2009, for emergency engines.

(4) Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);
(ii) on or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

(iii) on or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or

(iv) on or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP).

(5) Owners and operators of stationary SI ICE that are modified or reconstructed after June 12, 2006, and any person that modifies or reconstructs any stationary SI ICE after June 12, 2006.

(6) The provisions of §60.4236 of this subpart are applicable to all owners and operators of stationary SI ICE that commence construction after June 12, 2006.

(b) The provisions of this subpart are not applicable to stationary SI ICE being tested at an engine test cell/stand.

(c) If you are an owner or operator of an area source subject to this subpart, you are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(d) For the purposes of this subpart, stationary SI ICE using alcohol-based fuels are considered gasoline engines.

(e) Stationary SI ICE may be eligible for exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C (or the exemptions described in 40 CFR parts 90 and 1048, for engines that would need to be certified to standards in those parts), except that owners and operators, as well as manufacturers, may be eligible to request an exemption for national security.

(f) Owners and operators of facilities with internal combustion engines that are acting as temporary replacement units and that are located at a stationary source for less than 1 year and that have been properly certified as meeting the standards that would be applicable to such engine under the appropriate nonroad engine provisions, are not required to meet any other provisions under this subpart with regard to such engines.

[73 FR 3591, Jan. 18, 2008, as amended at 76 FR 37972, June 28, 2011]

Emission Standards for Manufacturers

§60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing such engines?

(a) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) manufactured on or after July 1, 2008 to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 1054, as follows:

<table>
<thead>
<tr>
<th>If engine displacement is</th>
<th>* * *</th>
<th>and manufacturing dates are</th>
<th>* * *</th>
<th>the engine must meet emission standards and related requirements for nonhandheld engines under</th>
<th>* * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) below 225 cc</td>
<td></td>
<td>July 1, 2008 to December</td>
<td>31, 2011</td>
<td>40 CFR part 90.</td>
<td></td>
</tr>
<tr>
<td>(2) below 225 cc</td>
<td></td>
<td>January 1, 2012 or later</td>
<td></td>
<td>40 CFR part 1054.</td>
<td></td>
</tr>
<tr>
<td>(3) at or above 225 cc</td>
<td></td>
<td>July 1, 2008 to December</td>
<td>31, 2010</td>
<td>40 CFR part 90.</td>
<td></td>
</tr>
<tr>
<td>(4) at or above 225 cc</td>
<td></td>
<td>January 1, 2011 or later</td>
<td></td>
<td>40 CFR part 1054.</td>
<td></td>
</tr>
</tbody>
</table>
(b) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) (except emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) that use gasoline and that are manufactured on or after the applicable date in §60.4230(a)(2), or manufactured on or after the applicable date in §60.4230(a)(4) for emergency stationary ICE with a maximum engine power greater than or equal to 130 HP, to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their emergency stationary SI ICE with a maximum engine power greater than 25 HP and less than 130 HP that use gasoline and that are manufactured on or after the applicable date in §60.4230(a)(4) to the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cubic centimeters (cc) that use gasoline to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate.

(c) Stationary SI internal combustion engine manufacturers must certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) (except emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) that are rich burn engines that use LPG and that are manufactured on or after the applicable date in §60.4230(a)(2), or manufactured on or after the applicable date in §60.4230(a)(4) for emergency stationary ICE with a maximum engine power greater than or equal to 130 HP, to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP that are rich burn engines that use LPG and that are manufactured on or after the applicable date in §60.4230(a)(4) to the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc that are rich burn engines that use LPG to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate.

(d) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) under the voluntary manufacturer certification program described in this subpart must certify those engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers who choose to certify their emergency stationary SI ICE greater than 25 HP and less than 130 HP (except gasoline and rich burn engines that use LPG), must certify those engines to the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc (except gasoline and rich burn engines that use LPG) to the certification emission standards for new nonroad SI engines in 40 CFR part 90 or 1054, as appropriate. For stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG and emergency stationary ICE with a maximum engine power greater than 25 HP and less than 130 HP) manufactured prior to January 1, 2011, manufacturers may choose to certify these engines to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP.

(e) Stationary SI internal combustion engine manufacturers who choose to certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) under the voluntary manufacturer certification program described in this subpart must certify those engines to the emission standards in Table 1 to this subpart. Stationary SI internal combustion engine manufacturers may certify their stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) that are lean burn engines that use LPG to the certification emission standards for new nonroad SI engines in 40 CFR part 1048. For stationary SI ICE with a maximum engine power greater than or equal to 100 HP (75 KW) and less than 500 HP (373 KW) manufactured prior to January 1, 2011, and for stationary SI ICE with a maximum engine power greater than or equal to 500 HP (373 KW) manufactured prior to July 1, 2010, manufacturers may choose to certify these engines to the certification emission standards for new nonroad SI engines in 40 CFR part 1048 applicable to engines that are not severe duty engines.

(f) Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, to the extent they apply to equipment manufacturers.
(g) Notwithstanding the requirements in paragraphs (a) through (c) of this section, stationary SI internal combustion engine manufacturers are not required to certify reconstructed engines; however manufacturers may elect to do so. The reconstructed engine must be certified to the emission standards specified in paragraphs (a) through (e) of this section that are applicable to the model year, maximum engine power and displacement of the reconstructed stationary SI ICE.

§60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

Engines manufactured by stationary SI internal combustion engine manufacturers must meet the emission standards as required in §60.4231 during the certified emissions life of the engines.

Emission Standards for Owners and Operators

§60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?

(a) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) manufactured on or after July 1, 2008, must comply with the emission standards in §60.4231(a) for their stationary SI ICE.

(b) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in §60.4230(a)(4) that use gasoline must comply with the emission standards in §60.4231(b) for their stationary SI ICE.

(c) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) manufactured on or after the applicable date in §60.4230(a)(4) that are rich burn engines that use LPG must comply with the emission standards in §60.4231(c) for their stationary SI ICE.

(d) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards for field testing in 40 CFR 1048.101(c) for their non-emergency stationary SI ICE and with the emission standards in Table 1 to this subpart for their emergency stationary SI ICE. Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) and less than 75 KW (100 HP) manufactured prior to January 1, 2011, that were certified to the standards in Table 1 to this subpart applicable to engines with a maximum engine power greater than or equal to 100 HP and less than 500 HP, may optionally choose to meet those standards.

(e) Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards in Table 1 to this subpart for their stationary SI ICE. For owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 100 HP (except gasoline and rich burn engines that use LPG) manufactured prior to January 1, 2011, that were certified to the certification emission standards in 40 CFR part 1048 applicable to engines that are not severe duty engines, if such stationary SI ICE was certified to a carbon monoxide (CO) standard above the standard in Table 1 to this subpart, then the owners and operators may meet the CO certification (not field testing) standard for which the engine was certified.

(f) Owners and operators of any modified or reconstructed stationary SI ICE subject to this subpart must meet the requirements as specified in paragraphs (f)(1) through (5) of this section.

(1) Owners and operators of stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with emission standards in §60.4231(a) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 must comply with the emission standards specified in §60.4231(a) applicable to engines manufactured on July 1, 2008.
(2) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are
gasoline engines and are modified or reconstructed after June 12, 2006, must comply with the emission standards in
§60.4231(b) for their stationary SI ICE. Engines with a date of manufacture prior to July 1, 2008 (or January 1, 2009
for emergency engines) must comply with the emission standards specified in §60.4231(b) applicable to engines
manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).

(3) Owners and operators of stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) that are
rich burn engines that use LPG, that are modified or reconstructed after June 12, 2006, must comply with the same
emission standards as those specified in §60.4231(c). Engines with a date of manufacture prior to July 1, 2008 (or
January 1, 2009 for emergency engines) must comply with the emission standards specified in §60.4231(c)
applicable to engines manufactured on July 1, 2008 (or January 1, 2009 for emergency engines).

(4) Owners and operators of stationary SI natural gas and lean burn LPG engines with a maximum engine power
greater than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same
emission standards as those specified in paragraph (d) or (e) of this section, except that such owners and operators
of non-emergency engines and emergency engines greater than or equal to 130 HP must meet a nitrogen oxides
(NO\textsubscript{x}) emission standard of 3.0 grams per HP-hour (g/HP-hr), a CO emission standard of 4.0 g/HP-hr (5.0 g/HP-hr for
non-emergency engines less than 100 HP), and a volatile organic compounds (VOC) emission standard of 1.0 g/HP-
hr, or a NO\textsubscript{x} emission standard of 250 ppmvd at 15 percent oxygen (O\textsubscript{2}), a CO emission standard 540 ppmvd at 15
percent O\textsubscript{2} (675 ppmvd at 15 percent O\textsubscript{2} for non-emergency engines less than 100 HP), and a VOC emission
standard of 86 ppmvd at 15 percent O\textsubscript{2}, where the date of manufacture of the engine is:

(i) Prior to July 1, 2007, for non-emergency engines with a maximum engine power greater than or equal to 500 HP
(except lean burn natural gas engines and LPG engines with a maximum engine power greater than or equal to 500
HP and less than 1,350 HP);

(ii) Prior to July 1, 2008, for non-emergency engines with a maximum engine power less than 500 HP;

(iii) Prior to January 1, 2009, for emergency engines;

(iv) Prior to January 1, 2008, for non-emergency lean burn natural gas engines and LPG engines with a maximum
engine power greater than or equal to 500 HP and less than 1,350 HP.

(5) Owners and operators of stationary SI landfill/digester gas ICE engines with a maximum engine power greater
than 19 KW (25 HP), that are modified or reconstructed after June 12, 2006, must comply with the same emission
standards as those specified in paragraph (e) of this section for stationary landfill/digester gas engines. Engines with
maximum engine power less than 500 HP and a date of manufacture prior to July 1, 2008 must comply with the
emission standards specified in paragraph (e) of this section for stationary landfill/digester gas ICE with a maximum
engine power greater than or equal to 500 HP manufactured on July 1, 2008. Engines with a maximum engine power greater than
or equal to 500 HP (except lean burn engines greater than or equal to 500 HP and less than 1,350 HP) and a date of
manufacture prior to July 1, 2007 must comply with the emission standards specified in paragraph (e) of this section
for stationary landfill/digester gas ICE with a maximum engine power greater than or equal to 500 HP (except lean
burn engines greater than or equal to 500 HP and less than 1,350 HP) manufactured on July 1, 2007. Lean burn
engines greater than or equal to 500 HP and less than 1,350 HP with a date of manufacture prior to January 1, 2008
must comply with the emission standards specified in paragraph (e) of this section for stationary landfill/digester gas
ICE that are lean burn engines greater than or equal to 500 HP and less than 1,350 HP and manufactured on
January 1, 2008.

(g) Owners and operators of stationary SI wellhead gas ICE engines may petition the Administrator for approval on a
case-by-case basis to meet emission standards no less stringent than the emission standards that apply to stationary
emergency SI engines greater than 25 HP and less than 130 HP due to the presence of high sulfur levels in the fuel,
as specified in Table 1 to this subpart. The request must, at a minimum, demonstrate that the fuel has high sulfur
levels that prevent the use of aftertreatment controls and also that the owner has reasonably made all attempts
possible to obtain an engine that will meet the standards without the use of aftertreatment controls. The petition must
request the most stringent standards reasonably applicable to the engine using the fuel.

(h) Owners and operators of stationary SI ICE that are required to meet standards that reference 40 CFR 1048.101
must, if testing their engines in use, meet the standards in that section applicable to field testing, except as indicated
in paragraph (e) of this section.
§60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE must operate and maintain stationary SI ICE that achieve the emission standards as required in §60.4233 over the entire life of the engine.

Other Requirements for Owners and Operators

§60.4235 What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this subpart?

Owners and operators of stationary SI ICE subject to this subpart that use gasoline must use gasoline that meets the per gallon sulfur limit in 40 CFR 80.195.

§60.4236 What is the deadline for importing or installing stationary SI ICE produced in previous model years?

(a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the applicable requirements in §60.4233.

(b) After July 1, 2009, owners and operators may not install stationary SI ICE with a maximum engine power of greater than or equal to 500 HP that do not meet the applicable requirements in §60.4233, except that lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP that do not meet the applicable requirements in §60.4233 may not be installed after January 1, 2010.

(c) For emergency stationary SI ICE with a maximum engine power of greater than 19 KW (25 HP), owners and operators may not install engines that do not meet the applicable requirements in §60.4233 after January 1, 2011.

(d) In addition to the requirements specified in §§60.4231 and 60.4233, it is prohibited to import stationary SI ICE less than or equal to 19 KW (25 HP), stationary rich burn LPG SI ICE, and stationary gasoline SI ICE that do not meet the applicable requirements specified in paragraphs (a), (b), and (c) of this section, after the date specified in paragraph (a), (b), and (c) of this section.

(e) The requirements of this section do not apply to owners and operators of stationary SI ICE that have been modified or reconstructed, and they do not apply to engines that were removed from one existing location and reinstalled at a new location.

§60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

(a) Starting on July 1, 2010, if the emergency stationary SI internal combustion engine that is greater than or equal to 500 HP that was built on or after July 1, 2010, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.

(b) Starting on January 1, 2011, if the emergency stationary SI internal combustion engine that is greater than or equal to 130 HP and less than 500 HP that was built on or after January 1, 2011, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.

(c) If you are an owner or operator of an emergency stationary SI internal combustion engine that is less than 130 HP, was built on or after July 1, 2008, and does not meet the standards applicable to non-emergency engines, you must install a non-resettable hour meter upon startup of your emergency engine.
Compliance Requirements for Manufacturers

§60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(a) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]

§60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(b) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]

§60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?

Stationary SI internal combustion engine manufacturers who are subject to the emission standards specified in §60.4231(c) must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must test their engines as specified in that part. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of stationary SI emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 emission standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

[73 FR 59176, Oct. 8, 2008]

§60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?

(a) Manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to certify their engines to the emission standards in §60.4231(d) or (e), as applicable, under the voluntary certification program described in this
Manufacturers who certify their engines under the voluntary certification program must meet the requirements as specified in paragraphs (b) through (g) of this section. In addition, manufacturers of stationary SI internal combustion engines who choose to certify their engines under the voluntary certification program, must also meet the requirements as specified in §60.4247.

(b) Manufacturers of engines other than those certified to standards in 40 CFR part 90 or 40 CFR part 1054 must certify their stationary SI ICE using the certification procedures required in 40 CFR part 1048, subpart C, and must follow the same test procedures that apply to large SI nonroad engines under 40 CFR part 1048, but must use the D-1 cycle of International Organization of Standardization 8178-4: 1996(E) (incorporated by reference, see 40 CFR 60.17) or the test cycle requirements specified in Table 3 to 40 CFR 1048.505, except that Table 3 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion engine manufacturers who certify their stationary SI ICE with a maximum engine power less than or equal to 30 KW (40 HP) with a total displacement less than or equal to 1,000 cc to the certification emission standards and other requirements for new nonroad SI engines in 40 CFR part 90 or 40 CFR part 1054, and manufacturers of emergency engines that are greater than 25 HP and less than 130 HP who meet the Phase 1 standards in 40 CFR 90.103, applicable to class II engines, must certify their stationary SI ICE using the certification procedures required in 40 CFR part 90, subpart B, or 40 CFR part 1054, subpart C, as applicable, and must test their engines as specified in those parts. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, subpart C, to the extent they apply to equipment manufacturers.

(c) Certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, is voluntary, but manufacturers who decide to certify are subject to all of the requirements indicated in this subpart with regard to the engines included in their certification. Manufacturers must clearly label their stationary SI engines as certified or non-certified engines.

(d) Manufacturers of natural gas fired stationary SI ICE who conduct voluntary certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the definition of pipeline-quality natural gas. The fuel used for certifying stationary SI natural gas engines must meet the definition of pipeline-quality natural gas as described in §60.4248. In addition, the manufacturer must provide information to the owner and operator of the certified stationary SI engine including the specifications of the pipeline-quality natural gas to which the engine is certified and what adjustments the owner or operator must make to the engine when installed in the field to ensure compliance with the emission standards.

(e) Manufacturers of stationary SI ICE that are lean burn engines fueled by LPG who conduct voluntary certification of stationary SI ICE to the emission standards specified in §60.4231(d) or (e), as applicable, must certify their engines for operation using fuel that meets the specifications in 40 CFR 1065.720.

(f) Manufacturers may certify their engines for operation using gaseous fuels in addition to pipeline-quality natural gas; however, the manufacturer must specify the properties of that fuel and provide testing information showing that the engine will meet the emission standards specified in §60.4231(d) or (e), as applicable, when operating on that fuel. The manufacturer must also provide instructions for configuring the stationary engine to meet the emission standards on fuels that do not meet the pipeline-quality natural gas definition. The manufacturer must also provide information to the owner and operator of the certified stationary SI engine regarding the configuration that is most conducive to reduced emissions where the engine will be operated on gaseous fuels with different quality than the fuel that it was certified to.

(g) A stationary SI engine manufacturer may certify an engine family solely to the standards applicable to landfill/digester gas engines as specified in §60.4231(d) or (e), as applicable, but must certify their engines for operation using landfill/digester gas and must add a permanent label stating that the engine is for use only in landfill/digester gas applications. The label must be added according to the labeling requirements specified in 40 CFR 1048.135(b).

(h) For purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

(i) For engines being certified to the voluntary certification standards in Table 1 of this subpart, the VOC measurement shall be made by following the procedures in 40 CFR 1065.260 and 1065.265 in order to determine the total NMHC emissions by using a flame-ionization detector and non-methane cutter. An alternative to the
nonmethane cutter, manufacturers may use a gas chromatograph as allowed under 40 CFR 1065.267 and may measure ethane, as well as methane, for excluding such levels from the total VOC measurement.

§60.4242 What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

(a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR part 90, 40 CFR part 1048, or 40 CFR part 1054, as applicable, as well as 40 CFR part 1068 for engines that are certified to the emission standards in 40 CFR part 1048 or 1054, except that engines certified pursuant to the voluntary certification procedures in §60.4241 are subject only to the provisions indicated in §60.4247 and are permitted to provide instructions to owners and operators allowing for deviations from certified configurations, if such deviations are consistent with the provisions of paragraphs §60.4241(c) through (f). Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060, as applicable. Labels on engines certified to 40 CFR part 1048 must refer to stationary engines, rather than or in addition to nonroad engines, as appropriate.

(b) An engine manufacturer certifying an engine family or families to standards under this subpart that are identical to standards applicable under 40 CFR part 90, 40 CFR part 1048, or 40 CFR part 1054 for that model year may certify any such family that contains both nonroad and stationary engines as a single engine family and/or may include any such family containing stationary engines in the averaging, banking and trading provisions applicable for such engines under those parts. This provision also applies to equipment or component manufacturers certifying to standards under 40 CFR part 1060.

(c) Manufacturers of engine families certified to 40 CFR part 1048 may meet the labeling requirements referred to in paragraph (a) of this section for stationary SI ICE by either adding a separate label containing the information required in paragraph (a) of this section or by adding the words “and stationary” after the word “nonroad” to the label.

(d) For all engines manufactured on or after January 1, 2011, and for all engines with a maximum engine power greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, a stationary SI engine manufacturer that certifies an engine family solely to the standards applicable to emergency engines must add a permanent label stating that the engines in that family are for emergency use only. The label must be added according to the labeling requirements specified in 40 CFR 1048.135(b).

(e) All stationary SI engines subject to mandatory certification that do not meet the requirements of this subpart must be labeled according to 40 CFR 1068.230 and must be exported under the provisions of 40 CFR 1068.230. Stationary SI engines subject to standards in 40 CFR part 90 may use the provisions in 40 CFR 90.909. Manufacturers of stationary engines with a maximum engine power greater than 25 HP that are not certified to standards and other requirements under 40 CFR part 1048 are subject to the labeling provisions of 40 CFR 1048.20 pertaining to excluded stationary engines.

(f) For manufacturers of gaseous-fueled stationary engines required to meet the warranty provisions in 40 CFR 90.1103 or 1054.120, we may establish an hour-based warranty period equal to at least the certified emissions life of the engines (in engine operating hours) if we determine that these engines are likely to operate for a number of hours greater than the applicable useful life within 24 months. We will not approve an alternate warranty under this paragraph (f) for nonroad engines. An alternate warranty period approved under this paragraph (f) will be the specified number of engine operating hours or two years, whichever comes first. The engine manufacturer shall request this alternate warranty period in its application for certification or in an earlier submission. We may approve an alternate warranty period for an engine family subject to the following conditions:

1. The engines must be equipped with non-resettable hour meters.

2. The engines must be designed to operate for a number of hours substantially greater than the applicable certified emissions life.
(3) The emission-related warranty for the engines may not be shorter than any published warranty offered by the manufacturer without charge for the engines. Similarly, the emission-related warranty for any component shall not be shorter than any published warranty offered by the manufacturer without charge for that component.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008]

Compliance Requirements for Owners and Operators

§60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

(a) If you are an owner or operator of a stationary SI internal combustion engine that is manufactured after July 1, 2008, and must comply with the emission standards specified in §60.4233(a) through (c), you must comply by purchasing an engine certified to the emission standards in §60.4231(a) through (c), as applicable, for the same engine class and maximum engine power. In addition, you must meet one of the requirements specified in (a)(1) and (2) of this section.

(1) If you operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, you must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required if you are an owner or operator. You must also meet the requirements as specified in 40 CFR part 1068, subparts A through D, as they apply to you. If you adjust engine settings according to and consistent with the manufacturer's instructions, your stationary SI internal combustion engine will not be considered out of compliance.

(2) If you do not operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, your engine will be considered a non-certified engine, and you must demonstrate compliance according to (a)(2)(i) through (iii) of this section, as appropriate.

(i) If you are an owner or operator of a stationary SI internal combustion engine less than 100 HP, you must keep a maintenance plan and records of conducted maintenance to demonstrate compliance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions, but no performance testing is required if you are an owner or operator.

(ii) If you are an owner or operator of a stationary SI internal combustion engine greater than or equal to 100 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup to demonstrate compliance.

(iii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test within 1 year of engine startup and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

(b) If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section.

(1) Purchasing an engine certified according to procedures specified in this subpart, for the same model year and demonstrating compliance according to one of the methods specified in paragraph (a) of this section.

(2) Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in §60.4233(d) or (e) and according to the requirements specified in §60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section.

(i) If you are an owner or operator of a stationary SI internal combustion engine greater than 25 HP and less than or equal to 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent...
practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test to demonstrate compliance.

(ii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

(c) If you are an owner or operator of a stationary SI internal combustion engine that must comply with the emission standards specified in §60.4233(f), you must demonstrate compliance according paragraph (b)(2)(i) or (ii) of this section, except that if you comply according to paragraph (b)(2)(i) of this section, you demonstrate that your non-certified engine complies with the emission standards specified in §60.4233(f).

(d) If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in paragraphs (d)(1) through (3) of this section. In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (d)(1) through (3) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (d)(1) through (3) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary ICE in emergency situations.

(2) You may operate your emergency stationary ICE for any combination of the purposes specified in paragraphs (d)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraph (d)(3) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (d)(2).

(i) Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.

(ii) Emergency stationary ICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §60.17), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary ICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (d)(2) of this section. Except as provided in paragraph (d)(3)(i) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

(ii) [Reserved]

(e) Owners and operators of stationary SI natural gas fired engines may operate their engines using propane for a maximum of 100 hours per year as an alternative fuel solely during emergency operations, but must keep records of such use. If propane is used for more than 100 hours per year in an engine that is not certified to the emission standards when using propane, the owners and operators are required to conduct a performance test to demonstrate compliance with the emission standards of §60.4233.

(f) If you are an owner or operator of a stationary SI internal combustion engine that is less than or equal to 500 HP and you purchase a non-certified engine or you do not operate and maintain your certified stationary SI internal combustion engine and control device according to the manufacturer's written emission-related instructions, you are required to perform initial performance testing as indicated in this section, but you are not required to conduct subsequent performance testing unless the stationary engine is rebuilt or undergoes major repair or maintenance. A rebuilt stationary SI ICE means an engine that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(g) It is expected that air-to-fuel ratio controllers will be used with the operation of three-way catalysts/non-selective catalytic reduction. The AFR controller must be maintained and operated appropriately in order to ensure proper operation of the engine and control device to minimize emissions at all times.

(h) If you are an owner/operator of an stationary SI internal combustion engine with maximum engine power greater than or equal to 500 HP that is manufactured after July 1, 2007 and before July 1, 2008, and must comply with the emission standards specified in sections 60.4233(b) or (c), you must comply by one of the methods specified in paragraphs (h)(1) through (h)(4) of this section.

(1) Purchasing an engine certified according to 40 CFR part 1048. The engine must be installed and configured according to the manufacturer's specifications.

(2) Keeping records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.

(3) Keeping records of engine manufacturer data indicating compliance with the standards.

(4) Keeping records of control device vendor data indicating compliance with the standards.

