NOTICE OF 30-DAY PERIOD FOR PUBLIC COMMENT

Preliminary Findings Regarding a Significant Modification to a Part 70 Operating Permit

for Meridian Brick LLC - Terre Haute Plant in Vigo County

Significant Permit Modification No.: 167-40457-00139

The Indiana Department of Environmental Management (IDEM) has received an application from Meridian Brick LLC - Terre Haute Plant, located at 5601 East Price Road, Terre Haute, Indiana 47802, for a significant modification of its Part 70 Operating Permit issued on March 16, 2018. If approved by IDEM’s Office of Air Quality (OAQ), this proposed modification would allow Meridian Brick LLC - Terre Haute Plant to make certain changes at its existing source. Meridian Brick LLC - Terre Haute Plant has applied to submit information including the compliance and testing requirements of Brick and Structural Clay Products Manufacturing under 40 CFR Part 63, Subpart JJJJJ (Brick MACT). The source requests incorporation of two operating scenarios in the Part 70 Operating Permit to render the facility an area source and not be subject to 40 CFR Part 63, Subpart JJJJJ.

A copy of the permit application and IDEM’s preliminary findings are available at:

Vigo County Public Library - Main Library
One Library Square
Terre Haute, IN 47807

A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the preliminary findings is also available via IDEM’s Virtual File Cabinet (VFC.) Please go to http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the air pollution impact of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.
Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM's mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number SPM 167-40457-00139 in all correspondence.

Comments should be sent to:

Ms. Pavithra Ethi Rajan
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Ms. Pavithra Ethi Rajan or (317)-233-7511
Or dial directly: (317) 233-7511
Fax: (317) 232-6749 attn: Pavithra Ethi Rajan
E-mail: pethiraj@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM's response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM's decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Ms. Pavithra Ethi Rajan of my staff at the above address.

[Signature]

Brian Williams, Section Chief
Permits Branch
Office of Air Quality
Mr. Brandon Chaney
Meridian Brick LLC - Terre Haute Plant
5601 East Price Street
Terre Haute, Indiana 47802

Re: 167-40457-00139
Significant Permit Modification

Dear Mr. Chaney:

Meridian Brick LLC - Terre Haute Plant was issued Part 70 Operating Permit Renewal No. T167-37385-00139 on April 18, 2017 for a stationary brick manufacturing plant located at 5601 East Price Road, Terre Haute, Indiana 47802. An application relating to the requirements of Operating Permit Condition E.2.4 was received on March 16, 2018. However, the initial application did not notify IDEM if the source planned to comply with the NESHAP or take area source limits to render the NESHAP not applicable. On October 15, 2018, the source requested to incorporate two operating scenarios in the Part 70 Operating Permit to render the facility an area source and not be subject to 40 CFR Part 63, Subpart JJJJJ. The source also provided IDEM updated stack testing results for PM, SO2, Hydrofluoric Acid (HF), Hydrochloric Acid (HCl), Chlorine (Cl), and Mercury (Hg). The Office of Air Quality (OAQ) has also reviewed the application submitted by Meridian Brick LLC - Terre Haute Plant (formerly Boral Brick Terre Haute Plant) on September 10, 2018, relating to the changes at the source as a result of an inspection conducted by IDEM on July 05, 2018. This application requests that the Part 70 Permit be updated to correctly reflect the operations at the Terre Haute Facility. A Fugitive Dust Control Plan (FDCP) with updates has been received along with this permit application. The applications received on March 16, 2018 and September 10, 2018 have both been combined, and addressed in this permit. Pursuant to the provisions of 326 IAC 2-7-12, a Significant Permit Modification to this permit is hereby approved as described in the attached Technical Support Document.

Please find attached the entire Part 70 Operating Permit as modified, including the following revised attachment:

Attachment A: Fugitive Dust Control Plan revised
Attachment C: 40 CFR 63, Subpart CCCCC, National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities new

The permit references the below listed attachment(s). Since this attachment has been provided in previously issued approvals for this source, IDEM OAQ has not included a copy of this attachment with this modification:

Attachment B: 40 CFR 60, Subpart OOO, New Source Performance Standards for Mineral Processing Plants
Previously issued approvals for this source containing these attachments are available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

Previously issued approvals for this source are also available via IDEM’s Virtual File Cabinet (VFC). Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

A copy of the permit is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/. A copy of the permit is also available via IDEM’s Virtual File Cabinet (VFC). Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria. For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.

This decision is subject to the Indiana Administrative Orders and Procedures Act - IC 4-21.5-3-5.

If you have any questions regarding this matter, please contact Ms. Pavithra Ethi Rajan, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-7511 or (800) 451-6027, and ask for Ms. Pavithra Ethi Rajan or (317) 233-7511.

Sincerely,

Brian Williams, Section Chief
Permits Branch
Office of Air Quality

Attachments: Modified Permit and Technical Support Document

cc: File - Vigo County
Vigo County Health Department
U.S. EPA, Region 5
Compliance and Enforcement Branch
Part 70 Operating Permit Renewal
OFFICE OF AIR QUALITY

Meridian Brick LLC - Terre Haute Plant
5601 E. Price Road
Terre Haute, Indiana 47802

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

<table>
<thead>
<tr>
<th>Operation Permit No.: T167-37385-00139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Agency Interest ID.: 14608</td>
</tr>
<tr>
<td>Issued by: Original Signed</td>
</tr>
<tr>
<td>Jenny Acker, Chief</td>
</tr>
<tr>
<td>Permits Branch, Office of Air Quality</td>
</tr>
<tr>
<td>Issuance Date: April 18, 2017</td>
</tr>
<tr>
<td>Expiration Date: April 18, 2022</td>
</tr>
</tbody>
</table>

Minor Source Modification No. 167-39207-00139, issued on April 20, 2018
Significant Source Modification No. 167-39297-00139, issued on June 22, 2018

<table>
<thead>
<tr>
<th>Significant Permit Modification No.: 167-40457-00139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued by:</td>
</tr>
<tr>
<td>Brian Williams, Section Chief</td>
</tr>
<tr>
<td>Permits Branch</td>
</tr>
<tr>
<td>Office of Air Quality</td>
</tr>
<tr>
<td>Issuance Date:</td>
</tr>
<tr>
<td>Expiration Date: April 18, 2022</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY ... 5
A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]
A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]
A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

SECTION B GENERAL CONDITIONS ... 11
B.1 Definitions [326 IAC 2-7-1]
B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
B.3 Term of Conditions [326 IAC 2-1.1-9.5]
B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]
B.5 Severability [326 IAC 2-7-5(5)]
B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]
B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]
B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]
B.11 Emergency Provisions [326 IAC 2-7-16]
B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]
B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]
B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]
B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]
B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]
B.19Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]
B.20 Source Modification Requirement [326 IAC 2-7-10.5]
B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]
B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS ... 22
Emission Limitations and Standards [326 IAC 2-7-5(1)] ... 22
C.1 Opacity [326 IAC 5-1]
C.2 Open Burning [326 IAC 4-1][IC 13-17-9]
C.3 Incineration [326 IAC 4-2][326 IAC 9-1-2]
C.4 Fugitive Dust Emissions [326 IAC 6-4]
C.5 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]
C.6 Stack Height [326 IAC 1-7]
C.7 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)] ... 23
C.8 Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11] ... 23
C.9 Compliance Requirements [326 IAC 2-1.1-11]
Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)] 23
C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]
C.11 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6] .. 24
C.12 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]
C.13 Risk Management Plan [326 IAC 2-7-5(11)][40 CFR 68]
C.14 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5][326 IAC 2-7-6]
C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19] 27
C.16 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]
C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-6]
C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)][326 IAC 2-1.1-11][40 CFR 64][326 IAC 3-8]

Stratospheric Ozone Protection .. 29
C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS .. 30

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19] 42
D.2.11 Record Keeping Requirements
D.2.12 Reporting Requirement

SECTION E.1 NSPS .. 44

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)] 45

E.1.2 Nonmetallic Mineral Processing Plants NSPS [326 IAC 12][40 CFR Part 60, Subpart OO]

Compliance Determination Requirements [326 IAC 2-7-5(1)] .. 46

E.1.3 Testing Requirements [326 IAC 2-1.1-11][326 IAC 2-7-6(1)][326 IAC 2-7-5(1)]

SECTION E.2 NESHAP .. 47

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)] ... 47

E.2.1 General Provisions Relating to National Emission Standards for Hazardous Air

E.2.2 National Emission Standards for Hazardous Air Pollutants for Source Category:
Gasoline Dispensing Facilities NESHAP [40 CFR Part 63, Subpart CCCCC][326 IAC 20-1]

CERTIFICATION ... 49

EMERGENCY OCCURRENCE REPORT .. 50

Part 70 Quarterly Report .. 52

Part 70 Quarterly Report .. 53

Part 70 Quarterly Report .. 54

Part 70 Quarterly Report .. 55

QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT 56

Attachment A - Fugitive Dust Control Plan
Attachment B - New Source Performance Standards for Mineral Processing Plants (40 CFR 60, Subpart OO)
Attachment C - National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities (40 CFR 63, Subpart CCCCC)
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary brick manufacturing plant.

<table>
<thead>
<tr>
<th>Source Address:</th>
<th>5601 E. Price Road, Terre Haute, Indiana 47802</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Source Phone Number:</td>
<td>(812) 894-2454</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>3251 (Brick and Structural Clay Tile)</td>
</tr>
<tr>
<td>County Location:</td>
<td>Vigo (Outside Fayette and Harrison Townships)</td>
</tr>
<tr>
<td>Source Location Status:</td>
<td>Attainment for all criteria pollutants</td>
</tr>
<tr>
<td>Source Status:</td>
<td>Part 70 Operating Permit Program</td>
</tr>
<tr>
<td></td>
<td>Minor Source, under PSD</td>
</tr>
<tr>
<td></td>
<td>Minor Source, Section 112 of the Clean Air Act</td>
</tr>
<tr>
<td></td>
<td>Not 1 of 28 Source Categories</td>
</tr>
</tbody>
</table>

A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

- **Clay surface mining operations**, constructed in 2007, capacity of 120 tons of shale and clay per hour, including the following operations:
 - (1) Bulldozing
 - (2) Excavating
 - (3) Truck loading
 - (4) Unpaved Roads

- **Material receiving emission unit group**, identified as EUG-01, consisting of:
 - (1) Dump truck unloading, identified as MR01, constructed in 2007, with a maximum short term capacity of 120 tons per hour.
 - (2) Receiving material apron feeder, identified as MR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour. Under NSPS Subpart OOO, these are conveyors with transfer points outside under the hopper that serves as a partial enclosure.
 - (3) Three (3) crude material belt conveyors, identified as MR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, and exhausting internally. Under NSPS Subpart OOO, these are conveyors with transfer points enclosed in a building.
Clay grinding and screening operations emission unit group, identified as EUG-02, consisting of:

1. Primary crusher, identified as GR01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility outside under the hopper that serves as a partial enclosure.

2. Scalping screen, identified as GR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

3. Screens (bank of 3 units), identified as GR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

4. Five (5) processing belt conveyors, identified as GR04, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

5. Impact crusher, identified as GR05, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

6. Two (2) screw conveyors, identified as GR06, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

7. Three (3) raw material bins, identified as GR07, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.

8. Three (3) raw material feeders, identified as GR08, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.

9. One (1) primary crusher, identified as GR01R, approved in 2016 for construction, with a maximum capacity of 300 tons per hour, located outdoors. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.
(d) Processed clay emission unit group, identified as EUG-03, consisting of:

1. Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

2. Reclaimer, identified as PC02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC02 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

3. Five (5) processed clay feed conveyors, four (4) between the double shaft mixer and the intermediate storage area and one (1) conveyor from intermediate storage to brick manufacturing, identified as PC03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, exhausting internally. A portion of the emissions from PC03 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

4. Reclaimer by-pass chute, identified as PC04, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC04 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(e) Material handling and brick forming emission unit group, identified as EUG-04, consisting of:

1. Sand tank silo, identified as SD02, constructed in 2007, with a maximum short term capacity of 30 tons per day, using a bin vent filter for particulate control, exhausting outside. A portion of the emissions from SD02 are collected and controlled by dust collector CD03, and exhausting through stack CD03.

2. Two (2) mixed clay conveyors, identified as PC05, constructed in 2007, with a maximum short term capacity of 90 tons per hour each, exhausting internally. A portion of the emissions from PC05 are collected by dust collector CD03, and exhausting through stack CD03.

3. One (1) clay storage hopper, identified as PC06, constructed in 2007, with a maximum short term capacity of 90 tons per hour, exhausting internally. A portion of the emissions from PC06 is collected by dust collector CD03, and exhausting through stack CD03.

4. One (1) Even Feeder, identified as PC07, constructed in 2007, with a maximum short term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from PC07 is collected by dust collector CD03, and exhausting through stack CD03.

5. Three (3) sand vibrating units, identified as SVU, constructed in 2007, with a maximum short term capacity of 1.25 tons per hour each, exhausting internally. A portion of the emissions from SVUs are collected by dust collector CD03, and exhausting through stack CD03.
(f) Brick firing emission unit group, identified as EUG-05, consisting of:

(1) Tunnel dryer, identified as EU01, constructed in 2007, with a maximum short term capacity of 29 tons of brick per hour, with a maximum supplemental heat rate of 5.943 million (MM) Btu per hour firing natural gas, without control, and exhausting through stack EU01.

(2) Tunnel Kiln, identified as EU02, constructed in 2007, with a maximum firing rate of 55 million (MM) Btu per hour of natural gas and landfill gas, with a maximum capacity of 29 tons of brick per hour, uncontrolled (alternative operating scenario 1 (AOS 1)), or controlled by a dry sorbent injection fabric filter (DIFF) CD01 as an alternative operating scenario (AOS 2), and exhausting through stack CD01.

(3) Two (2) silos associated with the DIFF - CD01 system, consisting of the following equipment:

(i) One (1) Hydrated Lime Silo, constructed in 2007, used to load fresh reagent as well as spent reagent as follows:

(a) Fresh reagent is pneumatically loaded from the delivery truck to the silo, once a month. Each silo loading delivery is assumed to be completed in one hour. The fresh reagent is loaded into the silo at the rate of 30 tons/hour, once a month.

(b) Spent reagent is pneumatically loaded to the waste silo as needed. With the nominal ratio of Spent Reagent / Fresh Reagent at 1.2, the spent reagent is loaded at the rate of 36 tons/hour, once a month.

(ii) One (1) Waste Reagent Silo, constructed in 2007, used to empty waste reagent as needed, via a flexible spout into a covered roll-off container for disposal. Each unloading of the waste reagent is assumed to be completed in one hour. The waste reagent is unloaded into the roll-off container at the rate of 21,069 pounds/hour, with a total of 41 loads/year.

(g) One (1) landfill gas-fired flare, identified as EU03, constructed in 2008, with a maximum firing rate of 26.1 million (MM) Btu per hour.

A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(a) Material handling emission unit group, identified as EUG-04, consisting of:

(1) Sand (supersack) handling, identified as SD01, constructed in 2007, with a maximum short term capacity of 30 tons per day, exhausting internally. A portion of the emissions from SD01 is collected by dust collector CD03, and exhausting through stack CD03.

(2) Additive (supersack) handling, identified as AD01, constructed in 2007, with a maximum short-term capacity of one (1) ton per hour, exhausting internally. A portion of the emissions from AD01 is collected by dust collector CD03, and exhausting through stack CD03.
(3) Four (4) Trim Conveyors identified as TC01, constructed in 2007, with a maximum short-term capacity 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from TC01 is collected by dust collector CD03, and exhausting through stack CD03.

(b) Paved and unpaved roads and parking lots with public access.

A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities as defined in 326 IAC 2-7-1(21):

(a) Material handling emission unit group, identified as EUG-04, consisting of:

(1) One (1) pugmill, identified as PUG, constructed in 2007, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(2) One (1) extruder, identified as EXT, constructed in 2007, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(3) Texturing Activity, identified as TA01, constructed in 2011, with a maximum short-term capacity of one (90) tons per hour, with no emissions due to high moisture content.

(4) Finished Brick Transfer Conveyors, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(b) A gasoline fuel transfer dispensing operation handling less than or equal to one thousand three hundred (1,300) gallons per day and filling storage tanks having a capacity equal to or less than ten thousand five hundred (10,500) gallons. Under 40 CFR 63, Subpart CCCCC, this is considered an existing affected facility.

(c) A petroleum fuel, other than gasoline dispensing facility, having storage capacity of less than or equal to 10,500 gallons, and dispensing less than or equal to 230,000 gallons per month, including one (1) diesel storage tank, constructed in 2007, storage capacity: 1,000 gallons.

(d) The following VOC and HAP storage containers:

(1) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(A) One (1) diesel storage tank, with capacity of 1,000 gallons.

(B) One (1) gasoline storage tank, with capacity of 500 gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(C) One (1) used oil storage tank, with capacity of 500 gallons.

(2) Vessels storing lubricating oil, hydraulic oils, machining oils, and machining fluids.

(e) Ten (10) natural gas-fired forced air heaters, with a maximum capacity of 0.17 MMBtu per hour, each.
(f) Eighteen (18) natural gas-fired radiant heaters, with a maximum capacity of 0.05 MMBtu per hour, each.

(g) Degreasing operations which do not use a volatile solvent and do not exceed one hundred forty-five (145) gallons per twelve (12) months except if subject to 326 IAC 20-6.

A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

(a) It is a major source, as defined in 326 IAC 2-7-1(22);

(b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 - Applicability).
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]
Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
(a) This permit, 167-37385-00139, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit.

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]
Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]
Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source’s potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]
The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

1. it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and

2. the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than July 1 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V
Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

1. The appropriate identification of each term or condition of this permit that is the basis of the certification;

2. The compliance status;

3. Whether compliance was continuous or intermittent;

4. The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
(5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance
causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

(1) An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;

(2) The permitted facility was at the time being properly operated;

(3) During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;

(4) For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
Facsimile Number: 317-233-6865

(5) For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

(A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and

(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.

(g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable
requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.

(c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.

(d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:

 (1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;

 (2) The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;

 (3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and

 (4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.

(e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).

(f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]

(g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

 (a) All terms and conditions of permits established prior to 167-37385-00139 and issued pursuant to permitting programs approved into the state implementation plan have been either:

 (1) incorporated as originally stated,

 (2) revised under 326 IAC 2-7-10.5, or

 (3) deleted under 326 IAC 2-7-10.5.

 (b) Provided that all terms and conditions are accurately reflected in this permit, all previous registrations and permits are superseded by this Part 70 operating permit.

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination

[326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

(1) That this permit contains a material mistake.

(2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.

(3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the
document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12]

(a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.

(b) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

(a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.

(b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;

(2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;
(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region V
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee's copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

(1) A brief description of the change within the source;

(2) The date on which the change will occur;

(3) Any change in emissions; and

(4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Emission Trades [326 IAC 2-7-20(c)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).
(d) **Alternative Operating Scenarios [326 IAC 2-7-20(d)]**

The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.

(e) **Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.**

B.20 Source Modification Requirement [326 IAC 2-7-10.5]

A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]

Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee’s right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee’s premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]

(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 2-1.1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
SECTION C SOURCE OPERATION CONDITIONS

Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

C.1 Opacity [326 IAC 5-1]

Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:

(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.

(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuousopacity monitor) in a six (6) hour period.

C.2 Open Burning [326 IAC 4-1][IC 13-17-9]

The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.

C.3 Incineration [326 IAC 4-2][326 IAC 9-1-2]

The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.

C.4 Fugitive Dust Emissions [326 IAC 6-4]

The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.

C.5 Fugitive Particulate Matter Emission Limitations [326 IAC 6-5]

Pursuant to 326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations), fugitive particulate matter emissions shall be controlled according to the attached plan as in Attachment A. The provisions of 326 IAC 6-5 are not federally enforceable.

C.6 Stack Height [326 IAC 1-7]

The Permittee shall comply with the applicable provisions of 326 IAC 1-7 (Stack Height Provisions), for all exhaust stacks through which a potential (before controls) of twenty-five (25) tons per year or more of particulate matter or sulfur dioxide is emitted by using ambient air quality modeling pursuant to 326 IAC 1-7-4. The provisions of 326 IAC 1-7-1(3), 326 IAC 1-7-2, 326 IAC 1-7-3(c) and (d), 326 IAC 1-7-4, and 326 IAC 1-7-5(a), (b), and (d) are not federally enforceable.

C.7 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18][40 CFR 61, Subpart M]

The Permittee shall comply with the applicable requirements of 326 IAC 14-10, 326 IAC 18, and 40 CFR 61.140.
Testing Requirements [326 IAC 2-7-6(1)]

C.8 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.9 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.10 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)][40 CFR 64][326 IAC 3-8]

(a) For new units:

Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:

Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee’s control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:
in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) For monitoring required by CAM, at all times, the Permittee shall maintain the monitoring, including but not limited to, maintaining necessary parts for routine repairs of the monitoring equipment.

(d) For monitoring required by CAM, except for, as applicable, monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall conduct all monitoring in continuous operation (or shall collect data at all required intervals) at all times that the pollutant-specific emissions unit is operating. Data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities shall not be used for purposes of this part, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. The owner or operator shall use all the data collected during all other periods in assessing the operation of the control device and associated control system. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

C.11 Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.12 Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]
C.13 Risk Management Plan [326 IAC 2-7-5(11)][40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.14 Response to Excursions or Exceedances [40 CFR 64][326 IAC 3-8][326 IAC 2-7-5][326 IAC 2-7-6]

(I) Upon detecting an excursion where a response step is required by the D Section, or an exceedance of a limitation, not subject to CAM, in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or

(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;

(2) review of operation and maintenance procedures and records; and/or

(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

(II) CAM Response to excursions or exceedances.

(1) Upon detecting an excursion or exceedance, subject to CAM, the Permittee shall restore operation of the pollutant-specific emissions unit (including the control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. The response shall include minimizing the period of any startup, shutdown or malfunction and taking any necessary corrective actions to restore normal operation and prevent the likely recurrence of the cause of an excursion or exceedance (other than those caused by excused startup or shutdown conditions). Such actions may include initial inspection and evaluation, recording that operations returned to normal
without operator action (such as through response by a computerized
distribution control system), or any necessary follow-up actions to return
operation to within the indicator range, designated condition, or below
the applicable emission limitation or standard, as applicable.

(2) Determination of whether the Permittee has used acceptable
procedures in response to an excursion or exceedance will be based on
information available, which may include but is not limited to, monitoring
results, review of operation and maintenance procedures and records,
and inspection of the control device, associated capture system, and the
process.

(b) If the Permittee identifies a failure to achieve compliance with an emission
limitation, subject to CAM, or standard, subject to CAM, for which the approved
monitoring did not provide an indication of an excursion or exceedance while
providing valid data, or the results of compliance or performance testing
document a need to modify the existing indicator ranges or designated
conditions, the Permittee shall promptly notify the IDEM, OAQ and, if necessary,
submit a proposed significant permit modification to this permit to address the
necessary monitoring changes. Such a modification may include, but is not
limited to, reestablishing indicator ranges or designated conditions, modifying the
frequency of conducting monitoring and collecting data, or the monitoring of
additional parameters.

(c) Based on the results of a determination made under paragraph (II)(a)(2) of this
condition, the EPA or IDEM, OAQ may require the Permittee to develop and
implement a Quality Improvement Plan (QIP). The Permittee shall develop and
implement a QIP if notified to in writing by the EPA or IDEM, OAQ.

d) Elements of a QIP:
The Permittee shall maintain a written QIP, if required, and have it available for
inspection. The plan shall conform to 40 CFR 64.8 b (2).

(e) If a QIP is required, the Permittee shall develop and implement a QIP as
expeditiously as practicable and shall notify the IDEM, OAQ if the period for
completing the improvements contained in the QIP exceeds 180 days from the
date on which the need to implement the QIP was determined.

(f) Following implementation of a QIP, upon any subsequent determination pursuant
to paragraph (II)(c) of this condition the EPA or the IDEM, OAQ may require that
the Permittee make reasonable changes to the QIP if the QIP is found to have:

(1) Failed to address the cause of the control device performance problems;
or

(2) Failed to provide adequate procedures for correcting control device
performance problems as expeditiously as practicable in accordance
with good air pollution control practices for minimizing emissions.

(g) Implementation of a QIP shall not excuse the Permittee from compliance with
any existing emission limitation or standard, or any existing monitoring, testing,
reporting or recordkeeping requirement that may apply under federal, state, or
local law, or any other applicable requirements under the Act.

(h) **CAM recordkeeping requirements.**

(1) The Permittee shall maintain records of monitoring data, monitor
performance data, corrective actions taken, any written quality
improvement plan required pursuant to paragraph (II)(c) of this condition and any activities undertaken to implement a quality improvement plan, and other supporting information required to be maintained under this condition (such as data used to document the adequacy of monitoring, or records of monitoring maintenance or corrective actions). Section C - General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.

(2) Instead of paper records, the owner or operator may maintain records on alternative media, such as microfilm, computer files, magnetic tape disks, or microfiche, provided that the use of such alternative media allows for expeditious inspection and review, and does not conflict with other applicable recordkeeping requirements

C.15 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

C.16 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

Pursuant to 326 IAC 2-6-3(b)(3), starting in 2006 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

(1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);

(2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:

Indiana Department of Environmental Management
Technical Support and Modeling Section, Office of Air Quality
100 North Senate Avenue
MC 61-50 IGCN 1003
Indianapolis, Indiana 46204-2251
The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.17 General Record Keeping Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-6]

(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:

 (AA) All calibration and maintenance records.
 (BB) All original strip chart recordings for continuous monitoring instrumentation.
 (CC) Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:

 (AA) The date, place, as defined in this permit, and time of sampling or measurements.
 (BB) The dates analyses were performed.
 (CC) The company or entity that performed the analyses.
 (DD) The analytical techniques or methods used.
 (EE) The results of such analyses.
 (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.18 General Reporting Requirements [326 IAC 2-7-5(3)(C)][326 IAC 2-1.1-11][40 CFR 64][326 IAC 3-8]

(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

On and after the date by which the Permittee must use monitoring that meets the requirements of 40 CFR Part 64 and 326 IAC 3-8, the Permittee shall submit CAM reports to the IDEM, OAQ.

A report for monitoring under 40 CFR Part 64 and 326 IAC 3-8 shall include, at a minimum, the information required under paragraph (a) of this condition and the following information, as applicable:
(1) Summary information on the number, duration and cause (including unknown cause, if applicable) of excursions or exceedances, as applicable, and the corrective actions taken;

(2) Summary information on the number, duration and cause (including unknown cause, if applicable) for monitor downtime incidents (other than downtime associated with zero and span or other daily calibration checks, if applicable); and

(3) A description of the actions taken to implement a QIP during the reporting period as specified in Section C-Response to Excursions or Exceedances. Upon completion of a QIP, the owner or operator shall include in the next summary report documentation that the implementation of the plan has been completed and reduced the likelihood of similar levels of excursions or exceedances occurring.

The Permittee may combine the Quarterly Deviation and Compliance Monitoring Report and a report pursuant to 40 CFR 64 and 326 IAC 3-8.

(b) The address for report submittal is:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.19 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
Emissions Unit Description:

(a) Clay surface mining operations, constructed in 2007, capacity of 120 tons of shale and clay per hour, including the following operations:

(1) Bulldozing
(2) Excavating
(3) Truck loading
(4) Unpaved Roads

(b) Material receiving emission unit group, identified as EUG-01, consisting of:

(1) Dump truck unloading, identified as MR01, constructed in 2007, with a maximum short term capacity of 120 tons per hour.

(2) Receiving material apron feeder, identified as MR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour. Under NSPS Subpart OOO, these are conveyors with transfer points outside under the hopper that serves as a partial enclosure.

(3) Three (3) crude material belt conveyors, identified as MR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, and exhausting internally. Under NSPS Subpart OOO, these are conveyors with transfer points enclosed in a building.

(c) Clay grinding and screening operations emission unit group, identified as EUG-02, consisting of:

(1) Primary crusher, identified as GR01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility outside under the hopper that serves as a partial enclosure.

(2) Scalping screen, identified as GR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(3) Screens (bank of 3 units), identified as GR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(4) Five (5) processing belt conveyors, identified as GR04, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(5) Impact crusher, identified as GR05, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.
(6) Two (2) screw conveyors, identified as GR06, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(7) Three (3) raw material bins, identified as GR07, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.