(i) If you are an owner or operator of a modified or reconstructed stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(f), you must demonstrate compliance according to one of the methods specified in paragraphs (i)(1) or (2) of this section.

(1) Purchasing, or otherwise owning or operating, an engine certified to the emission standards in §60.4233(f), as applicable.
(2) Conducting a performance test to demonstrate initial compliance with the emission standards according to the requirements specified in §60.4244. The test must be conducted within 60 days after the engine commences operation after the modification or reconstruction.

Testing Requirements for Owners and Operators

§60.4244 What test methods and other procedures must I use if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE who conduct performance tests must follow the procedures in paragraphs (a) through (f) of this section.

(a) Each performance test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and according to the requirements in §60.8 and under the specific conditions that are specified by Table 2 to this subpart.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.

(c) You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.

(d) To determine compliance with the NOx mass per unit output emission limitation, convert the concentration of NOx in the engine exhaust using Equation 1 of this section:

\[
ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{\text{HP-hr}} \quad \text{(Eq. 1)}
\]

Where:

ER = Emission rate of NOx in g/HP-hr.

\(C_d\) = Measured NOx concentration in parts per million by volume (ppmv).

\(1.912 \times 10^{-3}\) = Conversion constant for ppm NOx to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, horsepower-hour (HP-hr).

(e) To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:
Where:

\[ER = \frac{C_d \times 1.164 \times 10^{-3} \times Q \times T}{HP - hr} \quad \text{(Eq. 2)} \]

\[ER = \text{Emission rate of CO in g/HP-hr.} \]
\[C_d = \text{Measured CO concentration in ppmv.} \]
\[1.164 \times 10^{-3} = \text{Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius.} \]
\[Q = \text{Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.} \]
\[T = \text{Time of test run, in hours.} \]
\[HP-hr = \text{Brake work of the engine, in HP-hr.} \]

(f) For purposes of this subpart, when calculating emissions of VOC, emissions of formaldehyde should not be included. To determine compliance with the VOC mass per unit output emission limitation, convert the concentration of VOC in the engine exhaust using Equation 3 of this section:

\[ER = \frac{C_d \times 1.833 \times 10^{-3} \times Q \times T}{HP - hr} \quad \text{(Eq. 3)} \]

Where:

\[ER = \text{Emission rate of VOC in g/HP-hr.} \]
\[C_d = \text{VOC concentration measured as propane in ppmv.} \]
\[1.833 \times 10^{-3} = \text{Conversion constant for ppm VOC measured as propane, to grams per standard cubic meter at 20 degrees Celsius.} \]
\[Q = \text{Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.} \]
\[T = \text{Time of test run, in hours.} \]
\[HP-hr = \text{Brake work of the engine, in HP-hr.} \]

(g) If the owner/operator chooses to measure VOC emissions using either Method 18 of 40 CFR part 60, appendix A, or Method 320 of 40 CFR part 63, appendix A, then it has the option of correcting the measured VOC emissions to account for the potential differences in measured values between these methods and Method 25A. The results from Method 18 and Method 320 can be corrected for response factor differences using Equations 4 and 5 of this section. The corrected VOC concentration can then be placed on a propane basis using Equation 6 of this section.

\[RF_i = \frac{C_{Mi}}{C_{Ai}} \quad \text{(Eq. 4)} \]
Where:

RF_i = Response factor of compound <i>i</i> when measured with EPA Method 25A.

C_{Mi} = Measured concentration of compound <i>i</i> in ppmv as carbon.

C_{AI} = True concentration of compound <i>i</i> in ppmv as carbon.

\[
C_{i,\text{corr}} = RF_i \times C_{i,\text{meas}} \quad (\text{Eq. 5})
\]

Where:

C_{i,corr} = Concentration of compound <i>i</i> corrected to the value that would have been measured by EPA Method 25A, ppmv as carbon.

C_{i,meas} = Concentration of compound <i>i</i> measured by EPA Method 320, ppmv as carbon.

\[
C_{p,eq} = 0.6098 \times C_{i,\text{corr}} \quad (\text{Eq. 6})
\]

Where:

C_{p,eq} = Concentration of compound <i>i</i> in mg of propane equivalent per DSCM.

Notification, Reports, and Records for Owners and Operators

§60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

Owners or operators of stationary SI ICE must meet the following notification, reporting and recordkeeping requirements.

(a) Owners and operators of all stationary SI ICE must keep records of the information in paragraphs (a)(1) through (4) of this section.

(1) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(2) Maintenance conducted on the engine.

(3) If the stationary SI internal combustion engine is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR parts 90, 1048, 1054, and 1060, as applicable.

(4) If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to §60.4245(a)(2), documentation that the engine meets the emission standards.

(b) For all stationary SI emergency ICE greater than or equal to 500 HP manufactured on or after July 1, 2010, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than or equal to 130 HP and less than 500 HP manufactured on or after July 1, 2011 that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. For all stationary SI emergency ICE greater than 25 HP and less than 130 HP manufactured on or after July 1, 2008, that do not meet the
standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation.

(c) Owners and operators of stationary SI ICE greater than or equal to 500 HP that have not been certified by an engine manufacturer to meet the emission standards in §60.4231 must submit an initial notification as required in §60.7(a)(1). The notification must include the information in paragraphs (c)(1) through (5) of this section.

(1) Name and address of the owner or operator;

(2) The address of the affected source;

(3) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(4) Emission control equipment; and

(5) Fuel used.

(d) Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference—see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7.

(e) If you own or operate an emergency stationary SI ICE with a maximum engine power more than 100 HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §60.4243(d)(2)(ii) and (iii) or that operates for the purposes specified in §60.4243(d)(3)(i), you must submit an annual report according to the requirements in paragraphs (e)(1) through (3) of this section.

(1) The report must contain the following information:

(i) Company name and address where the engine is located.

(ii) Date of the report and beginning and ending dates of the reporting period.

(iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v) Hours operated for the purposes specified in §60.4243(d)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §60.4243(d)(2)(ii) and (iii).

(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §60.4243(d)(2)(ii) and (iii).

(vii) Hours spent for operation for the purposes specified in §60.4243(d)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in §60.4243(d)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §60.4.

General Provisions

§60.4246 What parts of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions in §§60.1 through 60.19 apply to you.

Mobile Source Provisions

§60.4247 What parts of the mobile source provisions apply to me if I am a manufacturer of stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

(a) Manufacturers certifying to emission standards in 40 CFR part 90, including manufacturers certifying emergency engines below 130 HP, must meet the provisions of 40 CFR part 90. Manufacturers certifying to emission standards in 40 CFR part 1054 must meet the provisions of 40 CFR part 1054. Manufacturers of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the provisions of 40 CFR part 1060 to the extent they apply to equipment manufacturers.

(b) Manufacturers required to certify to emission standards in 40 CFR part 1048 must meet the provisions of 40 CFR part 1048. Manufacturers certifying to emission standards in 40 CFR part 1048 pursuant to the voluntary certification program must meet the requirements in Table 4 to this subpart as well as the standards in 40 CFR 1048.101.

(c) For manufacturers of stationary SI internal combustion engines participating in the voluntary certification program and certifying engines to Table 1 to this subpart, Table 4 to this subpart shows which parts of the mobile source provisions in 40 CFR parts 1048, 1065, and 1068 apply to you. Compliance with the deterioration factor provisions under 40 CFR 1048.205(n) and 1048.240 will be required for engines built new on and after January 1, 2010. Prior to January 1, 2010, manufacturers of stationary internal combustion engines participating in the voluntary certification program have the option to develop their own deterioration factors based on an engineering analysis.

[73 FR 3591, Jan. 18, 2008, as amended at 73 FR 59177, Oct. 8, 2008]

Definitions

§60.4248 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the CAA and in subpart A of this part.

Certified emissions life means the period during which the engine is designed to properly function in terms of reliability and fuel consumption, without being remanufactured, specified as a number of hours of operation or calendar years, whichever comes first. The values for certified emissions life for stationary SI ICE with a maximum engine power less than or equal to 19 KW (25 HP) are given in 40 CFR 90.105, 40 CFR 1054.107, and 40 CFR 1060.101, as appropriate. The values for certified emissions life for stationary SI ICE with a maximum engine power greater than 19 KW (25 HP) certified to 40 CFR part 1048 are given in 40 CFR 1048.101(g). The certified emissions life for stationary SI ICE with a maximum engine power greater than 75 KW (100 HP) certified under the voluntary manufacturer certification program of this subpart is 5,000 hours or 7 years, whichever comes first. You may request in your application for certification that we approve a shorter certified emissions life for an engine family. We may approve a shorter certified emissions life, in hours of engine operation but not in years, if we determine that these engines will rarely operate longer than the shorter certified emissions life. If engines identical to those in the engine family have already been produced and are in use, your demonstration must include documentation from such in-use
engines. In other cases, your demonstration must include an engineering analysis of information equivalent to such in-use data, such as data from research engines or similar engine models that are already in production. Your demonstration must also include any overhaul interval that you recommend, any mechanical warranty that you offer for the engine or its components, and any relevant customer design specifications. Your demonstration may include any other relevant information. The certified emissions life value may not be shorter than any of the following:

(i) 1,000 hours of operation.

(ii) Your recommended overhaul interval.

(iii) Your mechanical warranty for the engine.

Certified stationary internal combustion engine means an engine that belongs to an engine family that has a certificate of conformity that complies with the emission standards and requirements in this part, or of 40 CFR part 90, 40 CFR part 1048, or 40 CFR part 1054, as appropriate.

Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems (except emissions control equipment), and any ancillary components and sub-components comprising any simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion turbine portion of any cogeneration cycle combustion system, or the combustion turbine portion of any combined cycle steam/electric generating system.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Date of manufacture means one of the following things:

(1) For freshly manufactured engines and modified engines, date of manufacture means the date the engine is originally produced.

(2) For reconstructed engines, date of manufacture means the date the engine was originally produced, except as specified in paragraph (3) of this definition.

(3) Reconstructed engines are assigned a new date of manufacture if the fixed capital cost of the new and refurbished components exceeds 75 percent of the fixed capital cost of a comparable entirely new facility. An engine that is produced from a previously used engine block does not retain the date of manufacture of the engine in which the engine block was previously used if the engine is produced using all new components except for the engine block. In these cases, the date of manufacture is the date of reconstruction or the date the new engine is produced.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is number 2 distillate oil.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and carbon dioxide (CO₂).

Emergency stationary internal combustion engine means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary ICE must comply with the requirements specified in §60.4243(d) in order to be considered emergency stationary ICE. If the engine does not comply with the requirements specified in §60.4243(d), then it is not considered to be an emergency stationary ICE under this subpart.

(1) The stationary ICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc.
(2) The stationary ICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §60.4243(d).

(3) The stationary ICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §60.4243(d)(2)(ii) or (iii) and §60.4243(d)(3)(i).

Engine manufacturer means the manufacturer of the engine. See the definition of “manufacturer” in this section.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Freshly manufactured engine means an engine that has not been placed into service. An engine becomes freshly manufactured when it is originally produced.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Installed means the engine is placed and secured at the location where it is intended to be operated.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining or natural gas production.

Manufacturer has the meaning given in section 216(1) of the Clean Air Act. In general, this term includes any person who manufactures a stationary engine for sale in the United States or otherwise introduces a new stationary engine into commerce in the United States. This includes importers who import stationary engines for resale.

Maximum engine power means maximum engine power as defined in 40 CFR 1048.801.

Model year means the calendar year in which an engine is manufactured (see “date of manufacture”), except as follows:

(1) Model year means the annual new model production period of the engine manufacturer in which an engine is manufactured (see “date of manufacture”), if the annual new model production period is different than the calendar year and includes January 1 of the calendar year for which the model year is named. It may not begin before January 2 of the previous calendar year and it must end by December 31 of the named calendar year.

(2) For an engine that is converted to a stationary engine after being placed into service as a nonroad or other non-stationary engine, model year means the calendar year or new model production period in which the engine was manufactured (see “date of manufacture”).

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Other internal combustion engine means any internal combustion engine, except combustion turbines, which is not a reciprocating internal combustion engine or rotary internal combustion engine.

Pipeline-quality natural gas means a naturally occurring fluid mixture of hydrocarbons (e.g., methane, ethane, or propane) produced in geological formations beneath the Earth's surface that maintains a gaseous state at standard atmospheric temperature and pressure under ordinary conditions, and which is provided by a supplier through a
pipeline. Pipeline-quality natural gas must either be composed of at least 70 percent methane by volume or have a gross calorific value between 950 and 1,100 British thermal units per standard cubic foot.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to June 12, 2006, with passive emission control technology for NOX (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Rotary internal combustion engine means any internal combustion engine which uses rotary motion to convert heat energy into mechanical work.

Spark ignition means relating to either: a gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary internal combustion engine means any internal combustion engine, except combustion turbines, that converts heat energy into mechanical work and is not mobile. Stationary ICE differ from mobile ICE in that a stationary internal combustion engine is not a nonroad engine as defined at 40 CFR 1068.30 (excluding paragraph (2)(ii) of that definition), and is not used to propel a motor vehicle, aircraft, or a vehicle used solely for competition. Stationary ICE include reciprocating ICE, rotary ICE, and other ICE, except combustion turbines.

Stationary internal combustion engine test cell/stand means an engine test cell/stand, as defined in 40 CFR part 63, subpart PPPPPP, that tests stationary ICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Subpart means 40 CFR part 60, subpart JJJJ.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Volatile organic compounds means volatile organic compounds as defined in 40 CFR 51.100(s).

Voluntary certification program means an optional engine certification program that manufacturers of stationary SI internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline and are not rich burn engines that use LPG can choose to participate in to certify their engines to the emission standards in §60.4231(d) or (e), as applicable.

Table 1 to Subpart JJJJ of Part 60—NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

<table>
<thead>
<tr>
<th>Engine type and fuel</th>
<th>Maximum engine power</th>
<th>Manufacture date</th>
<th>Emission standards</th>
<th>NO\textsubscript{X}</th>
<th>CO</th>
<th>VOC</th>
<th>NO\textsubscript{X}</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/HP-hr</td>
<td>ppmvd at 15% O\textsubscript{2}</td>
<td></td>
<td>g/HP-hr</td>
<td>ppmvd at 15% O\textsubscript{2}</td>
<td></td>
<td>g/HP-hr</td>
<td>ppmvd at 15% O\textsubscript{2}</td>
<td></td>
</tr>
<tr>
<td>Non-Emergency SI Natural Gasb and Non-Emergency SI Lean Burn LPGb</td>
<td>100≤HP<500</td>
<td>7/1/2008</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>160</td>
<td>540</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/2011</td>
<td>1.0</td>
<td>2.0</td>
<td>0.7</td>
<td>82</td>
<td>270</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Non-Emergency SI Lean Burn Natural Gas and LPG</td>
<td>500≤HP<1,350</td>
<td>1/1/2008</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>160</td>
<td>540</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/1/2010</td>
<td>1.0</td>
<td>2.0</td>
<td>0.7</td>
<td>82</td>
<td>270</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)</td>
<td>HP≥500</td>
<td>7/1/2007</td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>160</td>
<td>540</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>1.0</td>
<td>2.0</td>
<td>0.7</td>
<td>82</td>
<td>270</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Landfill/Digester Gas (except lean burn 500≤HP<1,350)</td>
<td>HP<500</td>
<td>7/1/2008</td>
<td>3.0</td>
<td>5.0</td>
<td>1.0</td>
<td>220</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/1/2011</td>
<td>2.0</td>
<td>5.0</td>
<td>1.0</td>
<td>150</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP≥500</td>
<td>7/1/2007</td>
<td>3.0</td>
<td>5.0</td>
<td>1.0</td>
<td>220</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/1/2010</td>
<td>2.0</td>
<td>5.0</td>
<td>1.0</td>
<td>150</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Landfill/Digester Gas Lean Burn</td>
<td>500≤HP<1,350</td>
<td>1/1/2008</td>
<td>3.0</td>
<td>5.0</td>
<td>1.0</td>
<td>220</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/1/2010</td>
<td>2.0</td>
<td>5.0</td>
<td>1.0</td>
<td>150</td>
<td>610</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td>25<HP<130</td>
<td>1/1/2009</td>
<td>10</td>
<td>387</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP≥130</td>
<td></td>
<td>2.0</td>
<td>4.0</td>
<td>1.0</td>
<td>160</td>
<td>540</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>

aOwners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15 percent O\textsubscript{2}.

bOwners and operators of new or reconstructed non-emergency lean burn SI stationary engines with a site rating of greater than or equal to 250 brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO emission standards of Table 1 of this subpart.

cThe emission standards applicable to emergency engines between 25 HP and 130 HP are in terms of NO\textsubscript{X} + HC.

dFor purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

[76 FR 37975, June 28, 2011]
Table 2 to Subpart JJJJ of Part 60—Requirements for Performance Tests

[As stated in §60.4244, you must comply with the following requirements for performance tests within 10 percent of 100 percent peak (or the highest achievable) load]

<table>
<thead>
<tr>
<th>For each</th>
<th>Complying with the requirement to</th>
<th>You must</th>
<th>Using</th>
<th>According to the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stationary SI internal combustion engine demonstrating compliance according to §60.4244</td>
<td>a. limit the concentration of NO\textsubscript{x} in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
<td>(a) Alternatively, for NO\textsubscript{x}, O\textsubscript{2}, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Determine the O\textsubscript{2} concentration of the stationary internal combustion engine exhaust at the sampling port location;</td>
<td>(2) Method 3, 3A, or 3Bi of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)as</td>
<td>(b) Measurements to determine O\textsubscript{2} concentration must be made at the same time as the measurements for NO\textsubscript{x} concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR part 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix Aa, or ASTM Method D6348-03de</td>
<td>(c) Measurements to determine moisture must be made at the same time as the measurement for NO\textsubscript{x} concentration.</td>
</tr>
<tr>
<td>For each</td>
<td>Complying with the requirement to</td>
<td>You must</td>
<td>Using</td>
<td>According to the following requirements</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>v. Measure NO(_x) at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device</td>
<td></td>
<td>(5) Method 7E of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (Reapproved 2005)(^{ad}), Method 320 of 40 CFR part 63, appendix A(^e), or ASTM Method D6348-03(^{de})</td>
<td>(d) Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td>b. limit the concentration of CO in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
<td>(a) Alternatively, for CO, O(_2), and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Determine the O(_2) concentration of the stationary internal combustion engine exhaust at the sampling port location;</td>
<td>(2) Method 3, 3A, or 3B(^h) of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00 (Reapproved 2005)(^{ad})</td>
<td>(b) Measurements to determine O(_2) concentration must be made at the same time as the measurements for CO concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. If necessary, determine the exhaust flow rate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A(^a), or ASTM Method D6348-03(^{de})</td>
<td>(c) Measurements to determine moisture must be made at the same time as the measurement for CO concentration.</td>
</tr>
<tr>
<td>For each</td>
<td>Complying with the requirement to</td>
<td>You must</td>
<td>Using</td>
<td>According to the following requirements</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d) Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td>c. limit the concentration of VOC in the stationary SI internal combustion engine exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary internal combustion engine;</td>
<td>(1) Method 1 or 1A of 40 CFR part 60, appendix A-1, if measuring flow rate</td>
<td>(a) Alternatively, for VOC, O<sub>2</sub>, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, Appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, Appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Determine the O<sub>2</sub> concentration of the stationary internal combustion engine exhaust at the sampling port location;</td>
<td>(2) Method 3, 3A, or 3B<sup>h</sup> of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00<sup>ad</sup> (Reapproved 2005)<sup>ad</sup></td>
<td>(b) Measurements to determine O<sub>2</sub> concentration must be made at the same time as the measurements for VOC concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. If necessary, determine the exhaust flowrate of the stationary internal combustion engine exhaust;</td>
<td>(3) Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If necessary, measure moisture content of the stationary internal combustion engine exhaust at the sampling port location; and</td>
<td>(4) Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A<sup>a</sup>, or ASTM Method D6348-03<sup>de</sup></td>
<td>(c) Measurements to determine moisture must be made at the same time as the measurement for VOC concentration.</td>
</tr>
</tbody>
</table>

- Method 10 of 40 CFR part 60, appendix A4, ASTM Method D6522-00^{ad} (Reapproved 2005)^{ad}
- Method 320 of 40 CFR part 63, appendix A^a, or ASTM Method D6348-03^{de}
- Method 1 or 1A of 40 CFR part 60, appendix A
- Method 3, 3A, or 3B^h of 40 CFR part 60, appendix A-2 or ASTM Method D6522-00^{ad} (Reapproved 2005)^{ad}
- Method 2 or 2C of 40 CFR 60, appendix A-1 or Method 19 of 40 CFR part 60, appendix A-7
- Method 4 of 40 CFR part 60, appendix A-3, Method 320 of 40 CFR part 63, appendix A^a, or ASTM Method D6348-03^{de}

- CO: Carbon Monoxide
- VOC: Volatile Organic Compounds
- SI: Stationary Internal
- CF: Code of Federal Regulations
- ASTM: American Society for Testing and Materials
- D: Diameter
- A: Appendix
For each requirement to comply with the requirement to measure VOC at the exhaust of the stationary internal combustion engine; if using a control device, the sampling site must be located at the outlet of the control device:

Using:

According to the following requirements:
(d) Results of this test consist of the average of the three 1-hour or longer runs.

a. Also, you may petition the Administrator for approval to use alternative methods for portable analyzer.

c. You must use EPA Method 18 of 40 CFR part 60, appendix A-6, provided that you conduct an adequate pre-survey test prior to the emissions test, such as the one described in OTM 11 on EPA's Web site (http://www.epa.gov/ttn/emc/prelim/otm11.pdf).

d. Incorporated by reference; see 40 CFR 60.17.

e. You must meet the requirements in §60.4245(d).

[81 FR 59809, Aug. 30, 2016]

Table 3 to Subpart JJJJ of Part 60—Applicability of General Provisions to Subpart JJJJ

[As stated in §60.4246, you must comply with the following applicable General Provisions]
General provisions citation

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§60.9</td>
<td>Availability of information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.10</td>
<td>State Authority</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.11</td>
<td>Compliance with standards and maintenance requirements</td>
<td>Yes</td>
<td>Requirements are specified in subpart JJJJ.</td>
</tr>
<tr>
<td>§60.12</td>
<td>Circumvention</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.13</td>
<td>Monitoring requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§60.14</td>
<td>Modification</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.15</td>
<td>Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.16</td>
<td>Priority list</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.17</td>
<td>Incorporations by reference</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.18</td>
<td>General control device requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§60.19</td>
<td>General notification and reporting requirements</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 to Subpart JJJJ of Part 60—Applicability of Mobile Source Provisions for Manufacturers Participating in the Voluntary Certification Program and Certifying Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ

[As stated in §60.4247, you must comply with the following applicable mobile source provisions if you are a manufacturer participating in the voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart JJJJ]

<table>
<thead>
<tr>
<th>Mobile source provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1048 subpart A</td>
<td>Overview and Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart B</td>
<td>Emission Standards and Related Requirements</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1048.101</td>
<td>Exhaust Emission Standards</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.105</td>
<td>Evaporative Emission Standards</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.110</td>
<td>Diagnosing Malfunctions</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.140</td>
<td>Certifying Blue Sky Series Engines</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.145</td>
<td>Interim Provisions</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048 subpart C</td>
<td>Certifying Engine Families</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1048.205(b)</td>
<td>AECD reporting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048.205(c)</td>
<td>OBD Requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.205(n)</td>
<td>Deterioration Factors</td>
<td>Yes</td>
<td>Except as indicated in 60.4247(c).</td>
</tr>
<tr>
<td>1048.205(p)(1)</td>
<td>Deterioration Factor Discussion</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Mobile source provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>1048.205(p)(2)</td>
<td>Liquid Fuels as they require</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048.240(b)(c)(d)</td>
<td>Deterioration Factors</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart D</td>
<td>Testing Production-Line Engines</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart E</td>
<td>Testing In-Use Engines</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1048 subpart F</td>
<td>Test Procedures</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1065.5(a)(4)</td>
<td>Raw sampling (refers reader back to the specific emissions regulation for guidance)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart G</td>
<td>Compliance Provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 subpart H</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1048 subpart I</td>
<td>Definitions and Other Reference Information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1048 appendix I and II</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1065 (all subparts)</td>
<td>Engine Testing Procedures</td>
<td>Yes</td>
<td>Except for the specific section below.</td>
</tr>
<tr>
<td>1065.715</td>
<td>Test Fuel Specifications for Natural Gas</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068 (all subparts)</td>
<td>General Compliance Provisions for Nonroad Programs</td>
<td>Yes</td>
<td>Except for the specific sections below.</td>
</tr>
<tr>
<td>1068.245</td>
<td>Hardship Provisions for Unusual Circumstances</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068.250</td>
<td>Hardship Provisions for Small-Volume Manufacturers</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>1068.255</td>
<td>Hardship Provisions for Equipment Manufacturers and Secondary Engine Manufacturers</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
What This Subpart Covers

§63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.
(f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in §63.6675, which includes operating according to the provisions specified in §63.6640(f).

(1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

§63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) Reconstructed stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.
(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(b) **Stationary RICE subject to limited requirements.** (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of §63.6645(f) and the requirements of §§63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(c) **Stationary RICE subject to Regulations under 40 CFR Part 60.** An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

§63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.

(2) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart no later than August 16, 2004.

(3) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions after August 16, 2004, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(4) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(5) If you start up your new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(6) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions before January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart no later than January 18, 2008.

(7) If you start up your new or reconstructed stationary RICE located at an area source of HAP emissions after January 18, 2008, you must comply with the applicable emission limitations and operating limitations in this subpart upon startup of your affected source.

(b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.
(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.

c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

Emission and Operating Limitations

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]

§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.

(b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

(1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).

(2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.

(i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.

(c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:

(1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement.

(2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.
(4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in §63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in §63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

(e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40 CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart III instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.

(f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

(a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.

(b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.
(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2), or are on offshore vessels that meet §63.6603(c) are exempt from the requirements of this section.

[78 FR 6702, Jan. 30, 2013]

General Compliance Requirements

§63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

Testing and Initial Compliance Requirements

§63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.
(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

§63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.
§63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

(1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

(3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad (Eq. 1)
\]

Where:

\(C_i \) = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

\(C_o \) = concentration of CO, THC, or formaldehyde at the control device outlet, and

\(R \) = percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO2). If pollutant concentrations are to be corrected to 15 percent oxygen and CO2 concentration is measured in lieu of oxygen concentration measurement, a CO2 correction factor is needed. Calculate the CO2 correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific \(F_o \) value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

\[
F_o = \frac{0.209 F_d}{F_c} \quad (Eq. 2)
\]

Where:
\(F_0 = \) Fuel factor based on the ratio of oxygen volume to the ultimate \(\text{CO}_2 \) volume produced by the fuel at zero percent excess air.

\[0.209 = \text{Fraction of air that is oxygen, percent/100.} \]

\(F_d = \) Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

\(F_c = \) Ratio of the volume of \(\text{CO}_2 \) produced to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

(ii) Calculate the \(\text{CO}_2 \) correction factor for correcting measurement data to 15 percent \(\text{O}_2 \), as follows:

\[X_{\text{CO}_2} = \frac{5.9}{F_0} \quad (\text{Eq. 3}) \]

Where:

\(X_{\text{CO}_2} = \text{CO}_2 \) correction factor, percent.

\[5.9 = 20.9 \text{ percent } \text{O}_2 - 15 \text{ percent } \text{O}_2, \text{ the defined } \text{O}_2 \text{ correction value, percent.} \]

(iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent \(\text{O}_2 \) using \(\text{CO}_2 \) as follows:

\[C_\text{adj} = C_d \cdot X_{\text{CO}_2} \quad (\text{Eq. 4}) \]

Where:

\(C_\text{adj} = \) Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent \(\text{O}_2 \).

\(C_d = \) Measured concentration of CO, THC, or formaldehyde, uncorrected.

\(X_{\text{CO}_2} = \text{CO}_2 \) correction factor, percent.

\(\%\text{CO}_2 = \) Measured \(\text{CO}_2 \) concentration measured, dry basis, percent.

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;
(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O2 or CO2 according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR...
part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.

(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in §63.8(c)(1)(ii) and (c)(3); and

(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in §63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.

(3) The CPMS must collect data at least once every 15 minutes (see also §63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.
(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.

(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.
(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

1. The compliance demonstration must consist of at least three test runs.
(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O2 using one of the O2 measurement methods specified in Table 4 of this subpart. Measurements to determine O2 concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O2 emissions simultaneously at the inlet and outlet of the control device.

Continuous Compliance Requirements

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.

(b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:
(1) The compliance demonstration must consist of at least one test run.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O₂ using one of the O₂ measurement methods specified in Table 4 of this subpart. Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

(7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

(d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

(f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary RICE in emergency situations.
(2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

(ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

(ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.

(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the
engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

Notifications, Reports, and Records

§63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following;

(1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

(2) An existing stationary RICE located at an area source of HAP emissions.

(3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

(5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.

(c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.

(e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).
(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in §63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in §63.6603(d) and identifying the state or local regulation that the engine is subject to.

§63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6 (a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.
(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official's name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.

(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6 (a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.

(1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

(2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.

(3) Any problems or errors suspected with the meters.

(h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.

(1) The report must contain the following information:

(i) Company name and address where the engine is located.

(ii) Date of the report and beginning and ending dates of the reporting period.

(iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v) Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).
(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vii) Hours spent for operation for the purpose specified in §63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(viii) If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.

(ix) If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

§63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).

(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.
(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE:

(1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

(2) An existing stationary emergency RICE.

(3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in §63.6640(f)(2)(ii) or (iii) or §63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

(1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.

(2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

§63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

§63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a
site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

(1) Approval of alternatives to the non-opacity emission limitations and operating limitations in §63.6600 under §63.6(g).

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

(5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(l)(5) (incorporated by reference, see §63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).
Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;

(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by §63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO2.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

(1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.

(2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §63.6640(f).
(3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §63.6640(f)(2)(ii) or (iii) and §63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes “rich” glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The “lean” glycol is then recycled.

Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2, except that:

(1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

(2) For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated;
(3) For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

(4) Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth's surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NOx) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NOx, CO, and volatile organic compounds (VOC) into CO2, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C3H8.
Remote stationary RICE means stationary RICE meeting any of the following criteria:

1. Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

2. Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

 (i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.

 (ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.

 (iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

3. Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOx (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.
Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each 4SRB stationary RICE</th>
<th>You must meet the following emission limitation, except during periods of startup</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or .</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ |

Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O<sub>2</sub> and using NSCR;</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.¹</td>
</tr>
<tr>
<td>2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O<sub>2</sub> and not using NSCR.</td>
<td>Comply with any operating limitations approved by the Administrator.</td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]

Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB stationary RICE</td>
<td>a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O<sub>2</sub>. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O<sub>2</sub> until June 15, 2007</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td>2. 4SLB stationary RICE</td>
<td>a. Reduce CO emissions by 93 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O<sub>2</sub></td>
<td></td>
</tr>
</tbody>
</table>

¹Minimize the engine's time spent at idle and the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.
For each . . .	You must meet the following emission limitation, except during periods of startup . . .	During periods of startup you must . . .
3. CI stationary RICE | a. Reduce CO emissions by 70 percent or more; or |
 | b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O₂ |

1Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
<tr>
<td>2. Existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and using an oxidation catalyst</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.¹</td>
</tr>
<tr>
<td>3. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and not using an oxidation catalyst; and</td>
<td>Comply with any operating limitations approved by the Administrator.</td>
</tr>
<tr>
<td>New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and not using an oxidation catalyst; and</td>
<td></td>
</tr>
</tbody>
</table>
For each . . .

You must meet the following operating limitation, except during periods of startup . . .

existing CI stationary RICE >500 HP complying with the requirement to limit or reduce the concentration of CO in the stationary RICE exhaust and not using an oxidation catalyst.

1Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]

Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Emergency stationary CI RICE and black start stationary CI RICE¹ | a. Change oil and filter every 500 hours of operation or annually, whichever comes first.²
 b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
 c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.³ |
| 2. Non-Emergency, non-black start stationary CI RICE <100 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first.²
 b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
 c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
<p>| 3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP | Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O₂. | |</p>
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Non-Emergency, non-black start CI stationary RICE 300<HP≤500</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>5. Non-Emergency, non-black start stationary CI RICE >500 HP</td>
<td>a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O₂; or b. Reduce CO emissions by 70 percent or more.</td>
<td></td>
</tr>
<tr>
<td>6. Emergency stationary SI RICE and black start stationary SI RICE.¹</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;² b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³</td>
<td></td>
</tr>
<tr>
<td>7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;² b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.³</td>
<td></td>
</tr>
<tr>
<td>8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;² b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.³</td>
<td></td>
</tr>
</tbody>
</table>
For each . . . | You must meet the following requirement, except during periods of startup . . . | During periods of startup you must . . .
--- | --- | ---
9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O₂. |
10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O₂. |
11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500 | Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O₂. |
12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combuts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis | Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O₂. |

1If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

2Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

3Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]
Table 2d to Subpart ZZZZ of Part 63—Requirements for Existing Stationary RICE Located at Area Sources of HAP Emissions

As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Non-Emergency, non-black start CI stationary RICE ≤300 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;¹
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. |
| 2. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 3. Non-Emergency, non-black start CI stationary RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 4. Emergency stationary CI RICE and black start stationary CI RICE.² | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;¹
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year.</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;¹; b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>6. Non-emergency, non-black start 2SLB stationary RICE</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>For each . . .</td>
<td>You must meet the following requirement, except during periods of startup . . .</td>
<td>During periods of startup you must . . .</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td>Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
</tr>
<tr>
<td>b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
</tbody>
</table>
For each . . . | You must meet the following requirement, except during periods of startup . . . | During periods of startup you must . . .
---|---|---
c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.

1Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

2If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources</td>
<td>Reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests semiannually.(^1)</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE ≥5,000 HP located at major sources</td>
<td>Reduce formaldehyde emissions</td>
<td>Conduct subsequent performance tests semiannually.(^1)</td>
</tr>
<tr>
<td>3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources</td>
<td>Limit the concentration of formaldehyde in the stationary RICE exhaust</td>
<td>Conduct subsequent performance tests semiannually.(^1)</td>
</tr>
<tr>
<td>4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.</td>
</tr>
<tr>
<td>5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.</td>
</tr>
</tbody>
</table>

\(^1\)After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]
Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
<th>Using . . .</th>
<th>According to the following requirements . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB, 4SLB, and CI stationary RICE</td>
<td>a. reduce CO emissions</td>
<td></td>
<td></td>
<td>(a) For CO and O₂ measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.</td>
</tr>
<tr>
<td></td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td></td>
<td></td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)(^{ac}) (heated probe not necessary)</td>
</tr>
<tr>
<td></td>
<td>ii. Measure the O₂ at the inlet and outlet of the control device; and</td>
<td></td>
<td>(b) Measurements to determine O₂ must be made at the same time as the measurements for CO concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Measure the CO at the inlet and the outlet of the control device</td>
<td></td>
<td>(1) ASTM D6522-00 (Reapproved 2005)(^{abc}) (heated probe not necessary) or Method 10 of 40 CFR part 60, appendix A-4</td>
<td>(c) The CO concentration must be at 15 percent O₂, dry basis.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must . . .</td>
<td>Using . . .</td>
<td>According to the following requirements . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE</td>
<td>a. reduce formaldehyde emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005a) (heated probe not necessary)</td>
<td>(a) For formaldehyde, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure O₂ at the inlet and outlet of the control device; and</td>
<td>(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03a</td>
<td>(a) Measurements to determine O₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure moisture content at the inlet and outlet of the control device; and</td>
<td>(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130</td>
<td>(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device</td>
<td>(1) Method 25A, reported as propane, of 40 CFR part 60, appendix A-7</td>
<td>(a) THC concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
</tr>
</tbody>
</table>
3. Stationary RICE

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
<th>Using . . .</th>
<th>According to the following requirements . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td>
<td>i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)a (heated probe not necessary)</td>
<td>(a) For formaldehyde, CO, O₂, and moisture measurement ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line'). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device.</td>
<td></td>
</tr>
<tr>
<td>ii. Determine the O₂ concentration of the stationary RICE exhaust at the sampling port location; and</td>
<td>(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D 6348-03a</td>
<td>(a) Measurements to determine O₂ concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Measure moisture content of the stationary RICE exhaust at the sampling port location; and</td>
<td>(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03a, provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130</td>
<td>(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv. Measure formaldehyde at the exhaust of the stationary RICE; or</td>
<td>(1) Method 10 of 40 CFR part 60, appendix A-4, ASTM Method D6522-00 (2005)a; Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03a</td>
<td>(a) CO concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v. measure CO at the exhaust of the stationary RICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You may also use Methods 3A and 10 as options to ASTM-D6522-00 (2005). You may obtain a copy of ASTM-D6522-00 (2005) from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

You may obtain a copy of ASTM-D6348-03 from at least one of the following addresses: American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

[79 FR 11290, Feb. 27, 2014]

Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and using oxidation catalyst, and using a CPMS</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and not using oxidation catalyst</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You have demonstrated initial compliance if . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, and not using oxidation catalyst</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions, and using a CEMS</td>
<td>i. You have installed a CEMS to continuously monitor CO and either O\textsubscript{2} or CO\textsubscript{2} at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and iii. The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.</td>
</tr>
<tr>
<td>6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, and using a CEMS</td>
<td>i. You have installed a CEMS to continuously monitor CO and either O\textsubscript{2} or CO\textsubscript{2} at the outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and iii. The average concentration of CO calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.</td>
</tr>
<tr>
<td>7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and using NSCR</td>
<td>i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You have demonstrated initial compliance if . . .</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and not using NSCR</td>
<td>i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</td>
<td>i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR</td>
<td>i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP</td>
<td>a. Reduce CO emissions</td>
<td>i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.</td>
</tr>
</tbody>
</table>
Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP</td>
<td>a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td>
<td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent (O_2), dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td>
</tr>
<tr>
<td>13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install an oxidation catalyst</td>
<td>ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
<tr>
<td>14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install NSCR</td>
<td>ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
</tr>
</tbody>
</table>

[78 FR 6712, Jan. 30, 2013]
For each . . .	Complying with the requirement to . . .	You must demonstrate continuous compliance by . . .
2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP | a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS | i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and

ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and

iii. Reducing these data to 4-hour rolling averages; and

iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.

3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP | a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS | i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and

ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and

iii. Conducting an annual RATA of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B, as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Reduce formaldehyde emissions and using NSCR | i. Collecting the catalyst inlet temperature data according to §63.6625(b); and

ii. Reducing these data to 4-hour rolling averages; and

iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and

iv. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and not using NSCR</td>
<td>i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions</td>
<td>Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent.³</td>
</tr>
<tr>
<td>7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit⁴; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit⁴; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>9. Existing emergency and black start stationary RICE ≤ 500 HP located at a major source of HAP, existing non-emergency stationary RICE < 100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤ 300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency stationary SI RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤ 500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE > 500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE > 500 HP located at an area source of HAP that are remote stationary RICE</td>
<td>a. Work or Management practices</td>
<td>i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.</td>
</tr>
<tr>
<td>10. Existing stationary CI RICE > 500 HP that are not limited use stationary RICE</td>
<td>a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>11. Existing stationary CI RICE > 500 HP that are not limited use stationary RICE</td>
<td>a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>12. Existing limited use CI stationary RICE >500 HP</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>13. Existing limited use CI stationary RICE >500 HP</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
<td></td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install an oxidation catalyst</td>
<td>i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O₂; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
<tr>
<td>15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install NSCR</td>
<td>i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more; and either ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
</tr>
</tbody>
</table>

After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6715, Jan. 30, 2013]
Table 7 to Subpart ZZZZ of Part 63—Requirements for Reports

As stated in §63.6650, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must submit a . . .</th>
<th>The report must contain . . .</th>
<th>You must submit the report . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existing non-emergency, non-black start stationary RICE 100sHPs500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>Compliance report</td>
<td>a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5) for engines that are limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>Report</td>
<td>b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in §63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), the information in §63.6650(e); or</td>
<td>i. Semiannually according to the requirements in §63.6650(b).</td>
</tr>
<tr>
<td>3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Compliance report</td>
<td>a. The results of the annual compliance demonstration, if conducted during the reporting period.</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5).</td>
</tr>
<tr>
<td>c. Any problems or errors suspected with the meters.</td>
<td></td>
<td></td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td>d. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and</td>
<td></td>
<td></td>
<td>i. See item 2.a.i.</td>
</tr>
</tbody>
</table>
For each . . . | You must submit a . . . | The report must contain . . . | You must submit the report . . .
---|---|---|---
4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in §63.6640(f)(4)(ii) | Report | a. The information in §63.6650(h)(1) | i. annually according to the requirements in §63.6650(h)(2)-(3).

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §63.6675.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and abbreviations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.4</td>
<td>Prohibited activities and circumvention</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5</td>
<td>Construction and reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)-(4)</td>
<td>Compliance dates for new and reconstructed sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(5)</td>
<td>Notification</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(6)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(7)</td>
<td>Compliance dates for new and reconstructed area sources that become major sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(1)-(2)</td>
<td>Compliance dates for existing sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(3)-(4)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(5)</td>
<td>Compliance dates for existing area sources that become major sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(d)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(e)</td>
<td>Operation and maintenance</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(1)</td>
<td>Applicability of standards</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2)</td>
<td>Methods for determining compliance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(3)</td>
<td>Finding of compliance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)-(3)</td>
<td>Use of alternate standard</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Opacity and visible emission standards</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.6(i)</td>
<td>Compliance extension procedures and criteria</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Presidential compliance exemption</td>
<td>Yes.</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
</tr>
<tr>
<td>§63.7(a)(1)-(2)</td>
<td>Performance test dates</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(3)</td>
<td>CAA section 114 authority</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(b)(1)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.7(b)(1) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(b)(2)</td>
<td>Notification of rescheduling</td>
<td>Yes</td>
<td>Except that §63.7(b)(2) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(c)</td>
<td>Quality assurance/test plan</td>
<td>Yes</td>
<td>Except that §63.7(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(d)</td>
<td>Testing facilities</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(1)</td>
<td>Conditions for conducting performance tests</td>
<td>No.</td>
<td>Subpart ZZZZ specifies conditions for conducting performance tests at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(2)</td>
<td>Conduct of performance tests and reduction of data</td>
<td>Yes</td>
<td>Subpart ZZZZ specifies test methods at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(3)</td>
<td>Test run duration</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(4)</td>
<td>Administrator may require other testing under section 114 of the CAA</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(f)</td>
<td>Alternative test method provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(g)</td>
<td>Performance test data analysis, recordkeeping, and reporting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(h)</td>
<td>Waiver of tests</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1)</td>
<td>Applicability of monitoring requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
</tr>
<tr>
<td>§63.8(a)(2)</td>
<td>Performance specifications</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(3)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td>Monitoring for control devices</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(1)</td>
<td>Monitoring</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2)-(3)</td>
<td>Multiple effluents and multiple monitoring systems</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)</td>
<td>Monitoring system operation and maintenance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(i)</td>
<td>Routine and predictable SSM</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(ii)</td>
<td>SSM not in Startup Shutdown Malfunction Plan</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(iii)</td>
<td>Compliance with operation and maintenance requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(2)-(3)</td>
<td>Monitoring system installation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(4)</td>
<td>Continuous monitoring system (CMS) requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).</td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>COMS minimum procedures</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(c)(6)-(8)</td>
<td>CMS requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>CMS quality control</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS performance evaluation</td>
<td>Yes</td>
<td>Except for §63.8(e)(5)(ii), which applies to COMS.</td>
</tr>
<tr>
<td>§63.8(f)(1)-(5)</td>
<td>Alternative monitoring method</td>
<td>Yes</td>
<td>Except that §63.8(f)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to relative accuracy test</td>
<td>Yes</td>
<td>Except that §63.8(f)(6) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data reduction</td>
<td>Yes</td>
<td>Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§63.6635 and 63.6640.</td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Applicability and State delegation of notification requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.9(b)(1)-(5)</td>
<td>Initial notifications</td>
<td>Yes</td>
<td>Except that §63.9(b)(3) is reserved.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for compliance extension</td>
<td>Yes</td>
<td>Except that §63.9(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification of special compliance requirements for new sources</td>
<td>Yes</td>
<td>Except that §63.9(d) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.9(e) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of visible emission (VE)/opacity test</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(1)</td>
<td>Notification of performance evaluation</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(g)(2)</td>
<td>Notification of use of COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(3)</td>
<td>Notification that criterion for alternative to RATA is exceeded</td>
<td>Yes</td>
<td>If alternative is in use.</td>
</tr>
<tr>
<td>§63.9(h)(1)-(6)</td>
<td>Notification of compliance status</td>
<td>Yes</td>
<td>Except that notifications for sources using a CEMS are due 30 days after completion of performance evaluations. §63.9(h)(4) is reserved.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of submittal deadlines</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in previous information</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Administrative provisions for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>Record retention</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(i)-(v)</td>
<td>Records related to SSM</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(vi)-(xi)</td>
<td>Records</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Record when under waiver</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xiii)</td>
<td>Records when using alternative to RATA</td>
<td>Yes.</td>
<td>For CO standard if using RATA alternative.</td>
</tr>
<tr>
<td>§63.10(b)(2)(xiv)</td>
<td>Records of supporting documentation</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Records of applicability determination</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)</td>
<td>Additional records for sources using CEMS</td>
<td>Yes.</td>
<td>Except that §63.10(c)(2)-(4) and (9) are reserved.</td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General reporting requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Report of performance test results</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Reporting opacity or VE observations</td>
<td>No.</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>Startup, shutdown, and malfunction reports</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(1) and (2)(i)</td>
<td>Additional CMS Reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(2)(ii)</td>
<td>COMS-related report</td>
<td>No.</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess emission and parameter exceedances reports</td>
<td>Yes.</td>
<td>Except that §63.10(e)(3)(i) (C) is reserved.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>Reporting COMS data</td>
<td>No.</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Waiver for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Flares</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.12</td>
<td>State authority and delegations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorporation by reference</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of information</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O₂) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O₂).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>630-08-0</td>
<td>Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.</td>
</tr>
<tr>
<td>Oxygen (O₂)</td>
<td>7782-44-7</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O₂, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O₂ gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).

3.0 Definitions

3.1 Measurement System. The total equipment required for the measurement of CO and O₂ concentrations. The measurement system consists of the following major subsystems:
3.1.1 **Data Recorder.** A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.

3.1.2 **Electrochemical (EC) Cell.** A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.

3.1.3 **Interference Gas Scrubber.** A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.

3.1.4 **Moisture Removal System.** Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.

3.1.5 **Sample Interface.** The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.

3.2 **Nominal Range.** The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 **Calibration Gas.** A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 **Zero Calibration Error.** The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 **Up-Scale Calibration Error.** The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

3.6 **Interference Check.** A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 **Repeatability Check.** A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 **Sample Flow Rate.** The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 **Sampling Run.** A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O2 and moisture in the electrolyte reserve and provides a mechanism to degas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre- sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 **Sampling Day.** A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.

3.11 **Pre-Sampling Calibration/Post-Sampling Calibration Check.** The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.
3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO₂ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O₂ concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.
6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 Reagents and Standards. What calibration gases are needed?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O₂. Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ±5 percent of the label value. Dry ambient air (20.9 percent O₂) is acceptable for calibration of the O₂ cell. If needed, any lower percentage O₂ calibration gas must be a mixture of O₂ in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O₂ Calibration Gas Concentration.

Select an O₂ gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O₂. When the average exhaust gas O₂ readings are above 6 percent, you may use dry ambient air (20.9 percent O₂) for the up-scale O₂ calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO₂).

8.0 Sample Collection and Analysis

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the “sample conditioning phase” once per minute until constant readings are obtained. Then begin the “measurement data phase” and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the “measurement data phase” readings to calculate the average stack gas CO and O₂ concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ±3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)
10.0 Calibration and Standardization

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer's recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

10.1.1 Zero Calibration. For both the O2 and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ±3 percent of the up-scale gas value or ±1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ±0.3 percent O2 for the O2 channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this “sample conditioning phase” once per minute until readings are constant for at least two minutes. Then begin the “measurement data phase” and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the “measurement data phase” readings from the reported standard gas value must be less than or equal to ±5 percent or ±1 ppm for CO or ±0.5 percent O2, whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single “measurement data phase” reading must be less than or equal to ±2 percent or ±1 ppm for CO or ±0.5 percent O2, whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the CO and O2 concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the “measurement data phase”.

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the “measurement data phase”. The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm,
whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.

Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ±2 percent or ±1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed.

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO₂ gas standards that are generally recognized as representative of diesel-fueled engine NO and NO₂ emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO₂ interference response should be less than or equal to ±5 percent of the up-scale CO calibration gas concentration.