(8) Three (3) raw material feeders, identified as GR08, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.

(9) One (1) primary crusher, identified as GR01R, approved in 2016 for construction, with a maximum capacity of 300 tons per hour, located outdoors. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(d) Processed clay emission unit group, identified as EUG-03, consisting of:

(1) Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(2) Reclaimer, identified as PC02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, exhausting internally. A portion of the emissions from PC02 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(3) Five (5) processed clay feed conveyors, four (4) between the double shaft mixer and the intermediate storage area and one (1) conveyor from intermediate storage to brick manufacturing, identified as PC03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, exhausting internally. A portion of the emissions from PC03 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(4) Reclaimer by-pass chute, identified as PC04, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC04 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(e) Material handling and brick forming emission unit group, identified as EUG-04, consisting of:

(1) Sand tank silo, identified as SD02, constructed in 2007, with a maximum short term capacity of 30 tons per day, using a bin vent filter for particulate control, exhausting outside. A portion of the emissions from SD02 are collected and controlled by dust collector CD03, and exhausting through stack CD03.

(2) Two (2) mixed clay conveyors, identified as PC05, constructed in 2007, with a maximum short term capacity of 90 tons per hour each, exhausting internally. A portion of the emissions from PC05 are collected by dust collector CD03, and exhausting through stack CD03.
(3) One (1) clay storage hopper, identified as PC06, constructed in 2007, with a maximum short term capacity of 90 tons per hour, exhausting internally. A portion of the emissions from PC06 is collected by dust collector CD03, and exhausting through stack CD03.

(4) One (1) even Feeder, identified as PC07, constructed in 2007, with a maximum short term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from PC07 is collected by dust collector CD03, and exhausting through stack CD03.

(5) Three (3) sand vibrating units, identified as SVU, constructed in 2007, with a maximum short term capacity of 1.25 tons per hour each, exhausting internally. A portion of the emissions from SVUs are collected by dust collector CD03, and exhausting through stack CD03.

Insignificant Activities:

(a) Material handling emission unit group, identified as EUG-04, consisting of:

(1) Sand (supersack) handling, identified as SD01, constructed in 2007, with a maximum short term capacity of 30 tons per day, exhausting internally. A portion of the emissions from SD01 is collected by dust collector CD03, and exhausting through stack CD03.

(2) Additive (supersack) handling, identified as AD01, constructed in 2007, with a maximum short-term capacity of one (1) ton per hour, exhausting internally. A portion of the emissions from AD01 is collected by dust collector CD03, and exhausting through stack CD03.

(3) Four (4) Trim Conveyors identified as TC01, constructed in 2007, with a maximum short-term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from TC01 is collected by dust collector CD03, and exhausting through stack CD03.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.1.1 Particulate [326 IAC 6.5-1-2]

Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from each of following emission units shall not exceed 0.03 grains per dry standard cubic foot (dscf):

(1) Clay surface mining operations
(2) Dump truck unloading (MR01)
(3) Receiving material apron feeder (MR02)
(4) Crude material belt conveyors (MR03)
(5) Primary crusher (GR01)
(6) Primary crusher (GR01R)
(7) Raw material bin (GR07)
(8) Raw material feeder (GR08)
(9) Processed clay bunker filling (PC01)
(10) Reclaimer (PC02)
(11) Processed clay feed conveyors (PC03)
(12) Reclaimer by-pass chute (PC04)
(13) Sand tank silo (SD02)
(14) Sand (supersack) handling (SD01)
(15) Mixed clay conveyors (PC05)
(16) Clay storage hopper (PC06)
(17) Even feeder (PC07)
(18) Sand vibrating units (SVU)
(19) Sand (supersack) handling (SD01)
(20) Additive (supersack) handling (AD01)
(21) Trim Conveyors (TC01)

D.1.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The PM emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 35.0 pounds per hour.

(b) The PM\textsubscript{10} emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 18.0 pounds per hour.

(c) The PM\textsubscript{2.5} emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 18.0 pounds per hour.

(d) The amount of clay/shale processed shall not exceed 500,000 tons per twelve consecutive month period, with compliance determined at the end of each month.

(e) Emissions from the following operations shall not exceed the emission limits listed in the table below:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit ID</th>
<th>PM (lb/ton)</th>
<th>PM\textsubscript{10} (lb/ton)</th>
<th>PM\textsubscript{2.5} (lb/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump truck unloading</td>
<td>MR01</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Receiving material apron feeder</td>
<td>MR02</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Crude material belt conveyors</td>
<td>MR03</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
<tr>
<td>Primary crusher</td>
<td>GR01</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>Raw material bins</td>
<td>GR07</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Raw material feeders</td>
<td>GR08</td>
<td>0.025</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
</tbody>
</table>
Compliance with these limits, combined with the uncaptured potential to emit PM, PM\textsubscript{10} and PM\textsubscript{2.5} from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04) and the potential to emit PM, PM\textsubscript{10}, and PM\textsubscript{2.5} from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM\textsubscript{10} and PM\textsubscript{2.5} to less than two-hundred fifty (250) tons per twelve (12) consecutive month period, each and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.3 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.1.4 Particulate Control

(a) In order to assure compliance with Conditions D.1.1 and D.1.2, dust collector CD02 for particulate control shall be in operation and control emissions at all times, when the following facilities are in operation:
 (1) Scalping screen (GR02)
 (2) Bank of 3 screens (GR03)
 (3) Five processing belt conveyors (GR04)
 (4) Impact crusher (GR05)
 (5) Two screw conveyors (GR06)
 (6) Processed clay bunker filling (PC01)
 (7) Reclaimer (PC02)
 (8) Five processed clay feed conveyors (PC03)
 (9) Reclaimer by-pass chute (PC04)

(b) In order to assure compliance with Condition D.1.1 and D.1.2, dust collector CD03 for particulate control shall be in operation and control emissions at all times, when the following facilities are in operation:
 (1) Two mixed clay conveyors (PC05)
 (2) One clay storage hopper (PC06)
 (3) One even feeder (PC07)
 (4) Three sand vibrating units (SVU)
 (5) San (supersack) handling (SD01)
 (6) Additive (supersack) handling (AD01)
 (7) Trim conveyors (TC01)

(c) In order to assure compliance with Condition D.1.1, the bin vent filter for particulate control shall be in operation and control emissions from the sand tank silo (SD02) at all times the sand tank silo (SD02) is in operation.

In the event that bag failure is observed in a multi-compartment baghouse, if operations will continue for ten (10) days or more after the failure is observed before the failed units will be repaired or replaced, the Permittee shall promptly notify the IDEM, OAQ of the expected date the failed units will be repaired or replaced. The notification shall also include the status of the applicable compliance monitoring parameters with respect to normal, and the results of any response actions taken up to the time of notification.
D.1.5 Testing Requirements [326 IAC 2-1.1-11]

In order to demonstrate compliance with Conditions D.1.2(a), D1.2(b) and D.1.2(c), the Permittee shall perform PM, PM10 and PM2.5 testing of dust collector CD02 utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration.

Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition. PM10 and PM2.5 includes filterable and condensable PM.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.1.6 Parametric Monitoring - Dust Collector [40 CFR 64]

The Permittee shall record the pressure drop across dust collector CD02 at least once per day when the associated facilities are in operation. When, for any one reading, the pressure drop across a baghouse is outside the normal range, the Permittee shall take a reasonable response. The normal range for this unit is a pressure drop between 0.5 and 6.0 inches of water unless a different upper-bound or lower-bound value for this range is determined during the latest stack test. Section C - Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A pressure reading that is outside the above mentioned range is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

The instruments used for determining the pressure shall comply with Section C – Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

D.1.7 Visible Emissions Notations

(a) Visible emission notations of dust collector CD03 filter stack exhausts shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, “normal” means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C – Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.
D.1.8 Visible Emissions Notations

(a) Visible emission notations of sand tank silo (SD02) filter stack exhausts shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, “normal” means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C – Response to Excursions and Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

D.1.9 Broken or Failed Bag Detection - Dust Collector/fabric filter

(a) For a single compartment dust collector/fabric filter controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment dust collector/fabric filter controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the line. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse’s pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.1.10 Record Keeping Requirements

(a) To document the compliance status with Condition D.1.2(d), the Permittee shall maintain records of the amount of clay/shale processed.

(b) To document the compliance status with Condition D.1.6 (Parametric Monitoring - Dust Collector), the Permittee shall maintain daily records of pressure drop across the baghouse(s). The Permittee shall include in its daily record when a pressure drop reading is not taken and the reason for the lack of a pressure drop reading (e.g. the process did not operate that day).
(c) To document the compliance status with Conditions D.1.7 and D.1.8 (Visible Emissions Notations), the Permittee shall maintain records of daily visible emission notations of the baghouse(s) stack exhausts. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of visible emission notation (e.g. the process did not operate that day).

(d) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.1.11 Reporting Requirement

A quarterly summary of the information to document the compliance status with D.1.2(d) shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official,” as defined by 326 IAC 2-7-1(35).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(f) Brick forming and firing emission unit group, identified as EUG-05, consisting of:

(1) Tunnel dryer, identified as EU01, constructed in 2007, with a maximum short term capacity of 29 tons of brick per hour, with a maximum supplemental heat rate of 5.943 million (MM) BTU per hour firing natural gas, without control, and exhausting through stack EU01.

(2) Tunnel Kiln, identified as EU02, constructed in 2007, with a maximum firing rate of 55 million (MM) Btu per hour of natural gas and landfill gas, with a maximum capacity of 29 tons of brick per hour, uncontrolled (alternative operating scenario 1 (ASO 1)), or controlled by a dry sorbent injection fabric filter (DIFF) CD01 as an alternative operating scenario (ASO 2), and exhausting through stack CD01.

(3) Two (2) silos associated with the DIFF - CD01 system, consisting of the following equipment:

(i) One (1) Hydrated Lime Silo, constructed in 2007, used to load fresh reagent as well as spent reagent as follows:

(a) Fresh reagent is pneumatically loaded from the delivery truck to the silo, once a month. Each silo loading delivery is assumed to be completed in one hour. The fresh reagent is loaded into the silo at the rate of 30 tons/hour, once a month.

(b) Spent reagent is pneumatically loaded to the waste silo as needed. With the nominal ratio of Spent Reagent / Fresh Reagent at 1.2, the spent reagent is loaded at the rate of 36 tons/hour, once a month.

(ii) One (1) Waste Reagent Silo, constructed in 2007, used to empty waste reagent as needed, via a flexible spout into a covered roll-off container for disposal. Each unloading of the waste reagent is assumed to be completed in one hour. The waste reagent is unloaded into the roll-off container at the rate of 21,069 pounds/hour, with a total of 41 loads/year.

(g) One (1) landfill gas-fired flare, identified as EU03, constructed in 2008, with a maximum firing rate of 26.1 million (MM) Btu per hour.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Particulate [326 IAC 6.5-1-2]

(a) Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from the tunnel dryer (EU01), tunnel kiln (EU02), and landfill gas-fired flare (EU03) shall each not exceed 0.03 grains per dry standard cubic foot (dscf).

(b) Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the silos (fresh reagent silo, spent reagent silo, waste reagent silo) shall not exceed 0.03 grain per dry standard cubic foot (dscf).
D.2.2 PSD Minor Limits [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the SO₂ emissions from the tunnel kiln (EU02) shall not exceed 247.7 tons per twelve consecutive month period, with compliance determined at the end of each month.

Compliance with this limit, combined with the potential to emit SO₂ from all other emission units at this source, shall limit the source-wide total potential to emit of SO₂ to less than two-hundred fifty (250) tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.2.3 HAP Minor Limits [326 IAC 2-4.1]

In order to assure this source is an area source of HAPs under Section 112 of the Clean Air Act (CAA) and to render the requirements of 40 CFR 63, Subpart JJJJJ not applicable, the Permittee shall comply with the following:

The amount of fired product from the tunnel kiln (EU02) shall be limited such that:

(a) The HF emissions shall not exceed 9.99 tons per twelve consecutive month period, with compliance determined at the end of each month.

(b) The total HAPs emissions shall not exceed 24.75 tons per twelve consecutive month period, with compliance determined at the end of each month.

(c) Unless operating under Alternative Operating Scenario No. 1 (AOS1) the dry sorbent injection fabric filter (DIFF) CD01 shall control emissions from the tunnel kiln (EU02).

Compliance with the above HAP emission limits, combined with the potential to emit HAP from all other emission units at the source, shall limit HAP emissions from the entire source to less than ten (10) tons for any single HAP and twenty-five (25) tons for any combination of HAPS per twelve (12) consecutive month period and render this source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA).

D.2.4 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and any control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.2.5 SO₂ Emissions

In order to demonstrate compliance with Condition D.2.2, the Permittee shall calculate monthly SO₂ emissions from the tunnel kiln as follows:

\[E = \frac{F \times S}{2000} \]

Where:

- \(E \) = Monthly SO₂ emissions in tons,
- \(F \) = Monthly fired product in tons, and
- \(S \) = SO₂ emissions rate as 1.95 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration.
D.2.6 HAP Control

In order to assure compliance with Conditions D.2.3 when operating under Alternative Operating Scenario No. 2, the dry injection fabric filter, identified as CD01, for HF and HAP control shall be in operation and control emissions from the tunnel kiln (EU02) at all times that the emission unit is in operation.

D.2.7 Hydrogen Fluoride (HF)

(a) In order to demonstrate compliance with the HF emissions limit in Condition D.2.3(a) when operating under Alternative Operating Scenario No. 1, the uncontrolled HF emissions from the Tunnel Kiln shall be calculated using the formula:

\[E_{AOS1} = \frac{F \times H_F}{2000} \]

Where:

- \(E_{AOS1} \) = Monthly HF HAP emissions in tons when operating under AOS 1,
- \(F \) = Monthly fired product in tons when operating under AOS 1, and
- \(H_F \) = Uncontrolled HF emissions rate as 0.45 pounds per ton of fired product, or the value established by the most recent valid compliance demonstration

(b) In order to demonstrate compliance with the HF emissions limit in Condition D.2.3(a) when operating under Alternative Operating Scenario No.2, the controlled HF emissions from the Tunnel Kiln shall be calculated using the formula:

\[E_{AOS2} = \frac{F \times H_F}{2000} \]

Where:

- \(E_{AOS2} \) = Monthly HF HAP emissions in tons when operating under AOS 2,
- \(F \) = Monthly fired product in tons when operating under AOS 2, and
- \(H_F \) = Controlled HF emissions rate as 0.0002 pounds per ton of fired product, or the value established by the most recent valid compliance demonstration

(C) Combined Single HAPs

\[E = E_{AOS1} + E_{AOS2} \]

Where:

- \(E \) = Total combined monthly HF HAP emissions in tons,
- \(E_{AOS1} \) = Monthly HF HAP emissions in tons when operating under AOS 1, and
- \(E_{AOS2} \) = Monthly HF HAP emissions in tons when operating under AOS 2

D.2.8 Total HAPs

(a) In order to determine compliance with the total HAPs emissions limit in Condition D.2.3(b) when operating under Alternative Operating Scenario No. 1, the uncontrolled total HAPs emissions from the Tunnel Kiln shall be calculated using the following formula:

\[E_{AOS1} = \frac{F \times H_T}{2000} \]

Where:

- \(E_{AOS1} \) = Monthly Total HAP emissions in tons when operating under AOS 1,
- \(F \) = Monthly fired product in tons when operating under AOS 1, and
- \(H_T \) = Uncontrolled total HAP emissions rate as 1.1 pounds per ton of fired product,
(b) In order to determine compliance with the total HAPs emissions limit in Condition D.2.1.1(b) when operating under Alternative Operating Scenario No. 2, the controlled total HAPs emissions from the Tunnel Kiln shall be calculated using the following formula:

\[E_{AOS2} = \frac{F \times H_T}{2000} \]

Where:

\(E_{AOS2} \) = Monthly Total HAP emissions in tons when operating under AOS 2,
\(F \) = Monthly fired product in tons when operating under AOS 2, and
\(H_T \) = Controlled total HAP emissions rate as 0.19 pounds per ton of fired product, or the value established by the most recent valid compliance demonstration.

(C) Combined Total HAPs

\[E = E_{AOS1} + E_{AOS2} \]

Where:

\(E \) = Total combined monthly Total HAP emissions in tons,
\(E_{AOS1} \) = Monthly Total HAP emissions in tons when operating under AOS 1, and
\(E_{AOS2} \) = Monthly Total HAP emissions in tons when operating under AOS 2.

D.2.9 Testing Requirements [326 IAC 2-1.1-11]

(a) In order to demonstrate compliance with Conditions D.2.2 and D.2.5, the Permittee shall perform SO₂ testing of the tunnel kiln utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

(b) In order to demonstrate compliance with Conditions D.2.3(a) and D.2.3(b) when operating under Alternative Operating Scenario No. 2, the Permittee shall perform HF testing for the DIFF (CD01) exhaust stack not later than one hundred eighty (180) days after the issuance of the Significant Permit Modification No. 167-40457-00139, or one hundred eighty (180) days after December 26, 2019, whichever occurs first, utilizing methods as approved by the Commissioner. This test shall be repeated at least once every five (5) years from the date of the latest valid compliance demonstration. Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.
Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.2.10 Parametric Monitoring

When operating under Alternative Operating Scenario No. 2, the Permittee shall comply with the following:

(a) The Permittee shall record the pressure drop across the dry lime injection fabric filter (CD01) used in conjunction with the tunnel kiln (EU02) at least once per day when the tunnel kiln is in operation. When for any one reading, the pressure drop across the baghouse is outside the normal range the Permittee shall take reasonable response. The normal range for this unit is a pressure drop between of 14.5 and 17.5 mbar (equivalent to a range of 5.82 and 7.03 inches of water) unless a different upper-bound or lower-bound value for this range is determined during the latest stack test.

(b) The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

(c) The Permittee shall inspect the dry lime feed system and feeder setting on the dry lime injection baghouse once per day. If the lime feeder setting drops below the level established during the latest stack test, the switches and/or level sensors monitoring the interlock system on the limestone delivery systems, including the lime screw conveyor and holding bin, are not functioning properly, or the Permittee discovers cracks, holes or abnormal/excessive wear on the indicators for the screw conveyor and holding bin, the Permittee shall take reasonable response.

(d) Section C – Response to Excursions or Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A feeder setting that is below the level established during the latest performance test is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

D.2.11 Record Keeping Requirements

(a) To document the compliance status with Conditions D.2.2 and D.2.3, the Permittee shall maintain records in accordance with (1) through (5) below. Records maintained for (1) through (5) shall be taken as stated below and shall be complete and sufficient to establish compliance with the SO2, HF, and total HAPs emission limit established in Conditions D.2.2 and D.2.3. Records necessary to demonstrate compliance shall be available no later than 30 days of the end of each compliance period.

(1) The amount of fired product from the tunnel kiln (EU02) on a monthly basis.

(2) The amount of SO2 emitted for each compliance period.

(3) Documentation of the dates, including the time, when the kiln is operating under AOS 2.

(4) The amount of HF emitted from the tunnel kiln (EU02) for each compliance period.

(5) The amount of total HAPs emitted from the tunnel kiln (EU02) for each compliance period.
(b) To document the compliance status with Conditions D.2.10(a) and D.2.10(c), the Permittee shall maintain daily records of the pressure drop and lime feeder setting. The Permittee shall include in its daily record when a pressure drop reading or lime feeder setting reading is not taken and the reason for the lack of pressure drop reading or lime feeder setting reading (e.g., the process did not operate that day).

(c) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.2.12 Reporting Requirement

A quarterly summary of the information to document the compliance status with Conditions D.2.2 and D.2.3 shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official," as defined by 326 IAC 2-7-1(35).
Emissions Unit Description:

(b) Material receiving emission unit group, identified as EUG-01, consisting of:

(2) Receiving material apron feeder, identified as MR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour. Under NSPS Subpart OOO, these are conveyors with transfer points outside under the hopper that serves as a partial enclosure.

(3) Three (3) crude material belt conveyors, identified as MR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, and exhausting internally. Under NSPS Subpart OOO, these are conveyors with transfer points enclosed in a building.

(c) Clay grinding and screening operations emission unit group, identified as EUG-02, consisting of:

(1) Primary crusher, identified as GR01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility outside under the hopper that serves as a partial enclosure.

(2) Scalping screen, identified as GR02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(3) Screens (bank of 3 units), identified as GR03, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(4) Five (5) processing belt conveyors, identified as GR04, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(5) Impact crusher, identified as GR05, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(6) Two (2) screw conveyors, identified as GR06, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD02, and exhausting through stack CD02. Under NSPS OOO, this is an affected facility with a stack.

(7) Three (3) raw material bins, identified as GR07, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.
Three (3) raw material feeders, identified as GR08, constructed in 2007, with a maximum short term capacity of 120 tons per hour, and exhausting internally. Under NSPS OOO, this is an affected facility enclosed in a building.

One (1) primary crusher, identified as GR01R, approved in 2016 for construction, with a maximum capacity of 300 tons per hour, located outdoors. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

Processed clay emission unit group, identified as EUG-03, consisting of:

Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

New Source Performance Standards (NSPS) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 60.1, the Permittee shall comply with the provisions of 40 CFR Part 60, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 12-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 60, Subpart OOO.

(b) Pursuant to 40 CFR 60.4, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 Nonmetallic Mineral Processing Plants NSPS [326 IAC 12][40 CFR Part 60, Subpart OOO]

The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart OOO (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission units MR02, MR03, GR01, GR02, GR03, GR04, GR05, GR06, GR07, and GR08:

(1) 40 CFR 60.670(a)(1),(d),(e),(f)
(2) 40 CFR 60.671
(3) 40 CFR 60.672(a),(b),(d),(e)
(4) 40 CFR 60.675(a),(b),(c)(1),(c)(3),(d),(e),(g)
(5) 40 CFR 60.676(a),(b)(1), (f), (g), (h),(i)(1),(j), (k)
(6) Table 1
(7) Table 2
(8) Table 3
Primary crusher GR01R is subject to the following portions of 40 CFR 60, Subpart OOO:

(1) 40 CFR 60.670(a)(1), (e) (f)
(2) 40 CFR 60.671
(3) 40 CFR 60.672(b)
(4) 40 CFR 60.675(a),(c)(1),(3), (e)(1), (e)(2), (g), (i)
(5) 40 CFR 60.676(b)(1), (f), (h), (i),(j),(k)
(6) Table 1
(7) Table 3

The emission unit identified as PC01 is subject to the following portions of 40 CFR 60, Subpart OOO:

(1) 40 CFR 60.670(a)(1),(e),(f)
(2) 40 CFR 60.671
(3) 40 CFR 60.672(a),(b),(e)(2)
(4) 40 CFR 60.675(a),(b)(1),(c)(1)(i)-(ii),(c)(3),(d)(2),(e)(2)(3),(g)
(5) 40 CFR 60.676 (f)(i),(k)
(6) Table 1
(7) Table 2
(8) Table 3

Compliance Determination Requirements [326 IAC 2-7-5(1)]

E.1.3 Testing Requirements [326 IAC 2-1.1-11][326 IAC 2-7-6(1)][326 IAC 2-7-5(1)]

In order to document the compliance status with Condition E.1.2, the Permittee shall perform the PM testing required under 40 CFR 60.672 and Table 2 of Subpart OOO, utilizing methods as approved by the Commissioner, at least once every five (5) years from the date of the most recent valid compliance demonstration. Section C - Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.
SECTION E.2 NESHAP

Emissions Unit Description:

Insignificant Activities –

(b) A gasoline fuel transfer dispensing operation handling less than or equal to one thousand three hundred (1,300) gallons per day and filling storage tanks having a capacity equal to or less than ten thousand five hundred (10,500) gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(d) The following VOC and HAP storage containers:

(1) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(B) One (1) gasoline storage tank, with capacity of 500 gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission units listed above, except as otherwise specified in 40 CFR Part 63, Subpart CCCCCC.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities NESHAP [40 CFR Part 63, Subpart CCCCCC] [326 IAC 20-1]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart CCCCCC (included as Attachment C to the operating permit):

(1) 40 CFR 63.11110
(2) 40 CFR 63.11111(a),(b),(e),(f),(h),(i),(j),(k)
(3) 40 CFR 63.11112(a),(d)
(4) 40 CFR 63.11113(a),(b)
(5) 40 CFR 63.11115
(6) 40 CFR 63.11116
(7) 40 CFR 63.11125(d)
(8) 40 CFR 63.11126(b)
(9) 40 CFR 63.11130
(10) 40 CFR 63.11131
(11) 40 CFR 63.11132
(12) Table 3
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
CERTIFICATION

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter
☐ Test Result (specify)
☐ Report (specify)
☐ Notification (specify)
☐ Affidavit (specify)
☐ Other (specify)

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature:
Printed Name:
Title/Position:
Phone:
Date:
PART 70 OPERATING PERMIT
EMERGENCY OCCURRENCE REPORT

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139

This form consists of 2 pages

☐ This is an emergency as defined in 326 IAC 2-7-1(12)
 • The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime
 business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and
 • The Permittee must submit notice in writing or by facsimile within two (2) working days
 (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.

If any of the following are not applicable, mark N/A

Facility/Equipment/Operation:

Control Equipment:

Permit Condition or Operation Limitation in Permit:

Description of the Emergency:

Describe the cause of the Emergency:
If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Date/Time Emergency started:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time Emergency was corrected:</td>
<td></td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
<td>Y</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO2, VOC, NOx, CO, Pb, other:</td>
<td></td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
<td></td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
<td></td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
<td></td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
<td></td>
</tr>
<tr>
<td>If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ____________________________
Title / Position: ____________________________
Date: ____________________________
Phone: ____________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Clay/shale Processing
Parameter: Amount of clay/shale processed
Limit: Shall not exceed 500,000 tons per twelve (12) consecutive month period with compliance determined at the end of each month

<table>
<thead>
<tr>
<th>QUARTER:</th>
<th>YEAR:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Month (tons)</td>
<td>Previous 11 Months (tons)</td>
<td>12 Month Total (tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.

Deviation has been reported on:

Submitted by: __________________________
Title / Position: __________________________
Signature: __________________________
Date: __________________________
Phone: __________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Tunnel Kiln (EU02)
Parameter: SO₂ Emissions
Limit: The SO₂ emissions from the tunnel kiln (EU02) shall not exceed 247.7 tons per twelve (12) consecutive month period with compliance determined at the end of each month

QUARTER: ________________ YEAR: ________________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Month (tons)</td>
<td>Previous 11 Months (tons)</td>
<td>12 Month Total (tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by: __
Title / Position: __
Signature: __
Date: ___
Phone: ___
Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Tunnel Kiln (EU02)
Parameter: HF Emissions
Limit: The HF emissions from the tunnel kiln (EU02) shall not exceed 9.99 tons per twelve (12) consecutive month period with compliance determined at the end of each month

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month (tons)</td>
<td>Previous 11 Months (tons)</td>
<td>12 Month Total (tons)</td>
<td></td>
</tr>
</tbody>
</table>

- □ No deviation occurred in this quarter.
- □ Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by:
Title / Position:
Signature:
Date:
Phone:

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Tunnel Kiln (EU02)
Parameter: total HAPs Emissions
Limit: The total HAPs emissions from the tunnel kiln (EU02) shall not exceed 24.75 tons per twelve (12) consecutive month period with compliance determined at the end of each month

QUARTER : _______________ YEAR: _______________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Month (tons)</td>
<td>Previous 11 Months (tons)</td>
<td>12 Month Total (tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
Deviation has been reported on:

Submitted by: __
Title / Position: __
Signature: __
Date: __
Phone: ___
This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-General Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: _____________________________
Title / Position: _____________________________
Date: _____________________________
Phone: _____________________________
Meridian Brick LLC (Meridian) has prepared a Fugitive Dust Control Plan (Plan) in accordance with 326 IAC 6-5. This Plan identifies sources of potential fugitive dust emissions and identifies the method of control to be used to control fugitive dust. The control methods have been taken from the list of acceptable measures in 326 IAC 6-5 and include the type of material, suppressant, and frequency of application, where applicable. However, for the most part the measures being employed are part of the design of the process, or equipment associated with the process, that provides for the control achieved.

The following documents are attached which make up the Plan:

- **Table of Fugitive Dust Emission Sources**
 Table identifies sources of fugitive dust and the control measures used for each. Monitoring and record keeping procedures are also identified for each.