13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average “measurement data phase” CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 Pollution Prevention (Reserved)

15.0 Waste Management (Reserved)

16.0 Alternative Procedures (Reserved)

17.0 References

Table 1: Appendix A—Sampling Run Data.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Engine I.D.</th>
<th>Date</th>
<th>Run Type:</th>
<th>(X)</th>
<th>Pre-Sample Calibration</th>
<th>Stack Gas Sample</th>
<th>Post-Sample Cal. Check</th>
<th>Repeatability Check</th>
<th>Run #</th>
<th>Gas</th>
<th>Sample Cond. Phase</th>
<th>Measurement Data Phase</th>
<th>Mean</th>
<th>Refresh Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>O2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scrub. OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flow- Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[78 FR 6721, Jan. 30, 2013]
Indiana Department of Environmental Management
Office of Air Quality

Technical Support Document (TSD) for a Part 70 Operating Permit Renewal and Significant Source Modification

Source Description and Location

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Sugar Creek Packing Co.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Location:</td>
<td>1200 Enterprise Road, Cambridge City, IN 47327</td>
</tr>
<tr>
<td>County:</td>
<td>Wayne</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>2013 (Sausages and Other Prepared Meats Products)</td>
</tr>
<tr>
<td>Permit Renewal No.:</td>
<td>T 177-41827-00121</td>
</tr>
<tr>
<td>Significant Modification No.:</td>
<td>SSM 177-41830-00121</td>
</tr>
<tr>
<td>Permit Reviewer:</td>
<td>Tamera Wessel</td>
</tr>
</tbody>
</table>

On August 20, 2019, Sugar Creek Packing Co. submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Sugar Creek Packing Co. relating to the operation of a stationary prepared meat facility. Sugar Creek Packing Co. was issued its Part 70 Operating Permit (T 177-35253-00121) on May 20, 2015.

Existing Approvals

The source was issued Part 70 Operating Permit No. T 177-35253-00121 on May 20, 2015. The source has since received the following approval:

(a) Minor Permit Modification No.: 177-36075-00121, issued on October 2, 2015;
(b) Administrative Amendment No.: 177-36642-00121, issued on February 17, 2016;
(c) Minor Permit Modification No.: 177-38090-00121, issued on May 8, 2017;
(d) Administrative Amendment No.: 177-38748-00121, issued on August 17, 2017; and
(e) Significant Permit Modification No.: 177-40091-00121, issued on November 1, 2018.

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

The source consists of the following permitted emission units:

Cooking Units:

(a) One (1) electric infrared conveying oven, identified as Infrabaker #1, approved in 2015 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD05 and exhausting to Stack S-5.

(b) One (1) electric infrared conveying oven, identified as Infrabaker #2, permitted in 2016, with a maximum cooked product throughput rate of 2,425 pounds per hour, using no controls, and exhausting to Stack S-13.

(c) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #1, approved in 2015 for construction, with a maximum heat input capacity of 3.20 MMBtu per hour and a
maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

(d) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #2, approved in 2015 for construction, with a maximum rated heat input capacity of 3.20 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD03 and exhausting to Stack S-3.

(e) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #3, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD06 and exhausting to Stack S-6.

(f) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #4, approved in 2015 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 5,280 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD06 and exhausting to Stack S-6.

(g) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.00 MMBtu per hour and a maximum cooked product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD02 and CD03, respectively and exhausting to Stacks S-2 and S-3, respectively.

(h) One (1) natural gas-fired fryer, identified as Fryer #1, approved in 2015 for construction, with a maximum heat input capacity of 1.56 MMBtu per hour and a maximum cooked product throughput rate of 5,980 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD01 and exhausting to Stack S-1.

(i) Two (2) natural gas-fired char markers, identified as Char Marker #1 and #2, approved in 2015 for construction, each with a maximum heat input capacity of 4.20 MMBtu per hour and a maximum charred product throughput rate of 5,100 pounds per hour, with particulate emissions for each unit controlled by Quick Draft exhaust systems, identified as CD04 and CD12, and exhausting to Stacks S-4 and S-14, respectively.

(j) Two (2) natural gas-fired infrared conveying ovens, identified as Infrabaker (AFO) #3 and #4, each consisting of a grill and marker, approved in 2017 for construction, with a maximum cooked product throughput rate of 3,000 pounds per hour, each, and exhausting to Stacks S-25a & S-25b and S-26a & S-26b, respectively.

(k) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #5, approved in 2018 for construction, with a maximum heat input capacity of 7 MMBtu per hour, and a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD08, and exhausting to stack S-8.

(l) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #6, approved in 2018 for construction, with a maximum heat input capacity of 3.50 MMBtu per hour and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD10, and exhausting to stack S-10.

(m) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #3 and #4, approved in 2018 for construction, each with a maximum heat input capacity of 2 MMBtu per hour and each with a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust systems, identified as CD09, and exhausting to stack S-9.

(n) One (1) natural gas-fired impingement oven, identified as Impingement Oven #5, approved in 2018 for construction, with a maximum heat input capacity of 5 MMBtu per hour and a
maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(o) One (1) natural gas-fired char marker, identified as Char Marker #3, approved in 2015 for construction, with a maximum heat input capacity of 4.20 MMBtu per hour, and a maximum charred product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.

(p) One (1) electric infrared conveying oven, identified as Infrabaker #5, approved in 2018 for construction, with a maximum cooked product throughput rate of 4,200 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD07 and exhausting to stack S-07.

Natural Gas-Fired Combustion - Hot Water Heaters

(q) Four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-15a, S-15b, S-16a, and S-16b, respectively.

Under 40 CFR 60, Subpart Dc, Hot Water Heaters #1 through #4 are considered affected facilities.

<table>
<thead>
<tr>
<th>Emission Units and Pollution Control Equipment Removed From the Source</th>
</tr>
</thead>
</table>

The source has removed the following emission units:

(a) One (1) natural gas-fired char marker, identified as Infrabaker Char Marker #1, approved in 2015 for construction, with a maximum heat input capacity of 4.20 MMBtu per hour and a maximum charred product throughput rate of 4,200 pounds per hour, using no controls, and exhausting to Stack S-12.

(b) One (1) natural gas-fired flame searer, identified as Direct Flame Searer #1, approved in 2015 for construction, with a maximum heat input capacity of 4.00 MMBtu per hour and a maximum cooked product throughput rate of 6,000 pounds per hour, with particulate emissions controlled by Quick Draft exhaust systems, identified as CD03 and exhausting to Stack S-3.

(c) One (1) natural gas-fired char marker, identified as Char Marker #4, with a maximum heat input capacity of 4.20 MMBtu per hour, and a maximum charred product throughput rate of 4,200 pounds per hour, using no controls, and exhausting to stack S-28.

(d) Two (2) natural gas-fired hot water heaters, identified as Hot Water Heaters #5 and #6, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-17a and S-17b, respectively.

Under 40 CFR 60, Subpart Dc, Hot Water Heaters #5 and #6 are considered affected facilities.

(e) Natural Gas-Fired combustion sources with heat input less than ten (10) MMBtu/hr consisting of the following:

(1) Indirect-Fired Heating Sources:

(A) Two (2) natural gas-fired make-up air units, identified as Make-up Air Units #1 and #2, each with a maximum heat input capacity of 6.00 MMBtu per hour.

(B) Two (2) natural gas-fired make-up air units, identified as Make-up Air Units #7 and #8 each with a maximum heat input capacity of 0.37 MMBtu per hour.
Insignificant Activities

The source also consists of the following insignificant activities:

Natural Gas-Fired Combustion Units:

(a) Natural Gas-Fired combustion sources with heat input less than ten (10) MMBtu/hr consisting of the following:

(1) Indirect-Fired Heating Sources:

Boilers and Hot Water Heaters

(A) Two (2) natural gas-fired thermal boilers, identified as Thermal Boiler #1 and Thermal Boiler #2 (Hot Oil Heaters), each with a maximum heat input capacity of 4.00 MMBtu per hour and exhausting to stacks S-22 and S-23, respectively.

(B) Two (2) natural gas-fired boilers, identified as Boiler #1 and Boiler #2, each with a maximum heat input capacity of 6.00 MMBtu per hour and exhausting to stacks S-18 and S-19, respectively.

(C) Two (2) natural gas-fired boilers, identified as Boiler #3 and Boiler #4, approved in 2015 for construction, each with a maximum heat input capacity of 6.695 MMBtu per hour and exhausting to stacks S-20 and S-21, respectively.

(D) Two (2) natural gas-fired hot water heaters, identified as Hot Water Heaters #7 and #8, approved in 2015 for construction, each with a maximum heat input capacity of 1.00 MMBtu per hour and exhausting to stacks S-44 and S-45, respectively.

Make-Up Air Units

(E) Two (2) natural gas-fired make-up air units, identified as MAU-20 and MAU-21, each with a maximum heat input capacity of 2.40 MMBtu per hour.

(F) Two (2) natural gas-fired make-up air units, identified as MAU-22 and MAU-23, each with a maximum heat input capacity of 0.30 MMBtu per hour.

HVAC Units

(G) Two (2) natural gas-fired HVAC units, identified as HVAC #1 and #3, each with a maximum heat input capacity of 1.92 MMBtu per hour.

(H) One (1) natural gas-fired HVAC units, identified as HVAC #2, with a maximum heat input capacity of 0.96 MMBtu per hour.

(b) Combustion Engines - Activities associated with emergencies, including the following:

(1) One (1) natural gas-fired emergency generator, identified as Generator #1, installed in 2015 with a rating of 605 HP, manufactured after 2009.
Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

Cold Cleaner Degreasing Operations:

(c) One (1) vat washer, identified as Vat Washer, with a maximum throughput of 1,800 gallons of solvent per year, exhausting to stacks S-39a and S-39b, respectively.

(d) Two (2) parts washers, identified as Parts Washers #1 and #2, each with a maximum throughput of 420 gallons of solvent per year, exhausting inside the building.

Printers:

(f) Ten (10) Inkjet printers, identified as Inkjet Printers, with a maximum total usage of 180 gallons per year of make-up fluid and 45 gallons per year of ink, exhausting inside the building.

Electric Units:

(g) One (1) electric smoke generator, identified as Smoke Generator #1, with a maximum wood chip usage rate of 35 pounds per hour and a maximum throughput of 6,000 pounds per batch, and exhausting to a water bath.

Fugitive Emissions:

(h) Paved roads and parking lots.

Miscellaneous Insignificant Activities:

(i) Pump filtration

(j) Wastewater treatment

(k) One (1) evaporative cooling system

(l) Four (4) bulk sanitation chemical tanks, each with capacity of 1,500 gallons.

Emission Units and Pollution Control Equipment Constructed Under the Provisions of 326 IAC 2-1.1-3 (Exemptions)

As part of this permitting action, the source requested to add the following existing emission unit(s) constructed under the provisions of 326 IAC 2-1.1-3 (Exemptions):

(a) Three (3) direct natural gas-fired furnaces, identified as DGF-1 through DGF-3, permitted in 2019, each with a maximum heat input capacity of 1.30 MMBtu/hr.

(b) Six (6) indirect natural gas-fired furnaces, identified as IGF-1 through IGF-6, permitted in 2019, each with a maximum heat input capacity of 1.2 MMBtu/hr.

(c) Five (5) indirect natural gas-fired furnaces, identified as IGF-7 through IGF-11, permitted in 2019, each with a maximum heat input capacity of 1.16 MMBtu/hr.

(d) One (1) natural gas-fired make-up air unit, identified as MAU-1, permitted in 2019, with a maximum heat input capacity of 0.12 MMBtu per hour.
(e) Two (2) natural gas-fired make-up air units, identified as E-MAU-12 and E-MAU-13, permitted in 2019, each with a maximum heat input capacity of 0.16 MMBtu per hour.

(f) Two (2) natural gas-fired make-up air units, identified as E-MAU-14 and E-MAU-16, permitted in 2019, each with a maximum heat input capacity of 0.40 MMBtu per hour.

(g) One (1) natural gas-fired make-up air unit, identified as E-MAU-15, permitted in 2019, with a maximum heat input capacity of 0.23 MMBtu per hour.

(h) One (1) natural gas-fired make-up air unit, identified as E-MAU-17, permitted in 2019, with a maximum heat input capacity of 1.75 MMBtu per hour.

(i) One (1) natural gas-fired make-up air unit, identified as MAU-24, permitted in 2019, with a maximum heat input capacity of 2.57 MMBtu per hour.

(j) One (1) natural gas-fired make-up air unit, identified as MAU-25, permitted in 2019, with a maximum heat input capacity of 1.29 MMBtu per hour.

(k) Three (3) natural gas-fired make-up air units, identified as MAU-26, MAU-27 and MAU-28, permitted in 2019, each with a maximum heat input capacity of 1.73 MMBtu per hour.

(l) Two (2) natural gas-fired make-up air units, identified as MAU-29 and MAU-30, permitted in 2019, each with a maximum heat input capacity of 1.80 MMBtu per hour.

(m) Twelve (12) natural gas-fired heaters, identified as GUH-1, GUH-2, GUH-7, GUH-8, GUH-9, GUH-10, GUH-11, GUH-12, GUH-13, GUH-14, GUH-15, and GUH-16, permitted in 2019, each with a maximum heat input capacity of 0.29 MMBtu per hour.

(n) Seven (7) natural gas-fired heaters, identified as E-GUH-2, E-GUH-5, E-GUH-8, E-GUH-9, E-GUH-10, E-GUH-11, and E-GUH-12, permitted in 2019, each with a maximum heat input capacity of 0.28 MMBtu per hour.

(o) Five (5) natural gas-fired heaters, identified as GUH-3, GUH-4, GUH-17, GUH-18, and GHU-19, permitted in 2019, each with a maximum heat input capacity of 0.51 MMBtu per hour.

(p) Five (5) natural gas-fired heaters, identified as E-GUH-1, E-GUH-3, E-GUH-4, E-GUH-6, and E-GUH-7, permitted in 2019, each with a maximum heat input capacity of 0.13 MMBtu per hour.

(q) Three (3) natural gas-fired heaters, identified as GUH-5, GUH-6, and GUH-20, permitted in 2019, each with a maximum heat input capacity of 0.38 MMBtu per hour.

(r) Two (2) natural gas-fired heaters, identified as GUH-21 and GUH-22, permitted in 2019, each with a maximum heat input capacity of 0.19 MMBtu per hour.

(s) Two (2) natural gas-fired heaters, identified as GUH-23 and GUH-24, permitted in 2019, each with a maximum heat input capacity of 0.10 MMBtu per hour.

(t) One (1) natural gas fired emergency generator, identified as Generator #2, with a rating of 134 HP, manufactured in 2009, installed in 2019.

Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

(u) One (1) natural gas fired emergency generator, identified as Generator #3, with a rating of 302 HP, manufactured in 2009, installed in 2019.
Under 40 CFR 60, Subpart JJJJJ, Generator #3 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZZ, Generator #3 is considered a new affected facility.

The total potential to emit of the emission unit(s) is less than levels specified at 326 IAC 2-1.1-3(e)(1)(A) through (G) and the addition of the emission unit(s) did not require the source to transition to a higher operation permit level. Therefore, pursuant to 326 IAC 2-1.1-3(e), the modification approval requirements under 326 IAC 2-7-10.5, including the requirement to submit an application, do not apply to the emission unit(s). See Appendix A of this Technical Support Document for detailed emission calculations.

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

County Attainment Status

The source is located in Wayne County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective July 20, 2012, for the 2008 8-hour ozone standard.¹</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 15, 2015, for the 2012 annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Unclassifiable or attainment effective January 29, 2012, for the 2010 NO₂ standard.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011, for the 2008 lead standard.</td>
</tr>
</tbody>
</table>

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard, which was revoked effective June 15, 2005.

(a) Ozone Standards
Volatile organic compounds (VOC) and Nitrogen Oxides (NOₓ) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOₓ emissions are considered when evaluating the rule applicability relating to ozone. Wayne County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) PM₂.₅
Wayne County has been classified as attainment for PM₂.₅. Therefore, direct PM₂.₅, SO₂, and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants
Wayne County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.
Fugitive Emissions

Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of Utility Air Regulatory Group v. EPA, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Unrestricted Potential Emissions

This table reflects the unrestricted potential emissions of the source.

<table>
<thead>
<tr>
<th>Unrestricted Potential Emissions (ton/year)</th>
<th>PM1</th>
<th>PM10</th>
<th>PM2.5¹,²</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP³</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE of Entire Source Excluding Fugitive Emissions*</td>
<td>267.11</td>
<td>249.09</td>
<td>163.87</td>
<td>0.65</td>
<td>73.84</td>
<td>565.15</td>
<td>104.51</td>
<td>5.80</td>
<td>11.04</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

¹Under the Part 70 Permit program (40 CFR 70), PM10 and PM2.5, not particulate matter (PM), are each considered as a “regulated air pollutant.”
²PM2.5 listed is direct PM2.5.
³Single highest source-wide HAP = Naphthalene
*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

(a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of PM10, PM2.5, VOC, and CO is equal to or greater than one hundred (100) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.
(b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is less than ten (10) tons per year and the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is less than twenty-five (25) tons per year. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA).

<table>
<thead>
<tr>
<th>Part 70 Permit Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>This source is subject to the requirements of 326 IAC 2-7, because the source met the following:</td>
</tr>
<tr>
<td>(a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.</td>
</tr>
<tr>
<td>(b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of Proposed Modification to an Existing Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Office of Air Quality (OAQ) has reviewed an application, submitted by Sugar Creek Packing Co. on August 21, 2019, relating to the installation of new cooking equipment and reflecting the correct heat input capacity of two boilers. The source would also like modify Multipurpose Oven #5 and Impingement Ovens #3 and #4 to increase throughput from 4,200 pounds per hour to 6,600 pounds per hour each.</td>
</tr>
<tr>
<td>The following is a list of the new emission units and pollution control device(s):</td>
</tr>
<tr>
<td>(a) One (1) natural gas-fired impingement oven, identified as Impingement Oven #6, approved in 2019 for construction, with a maximum heat input capacity of 5 MMBtu/hr and a maximum cooked product throughput rate of 7,000 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust system, identified as CD11, and exhausting to stack S-11.</td>
</tr>
<tr>
<td>(b) One (1) electric infrared conveying oven, identified as Infrabaker #6, approved in 2019 for construction, with a maximum cooked product throughput rate of 1,500 pounds per hour, using no controls and exhausting to Stack S-12.</td>
</tr>
<tr>
<td>The following is a list of the modified emission units and pollution control device(s):</td>
</tr>
<tr>
<td>(a) One (1) natural gas-fired multipurpose oven, identified as Multipurpose Oven #5, constructed in 2018 and approved in 2019 for modification, with a maximum heat input capacity of 7 MMBtu per hour, and a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft, identified as CD08, and exhausting to stack S-8.</td>
</tr>
<tr>
<td>(b) Two (2) natural gas-fired impingement ovens, identified as Impingement Oven #3 and #4, constructed in 2018 and approved in 2019 for modification, each with a maximum heat input capacity of 2 MMBtu per hour and each with a maximum cooked product throughput rate of 6,600 pounds per hour, with particulate emissions controlled by a Quick Draft exhaust systems, identified as CD09, and exhausting to stack S-9.</td>
</tr>
<tr>
<td>The following is a list of the emission units that were previously permitted at the incorrect capacity:</td>
</tr>
<tr>
<td>(a) One (1) natural gas-fired boiler, identified as Boiler #5, constructed in 2017, with a maximum heat input capacity of 21 MMBtu per hour, and exhausting to stack S-24.</td>
</tr>
</tbody>
</table>

Under 40 CFR 60, Subpart Dc, Boiler #5 is considered an affected facility.
(b) One (1) natural gas-fired boiler, identified as Boiler #6, constructed in 2018, with a maximum heat input capacity of 24.8 MMBtu per hour, using no controls, and exhausting to stack S-27.

Under 40 CFR 60, Subpart Dc, Boiler #6 is considered an affected facility.

Permit Level Determination – Part 70 Modification to an Existing Source

Pursuant to 326 IAC 2-1.1-1(12), Potential to Emit is defined as “the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency.”

The following table is used to determine the appropriate permit level under 326 IAC 2-7-10.5. This table reflects the PTE before controls. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM_{10}</th>
<th>PM_{2.5}</th>
<th>SO_{2}</th>
<th>NO_{x}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>Total HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement Oven #6</td>
<td>22.82</td>
<td>20.63</td>
<td>12.45</td>
<td>0.01</td>
<td>2.15</td>
<td>48.25</td>
<td>1.80</td>
<td>0.49</td>
<td>0.78</td>
</tr>
<tr>
<td>Infrabaker #6</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>--</td>
<td>--</td>
<td>3.78</td>
<td>--</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Total PTE Before Controls of the New Emission Units:</td>
<td>24.97</td>
<td>22.78</td>
<td>14.60</td>
<td>0.01</td>
<td>2.15</td>
<td>52.03</td>
<td>1.80</td>
<td>0.53</td>
<td>0.84</td>
</tr>
</tbody>
</table>

1PM_{2.5} listed is direct PM_{2.5}.
2Single highest HAP = Napthalene

Appendix A of this TSD reflects the detailed potential emissions of the modification.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM_{10}</th>
<th>PM_{2.5}</th>
<th>SO_{2}</th>
<th>NO_{x}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>Total HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTE Before Mod (Impingement Oven #3)</td>
<td>13.68</td>
<td>12.35</td>
<td>7.43</td>
<td>0.01</td>
<td>0.86</td>
<td>28.93</td>
<td>0.72</td>
<td>0.29</td>
<td>0.466</td>
</tr>
<tr>
<td>PTE After Mod (Impingement Oven #3)</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>0.46</td>
<td>0.72</td>
</tr>
<tr>
<td>PTE Increase (Impingement Oven #3)</td>
<td>7.81</td>
<td>7.02</td>
<td>4.22</td>
<td>0</td>
<td>0</td>
<td>16.50</td>
<td>0</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>PTE Before Mod (Impingement Oven #4)</td>
<td>13.68</td>
<td>12.35</td>
<td>7.43</td>
<td>0.01</td>
<td>0.86</td>
<td>28.93</td>
<td>0.72</td>
<td>0.29</td>
<td>0.466</td>
</tr>
<tr>
<td>PTE After Mod (Impingement Oven #4)</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>0.46</td>
<td>0.72</td>
</tr>
<tr>
<td>PTE Increase (Impingement Oven #5)</td>
<td>7.81</td>
<td>7.02</td>
<td>4.22</td>
<td>0</td>
<td>0</td>
<td>16.50</td>
<td>0</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>PTE Before Mod (Multipurpose Oven #5)</td>
<td>13.73</td>
<td>12.51</td>
<td>7.60</td>
<td>0.02</td>
<td>3.01</td>
<td>29.05</td>
<td>2.52</td>
<td>0.29</td>
<td>0.507</td>
</tr>
<tr>
<td>PTE After Mod (Multipurpose Oven #5)</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>45.55</td>
<td>2.52</td>
<td>0.46</td>
<td>0.757</td>
</tr>
</tbody>
</table>
Appendix A of this TSD reflects the detailed potential emissions of the modification.

PTE Increases Due to the Modification (ton/year)

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>SO\textsubscript{2}</th>
<th>NO\textsubscript{x}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP2</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total PTE Before</td>
<td>24.97</td>
<td>22.78</td>
<td>14.60</td>
<td>0.01</td>
<td>2.15</td>
<td>52.03</td>
<td>1.80</td>
<td>0.53</td>
<td>0.84</td>
</tr>
<tr>
<td>Controls of the New</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PTE Increase</td>
<td>23.44</td>
<td>21.05</td>
<td>12.64</td>
<td>0</td>
<td>0</td>
<td>49.51</td>
<td>0</td>
<td>0.51</td>
<td>0.75</td>
</tr>
<tr>
<td>of the Modified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit(s)/Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PTE of the</td>
<td>48.41</td>
<td>43.83</td>
<td>27.24</td>
<td>0.01</td>
<td>2.15</td>
<td>101.54</td>
<td>1.80</td>
<td>1.04</td>
<td>1.59</td>
</tr>
<tr>
<td>Modification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1PM\textsubscript{2.5} listed is direct PM\textsubscript{2.5}.

2Single highest HAP.

Appendix A of this TSD reflects the detailed potential emissions of the modification.

(a) Approval to Construct

Pursuant to 326 IAC 2-7-10.5(g)(4), a Significant Source Modification is required because this modification has the potential to emit VOC at greater than or equal to twenty-five (25) tons per year.

(b) Approval to Operate

Pursuant to 326 IAC 2-7-12(d)(1), this change to the permit is being made through a Significant Permit Modification because this modification does not qualify as a Minor Permit Modification or as an Administrative Amendment. This modification requires a case-by-case determination of an emission limitation.

Permit Level Determination – PSD

The table below summarizes the potential to emit of the modification, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of the Part 70 source and/or permit modification, and only to the extent that the effect of the control equipment is made practically enforceable in the permit. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.
<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>SO\textsubscript{2}</th>
<th>NO\textsubscript{X}</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement Oven #6</td>
<td>22.82</td>
<td>20.63</td>
<td>12.45</td>
<td>0.01</td>
<td>2.15</td>
<td>24.9</td>
<td>1.80</td>
</tr>
<tr>
<td>Infrabaker #6</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>--</td>
<td>--</td>
<td>3.78</td>
<td>--</td>
</tr>
<tr>
<td>Impingement Oven #3</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
</tr>
<tr>
<td>Impingement Oven #4</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
</tr>
<tr>
<td>Multipurpose Oven #5</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>2.52</td>
</tr>
<tr>
<td>Total for Modification</td>
<td>89.50</td>
<td>81.04</td>
<td>49.69</td>
<td>0.04</td>
<td>6.87</td>
<td>103.38</td>
<td>5.77</td>
</tr>
</tbody>
</table>

PSD Major Source Thresholds: 250 250 250 250 250 250 250

(a) This modification to an existing minor PSD stationary source is not major because the emissions increase of each PSD regulated pollutant is less than the PSD major source threshold. Therefore, pursuant to 326 IAC 2-2, the PSD requirements do not apply.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM1</th>
<th>PM\textsubscript{10}1</th>
<th>PM\textsubscript{2.5}1,2</th>
<th>SO\textsubscript{2}</th>
<th>NO\textsubscript{X}</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP3</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement Oven #6</td>
<td>22.82</td>
<td>20.63</td>
<td>12.45</td>
<td>0.01</td>
<td>2.15</td>
<td>24.9</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #6</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>--</td>
<td>--</td>
<td>3.78</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impingement Oven #3</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impingement Oven #4</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipurpose Oven #5</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for Modification</td>
<td>89.50</td>
<td>81.04</td>
<td>49.69</td>
<td>0.04</td>
<td>6.87</td>
<td>103.38</td>
<td>5.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1PM\textsubscript{2.5} listed is direct PM\textsubscript{2.5}.

Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)

- Total PTE of Entire Source Excluding Fugitive Emissions*: 106.70
- Title V Major Source Thresholds: NA 100 100 100 100 100 10 25
- PSD Major Source Thresholds: 250 250 250 250 250 250 NA NA

*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

The source opted to take limit(s) in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable to this source. See Technical Support Document (TSD) State Rule Applicability - Entire Source section, 326 IAC 2-2 (PSD), for more information regarding the limit(s).

(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).
(b) This source is not a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) The four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, and the two (2) natural gas-fired boilers, identified as Boiler #5 and #6, are subject to the New Source Performance Standards for Small Industrial-Commercial-Institutional Steam Generating Units 40 CFR 60, Subpart Dc and 326 IAC 12, because each of the units were constructed after June 9, 1989 and each has a heat input capacity less than 100 MMBtu/hr but greater than 10 MMBtu/hr. As defined in §60.41c Definitions, a steam generating unit is a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. The units subject to this rule include the following:

(1) Four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, approved in 2015 for construction, each with a maximum heat input capacity of 12.00 MMBtu per hour and exhausting to stacks S-15a, S-15b, S-16a, and S-16b, respectively.

Under 40 CFR 60, Subpart Dc, Hot Water Heaters #1 through #4 are considered affected facilities.

(2) One (1) natural gas-fired boiler, identified as Boiler #5, with a maximum heat input capacity of 16.8 MMBtu per hour, and exhausting to stack S-24.

Under 40 CFR 60, Subpart Dc, Boiler #5 is considered an affected facility.

(3) One (1) natural gas-fired boiler, identified as Boiler #6, approved in 2018 for construction, with a maximum heat input capacity of 16.8 MMBtu per hour, using no controls, and exhausting to stack S-27.

Under 40 CFR 60, Subpart Dc, Boiler #6 is considered an affected facility.

The four (4) natural gas-fired hot water heaters, identified as Hot Water Heaters #1 through #4, and Boiler #6, are subject to the following portions of 40 CFR 60, Subpart Dc:

(1) 40 CFR 60.40c (a) and (b);
(2) 40 CFR 60.41c;
(3) 40 CFR 60.48c (a), (g), and (i).

The natural gas-fired boiler, identified as Boiler #5, is subject to the following portions of 40 CFR 60, Subpart Dc:

(1) 40 CFR 60.40c
(2) 40 CFR 60.41c
(3) 40 CFR 60.48c(a)(1), (a)(3), (g)(2), (i), (j)

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the units except as otherwise specified in 40 CFR 60, Subpart Dc.

(b) The requirements of the New Source Performance Standard for Small Industrial-Commercial-Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12, are not included
in the permit for the thermal boilers, identified as Thermal Boiler #1 and Thermal Boiler #2, or
the natural gas-fired boilers, identified as Boiler #1 and Boiler #2, or the hot water heaters,
identified as Hot Water Heaters #7 and #8, because each of these units has a heat input
capacity of less than ten (10) MMBtu per hour.

(c) The requirements of the New Source Performance Standard for Small Industrial-Commercial-
Institutional Steam Generating Units, 40 CFR 60, Subpart Dc, and 326 IAC 12, are not included
in the permit for the Multipurpose Ovens #1 thru #4, Impingement Ovens #1 thru #6, Fryer #1,
Char Markers #1 thru #3, all Make-up Air Units, HVAC #1, HVAC #2, and HVAC #3, since each
of these units is not a steam generating unit as defined in the definitions under Section 60.41c.

(d) The emergency generators, identified as Generators #1, #2, and #3, are subject to the New
Source Performance Standards for Stationary Spark Ignition Internal Combustion Engines, 40
CFR 60, Subpart JJJJ and 326 IAC 12, because the generators meets the definition of
stationary spark ignition internal combustion engine as defined in 40 CFR 60.4248 and were
constructed after June 12, 2006. The units subject to this rule include the following:

(1) One (1) natural gas-fired emergency generator, identified as Generator #1, with a rating
of 605 HP, manufactured after 2009, installed in 2015.
Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

(2) One (1) natural gas fired emergency generator, identified as Generator #2, with a rating
Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

(3) One (1) natural gas fired emergency generator, identified as Generator #3, with a rating
Under 40 CFR 60, Subpart JJJJ, Generator #3 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #3 is considered a new affected facility.

Generator #1 is subject to the following portions of Subpart JJJJ.

(1) 40 CFR Part 60.4230 (a)(4)(iv),(c) and (e)
(2) 40 CFR Part 60.4233 (e)
(3) 40 CFR Part 60.4234
(4) 40 CFR Part 60.4236 (a)
(5) 40 CFR Part 60.4237 (a)
(6) 40 CFR Part 60.4243 (b), (d) and (e)
(7) 40 CFR Part 60.4245 (a), (b) and (c)
(8) 40 CFR Part 60.4246
(9) 40 CFR Part 60.4248
(10) Table 1

Generators #2 and #3 are subject to the following portions of Subpart JJJJ.

(1) 40 CFR Part 60.4230 (a)(4)(iv),(c) and (e)
(2) 40 CFR Part 60.4233 (e)
(3) 40 CFR Part 60.4234
(4) 40 CFR Part 60.4236 (c)
(5) 40 CFR Part 60.4237 (b)
(6) 40 CFR Part 60.4243 (b), (d) and (e)
(7) 40 CFR Part 60.4245 (a) and (b)
(8) 40 CFR Part 60.4246
(9) 40 CFR Part 60.4248

The requirements of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated as 326 IAC 12-1, apply to the generators except as otherwise specified in 40 CFR 60, Subpart JJJJ.

(e) The requirements of the New Source Performance Standard for Stationary Compression Ignition Internal Combustion Engines, 40 CFR 60, Subpart III and 326 IAC 12, are not included in the permit for the emergency generators, identified as Generators #1, #2, and #3, because the units do not meet the definition of a stationary compression ignition internal combustion engine as defined in 40 CFR 60.4219. The unit is stationary spark ignition (SI) internal combustion engine (ICE) and therefore not covered under this subpart.

(f) The requirements of the New Source Performance Standard for Stationary Combustion Turbines, 40 CFR 60, Subpart KKKK and 326 IAC 12, are not included in the permit for the emergency generator, identified as Generator #1, because the generator does not meet the definition of a stationary combustion turbine as defined in 40 CFR 60.4420. The unit is a spark ignition (SI) internal combustion engine (ICE) and therefore not covered under this subpart.

(g) The requirements of the New Source Performance Standard for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced after July 23, 1984, 40 CFR 60, Subpart Kb and 326 IAC 12, are not included in the permit for the four (4) bulk sanitation chemical tanks, since each has a capacity of less than 75 cubic meter (19,813 gallons). Each of the four (4) bulk sanitation chemical tanks has a maximum storage capacity of 1,500 gallons.

(h) The requirements of the New Source Performance Standard for Graphic Arts Industry: Publication Rotogravure Printing, 40 CFR 60, Subpart QQ and 326 IAC 12, are not included in the permit for the ten (10) inkjet printers, identified as Inkjet Printers, because these units are not rotogravure printing presses.

(i) There are no other New Source Performance Standards (NSPS) (326 IAC 12 and 40 CFR Part 60) included in the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(a) The emergency generators, identified as Generators #1, #2, and #3, are subject to the National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines, 40 CFR 63, Subpart ZZZZ, which is incorporated by reference as 326 IAC 20-82, because the generators are considered new stationary reciprocating internal combustion engine (RICE) (construction commenced on or after June 12, 2006) at an area source of hazardous air pollutants (HAP). The units subject to this rule include the following:

(1) One (1) natural gas-fired emergency generator, identified as Generator #1, with a rating of 605 HP, manufactured after 2009, installed in 2015.

Under 40 CFR 60, Subpart JJJJ, Generator #1 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #1 is considered a new affected facility.

(2) One (1) natural gas fired emergency generator, identified as Generator #2, with a rating of 134 HP, manufactured in 2009, installed in 2019.

Under 40 CFR 60, Subpart JJJJ, Generator #2 is considered an affected facility.
Under 40 CFR 63, Subpart ZZZZ, Generator #2 is considered a new affected facility.

(3) One (1) natural gas fired emergency generator, identified as Generator #3, with a rating of 302 HP, manufactured in 2009, installed in 2019.
Under 40 CFR 60, Subpart JJJJ, Generator #3 is considered an affected facility. Under 40 CFR 63, Subpart ZZZZ, Generator #3 is considered a new affected facility.

Generators #1, #2, and #3 are subject to the following portions of Subpart ZZZZ:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590 (a)(2)(iii),(c)(1)
(4) 40 CFR 63.6595(a)(7)
(5) 40 CFR 63.6665
(6) 40 CFR 63.6670
(7) 40 CFR 63.6675

The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to Generators #1, #2, and #3 except as otherwise specified in 40 CFR 63, Subpart ZZZZ.

(b) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters 40 CFR 63, Subpart DDDDD and 326 IAC 20-95 are not included in the permit for the natural gas-fired boilers, ovens, and hot water heaters since these boilers, ovens, and hot water heaters are not located at or part of a major source of HAPs.

(c) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial, Commercial and Institutional Boilers Area Sources, 40 CFR 63, Subpart JJJJJJJ, which is incorporated by reference as 326 IAC 20, are not included in the permit for Boilers #1 thru Boilers #6, and Thermal Boilers #1 and #2, since gas-fired boilers as defined in 40 CFR 63.11237, are specifically exempted from this rule, as indicated in 40 CFR 63.11195(e).

(d) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Printing and Publishing Industry, 40 CFR 63, Subpart KK, which is incorporated by reference as 326 IAC 20, are not included in the permit for the ten (10) Inkjet printers, identified as Inkjet Printers, since these units are not a rotogravure or wide-web flexographic printing press and do not operate at a major source of HAP.

(e) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:

(1) has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;

(2) is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and

(3) uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

(b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.
The following table is used to identify the applicability of CAM to each emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:

<table>
<thead>
<tr>
<th>Emission Unit/Pollutant</th>
<th>Control Device</th>
<th>Applicable Emission Limitation</th>
<th>Uncontrolled PTE (tons/year)</th>
<th>Controlled PTE (tons/year)</th>
<th>CAM Applicable (Y/N)</th>
<th>Large Unit (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrabaker #1/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Infrabaker #5/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #1/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #2/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #3/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #4/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #5/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Multipurpose Oven #6/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #1/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #2/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #3/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #4/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #5/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Impingement #6/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Char Marker #1/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Char Marker #2/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Char Marker #3/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
<tr>
<td>Fryer #1/PM*</td>
<td>QD</td>
<td>326 IAC 6.5</td>
<td><100</td>
<td>-</td>
<td>N ¹</td>
<td>-</td>
</tr>
</tbody>
</table>

Uncontrolled PTE (tpy) and controlled PTE (tpy) are evaluated against the Major Source Threshold for each pollutant. Major Source Threshold for criteria pollutants (PM10, PM2.5, SO2, NOX, VOC and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy.

Under the Part 70 Permit program (40 CFR 70), PM is not a regulated pollutant.

PM* For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.

N ¹ CAM does not apply for PM* because the uncontrolled PTE of PM* is less than the major source threshold.

Controls: BH = Baghouse, C = Cyclone, DC = Dust Collection System, QD = Quick Draft Exhaust System

Emission units without air pollution controls are not subject to CAM. Therefore, they are not listed.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable to any of the new, modified or existing units as part of this Part 70 permit renewal.

State Rule Applicability - Entire Source

State rule applicability for this source has been reviewed as follows:

326 IAC 2-2 (PSD) and 326 IAC 2-3 (Emission Offset)

PSD and Emission Offset applicability is discussed under the Potential to Emit After Issuance section of this document.

PSD Minor Source Limits

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The total amount of cooked product shall not exceed 100,000 tons per twelve (12) consecutive month period, for multipurpose ovens #1 through #6 and impingement ovens #1 through #6, combined.
(b) The PM emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 1.49 pounds per ton of cooked product.

(c) The PM10 emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 1.34 pounds per ton of cooked product.

(d) The VOC emissions from multipurpose ovens #1 through #6 and impingement ovens #1 through #6, shall not exceed 3.14 pounds per ton of cooked product.

Compliance with these limits, combined with the potential to emit PM, PM10, and VOC from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM10, and VOC to less than two-hundred fifty (250) tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of this source will emit less than ten (10) tons per year for a single HAP and less than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 does not apply.

326 IAC 2-6 (Emission Reporting)
This source, not located in Lake, Porter, or LaPorte County, is subject to 326 IAC 2-6 (Emission Reporting) because it is required to have an operating permit pursuant to 326 IAC 2-7 (Part 70). The potential to emit of VOC and PM10 is less than 250 tons per year; and the potential to emit of CO, NOx, and SO2 is less than 2,500 tons per year. Therefore, pursuant to 326 IAC 2-6-3(a)(2), triennial reporting is required. An emission statement shall be submitted in accordance with the compliance schedule in 326 IAC 2-6-3 and every three (3) years thereafter. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

326 IAC 2-7-6(5) (Annual Compliance Certification)
The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)
This source is subject to the opacity limitations specified in 326 IAC 5-1-2(1).

326 IAC 6-4 (Fugitive Dust Emissions Limitations)
Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
This source is not subject to the requirements of 326 IAC 6-5, because the source has potential fugitive particulate emissions of less than twenty-five (25) tons per year.
326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
This source (located in Wayne County) is located in one of the counties listed in 326 IAC 6.5, but is not one of the sources specifically listed in 326 IAC 6.5-2 through 326 IAC 6.5-10. The source-wide PTE of PM is 10 tons per year or more. Therefore, this source is subject to the requirements of 326 IAC 6.5-1-2 because the source-wide actual emissions of PM can be 10 tons per year or more.

326 IAC 6.8 (Particulate Matter Limitations for Lake County)
Pursuant to 326 IAC 6.8-1-1(a), this source (located in Wayne County) is not subject to the requirements of 326 IAC 6.8 because it is not located in Lake County.

326 IAC 6.8 (Lake County: Fugitive Particulate Matter)
Pursuant to 326 IAC 6.8-10-1, this source (located in Wayne County) is not subject to the requirements of 326 IAC 6.8-10 because it is not located in Lake County.

State Rule Applicability – Individual Facilities

State rule applicability has been reviewed as follows:

Infrabakers

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
Pursuant to 326 IAC 6-2-1, the ovens (Multipurpose Ovens #1 - #6), fryers (Fryer #1, Blentech #1), and char markers (Char Marker #1-#3) are not subject to the requirements of 326 IAC 6-2-4, since they are not sources of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(c)(3), emissions units subject to as stringent or more stringent operations under 326 IAC 6.5 are not subject to the PM emission limitations under 326 IAC 6-3-2. The ovens (Infrabakers #1-#6, Multipurpose Ovens #1-#6, Impingement Ovens #1-#6), fryers (Fryer #1, Blentech #1), and char markers (Char Marker #1-#3), are subject to a more stringent limitation under 326 IAC 6.5. Therefore, 326 IAC 6-3-2 does not apply.

326 IAC 6.5 (PM Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the ovens (Infrabakers #1-#6, Multipurpose Ovens #1-#6, Impingement Ovens #1-#6), fryers (Fryer #1, Blentech #1), and char markers (Char Marker #1-#3) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The infrared conveying ovens (Infrabaker #1-#6) are not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from each infrared conveying oven is less than twenty-five (25) tons per year.

Multipurpose Ovens

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
Pursuant to 326 IAC 6-2-1, the ovens (Multipurpose Ovens #1 - #6) are not subject to the requirements of 326 IAC 6-2-4, since they are not sources of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(c)(3), emissions units subject to as stringent or more stringent operations under 326 IAC 6.5 are not subject to the PM emission limitations under 326 IAC 6-3-2. The ovens (Multipurpose Ovens #1-#6) are subject to a more stringent limitation under 326 IAC 6.5. Therefore, 326 IAC 6-3-2 does not apply.

326 IAC 6.5 PM Limitations Except Lake County
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the ovens (Multipurpose Ovens #1-#6) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The Multipurpose Ovens #1-#6 were constructed after January 1, 1980, and their unlimited VOC potential emissions are each equal to or greater than twenty-five (25) tons per year and the ovens are not regulated by other rules in 326 IAC 8. The source has opted to limit the potential to emit VOC from each of the ovens to less than twenty-five (25) tons per twelve (12) consecutive month period in order to render the requirements of 326 IAC 8-1-6 not applicable. Therefore, the Multipurpose Ovens #1-#6 are not subject to the requirements of 326 IAC 8-1-6.

In order to render the requirements of 326 IAC 8-1-6 not applicable, the Permittee shall comply with the following:

1. The VOC emissions from Multipurpose Oven #1 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.
2. The VOC emissions from Multipurpose Oven #2 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.
3. The VOC emissions from Multipurpose Oven #3 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.
4. The VOC emissions from Multipurpose Oven #4 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.
5. The VOC emissions from Multipurpose Oven #5 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.
6. The VOC emissions from Multipurpose Oven #6 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

Impingement Ovens

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(c)(3), emissions units subject to as stringent or more stringent operations under 326 IAC 6.5 are not subject to the PM emission limitations under 326 IAC 6-3-2. The Impingement Ovens #1-#6 are subject to a more stringent limitation under 326 IAC 6.5. Therefore, 326 IAC 6-3-2 does not apply.

326 IAC 6.5 PM Limitations Except Lake County
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from the ovens (Impingement Ovens #1-#6) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The Impingement Ovens #1-#6 were constructed after January 1, 1980, and their unlimited VOC potential emissions are each equal to or greater than twenty-five (25) tons per year and the ovens are not regulated by other rules in 326 IAC 8. The source has opted to limit the potential to emit VOC from each of the ovens to less than twenty-five (25) tons per twelve (12) consecutive month period in order to render the requirements of 326 IAC 8-1-6 not applicable. Therefore, the Impingement Ovens #1-#6 are not subject to the requirements of 326 IAC 8-1-6.

In order to render the requirements of 326 IAC 8-1-6 not applicable, the Permittee shall comply with the following:
1. The VOC emissions from Impingement Oven #1 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

2. The VOC emissions from Impingement Oven #2 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

3. The VOC emissions from Impingement Oven #3 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

4. The VOC emissions from Impingement Oven #4 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

5. The VOC emissions from Impingement Oven #5 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

6. The VOC emissions from Impingement Oven #6 shall not exceed 24.9 tons per twelve consecutive month period, with compliance determined at the end of each month.

Char Markers

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)

According to 326 IAC 6-2-1, the char markers (Char Marker #1-#3) are not subject to the requirements of 326 IAC 6-2-4, since they are not sources of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-2, the requirements of 326 IAC 6-3-2 are not applicable to the char markers (Char Marker #1-#3), since liquid and gaseous fuels and combustion air are not considered as part of the process weight.

326 IAC 6.5 PM Limitations Except Lake County

Under 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the char markers (Char Marker #1-#3) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The char markers (Char Marker #1-#3) are not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from each char marker is less than twenty-five (25) tons per year.

Fryer

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)

Pursuant to 326 IAC 6-2-1, the fryer (Fryer #1) is not subject to the requirements of 326 IAC 6-2-4, since it is not a source of indirect heating.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)

Pursuant to 326 IAC 6-3-2, emissions units subject to as stringent or more stringent operations under 326 IAC 6.5 are not subject to the PM emission limitations under 326 IAC 6-3-2. The fryer (Fryer #1), is subject to a more stringent limitation under 326 IAC 6.5. Therefore, 326 IAC 6-3-2 does not apply.

326 IAC 6.5 PM Limitations Except Lake County

Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from the fryer (Fryer #1) shall not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)

The fryer (Fryer #1) is not subject to the requirements of 326 IAC 8-1-6, since the unlimited VOC potential emissions from the fryer is less than twenty-five (25) tons per year.
Hot Water Heaters

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
The particulate matter (PM) emissions from the natural gas-fired hot water heaters (Hot Water Heater #1-#4 and Hot Water Heater #7 and #8) are not subject to 326 IAC 6-2 because they are subject to a more stringent limitation under 326 IAC 6.5.

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 1-2-59, the requirements of 326 IAC 6-3-2 are not applicable to the hot water heaters (Hot Water Heater #1-#4 and Hot Water Heater #7 and #8), since liquid and gaseous fuels and combustion air are not considered as part of the process weight.

326 IAC 6.5 PM Limitations Except Lake County
Pursuant to 326 IAC 6.5-1-2(b)(3), the particulate matter emissions from each of the hot water heaters (Hot Water Heater #1-#4 and Hot Water Heater #7 and #8) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

Boilers

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
The particulate matter (PM) emissions from the natural gas-fired boilers (Thermal Boiler #1 and Boilers #1-#6) are not subject to 326 IAC 6-2 because they are subject to a more stringent limitation under 326 IAC 6.5.

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
The natural gas-fired boilers are each not subject to the requirements of 326 IAC 6-3, because combustion for indirect heating is an exempt process under 326 IAC 6-3-1(b)(1).

326 IAC 6.5 (PM Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a)(2), this source is subject to the requirements of 326 IAC 6.5-1-2, because this source is located in Wayne County, is not specifically listed in 326 IAC 6.5-2 through 326 IAC 6.5-10, and has potential particulate matter emissions greater than 10 tons per year. Pursuant to 326 IAC 6.5-1-2(b)(3), particulate matter (PM) emissions from the natural gas-fired boilers (Boiler #1, Boiler #2, Boiler #3, Boiler #4, Boiler #5, and Boiler #6) and the thermal boilers (Thermal Boiler #1 and Thermal Boiler #2) shall not exceed one-hundredth (0.01) grain per dry standard cubic foot (dscf).

Make-Up Air Units

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
The particulate matter (PM) emissions from each of the natural gas-fired make-up air units are not subject to 326 IAC 6-2 because they are subject to a more stringent limitation under 326 IAC 6.5.

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
The natural gas-fired make-up air units are each not subject to the requirements of 326 IAC 6-3, because combustion for indirect heating is an exempt process under 326 IAC 6-3-1(b)(1).

326 IAC 6.5 PM Limitations Except Lake County
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the make-up air units shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

HVAC Units

326 IAC 6-2 (Particulate Emission Limitations for Sources of Indirect Heating)
326 IAC 6-2 does not apply to the HVAC units because they are direct fired units.
326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(b)(1), the HVAC units are each not subject to the requirements of 326 IAC 6-3, since they each are not a manufacturing process.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from the HVAC units (HVAC #1, HVAC #2, and HVAC #3) shall each not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

Heaters

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
The particulate matter (PM) emissions from each of the natural gas-fired heaters are not subject to 326 IAC 6-2 because they are subject to a more stringent limitation under 326 IAC 6.5.

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
The natural gas-fired heaters are each not subject to the requirements of 326 IAC 6-3, because combustion for indirect heating is an exempt process under 326 IAC 6-3-1(b)(1).

326 IAC 6.5 PM Limitations Except Lake County
Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the heaters shall not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

Furnaces

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
The particulate matter (PM) emissions from the indirect natural gas-fired furnaces (IGF-1 through IGF-11) are not subject to 326 IAC 6-2 because they are subject to a more stringent limitation under 326 IAC 6.5.

326 IAC 6-2-4 (Particulate Matter Emission Limitations for Sources of Indirect Heating)
Pursuant to 326 IAC 6-2-1, the direct natural gas-fired furnaces (DGF-1 through DGF-3) are not subject to the requirements of 326 IAC 6-2-4, since they are not sources of indirect heating.

326 IAC 6-3 (Particulate Emission Limitations for Manufacturing Processes)
The indirect natural gas-fired furnaces (IGF-1 through IGF-11) are each not subject to the requirements of 326 IAC 6-3, because combustion for indirect heating is an exempt process under 326 IAC 6-3-1(b)(1).