- **Table of Plant Production Data**
 Table lists all emission points and quantity of material handled through each on both a short and long term basis.

- **Facility Maps of Fugitive Dust Sources**
 Facility site maps and flow diagram showing the location of all emission sources, both fugitive and non-fugitive. Roads, both paved and unpaved, parking lots, access areas, storage piles and aggregate handling equipment are also identified.
Fugitive Dust Emission Sources

Meridian Brick LLC - Terre Haute Plant

<table>
<thead>
<tr>
<th>Emission Source Description</th>
<th>ID</th>
<th>Fugitive Dust Control Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump Truck Unloading</td>
<td>MR01</td>
<td>Reduction of free fall distance, Enclosure of hopper unloading area (top+ 3 sides)</td>
</tr>
<tr>
<td>Receiving Material Apron Feeder</td>
<td>MR02</td>
<td>Enclosure of material unloading area (top+ 3 sides)</td>
</tr>
<tr>
<td>Crude Material Belt Conveyors</td>
<td>MR03</td>
<td>Cover outdoor conveyors on top and sides to minimize visible emissions. Other conveyors are inside the building.</td>
</tr>
<tr>
<td>Existing Primary Crusher</td>
<td>GR01</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>New Primary Crusher</td>
<td>GR01R</td>
<td>Control options will be evaluated after construction of new primary crusher.</td>
</tr>
<tr>
<td>Scalping Screen</td>
<td>GR02</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Screens (Bank of 3)</td>
<td>GR03</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Processing Belt Conveyors</td>
<td>GR04</td>
<td>Cover discharge areas for units inside the building on top and sides to minimize visible emissions.</td>
</tr>
<tr>
<td>Impact Crusher (Grinder)</td>
<td>GR05</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Screw Conveyors</td>
<td>GR06</td>
<td>Enclosing conveyors on top and sides to minimize visible emissions.</td>
</tr>
<tr>
<td>Raw Material Bin</td>
<td>GR07</td>
<td>Enclosure of material unloading area (top+ 3 sides)</td>
</tr>
<tr>
<td>Raw Material Feeder</td>
<td>GR08</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Processed Clay Bunker Filling (1 conveyor)</td>
<td>PC01</td>
<td>Conveyor is located inside the building to minimize visible emissions.</td>
</tr>
<tr>
<td>Reclaimer</td>
<td>PC02</td>
<td>Located inside the building to minimize visible emissions, and material has high moisture content.</td>
</tr>
<tr>
<td>Processed Clay Feed Conveyors</td>
<td>PC03</td>
<td>Located inside the building with partial covers on conveyors to minimize visible emissions, and material has high moisture content.</td>
</tr>
<tr>
<td>Reclaimer by-pass chute</td>
<td>PC04</td>
<td>Enclosing conveyors on top and sides to minimize visible emissions.</td>
</tr>
<tr>
<td>Mixed Clay Conveyor</td>
<td>PC05</td>
<td>Located inside the building with partial covers on conveyors to minimize visible emissions, and material has high moisture content.</td>
</tr>
<tr>
<td>Clay Storage Hopper</td>
<td>PC06</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Even Feeder (88E)</td>
<td>PC07</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Sand (supersack)</td>
<td>SD01</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Sand Tank Silo</td>
<td>SD02</td>
<td>Work practices monitored during filling of silo.</td>
</tr>
<tr>
<td>Sand Vibrating Units</td>
<td>SVU</td>
<td>Unit has curtain on one side to minimize visible emissions, located inside the building, and emissions are controlled by control device CD03.</td>
</tr>
<tr>
<td>Additive (supersack)</td>
<td>AD01</td>
<td>Enclosure of emission source to minimize visible emissions.</td>
</tr>
<tr>
<td>Texturing activity (TA01)</td>
<td>TA01</td>
<td>Located inside the building to minimize visible emissions, and material has high moisture content.</td>
</tr>
<tr>
<td>Landfill gas-fired flare</td>
<td>EU03</td>
<td>Ensure particulate emissions from the flare do not exceed 0.03 gr/dscf.</td>
</tr>
<tr>
<td>Unpaved Roads</td>
<td>FUG01</td>
<td>Spraying with water as needed</td>
</tr>
<tr>
<td>Paved Roads</td>
<td>FUG02</td>
<td>Sweeping and spraying with water as needed</td>
</tr>
<tr>
<td>Surface Mine</td>
<td>N/A</td>
<td>Spraying with water as needed</td>
</tr>
</tbody>
</table>

1. Emission sources GR02, GR03, GR04, GR05 and GR06 are controlled directly by a baghouse; therefore, no fugitive dust is anticipated.
2. Emission sources PC01, PC02, PC03, and PC04 are partially controlled by a baghouse.
3. Emission sources PC05, PC06, PC07, SD01, SD02, SVU, AD01, and TA01 are partially controlled by a baghouse.
Plant Production Data

Meridian Brick LLC - Terre Haute Plant

<table>
<thead>
<tr>
<th>Emission Source Description</th>
<th>ID</th>
<th>Maximum Production bricks/yr</th>
<th>Weight of Sbe</th>
<th>Maximum ton/hr</th>
<th>ton/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Kiln</td>
<td>EU02</td>
<td>156,332,808</td>
<td>3.25</td>
<td>29.03</td>
<td>254,040</td>
</tr>
</tbody>
</table>

Emission Source Description (a)

<table>
<thead>
<tr>
<th>Emission Source Description</th>
<th>ID</th>
<th># of Units</th>
<th>Control Device</th>
<th>Construction Date (Est.)</th>
<th>Operating Time</th>
<th>Actual Throughput (RY 2017)</th>
<th>Maximum Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short-Term</td>
<td>Short-Term</td>
<td>Short-Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Units</td>
<td>Units</td>
<td>Units</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Long-Term</td>
<td>Long-Term</td>
<td>Long-Term</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Units</td>
<td>Units</td>
<td>Units</td>
</tr>
</tbody>
</table>

Notes

(a) Emissions for this equipment are not calculated in the operating permit due to the nature of the process, including high moisture levels.

(b) This list contains all of the equipment and processes that are expected to emit particulate emissions.

(c) CD03 is currently decommissioned, but may be recommissioned in 2018-2019.

(d) EUG-03 Units do not exhaust directly to CD02; however, there are pick-up points in the building that may collect fugitive emissions from these units and pull this airflow to CD-02 for collection and control.

(e) EUG-04 Units do not exhaust directly to CD02; however, there are pick-up points in the building that may collect fugitive emissions from these units and pull this airflow to CD-03 for collection and control.

Control Device Descriptions

- CD01: Dry Injection Fabric Filter (DIFF)
- CD02: Clay Preparation Dust Collector
- CD03: Brick Manufacturing Dust Collector
What This Subpart Covers

§ 63.11110 What is the purpose of this subpart?

This subpart establishes national emission limitations and management practices for hazardous air pollutants (HAP) emitted from the loading of gasoline storage tanks at gasoline dispensing facilities (GDF). This subpart also establishes requirements to demonstrate compliance with the emission limitations and management practices.

§ 63.11111 Am I subject to the requirements in this subpart?

(a) The affected source to which this subpart applies is each GDF that is located at an area source. The affected source includes each gasoline cargo tank during the delivery of product to a GDF and also includes each storage tank.

(b) If your GDF has a monthly throughput of less than 10,000 gallons of gasoline, you must comply with the requirements in § 63.11116.

(c) If your GDF has a monthly throughput of 10,000 gallons of gasoline or more, you must comply with the requirements in § 63.11117.

(d) If your GDF has a monthly throughput of 100,000 gallons of gasoline or more, you must comply with the requirements in § 63.11118.

(e) An affected source shall, upon request by the Administrator, demonstrate that their monthly throughput is less than the 10,000-gallon or the 100,000-gallon threshold level, as applicable. For new or reconstructed affected sources, as specified in § 63.11112(b) and (c), recordkeeping to document monthly throughput must begin upon startup of the affected source. For existing sources, as specified in § 63.11112(d), recordkeeping to document monthly throughput must begin on January 10, 2008. For existing sources that are subject to this subpart only because they load gasoline into fuel tanks other than those in motor vehicles, as defined in § 63.11132, recordkeeping to document monthly throughput must begin on January 24, 2011. Records required under this paragraph shall be kept for a period of 5 years.

(f) If you are an owner or operator of affected sources, as defined in paragraph (a) of this section, you are not required to obtain a permit under 40 CFR part 70 or 40 CFR part 71 as a result of being subject to this subpart. However, you must still apply for and obtain a permit under 40 CFR part 70 or 40 CFR part 71 if you meet one or more of the applicability criteria found in 40 CFR 70.3(a) and (b) or 40 CFR 71.3(a) and (b).
(g) The loading of aviation gasoline into storage tanks at airports, and the subsequent transfer of aviation gasoline within the airport, is not subject to this subpart.

(h) Monthly throughput is the total volume of gasoline loaded into, or dispensed from, all the gasoline storage tanks located at a single affected GDF. If an area source has two or more GDF at separate locations within the area source, each GDF is treated as a separate affected source.

(i) If your affected source’s throughput ever exceeds an applicable throughput threshold, the affected source will remain subject to the requirements for sources above the threshold, even if the affected source throughput later falls below the applicable throughput threshold.

(j) The dispensing of gasoline from a fixed gasoline storage tank at a GDF into a portable gasoline tank for the on-site delivery and subsequent dispensing of the gasoline into the fuel tank of a motor vehicle or other gasoline-fueled engine or equipment used within the area source is only subject to § 63.11116 of this subpart.

(k) For any affected source subject to the provisions of this subpart and another Federal rule, you may elect to comply only with the more stringent provisions of the applicable subparts. You must consider all provisions of the rules, including monitoring, recordkeeping, and reporting. You must identify the affected source and provisions with which you will comply in your Notification of Compliance Status required under § 63.11124. You also must demonstrate in your Notification of Compliance Status that each provision with which you will comply is at least as stringent as the otherwise applicable requirements in this subpart. You are responsible for making accurate determinations concerning the more stringent provisions, and noncompliance with this rule is not excused if it is later determined that your determination was in error, and, as a result, you are violating this subpart. Compliance with this rule is your responsibility and the Notification of Compliance Status does not alter or affect that responsibility.

§ 63.11112 What parts of my affected source does this subpart cover?

(a) The emission sources to which this subpart applies are gasoline storage tanks and associated equipment components in vapor or liquid gasoline service at new, reconstructed, or existing GDF that meet the criteria specified in § 63.11111. Pressure/Vacuum vents on gasoline storage tanks and the equipment necessary to unload product from cargo tanks into the storage tanks at GDF are covered emission sources. The equipment used for the refueling of motor vehicles is not covered by this subpart.

(b) An affected source is a new affected source if you commenced construction on the affected source after November 9, 2006, and you meet the applicability criteria in § 63.11111 at the time you commenced operation.

(c) An affected source is reconstructed if you meet the criteria for reconstruction as defined in § 63.2.

(d) An affected source is an existing affected source if it is not new or reconstructed.

§ 63.11113 When do I have to comply with this subpart?

(a) If you have a new or reconstructed affected source, you must comply with this subpart according to paragraphs (a)(1) and (2) of this section, except as specified in paragraph (d) of this section.

(1) If you start up your affected source before January 10, 2008, you must comply with the standards in this subpart no later than January 10, 2008.

(2) If you start up your affected source after January 10, 2008, you must comply with the standards in this subpart upon startup of your affected source.

(b) If you have an existing affected source, you must comply with the standards in this subpart no later than January 10, 2011.
(c) If you have an existing affected source that becomes subject to the control requirements in this subpart because of an increase in the monthly throughput, as specified in § 63.11111(c) or § 63.11111(d), you must comply with the standards in this subpart no later than 3 years after the affected source becomes subject to the control requirements in this subpart.

(d) If you have a new or reconstructed affected source and you are complying with Table 1 to this subpart, you must comply according to paragraphs (d)(1) and (2) of this section.

(1) If you start up your affected source from November 9, 2006 to September 23, 2008, you must comply no later than September 23, 2008.

(2) If you start up your affected source after September 23, 2008, you must comply upon startup of your affected source.

(e) The initial compliance demonstration test required under § 63.11120(a)(1) and (2) must be conducted as specified in paragraphs (e)(1) and (2) of this section.

(1) If you have a new or reconstructed affected source, you must conduct the initial compliance test upon installation of the complete vapor balance system.

(2) If you have an existing affected source, you must conduct the initial compliance test as specified in paragraphs (e)(2)(i) or (e)(2)(ii) of this section.

(i) For vapor balance systems installed on or before December 15, 2009, you must test no later than 180 days after the applicable compliance date specified in paragraphs (b) or (c) of this section.

(ii) For vapor balance systems installed after December 15, 2009, you must test upon installation of the complete vapor balance system.

(f) If your GDF is subject to the control requirements in this subpart only because it loads gasoline into fuel tanks other than those in motor vehicles, as defined in § 63.11132, you must comply with the standards in this subpart as specified in paragraphs (f)(1) or (f)(2) of this section.

(1) If your GDF is an existing facility, you must comply by January 24, 2014.

(2) If your GDF is a new or reconstructed facility, you must comply by the dates specified in paragraphs (f)(2)(i) and (ii) of this section.

(i) If you start up your GDF after December 15, 2009, but before January 24, 2011, you must comply no later than January 24, 2011.

(ii) If you start up your GDF after January 24, 2011, you must comply upon startup of your GDF.

Emission Limitations and Management Practices

§ 63.11115 What are my general duties to minimize emissions?

Each owner or operator of an affected source under this subpart must comply with the requirements of paragraphs (a) and (b) of this section.

(a) You must, at all times, operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review
of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

(b) You must keep applicable records and submit reports as specified in § 63.11125(d) and § 63.11126(b).

[76 FR 4182, Jan. 24, 2011]

§ 63.11116 Requirements for facilities with monthly throughput of less than 10,000 gallons of gasoline.

(a) You must not allow gasoline to be handled in a manner that would result in vapor releases to the atmosphere for extended periods of time. Measures to be taken include, but are not limited to, the following:

(1) Minimize gasoline spills;

(2) Clean up spills as expeditiously as practicable;

(3) Cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use;

(4) Minimize gasoline sent to open waste collection systems that collect and transport gasoline to reclamation and recycling devices, such as oil/water separators.

(b) You are not required to submit notifications or reports as specified in § 63.11125, § 63.11126, or subpart A of this part, but you must have records available within 24 hours of a request by the Administrator to document your gasoline throughput.

(c) You must comply with the requirements of this subpart by the applicable dates specified in § 63.11113.

(d) Portable gasoline containers that meet the requirements of 40 CFR part 59, subpart F, are considered acceptable for compliance with paragraph (a)(3) of this section.

§ 63.11117 Requirements for facilities with monthly throughput of 10,000 gallons of gasoline or more.

(a) You must comply with the requirements in section § 63.11116(a).

(b) Except as specified in paragraph (c) of this section, you must only load gasoline into storage tanks at your facility by utilizing submerged filling, as defined in § 63.11132, and as specified in paragraphs (b)(1), (b)(2), or (b)(3) of this section. The applicable distances in paragraphs (b)(1) and (2) shall be measured from the point in the opening of the submerged fill pipe that is the greatest distance from the bottom of the storage tank.

(1) Submerged fill pipes installed on or before November 9, 2006, must be no more than 12 inches from the bottom of the tank.

(2) Submerged fill pipes installed after November 9, 2006, must be no more than 6 inches from the bottom of the tank.

(3) Submerged fill pipes not meeting the specifications of paragraphs (b)(1) or (b)(2) of this section are allowed if the owner or operator can demonstrate that the liquid level in the tank is always above the entire opening of the fill pipe. Documentation providing such demonstration must be made available for inspection by the Administrator's delegated representative during the course of a site visit.

(c) Gasoline storage tanks with a capacity of less than 250 gallons are not required to comply with the submerged fill requirements in paragraph (b) of this section, but must comply only with all of the requirements in § 63.11116.
(d) You must have records available within 24 hours of a request by the Administrator to document your gasoline throughput.

(e) You must submit the applicable notifications as required under § 63.11124(a).

(f) You must comply with the requirements of this subpart by the applicable dates contained in § 63.11113.

§ 63.11118 Requirements for facilities with monthly throughput of 100,000 gallons of gasoline or more.

(a) You must comply with the requirements in §§ 63.11116(a) and 63.11117(b).

(b) Except as provided in paragraph (c) of this section, you must meet the requirements in either paragraph (b)(1) or paragraph (b)(2) of this section.

(1) Each management practice in Table 1 to this subpart that applies to your GDF.

(2) If, prior to January 10, 2008, you satisfy the requirements in both paragraphs (b)(2)(i) and (ii) of this section, you will be deemed in compliance with this subsection.

(i) You operate a vapor balance system at your GDF that meets the requirements of either paragraph (b)(2)(i)(A) or paragraph (b)(2)(i)(B) of this section.

(A) Achieves emissions reduction of at least 90 percent.

(B) Operates using management practices at least as stringent as those in Table 1 to this subpart.

(ii) Your gasoline dispensing facility is in compliance with an enforceable State, local, or tribal rule or permit that contains requirements of either paragraph (b)(2)(i)(A) or paragraph (b)(2)(i)(B) of this section.

(c) The emission sources listed in paragraphs (c)(1) through (3) of this section are not required to comply with the control requirements in paragraph (b) of this section, but must comply with the requirements in § 63.11117.

(1) Gasoline storage tanks with a capacity of less than 250 gallons that are constructed after January 10, 2008.

(2) Gasoline storage tanks with a capacity of less than 2,000 gallons that were constructed before January 10, 2008.

(3) Gasoline storage tanks equipped with floating roofs, or the equivalent.

(d) Cargo tanks unloading at GDF must comply with the management practices in Table 2 to this subpart.

(e) You must comply with the applicable testing requirements contained in § 63.11120.

(f) You must submit the applicable notifications as required under § 63.11124.

(g) You must keep records and submit reports as specified in §§ 63.11125 and 63.11126.

(h) You must comply with the requirements of this subpart by the applicable dates contained in § 63.11113.

Testing and Monitoring Requirements

§ 63.11120 What testing and monitoring requirements must I meet?

(a) Each owner or operator, at the time of installation, as specified in § 63.11113(e), of a vapor balance system required under § 63.11118(b)(1), and every 3 years thereafter, must comply with the requirements in paragraphs (a)(1) and (2) of this section.

(1) You must demonstrate compliance with the leak rate and cracking pressure requirements, specified in item 1(g) of Table 1 to this subpart, for pressure-vacuum vent valves installed on your gasoline storage tanks using the test methods identified in paragraph (a)(1)(i) or paragraph (a)(1)(ii) of this section.

(i) California Air Resources Board Vapor Recovery Test Procedure TP-201.1E,—Leak Rate and Cracking Pressure of Pressure/Vacuum Vent Valves, adopted October 8, 2003 (incorporated by reference, see § 63.14).

(ii) Use alternative test methods and procedures in accordance with the alternative test method requirements in § 63.7(f).

(2) You must demonstrate compliance with the static pressure performance requirement specified in item 1(h) of Table 1 to this subpart for your vapor balance system by conducting a static pressure test on your gasoline storage tanks using the test methods identified in paragraphs (a)(2)(i), (a)(2)(ii), or (a)(2)(iii) of this section.

(ii) Use alternative test methods and procedures in accordance with the alternative test method requirements in § 63.7(f).

(b) Each owner or operator choosing, under the provisions of § 63.6(g), to use a vapor balance system other than that described in Table 1 to this subpart must demonstrate to the Administrator or delegated authority under paragraph § 63.11131(a) of this subpart, the equivalency of their vapor balance system to that described in Table 1 to this subpart using the procedures specified in paragraphs (b)(1) through (3) of this section.

(1) You must demonstrate initial compliance by conducting an initial performance test on the vapor balance system to demonstrate that the vapor balance system achieves 95 percent reduction using the California Air Resources Board Vapor Recovery Test Procedure TP-201.1,—Volumetric Efficiency for Phase I Vapor Recovery Systems, adopted April 12, 1996, and amended February 1, 2001, and October 8, 2003, (incorporated by reference, see § 63.14).

(2) You must, during the initial performance test required under paragraph (b)(1) of this section, determine and document alternative acceptable values for the leak rate and cracking pressure requirements specified in item 1(g) of Table 1 to this subpart and for the static pressure performance requirement in item 1(h) of Table 1 to this subpart.

(3) You must comply with the testing requirements specified in paragraph (a) of this section.

(c) Conduct of performance tests. Performance tests conducted for this subpart shall be conducted under such conditions as the Administrator specifies to the owner or operator based on representative performance (i.e., performance based on normal operating conditions) of the affected source. Upon request, the owner or operator shall make available to the Administrator such records as may be necessary to determine the conditions of performance tests.

(d) Owners and operators of gasoline cargo tanks subject to the provisions of Table 2 to this subpart must conduct annual certification testing according to the vapor tightness testing requirements found in § 63.11092(f).
§ 63.11124 What notifications must I submit and when?

(a) Each owner or operator subject to the control requirements in § 63.11117 must comply with paragraphs (a)(1) through (3) of this section.

(1) You must submit an Initial Notification that you are subject to this subpart by May 9, 2008, or at the time you become subject to the control requirements in § 63.11117, unless you meet the requirements in paragraph (a)(3) of this section. If your affected source is subject to the control requirements in § 63.11117 only because it loads gasoline into fuel tanks other than those in motor vehicles, as defined in § 63.11132, you must submit the Initial Notification by May 24, 2011. The Initial Notification must contain the information specified in paragraphs (a)(1)(i) through (iii) of this section. The notification must be submitted to the applicable EPA Regional Office and delegated State authority as specified in § 63.13.

(i) The name and address of the owner and the operator.

(ii) The address (i.e., physical location) of the GDF.

(iii) A statement that the notification is being submitted in response to this subpart and identifying the requirements in paragraphs (a) through (c) of § 63.11117 that apply to you.

(2) You must submit a Notification of Compliance Status to the applicable EPA Regional Office and the delegated State authority, as specified in § 63.13, within 60 days of the applicable compliance date specified in § 63.11113, unless you meet the requirements in paragraph (a)(3) of this section. The Notification of Compliance Status must be signed by a responsible official who must certify its accuracy, must indicate whether the source has complied with the requirements of this subpart, and must indicate whether the facilities’ monthly throughput is calculated based on the volume of gasoline loaded into all storage tanks or on the volume of gasoline dispensed from all storage tanks. If your facility is in compliance with the requirements of this subpart at the time the Initial Notification required under paragraph (a)(1) of this section is due, the Notification of Compliance Status may be submitted in lieu of the Initial Notification provided it contains the information required under paragraph (a)(1) of this section.

(i) The name and address of the owner and the operator.

(ii) The address (i.e., physical location) of the GDF.

(iii) A statement that the notification is being submitted in response to this subpart and identifying the requirements in paragraphs (a) through (c) of § 63.11117 that apply to you.

(3) If, prior to January 10, 2008, you are operating in compliance with an enforceable State, local, or tribal rule or permit that requires submerged fill as specified in § 63.11117(b), you are not required to submit an Initial Notification or a Notification of Compliance Status under paragraph (a)(1) or paragraph (a)(2) of this section.

(b) Each owner or operator subject to the control requirements in § 63.11118 must comply with paragraphs (b)(1) through (5) of this section.

(1) You must submit an Initial Notification that you are subject to this subpart by May 9, 2008, or at the time you become subject to the control requirements in § 63.11118. If your affected source is subject to the control requirements in § 63.11118 only because it loads gasoline into fuel tanks other than those in motor vehicles, as defined in § 63.11132, you must submit the Initial Notification by May 24, 2011. The Initial Notification must contain the information specified in paragraphs (b)(1)(i) through (iii) of this section. The notification must be submitted to the applicable EPA Regional Office and delegated State authority as specified in § 63.13.

(i) The name and address of the owner and the operator.

(ii) The address (i.e., physical location) of the GDF.

(iii) A statement that the notification is being submitted in response to this subpart and identifying the requirements in paragraphs (a) through (c) of § 63.11118 that apply to you.

(2) You must submit a Notification of Compliance Status to the applicable EPA Regional Office and the delegated State authority, as specified in § 63.13, in accordance with the schedule specified in § 63.9(h). The Notification of
Compliance Status must be signed by a responsible official who must certify its accuracy, must indicate whether the source has complied with the requirements of this subpart, and must indicate whether the facility's throughput is determined based on the volume of gasoline loaded into all storage tanks or on the volume of gasoline dispensed from all storage tanks. If your facility is in compliance with the requirements of this subpart at the time the Initial Notification required under paragraph (b)(1) of this section is due, the Notification of Compliance Status may be submitted in lieu of the Initial Notification provided it contains the information required under paragraph (b)(1) of this section.

(3) If, prior to January 10, 2008, you satisfy the requirements in both paragraphs (b)(3)(i) and (ii) of this section, you are not required to submit an Initial Notification or a Notification of Compliance Status under paragraph (b)(1) or paragraph (b)(2) of this subsection.

(i) You operate a vapor balance system at your gasoline dispensing facility that meets the requirements of either paragraphs (b)(3)(i)(A) or (b)(3)(i)(B) of this section.

(A) Achieves emissions reduction of at least 90 percent.

(B) Operates using management practices at least as stringent as those in Table 1 to this subpart.

(ii) Your gasoline dispensing facility is in compliance with an enforceable State, local, or tribal rule or permit that contains requirements of either paragraphs (b)(3)(i)(A) or (b)(3)(i)(B) of this section.

(4) You must submit a Notification of Performance Test, as specified in § 63.9(e), prior to initiating testing required by § 63.11120(a) and (b).

(5) You must submit additional notifications specified in § 63.9, as applicable.

§ 63.11125 What are my recordkeeping requirements?

(a) Each owner or operator subject to the management practices in § 63.11118 must keep records of all tests performed under § 63.11120(a) and (b).

(b) Records required under paragraph (a) of this section shall be kept for a period of 5 years and shall be made available for inspection by the Administrator's delegated representatives during the course of a site visit.

(c) Each owner or operator of a gasoline cargo tank subject to the management practices in Table 2 to this subpart must keep records documenting vapor tightness testing for a period of 5 years. Documentation must include each of the items specified in § 63.11094(b)(2)(i) through (viii). Records of vapor tightness testing must be retained as specified in either paragraph (c)(1) or paragraph (c)(2) of this section.

(1) The owner or operator must keep all vapor tightness testing records with the cargo tank.

(2) As an alternative to keeping all records with the cargo tank, the owner or operator may comply with the requirements of paragraphs (c)(2)(i) and (ii) of this section.

(i) The owner or operator may keep records of only the most recent vapor tightness test with the cargo tank, and keep records for the previous 4 years at their office or another central location.

(ii) Vapor tightness testing records that are kept at a location other than with the cargo tank must be instantly available (e.g., via e-mail or facsimile) to the Administrator’s delegated representative during the course of a site visit or within a mutually agreeable time frame. Such records must be an exact duplicate image of the original paper copy record with certifying signatures.
(d) Each owner or operator of an affected source under this subpart shall keep records as specified in paragraphs
(d)(1) and (2) of this section.

(1) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air
pollution control and monitoring equipment.

(2) Records of actions taken during periods of malfunction to minimize emissions in accordance with § 63.11115(a),
including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its
normal or usual manner of operation.

§ 63.11126 What are my reporting requirements?

(a) Each owner or operator subject to the management practices in § 63.11118 shall report to the Administrator the
results of all volumetric efficiency tests required under § 63.11120(b). Reports submitted under this paragraph must
be submitted within 180 days of the completion of the performance testing.

(b) Each owner or operator of an affected source under this subpart shall report, by March 15 of each year, the
number, duration, and a brief description of each type of malfunction which occurred during the previous calendar
year and which caused or may have caused any applicable emission limitation to be exceeded. The report must also
include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize
emissions in accordance with § 63.11115(a), including actions taken to correct a malfunction. No report is necessary
for a calendar year in which no malfunctions occurred.

[76 FR 4183, Jan. 24, 2011]

Other Requirements and Information

§ 63.11130 What parts of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions apply to you.

§ 63.11131 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by the U.S. EPA or a delegated authority such as the applicable
State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to a State, local, or tribal agency,
then that agency, in addition to the U.S. EPA, has the authority to implement and enforce this subpart. Contact the
applicable U.S. EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to a
State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under
subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the Administrator of
U.S. EPA and cannot be transferred to the State, local, or tribal agency.

(c) The authorities that cannot be delegated to State, local, or tribal agencies are as specified in paragraphs (c)(1)
through (3) of this section.

(1) Approval of alternatives to the requirements in §§ 63.11116 through 63.11118 and 63.11120.

(2) Approval of major alternatives to test methods under § 63.7(e)(2)(ii) and (f), as defined in § 63.90, and as required
in this subpart.

(3) Approval of major alternatives to recordkeeping and reporting under § 63.10(f), as defined in § 63.90, and as
required in this subpart.
§ 63.11132 What definitions apply to this subpart?

As used in this subpart, all terms not defined herein shall have the meaning given them in the Clean Air Act (CAA), or in subparts A and BBBBBB of this part. For purposes of this subpart, definitions in this section supersede definitions in other parts or subparts.

Dual-point vapor balance system means a type of vapor balance system in which the storage tank is equipped with an entry port for a gasoline fill pipe and a separate exit port for a vapor connection.

Gasoline means any petroleum distillate or petroleum distillate/alcohol blend having a Reid vapor pressure of 27.6 kilopascals or greater, which is used as a fuel for internal combustion engines.

Gasoline cargo tank means a delivery tank truck or railcar which is loading or unloading gasoline, or which has loaded or unloaded gasoline on the immediately previous load.

Gasoline dispensing facility (GDF) means any stationary facility which dispenses gasoline into the fuel tank of a motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or nonroad engine used solely for competition. These facilities include, but are not limited to, facilities that dispense gasoline into on- and off-road, street, or highway motor vehicles, lawn equipment, boats, test engines, landscaping equipment, generators, pumps, and other gasoline-fueled engines and equipment.

Monthly throughput means the total volume of gasoline that is loaded into, or dispensed from, all gasoline storage tanks at each GDF during a month. Monthly throughput is calculated by summing the volume of gasoline loaded into, or dispensed from, all gasoline storage tanks at each GDF during the current day, plus the total volume of gasoline loaded into, or dispensed from, all gasoline storage tanks at each GDF during the previous 364 days, and then dividing that sum by 12.

Motor vehicle means any self-propelled vehicle designed for transporting persons or property on a street or highway.

Nonroad engine means an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a vehicle used solely for competition, or that is not subject to standards promulgated under section 7411 of this title or section 7521 of this title.

Nonroad vehicle means a vehicle that is powered by a nonroad engine, and that is not a motor vehicle or a vehicle used solely for competition.

Submerged filling means, for the purposes of this subpart, the filling of a gasoline storage tank through a submerged fill pipe whose discharge is no more than the applicable distance specified in § 63.11117(b) from the bottom of the tank. Bottom filling of gasoline storage tanks is included in this definition.

Vapor balance system means a combination of pipes and hoses that create a closed system between the vapor spaces of an unloading gasoline cargo tank and a receiving storage tank such that vapors displaced from the storage tank are transferred to the gasoline cargo tank being unloaded.

Vapor-tight means equipment that allows no loss of vapors. Compliance with vapor-tight requirements can be determined by checking to ensure that the concentration at a potential leak source is not equal to or greater than 100 percent of the Lower Explosive Limit when measured with a combustible gas detector, calibrated with propane, at a distance of 1 inch from the source.

Vapor-tight gasoline cargo tank means a gasoline cargo tank which has demonstrated within the 12 preceding months that it meets the annual certification test requirements in § 63.11092(f) of this part.

Table 1 to Subpart CCCCCC of Part 63—Applicability Criteria and Management Practices for Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More

<table>
<thead>
<tr>
<th>If you own or operate</th>
<th>Then you must</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A new, reconstructed, or existing GDF subject to § 63.11118</td>
<td>Install and operate a vapor balance system on your gasoline storage tanks that meets the design criteria in paragraphs (a) through (h).</td>
</tr>
<tr>
<td>(a) All vapor connections and lines on the storage tank shall be equipped with closures that seal upon disconnect.</td>
<td></td>
</tr>
<tr>
<td>(b) The vapor line from the gasoline storage tank to the gasoline cargo tank shall be vapor-tight, as defined in § 63.11132.</td>
<td></td>
</tr>
<tr>
<td>(c) The vapor balance system shall be designed such that the pressure in the tank truck does not exceed 18 inches water pressure or 5.9 inches water vacuum during product transfer.</td>
<td></td>
</tr>
<tr>
<td>(d) The vapor recovery and product adaptors, and the method of connection with the delivery elbow, shall be designed so as to prevent the over-tightening or loosening of fittings during normal delivery operations.</td>
<td></td>
</tr>
<tr>
<td>(e) If a gauge well separate from the fill tube is used, it shall be provided with a submerged drop tube that extends the same distance from the bottom of the storage tank as specified in § 63.11117(b).</td>
<td></td>
</tr>
<tr>
<td>(f) Liquid fill connections for all systems shall be equipped with vapor-tight caps.</td>
<td></td>
</tr>
<tr>
<td>(g) Pressure/vacuum (PV) vent valves shall be installed on the storage tank vent pipes. The pressure specifications for PV vent valves shall be: a positive pressure setting of 2.5 to 6.0 inches of water and a negative pressure setting of 6.0 to 10.0 inches of water. The total leak rate of all PV vent valves at an affected facility, including connections, shall not exceed 0.17 cubic foot per hour at a pressure of 2.0 inches of water and 0.63 cubic foot per hour at a vacuum of 4 inches of water.</td>
<td></td>
</tr>
<tr>
<td>(h) The vapor balance system shall be capable of meeting the static pressure performance requirement of the following equation:</td>
<td></td>
</tr>
<tr>
<td>Pf = 2e^{-500.887v}</td>
<td></td>
</tr>
<tr>
<td>Where:</td>
<td></td>
</tr>
<tr>
<td>Pf = Minimum allowable final pressure, inches of water.</td>
<td></td>
</tr>
<tr>
<td>v = Total ullage affected by the test, gallons.</td>
<td></td>
</tr>
<tr>
<td>e = Dimensionless constant equal to approximately 2.718.</td>
<td></td>
</tr>
<tr>
<td>2 = The initial pressure, inches water.</td>
<td></td>
</tr>
<tr>
<td>2. A new or reconstructed GDF, or any storage tank(s) constructed after November 9, 2006, at an existing affected facility subject to § 63.11118</td>
<td>Equip your gasoline storage tanks with a dual-point vapor balance system, as defined in § 63.11132, and comply with the requirements of item 1 in this Table.</td>
</tr>
</tbody>
</table>

1 The management practices specified in this Table are not applicable if you are complying with the requirements in § 63.11118(b)(2), except that if you are complying with the requirements in § 63.11118(b)(2)(i)(B), you must operate using management practices at least as stringent as those listed in this Table.

Table 2 to Subpart CCCCCC of Part 63—Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More

<table>
<thead>
<tr>
<th>If you own or operate</th>
<th>Then you must</th>
</tr>
</thead>
<tbody>
<tr>
<td>A gasoline cargo tank</td>
<td>Not unload gasoline into a storage tank at a GDF subject to the control requirements in this subpart unless the following conditions are met:</td>
</tr>
<tr>
<td></td>
<td>(i) All hoses in the vapor balance system are properly connected,</td>
</tr>
<tr>
<td></td>
<td>(ii) The adapters or couplers that attach to the vapor line on the storage tank have closures that seal upon disconnect,</td>
</tr>
<tr>
<td></td>
<td>(iii) All vapor return hoses, couplers, and adapters used in the gasoline delivery are vapor-tight,</td>
</tr>
<tr>
<td></td>
<td>(iv) All tank truck vapor return equipment is compatible in size and forms a vapor-tight connection with the vapor balance equipment on the GDF storage tank, and</td>
</tr>
<tr>
<td></td>
<td>(v) All hatches on the tank truck are closed and securely fastened.</td>
</tr>
<tr>
<td></td>
<td>(vi) The filling of storage tanks at GDF shall be limited to unloading from vapor-tight gasoline cargo tanks. Documentation that the cargo tank has met the specifications of EPA Method 27 shall be carried with the cargo tank, as specified in § 63.11125(c).</td>
</tr>
</tbody>
</table>

Table 3 to Subpart CCCCCC of Part 63—Applicability of General Provisions

<table>
<thead>
<tr>
<th>Citation</th>
<th>Subject</th>
<th>Brief description</th>
<th>Applies to subpart CCCCCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 63.1</td>
<td>Applicability</td>
<td>Initial applicability determination; applicability after standard established; permit requirements; extensions, notifications</td>
<td>Yes, specific requirements given in § 63.11111.</td>
</tr>
<tr>
<td>§ 63.1(c)(2)</td>
<td>Title V Permit</td>
<td>Requirements for obtaining a title V permit from the applicable permitting authority</td>
<td>Yes, § 63.11111(f) of subpart CCCCCC exempts identified area sources from the obligation to obtain title V operating permits.</td>
</tr>
<tr>
<td>§ 63.2</td>
<td>Definitions</td>
<td>Definitions for part 63 standards</td>
<td>Yes, additional definitions in § 63.11132.</td>
</tr>
<tr>
<td>§ 63.3</td>
<td>Units and Abbreviations</td>
<td>Units and abbreviations for part 63 standards</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.4</td>
<td>Prohibited Activities and Circumvention</td>
<td>Prohibited activities; Circumvention, severability</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.5</td>
<td>Construction/Reconstruction</td>
<td>Applicability; applications; approvals</td>
<td>Yes, except that these notifications are not required for facilities subject to § 63.11116</td>
</tr>
<tr>
<td>§ 63.6(a)</td>
<td>Compliance with Standards/Operation & Maintenance—Applicability</td>
<td>General Provisions apply unless compliance extension; General Provisions apply to area sources that become major</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>§ 63.6(b)(1)-(4)</td>
<td>Compliance Dates for New and Reconstructed Sources</td>
<td>Standards apply at effective date; 3 years after effective date; upon startup; 10 years after construction or reconstruction commences for CAA section 112(f)</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(b)(5)</td>
<td>Notification</td>
<td>Must notify if commenced construction or reconstruction after proposal</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(b)(6)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.6(b)(7)</td>
<td>Compliance Dates for New and Reconstructed Area Sources That Become Major</td>
<td>Area sources that become major must comply with major source standards immediately upon becoming major, regardless of whether required to comply when they were an area source</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(c)(1)-(2)</td>
<td>Compliance Dates for Existing Sources</td>
<td>Comply according to date in this subpart, which must be no later than 3 years after effective date; for CAA section 112(f) standards, comply within 90 days of effective date unless compliance extension</td>
<td>No. § 63.11113 specifies the compliance dates.</td>
</tr>
<tr>
<td>§ 63.6(c)(3)-(4)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.6(c)(5)</td>
<td>Compliance Dates for Existing Area Sources That Become Major</td>
<td>Area sources That become major must comply with major source standards by date indicated in this subpart or by equivalent time period (e.g., 3 years)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(d)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.6(e)(1)(i)</td>
<td>General duty to minimize emissions</td>
<td>Operate to minimize emissions at all times; information Administrator will use to determine if operation and maintenance requirements were met.</td>
<td>No. See § 63.11115 for general duty requirement.</td>
</tr>
<tr>
<td>63.6(e)(1)(ii)</td>
<td>Requirement to correct malfunctions ASAP</td>
<td>Owner or operator must correct malfunctions as soon as possible.</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(e)(2)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.6(e)(3)</td>
<td>Startup, Shutdown, and Malfunction (SSM) Plan</td>
<td>Requirement for SSM plan; content of SSM plan; actions during SSM</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(f)(1)</td>
<td>Compliance Except During SSM</td>
<td>You must comply with emission standards at all times except during SSM</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(f)(2)-(3)</td>
<td>Methods for Determining Compliance</td>
<td>Compliance based on performance test, operation and maintenance plans, records, inspection</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(g)(1)-(3)</td>
<td>Alternative Standard</td>
<td>Procedures for getting an alternative standard</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(h)(1)</td>
<td>Compliance with Opacity/Visible Emission (VE) Standards</td>
<td>You must comply with opacity/VE standards at all times except during SSM</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(2)(i)</td>
<td>Determining Compliance with Opacity/VE Standards</td>
<td>If standard does not State test method, use EPA Method 9 for opacity in appendix A of part 60 of this chapter and EPA Method 22 for VE in appendix A of part 60 of this chapter</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(2)(ii)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>§ 63.6(h)(2)(iii)</td>
<td>Using Previous Tests To Demonstrate Compliance With Opacity/VE Standards</td>
<td>Criteria for when previous opacity/VE testing can be used to show compliance with this subpart</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(3)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.6(h)(4)</td>
<td>Notification of Opacity/VE Observation Date</td>
<td>Must notify Administrator of anticipated date of observation</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(5)(i), (iii)-(v)</td>
<td>Conducting Opacity/VE Observations</td>
<td>Dates and schedule for conducting opacity/VE observations</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(5)(ii)</td>
<td>Opacity Test Duration and Averaging Times</td>
<td>Must have at least 3 hours of observation with 30 6-minute averages</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(6)</td>
<td>Records of Conditions During Opacity/VE Observations</td>
<td>Must keep records available and allow Administrator to inspect</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(7)(i)</td>
<td>Report Continuous Opacity Monitoring System (COMS) Monitoring Data From Performance Test</td>
<td>Must submit COMS data with other performance test data</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(7)(ii)</td>
<td>Using COMS Instead of EPA Method 9</td>
<td>Can submit COMS data instead of EPA Method 9 results even if rule requires EPA Method 9 in appendix A of part 60 of this chapter, but must notify Administrator before performance test</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(7)(iii)</td>
<td>Averaging Time for COMS During Performance Test</td>
<td>To determine compliance, must reduce COMS data to 6-minute averages</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(7)(iv)</td>
<td>COMS Requirements</td>
<td>Owner/operator must demonstrate that COMS performance evaluations are conducted according to § 63.8(e); COMS are properly maintained and operated according to § 63.8(c) and data quality as § 63.8(d)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(7)(v)</td>
<td>Determining Compliance with Opacity/VE Standards</td>
<td>COMS is probable but not conclusive evidence of compliance with opacity standard, even if EPA Method 9 observation shows otherwise. Requirements for COMS to be probable evidence-proper maintenance, meeting Performance Specification 1 in appendix B of part 60 of this chapter, and data have not been altered</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(8)</td>
<td>Determining Compliance with Opacity/VE Standards</td>
<td>Administrator will use all COMS, EPA Method 9 (in appendix A of part 60 of this chapter), and EPA Method 22 (in appendix A of part 60 of this chapter) results, as well as information about operation and maintenance to determine compliance</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(h)(9)</td>
<td>Adjusted Opacity Standard</td>
<td>Procedures for Administrator to adjust an opacity standard</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.6(i)(1)-(14)</td>
<td>Compliance Extension</td>
<td>Procedures and criteria for Administrator to grant compliance extension</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.6(j)</td>
<td>Presidential Compliance Exemption</td>
<td>President may exempt any source from requirement to comply with this subpart</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>§ 63.7(a)(2)</td>
<td>Performance Test Dates</td>
<td>Dates for conducting initial performance testing; must conduct 180 days after compliance date</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(a)(3)</td>
<td>CAA Section 114 Authority</td>
<td>Administrator may require a performance test under CAA section 114 at any time</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(b)(1)</td>
<td>Notification of Performance Test</td>
<td>Must notify Administrator 60 days before the test</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(b)(2)</td>
<td>Notification of Re-scheduling</td>
<td>If have to reschedule performance test, must notify Administrator of rescheduled date as soon as practicable and without delay</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(c)</td>
<td>Quality Assurance (QA)/Test Plan</td>
<td>Requirement to submit site-specific test plan 60 days before the test or on date Administrator agrees with; test plan approval procedures; performance audit requirements; internal and external QA procedures for testing</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(d)</td>
<td>Testing Facilities</td>
<td>Requirements for testing facilities</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(e)(1)</td>
<td>Conditions for Conducting Performance Tests</td>
<td>Performance test must be conducted under representative conditions</td>
<td>No, § 63.11120(c) specifies conditions for conducting performance tests.</td>
</tr>
<tr>
<td>§ 63.7(e)(2)</td>
<td>Conditions for Conducting Performance Tests</td>
<td>Must conduct according to this subpart and EPA test methods unless Administrator approves alternative</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(e)(3)</td>
<td>Test Run Duration</td>
<td>Must have three test runs of at least 1 hour each; compliance is based on arithmetic mean of three runs; conditions when data from an additional test run can be used</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(f)</td>
<td>Alternative Test Method</td>
<td>Procedures by which Administrator can grant approval to use an intermediate or major change, or alternative to a test method</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(g)</td>
<td>Performance Test Data Analysis</td>
<td>Must include raw data in performance test report; must submit performance test data 60 days after end of test with the Notification of Compliance Status; keep data for 5 years</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.7(h)</td>
<td>Waiver of Tests</td>
<td>Procedures for Administrator to waive performance test</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(a)(1)</td>
<td>Applicability of Monitoring Requirements</td>
<td>Subject to all monitoring requirements in standard</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(a)(2)</td>
<td>Performance Specifications</td>
<td>Performance Specifications in appendix B of 40 CFR part 60 apply</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(a)(3)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.8(a)(4)</td>
<td>Monitoring of Flares</td>
<td>Monitoring requirements for flares in § 63.11 apply</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.8(b)(1)</td>
<td>Monitoring</td>
<td>Must conduct monitoring according to standard unless Administrator approves alternative</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>§ 63.8(b)(2)-(3)</td>
<td>Multiple Effluents and Multiple Monitoring Systems</td>
<td>Specific requirements for installing monitoring systems; must install on each affected source or after combined with another affected source before it is released to the atmosphere provided the monitoring is sufficient to demonstrate compliance with the standard; if more than one monitoring system on an emission point, must report all monitoring system results, unless one monitoring system is a backup</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(c)(1)</td>
<td>Monitoring System Operation and Maintenance</td>
<td>Maintain monitoring system in a manner consistent with good air pollution control practices</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(c)(1)(i)-(iii)</td>
<td>Operation and Maintenance of Continuous Monitoring Systems (CMS)</td>
<td>Must maintain and operate each CMS as specified in § 63.6(e)(1); must keep parts for routine repairs readily available; must develop a written SSM plan for CMS, as specified in § 63.6(e)(3)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(c)(2)-(8)</td>
<td>CMS Requirements</td>
<td>Must install to get representative emission or parameter measurements; must verify operational status before or at performance test</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(d)</td>
<td>CMS Quality Control</td>
<td>Requirements for CMS quality control, including calibration, etc.; must keep quality control plan on record for 5 years; keep old versions for 5 years after revisions</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(e)</td>
<td>CMS Performance Evaluation</td>
<td>Notification, performance evaluation test plan, reports</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(f)(1)-(5)</td>
<td>Alternative Monitoring Method</td>
<td>Procedures for Administrator to approve alternative monitoring</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(f)(6)</td>
<td>Alternative to Relative Accuracy Test</td>
<td>Procedures for Administrator to approve alternative relative accuracy tests for continuous emissions monitoring system (CEMS)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.8(g)</td>
<td>Data Reduction</td>
<td>COMS 6-minute averages calculated over at least 36 evenly spaced data points; CEMS 1 hour averages computed over at least 4 equally spaced data points; data that cannot be used in average</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.9(a)</td>
<td>Notification Requirements</td>
<td>Applicability and State delegation</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.9(b)(1)-(2), (4)-(5)</td>
<td>Initial Notifications</td>
<td>Submit notification within 120 days after effective date; notification of intent to construct/reconstruct, notification of commencement of construction/reconstruction, notification of startup; contents of each</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.9(c)</td>
<td>Request for Compliance Extension</td>
<td>Can request if cannot comply by date or if installed best available control technology or lowest achievable emission rate</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>§ 63.9(d)</td>
<td>Notification of Special Compliance Requirements for New Sources</td>
<td>For sources that commence construction between proposal and promulgation and want to comply 3 years after effective date</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.9(e)</td>
<td>Notification of Performance Test</td>
<td>Notify Administrator 60 days prior</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.9(f)</td>
<td>Notification of VE/Opacity Test</td>
<td>Notify Administrator 30 days prior</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.9(g)</td>
<td>Additional Notifications when Using CMS</td>
<td>Notification of performance evaluation; notification about use of COMS data; notification that exceeded criterion for relative accuracy alternative</td>
<td>Yes, however, there are no opacity standards.</td>
</tr>
<tr>
<td>§ 63.9(h)(1)-(6)</td>
<td>Notification of Compliance Status</td>
<td>Contents due 60 days after end of performance test or other compliance demonstration, except for opacity/VE, which are due 30 days after; when to submit to Federal vs. State authority</td>
<td>Yes, however, there are no opacity standards.</td>
</tr>
<tr>
<td>§ 63.9(i)</td>
<td>Adjustment of Submittal Deadlines</td>
<td>Procedures for Administrator to approve change when notifications must be submitted</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.9(j)</td>
<td>Change in Previous Information</td>
<td>Must submit within 15 days after the change</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(a)</td>
<td>Recordkeeping/Reporting</td>
<td>Applies to all, unless compliance extension; when to submit to Federal vs. State authority; procedures for owners of more than one source</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(1)</td>
<td>Recordkeeping/Reporting</td>
<td>General requirements; keep all records readily available; keep for 5 years</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(i)</td>
<td>Records related to SSM</td>
<td>Recordkeeping of occurrence and duration of startups and shutdowns</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(ii)</td>
<td>Records related to SSM</td>
<td>Recordkeeping of malfunctions</td>
<td>No. See § 63.11125(d) for recordkeeping of (1) occurrence and duration and (2) actions taken during malfunction.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(iii)</td>
<td>Maintenance records</td>
<td>Recordkeeping of maintenance on air pollution control and monitoring equipment</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(iv)</td>
<td>Records Related to SSM</td>
<td>Actions taken to minimize emissions during SSM</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(v)</td>
<td>Records Related to SSM</td>
<td>Actions taken to minimize emissions during SSM</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(vi)-(xi)</td>
<td>CMS Records</td>
<td>Malfunctions, inoperative, out-of-control periods</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(xii)</td>
<td>Records</td>
<td>Records when under waiver</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(xiii)</td>
<td>Records</td>
<td>Records when using alternative to relative accuracy test</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(2)(xiv)</td>
<td>Records</td>
<td>All documentation supporting Initial Notification and Notification of Compliance Status</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(b)(3)</td>
<td>Records</td>
<td>Applicability determinations</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(c)</td>
<td>Records</td>
<td>Additional records for CMS</td>
<td>No.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>§ 63.10(d)(1)</td>
<td>General Reporting Requirements</td>
<td>Requirement to report</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(d)(2)</td>
<td>Report of Performance Test Results</td>
<td>When to submit to Federal or State authority</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(d)(3)</td>
<td>Reporting Opacity or VE Observations</td>
<td>What to report and when</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(d)(4)</td>
<td>Progress Reports</td>
<td>Must submit progress reports on schedule if under compliance extension</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.10(d)(5)</td>
<td>SSM Reports</td>
<td>Contents and submission</td>
<td>No. See § 63.11126(b) for malfunction reporting requirements.</td>
</tr>
<tr>
<td>§ 63.10(e)(1)-(2)</td>
<td>Additional CMS Reports</td>
<td>Must report results for each CEMS on a unit; written copy of CMS performance evaluation; two-three copies of COMS performance evaluation</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(e)(3)(i)-(iii)</td>
<td>Reports</td>
<td>Schedule for reporting excess emissions</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(e)(3)(iv)-(v)</td>
<td>Excess Emissions Reports</td>
<td>Requirement to revert to quarterly submission if there is an excess emissions and parameter monitor exceedances (now defined as deviations); provision to request semiannual reporting after compliance for 1 year; submit report by 30th day following end of quarter or calendar half; if there has not been an exceedance or excess emissions (now defined as deviations), report contents in a statement that there have been no deviations; must submit report containing all of the information in §§ 63.8(c)(7)-(8) and 63.10(c)(5)-(13)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(e)(3)(iv)-(v)</td>
<td>Excess Emissions Reports</td>
<td>Requirement to revert to quarterly submission if there is an excess emissions and parameter monitor exceedances (now defined as deviations); provision to request semiannual reporting after compliance for 1 year; submit report by 30th day following end of quarter or calendar half; if there has not been an exceedance or excess emissions (now defined as deviations), report contents in a statement that there have been no deviations; must submit report containing all of the information in §§ 63.8(c)(7)-(8) and 63.10(c)(5)-(13)</td>
<td>No, § 63.11130(K) specifies excess emission events for this subpart.</td>
</tr>
<tr>
<td>§ 63.10(e)(3)(vi)-(viii)</td>
<td>Excess Emissions Report and Summary Report</td>
<td>Requirements for reporting excess emissions for CMS; requires all of the information in §§ 63.10(c)(5)-(13) and 63.8(c)(7)-(8)</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(e)(4)</td>
<td>Reporting COMS Data</td>
<td>Must submit COMS data with performance test data</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.10(f)</td>
<td>Waiver for Recordkeeping/Reporting</td>
<td>Procedures for Administrator to waive</td>
<td>Yes.</td>
</tr>
<tr>
<td>Citation</td>
<td>Subject</td>
<td>Brief description</td>
<td>Applies to subpart CCCCCC</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>§ 63.11(b)</td>
<td>Flares</td>
<td>Requirements for flares</td>
<td>No.</td>
</tr>
<tr>
<td>§ 63.12</td>
<td>Delegation</td>
<td>State authority to enforce standards</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.13</td>
<td>Addresses</td>
<td>Addresses where reports, notifications, and requests are sent</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.14</td>
<td>Incorporations by Reference</td>
<td>Test methods incorporated by reference</td>
<td>Yes.</td>
</tr>
<tr>
<td>§ 63.15</td>
<td>Availability of Information</td>
<td>Public and confidential information</td>
<td>Yes.</td>
</tr>
</tbody>
</table>

Source Description and Location

Source Name: Meridian Brick LLC – Terre Haute Plant
Source Location: 5601 East Price Road, Terre Haute, Indiana 47802
County: Vigo (Pierson Township)
SIC Code: 3251 (Brick and Structural Clay Tile)
Operation Permit No.: T 167-37385-00139
Operation Permit Issuance Date: April 18, 2017
Significant Permit Modification No.: 167-40457-00139
Permit Reviewer: Pavithra Ethith Rajan

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. 167-37385-00139 on April 18, 2017. The source has since received the following approvals:

(a) Minor Source Modification No.: 167-39207-00139, issued on April 20, 2018; and

(b) Significant Permit Modification No.: 167-39297-00139, issued on June 22, 2018.

County Attainment Status

The source is located in Vigo County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Non-attainment effective October 4, 2013, for the Fayette and Harrison Twp. Better than national standards for the remainder of the county.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective July 20, 2012, for the 2008 8-hour ozone standard.¹</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 5, 2005, for the annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable or attainment effective December 13, 2009, for the 24-hour PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO₂</td>
<td>Cannot be classified or better than national standards.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011.</td>
</tr>
</tbody>
</table>

¹Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005.

(a) Ozone Standards

Volatile organic compounds (VOC) and Nitrogen Oxides (NOₓ) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NOₓ emissions are considered when evaluating the rule applicability relating to ozone. Vigo County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NOₓ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.
(b) PM$_{2.5}$
Vigo County has been classified as attainment for PM$_{2.5}$. Therefore, direct PM$_{2.5}$, SO$_2$, and NO$_x$ emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) Other Criteria Pollutants
Vigo County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of Utility Air Regulatory Group v. EPA, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4g18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.

Source Status - Existing Source

The table below summarizes the potential to emit of the entire source, prior to the proposed modification, after consideration of all enforceable limits established in the effective permits. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>VOC</th>
<th>CO</th>
<th>Combined HAPs</th>
<th>Single HAP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for Source</td>
<td>180.5</td>
<td>217.8</td>
<td>211.9</td>
<td>249.2</td>
<td>67.7</td>
<td>18</td>
<td>229.8</td>
<td>70.0</td>
<td>47.0</td>
</tr>
<tr>
<td>PSD Major Source</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1Single highest source-wide HAP.
(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) The potential to emit (PTE) (as defined in 326 IAC 2-7-1(30)) of any single HAP is greater than ten (10) tons per year, and the PTE of a combination of HAPs is greater than twenty-five (25) tons per year. However, the source will be considered an area source under Section 112 of the Clean Air Act (CAA) because the source will limit the potential to emit (PTE) of any single HAP to less than ten (10) tons per year, and the PTE of a combination of HAPs to less than twenty-five (25) tons per year.