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 1-2-59, the requirements of 326 IAC 6-3-2 are not applicable to the direct natural gas-fired furnaces (DGF-1 through DGF-3), since liquid and gaseous fuels and combustion air are not considered as part of the process weight.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a)(2), this source is subject to the requirements of 326 IAC 6.5-1-2, because this source is located in Wayne County, is not specifically listed in 326 IAC 6.5-2 through 326 IAC 6.5-10, and has potential particulate matter emissions greater than 10 tons per year. Pursuant to 326 IAC 6.5-1-2(a), particulate matter (PM) emissions from the natural gas-fired furnaces shall not exceed seven-hundredths (0.07) gram per dry standard cubic meter (g/dscm) (three-hundredths (0.03) grain per dry standard cubic foot (dscf)).

Inkjet Printers

326 IAC 8-2-5 (Paper Coating Operations)
The inkjet printers are not subject to the requirements of 326 IAC 8-2-5, since they are not web coating or saturation processes.
326 IAC 8-5-5 (Graphic Arts Operations)
The inkjet printers are not subject to the requirements of 326 IAC 8-5-5 because the printers are not packaging rotogravure, publishing rotogravure or flexographic printing facilities and each of the package printers has the potential to emit VOC less than one hundred (100) tons per year.

Cleaners and Solvents - Degreasing Operation (Parts Washer, Only):

326 IAC 8-3-2 (Cold Cleaner Degreaser Control and Equipment Operating Requirements)
Pursuant to 326 IAC 8-3-1 (a)(1) and (c)(2)(A)(ii), the cold cleaner degreaser operation at this source is subject to the requirements of 326 IAC 8-3-2(a) and (b) (Cold Cleaner Degreaser Control and Equipment Operating Requirements), since the cold cleaner degreaser operates without remote solvent reservoirs and was constructed after July 1, 1990.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source's failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Determination Requirements applicable to this source are as follows:

Compliance with the 326 IAC 8-1-6 limit for the Multipurpose Ovens #1 through #6 and Impingement Ovens #1 through #6 shall be determined using the following equation for each oven:

\[
VOC = \sum_{n=1}^{12} \left(\frac{EF(CP) \cdot A(CP)}{2000 \text{ lb/ton}} \right) + \sum_{n=1}^{12} \left(\frac{EF(NG) \cdot A(NG)}{2000 \text{ lb/ton}} \right)
\]

Where:
- \(VOC\) = The VOC emissions from the respective oven (tons per month);
- \(EF(CP)\) = The VOC emission factor (lb of VOC/ton of cooked product). This value shall be 3.14, or a value as determined from the most recent IDEM approved stack test;
- \(A(CP)\) = The combined amount of cooked product produced by Multipurpose Ovens #1, #2, #3, #4, #5, and #6, and Impingement Ovens #1, #2, #3, #4, #5, and #6, during month \(m\) (tons/month);
- \(EF(NG)\) = The VOC emission factor for natural gas combustion (5.5 lb/MMcf);
- \(A(NG)\) = The natural gas throughput of Multipurpose Ovens #1, #2, #3, #4, #5, and #6 (MMcf/month); and
- \(n\) = Each calendar month within the twelve (12) consecutive month period.
Testing Requirements:

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>Timeframe for Testing or Date of Initial Valid Demonstration</th>
<th>Pollutant/Parameter</th>
<th>Frequency of Testing</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any one (1) of the following: Multipurpose Oven #1, Multipurpose Oven #2, Multipurpose Oven #3, Multipurpose Oven #4, Impingement Oven #1, Impingement Oven #2, Impingement Oven #6</td>
<td>None</td>
<td>April 3, 2019 (Multipurpose Oven #4)</td>
<td>VOC</td>
<td>Every 5 years</td>
<td>326 IAC 2-2, 326 IAC 8-1-6</td>
</tr>
<tr>
<td>Any one (1) of the following: Multipurpose Oven #5, Multipurpose Oven #6, Impingement Oven #3, Impingement Oven #4, and/or Impingement Oven #5</td>
<td>None</td>
<td>180 days after start-up</td>
<td>VOC</td>
<td>Every 5 years</td>
<td>326 IAC 2-2, 326 IAC 8-1-6</td>
</tr>
</tbody>
</table>

(b) The Compliance Monitoring Requirements applicable to this source are as follows:

Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.

The following changes were made to conditions contained previously issued permits/approvals (these changes may include Title I changes):

1. IDEM OAQ updated the emission unit description in Sections A.2 and A.3 to add the new emission units and to address the removal of several emission units.

2. IDEM OAQ updated the emission unit description in Section D.1.

3. IDEM OAQ added new applicable requirements to Section D.1. including, but not limited to, PM and PM10 PSD Minor Limits, VOC Emission Limitations 326 IAC 8-1-6, and Particulate Emission Limitations 326 IAC 6.5.
(4) IDEM OAQ has removed the non-applicable Particulate Emission Limitations, 326 IAC 6-2-4 and 326 IAC 6-3-2, in Section D.1 and included the applicable Particulate Emission Limitations of 326 IAC 6.5

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on August 20, 2019. Additional information was received on August 21, 2019.

The construction of this proposed modification shall be subject to the conditions of the attached proposed Part 70 Significant Source Modification No. 177-41830-00121.

The operation of this stationary prepared meat facility shall be subject to the conditions of the attached proposed Part 70 Operating Permit Renewal No. T177-41827-00121.

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal and Significant Source Modification be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Tamera Wessel, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 234-8530 or (800) 451-6027, and ask for Tamera Wessel.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
Uncontrolled Potential to Emit (PTE)

Criteria Pollutants

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM (tons/yr)</th>
<th>PM10 (tons/yr)</th>
<th>PM2.5 (tons/yr)</th>
<th>SO2 (tons/yr)</th>
<th>NOx (tons/yr)</th>
<th>VOC (tons/yr)</th>
<th>CO (tons/yr)</th>
<th>Total HAps</th>
<th>Highest Single HAP[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #1</td>
<td>6.20</td>
<td>6.02</td>
<td>6.02</td>
<td>--</td>
<td>--</td>
<td>10.59</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #2</td>
<td>3.48</td>
<td>3.48</td>
<td>3.48</td>
<td>--</td>
<td>--</td>
<td>6.11</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #3 (API)</td>
<td>4.31</td>
<td>4.35</td>
<td>4.35</td>
<td>3.63E-03</td>
<td>0.61</td>
<td>7.59</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #4 (API)</td>
<td>4.31</td>
<td>4.35</td>
<td>4.35</td>
<td>3.63E-03</td>
<td>0.61</td>
<td>7.59</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #5</td>
<td>6.02</td>
<td>6.02</td>
<td>6.02</td>
<td>--</td>
<td>--</td>
<td>10.59</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #6</td>
<td>2.15</td>
<td>2.15</td>
<td>2.15</td>
<td>--</td>
<td>--</td>
<td>3.78</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipurpose Oven #1</td>
<td>17.21</td>
<td>15.54</td>
<td>9.37</td>
<td>0.01</td>
<td>1.37</td>
<td>36.38</td>
<td>1.15</td>
<td>8.93</td>
<td>5.60</td>
</tr>
<tr>
<td>Multipurpose Oven #2</td>
<td>17.21</td>
<td>15.54</td>
<td>9.37</td>
<td>0.01</td>
<td>1.37</td>
<td>36.38</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipurpose Oven #3</td>
<td>17.21</td>
<td>15.55</td>
<td>9.38</td>
<td>0.01</td>
<td>1.50</td>
<td>36.39</td>
<td>1.26</td>
<td>8.03</td>
<td>5.60</td>
</tr>
<tr>
<td>Multipurpose Oven #5</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>45.55</td>
<td>2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impingement Oven #1</td>
<td>16.63</td>
<td>15.04</td>
<td>9.08</td>
<td>0.01</td>
<td>1.72</td>
<td>35.17</td>
<td>1.44</td>
<td>17.21</td>
<td>9.38</td>
</tr>
<tr>
<td>Impingement Oven #2</td>
<td>16.63</td>
<td>15.04</td>
<td>9.08</td>
<td>0.01</td>
<td>1.72</td>
<td>35.17</td>
<td>1.44</td>
<td>17.21</td>
<td>9.38</td>
</tr>
<tr>
<td>Impingement Oven #3</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>17.21</td>
<td>9.38</td>
</tr>
<tr>
<td>Impingement Oven #4</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>17.21</td>
<td>9.38</td>
</tr>
<tr>
<td>Impingement Oven #5</td>
<td>22.82</td>
<td>20.63</td>
<td>12.45</td>
<td>0.01</td>
<td>2.15</td>
<td>48.25</td>
<td>1.80</td>
<td>17.21</td>
<td>9.38</td>
</tr>
<tr>
<td>Fryer #1</td>
<td>1.58</td>
<td>1.38</td>
<td>0.52</td>
<td>0.02</td>
<td>4.02E-03</td>
<td>0.07</td>
<td>10.12</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Natural Gas (NG) Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char Marker #1</td>
<td>0.03</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>1.80</td>
<td>0.10</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char Marker #2</td>
<td>0.03</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>1.80</td>
<td>0.10</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler #1</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>2.58</td>
<td>0.14</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler #2</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>2.58</td>
<td>0.14</td>
<td>2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Boiler #1 (Hot Oil Heaters)</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.01</td>
<td>1.72</td>
<td>0.99</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Boiler #2 (Hot Oil Heaters)</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.01</td>
<td>1.72</td>
<td>0.99</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make-up Air Unit MAU-20</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.87</td>
<td>1.03</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-21</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.87</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make-up Air Unit MAU-23</td>
<td>2.45E-03</td>
<td>0.01</td>
<td>7.73E-04</td>
<td>0.01</td>
<td>1.03</td>
<td>0.11</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC #1</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>4.95E-03</td>
<td>0.82</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC #2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>2.47E-03</td>
<td>0.41</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC #3</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>4.95E-03</td>
<td>0.82</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Source Modification No.</td>
<td>267.11</td>
<td>249.09</td>
<td>163.87</td>
<td>0.65</td>
<td>73.84</td>
<td>565.15</td>
<td>104.51</td>
<td>11.04</td>
<td>5.80</td>
</tr>
<tr>
<td>Part 70 Permit Renewal No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address City IN Zip:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^1]: Highest single HAP = Naphthalene

For the cooking equipment, Total Criteria Pollutants Emissions (tpy) = Process Emissions + Natural Gas combustion Emissions
Controlled Potential to Emit (CPE)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Criteria Pollutants (tons/yr)</th>
<th>Hazardous Air Pollutants (tons/yr)</th>
<th>Total HAPs</th>
<th>Highest Single HAP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrabaker #1</td>
<td>4.52</td>
<td>4.52</td>
<td>0</td>
<td>10.60</td>
</tr>
<tr>
<td>Infrabaker #2</td>
<td>4.38</td>
<td>4.38</td>
<td>0</td>
<td>9.40</td>
</tr>
<tr>
<td>Infrabaker #3 (AFD)</td>
<td>4.31</td>
<td>4.31</td>
<td>0.01</td>
<td>8.62</td>
</tr>
<tr>
<td>Infrabaker #4 (AFD)</td>
<td>4.31</td>
<td>4.31</td>
<td>0.01</td>
<td>8.62</td>
</tr>
<tr>
<td>Infrabaker #5</td>
<td>4.52</td>
<td>4.52</td>
<td>0</td>
<td>10.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char Marker #1</td>
<td>0.02</td>
<td>0.07</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>Char Marker #2</td>
<td>0.02</td>
<td>0.07</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>Bolier #1</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.41</td>
</tr>
<tr>
<td>Bolier #2</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.41</td>
</tr>
<tr>
<td>Thermal Boiler #1 (Hot Oil Heater)</td>
<td>0.10</td>
<td>0.13</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>Thermal Boiler #2 (Hot Oil Heater)</td>
<td>0.10</td>
<td>0.13</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-20</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-21</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-22</td>
<td>2.45E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-23</td>
<td>2.45E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>HVAC #1</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>HVAC #2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>HVAC #3</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Bolier #3</td>
<td>0.05</td>
<td>0.22</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>Bolier #4</td>
<td>0.05</td>
<td>0.22</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>Hot Water Heater #1</td>
<td>0.10</td>
<td>0.39</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>Hot Water Heater #2</td>
<td>0.10</td>
<td>0.39</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>Hot Water Heater #3</td>
<td>0.10</td>
<td>0.39</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>Hot Water Heater #4</td>
<td>0.10</td>
<td>0.39</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>Bolier #5</td>
<td>0.05</td>
<td>0.22</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>Bolier #6</td>
<td>0.05</td>
<td>0.22</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>Furnaces (ISO9-1 thru ISO-6)</td>
<td>0.06</td>
<td>0.23</td>
<td>0.23</td>
<td>0.46</td>
</tr>
<tr>
<td>Make-up air unit (MAU-15)</td>
<td>5.97E-04</td>
<td>0.00</td>
<td>0.00</td>
<td>5.97</td>
</tr>
<tr>
<td>Make-up air unit (MAU-14, EA-13)</td>
<td>2.61E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>2.62</td>
</tr>
<tr>
<td>Make-up air unit (MAU-15)</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Make-up air unit (MAU-16-17)</td>
<td>0.01</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Make-up air unit (MAU-24)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Make-up air unit (MAU-25)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Heaters (GUH-1, GUH-2, GUH-4 thru GUH-16)</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>Hot Oil Heater</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Hot Oil Heater</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Hot Oil Heater</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Hot Oil Heater</td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Heaters (GUH-3, GUH-4, GUH-17 thru GUH-19)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>Heaters (GUH-5, GUH-6, and GUH-7)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Heaters (GUH-1, GUH-2, GUH-4, GUH-16)</td>
<td>1.63E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>1.64</td>
</tr>
<tr>
<td>Heaters (GUH-5, GUH-6, and GUH-7)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Heaters (GUH-21 and GUH-22)</td>
<td>3.10E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>3.10</td>
</tr>
<tr>
<td>Heaters (GUH-21 and GUH-22)</td>
<td>3.10E-03</td>
<td>0.01</td>
<td>0.01</td>
<td>3.10</td>
</tr>
</tbody>
</table>

Notes:
*Highest single HAP = Naphthalene

1 For the cooking equipment, Total Criteria Pollutants Emissions (tpy) = Process Emissions + Natural Gas combustion Emissions
Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Criteria Pollutants</th>
<th>Hazardous Air Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
<td>PM10</td>
</tr>
<tr>
<td></td>
<td>tons/yr</td>
<td>tons/yr</td>
</tr>
</tbody>
</table>

Cooking Equipment

- **Infrabaker #1**
 - 6.02
- **Infrabaker #2**
 - 3.48
- **Infrabaker #3 (AFDO)**
 - 4.31
- **Infrabaker #4 (AFDO)**
 - 4.31
- **Infrabaker #5**
 - 6.02
- **Multipurpose Oven #1**
 - 9.37
- **Multipurpose Oven #2**
 - 9.37
- **Multipurpose Oven #3**
 - 9.38
- **Multipurpose Oven #4**
 - 9.38
- **Multipurpose Oven #5**
 - 11.81
- **Multipurpose Oven #6**
 - 12.40
- **Impingement Oven #1**
 - 9.08
- **Impingement Oven #2**
 - 9.08
- **Impingement Oven #3**
 - 11.65
- **Impingement Oven #4**
 - 11.65
- **Impingement Oven #5**
 - 12.45
- **Impingement Oven #6**
 - 12.45

Natural Gas (NG) Combustion

- **Char Marker #1**
 - 0.03
- **Char Marker #2**
 - 0.03
- **Boiler #1**
 - 0.05
- **Boiler #2**
 - 0.05
- **Thermal Boiler #1 (Hot Oil Heater)**
 - 0.03
- **Thermal Boiler #2 (Hot Oil Heater)**
 - 0.03
- **Make-up Air Unit MAU-20**
 - 0.02
- **Make-up Air Unit MAU-21**
 - 0.02
- **Make-up Air Unit MAU-22**
 - 0.02
- **Make-up Air Unit MAU-23**
 - 2.45E-03
- **HVAC #1**
 - 0.02
- **HVAC #2**
 - 0.02
- **HVAC #3**
 - 0.02
- **Hot Water Heater #1**
 - 0.10
- **Hot Water Heater #2**
 - 0.10
- **Hot Water Heater #3**
 - 0.10
- **Hot Water Heater #4**
 - 0.10
- **Boiler #3**
 - 0.05
- **Boiler #4**
 - 0.05
- **Hot Water Heater #5**
 - 0.01
- **Hot Water Heater #6**
 - 0.01
- **Boiler #5**
 - 0.17
- **Boiler #6**
 - 0.20
- **Char Marker #3**
 - 0.03
- **Furnaces (IGF-1 thru IGF-3)**
 - 0.03
- **Furnaces (IGF-7 thru IGF-11)**
 - 0.05
- **Make-up air unit (MAU-11)**
 - 9.79E-04
- **Make-up air unit (MAU-10)**
 - 2.61E-04
- **Make-up air unit (MAU-9)**
 - 5.97E-04
- **Make-up air unit (MAU-8)**
 - 2.61E-04
- **Make-up air unit (MAU-7)**
 - 5.97E-04
- **Make-up air unit (MAU-6)**
 - 2.61E-04
- **Make-up air unit (MAU-5)**
 - 5.97E-04
- **Make-up air unit (MAU-4)**
 - 2.61E-04
- **Make-up air unit (MAU-3)**
 - 5.97E-04
- **Heaters (GUH-1, GUH-2, GUH-7 thru GUH-16)**
 - 0.03
- **Heaters (E-GUH-2, E-GUH-5, E-GUH-8 thru E-GUH-12)**
 - 0.02
- **Heaters (GUH-3, GUH-4, GUH-17 thru GUH-20)**
 - 0.02
- **Heaters (E-GUH-1, E-GUH-3, E-GUH-4, E-GUH-7)**
 - 0.01
- **Heaters (GUH-21 and GUH-22)**
 - 3.10E-03
- **Heaters (GUH-23 and GUH-24)**
 - 1.63E-03
- **Smoke Generator**
 - 2.54
- **Generators**
 - 0.01
- **Washers**
 - 0.01
- **Printer**
 - --
- **Fugitive Emissions (excluded from PTE)**
 - 106.70

Notes:
- *Highest single HAP = Naphthalene
- 1 For the cooking equipment, Total Criteria Pollutants Emissions (tpy) = Process Emissions + Natural Gas combustion Emissions
Table: Emissions Calculations

Modification Summary

<table>
<thead>
<tr>
<th>Company Name:</th>
<th>Sugar Creek Packaging Co.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address City Zip:</td>
<td>1200 Enterprise Rd, Cambridge, IN 47327</td>
</tr>
<tr>
<td>Significant Source Modification No.:</td>
<td>177-41830-00121</td>
</tr>
<tr>
<td>Part 70 Permit Renewal No.:</td>
<td>1717-41827-00121</td>
</tr>
<tr>
<td>Reviewer:</td>
<td>Tamera Wessel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTE Before Modification Impingement Oven #3</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>2.05</td>
<td>0.06</td>
</tr>
<tr>
<td>PTE After Modification Impingement Oven #3</td>
<td>7.81</td>
<td>7.02</td>
<td>4.22</td>
<td>0.00</td>
<td>0.00</td>
<td>16.50</td>
<td>0.00</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>PTE Before Modification Impingement Oven #4</td>
<td>13.68</td>
<td>12.35</td>
<td>7.43</td>
<td>0.01</td>
<td>0.86</td>
<td>28.93</td>
<td>0.72</td>
<td>0.29</td>
<td>0.46</td>
</tr>
<tr>
<td>PTE After Modification Impingement Oven #4</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>45.43</td>
<td>0.72</td>
<td>2.05</td>
<td>0.06</td>
</tr>
<tr>
<td>PTE Before Modification Multipurpose Oven #5</td>
<td>7.81</td>
<td>7.02</td>
<td>4.22</td>
<td>0.00</td>
<td>0.00</td>
<td>16.50</td>
<td>0.00</td>
<td>0.17</td>
<td>0.25</td>
</tr>
<tr>
<td>PTE After Modification Multipurpose Oven #5</td>
<td>13.73</td>
<td>12.51</td>
<td>7.90</td>
<td>0.02</td>
<td>0.01</td>
<td>29.05</td>
<td>2.52</td>
<td>0.29</td>
<td>5.07</td>
</tr>
<tr>
<td>PTE Before Modification Multipurpose Oven #6</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>45.55</td>
<td>2.52</td>
<td>0.46</td>
<td>7.57</td>
</tr>
<tr>
<td>PTE After Modification Multipurpose Oven #6</td>
<td>7.81</td>
<td>7.02</td>
<td>4.21</td>
<td>0.00</td>
<td>0.00</td>
<td>16.50</td>
<td>0.00</td>
<td>0.17</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Total PTE Increase of the Modified Emission Unit(s)/Process: 23.44

Table: Uncontrolled Potential to Emit (PTE)

Corrected Emission Units

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler #5</td>
<td>0.17</td>
<td>0.69</td>
<td>0.69</td>
<td>0.00</td>
<td>4.51</td>
<td>0.50</td>
<td>7.57</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Boiler #6</td>
<td>0.20</td>
<td>0.81</td>
<td>0.81</td>
<td>0.00</td>
<td>5.32</td>
<td>0.39</td>
<td>8.95</td>
<td>0.20</td>
<td>0.19</td>
</tr>
</tbody>
</table>

New Units

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement Oven #8</td>
<td>22.82</td>
<td>20.63</td>
<td>12.45</td>
<td>0.01</td>
<td>2.15</td>
<td>48.25</td>
<td>1.80</td>
<td>0.78</td>
<td>0.49</td>
</tr>
<tr>
<td>Impingement Oven #9</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Impingement Oven #10</td>
<td>21.49</td>
<td>19.37</td>
<td>11.65</td>
<td>0.01</td>
<td>0.86</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Impingement Oven #11</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Impingement Oven #12</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Total for New and Modified Emission Units: 48.41

Minor Source Modification Thresholds

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-up air unit (MAU-1)</td>
<td>3.18E-02</td>
<td>0.13</td>
<td>0.13</td>
<td>1.00E-02</td>
<td>0.84</td>
<td>0.09</td>
<td>1.41</td>
<td>3.16E-02</td>
<td>0.84</td>
</tr>
<tr>
<td>Make-up air unit (MAU-2)</td>
<td>3.87E-02</td>
<td>0.12</td>
<td>0.13</td>
<td>1.00E-02</td>
<td>0.84</td>
<td>0.09</td>
<td>1.41</td>
<td>3.32E-02</td>
<td>0.84</td>
</tr>
<tr>
<td>Make-up air unit (MAU-3)</td>
<td>4.73E-02</td>
<td>0.19</td>
<td>0.16</td>
<td>1.49E-02</td>
<td>1.25</td>
<td>0.14</td>
<td>2.09</td>
<td>4.70E-02</td>
<td>0.84</td>
</tr>
<tr>
<td>Make-up air unit (MAU-4)</td>
<td>7.97E-03</td>
<td>0.06</td>
<td>0.06</td>
<td>3.21E-03</td>
<td>0.25</td>
<td>0.02</td>
<td>0.31</td>
<td>6.73E-03</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Major Source Thresholds

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-up air unit (MAU-5)</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Total for Major Source Emissions: 87.35

Table: Uncontrolled Potential to Emit (PTE) - New Insignificant Natural Gas Combustion Constructed Under 326 IAC 2.1-1-3 (Exemptions)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces (GG-1 thru GG-10)</td>
<td>21.54</td>
<td>19.53</td>
<td>11.81</td>
<td>0.02</td>
<td>3.01</td>
<td>24.9</td>
<td>0.72</td>
<td>0.72</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Total for Insignificant Units: 0.36

Minor Source Modification Thresholds

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-up air unit (MAU-29, MAU-30)</td>
<td>2.94E-02</td>
<td>0.12</td>
<td>0.13</td>
<td>9.28E-03</td>
<td>0.77</td>
<td>0.09</td>
<td>1.39</td>
<td>2.92E-02</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Emergency Generator #3

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heaters (GUH-1, GUH-2, GUH-7 thru GUH-16)</td>
<td>2.84E-02</td>
<td>0.11</td>
<td>0.11</td>
<td>8.97E-03</td>
<td>0.75</td>
<td>0.08</td>
<td>1.26</td>
<td>2.82E-02</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Total HAPs

<table>
<thead>
<tr>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOX</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.44</td>
<td>21.05</td>
<td>12.64</td>
<td>0.00</td>
<td>0.00</td>
<td>49.51</td>
<td>0.00</td>
<td>0.51</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Page 4 of 17, TSD App. A
<table>
<thead>
<tr>
<th>Process Description</th>
<th>Max Throughput - Cooked (ton/hr)</th>
<th>Max Process Rate - Cooked (ton/yr)</th>
<th>Controlable PM Emission Factor (EF) (lb/ton)</th>
<th>Uncontrolled Emission Factor (EF) (lb/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrabaker #1</td>
<td>2.10</td>
<td>18.396</td>
<td>0.65 0.65 0.65 1.15 0.01 2.4E-03 3.53E-04 2.4E-03 3.53E-04</td>
<td>3.53E-04 2.4E-03 3.53E-04 2.4E-03 3.53E-04</td>
</tr>
<tr>
<td>Infrabaker #2</td>
<td>1.21</td>
<td>10.632</td>
<td>0.65 0.65 0.65 1.15 0.01 2.4E-03 3.53E-04 2.4E-03 3.53E-04</td>
<td>3.53E-04 2.4E-03 3.53E-04 2.4E-03 3.53E-04</td>
</tr>
<tr>
<td>Multipurpose Oven #6</td>
<td>2.64</td>
<td>21.126</td>
<td>1.49 1.49 1.49 3.14 0.03 6.77E-03 1.51E-03 6.75E-03 1.59E-03</td>
<td>7.85E-03 1.66E-03 3.70E-04 1.66E-03 3.90E-04</td>
</tr>
<tr>
<td>Fryer #1</td>
<td>2.59</td>
<td>21.192</td>
<td>0.12 0.10 0.04 0.77 7.65E-03 1.66E-03 3.70E-04 1.66E-03 3.90E-04</td>
<td>7.65E-03 1.66E-03 3.70E-04 1.66E-03 3.90E-04</td>
</tr>
</tbody>
</table>

Notes:
The Infrabaker Char, MPO/Impingement Oven Char Marker #1, MPO/Impingement Oven Char Marker #2, are for searing strikes to the already oven-cooked product, so emissions are negligible. See NGF Combustion.