(c) These emissions are based on the TSD of Significant Permit Modification No.: 167-39297-00139, issued on June 22, 2018.

Emission Units and Pollution Control Equipment

Constructed Under the Provisions of 326 IAC 2-1.1-3 (Exemptions)

As part of this permitting action, the source requested to add the following existing emission units constructed under the provisions of 326 IAC 2-1.1-3 (Exemptions):

(a) Emission Unit Group – Material Handling and Brick Forming Group (EUG-04):

1. Two (2) mixed clay conveyors, identified as PC05, constructed in 2007, with a maximum short term capacity of 90 tons per hour each, exhausting internally. A portion of the emissions from PC05 are collected by dust collector CD03, and exhausting through stack CD03.

2. One (1) clay storage hopper, identified as PC06, constructed in 2007, with a maximum short term capacity of 90 tons per hour, exhausting internally. A portion of the emissions from PC06 is collected by dust collector CD03, and exhausting through stack CD03.

3. One (1) Even Feeder, identified as PC07, constructed in 2007, with a maximum short term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from PC07 is collected by dust collector CD03, and exhausting through stack CD03.

4. Three (3) sand vibrating units, identified as SVU, constructed in 2007, with a maximum short term capacity of 1.25 tons per hour each, exhausting internally. A portion of the emissions from SVUs are collected by dust collector CD03, and exhausting through stack CD03.

5. Four (4) Trim Conveyors identified as TC01, constructed in 2007, with a maximum short-term capacity of 90 tons per hours of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from TC01 is collected by dust collector CD03, and exhausting through stack CD03.

6. Texturing Activity, identified as TA01, constructed in 2011, with a maximum short-term capacity of 90 tons per hour.

(b) Six (6) natural gas-fired forced air heaters with a maximum capacity of 0.17 MMBtu per hour, each.

(c) Ten (10) natural gas-fired radiant heaters with a maximum capacity of 0.05 MMBtu per hour, each.
The total potential to emit of the emission units is less than levels specified at 326 IAC 2-1.1-3(e)(1)(A) through (G) and the addition of the emission units did not require the source to transition to a higher operation permit level. Therefore, pursuant to 326 IAC 2-1.1-3(e), the modification approval requirements under 326 IAC 2-7-10.5, including the requirement to submit an application, do not apply to the emission units. See Appendix A of this Technical Support Document for detailed emission calculations.

The Office of Air Quality (OAQ) has reviewed an application, submitted by Meridian Brick LLC - Terre Haute Plant (formerly Boral Brick Terre Haute Plant) on March 16, 2018, relating to the requirements of Operating Permit Condition E.2.4. As per the permit condition E.2.4, the source has submitted a Significant Permit Modification Application with information including the compliance and testing requirements of Brick and Structural Clay Products Manufacturing under 40 CFR Part 63, Subpart JJJJJ (Brick MACT). However, the initial application did not notify IDEM if the source planned to comply with the NESHAP or take area source limits to render the NESHAP not applicable. On October 15, 2018, the source requested to incorporate two operating scenarios in the Part 70 Operating Permit to render the facility an area source and not be subject to 40 CFR Part 63, Subpart JJJJJ. The source also provided IDEM updated stack testing results for PM, SO₂, Hydrofluoric Acid (HF), Hydrochloric Acid (HCl), Chlorine (Cl), and Mercury (Hg).

Proposed Alternate Scenario 1

The source shall accept federally enforceable limits on hazardous air pollutant (HAP) emissions based on production rates to render the facility an area source of HAP emissions, until such time the Dry Sorbent Injection Fabric Filter (DIFF) baghouse system shall be recommissioned.

Proposed Alternate Scenario 2

The facility shall recommission the DIFF baghouse system to render the Terre Haute facility an area source of HAP emissions.

Additionally, silos associated with the dry sorbent injection fabric filter (DIFF), identified as CD01, have been included in the permit along with this modification.

(i) Two (2) silos associated with the DIFF - CD01 system, consisting of the following equipment:

(1) One (1) Hydrated Lime Silo, constructed in 2007, used to load fresh reagent as well as spent reagent as follows:

 (a) Fresh reagent is pneumatically loaded from the delivery truck to the silo, once a month. Each silo loading delivery is assumed to be completed in one hour. The fresh reagent is loaded into the silo at the rate of 30 tons/hour, once a month.

 (b) Spent reagent is pneumatically loaded to the waste silo as needed. With the nominal ratio of Spent Reagent / Fresh Reagent at 1.2, the spent reagent is loaded at the rate of 36 tons/hour, once a month.

(2) One (1) Waste Reagent Silo, constructed in 2007, used to empty waste reagent as needed, via a flexible spout into a covered roll-off container for disposal. Each unloading of the waste reagent is assumed to be completed in one hour. The waste reagent is unloaded into the roll-off container at the rate of 21,069 pounds/hour, with a total of 41 loads/year.

The total potential to emit of the emission unit(s) is less than levels specified at 326 IAC 2-1.1-3(e)(1)(A) through (G) and the addition of the emission unit(s) did not require the source to transition to a higher operation permit level. Therefore, pursuant to 326 IAC 2-1.1-3(e), the modification approval requirements
under 326 IAC 2-7-10.5, including the requirement to submit an application, do not apply to the emission unit(s). See Appendix A of this Technical Support Document for detailed emission calculations.

The Office of Air Quality (OAQ) has also reviewed the application submitted by Meridian Brick LLC - Terre Haute Plant (formerly Boral Brick Terre Haute Plant) on September 10, 2018, relating to the changes at the source as a result of an inspection conducted by IDEM on July 05, 2018. This application requests that the Part 70 Permit be updated to correctly reflect the operations at the Terre Haute Facility. A Fugitive Dust Control Plan (FDCP) with updates has been received along with this permit application. The applications received on March 16, 2018 and September 07, 2018 have both been combined, and addressed in this permit.

Meridian Brick has specifically requested the following changes:

1. The source has notified IDEM that they incorrectly indicated to IDEM in Part 70 Operating Permit Renewal No. 167-37385-00139 on April 18, 2017 that dust collector CD03 controlled portions of the emissions from PC01 through PC04. A portion of the emissions from these emission units are actually captured and controlled by dust collector CD02. As a result, the descriptions, existing PSD minor limits for PM, PM10, and PM2.5, and emission calculations need revised.

2. The source has notified IDEM of additional insignificant natural gas-fired emission units.

3. The source has provided updated emission calculations for multiple existing processes at the source (see Appendix A). In addition, the source has attempted to better quantify the fugitive emissions from the clay surface mining operations.

4. The source has notified IDEM that the degreasing operations do not use solvents that contain VOC or HAP. Therefore, the potential to emit calculations have been updated.

5. The source has requested to modify the description for the sand tank silo (SD02) to indicate it is controlled by a bin vent filter and not fabric filters.

6. The source has notified IDEM that a portion of the emissions from the sand tank silos (SD01 and SD02), and additive handling (AD01) are captured and controlled by CD03.

7. The source has identified multiple emission units that are not included in the current permit (see list below).

8. The source has requested IDEM re-evaluate the applicability of 326 IAC 6.5 for the entire source.

<table>
<thead>
<tr>
<th>Enforcement Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEM is aware that there is a pending enforcement action for the failure to perform stack testing. IDEM is reviewing this matter and will take the appropriate action.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>See Appendix A of this Technical Support Document for detailed emission calculations.</td>
</tr>
</tbody>
</table>
Pursuant to 326 IAC 2-1.1-1(12), Potential to Emit is defined as “the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency.”

The following table is used to determine the appropriate permit level under 326 IAC 2-7-10.5. This table reflects the PTE before controls. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process Emission Unit</th>
<th>PM</th>
<th>PM₁₀</th>
<th>PM₂.₅¹</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC05, PC06, PC07, SVU, TA01, TC01</td>
<td>3.61</td>
<td>1.32</td>
<td>1.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas Heaters</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total PTE Before Controls of the New Emission Units:</td>
<td>3.62</td>
<td>1.37</td>
<td>1.37</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

¹PM₂.₅ listed is direct PM₂.₅.

Appendix A of this TSD reflects the detailed potential emissions of the modification.

Approval to Operate:

Pursuant to 326 IAC 2-7-12(d)(1), this change to the permit is being made through a Significant Permit Modification because this modification does not qualify as a Minor Permit Modification or as an Administrative Amendment.

The table below summarizes the potential to emit of the modification, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of the Part 70 permit modification, and only to the extent that the effect of the control equipment is made practically enforceable in the permit. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process Emission Unit</th>
<th>PM</th>
<th>PM₁₀</th>
<th>PM₂.₅¹</th>
<th>SO₂</th>
<th>NOₓ</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC05, PC06, PC07, SVU, TA01, TC01</td>
<td>3.61</td>
<td>1.32</td>
<td>1.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas Heaters</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
</tr>
<tr>
<td>Total for Modification</td>
<td>3.62</td>
<td>13.37</td>
<td>1.37</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

¹PM₂.₅ listed is direct PM₂.₅.
This modification to an existing minor PSD stationary source is not major because the emissions increase of each PSD regulated pollutant is less than the PSD major source threshold. Therefore, pursuant to 326 IAC 2-2, the PSD requirements do not apply.

PTE of the Entire Source After Issuance of the Part 70 Modification

The table below summarizes the after issuance source-wide potential to emit, reflecting all limits, of the emission units. Any control equipment is considered federally enforceable only after issuance of the Part 70 permit modification, and only to the extent that the effect of the control equipment is made practically enforceable in the permit. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process/ Emission Unit</th>
<th>Potential To Emit of the Entire Source After Issuance of Renewal (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM</td>
</tr>
<tr>
<td>Total PTE of Entire Source excluding Fugitives</td>
<td>222.90</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
<td>NA</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
<td>250</td>
</tr>
</tbody>
</table>

negl. = negligible
* Under the Part 70 Permit program (40 CFR 70), PM$_{10}$ and PM$_{2.5}$, not particulate matter (PM), are each considered as a "regulated air pollutant".
**PM$_{2.5}$ listed is direct PM$_{2.5}$.
***Fugitive HAP emissions are always included in the source-wide emissions.

(a) This existing minor PSD stationary source will continue to be minor under 326 IAC 2-2 because the emissions of each PSD regulated pollutant will continue to be less than the PSD major source thresholds.

(b) This existing area source of HAP will continue to be an area source of HAP, as defined in 40 CFR 63.2, because HAP emissions will continue to be less than ten (10) tons per year for any single HAP and less than twenty-five (25) tons per year of a combination of HAPs. Therefore, this source is an area source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability Determination

Due to the modification at this source, federal rule applicability has been reviewed as follows:

New Source Performance Standards (NSPS):

(a) **40 CFR 60, Subpart OOO**

The clay/shale processing operations at this source are subject to the New Source Performance Standards for Nonmetallic Mineral Processing Plants, 40 CFR 60, Subpart OOO and 326 IAC 12 because it is considered a nonmetallic mineral processing plant, per definition in §60.671. Pursuant to 40 CFR 60.670(a)(1), the provisions of Subpart OOO are applicable to the following affected facilities, that commenced construction prior to April 22, 2008:
(A) Processed clay emission unit group, identified as EUG-03, consisting of:

(1) Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

The emission unit PC01 is subject to the following portions of 40 CFR 60, Subpart OOO:

1. 40 CFR 60.670(a)(1),(e),(f)
2. 40 CFR 60.671
3. 40 CFR 60.672(a),(b),(e)(2)
4. 40 CFR 60.675(a),(b)(1),(c)(1)(i)-(ii),(c)(3),(d)(2),(e)(2)(3),(g)
5. 40 CFR 60.676 (f)(i),(k)
6. Table 1
7. Table 2
8. Table 3

(b) **40 CFR 60, Subpart UUU**

The source is still not subject to the requirements of New Source Performance Standard for Calculiners and Dryers in Mineral Industries, 40 CFR 60, Subpart UUU and 326 IAC 12. The kiln is not subject to this rule because only the calcining and drying of raw materials prior to firing of bricks are covered under this subpart, per §60.730(a). The drying operation at the source is for drying of bricks and not for the drying of raw materials prior to firing in the kiln.

(c) There are no other New Source Performance Standards (40 CFR Part 60) and 326 IAC 12 included in the permit for this proposed modification.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(a) **40 CFR 63, Subpart JJJJJ**

Meridian Brick LLC was subject to the National Emission Standards for Hazardous Air Pollutants for Brick and Structural Clay Products Manufacturing (40 CFR 63, Subpart JJJJJ), which was incorporated by reference as 326 IAC 20-72, since the source was classified as a Brick and Structural Clay Products manufacturing facility located at, or a part of, a major source of HAP emissions. The compliance date for this source was set to be December 26, 2018.

The source was required to submit an application for a significant permit modification to IDEM, OAQ to incorporate into the Part 70 permit the applicable requirements of 40 CFR 63, Subpart JJJJJ, a description of the affected source and activities subject to the standard, and a description of how the Permittee will meet the applicable requirements of the standard. This application was submitted on March 16, 2018, but did not notify IDEM if the source planned to comply with the NESHAP or take area source limits. On October 15, 2018 the source has submitted two (2) alternate operating scenarios. The incorporation of these scenarios will render Meridian Brick LLC an area source, and not subject to 40 CFR 63 Subpart JJJJJ.

On December 19, 2018, the U.S. EPA, pursuant to the compliance extension provisions at 40 CFR 63.6(i)(4)(i)(A), issued an extension allowing the source up to one additional year to comply with the standard. For the Terre Haute facility, EPA granted an extension of the December 26, 2018, compliance date until the source receives its permit, or until December 26, 2019, whichever is sooner.

On January 25, 2018, the U.S. EPA issued a guidance memorandum titled "Reclassification of Major Sources as Area Sources Under Section 112 of the Clean Air Act." This memorandum withdrew the 1995 policy regarding major sources of hazardous air pollutants (HAP) that became area sources commonly known as "once in, always in" (the OIAI policy). Under the 1995 policy, once a source was classified as a major source of HAP under Section 112 of the Clean Air Act
(CAA) and determined to be subject to a major source NESHAP (MACT) the source remained subject to the major source NESHAP for perpetuity.

Effective immediately, the guidance memorandum titled "Reclassification of Major Sources as Area Sources Under Section 112 of the Clean Air Act." withdraws the 1995 policy commonly known as "once in, always in" (the OIAI policy). Based on the 2018 memorandum, a source that was previously classified as a major source of HAP under Section 112 of the Clean Air Act (CAA) and subject to a major source NESHAP, and which is now classified as an area source of HAP under Section 112 of the Clean Air Act (CAA), will no longer be subject to a NESHAP that was applicable to it as a major source of HAP.

A number of environmental organizations filed a March 26th Petition for Review ("Petition") in the United States Court of Appeals for the District of Columbia Circuit challenging a the 2018 memorandum rescinding its Clean Air Act "Once In, Always In" policy.

The 2018 memorandum can be found at the following internet site:

As a result of this change in U.S. EPA policy, IDEM, OAQ determined that the major source NESHAP for Brick and Structural Clay Products Manufacturing (40 CFR 63, Subpart JJJJJ) is no longer applicable to this source and has been removed from the permit.

(b) 40 CFR 63, Subpart CCCCCC
The source is now subject to the requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Category: Gasoline Dispensing Facilities, 40 CFR 63, Subpart CCCCCC since it is an area source of HAPs. Each gasoline dispensing facility (GDF) and the corresponding 40 CFR 63, Subpart CCCCCC requirements are listed below:

(A) A gasoline fuel transfer dispensing operation handling less than or equal to one thousand three hundred (1,300) gallons per day and filling storage tanks having a capacity equal to or less than ten thousand five hundred (10,500) gallons.

(B) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(i) One (1) gasoline storage tank, with capacity of 500 gallons.

These GDFs with a monthly throughput less than 10,000 gallons of gasoline, are subject to the following portions of 40 CFR 63, Subpart CCCCCC:

(1) 40 CFR 63.11110
(2) 40 CFR 63.11111(a),(b),(e),(f),(h),(i),(j),(k)
(3) 40 CFR 63.11112(a),(d)
(4) 40 CFR 63.11113(a),(b)
(5) 40 CFR 63.11115
(6) 40 CFR 63.11116
(7) 40 CFR 63.11125(d)
(8) 40 CFR 63.11126(b)
(9) 40 CFR 63.11130
(10) 40 CFR 63.11131
(11) 40 CFR 63.11132
(12) Table 3
The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to the source except as otherwise specified in 40 CFR 63, Subpart CCCCC.

(c) There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included for this proposed modification.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each pollutant-specific emission unit that meets the following criteria:

1. has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;

2. is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and

3. uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

(b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.

The following table is used to identify the applicability of CAM to new and modified emission unit and each emission limitation or standard for a specified pollutant based on the criteria specified under 40 CFR 64.2:

<table>
<thead>
<tr>
<th>Emission Unit/Pollutant</th>
<th>Control Device</th>
<th>Applicable Emission Limitation</th>
<th>Uncontrolled PTE (tons/year)</th>
<th>Controlled PTE (tons/year)</th>
<th>CAM Applicable (Y/N)</th>
<th>Large Unit (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalloping Screen GR02</td>
<td>PM*</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM10</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM2.5</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>Screens GR03</td>
<td>PM*</td>
<td>326 IAC 6.5-1-2</td>
<td>>100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>326 IAC 2-2</td>
<td>>100</td>
<td><100</td>
<td>N³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM10</td>
<td></td>
<td>>100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM2.5</td>
<td></td>
<td>>100</td>
<td><100</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Belt Conveyors GR04</td>
<td>PM*</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM10</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM2.5</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>Impact Crusher GR05</td>
<td>PM*</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N³</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM10</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>PM2.5</td>
<td></td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>Emission Unit/Pollutant</td>
<td>Control Device</td>
<td>Applicable Emission Limitation</td>
<td>Uncontrolled PTE (tons/year)</td>
<td>Controlled PTE (tons/year)</td>
<td>CAM Applicable (Y/N)</td>
<td>Large Unit (Y/N)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Screw Conveyors GR06</td>
<td>Baghouse CD02</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>Processed Clay EUG-03</td>
<td>Baghouse CD02</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>PC05, PC06, PC07, SD01, SVU, AS01, TA01, TC01 (EUG-04)</td>
<td>Baghouse CD03</td>
<td>326 IAC 6.5-1-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2-2</td>
<td><100</td>
<td><100</td>
<td>N²</td>
<td>N</td>
</tr>
<tr>
<td>Tunnel Kiln</td>
<td>DIFF CD01</td>
<td>326 IAC 2-4.1</td>
<td>>10</td>
<td><10</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 IAC 2.4.1</td>
<td>>25</td>
<td><25</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Uncontrolled PTE (tpy) and controlled PTE (tpy) are evaluated against the Major Source Threshold for each pollutant. Major Source Threshold for criteria pollutants (PM10, PM2.5, SO2, NOX, VOC and CO) is 100 tpy, for a single HAP ten (10) tpy, and for total HAPs twenty-five (25) tpy.

Under the Part 70 Permit program (40 CFR 70), PM is not a regulated pollutant.

The source is not required to use the Dry Sorbent Injection Fabric Filter to control particulate matter emissions or SO2 emissions at this time. Therefore, the requirements of 40 CFR Part 64, CAM, are not applicable for these pollutants.

PM* For limitations under 326 IAC 6-3-2, 326 IAC 6.5, and 326 IAC 6.8, IDEM OAQ uses PM as a surrogate for the regulated air pollutant PM10. Therefore, uncontrolled PTE and controlled PTE reflect the emissions of the regulated air pollutant PM10.

N¹ The control device is not required to comply with the applicable emission limitation or standard. Therefore, based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable.

N² CAM does not apply for the pollutant because the uncontrolled PTE of the pollutant is less than the major source threshold.

N³ Under 326 IAC 2-2, PM is not a surrogate for a regulated air pollutant. Therefore, CAM does not apply to these emission units for the 326 IAC 2-2 PM limitation.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are still applicable to GR03 for PM, PM10, and PM2.5. A CAM plan was submitted as part of a previous permit application and the Compliance Determination and Monitoring Requirements section includes a detailed description of the CAM requirements.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are applicable to the Tunnel Kiln, which is considered as an "other unit," for HF, and combined HAPs upon issuance of the Part 70 Permit Renewal. A CAM plan must be submitted as part of the Part 70 Operating Permit Renewal application. If the Dry Sorbent Injection Fabric Filter has not been recommissioned CAM is not applicable to the Tunnel Kiln for these pollutants and a CAM plan does not have to be submitted as part of the next Part 70 Operating Permit Renewal application.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are no longer applicable to GR02, GR04, GR05, GR06, PC01, PC02, PC03, and PC04.

Based on this evaluation, the requirements of 40 CFR Part 64, CAM, are not applicable to PC05, PC06, PC07, SD01, SVU, AS01, TA01, or TC01 as part of this modification.
State Rule Applicability - Entire Source

Due to the modification at this source, state rule applicability has been reviewed as follows:

326 IAC 2-2 (PSD)
The PTE of PM, PM10, PM2.5 and SO2 exceed 250 tons per year each. The permittee has agreed to accept emission limitations to remain a minor source under 326 IAC 2-2 (PSD).

2019 Modification

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The PM emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, screw conveyors, and processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 35.0 pounds per hour.

(b) The PM10 emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, and screw conveyors, and processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 18.0 pounds per hour.

(c) The PM2.5 emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, and screw conveyors, and processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 18.0 pounds per hour.

Due to this modification the existing PSD minor limits for CD02 have been modified and the existing PSD minor limits for CD03 and associated testing requirements have been removed. The source shall continue to comply with all other applicable PSD minor limits in Part 70 Operating Permit Renewal No. 167-37385-00139, issued on April 18, 2017.

Compliance with these limits, combined with the uncaptured potential to emit PM, PM10, and PM2.5 from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04) and the potential to emit PM, PM10, and PM2.5 from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM10, and PM2.5 to less than 250 tons per twelve (12) consecutive month period, each, and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

326 IAC 2-6 (Emission Reporting)
Since this source is required to have an operating permit under 326 IAC 2-7, Part 70 Permit Program, this source is subject to 326 IAC 2-6 (Emission Reporting). In accordance with the compliance schedule in 326 IAC 2-6-3, an emission statement must be submitted triennially. The first report is due no later than July 1, 2018, and subsequent reports are due every three (3) years thereafter. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.
326 IAC 2-7-6(5) (Annual Compliance Certification)
The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))
The operation of Tunnel Kiln will emit equal to or greater than ten (10) tons per year for a single HAP and equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Hence, 326 IAC 2-4.1 would have applied to the Tunnel Kiln; however, the source has opted to limit their HAP emissions below the major source threshold as follows:

In order to assure this source is an area source of HAPs under Section 112 of the Clean Air Act (CAA) and to render the requirements of 40 CFR 63, Subpart JJJJJ not applicable, the Permittee shall comply with the following:

The amount of fired product from the tunnel kiln (EU02) shall be limited such that:

(a) The HF emissions shall not exceed 9.99 tons per twelve consecutive month period, with compliance determined at the end of each month.

(b) The total HAPs emissions shall not exceed 24.75 tons per twelve consecutive month period, with compliance determined at the end of each month.

Compliance with the above HAP emission limits, combined with the potential to emit HAP from all other emission units at the source, shall limit HAP emissions from the entire source to less than ten (10) tons for any single HAP and twenty-five (25) tons for any combination of HAPs per twelve (12) consecutive month period and render this source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA).

326 IAC 6-4 (Fugitive Dust Emissions)
This source is subject to 326 IAC 6-4 for fugitive dust emissions. Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions), the Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
The source is subject to the requirements of 326 IAC 6-5, because the paved roads, unpaved roads and quarry operations have potential fugitive particulate emissions greater than 25 tons per year. Pursuant to 326 IAC 6-5, fugitive particulate matter emissions shall be controlled according to the Fugitive Dust Control Plan, originally submitted on February 20, 2007 and updated as part of this modification, which is included as Attachment A to the permit.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Meridian Brick has requested that IDEM re-evaluate the applicability of 326 IAC 6.5. Meridian argues the applicability of this rule is determined on an emission unit by emission unit basis and not on a source-wide basis. Therefore, if an emission unit has a potential to emit less than 100 tons per year, it is their opinion this rule is not applicable. In addition, Meridian argues the mineral aggregate operations are not totally enclosed and therefore should only be subject to the requirements of 326 IAC 6-4.

IDEM does not agree with Meridian Brick’s interpretations of the applicability of this rule. 326 IAC 6.5-1-1 (Applicability) specifically states that this rule applies to "sources" or "facilities." The definitions for these terms can be found in 326 IAC 1-2-73 and 326 IAC 1-2-27, respectively. A source may be comprised of
several facilities for which the combined potential to emit PM is greater than 100 tons per year or one facility that has a potential to emit greater than 100 tons per year.

This source (located in Vigo County) is located in one of the counties listed in 326 IAC 6.5, but is not one of the sources specifically listed in 326 IAC 6.5-2 through 326 IAC 6.5-10 and is comprised of several facilities. The source-wide PTE of PM is greater than 100 tons per year and the actual emissions are greater than 10 tons per year. As a result, pursuant to 326 IAC 6.5-1-1(a)(2), this source is subject to the requirements of 326 IAC 6.5-1-2 even though only one facility (GR03) has a potential to emit greater than 100 tons per year. In addition, 326 IAC 6.5 does not specifically exempt fugitive sources of particulate matter emissions. Therefore, IDEM disagrees with Meridian’s claim that the mineral aggregate operations are not subject to the requirements of 326 IAC 6.5.

326 IAC 6.5-1-2 (Particulate Emission Limitations)

(a) The scalping screen (GR02), screens (GR03), processing belt conveyors (GR04), impact crusher (GR05) and screw conveyors (GR06) are subject to a particulate emission limitation under 40 CFR 60, Subpart OOO (326 IAC 12), since they are considered affected facilities with capture systems used to capture and transport particulate matter to a control device. The Subpart OOO emission limit for these units is 0.05 g/dscm (0.022 gr/dscf). This is more stringent than the 326 IAC 6.5-1-2 limit of 0.03 gr/dscf. Therefore, these units are subject to a more stringent limit in 326 IAC 12, pursuant to 326 IAC 6.5-1-1(d).

(b) Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from each of following emission units shall not exceed 0.03 grains per dry standard cubic foot (dscf):

1. Clay surface mining operations
2. Dump truck unloading (MR01)
3. Receiving material apron feeder (MR02)
4. Crude material belt conveyors (MR03)
5. Primary crusher (GR01)
6. Primary crusher (GR01R)
7. Raw material bin (GR07)
8. Raw material feeder (GR08)
9. Processed clay bunker filling (PC01)
10. Reclaimer (PC02)
11. Processed clay feed conveyors (PC03)
12. Reclaimer by-pass chute (PC04)
13. Sand tank silo (SD02)
14. Sand (supersack) handling (SD01)
15. Mixed clay conveyors (PC05)
16. Clay storage hopper (PC06)
17. Even feeder (PC07)
18. Sand vibrating units (SVU)
19. Sand (supersack) handling (SD01)
20. Additive (supersack) handling (AD01)
21. Trim Conveyors (TC01)
22. Tunnel dryer
23. Tunnel kiln
24. Landfill gas flare
25. Ten (10) forced air heaters
26. Eighteen (18) radiant heaters
27. Fresh reagent silo
28. Spent reagent silo
29. Waste reagent silo

Note: The receiving material apron feeder (MR02), crude material belt conveyors (MR03), primary crusher (GR01), primary crusher (GR01R), raw material bin (GR07) and raw material feeder (GR08) are subject to opacity limits only (and not particulate emission limitations) under 40 CFR...
60, Subpart OOO (326 IAC 12). Therefore, they are subject to the more stringent requirements of 326 IAC 6.5.

Dust collector CD02 shall be in operation at all times the scalping screen, screens, processing belt conveyors, impact crusher, screw conveyors, processed clay bunker filling, reclaimer, processed clay conveyors, or reclaimer by-pass chute are in operation, in order to comply with this limit.

Dust Collector CD03 shall be in operation at all times the sand tank silo, mixed clay conveyors, clay storage hopper, even feeder, sand vibrating units, sand (supersack) handling, additive (supersack) handling, or trim conveyors are in operation, in order to comply with this limit.

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions; however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source’s failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Determination Requirements applicable to this modification are as follows:

1. In order to demonstrate compliance with the new HAPs limits for the tunnel kiln the source will use the following equation to determine the monthly HF emissions for scenarios AOS 1 and AOS 2:

 (A) Single HAPs

 \[E_{AOS1} = \frac{F \times H_F}{2000} \]

 Where:

 \[E_{AOS1} = \text{Monthly HF HAP emissions in tons when operating under AOS 1,} \]
 \[F = \text{Monthly fired product in tons when operating under AOS 1,} \]
 \[H_F = \text{Uncontrolled HF emissions rate as 0.45 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration} \]

 (B) Single HAPs

 \[E_{AOS2} = \frac{F \times H_F}{2000} \]

 Where:

 \[E_{AOS2} = \text{Monthly HF HAP emissions in tons when operating under AOS 2,} \]
 \[F = \text{Monthly fired product in tons when operating under AOS 2,} \]
 \[H_F = \text{Controlled HF emissions rate as 0.0002 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration} \]
(C) Combined Single HAPs

\[E = E_{AOS1} + E_{AOS2} \]

Where:

\[E = \text{Total combined monthly HF HAP emissions in tons,} \]
\[E_{AOS1} = \text{Monthly HF HAP emissions in tons when operating under AOS 1, and} \]
\[E_{AOS2} = \text{Monthly HF HAP emissions in tons when operating under AOS 2,} \]

or the value establish by the most recent valid compliance demonstration.

(2) In order to demonstrate compliance with the new HAPs limits for the tunnel kiln the source will use the following equation to determine the monthly total HAPs emissions for scenarios AOS 1 and AOS 2:

(A) Total HAPs

\[E_{AOS1} = F \times H_T / 2000 \]

Where:

\[E_{AOS1} = \text{Monthly Total HAP emissions in tons when operating under AOS 1,} \]
\[F = \text{Monthly fired product in tons when operating under AOS 1, and} \]
\[H_T = \text{uncontrolled total HAP emissions rate as 1.1 pounds per ton of fired product,} \]

(B) Total HAPs

\[E_{AOS2} = F \times H_T / 2000 \]

Where:

\[E_{AOS2} = \text{Monthly Total HAP emissions in tons when operating under AOS 2,} \]
\[F = \text{Monthly fired product in tons when operating under AOS 2, and} \]
\[H_T = \text{controlled total HAP emissions rate as 0.19 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration} \]

(C) Combined Total HAPs

\[E = E_{AOS1} + E_{AOS2} \]

Where:

\[E = \text{Total combined monthly Total HAP emissions in tons,} \]
\[E_{AOS1} = \text{Monthly Total HAP emissions in tons when operating under AOS 1, and} \]
\[E_{AOS2} = \text{Monthly Total HAP emissions in tons when operating under AOS 2,} \]
Testing Requirements:

<table>
<thead>
<tr>
<th>Emission Unit(s)</th>
<th>Control Device</th>
<th>Timeframe for Testing or Date of Last Valid Demonstration</th>
<th>Pollutant/Parameter</th>
<th>Frequency of Testing</th>
<th>Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalping Screen, Screens, Processing Belt Conveyors, Impact Crusher, Screw Conveyors, Processed Clay Bunker Filling (PC01), Reclaimer (PC02), Five Processed Clay Feed Conveyors (PC03), and Reclaimer By-Pass Chute (PC04)</td>
<td>CD02</td>
<td>December 10, 2013*</td>
<td>PM, PM10, PM2.5</td>
<td>Every five (5) years</td>
<td>326 IAC 2-2</td>
</tr>
<tr>
<td>Scalping Screen, Screens, Processing Belt Conveyors, Impact Crusher, Screw Conveyors, Processed Clay Bunker Filling (PC01)</td>
<td>CD02</td>
<td>December 10, 2013*</td>
<td>PM</td>
<td>Every five (5) years</td>
<td>40 CFR 60 Subpart OOO</td>
</tr>
<tr>
<td>Tunnel Kiln</td>
<td>DIFF (CD 01)</td>
<td>Not later than 180 days after issuance of SPM No. 167-40457-00139 or 180 days after December 26, 2019, whichever occurs first**</td>
<td>HF</td>
<td>Every five (5) years</td>
<td>326 IAC 2-4.1 326 IAC 2-7-5(1) 326 IAC 2-7-6(1)</td>
</tr>
</tbody>
</table>

*IDEM is aware that the source failed to perform repeat testing on CD02 (see enforcement section for more details).

**The source was granted a one year extension to comply with 40 CFR 63, Subpart JJJJJ. The initial compliance date was December 26, 2018.

(b) The Compliance Monitoring Requirements applicable to this proposed modification are as follows:

<table>
<thead>
<tr>
<th>Control</th>
<th>Parameter</th>
<th>Frequency</th>
<th>Range</th>
<th>Excursions and Exceedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF (CD 01)</td>
<td>Pressure Drop</td>
<td>Daily</td>
<td>5.82 to 7.03 inches</td>
<td>Response Steps</td>
</tr>
<tr>
<td></td>
<td>Dry lime feed setting</td>
<td>Daily</td>
<td>Normal - Abnormal</td>
<td>Response Steps</td>
</tr>
</tbody>
</table>

These monitoring conditions are necessary because the DIFF (CD 01) for the Tunnel Kiln must operate properly to assure compliance with 326 IAC 2-4.1 HAP Minor limits.
Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.

The following changes listed below are due to the proposed modification. Deleted language appears as strikethrough text and new language appears as bold text (these changes may include Title I changes):

1. Condition A.1 has been revised to reflect the source is now a minor source under Section 112 of the Clean Air Act.
2. Condition A.2 has been updated to reflect the removal of 40 CFR 63, Subpart JJJJJ applicability, the addition of silos, changes to EUG-03, EUG-04, and EUG-05.
3. Condition A.3 has been updated to reflect the addition of a new activity – trim conveyors and the addition of a dust collector the units under EUG-04.
4. Condition A.4 has been updated to reflect the removal and addition of a few natural gas fired emission units, addition of emissions units under EUD-04, and modification of emission unit description of the degreasing operation.
5. Section D.1 has been revised to reflect the addition of new units and modification of existing units.
6. Section D.2 has been revised to reflect the limits, testing, and monitoring conditions applicable to the source as a result of the proposed alternate operating scenarios.
7. Section E.1 has been revised to reflect the addition of new units and modification of existing units.
8. Section E.2 has been removed since the source is no longer subject to 40 CFR 63, Subpart JJJJJ.
9. Section E.3 has been added to show 40 CFR 63, Subpart CCCCC applicability.
10. Quarterly Reports for HF, and Total HAPs have been added.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary brick manufacturing plant.

Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
General Source Phone Number: (812) 894-2454
SIC Code: 3251 (Brick and Structural Clay Tile)
County Location: Vigo (Outside Fayette and Harrison Townships)
Source Location Status: Attainment for all criteria pollutants
Source Status: Part 70 Operating Permit Program

Major Minor Source, Section 112 of the Clean Air Act
Not 1 of 28 Source Categories
A.2 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

(d) Processed clay emission unit group, identified as EUG-03, consisting of:

(1) Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(2) Reclaimer, identified as PC02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC02 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(3) Five (5) processed clay feed conveyors, four (4) between the double shaft mixer and the intermediate storage area and one (1) shuttle conveyor from intermediate storage to brick manufacturing, identified as PC03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC03 is collected and controlled by dust collector CD02, and exhausting through stack CD02.

(4) Reclaimer by-pass chute, identified as PC04, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC04 is collected and controlled by dust collector CD02, and exhausting through stack CD02.

(e) Sand Material handling and brick forming emission unit group, identified as EUG-04, consisting of:

(1) Sand tank silo, identified as SD02, constructed in 2007, with a maximum short term capacity of 30 tons per day, using fabric filters a bin vent filter for particulate control, exhausting outside. A portion of the emissions from SD02 is collected and controlled by dust collector CD03, and exhausting through stack CD03.

(2) Two (2) mixed clay conveyors, identified as PC05, constructed in 2007, with a maximum short term capacity of 90 tons per hour each, exhausting internally. A portion of the emissions from PC05 are collected by dust collector CD03, and exhausting through stack CD03.

(3) One (1) clay storage hopper, identified as PC06, constructed in 2007, with a maximum short term capacity of 90 tons per hour, exhausting internally. A portion of the emissions from PC06 is collected by dust collector CD03, and exhausting through stack CD03.

(4) One (1) Even Feeder, identified as PC07, constructed in 2007, with a maximum short term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the
emissions from PC07 is collected by dust collector CD03, and exhausting through stack CD03.

(5) Three (3) sand vibrating units, identified as SVU, constructed in 2007, with a maximum short term capacity of 1.25 tons per hour each, exhausting internally. A portion of the emissions from SVUs are collected by dust collector CD03, and exhausting through stack CD03.

(f) Brick forming and firing emission unit group, identified as EUG-05, consisting of:

(1) Tunnel dryer, identified as EU01, constructed in 2007, with a maximum short term capacity of 29 tons of brick per hour, with a maximum supplemental heat rate of 5.943 million (MM) BTU per hour firing natural gas, without control, and exhausting through stack EU01.

(2) Landfill gas-fired Tunnel Kiln with natural gas as back up, identified as EU02, constructed in 2007, with a maximum firing rate of 55 million (MM) Btu per hour of natural gas and landfill gas, with a maximum capacity of 29 tons of brick per hour, uncontrolled (alternative operating scenario 1 (AOS 1)), or controlled by a dry sorbent injection fabric filter (DIFF) CD01 as an alternative operating scenario (AOS 2), and exhausting through stack CD01.

Under 40 CFR 63, Subpart JJJJJJ, this is considered an existing affected large tunnel kiln.

(3) Two (2) silos associated with the DIFF - CD01 system, consisting of the following equipment:

(i) One (1) Hydrated Lime Silo, constructed in 2007, used to load fresh reagent as well as spent reagent as follows:

(a) Fresh reagent is pneumatically loaded from the delivery truck to the silo, once a month. Each silo loading delivery is assumed to be completed in one hour. The fresh reagent is loaded into the silo at the rate of 30 tons/hour, once a month.

(b) Spent reagent is pneumatically loaded to the waste silo as needed. With the nominal ratio of Spent Reagent / Fresh Reagent at 1.2, the spent reagent is loaded at the rate of 36 tons/hour, once a month.

(ii) One (1) Waste Reagent Silo, constructed in 2007, used to empty waste reagent as needed, via a flexible spout into a covered roll-off container for disposal. Each unloading of the waste reagent is assumed to be completed in one hour. The waste reagent is unloaded into the roll-off container at the rate of 21,069 pounds/hour, with a total of 41 loads/year.
A.3 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(a) Material handling emission unit group, identified as EUG-04, consisting of:

(1) Sand (supersack) handling, identified as SD01, constructed in 2007, with a maximum short term capacity of 30 tons per day, exhausting internally. A portion of the emissions from SD01 is collected by dust collector CD03, and exhausting through stack CD03.

(b) Additive (supersack) handling, identified as AD01, constructed in 2007, with a maximum short-term capacity of one (1) ton per hour, exhausting internally. A portion of the emissions from AD01 is collected by dust collector CD03, and exhausting through stack CD03.

(3) Four (4) Trim Conveyors identified as TC01, constructed in 2007, with a maximum short-term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from TC01 is collected by dust collector CD03, and exhausting through stack CD03.

(bc) Paved and unpaved roads and parking lots with public access.

A.4 Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities as defined in 326 IAC 2-7-1(21):

(a) Texturing activity, identified as TA01, constructed in 2011. Material handling emission unit group, identified as EUG-04, consisting of:

(1) One (1) pugmill, identified as PUG, constructed in 2007, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(2) One (1) extruder, identified as EXT, constructed in 2007, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(3) Texturing Activity, identified as TA01, constructed in 2011, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(4) Finished Brick Transfer Conveyors, with a maximum short term capacity of 90 tons per hour, with no emissions due to high moisture content of the material.

(b) A gasoline fuel transfer dispensing operation handling less than or equal to one thousand three hundred (1,300) gallons per day and filling storage tanks having a capacity equal to or less than ten thousand five hundred (10,500) gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(c) A petroleum fuel, other than gasoline dispensing facility, having storage capacity of less than or equal to 10,500 gallons, and dispensing less than or equal to 230,000 gallons per
month, including one (1) diesel storage tank, constructed in 2007, storage capacity: 1,000 gallons.

(d) The following VOC and HAP storage containers:

(1) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

(A) One (1) diesel storage tank, with capacity of 1,000 gallons.

(B) One (1) gasoline storage tank, with capacity of 500 gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(C) One (1) used oil storage tank, with capacity of 500 gallons.

(2) Vessels storing lubricating oil, hydraulic oils, machining oils, and machining fluids.

(e) Four (4) Ten (10) natural gas-fired forced air heaters, with a maximum capacity of 0.17 MMBtu per hour, each.

(f) Eighteen (18) natural gas-fired radiant heaters, with a maximum capacity of 0.05 MMBtu per hour, each.

(g) Degreasing operations which do not use a volatile solvent and that do not exceed one hundred forty-five (145) gallons per twelve (12) months except if subject to 326 IAC 20-6.

... SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

... (d) Processed clay emission unit group, identified as EUG-03, consisting of:

(1) Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(2) Reclaimer, identified as PC02, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC02 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(3) Five (5) processed clay feed conveyors, four (4) between the double shaft mixer and the intermediate storage area and one (1) shuttle conveyor from intermediate storage to brick manufacturing, identified as PC03, constructed in 2007, with a maximum short term capacity of 120 tons per hour each, controlled by dust collector CD03, and exhausting through stack CD03 exhausting internally. A portion of the emissions from PC03 are collected and controlled by dust collector CD02, and exhausting through stack CD02.
(4) Reclaimer by-pass chute, identified as PC04, constructed in 2007, with a maximum short term capacity of 120 tons per hour, controlled by dust collector CD03, and exhausting through stack CD03, exhausting internally. A portion of the emissions from PC04 are collected and controlled by dust collector CD02, and exhausting through stack CD02.

(e) Sand Material handling and brick forming emission unit group, identified as EUG-04, consisting of:

(1) Sand tank silo, identified as SD02, constructed in 2007, with a maximum short term capacity of 30 tons per day, using fabric filters a bin vent filter for particulate control, exhausting outside. A portion of the emissions from SD02 are collected and controlled by dust collector CD03, and exhausting through stack CD03.

(2) Two (2) mixed clay conveyors, identified as PC05, constructed in 2007, with a maximum short term capacity of 90 tons per hour each, exhausting internally. A portion of the emissions from PC05 are collected by dust collector CD03, and exhausting through stack CD03.

(3) One (1) clay storage hopper, identified as PC06, constructed in 2007, with a maximum short term capacity of 90 tons per hour, exhausting internally. A portion of the emissions from PC06 is collected by dust collector CD03, and exhausting through stack CD03.

(4) One (1) Even Feeder, identified as PC07, constructed in 2007, with a maximum short term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from PC07 is collected by dust collector CD03, and exhausting through stack CD03.

(5) Three (3) sand vibrating units, identified as SVU, constructed in 2007, with a maximum short term capacity of 1.25 tons per hour each, exhausting internally. A portion of the emissions from SVUs are collected by dust collector CD03, and exhausting through stack CD03.

Insignificant Activities:

(a) Material handling emission unit group, identified as EUG-04, consisting of:

(1) Sand (supersack) handling, identified as SD01, constructed in 2007, with a maximum short term capacity of 30 tons per day, exhausting internally. A portion of the emissions from SD01 is collected by dust collector CD03, and exhausting through stack CD03.

(b) Additive (supersack) handling, identified as AD01, constructed in 2007, with a maximum short-term capacity of one (1) ton per hour, exhausting internally. A portion of the emissions from AD01 is collected by dust collector CD03, and exhausting through stack CD03.

(2) Four (4) Trim Conveyors identified as TC01, constructed in 2007, with a maximum short-term capacity of 90 tons per hour of brick trim and 5% of the total SVU sand throughput, exhausting internally. A portion of the emissions from TC01 is collected by dust collector CD03, and exhausting through stack CD03.
D.1.1 Particulate [326 IAC 6.5-1-2]

Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from the clay surface mining operations, dump truck unloading (MR01), receiving material apron feeder (MR02), crude material belt conveyors (MR03), primary crusher (GR01), primary crusher (GR01R), raw material bin (GR07), raw material feeder (GR08), processed clay bunker filling (PC01), reclaimer (PC02), processed clay feed conveyors (PC03), reclaimer by-pass chute (PC04), sand tank silo (SD02), sand (supersack) handling (SD01) and additive (supersack) handling (AD01) shall not exceed 0.03 grains per dry standard cubic foot (dscf), each.

Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from each of following emission units shall not exceed 0.03 grains per dry standard cubic foot (dscf):

1. Clay surface mining operations
2. Dump truck unloading (MR01)
3. Receiving material apron feeder (MR02)
4. Crude material belt conveyors (MR03)
5. Primary crusher (GR01)
6. Primary crusher (GR01R)
7. Raw material bin (GR07)
8. Raw material feeder (GR08)
9. Processed clay bunker filling (PC01)
10. Reclaimer (PC02)
11. Processed clay feed conveyors (PC03)
12. Reclaimer by-pass chute (PC04)
13. Sand tank silo (SD02)
14. Sand (supersack) handling (SD01)
15. Mixed clay conveyors (PC05)
16. Clay storage hopper (PC06)
17. Even feeder (PC07)
18. Sand vibrating units (SVU)
19. Sand (supersack) handling (SD01)
20. Additive (supersack) handling (AD01)
21. Trim Conveyors (TC01)

D.1.2 PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the Permittee shall comply with the following:

(a) The PM emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, and screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 7.6 ± 35.0 pounds per hour.

(b) The PM_{10} emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, and screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 7.6 ± 18.0 pounds per hour.

(c) The PM_{2.5} emissions from the Dust Collector CD02, which controls emissions from the scalping screen, screens, processing belt conveyors, impact crusher, and screw conveyors, processed clay bunker filling (PC01), reclaimer (PC02), a portion of the emissions from the five processed clay feed conveyors (PC03), and reclaimer by-pass chute (PC04), shall not exceed 7.6 ± 18.0 pounds per hour.
(d) The PM emissions from Dust Collector CD03, which controls emissions from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04), shall not exceed 2.9 pounds per hour.

(e) The PM₁₀ emissions from Dust Collector CD03, which controls emissions from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04), shall not exceed 2.9 pounds per hour.

(f) The PM₂.₅ emissions from Dust Collector CD03, which controls emissions from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04), shall not exceed 2.9 pounds per hour.

(gd) The amount of clay/shale processed shall not exceed 500,000 tons per twelve consecutive month period, with compliance determined at the end of each month.

(he) Emissions from the following operations shall not exceed the emission limits listed in the table below:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit ID</th>
<th>PM (lb/ton)</th>
<th>PM₁₀ (lb/ton)</th>
<th>PM₂.₅ (lb/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dump truck unloading</td>
<td>MR01</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Receiving material apron feeder</td>
<td>MR02</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Crude material belt conveyors</td>
<td>MR03</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
<tr>
<td>Primary crusher</td>
<td>GR01</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>Raw material bins</td>
<td>GR07</td>
<td>0.053</td>
<td>0.0089</td>
<td>0.0010</td>
</tr>
<tr>
<td>Raw material feeders</td>
<td>GR08</td>
<td>0.025</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

Compliance with these limits, combined with the uncaptured potential to emit PM, PM₁₀ and PM₂.₅ from the processed clay bunker filling (PC01), reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04) and the potential to emit PM, PM₁₀, and PM₂.₅ from all other emission units at this source, shall limit the source-wide total potential to emit of PM, PM₁₀ and PM₂.₅ to less than two-hundred fifty (250) tons per twelve (12) consecutive month period, each and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.4 Particulate Control

(a) In order to assure compliance with Conditions D.1.1 and D.1.2, dust collector CD02 for particulate control shall be in operation and control emissions from the scalping screen (GR02), bank of 3 screens (GR03), five processing belt conveyors (GR04), impact crusher (GR05), and two screw conveyors (GR06) at all times these facilities are in operation at all times, when the following facilities are in operation:

1. Scalping screen (GR02)
2. Bank of 3 screens (GR03)
3. Five processing belt conveyors (GR04)
4. Impact crusher (GR05)
5. Two screw conveyors (GR06)
6. Processed clay bunker filling (PC01)
7. Reclaimer (PC02)
8. Five processed clay feed conveyors (PC03)
9. Reclaimer by-pass chute (PC04)
(b) In order to assure compliance with Condition D.1.1 and D.1.2, dust collector CD03 for particulate control shall be in operation and control emissions from the Processed clay bunker filling (PC01), Reclaimer (PC02), five processed clay feed conveyors (PC03), and Reclaimer by-pass chute (PC04) at all times these facilities are in operation. At all times, when the following facilities are in operation:

(1) Two mixed clay conveyors (PC05)
(2) One clay storage hopper (PC06)
(3) One even feeder (PC07)
(4) Three sand vibrating units (SVU)
(5) San (supersack) handling (SD01)
(6) Additive (supersack) handling (AD01)
(7) Trim Conveyors (TC01)

(c) In order to assure compliance with Condition D.1.1, the fabric bin vent filter for particulate control shall be in operation and control emissions from the sand tank silo (SD02) at all times the sand tank silo (SD02) is in operation.

D.1.5 Testing Requirements [326 IAC 2-1.1-11]

(a) In order to demonstrate compliance with Conditions D.1.2(a), D1.2(b) and D.1.2(c), the Permittee shall perform PM, PM10 and PM2.5 testing of dust collector CD02 utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration.

(b) Not later than 180 days after the issuance date of this permit, Permit No T167-37385-00139, the Permittee shall perform PM, PM10 and PM2.5 testing of dust collector CD03 utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration.

D.1.10 Record Keeping Requirements

(a) To document the compliance status with Condition D.1.2(gd), the Permittee shall maintain records of the amount of clay/shale processed.

D.1.11 Reporting Requirement

A quarterly summary of the information to document the compliance status with D.1.2(gd) shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee’s obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official,” as defined by 326 IAC 2-7-1(35).

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

<table>
<thead>
<tr>
<th>Emissions Unit Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) Brick forming and firing emission unit group, identified as EUG-05, consisting of:</td>
</tr>
<tr>
<td>(2) Landfill gas-fired Tunnel Kiln with natural gas as back up, identified as EU02,</td>
</tr>
<tr>
<td>constructed in 2007, with a maximum firing rate of 55 million (MM) Btu per hour of natural gas and landfill gas, with a maximum capacity of 29 tons of brick per hour,</td>
</tr>
</tbody>
</table>
uncontrolled (alternative operating scenario 1 (ASO 1)), or controlled by a dry sorbent injection fabric filter (DIFF) CD01 as an alternative operating scenario (ASO 2), and exhausting through stack CD01.

Under 40 CFR 63, Subpart JJJJJ, this is considered an existing affected large tunnel kiln.

(3) Two (2) silos associated with the DIFF - CD01 system, consisting of the following equipment:

(i) One (1) Hydrated Lime Silo, constructed in 2007, used to load fresh reagent as well as spent reagent as follows:

(a) Fresh reagent is pneumatically loaded from the delivery truck to the silo, once a month. Each silo loading delivery is assumed to be completed in one hour. The fresh reagent is loaded into the silo at the rate of 30 tons/hour, once a month.

(b) Spent reagent is pneumatically loaded to the waste silo as needed. With the nominal ratio of Spent Reagent / Fresh Reagent at 1.2, the spent reagent is loaded at the rate of 36 tons/hour, once a month.

(ii) One (1) Waste Reagent Silo, constructed in 2007, used to empty waste reagent as needed, via a flexible spout into a covered roll-off container for disposal. Each unloading of the waste reagent is assumed to be completed in one hour. The waste reagent is unloaded into the roll-off container at the rate of 21,069 pounds/hour, with a total of 41 loads/year.

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Particulate [326 IAC 6.5-1-2]

(a) Pursuant to 326 IAC 6.5-1-2(a), particulate emissions from the tunnel dryer (EU01), tunnel kiln (EU02), and landfill gas-fired flare (EU03) shall each not exceed 0.03 grains per dry standard cubic foot (dscf).

(b) Pursuant to 326 IAC 6.5-1-2(a), the particulate matter emissions from each of the silos (fresh reagent silo, spent reagent silo, waste reagent silo) shall not exceed 0.03 grain per dry standard cubic foot (dscf).

D.2.3 HAP Minor Limits [326 IAC 2-4.1]

In order to assure this source is an area source of HAPs under Section 112 of the Clean Air Act (CAA) and to render the requirements of 40 CFR 63, Subpart JJJJJ not applicable, the Permittee shall comply with the following:

The amount of fired product from the tunnel kiln (EU02) shall be limited such that:

(a) The HF emissions shall not exceed 9.99 tons per twelve consecutive month period, with compliance determined at the end of each month.

(b) The total HAPs emissions shall not exceed 24.75 tons per twelve consecutive month period, with compliance determined at the end of each month.
(c) Unless operating under Alternative Operating Scenario No. 1 (AOS1) the dry sorbent injection fabric filter (DIFF) CD01 shall control emissions from the tunnel kiln (EU02).

Compliance with the above HAP emission limits, combined with the potential to emit HAP from all other emission units at the source, shall limit HAP emissions from the entire source to less than ten (10) tons for any single HAP and twenty-five (25) tons for any combination of HAPS per twelve (12) consecutive month period and render this source an area source of HAP emissions under Section 112 of the Clean Air Act (CAA).

D.2.4 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and any control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.2.45 SO₂ Emissions

D.2.6 HAP Control

In order to assure compliance with Condition D.2.3 when operating under Alternative Operating Scenario No. 2, the dry injection fabric filter, identified as CD01, for HF and HAP control shall be in operation and control emissions from the tunnel kiln (EU02) at all times that the emission unit is in operation.

D.2.7 Hydrogen Fluoride (HF)

(a) In order to demonstrate compliance with the HF emissions limit in Condition D.2.3(a) when operating under Alternative Operating Scenario No. 1, the uncontrolled HF emissions from the Tunnel Kiln shall be calculated using the formula:

\[E_{AOS1} = \frac{F \times H_F}{2000} \]

Where:

- \(E_{AOS1} \) = Monthly HF HAP emissions in tons when operating under AOS 1,
- \(F \) = Monthly fired product in tons when operating under AOS 1, and
- \(H_F \) = Uncontrolled HF emissions rate as 0.45 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration

(b) In order to demonstrate compliance with the HF emissions limit in Condition D.2.3(a) when operating under Alternative Operating Scenario No.2, the controlled HF emissions from the Tunnel Kiln shall be calculated using the formula:

\[E_{AOS2} = \frac{F \times H_F}{2000} \]

Where:

- \(E_{AOS2} \) = Monthly HF HAP emissions in tons when operating under AOS 2,
- \(F \) = Monthly fired product in tons when operating under AOS 2, and
- \(H_F \) = Controlled HF emissions rate as 0.0002 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration

(C) Combined Single HAPs

\[E = E_{AOS1} + E_{AOS2} \]
Where:

\[E = \text{Total combined monthly HF HAP emissions in tons}, \]
\[E_{AOS1} = \text{Monthly HF HAP emissions in tons when operating under AOS 1, and} \]
\[E_{AOS2} = \text{Monthly HF HAP emissions in tons when operating under AOS} \]

D.2.8 Total HAPs

(a) In order to determine compliance with the total HAPs emissions limit in Condition D.2.3(b) when operating under Alternative Operating Scenario No. 1, the uncontrolled total HAPs emissions from the Tunnel Kiln shall be calculated using the following formula:

\[E_{AOS1} = \frac{F \times H_T}{2000} \]

Where:

\[E_{AOS1} = \text{Monthly Total HAP emissions in tons when operating under AOS 1,} \]
\[F = \text{Monthly fired product in tons when operating under AOS 1, and} \]
\[H_T = \text{uncontrolled total HAP emissions rate as 1.1 pounds per ton of fired product,} \]

(b) In order to determine compliance with the total HAPs emissions limit in Condition D.2.1.1(b) when operating under Alternative Operating Scenario No. 2, the controlled total HAPs emissions from the Tunnel Kiln shall be calculated using the following formula:

\[E_{AOS2} = \frac{F \times H_T}{2000} \]

Where:

\[E_{AOS2} = \text{Monthly Total HAP emissions in tons when operating under AOS 2,} \]
\[F = \text{Monthly fired product in tons when operating under AOS 2, and} \]
\[H_T = \text{Controlled total HAP emissions rate as 0.19 pounds per ton of fired product, or the value establish by the most recent valid compliance demonstration} \]

(C) Combined Total HAPs

\[E = E_{AOS1} + E_{AOS2} \]

Where:

\[E = \text{Total combined monthly Total HAP emissions in tons,} \]
\[E_{AOS1} = \text{Monthly Total HAP emissions in tons when operating under AOS 1, and} \]
\[E_{AOS2} = \text{Monthly Total HAP emissions in tons when operating under AOS 2} \]

D.2.59 Testing Requirements [326 IAC 2-1.1-11] [326 IAC 2-7-6(1),(6)]

(a) In order to demonstrate compliance with Conditions D.2.2 and D.2.45, the Permittee shall perform SO2 testing of the tunnel kiln utilizing methods as approved by the Commissioner at least once every five (5) years from the date of the most recent valid compliance demonstration. Testing shall be conducted in accordance with the provisions of 326 IAC 3-6 (Source Sampling Procedures). Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

(b) In order to demonstrate compliance with Conditions D.2.3(a) and D.2.3(b) when operating under Alternative Operating Scenario No. 2, the Permittee shall perform HF testing for the DIFF (CD01) exhaust stack not later than one hundred eighty (180) days after the issuance of the Significant Permit Modification No. 167-40457-
00139, or one hundred eighty (180) days after December 26, 2019, whichever occurs first, utilizing methods as approved by the Commissioner. This test shall be repeated at least once every five (5) years from the date of the latest valid compliance demonstration. Section C – Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)] [326 IAC 2-7-6(1)]

D.2.10 Parametric Monitoring

When operating under Alternative Operating Scenario No. 2, the Permittee shall comply with the following:

(a) The Permittee shall record the pressure drop across the dry lime injection fabric filter (CD01) used in conjunction with the tunnel kiln (EU02) at least once per day when the tunnel kiln is in operation. When for any one reading, the pressure drop across the baghouse is outside the normal range the Permittee shall take reasonable response. The normal range for this unit is a pressure drop between of 14.5 and 17.5 mbar (equivalent to a range of 5.82 and 7.03 inches of water) unless a different upper-bound or lower-bound value for this range is determined during the latest stack test.