Methodology:
Max Process Rate - Cooked (ton/hr) = Maximum Throughput - Cooked (ton/hr) * 8760 (hours/yr)

For details on emission factors and methodology for Particulates and VOC, see to next page.

Appendix A: Emissions Calculations

Type of Unit: Cooking Equipment

Company Name: Sugar Creek Packing Co.
Address City In Zip: 1200 Enterprise Rd, Cambridge City, IN 47327
Significant Source Modification No.: Part 70 Permit Renewal No.: 177-41830-00121
Reviewer: Tamara Wood

Page 5 of 17, TSD App. A
Uncontrolled Emission Factor Information

<table>
<thead>
<tr>
<th>Process Description</th>
<th>EF (lb/ton of cooked product)</th>
<th>EF Reference/Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipurpose Oven #2</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #4</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #2</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #1</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Multipurpose Oven #6</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Infrabaker #4 (AFO)</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Fryer #1</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Fryer #1</td>
<td>1.49</td>
<td>See Note 1</td>
</tr>
</tbody>
</table>

Notes:

1. PM/PM10/PM2.5 EF from Wisconsin DNR Preliminary Determination (7/2010) for Abbyland Foods, Inc. IR cooking oven
2. PM/PM10/PM2.5 EF (lb/ton of cooked product) = 0.0003274 (lb/lb) x 2000 (lb/ton)
3. Ratio of PM10 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).
4. Ratio of PM2.5 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).
5. Ratio of PM10 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).
6. Ratio of PM2.5 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).
7. PM/PM10/PM2.5 EF from Wisconsin DNR Preliminary Determination (7/2010) for Abbyland Foods, Inc. IR cooking oven
8. PM/PM10/PM2.5 EF (lb/ton of cooked product) = 0.0003274 (lb/lb) x 2000 (lb/ton)

Uncontrolled Emissions for Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>PM EF (lb/ton of cooked product)</th>
<th>EF Reference/Methodology</th>
<th>Fluoranthene EF (lb/ton of cooked product)</th>
<th>EF Reference/Methodology</th>
<th>Pyrene EF (lb/ton of cooked product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipurpose Oven #2</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #4</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #2</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Impingement Oven #1</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Multipurpose Oven #6</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Infrabaker #4 (AFO)</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
<tr>
<td>Fryer #1</td>
<td>1.49</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
<td>See Note 1</td>
</tr>
</tbody>
</table>

Notes:

1. PM/PM10/PM2.5 EF (lb/ton of cooked product) = 0.0003274 (lb/lb) x 2000 (lb/ton)
2. Ratio of PM10 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).
3. Ratio of PM2.5 to PM, based on EPA PM Calculator for SCC Code 3-02-036-01 (Food and Agriculture: Deep Fat Frying : Continuous Deep Fat Fryer: Potato Chips).

Methodology

Appendix A: Emissions Calculations

Uncontrolled and Controlled Emissions

Company Name: Sugar Creek Packing Co.
Address: 1230 Enterprise Rd, Cambridge City, IN 47327

Significant Source Modification No.: 177-41830-00121

Part 70 Permit Renewal No.: 177-41830-00121

Reviewer: Tamera Wessel

Page 7 of 17, 11-23-15

Uncontrolled Emission Calculations

Methodology

Uncontrolled Potential to Emit (UPE) (tons/yr)

Controlled Potential to Emit (CPE) (tons/yr)

Uncontrolled and Controlled Emissions

Limited Potential to Emit (LPE) (tons/yr)

Uncontrolled and Controlled Emissions

Notes:

- For details on emission factor references and methodology for particulates and VOC, see page 3 of the calculations.
- Uncontrolled Emission Factor (EF) Information for Particulate and VOC Uncontrolled EFs for Hazardous Air Pollutants (HAPs)
- Process Weight Rate
- Notes:

Process Weight Rate

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Maximum Throughput</th>
<th>Cooked Rate</th>
<th>Process Rate</th>
<th>Filterable PM</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>VOC</th>
<th>Naphthalene</th>
<th>Acenaphthylene</th>
<th>Fluorene</th>
<th>Phenanthrene</th>
<th>Pyrene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipurpose Oven #1</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #2</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #3</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #4</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #5</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #6</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Uncontrolled Emission Calculations

Methodology

Uncontrolled Potential to Emit (UPE) (tons/yr)

Controlled Potential to Emit (CPE) (tons/yr)

Uncontrolled and Controlled Emissions

Limited Potential to Emit (LPE) (tons/yr)

Uncontrolled and Controlled Emissions

Notes:

- For details on emission factor references and methodology for particulates and VOC, see page 3 of the calculations.
- Uncontrolled Emission Factor (EF) Information for Particulate and VOC Uncontrolled EFs for Hazardous Air Pollutants (HAPs)
- Process Weight Rate
- Notes:

Process Weight Rate

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Maximum Throughput</th>
<th>Cooked Rate</th>
<th>Process Rate</th>
<th>Filterable PM</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>VOC</th>
<th>Naphthalene</th>
<th>Acenaphthylene</th>
<th>Fluorene</th>
<th>Phenanthrene</th>
<th>Pyrene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipurpose Oven #1</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #2</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #3</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #4</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #5</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Multipurpose Oven #6</td>
<td>2.10</td>
<td>18,300</td>
<td></td>
<td>20.20</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.00</td>
<td>0.11</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Uncontrolled Emission Calculations

Methodology

Uncontrolled Potential to Emit (UPE) (tons/yr)

Controlled Potential to Emit (CPE) (tons/yr)

Uncontrolled and Controlled Emissions

Limited Potential to Emit (LPE) (tons/yr)

Uncontrolled and Controlled Emissions

Notes:

- For details on emission factor references and methodology for particulates and VOC, see page 3 of the calculations.
- Uncontrolled Emission Factor (EF) Information for Particulate and VOC Uncontrolled EFs for Hazardous Air Pollutants (HAPs)
- Process Weight Rate
- Notes:
Process Description

- **Multipurpose Oven #4**
- **Multipurpose Oven #2**
- **Impingement Oven #6**
- **Impingement Oven #5**
- **Impingement Oven #4**
- **Impingement Oven #3**
- **Impingement Oven #1**
- **Multipurpose Oven #6**
- **Multipurpose Oven #5**

Emission Factor References and Methodology

Anaphthylene EF (lb/ton of cooked product) = 0.00978a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Acenaphthylene EF (lb/ton of cooked product) = 0.00978a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Fluorene EF (lb/ton of cooked product) = 0.00127a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Phenanthrene EF (lb/ton of cooked product) = 0.00976a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

PM/PAH EF from Wisconsin DNR Preliminary Determination (7/2010) for Abbyland Foods, Inc., IR cooking oven

Naphthalene EF (lb/ton of cooked product) = 0.046a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Acenaphthylene EF (lb/ton of cooked product) = 0.00978a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Fluorene EF (lb/ton of cooked product) = 0.00127a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

Phenanthrene EF (lb/ton of cooked product) = 0.00976a / 4.54(lb of PM/ton of cooked product)b x VOC EF for Unit (lb of condensable product/ton of cooked product)

VOC EF from Wisconsin DNR Preliminary Determination (7/2010) for Abbyland Foods, Inc., IR cooking oven

VOC EF (lb/ton of cooked product) = 0.000075a / (lb/ton of cooked product)

Notes:

1. **PM/NHMI/PAH EF (lb/ton of cooked product) = 0.0003274a (lb/lb) x 2000 (lb/ton)**
2. **PM EF (lb/ton of cooked product) = 4.54(lb of PM/ton of cooked product)x ((1+1.38) x 0.77)**
3. **PM/NHMI/PAH EF (from Wisconsin DNR Preliminary Determination (7/2010) for Abbyland Foods, Inc., IR cooking oven**
4. **PM EF (lb/ton of cooked product) = 4.54(lb of PM/ton of cooked product)x ((1+1.38) x 0.77)**
5. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
6. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
7. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
8. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
9. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
10. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
11. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
12. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
13. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
14. **PM EF (lb/ton of cooked product) = PM EF (condensable + filterable) for Oven/Searing, based on Pierre Foods June 2007 Sear/Impinge Stack Test on Line 10 while cooking angus in Pierre Foods, Inc. Ohio Application (ID No:14-06026).**
Emission Calculations

Type of Unit: Natural Gas Combustion Ovens, Fryers, Sealer

Pollutants: PM, PM10, PM2.5, SO2, NOx, VOC, CO and HAPs

Company Name:
Sugar Creek Packing Co.

Address City Zip:
Cambridge City, IN 47327

Significant Source Modification No.:
177-41830-00121

Part 70 Permit Renewal No.:
T177-41827-00121

Reviewer:
Tamera Wessel

Appendix A: Emission Calculations

Uncontrolled Emissions

Potential Source Identification No.:

Maximum Heat Input Capacity:

Heat Input Capacity:

Throughput (MMcf/yr):

Number of Units:

Control Efficiency:

Process Description

PM

PM10

PM2.5

SO2

NOx

VOC

CO

PM

PM10

PM2.5

HAPs - Organics

HAPs - Metals

Methodology

Emission (tons/yr) = Throughput (MMcf/yr) x Number of Units x Emission Factor (lb/MMcf)/2,000 lb/ton

Maximum Throughput (MMcf/yr) = [Heat Input Capacity (MMBtu/hr)] * [Number of units] * [8,760 hours/year] * [MMcf/1,020 MMBtu]

MMCF = 1,000,000 Cubic Feet of Gas

MMBtu = 1,000,000 Btu

Abbreviations

PM = Particulate Matter

SO2 = Sulfur Dioxide

NOx = Nitrous Oxides

VOC = Volatile Organic Compounds

CO = Carbon Monoxide

Emission Factors for NOx:

Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

PM emission factor is filterable PM only. PM10 emission factor is filterable and condensable PM10 combined. PM2.5 assumed equal to PM10

Pollutants

Company Name: Sugar Creek Packing Co.

Address City IN Zip: Cambridge City, IN 47327

Natural Gas Combustion Ovens, Fryers, Sealer

Potential Emission of Total HAPs (tons/yr)

Worst Single HAP

Notes:

*see below
Appendix A: Emissions Calculations

Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Type of Unit</th>
<th>Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas Combustion Char Markers</td>
<td>PM, PM10, PM2.5, SO2, NOx, VOC, CO and HAPS</td>
</tr>
<tr>
<td>Water Heaters</td>
<td></td>
</tr>
<tr>
<td>Boilers</td>
<td></td>
</tr>
<tr>
<td>MUAs</td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td></td>
</tr>
</tbody>
</table>

Company Information

- **Company Name:** Sugar Creek Packing Co.
- **Address:** 1200 Enterprise Rd, Cambridge City, IN 47327
- **Significant Source Modification No.:** 177-41830-00121
- **Part 70 Permit Renewal No.:** T177-41827-00121
- **Reviewer:** Tamera Wessel

Process Description

<table>
<thead>
<tr>
<th>Number of Units</th>
<th>Maximum Heat Input Capacity (MMBtu/hr) / Unit</th>
<th>High Heat Value (MMBtu/MMscf)</th>
<th>Maximum Throughput (MMcf/yr)</th>
<th>Control Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char Marker #1</td>
<td>1</td>
<td>4.20</td>
<td>1920</td>
<td>30</td>
</tr>
<tr>
<td>Char Marker #2</td>
<td>1</td>
<td>4.20</td>
<td>1920</td>
<td>30</td>
</tr>
<tr>
<td>Boiler #1</td>
<td>1</td>
<td>6.00</td>
<td>2700</td>
<td>n/a</td>
</tr>
<tr>
<td>Boiler #2</td>
<td>1</td>
<td>6.00</td>
<td>2700</td>
<td>n/a</td>
</tr>
<tr>
<td>Thermal Boiler #1 (Hot Oil Heater)</td>
<td>1</td>
<td>4.00</td>
<td>1320</td>
<td>34.35</td>
</tr>
<tr>
<td>Thermal Boiler #2 (Hot Oil Heater)</td>
<td>1</td>
<td>4.00</td>
<td>1320</td>
<td>34.35</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-20</td>
<td>1</td>
<td>2.45</td>
<td>1020</td>
<td>20.41</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-21</td>
<td>1</td>
<td>2.45</td>
<td>1020</td>
<td>20.41</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-22</td>
<td>1</td>
<td>0.30</td>
<td>1020</td>
<td>2.58</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-23</td>
<td>1</td>
<td>0.30</td>
<td>1020</td>
<td>2.58</td>
</tr>
<tr>
<td>HVAC #1</td>
<td>1</td>
<td>1.92</td>
<td>6720</td>
<td>16.49</td>
</tr>
<tr>
<td>HVAC #2</td>
<td>1</td>
<td>0.96</td>
<td>3040</td>
<td>8.24</td>
</tr>
<tr>
<td>HVAC #3</td>
<td>1</td>
<td>1.92</td>
<td>6720</td>
<td>16.49</td>
</tr>
<tr>
<td>HVAC #4</td>
<td>1</td>
<td>1.92</td>
<td>6720</td>
<td>16.49</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>331.51</td>
<td></td>
</tr>
</tbody>
</table>

Criteria Pollutants

- **PM**
- **PM10**
- **PM2.5**
- **SO2**
- **NOx**
- **VOC**
- **CO**
- **HAPS**

Emission Factor in lb/MMcf

- PM: 1.9
- PM10: 7.6
- PM2.5: 7.6
- SO2: 0.6
- NOx: 100
- VOC: 5.5
- CO: 84

Uncontrolled Potential to Emit (PTE) (tons/yr)

<table>
<thead>
<tr>
<th>Process</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char Marker #1</td>
<td>0.03</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>1.80</td>
<td>0.10</td>
<td>1.51</td>
<td>0.02</td>
</tr>
<tr>
<td>Char Marker #2</td>
<td>0.03</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>1.80</td>
<td>0.10</td>
<td>1.51</td>
<td>0.02</td>
</tr>
<tr>
<td>Boiler #1</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>2.58</td>
<td>0.14</td>
<td>2.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Boiler #2</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.02</td>
<td>2.58</td>
<td>0.14</td>
<td>2.16</td>
<td>0.05</td>
</tr>
<tr>
<td>Thermal Boiler #1 (Hot Oil Heater)</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.01</td>
<td>1.72</td>
<td>0.08</td>
<td>1.44</td>
<td>0.03</td>
</tr>
<tr>
<td>Thermal Boiler #2 (Hot Oil Heater)</td>
<td>0.03</td>
<td>0.13</td>
<td>0.13</td>
<td>0.01</td>
<td>1.72</td>
<td>0.08</td>
<td>1.44</td>
<td>0.03</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-20</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.07</td>
<td>0.73</td>
<td>0.02</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-21</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.07</td>
<td>0.73</td>
<td>0.02</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-22</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.07</td>
<td>0.73</td>
<td>0.02</td>
</tr>
<tr>
<td>Make-up Air Unit MAU-23</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.03</td>
<td>0.07</td>
<td>0.73</td>
<td>0.02</td>
</tr>
<tr>
<td>HVAC #1</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>3.08</td>
<td>0.02</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>HVAC #2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>3.08</td>
<td>0.02</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>HVAC #3</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>3.08</td>
<td>0.02</td>
<td>0.23</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Total in tons/yr: 0.31, 1.26, 1.26, 0.10, 16.58, 0.91, 13.92, 0.28, 1.12

Hazardous Air Pollutants

- **Benzene**
- **DCB**
- **Formaldehyde**
- **Hexane**
- **Toluene**
- **Pb**
- **Cd**
- **Cr**
- **Mn**
- **Ni**

Emission Factor in lb/MMcf

- Benzene: 2.1E-03
- DCB: 1.2E-03
- Formaldehyde: 7.5E-02
- Toluene: 1.8E+00
- Pb: 3.4E-03
- Cd: 4.3E-03
- Cr: 5.0E-04
- Mn: 1.1E-03
- Ni: 1.4E-03

Potential Emission in tons/yr

- Benzene: 3.5E-04
- DCB: 2.0E-04
- Formaldehyde: 1.2E-02
- Toluene: 3.0E-01
- Pb: 5.6E-04
- Cd: 8.3E-05
- Cr: 1.8E-04
- Mn: 2.3E-04
- Ni: 6.3E-05

Potential Emission of Total HAPs (tons/yr): 0.31

Worst Single HAP: 0.30

Hexane

*The five highest organic and metal HAPs emission factors are provided above. Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Methodology

- All emission factors are based on normal firing.
- MMBtu = 1,000,000 Btu
- MMCF = 1,000,000 Cubic Feet of Gas
- Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03
- Maximum Throughput (MMcf/yr) = [Heat Input Capacity (MMBtu/hr)] * [Number of units] * [8,760 hours/year] / 1,020 MMBtu
- Emission (tons/yr) = Throughput (MMCF/yr) x Number of Units x Emission Factor (lb/MMCF) / 2,000 lb/ton

Abbreviations

- PM = Particulate Matter
- DCB = Dichlorobenzene
- PM10 = Particulate Matter (>10 um)
- Pb = Lead
- SO2 = Sulfur Dioxide
- Cd = Cadmium
- NOx = Nitrous Oxides
- Cr = Chromium
- VOC = Volatile Organic Compounds
- Mn = Manganese
- CO = Carbon Monoxide
- Ni = Nickel

All emission factors are based on normal firing.
Control Efficiency

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/MMcf</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.22</td>
</tr>
<tr>
<td>VOC</td>
<td>0.22</td>
</tr>
<tr>
<td>PM</td>
<td>0.20</td>
</tr>
<tr>
<td>NOx</td>
<td>0.20</td>
</tr>
<tr>
<td>SO2</td>
<td>0.10</td>
</tr>
<tr>
<td>Pb</td>
<td>0.02</td>
</tr>
<tr>
<td>Cd</td>
<td>2.10E-03</td>
</tr>
<tr>
<td>Cr</td>
<td>9.7E-02</td>
</tr>
<tr>
<td>Mn</td>
<td>8.1E-03</td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/MMcf</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCB</td>
<td>5.4E-02</td>
</tr>
<tr>
<td>HAPs</td>
<td>9.7E-02</td>
</tr>
</tbody>
</table>

* All Charmarkers at the facility are used solely to place a mark on the products. These units do not actually cook product and so are not accounted for in "cooking equipment" calculations. Charmarkers have a control device simply because of piping and location.

Criteria Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Uncontrolled Potential to Emit (PTE) (tons/yr)</th>
<th>Controlled Potential to Emit (PTE) (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>1.7E-01</td>
<td>0.81</td>
</tr>
<tr>
<td>PM10*</td>
<td>0.01</td>
<td>0.81</td>
</tr>
<tr>
<td>PM2.5*</td>
<td>0.01</td>
<td>0.81</td>
</tr>
<tr>
<td>SO2</td>
<td>9.7E-02</td>
<td>0.03</td>
</tr>
<tr>
<td>NOx</td>
<td>9.7E-02</td>
<td>0.03</td>
</tr>
<tr>
<td>VOC</td>
<td>9.7E-02</td>
<td>0.03</td>
</tr>
<tr>
<td>CO</td>
<td>9.7E-02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

Natural Gas Combustion - New Heaters and Boilers

<table>
<thead>
<tr>
<th>Type of Unit</th>
<th>Pollutants: PM, PM10, PM2.5, SO2, NOx, VOC, CO and HAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water Heater #1</td>
<td>12.00 1020 103.06 n/a</td>
</tr>
<tr>
<td>Hot Water Heater #2</td>
<td>12.00 1020 103.06 n/a</td>
</tr>
<tr>
<td>Hot Water Heater #3</td>
<td>12.00 1020 103.06 n/a</td>
</tr>
<tr>
<td>Boiler #1</td>
<td>6.70 1020 57.30 n/a</td>
</tr>
<tr>
<td>Boiler #2</td>
<td>6.70 1020 57.30 n/a</td>
</tr>
<tr>
<td>Boiler #3</td>
<td>21.00 1020 163.55 n/a</td>
</tr>
<tr>
<td>Boiler #4</td>
<td>24.80 1020 212.99 n/a</td>
</tr>
<tr>
<td>Char Marker #1</td>
<td>0.01 0.03 0.03 0.00 0.21 0.02 0.36</td>
</tr>
<tr>
<td>Hot Water Heater #5</td>
<td>1.00 1020 8.09 n/a</td>
</tr>
<tr>
<td>Hot Water Heater #6</td>
<td>1.00 1020 8.09 n/a</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water Heaters</td>
<td>0.93</td>
</tr>
<tr>
<td>Boilers</td>
<td>3.70</td>
</tr>
<tr>
<td>Char Markers</td>
<td>0.29</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td>24.35</td>
</tr>
<tr>
<td>Total</td>
<td>34.25</td>
</tr>
</tbody>
</table>

Methodology

All emission factors are based on normal firing.

Emission Factors

- PM emissions factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03
- HAPs - Organics
- HAPs - Metals
- HAPs - Metals**

Hazardous Air Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Total Per Unit (lb/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAHs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>PM10*</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>PM2.5*</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>SO2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>CO</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>VOC</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>PM</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>PM10*</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>PM2.5*</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>SO2</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>CO</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>VOC</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>PM</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>PM10*</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>PM2.5*</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>SO2</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>HAPs</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>CO</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>VOC</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Maximum Throughput (MMcf/yr)

- Maximum Throughput (MMcf/yr) = [Heat Input Capacity (MMBtu/hr)] * [Number of units] * [8,760 hours/year] * [MMcf/1,020 MMBtu]

Abbreviations

- PM = Particulate Matter
- DBB = Dichlobenzene
- PAHs = Polycyclic Aromatic Hydrocarbons
- HAPs = Hazardous Air Pollutants
- PM = Particulate Matter (ton/year)
Hazardous Air Pollutants

| Type of Unit: Natural Gas Combustion - Heaters and MAU included with Renewal |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Company Name:** | Sugar Creek Packing Co. |
| **Address City N Zip:** | 1200 Enterprise Rd, Cambridge City, IN 47327 |
| **Significant Source Modification No.:** | 177-41820-00121 |
| **Part 70 Permit Renewal No.:** | T177-41827-00121 |
| **Reviewer:** | Tamera Ravel |

Emission Factors (MMBtu)

<table>
<thead>
<tr>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>1.9</td>
</tr>
</tbody>
</table>

Methodology

All emission factors are based on normal firing.

Units

| **PM emissions factor is Binable PM only. PM10 emission factor is Binable and condensable PM10 combined. PM2.5 assumed equal to PM10.** |
| **Emission Factors for NOx:** Uncondensed = 100, Low NOx Burner = 50, Low NOx Burner/Flash gas recirculation = 32 |

Units

<table>
<thead>
<tr>
<th>HAPs - Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
</tr>
<tr>
<td>2.1E-05</td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Emission Factor (MMCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1E-05</td>
</tr>
</tbody>
</table>

In hazardous Air Pollutants

<table>
<thead>
<tr>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
</tr>
<tr>
<td>2.1E-05</td>
</tr>
</tbody>
</table>

Potential Emission in tons/yr

<table>
<thead>
<tr>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9E-06</td>
</tr>
</tbody>
</table>

Potential Emission of Total HAPs (tons/yr)

PM	PM2.5	PM10	SO2	NOx	HAPs PTE (tons/yr)								
3.9E-06	2.3E-04	2.0E-04	1.7E-04	1.4E-04	1.1E-04	8.8E-05	6.5E-05	4.2E-05	2.9E-05	1.8E-05	1.1E-05	7.8E-06	5.5E-06

Notes

- Units for mass are single new.
- Units for mass are single new.