(b) The instrument used for determining the pressure shall comply with Section C - Instrument Specifications, of this permit, shall be subject to approval by IDEM, OAQ, and shall be calibrated or replaced at least once every six (6) months.

(c) The Permittee shall inspect the dry lime feed system and feeder setting on the dry lime injection baghouse once per day. If the lime feeder setting drops below the level established during the latest stack test, the switches and/or level sensors monitoring the interlock system on the limestone delivery systems, including the lime screw conveyor and holding bin, are not functioning properly, or the Permittee discovers cracks, holes or abnormal/excessive wear on the indicators for the screw conveyor and holding bin, the Permittee shall take reasonable response.

(d) Section C – Response to Excursions or Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. A feeder setting that is below the level established during the latest performance test is not a deviation from this permit. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.611 Record Keeping Requirements

(a) To document the compliance status with Conditions D.2.2 and D.2.3, the Permittee shall maintain records in accordance with (1) through (25) below. Records maintained for (1) through (25) shall be taken as stated below and shall be complete and sufficient to establish compliance with the SO₂, HF, and total HAPs emission limits established in Conditions D.2.2 and D.2.3. Records necessary to demonstrate compliance shall be available no later than 30 days of the end of each compliance period.

(1) The amount of fired product from the tunnel kiln (EU02) on a monthly basis.

(2) The amount of SO₂ emitted for each compliance period.

(3) Documentation of the dates, including the time, when the kiln is operating under AOS 2.
(4) The amount of HF emitted from the tunnel kiln (EU02) for each compliance period.

(5) The amount of total HAPs emitted from the tunnel kiln (EU02) for each compliance period.

(b) To document the compliance status with Conditions D.2.10(a) and D.2.10(c), the Permittee shall maintain daily records of the pressure drop and lime feeder setting. The Permittee shall include in its daily record when a pressure drop reading or lime feeder setting reading is not taken and the reason for the lack of pressure drop reading or lime feeder setting reading (e.g., the process did not operate that day).

(bc) Section C - General Record Keeping Requirements contains the Permittee's obligation with regard to the records required by this condition.

D.2.7 Reporting Requirement
A quarterly summary of the information to document the compliance status with Conditions D.2.2 and D.2.3 shall be submitted not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official," as defined by 326 IAC 2-7-1(35).

SECTİON E.1 NSPS

Emissions Unit Description:

(A) Processed clay emission unit group, identified as EUG-03, consisting of:

(1) Processed clay bunker filling, identified as PC01, constructed in 2007, with a maximum short term capacity of 120 tons per hour, exhausting internally. A portion of the emissions from PC01 are collected and controlled by dust collector CD02, and exhausting through stack CD02. Under 40 CFR 60, Subpart OOO, this is considered an affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

E.1.2 Nonmetallic Mineral Processing Plants NSPS [326 IAC 12][40 CFR Part 60, Subpart OOO]
The Permittee shall comply with the following provisions of 40 CFR Part 60, Subpart OOO (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 12, for the emission units listed above: MR02, MR03, GR01, GR02, GR03, GR04, GR05, GR06, GR07, and GR08:

(1) 40 CFR 60.670(a)(1),(d),(e),(f)
(2) 40 CFR 60.671
(3) 40 CFR 60.672(a),(b),(d),(e)
(4) 40 CFR 60.675(a),(b),(c),(1),(c),(3),(d),(e),(g)
(5) 40 CFR 60.676(a),(b),(1), (f), (g), (h),(i),(1),(j), (k)
Primary crusher GR01R is subject to the following portions of 40 CFR 60, Subpart OOO:

1. 40 CFR 60.670(a)(1), (e), (f)
2. 40 CFR 60.671
3. 40 CFR 60.672(b)
4. 40 CFR 60.675(a), (c), (1), (3), (e), (1), (e), (2), (g), (i)
5. 40 CFR 60.676(b), (1), (f), (h), (i), (j), (k)
6. Table 1
7. Table 3

The emission unit identified as PC01 is subject to the following portions of 40 CFR 60, Subpart OOO:

1. 40 CFR 60.670(a)(1), (e), (f)
2. 40 CFR 60.671
3. 40 CFR 60.672(a), (b), (e), (2)
4. 40 CFR 60.675(a), (b), (1), (c), (1), (ii), (c), (3), (d), (2), (e), (2), (3), (g)
5. 40 CFR 60.676 (f), (i), (k)
6. Table 1
7. Table 2
8. Table 3

Compliance Determination Requirements [326 IAC 2-7-5(1)]

E.1.3 Testing Requirements [326 IAC 2-1.1-11][326 IAC 2-7-6(1)][326 IAC 2-7-5(1)]

In order to document the compliance status with Condition E.1.2, the Permittee shall perform the PM testing required under 40 CFR 60.672 and Table 2 of Subpart OOO, utilizing methods as approved by the Commissioner, at least once every five (5) years from the date of the most recent valid compliance demonstration. Section C - Performance Testing contains the Permittee’s obligation with regard to the performance testing required by this condition.

... SECTION E.2 NESHAP

Emissions Unit Description:

2. Landfill gas-fired Tunnel Kiln with natural gas as back up, identified as EU02, constructed in 2007, with a maximum firing rate of 55 million (MM) Btu per hour, with a maximum capacity of 29 tons of brick per hour, and exhausting through stack CD01.

Under 40 CFR 63, Subpart JJJJJ, this is considered an existing affected large tunnel kiln.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A—General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart JJJJJ. The Permittee must comply with these requirements on and after October 26, 2015.

(b) Since the applicable requirements associated with the compliance options are not included and specifically identified in this permit, the permit shield authorized by the B section of this permit in the condition titled Permit Shield, and set out in 326 IAC 2-7-15 does not apply to paragraph (a) of this condition, except as otherwise provided in this condition. The permit shield applies to Condition E.2.3, Notification Requirements.

E.2.2 Brick and Structural Clay Products Manufacturing NESHAP [40 CFR Part 63, Subpart JJJJJ][326 IAC 20-72]

(a) The provisions of 40 CFR Part 63, Subpart JJJJJ, which are incorporated by reference as 326 IAC 20-72, apply to the emission unit(s) listed above. Pursuant to 40 CFR 63.8395, the Permittee must comply with these requirements no later than December 26, 2018.

(b) Since the applicable requirements associated with the compliance options are not included and specifically identified in this permit, the permit shield authorized by the B section of this permit in the condition titled Permit Shield, and set out in 326 IAC 2-7-15 does not apply to paragraph (a) of this condition, except as otherwise provided in this condition. The permit shield applies to Condition E.2.3, Notification Requirements.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)][326 IAC 2-7-19]

E.2.3 Notification Requirements [40 CFR 63.8480]

(a) General. The Permittee must submit the notifications in 40 CFR 63.8480 (a) and (b) that apply to the affected source by the dates specified in those sections.

(b) Initial notification. The Permittee must submit the initial notification no later than June 22, 2016.

(c) Notification of compliance status. The Permittee must submit the notification of compliance status required by 40 CFR 63.9(h) no later than 30 calendar days following the end of the initial compliance period described in 40 CFR 63.8455 and 40 CFR 63.8480, that applies to the affected source. The notification of compliance status must contain the information specified in 40 CFR 63.8480.

E.2.4 Requirement to Submit a Significant Permit Modification Application [326 IAC 2-7-12][326 IAC 2-7-5]

The Permittee shall submit an application for a significant permit modification to IDEM, OAQ to include information regarding which compliance option or options will be chosen in the Part 70

(a) The significant permit modification application shall be consistent with 326 IAC 2-7-12, including information sufficient for IDEM, OAQ to incorporate into the Part 70 permit the applicable requirements of 40 CFR 63, Subpart JJJJJ, a description of the affected source and activities subject to the standard, and a description of how the Permittee will meet the applicable requirements of the standard.

(b) The significant permit modification application shall be submitted no later than March 28, 2018.

(c) The significant permit modification application shall be submitted to:
Emissions Unit Description:
Insignificant Activities –

(b) A gasoline fuel transfer dispensing operation handling less than or equal to one thousand three hundred (1,300) gallons per day and filling storage tanks having a capacity equal to or less than ten thousand five hundred (10,500) gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(d) The following VOC and HAP storage containers:

 (1) Storage tanks with capacity less than or equal to 1,000 gallons and annual throughputs less than 12,000 gallons.

 (B) One (1) gasoline storage tank, with capacity of 500 gallons. Under 40 CFR 63, Subpart CCCCCC, this is considered an existing affected facility.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1, the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission units listed above, except as otherwise specified in 40 CFR Part 63, Subpart CCCCCC.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities NESHAP [40 CFR Part 63, Subpart CCCCCC] [326 IAC 20-1]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart CCCCCC (included as Attachment C to the operating permit):

(1) 40 CFR 63.11110
(2) 40 CFR 63.11111(a),(b),(e),(f),(h),(l),(j),(k)
(3) 40 CFR 63.11112(a),(d)
(4) 40 CFR 63.11113(a),(b)
(5) 40 CFR 63.11115
(6) 40 CFR 63.11116
(7) 40 CFR 63.11125(d)
(8) 40 CFR 63.11126(b)
(9) 40 CFR 63.11130
(10) 40 CFR 63.11131
(11) 40 CFR 63.11132
(12) Table 3

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Tunnel Kiln (EU02)
Parameter: HF Emissions
Limit: The HF emissions from the tunnel kiln (EU02) shall not exceed 9.99 tons per twelve (12) consecutive month period with compliance determined at the end of each month

QUARTER: ____________ YEAR: ________________

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1 (tons)</th>
<th>Column 2 (tons)</th>
<th>Column 1 + Column 2 (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous 11 Months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Month Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by: ________________________________
Title / Position: ______________________________
Signature: ________________________________
Date: ________________________________
Phone: ________________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Meridian Brick LLC - Terre Haute Plant
Source Address: 5601 E. Price Road, Terre Haute, Indiana 47802
Part 70 Permit No.: 167-37385-00139
Facility: Tunnel Kiln (EU02)
Parameter: Total HAP Emissions
Limit: The Total HAP emissions from the tunnel kiln (EU02) shall not exceed 24.75 tons per twelve (12) consecutive month period with compliance determined at the end of each month

<table>
<thead>
<tr>
<th>QUARTER:</th>
<th>YEAR:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 1 + Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This Month (tons)</td>
<td>Previous 11 Months (tons)</td>
<td>12 Month Total (tons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
 Deviation has been reported on:

Submitted by: ______________________
Title / Position: ______________________
Signature: ______________________
Date: ______________________
Phone: ______________________
Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on March 16, 2018. Additional information was received on October 15, 2018, and December 13, 2018.

The operation of this proposed modification shall be subject to the conditions of the attached proposed Significant Permit Modification No. 167-40457-00139.

The staff recommends to the Commissioner that the Part 70 Significant Permit Modification be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Ms. Pavithra Ethi Rajan, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 233-7511 or (800) 451-6027, and ask for Ms. Pavithra Ethi Rajan or (317) 233-7511.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens' Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
<table>
<thead>
<tr>
<th>Emission Units</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP</th>
<th>Total HAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas-fired heaters</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total (Non-Fugitives)</td>
<td>3.62</td>
<td>1.37</td>
<td>1.37</td>
<td>0.00</td>
<td>0.65</td>
<td>0.04</td>
<td>0.55</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The shaded cells indicate new emission units/processes.
Appendix A: Emissions Calculations

Natural Gas Combustion Only

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

<table>
<thead>
<tr>
<th>SPM No.</th>
<th>Heat Input Capacity</th>
<th>MMBtu/hr (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T167-40457-00139</td>
<td>Forced air heaters (6)</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>Radiant heaters (10)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat Input Capacity</th>
<th>MMBtu/hr</th>
<th>mmBtu</th>
<th>Potential Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52</td>
<td>1020</td>
<td>13.1</td>
<td></td>
</tr>
</tbody>
</table>

Pollutant Emission Calculation

<table>
<thead>
<tr>
<th>Forced air heaters (4) and Radiant heaters (8)</th>
</tr>
</thead>
</table>

- **PM emission factor** is filterable PM only. **PM10 emission factor** is filterable and condensable PM10 combined. **PM2.5 emission factor** is filterable and condensable PM2.5 combined.

Methodology

All emission factors are based on normal firing.

- **MBtu = 1,000,000 Btu**
- **MMCF = 1,000,000 Cubic Feet of Gas**

Emission Factors are from AP-42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

Hazardous Air Pollutants (HAPs)

HAPs - Organics

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMCF</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Total - Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMCF</td>
<td>2.1E-03</td>
<td>1.2E-03</td>
<td>7.5E-02</td>
<td>1.8E+00</td>
<td>3.4E-03</td>
<td></td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>1.4E-05</td>
<td>7.8E-06</td>
<td>4.9E-04</td>
<td>0.01</td>
<td>2.2E-05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMCF</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total - Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMCF</td>
<td>5.0E-04</td>
<td>1.1E-03</td>
<td>1.4E-03</td>
<td>3.8E-04</td>
<td>2.1E-03</td>
<td></td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>3.3E-06</td>
<td>7.2E-06</td>
<td>9.1E-06</td>
<td>2.5E-06</td>
<td>1.4E-05</td>
<td>3.6E-05</td>
</tr>
</tbody>
</table>

Methodology is the same as above.
The five highest organic and metal HAPs emission factors are provided above.
Additional HAPs emission factors are available in AP-42, Chapter 1.4.
Appendix A: Emission Calculations

PTE Summary

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Uncontrolled, Unlimited Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5 *</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td>-</td>
<td>5.83</td>
<td>2.84</td>
<td>2.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR01 (EUG02)</td>
<td>-</td>
<td>8.94</td>
<td>8.94</td>
<td>8.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crusher (GR07R)</td>
<td>-</td>
<td>22.34</td>
<td>22.34</td>
<td>22.34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR02, GR03, GR04, GR05, GR06 (EUG02)</td>
<td>CD02</td>
<td>517.72</td>
<td>130.03</td>
<td>130.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processed Clay (EUG-03) (controlled, partial)</td>
<td>-</td>
<td>12.61</td>
<td>4.63</td>
<td>4.63</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR07, GR08 (EUG02)</td>
<td>-</td>
<td>9.46</td>
<td>3.47</td>
<td>3.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Silo (SD02)</td>
<td>-</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mixed Clay Conveyors (PC05)</td>
<td>CD03</td>
<td>2.37</td>
<td>0.87</td>
<td>0.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clay Storage Hopper (PC06)</td>
<td>-</td>
<td>1.18</td>
<td>0.43</td>
<td>0.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Even Feeder (PC07)</td>
<td>-</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Vibrating Units (SVU)</td>
<td>-</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand (supersack) Handling (SD01)</td>
<td>-</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additive (supersack) handling (AD01)</td>
<td>-</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trim Conveyors (TC01)</td>
<td>-</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Texturing Activity (TA01)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td>-</td>
<td>0.05</td>
<td>0.19</td>
<td>0.19</td>
<td>0.02</td>
<td>2.55</td>
<td>0.14</td>
<td>2.14</td>
</tr>
<tr>
<td>Tunnel Kiln DIFF CD01</td>
<td>-</td>
<td>11.81</td>
<td>110.51</td>
<td>110.51</td>
<td>248.96</td>
<td>44.46</td>
<td>3.05</td>
<td>152.42</td>
</tr>
<tr>
<td>DIFF silo - Reagent Handling</td>
<td>-</td>
<td>0.29</td>
<td>0.19</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gasoline Dispensing**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.70</td>
<td>-</td>
</tr>
<tr>
<td>Petroleum Dispensing**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.70</td>
<td>-</td>
</tr>
<tr>
<td>Tanks**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.70</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td>-</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.12</td>
<td>0.06</td>
<td>0.94</td>
</tr>
<tr>
<td>Degreasers***</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td>-</td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
<td>1.61</td>
<td>7.77</td>
<td>0.20</td>
<td>35.44</td>
</tr>
<tr>
<td>Total (Non-Fugitive)</td>
<td>-</td>
<td>596.14</td>
<td>301.97</td>
<td>301.97</td>
<td>250.49</td>
<td>68.35</td>
<td>15.36</td>
<td>230.32</td>
</tr>
</tbody>
</table>

Fugitive Emissions

Surface Mining	-	526.43	110.33	64.55	-	-	-	-
Stockpiles	-	15.83	7.81	3.13	-	-	-	-
Unpaved Roads (plant only)	-	1268.42	360.69	36.07	-	-	-	-
Paved Roads	-	272.44	54.49	13.37	-	-	-	-
Total Fugitives	-	2082.91	533.32	117.12	0.00	0.00	0.00	0.00

* PM2.5 listed is direct PM2.5
**No calculations provided for these units. They are conservatively estimated for PTE purposes.
***Degreasing operations do not utilize a volatile solvent.
Note: The shaded cells indicate where limits are included.
Potential to Emit after Controls (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td></td>
<td>2.49</td>
<td>1.59</td>
<td>1.59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR01 (EUG02)</td>
<td></td>
<td>2.68</td>
<td>2.68</td>
<td>2.68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crusher (GR07R)</td>
<td>CD02</td>
<td>8.92</td>
<td>4.66</td>
<td>3.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR02, GR03, GR04, GR05, GR06 (EUG02)</td>
<td>CD02</td>
<td>4.23</td>
<td>1.55</td>
<td>1.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td></td>
<td>2.84</td>
<td>1.04</td>
<td>1.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Silo (SD02)</td>
<td></td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mixed Clay Conveyors (PC05)</td>
<td>CD03</td>
<td>0.76</td>
<td>0.28</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clay Storage Hopper (PC06)</td>
<td></td>
<td>0.38</td>
<td>0.14</td>
<td>0.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Even Feeder (PC07)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Vibrating Units (SVU)</td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand (supersack) Handling (SD01)</td>
<td></td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additive (supersack) handling (AD01)</td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trim Conveyors (TC01)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Texturing Activity (TA01)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tunnel Dryer - Raw Materials</td>
<td></td>
<td>9.76</td>
<td>23.75</td>
<td>23.75</td>
<td>12.45</td>
<td>3.81</td>
<td>152.42</td>
<td></td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td></td>
<td>0.05</td>
<td>0.19</td>
<td>0.19</td>
<td>0.02</td>
<td>2.55</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>DIFF silo - Reagent Handling</td>
<td>DIFF CD01</td>
<td>11.81</td>
<td>110.51</td>
<td>110.51</td>
<td>248.96</td>
<td>44.46</td>
<td>3.05</td>
<td>152.42</td>
</tr>
<tr>
<td>Gasoline Dispensing**</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Petroleum Dispensing**</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanks**</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.12</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Degreasing***</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td></td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
<td>1.51</td>
<td>7.77</td>
<td>35.44</td>
<td></td>
</tr>
<tr>
<td>**Total (Non-Fugitive)</td>
<td></td>
<td>65.46</td>
<td>167.97</td>
<td>166.89</td>
<td>250.49</td>
<td>68.35</td>
<td>15.36</td>
<td>230.32</td>
</tr>
<tr>
<td>**Fugitive Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Mining</td>
<td></td>
<td>144.88</td>
<td>36.69</td>
<td>24.79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stockpiles</td>
<td></td>
<td>15.63</td>
<td>7.81</td>
<td>3.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unpaved Roads (plant only)</td>
<td></td>
<td>654.21</td>
<td>180.35</td>
<td>18.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paved Roads</td>
<td></td>
<td>136.22</td>
<td>27.24</td>
<td>6.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Fugitives</td>
<td></td>
<td>930.34</td>
<td>252.10</td>
<td>52.64</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* PM2.5 listed is direct PM2.5

**No calculations provided for these units. They are conservatively estimated for PTE purposes.

***Degreasing operations do not utilize a volatile solvent.

Note: The shaded cells indicate where limits are included.
Limited Potential to Emit after Issuance (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Control Device</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5 *</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td>-</td>
<td>5.83</td>
<td>2.84</td>
<td>2.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR01 (EUG02)</td>
<td>-</td>
<td>8.94</td>
<td>8.94</td>
<td>8.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crusher (GR01R)</td>
<td>CD02</td>
<td>22.34</td>
<td>22.34</td>
<td>22.34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GR02, GR03, GR04, GR05, GR06 (EUG02)</td>
<td>CD02</td>
<td>157.08</td>
<td>80.23</td>
<td>80.23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td>CD02</td>
<td>9.46</td>
<td>3.47</td>
<td>3.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Silo (SD02)</td>
<td>Bin vent filter/CD03</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mixed Clay Conveyors (PC05)</td>
<td>CD03</td>
<td>2.37</td>
<td>0.87</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clay Storage Hopper (PC06)</td>
<td>-</td>
<td>1.18</td>
<td>0.43</td>
<td>0.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Even Feeder (PC07)</td>
<td>-</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand Vibrating Units (SVU)</td>
<td>-</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sand (supersack) Handling (SD01)</td>
<td>-</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Additive (supersack) handling (AD01)</td>
<td>-</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trim Conveyors (TC01)</td>
<td>-</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Texturing Activity (TA01)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td>-</td>
<td>0.05</td>
<td>0.19</td>
<td>0.19</td>
<td>0.02</td>
<td>2.55</td>
<td>0.14</td>
<td>2.14</td>
</tr>
<tr>
<td>Tunnel Kiln</td>
<td>DIFF CD01</td>
<td>11.81</td>
<td>110.51</td>
<td>110.51</td>
<td>247.69</td>
<td>44.46</td>
<td>3.05</td>
<td>152.42</td>
</tr>
<tr>
<td>DIFF silo - Reagent Handling</td>
<td>-</td>
<td>0.29</td>
<td>0.19</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gasoline Dispensing**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Petroleum Dispensing**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanks**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td>-</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.12</td>
<td>0.06</td>
<td>0.94</td>
</tr>
<tr>
<td>Degreasers***</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td>-</td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
<td>1.51</td>
<td>7.77</td>
<td>0.20</td>
<td>35.44</td>
</tr>
<tr>
<td>Total (Non-Fugitive)</td>
<td>-</td>
<td>222.90</td>
<td>247.54</td>
<td>247.54</td>
<td>249.22</td>
<td>68.35</td>
<td>15.36</td>
<td>230.32</td>
</tr>
</tbody>
</table>

Limited Potential to Emit after Issuance (lb/ton)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5 *</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR02, GR03, GR04, GR05, GR06</td>
<td>CD02</td>
<td>35.00</td>
<td>18.00</td>
<td>18.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td>controlled, partial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Limited Potential to Emit after Issuance (lb/hr)

* PM2.5 listed is direct PM2.5

**No calculations provided for these units. They are conservatively estimated for PTE purposes.

Degreasing operations do not utilize a volatile solvent.

Note: The shaded cells indicate where limits are included.
Appendix A: Emission Calculations

HAPs Summary

Company Name: Meridian Brick LLC
Address City: Terre Haute, Indiana 47802
SFM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Uncontrolled Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>HF</th>
<th>HCl</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Clay Grinding & Screening (EUG-02)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Sand Handling (EUG-04)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - Raw Materials</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>NEW Crusher (GR01R)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>SD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>AD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Petroleum Dispensing</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tanks</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>MFF Slag</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Material Handling</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>56.97</td>
<td>6.93</td>
<td>0.37</td>
<td>6.14E-03</td>
<td>2.75E-03</td>
<td>6.60E-02</td>
<td>2.04E-02</td>
<td>1.91E-02</td>
<td>1.95E-03</td>
<td>6.53E-03</td>
<td>3.68E-02</td>
<td>9.22E-03</td>
<td>65.41</td>
</tr>
</tbody>
</table>

Controlled Emissions (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>HF</th>
<th>HCl</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Clay Grinding & Screening (EUG-02)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Sand Handling (EUG-04)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - Raw Materials</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>NEW Crusher (GR01R)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>SD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>AD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Petroleum Dispensing</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tanks</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>MFF Slag</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Material Handling</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>9.99</td>
<td>6.93</td>
<td>0.37</td>
<td>0.003</td>
<td>0.003</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Potential to Emit after Issuance (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>HF</th>
<th>HCl</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Receiving (EUG-01)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Clay Grinding & Screening (EUG-02)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Processed Clay (EUG-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Sand Handling (EUG-04)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - Raw Materials</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tunnel Dryer - NG Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>NEW Crusher (GR01R)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>SD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>AD01</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Petroleum Dispensing</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Tanks</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Natural Gas Combustion</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Landfill Gas Flare (EU-03)</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>MFF Slag</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Material Handling</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>9.99</td>
<td>6.93</td>
<td>0.37</td>
<td>0.003</td>
<td>0.003</td>
<td>0.07</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Company Name: Meridian Brick LLC
Address City: Terre Haute, Indiana 47802
SFM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan
Appendix A: Emission Calculations
Clay Surface Mining Operations

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Emission Calculations

Mining Clay Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Capacity</th>
<th>PTE (tons/year)</th>
<th>PTE after Controls (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>PM10</td>
</tr>
<tr>
<td>Mining Clay Operations</td>
<td>750</td>
<td>86%</td>
<td>525.7</td>
</tr>
<tr>
<td>Hauling Clay Operations</td>
<td>120</td>
<td>14%</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>870</td>
<td></td>
<td>526.4</td>
</tr>
</tbody>
</table>

Hauling Clay Operations (Stockpile to Plant)

<table>
<thead>
<tr>
<th>Process:</th>
<th>Number of Units</th>
<th>Capacity</th>
<th>PM (lb/ton)</th>
<th>PM10 (lb/ton)</th>
<th>PM2.5 (lb/ton)</th>
<th>PM (ton/year)</th>
<th>PM10 (ton/year)</th>
<th>PM2.5 (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading</td>
<td>1</td>
<td>2689.66</td>
<td>3.53</td>
<td>1.10</td>
<td>0.11</td>
<td>4.74</td>
<td>1.48</td>
<td>0.15</td>
</tr>
<tr>
<td>Bulldozing</td>
<td>1</td>
<td>1.74</td>
<td>0.33</td>
<td>0.18</td>
<td>510.10</td>
<td>97.97</td>
<td>53.56</td>
<td>0.74</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>750</td>
<td>0.04</td>
<td>0.04</td>
<td>10.82</td>
<td>10.82</td>
<td>10.82</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes
- Mining Clay Operations include one (1) excavator, two (2) bulldozers, and two (2) dump trucks.
- Speed Limit: 8 mph
- Mining Clay Operations occur only 39 days per year during daylight hours (10 hours)
- Average silt content per AP-42 Table 13.2.4-1 for clay.