Appendices

<table>
<thead>
<tr>
<th>Appendix A: Emissions Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAPs</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Benzene</td>
</tr>
<tr>
<td>2.1E-05</td>
</tr>
</tbody>
</table>

Notes

- Units for mass are single new.
- Units for mass are single new.
Attachment B: Emission Calculations

Uncontrolled Emissions

Type of Unit: Smoke Generator

Pollutants: PM, PM_{10}, PM_{2.5}, SO_{2}, NO_{x}, VOC, CO and HAPS

Company Name: Sugar Creek Packing Co.
Address: 1200 Enterprise Rd, Cambridge City, IN 47327

Significant Source Modification No.: 177-41830-00121
Part 70 Permit Renewal No.: T177-41827-00121
Reviewer: Tamera Wessel

Process Description

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Smokehouse Heat-up Time (hrs)</th>
<th>Smoke Generator Time (hrs)</th>
<th>Smokehouse Cool Down Time (hrs)</th>
<th>Total Smokehouse Batch Cycle Time (hrs)</th>
<th>Number of Batches Smoked Annually (batch/yr)</th>
<th>Max. Wood Chip Usage Rate (lbs/hr)</th>
<th>Max. Wood Chip Usage Rate (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Usage of Wood Chips:</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.8</td>
<td>10,960</td>
<td>35</td>
<td>96</td>
</tr>
</tbody>
</table>

Maximum Throughput

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Amount of Meat Smoked Per Batch (lbs/batch)</th>
<th>Amount of Meat Smoked Hourly (lbs/hr)</th>
<th>Amount of Meat Smoked Yearly (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Smoked Meat Production:</td>
<td>6000</td>
<td>7500</td>
<td>32850</td>
</tr>
</tbody>
</table>

Potential Emissions of Criteria Pollutants from Burning Wood Chips

<table>
<thead>
<tr>
<th>Emission Unit No.</th>
<th>Pollutant</th>
<th>Emission Factor (lb/ton)</th>
<th>Max. Wood Chip Usage Rate (tons/yr)</th>
<th>Uncontrolled PTE (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke Generator #1</td>
<td>PM</td>
<td>53</td>
<td>96</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>PM_{10}</td>
<td>53</td>
<td>96</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>PM_{2.5}</td>
<td>53</td>
<td>96</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>SO_{2}</td>
<td>0.4</td>
<td>96</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>NO_{x}</td>
<td>2.6</td>
<td>96</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>44</td>
<td>96</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>252.6</td>
<td>96</td>
<td>12.10</td>
</tr>
</tbody>
</table>

Potential Emissions of Hazardous Air Pollutants from Burning Wood Chips

<table>
<thead>
<tr>
<th>Emission Unit No.</th>
<th>Pollutant</th>
<th>Emission Factor (lb/ton)</th>
<th>Max. Wood Chip Usage Rate (tons/yr)</th>
<th>Uncontrolled PTE (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke Generator #1</td>
<td>Aldehyde</td>
<td>2.4</td>
<td>96</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>POM</td>
<td>0.016</td>
<td>96</td>
<td>7.07E-04</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde</td>
<td>3.36</td>
<td>96</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Total HAPs (tpy): 0.28

Notes:
The emission factors for PM, PM_{10}, PM_{2.5}, SO_{2}, NO_{x}, CO, Aldehyde, and POM are from AP-42, Ch. 1.9, Table 1.9-1 for residential fireplaces (SCC# 21-04-008-001)

1Assume PM = PM_{10} = PM_{2.5}, includes filterable and condensables.

Methodology:
Max. Wood Chip Usage Rate (tons/yr) = Smoke Generator Time (hrs) * Number of Batches Smoked Annually (batch/yr) * Max. Wood Chip Usage Rate (lbs/hr) * 1 ton/2,000 lbs
Amount of Meat Smoked Hourly (lbs/hr) = Amount of Meat Smoked Per Batch (lbs/batch)/Total Smokehouse Batch Cycle Time (hrs)
Amount of Meat Smoked Annually (tons/yr) = Amount of Meat Smoked Hourly (lbs/hr) * 1 ton/2,000 lbs * 8,760 hrs/yr
Uncontrolled Emissions (tons/yr) = Emission Factor (lb/ton) * Max. Wood Chip Usage Rate (lbs/hr) * 1 ton/2,000 lbs
Uncontrolled HAP Emissions (tons/yr) = Emission Factor (lb/ton) * Max. Wood Chip Usage Rate (lbs/hr) * 1 ton/2,000 lbs
Appendix A: Emission Calculations
Uncontrolled Emissions
Type of Unit: Reciprocating Internal Combustion Engines - Natural Gas Generators
4-Stroke Rich-Burn (4SRB) Engines

Pollutants: PM, PM10, PM2.5, SO2, NOx, VOC, CO and HAPS

Company Name:
Sugar Creek Packing Co.

Address City IN Zip:
1200 Enterprise Rd, Cambridge City, IN 47327

Significant Source Modification No.:
177-41830-00121

Part 70 Permit Renewal No.:
T177-41827-00121

Reviewer:
Tamera Wessel

Maximum Output Horsepower Rating (hp)

<table>
<thead>
<tr>
<th>Emergency Generator #1</th>
<th>Emergency Generator #2</th>
<th>Emergency Generator #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>605</td>
<td>134</td>
<td>201</td>
</tr>
<tr>
<td>7600</td>
<td>7600</td>
<td>7600</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>2291</td>
<td>509</td>
<td>784</td>
</tr>
<tr>
<td>1020</td>
<td>1020</td>
<td>1020</td>
</tr>
<tr>
<td>2.25</td>
<td>0.50</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Emergency Generator #1

- **PM**:
 - Emission Factor: 9.50E-03 (lb/MMBtu)
 - Process Description: 0.01 lb/MMBtu

- **PM10**:
 - Emission Factor: 1.94E-02 (lb/MMBtu)
 - Process Description: 0.02 lb/MMBtu

- **PM2.5**:
 - Emission Factor: 1.94E-02 (lb/MMBtu)
 - Process Description: 0.02 lb/MMBtu

- **SO2**:
 - Emission Factor: 5.88E-04 (g/hp-hr)
 - Process Description: 6.76E-04 g/hp-hr

- **NOx**:
 - Emission Factor: 2.00E+00 (g/hp-hr)
 - Process Description: 0.67 g/hp-hr

- **VOC**:
 - Emission Factor: 1.00E+00 (g/hp-hr)
 - Process Description: 0.34 g/hp-hr

- **CO**:
 - Emission Factor: 4.00E+00 (g/hp-hr)
 - Process Description: 1.10 g/hp-hr

Emergency Generator #2

- **PM**:
 - Emission Factor: 2.42E-03 (lb/MMBtu)
 - Process Description: 4.94E-03 lb/MMBtu

- **PM10**:
 - Emission Factor: 4.94E-03 (lb/MMBtu)
 - Process Description: 4.94E-03 lb/MMBtu

- **PM2.5**:
 - Emission Factor: 4.94E-03 (lb/MMBtu)
 - Process Description: 4.94E-03 lb/MMBtu

- **SO2**:
 - Emission Factor: 1.50E-04 (g/hp-hr)
 - Process Description: 6.76E-04 g/hp-hr

- **NOx**:
 - Emission Factor: 0.51 (g/hp-hr)
 - Process Description: 0.34 g/hp-hr

- **VOC**:
 - Emission Factor: 0.25 (g/hp-hr)
 - Process Description: 1.10 g/hp-hr

- **CO**:
 - Emission Factor: 1.02 (g/hp-hr)
 - Process Description: 1.10 g/hp-hr

Emergency Generator #3

- **PM**:
 - Emission Factor: 3.63E-03 (lb/MMBtu)
 - Process Description: 0.01 lb/MMBtu

- **PM10**:
 - Emission Factor: 0.01 (lb/MMBtu)
 - Process Description: 0.01 lb/MMBtu

- **PM2.5**:
 - Emission Factor: 0.01 (lb/MMBtu)
 - Process Description: 0.01 lb/MMBtu

- **SO2**:
 - Emission Factor: 2.25E-04 (g/hp-hr)
 - Process Description: 6.76E-04 g/hp-hr

- **NOx**:
 - Emission Factor: 0.76 (g/hp-hr)
 - Process Description: 0.34 g/hp-hr

- **VOC**:
 - Emission Factor: 0.38 (g/hp-hr)
 - Process Description: 1.10 g/hp-hr

- **CO**:
 - Emission Factor: 1.53 (g/hp-hr)
 - Process Description: 1.10 g/hp-hr

Notes:
* PM emission factor is for filterable PM-10. PM10 emission factor is filterable PM10 + condensable PM.
* PM2.5 emission factor is filterable PM2.5 + condensable PM.
* PM, PM10, PM2.5 and SO2 Emission Factors are from AP-42 (Supplement F, July 2000), Table 3.2-3
* NOx, VOC and CO Emission Factors based on allowable emission rates under 40 CFR 60, Subpart JJJJ, Table 1 (Emergency Engines hp ≥ 130)

Methodology:
- Potential Fuel Usage (MMBtu/yr) = Maximum Output Horsepower Rating (hp) * Brake Specific Fuel Consumption (Btu/hp-hr) * Maximum Hours Operated per Year (hr/yr) / 1,000,000 Btu/MMBtu
- HAP Potential Emissions (tons/yr) = Potential Fuel Usage (MMBtu/yr) * Emission Factor (lb/MMBtu) / 2,000 lb/ton

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/MMBtu)</th>
<th>Emergency Generator #1</th>
<th>Emergency Generator #2</th>
<th>Emergency Generator #3</th>
<th>Uncontrolled PTE (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>2.79E-03</td>
<td>3.21E-03</td>
<td>7.10E-04</td>
<td>1.07E-03</td>
<td>4.94E-03</td>
</tr>
<tr>
<td>Acrolein</td>
<td>3.93E-03</td>
<td>3.02E-03</td>
<td>6.70E-04</td>
<td>1.06E-03</td>
<td>4.76E-03</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.58E-03</td>
<td>1.82E-03</td>
<td>4.02E-04</td>
<td>6.03E-04</td>
<td>2.82E-03</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>6.38E-04</td>
<td>7.62E-04</td>
<td>1.66E-04</td>
<td>2.53E-04</td>
<td>1.18E-03</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>2.05E-02</td>
<td>0.02</td>
<td>5.22E-03</td>
<td>7.83E-03</td>
<td>3.66E-02</td>
</tr>
<tr>
<td>Methanol</td>
<td>3.06E-03</td>
<td>3.52E-03</td>
<td>7.76E-04</td>
<td>1.17E-03</td>
<td>5.47E-03</td>
</tr>
<tr>
<td>Total PAH**</td>
<td>1.41E-04</td>
<td>1.82E-04</td>
<td>3.59E-05</td>
<td>5.38E-05</td>
<td>2.52E-04</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.58E-04</td>
<td>6.41E-04</td>
<td>1.42E-04</td>
<td>2.13E-04</td>
<td>9.97E-04</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.95E-04</td>
<td>2.24E-04</td>
<td>4.96E-05</td>
<td>7.45E-05</td>
<td>3.48E-04</td>
</tr>
</tbody>
</table>

Notes:
- HAP pollutants consist of the nine highest HAPs included in AP-42 Table 3.2-3.
- **PAH** = Polycyclic Hydrocarbons (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

Methodology:
- Potential Fuel Usage (MMBtu/yr) = Maximum Output Horsepower Rating (hp) * Brake Specific Fuel Consumption (Btu/hp-hr) * Maximum Hours Operated per Year (hr/yr) / 1,000,000 Btu/MMBtu
- HAP Potential Emissions (tons/yr) = Potential Fuel Usage (MMBtu/yr) * Emission Factor (lb/MMBtu) / 2,000 lb/ton

Page 14 of 17, TSD App. A
Appendix A: Emissions Calculations
Uncontrolled Emissions

Type of Unit: Washers
Pollutants: VOC and HAPs

Company Name: Sugar Creek Packing Co.
Address City IN Zip: 1200 Enterprise Rd, Cambridge City, IN 47327
Significant Source Modification No.: 177-41830-00121
Part 70 Permit Renewal No.: T177-41827-00121
Reviewer: Tamera Wessel

VOC Determination

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Maximum Annual Consumption (gal/yr)</th>
<th>Density (lbs/gal)</th>
<th>Maximum Annual Consumption (lb/yr)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vat Washer</td>
<td>1,800</td>
<td>12.00</td>
<td>21,602.27</td>
<td>0.01%</td>
</tr>
<tr>
<td>Parts Washer #1</td>
<td>420</td>
<td>7.90</td>
<td>3,318.00</td>
<td>100.00%</td>
</tr>
<tr>
<td>Parts Washer #2</td>
<td>420</td>
<td>7.90</td>
<td>3,318.00</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Methodology:

\[
\text{Maximum Annual Consumption (lbs/yr)} = \text{Maximum Annual Consumption (gal/yr)} \times \text{Density (lbs/gal)}
\]

HAPs Determination

<table>
<thead>
<tr>
<th>Process Description</th>
<th>VOC Content</th>
<th>Naphthalene Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vat Washer</td>
<td>1.30E-03</td>
<td>0</td>
</tr>
<tr>
<td>Parts Washer #1</td>
<td>1.66</td>
<td>0.10</td>
</tr>
<tr>
<td>Parts Washer #2</td>
<td>1.66</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Total (tons/yr)	3.32	0.20
Total VOC Content (tons/yr)	3.32	
Total HAPs (tons/yr)	0.20	
Worst Single HAP (tons/yr)	0.20 Naphthalene	

Notes:
- Potential VOC and HAP emissions are conservatively calculated assuming 100 percent of VOC/HAP in solvent used is emitted.
- Density, VOC content, and HAP content per manufacturer MSDS, except vat washer VOC content per manufacturer test memo.
- The vat washer is not a cold cleaner degreaser. This operation is used to wash dirty vats using primarily heated water with a small amount of detergent added. The detergent contains a very small amount of VOC (0.012% as shown in the MSDS). Therefore, to be thorough VOC was included in the PTE calculations for the washer in the air permit application. This washer is heated and therefore does not meet the definition of cold cleaner degreaser and does not use an organic solvent bath, so does not meet the definitions of conveyorized degreasers or open top degreasers.

Methodology:

\[
\text{VOC Emissions (ton/yr)} = \frac{\text{Maximum Throughput (gal/yr)} \times \text{Density} \times \text{VOC Content} (\%)}{2000 \text{ lbs/ton}}
\]

\[
\text{HAP Emissions (ton/yr)} = \frac{\text{Maximum Throughput (lb/yr)} \times \text{HAP Content} (\%)}{2000 \text{ lbs/ton}}
\]
Appendix A: Emissions Calculations

Uncontrolled Emissions
Type of Unit: Printer
Pollutants: VOC and HAPs

Company Name: Sugar Creek Packing Co.
Address City IN Zip: 1200 Enterprise Rd, Cambridge City, IN 47327
Significant Source Modification No.: 177-41830-00121
Part 70 Permit Renewal No.: T177-41827-00121
Reviewer: Tamera Wessel

Unit: Inkjet Printers

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Annual Consumption gal/yr</th>
<th>Density lbs/gal</th>
<th>Maximum Annual Consumption lb/yr</th>
<th>VOC Content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ink</td>
<td>45</td>
<td>7.26</td>
<td>326.51</td>
<td>87.20%</td>
</tr>
<tr>
<td>Make-up Fluid</td>
<td>180</td>
<td>6.76</td>
<td>1,215.97</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Methodology:
Maximum Annual Consumption (lbs/yr) = Maximum Annual Consumption (gal/yr) * Density (lbs/gal)

<table>
<thead>
<tr>
<th>Material</th>
<th>Uncontrolled Potential to Emit (PTE) (tons/yr)</th>
<th>VOC Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ink</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Make-up Fluid</td>
<td>0.61</td>
<td>0.61</td>
</tr>
<tr>
<td>Total (tons/yr)</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Potential VOC emissions are conservatively calculated assuming 100 percent of VOC in ink/make-up fluid used is emitted.
Ink and make-up fluid densities and VOC contents per manufacturer MSDS.
Ink and make-up fluid contain no HAP per manufacturer MSDS.

Methodology:
VOC Emissions (ton/yr) = (Maximum Throughput (gal/yr) x Density x VOC Content (%)) / (2000 lbs/ton)
Appendix A: Emission Calculations

Fugitive Dust Emissions - Paved Roads

Company Name: Sugar Creek Packing Co.

Address City In Zip: 1200 Enterprise Rd, Cambridge City, IN 47327

Significant Source Modification No.: 1177-41830-00121

Part 70 Permit Renewal No.: 1177-41842-00121

Reviewer: Tamera Wessel

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

Vehicle Information (provided by source)

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum number of vehicles per day</th>
<th>Maximum trips per vehicle</th>
<th>Maximum Weight of Loaded Vehicle (tons/trip)</th>
<th>Total Weight driven per day (tons/day)</th>
<th>Maximum one-way distance (miles/day)</th>
<th>Maximum one-way miles (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haul Trucks (loaded)</td>
<td>16.0</td>
<td>1.0</td>
<td>18.0</td>
<td>608.1</td>
<td>400.0</td>
<td>12.1</td>
</tr>
<tr>
<td>Haul Trucks (unloaded)</td>
<td>16.0</td>
<td>1.0</td>
<td>17.0</td>
<td>229.0</td>
<td>400.0</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Totals
32.0
880.0
24.2
8848.5

Average Vehicle Weight Per Trip = 27.5 tons/trip
Average Miles Per Trip = 0.758 miles/trip

Unmitigated Emission Factor, E_f =

\[
E_f = [k \times (sL)^{0.91} \times (W)^{1.02}]
\]

where:

\[
\begin{align*}
W &= \text{average vehicle weight} \\
W &= 27.5 \text{ tons} \\
S_L &= \text{silt loading value for paved roads at iron and steel production facilities} - \text{Table 13.2.1-3) (9.7 g/m}^2) \\
S_L &= 9.7 \text{ g/m}^2 \\
k &= \text{particle size multiplier (AP-42 Table 13.2.1-1)} \\
k &= [0.011 \text{ PM}, 0.0022 \text{ PM10}, 0.00054 \text{ PM2.5}] \\
k &= [0.011 \text{ PM}, 0.0022 \text{ PM10}, 0.00054 \text{ PM2.5}] \\
N &= \text{days per year} \\
N &= 365 \\
p &= \text{days of rain greater than or equal to 0.01 inches} \text{ (see Fig. 13.2.1-2)} \\
p &= 125 \\
E_{ext} &= \text{Mitigated Emission Factor} \\
E_{ext} &= E_f \times [1 - (p/4N)] \\
E_{ext} &= [2.337 \text{ PM}, 0.467 \text{ PM10}, 0.1147 \text{ PM2.5}] \\
E_{ext} &= [2.337 \text{ PM}, 0.467 \text{ PM10}, 0.1147 \text{ PM2.5}] \\
\]

Process

<table>
<thead>
<tr>
<th></th>
<th>Mitigated PTE of PM (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM10 (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (Before Control) (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haul Trucks (loaded)</td>
<td>0.17</td>
<td>1.03</td>
<td>0.25</td>
</tr>
<tr>
<td>Haul Trucks (unloaded)</td>
<td>0.17</td>
<td>1.03</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Totals

| | 0.34 | 2.07 | 0.51 |

Methodology

<table>
<thead>
<tr>
<th>Total Weight driven per day (ton/day)</th>
<th>= [Maximum Weight of Loaded Vehicle (tons/trip)] * [Maximum trips per day (trip/day)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum one-way distance (mi/trip)</td>
<td>= [of vehicles per trip (trip/day)] * [S280 ft/mile]</td>
</tr>
<tr>
<td>Average Vehicle Weight Per Trip (ton/trip)</td>
<td>= 27.5</td>
</tr>
<tr>
<td>Average Miles Per Trip (mile/trip)</td>
<td>= [Maximum one-way distance (mi/trip)] / [SUM(Maximum trips per day (trip/day))]</td>
</tr>
<tr>
<td>Unmitigated PTE (ton/yr)</td>
<td>= [Maximum one-way miles (mile/trip)] * [Unmitigated Emission Factor (lb/mile)] * (ton/2000 lbs)</td>
</tr>
<tr>
<td>Mitigated PTE (Before Control) (ton/yr)</td>
<td>= [Mitigated Emission Factor (lb/mile)] * (ton/2000 lbs)</td>
</tr>
<tr>
<td>Mitigated PTE (After Control) (ton/yr)</td>
<td>= [Mitigated PTE (Before Control) (ton/yr)] * [1 - Dust Control Efficiency]</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>PM = Particulate Matter</th>
<th>PM10 = Particulate Matter (<10 um)</th>
<th>PM2.5 = Particulate Matter (<2.5 um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTE = Potential to Emit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S280 ft/mile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

November 21, 2019

Lorie Brengleman
Sugar Creek Packing Company
12021 Sheraton Lane
Cincinnati, OH 45246

Re: Public Notice
Sugar Creek Packing Company
Permit Level: Title V Sig Source Mod Minor PSD
Permit Number: 177-41830-00121

Dear Ms. Brengleman:

Enclosed is a copy of your draft Title V Significant Source Modification Minor PSD, Technical Support Document, emission calculations, and the Public Notice.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Cambridge City Public Library, 600 West Main Street in Cambridge City, IN. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Tamera Wessel, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 4-8530 or dial (317) 234-8530.

Sincerely,

Theresa Weaver
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover Letter 4/12/19
November 21, 2019

To: Cambridge City Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Sugar Creek Packing Company
Permit Number: 177-41827-00121; 177-41830-00121

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. **Please make this information readily available until you receive a copy of the final package.**

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

November 21, 2019
Sugar Creek Packing Company
177-41827-00121; 177-41830-00121

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.
AFFECTED STATE NOTIFICATION OF PUBLIC COMMENT PERIOD
DRAFT INDIANA AIR PERMIT

November 21, 2019

A 30-day public comment period has been initiated for:

Permit Number: 177-41827-00121; 177-41830-00121
Applicant Name: Sugar Creek Packing Company
Location: Cambridge City, Wayne County, Indiana

The public notice, draft permit and technical support documents can be accessed via the IDEM Air Permits Online site at:
http://www.in.gov/ai/appfiles/idem-caats/

Questions or comments on this draft permit should be directed to the person identified in the public notice by telephone or in writing to:

Indiana Department of Environmental Management
Office of Air Quality, Permits Branch
100 North Senate Avenue
Indianapolis, IN 46204

Questions or comments regarding this email notification or access to this information from the EPA Internet site can be directed to Chris Hammack at chammack@idem.IN.gov or (317) 233-2414.

Affected States Notification 1/9/2017
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>TAWEAVER 11/21/2019</th>
<th>Sugar Creek Packing Co 177-41827-00121: 177-41830-00121 (draft)</th>
<th>AFFIX STAMP HERE IF USED AS CERTIFICATE OF MAILING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of Sender</td>
<td>Indiana Department of Environmental Management Office of Air Quality – Permits Branch 100 N. Senate Indianapolis, IN 46204</td>
<td>Type of Mail: CERTIFICATE OF MAILING ONLY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Rest. Del. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Lorie Brengleman Sugar Creek Packing Co 12021 Sheraton Lane Cincinnati OH 45246 (Source CAATS)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Michael Richardson Chief Operating Officer (COO) Sugar Creek Packing Co 12021 Sheraton Ln Cincinnati OH 45246 (RO CAATS)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cambridge City Public Library 600 W. Main Street Cambridge City IN 47327 (Library)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Cambridge City - Town Council 127 N. Foote St. Cambridge City IN 47327 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Richmond City Council and Mayors Office 50 North 5th Street Richmond IN 47374 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Wayne County Commissioners & Council 401 East Main Street Richmond IN 47374 (Local Official)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Mr. Randall Shrock 2764 Abington Pike Richmond IN 47374 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Wayne County Health Department 401 E. Main Street Richmond IN 47374-4388 (Health Department)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Oral Francis & Susan J Myers 1329 North Cambridge Road Cambridge City IN 47327 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>James Bertsch 3589 Chester Boulevard Richmond IN 47374 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Taconic Farms, Inc. 273 Hoover Avenue Germantown NY 12526 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Hooseir Energy Rural Electric Cooperative Inc. PO Box 908 Bloomington IN 47402 (Affected Party)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Emily Stewart Trinity Consultants 8910 Purdue Road, Suite 670 Indianapolis IN 46268 (Consultant)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender

Total number of Pieces Received at Post Office

Postmaster, Per (Name of Receiving employee)

The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See Domestic Mail Manual R900, S913, and S921 for limitations of coverage on insured and COD mail. See International Mail Manual for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.