Hauling Clay Operations (Stockpile to Plant)

<table>
<thead>
<tr>
<th>Process:</th>
<th>Number of Units</th>
<th>Capacity</th>
<th>PM (lb/ton)</th>
<th>PM10 (lb/ton)</th>
<th>PM2.5 (lb/ton)</th>
<th>PM (ton/year)</th>
<th>PM10 (ton/year)</th>
<th>PM2.5 (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading</td>
<td>1</td>
<td>430.34</td>
<td>3.53</td>
<td>1.10</td>
<td>0.11</td>
<td>0.76</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td>Dump Truck Loading</td>
<td>1</td>
<td>120</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>4.44</td>
<td>4.44</td>
<td>4.44</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>750</td>
<td>0.04</td>
<td>0.04</td>
<td>10.82</td>
<td>10.82</td>
<td>10.82</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes
- Hauling Clay Operations include one (1) excavator and one (1) dump truck.
- Hauling Clay Operations occur for only 26 weeks during daylight hours

Methodology

Uncontrolled emission factors are from AP-42, 11.9.

1. Grading (excavation):
 PM EF (TSP) = 0.040 x (s) 2.5
 PM15 EF (<15um) = 0.051 x (s) 2.0
 PM10 is scaled by the PM15 calculation (not TSP)
 PM2.5 is scaled by PM (TSP)

2. Bulldozing (overburden):
 PM EF (TSP) = 5.7 x (s) 1.2 / (M) 1.3
 PM15 EF (<15um) = 1.10 x (s) 1.5 / (M) 1.4
 PM10 is scaled by the PM15 calculation (not TSP)

3. Truck Loading by power shovel (overburden):
 0.037 lb/ton

PTE (ton/yr) = Capacity (ton/hr) x Emission Factor (lb/ton) x 8760 hr/yr x 1 ton / 2000 lb
After Control Potential Emission (ton/year) = Before Control Emission (ton/year) x (1 - Control Efficiency)
Appendix A: Emission Calculations

Storage Pile

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Particulate matter emissions result from wind erosion of storage piles when gusts of wind cause loose dust on the surface of the pile to become airborne. The annual quantity of emissions is dependent on the silt content of the material stored in the pile, the moisture of the pile (predicted by the number of days per year with measurable precipitation), and the percentage of hours per year that the wind speed exceeds the threshold speed of 12 miles per hour. Emissions are calculated on a pounds per day per acre basis using the method from the EPA Document “Control of Open Fugitive Dust Sources”. Emission rates are then converted to a lb/hr and tpy basis for each pile based on the estimated typical outer surface area of each pile.

Control of Open Fugitive Dust Sources
EPA-450/3-88-008. September 1988, Page 4-17.
Equation 2

\[E = 1.7 \left(\frac{s}{1.5} \right)^{\frac{365 - p}{235}} \left(\frac{f}{15} \right) \left(\text{lb/day/acre} \right) \]

- E: PM emission factor
- s: Silt Content (%)
- p: Number of days with greater than 0.01 in. of precipitation per year
- f: % of time the unobstructed wind speed exceeds 12 mph at the mean pile height

Emission Factors

<table>
<thead>
<tr>
<th>Storage Pile</th>
<th>Silt Content (s)</th>
<th>Annual Days of Rain (p)</th>
<th>% > 12 mph (f)</th>
<th>Uncontrolled PM Emission Factor (lb/day/acre)</th>
<th>Uncontrolled PM Emission Factor (lb/hr/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpiles</td>
<td>6</td>
<td>125</td>
<td>27.83</td>
<td>12.9</td>
<td>1.2E-05</td>
</tr>
</tbody>
</table>

1. Average silt content per AP-42 Table 13.2.4-1 for clay.
2. AP-42 Figure 13.2.1-2.
3. Based on 2016 hourly wind speed data per https://www.in.gov/idem/airquality/2376.htm

Storage Pile Emissions

<table>
<thead>
<tr>
<th>Storage Pile</th>
<th>Length of Pile (ft)</th>
<th>Width of Pile (ft)</th>
<th>Outer Surface Area of Storage Pile (acre)</th>
<th>PM Emission Rate (lb/hr)</th>
<th>Annual PM Emission Rate (tpy)</th>
<th>PM10 Emission Rate (lb/hr)</th>
<th>Annual PM10 Emission Rate (tpy)</th>
<th>PM2.5 Emission Rate (lb/hr)</th>
<th>Annual PM2.5 Emission Rate (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile 1 - aggregate</td>
<td>135</td>
<td>280</td>
<td>0.87</td>
<td>0.47</td>
<td>2.04</td>
<td>0.23</td>
<td>1.02</td>
<td>0.093</td>
<td>0.41</td>
</tr>
<tr>
<td>Stockpile 2 - clay</td>
<td>300</td>
<td>190</td>
<td>1.31</td>
<td>0.70</td>
<td>3.08</td>
<td>0.35</td>
<td>1.54</td>
<td>0.14</td>
<td>0.62</td>
</tr>
<tr>
<td>Stockpile 3 - coal</td>
<td>190</td>
<td>190</td>
<td>0.83</td>
<td>0.44</td>
<td>1.95</td>
<td>0.22</td>
<td>0.97</td>
<td>0.089</td>
<td>0.39</td>
</tr>
<tr>
<td>Stockpile 4 - clay</td>
<td>165</td>
<td>225</td>
<td>0.95</td>
<td>0.46</td>
<td>2.00</td>
<td>0.23</td>
<td>1.00</td>
<td>0.092</td>
<td>0.40</td>
</tr>
<tr>
<td>Stockpile 5 - clay</td>
<td>215</td>
<td>200</td>
<td>0.99</td>
<td>0.53</td>
<td>2.32</td>
<td>0.27</td>
<td>1.16</td>
<td>0.11</td>
<td>0.46</td>
</tr>
<tr>
<td>Stockpile 6 - clay</td>
<td>280</td>
<td>280</td>
<td>1.80</td>
<td>0.97</td>
<td>4.23</td>
<td>0.48</td>
<td>2.12</td>
<td>0.19</td>
<td>0.85</td>
</tr>
<tr>
<td>Totals</td>
<td>6.64</td>
<td>289,425</td>
<td>3.57</td>
<td>15.63</td>
<td>1.78</td>
<td>7.81</td>
<td>0.71</td>
<td>3.13</td>
<td></td>
</tr>
</tbody>
</table>

1. PM10 is assumed to be 50% of PM and PM2.5 is 20% of PM.

43,560 ft²/acre
Appendix A: Emissions Calculations

Emission Unit Group - Material Receiving (EUG-01)

Company Name: Meridian Brick LLC
Address City: Terre Haute, Indiana 47802
SMP No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Emission Unit Group - Material Receiving (EUG-01)
120 Short term maximum rate (tons per hour)

<table>
<thead>
<tr>
<th>Process Description:</th>
<th># of like units</th>
<th>Emission Factor</th>
<th>PTE Before Control</th>
<th>PTE After Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM (lb/ton)</td>
<td>PM10 (lb/ton)</td>
<td>PM10 (ton/year)</td>
</tr>
<tr>
<td>Dump Truck Unloading (MR01)</td>
<td>1</td>
<td>0.002</td>
<td>0.002</td>
<td>1.05</td>
</tr>
<tr>
<td>Receiving Material Apron Feeder (MR02)</td>
<td>1</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.05</td>
</tr>
<tr>
<td>Crude Material Conveyors (MR03)</td>
<td>3</td>
<td>0.003</td>
<td>0.0011</td>
<td>4.73</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>5.83</td>
<td>2.84</td>
<td>2.84</td>
</tr>
</tbody>
</table>

500,000 Limited Emissions (tons per year)

<table>
<thead>
<tr>
<th>Process Description:</th>
<th># of like units</th>
<th>Emission Factor</th>
<th>Limited PTE Before Control</th>
<th>Limited PTE After Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM (lb/ton)</td>
<td>PM10 (lb/ton)</td>
<td>PM10 (ton/year)</td>
</tr>
<tr>
<td>Dump Truck Unloading (MR01)</td>
<td>1</td>
<td>0.002</td>
<td>0.002</td>
<td>0.50</td>
</tr>
<tr>
<td>Receiving Material Apron Feeder (MR02)</td>
<td>1</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.03</td>
</tr>
<tr>
<td>Crude Material Conveyors (MR03)</td>
<td>3</td>
<td>0.003</td>
<td>0.0011</td>
<td>2.25</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>2.78</td>
<td>1.35</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Methodology

1 Emission Factors from AP-42, Table 11.9-4:
Bottom dump truck unloading (batch drop, overburden) 0.002 lb/ton

2 Emission Factors from AP-42, Table 11.19-2-2:
Conveyor transfer point (SCC 3-05-020-06) 0.003 PM10 PM2.5

Truck loading - conveyor, crushed stone (SCC 3-05-020-32) ND PM10 PM2.5

*Control efficiency estimated at 70% due to partial enclosure.
PM10 is 75% of PM15 (not 75% of PM); PM2.5 is 0.019 of PM.

Before Control Potential Emission (ton/year) = Emission Factor (lb/ton) * Max Short Term Rate (ton/hr) * 8760 (hr/yr) / 2000 (lb/ton)
After Control Potential Emission (ton/year) = Before Control Emission (ton/year) * (1 - Control Efficiency)
Limited Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th># of like units</th>
<th>Maximum Throughput (ton/hr)</th>
<th>Emission Factor (lb/ton)</th>
<th>PTE Before Control (ton/year)</th>
<th>Method Efficiency</th>
<th>Control Efficiency</th>
<th>%</th>
<th>PTE After Control (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Crusher (GR01) 1</td>
<td>1</td>
<td>500,000</td>
<td>0.017</td>
<td>4.25</td>
<td>enclosure 70%</td>
<td>2.25</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>Primary Crusher (GR01) 1</td>
<td>1</td>
<td>500,000</td>
<td>0.017</td>
<td>4.25</td>
<td>enclosure 70%</td>
<td>2.25</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>Scalloping Screen (GR02) 1</td>
<td>1</td>
<td>120</td>
<td>0.077</td>
<td>22.34</td>
<td>none 0%</td>
<td>1.42</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Screen (GR03) 1</td>
<td>3</td>
<td>120</td>
<td>0.72</td>
<td>433.04</td>
<td>dust collector CD02</td>
<td>113.53</td>
<td>113.53</td>
<td>113.53</td>
</tr>
<tr>
<td>Belt Conveyors (GR04) 1</td>
<td>5</td>
<td>120</td>
<td>0.003</td>
<td>7.88</td>
<td>enclosure 70%</td>
<td>2.89</td>
<td>2.89</td>
<td>2.89</td>
</tr>
<tr>
<td>Impact Crusher (GR05) 1</td>
<td>1</td>
<td>120</td>
<td>0.039</td>
<td>1.50</td>
<td>enclosure 70%</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Raw Material Bin (GR06) 1</td>
<td>3</td>
<td>120</td>
<td>0.003</td>
<td>13.14</td>
<td>enclosure 70%</td>
<td>4.57</td>
<td>4.57</td>
<td>4.57</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>548.5</td>
<td>155.8</td>
<td>155.8</td>
</tr>
</tbody>
</table>

Notes:
- Control efficiency estimated at 70% due to partial enclosure.
- Limited Emissions (ton/yr) = Limited Throughput (ton/yr) x Emission Factor (lb/ton) / 2000 (lb/ton)
- Controlled Emissions (ton/yr) = Emissions (ton/yr) x (1 - Control Efficiency)

Limited Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th># of like units</th>
<th>Limited Throughput (ton/hr)</th>
<th>Emission Factor (lb/ton)</th>
<th>Limited PTE Before Control (ton/year)</th>
<th>Method Efficiency</th>
<th>Limited Control Efficiency</th>
<th>%</th>
<th>Limited PTE After Control (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Crusher (GR01) 1</td>
<td>1</td>
<td>500,000</td>
<td>0.017</td>
<td>4.25</td>
<td>enclosure 70%</td>
<td>2.25</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>Primary Crusher (GR01) 1</td>
<td>1</td>
<td>500,000</td>
<td>0.017</td>
<td>4.25</td>
<td>enclosure 70%</td>
<td>2.25</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>Scalloping Screen (GR02) 1</td>
<td>1</td>
<td>120</td>
<td>0.077</td>
<td>22.34</td>
<td>none 0%</td>
<td>1.42</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Screen (GR03) 1</td>
<td>3</td>
<td>120</td>
<td>0.72</td>
<td>433.04</td>
<td>dust collector CD02</td>
<td>113.53</td>
<td>113.53</td>
<td>113.53</td>
</tr>
<tr>
<td>Belt Conveyors (GR04) 1</td>
<td>5</td>
<td>120</td>
<td>0.003</td>
<td>7.88</td>
<td>enclosure 70%</td>
<td>2.89</td>
<td>2.89</td>
<td>2.89</td>
</tr>
<tr>
<td>Impact Crusher (GR05) 1</td>
<td>1</td>
<td>120</td>
<td>0.039</td>
<td>1.50</td>
<td>enclosure 70%</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Raw Material Bin (GR06) 1</td>
<td>3</td>
<td>120</td>
<td>0.003</td>
<td>13.14</td>
<td>enclosure 70%</td>
<td>4.57</td>
<td>4.57</td>
<td>4.57</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>548.5</td>
<td>155.8</td>
<td>155.8</td>
</tr>
</tbody>
</table>

Notes:
- Control efficiency estimated at 70% due to partial enclosure.
- Limited Emissions (ton/yr) = Limited Throughput (ton/yr) x Emission Factor (lb/ton) / 2000 (lb/ton)
- Controlled Emissions (ton/yr) = Emissions (ton/yr) x (1 - Control Efficiency)
Appendix A: Emissions Calculations

Emission Unit Group - Processed Clay (EUG-03)

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Emission Unit Group - Processed Clay (EUG-03)

120 Short term maximum rate (tons per hour)

Uncontrolled Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Number of like units</th>
<th>Emission Factor (lb/ton)</th>
<th>PTE (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>PM10</td>
</tr>
<tr>
<td>Processed Clay Bunker Filling (PC01)</td>
<td>1</td>
<td>0.003</td>
<td>0.0011</td>
</tr>
<tr>
<td>Reclaimer (PC02)</td>
<td>1</td>
<td>0.003</td>
<td>0.0011</td>
</tr>
<tr>
<td>Processed Clay Conveyors (PC03)</td>
<td>5</td>
<td>0.003</td>
<td>0.0011</td>
</tr>
<tr>
<td>4 conveyors and pinch belt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclaimer by-pass chute (PC04)</td>
<td>1</td>
<td>0.003</td>
<td>0.0011</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>12.61</td>
<td>4.63</td>
</tr>
</tbody>
</table>

Note:
Emission Factors are from AP-42, Table 11.19.2-2 for conveyor transfer point (SCC 3-05-020-06)
There is no emission factor for PM2.5, therefore PM 2.5 is estimated equal to PM10

Methodology:
PTE (before control) (tons/yr) = # of like units * Emission factor (lb/tons) * Max short term rate (tons/hr) * 8760 (hr/yr) / 2000(lbs/ton)

Uncaptured Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Number of like units</th>
<th>Controls</th>
<th>Uncaptured Emissions (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control method(1)</td>
<td>Capture Efficiency (%)</td>
</tr>
<tr>
<td>Processed Clay Bunker Filling (PC01)</td>
<td>1</td>
<td>enclosed 70%</td>
<td>0.47</td>
</tr>
<tr>
<td>Reclaimer (PC02)</td>
<td>1</td>
<td>enclosed 70%</td>
<td>0.47</td>
</tr>
<tr>
<td>Processed Clay Conveyors (PC03)</td>
<td>5</td>
<td>enclosed 70%</td>
<td>2.37</td>
</tr>
<tr>
<td>4 conveyors and pinch belt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclaimer by-pass chute (PC04)</td>
<td>1</td>
<td>enclosed 70%</td>
<td>0.47</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>3.78</td>
</tr>
</tbody>
</table>

Note:
(1) All processes are enclosed processes within the building and conveyance is enclosed. An assumed capture of 70% is estimated
Pursuant to 326 IAC 2-2-1(e) and 326 IAC 2-7-1(18) the emissions from these processes do not meet the definition of fugitive emissions since they can be reasonably passed through a stack, chimney, vent or other functionally equivalent opening.

Methodology:
Uncaptured Emissions (tons/yr) = PTE before controls (tons/yr) * (1 - capture efficiency)

Controlled Emissions

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Number of like units</th>
<th>Controls</th>
<th>PTE after control (tons/year)</th>
<th>Total Emissions After Control (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control method(2)</td>
<td>Control Efficiency (%)</td>
<td>PM</td>
</tr>
<tr>
<td>Processed Clay Bunker Filling (PC01)</td>
<td>1</td>
<td>CD 02 99%</td>
<td>0.016</td>
<td>0.006</td>
</tr>
<tr>
<td>Reclaimer (PC02)</td>
<td>1</td>
<td>CD 02 99%</td>
<td>0.016</td>
<td>0.006</td>
</tr>
<tr>
<td>Processed Clay Conveyors (PC03)</td>
<td>5</td>
<td>CD 02 99%</td>
<td>0.39</td>
<td>0.14</td>
</tr>
<tr>
<td>4 conveyors and pinch belt</td>
<td></td>
<td>CD 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reclaimer by-pass chute (PC04)</td>
<td>1</td>
<td>CD 02 99%</td>
<td>0.016</td>
<td>0.006</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>0.44</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Note:
(2) A portion of the emissions are controlled by dust collector (CD02). It is assumed that 70% of the emissions are collected by the dust collector.

Methodology:
PTE (after control) (tons/yr) = PTE before controls (tons/yr) * (1 - control efficiency)
Total Emissions After Control (tons/yr) = PTE after control (tons/yr) + Uncaptured Emissions (tons/yr)
Emission Unit Group - Sand Handling (EUG-04)

1.25 Short term maximum rate of sand (tons/hr)
1 Short term maximum rate of additive (tons/hr)

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Number of like Units</th>
<th>Maximum Rate (tons/hr)</th>
<th>Emission Factor</th>
<th>PTE Before Control</th>
<th>Capture Efficiency %</th>
<th>Uncaptured Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM PM10 PM2.5 PM PM10 PM2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(lb/ton) (lb/ton) (lb/ton) (ton/year) (ton/year) (ton/year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand tank silo (SD02)</td>
<td>1</td>
<td>1.25</td>
<td>0.005</td>
<td>0.005</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Mixed Clay Conveyors (PC05)</td>
<td>2</td>
<td>90</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Clay Storage Hopper (PC06)</td>
<td>1</td>
<td>90</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Even Feeder (PC07)</td>
<td>1</td>
<td>0.1875</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Sand Vibrating Units (SVU)</td>
<td>3</td>
<td>1.25</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>(supersack) Handling (SD01)</td>
<td>1</td>
<td>1.25</td>
<td>0.005</td>
<td>0.005</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Additive (supersack) handling (AD01)</td>
<td>1</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Trim Conveyors (TCO1)</td>
<td>4</td>
<td>0.1875</td>
<td>0.003</td>
<td>0.0011</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Texturing Activity (TA01)</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Pug mill</td>
<td>1</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Extruder</td>
<td>1</td>
<td>90</td>
<td>N/A</td>
<td>N/A</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Finished Brick Transfer Conveyors</td>
<td>N/A</td>
<td>-</td>
<td>N/A</td>
<td>N/A</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4.61</td>
<td>2.32</td>
<td>2.32</td>
<td>1.37</td>
<td>0.64</td>
</tr>
</tbody>
</table>

1. The mixture and extrusion as well as the finished (pre-fired) brick is moist; therefore, no particulates will be emitted from this process.

Methodology:

Capture efficiency is estimated at 70% due to partial enclosure

All processes are enclosed processes within the building.

A portion of the emissions are controlled by dust collection. It is assumed that 70% of the emissions are collected and controlled by dust collector

Pursuant to 326 IAC 2-2-1(w) and 326 IAC 2-7-1(18) the emissions from these processes do not meet the definition of fugitive emissions since they can be reasonably passed through a stack, chimney, vent or other functionally equivalent opening.

PTE (before control) (tons/yr) = # of like units * Emission factor (lb/tons) * Max short term rate (tons/hr) * 8760 (hr/yr) / 2000(lbs/ton)

Uncontrolled Emissions (tons/yr) = PTE before controls (tons/yr) * (1 - capture efficiency)

PTE (after control) (tons/yr) = PTE before controls (tons/yr) * (1 - control efficiency)

Total Emissions After Control (tons/yr) = PTE after controls (tons/yr) + Uncaptured Emissions (tons/yr)
Appendix A: Emissions Calculations

Tunnel Dryer (EU-01)

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Maximum throughput of raw materials = 29 tons/hr
254,040 tons/yr

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM</th>
<th>PM10</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/ton</td>
<td>0.077</td>
<td>0.187</td>
<td>0.187</td>
<td>-</td>
<td>0.098</td>
<td>0.030</td>
<td>0.310</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>9.78</td>
<td>23.75</td>
<td>23.75</td>
<td>-</td>
<td>12.45</td>
<td>3.81</td>
<td>39.38</td>
</tr>
</tbody>
</table>

Emission factors from AP-42 Tables 11.3-1, 11.3-3, and 11.3-5 for drying of raw materials
Uncontrolled PTE (ton/yr) = Emission Factor (lb/ton) * Max Capacity (ton/hr) * 8760 (hr/yr) / 2000 (lb/ton)
Natural Gas Combustion Only - Tunnel Dryer #1

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5*</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMCF</td>
<td>1.9</td>
<td>7.6</td>
<td>7.6</td>
<td>0.6</td>
<td>100</td>
<td>5.5</td>
<td>84</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>4.85E-02</td>
<td>1.94E-01</td>
<td>1.94E-01</td>
<td>1.53E-02</td>
<td>2.6</td>
<td>1.40E-01</td>
<td>2.1</td>
</tr>
</tbody>
</table>

*PM emission factor is filterable PM only. PM10 emission factor is filterable and condensable PM10 combined.
PM2.5 emission factor is filterable and condensable PM2.5 combined.
**Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

Methodology
All emission factors are based on normal firing.

<table>
<thead>
<tr>
<th>HAPs - Organics</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMcf</td>
<td>2.1E-03</td>
<td>1.2E-03</td>
<td>7.5E-02</td>
<td>1.8E+00</td>
<td>3.4E-03</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>5.36E-05</td>
<td>3.06E-05</td>
<td>1.91E-03</td>
<td>4.59E-02</td>
<td>8.68E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAPs - Metals</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/MMcf</td>
<td>5.0E-04</td>
<td>1.1E-03</td>
<td>1.4E-03</td>
<td>3.8E-04</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>1.28E-05</td>
<td>2.81E-05</td>
<td>3.57E-05</td>
<td>9.70E-06</td>
<td>5.36E-05</td>
</tr>
</tbody>
</table>

Methodology is the same as previous page.
The five highest organic and metal HAPs emission factors are provided above.
Additional HAPs emission factors are available in AP-42, Chapter 1.4.

Total HAPs ton/yr

5.943
51.0

<table>
<thead>
<tr>
<th>Heat Input Capacity</th>
<th>HHV</th>
<th>Potential Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBtu/hr</td>
<td>mmBtu</td>
<td>mmscf</td>
</tr>
<tr>
<td>5.943</td>
<td>1020</td>
<td>51.0</td>
</tr>
</tbody>
</table>

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

See next page for HAPs emissions calculations.
Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Tunnel Kiln

Appendix A: Emissions Calculations

Tunnel Kiln

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Tunnel Kiln #1 (EU02)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Uncontrolled Emission Factor</th>
<th>Unlimited Emission Factor</th>
<th>Limited Emission Factor</th>
<th>Controlled Emission Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>0.093</td>
<td>11.81</td>
<td>0.093</td>
<td>11.81</td>
</tr>
<tr>
<td>PM10</td>
<td>0.87</td>
<td>110.51</td>
<td>0.87</td>
<td>110.51</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.87</td>
<td>110.51</td>
<td>0.87</td>
<td>110.51</td>
</tr>
<tr>
<td>SO2</td>
<td>1.98</td>
<td>248.96</td>
<td>1.95</td>
<td>247.69</td>
</tr>
<tr>
<td>NOx</td>
<td>0.35</td>
<td>44.46</td>
<td>0.35</td>
<td>44.46</td>
</tr>
<tr>
<td>VOC</td>
<td>0.02</td>
<td>3.05</td>
<td>0.02</td>
<td>3.05</td>
</tr>
<tr>
<td>CO</td>
<td>1.20</td>
<td>152.4</td>
<td>1.20</td>
<td>152.4</td>
</tr>
</tbody>
</table>

Methodology

- Uncontrolled emission factors for PM, PM10, PM2.5, SO2, HCl, and HF per stack test conducted on the Tunnel Kiln on May 17, 2018, which was the last test conducted with the dry sorbent injection fabric filter baghouse system in operation. Emission factor for all other pollutants from AP-42 Ch. 11.3 for a natural gas-fired kiln.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Stack Test</td>
<td>13.2</td>
</tr>
<tr>
<td>2008 Stack Test</td>
<td>12.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>AOS 1**</th>
<th>AOS 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>11.81</td>
<td>11.81</td>
</tr>
<tr>
<td>PM10</td>
<td>110.51</td>
<td>110.51</td>
</tr>
<tr>
<td>PM2.5</td>
<td>110.51</td>
<td>110.51</td>
</tr>
<tr>
<td>SO2</td>
<td>248.96</td>
<td>247.69</td>
</tr>
<tr>
<td>NOx</td>
<td>44.46</td>
<td>44.46</td>
</tr>
<tr>
<td>VOC</td>
<td>3.05</td>
<td>3.05</td>
</tr>
<tr>
<td>CO</td>
<td>152.4</td>
<td>152.4</td>
</tr>
</tbody>
</table>

HAPs

AOS 1

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Production Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Stack Test</td>
<td>13.2</td>
</tr>
<tr>
<td>2008 Stack Test</td>
<td>12.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>AOS 1**</th>
<th>AOS 2**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>11.81</td>
<td>11.81</td>
</tr>
<tr>
<td>PM10</td>
<td>110.51</td>
<td>110.51</td>
</tr>
<tr>
<td>PM2.5</td>
<td>110.51</td>
<td>110.51</td>
</tr>
<tr>
<td>SO2</td>
<td>248.96</td>
<td>247.69</td>
</tr>
<tr>
<td>NOx</td>
<td>44.46</td>
<td>44.46</td>
</tr>
<tr>
<td>VOC</td>
<td>3.05</td>
<td>3.05</td>
</tr>
<tr>
<td>CO</td>
<td>152.4</td>
<td>152.4</td>
</tr>
</tbody>
</table>

Methodology

Uncontrolled emission factors for PM, PM10, PM2.5, SO2, HCl, and HF per stack test conducted on the Tunnel Kiln on August 19, 2008, which was the last test conducted with the dry sorbent injection fabric filter baghouse system in operation. Emission factor for all other pollutants from AP-42 Ch. 11.3 for a natural gas-fired kiln.

Limited SO2 emission factor based on testing.

Uncontrolled PTE (ton/yr) = Emission Factor (lb/ton) x Max Capacity (ton/hr) / 2000 (lb/ton)

Limited Emissions (ton/yr) = Limited Emission Factor (lb/ton) x Limited Throughput (ton/hour) / 2000 (lb/ton)

AOS 1 - Source will take HAPs limits to render the source an area source until the Dry Sorbent Injection Fabric Filter Baghouse System is re-commissioned.

AOS 2 - Source will re-commission the Dry Sorbent Injection Fabric Filter Baghouse System to control the HAP emissions to less than major source thresholds.

The source has chosen to limit HF emissions to less than 10 tpy and total HAPs to less than 24.76 tpy. The source will keep records of throughput and use an equation to determine the emissions. This is a hypothetical limited throughput based on current emission factors and is only being used to project what the limited HAPs emissions could be. The throughput limit is not enforceable in the permit.
Appendix A: Emission Calculations
Silos associated with DIFF System

Company Name: Meridian Brick LLC
Address City: Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Process Data

1. Fresh reagent is pneumatically loaded from the delivery truck to the silo.
 - Reagent: Hydrated Lime
 - 500 kg/m³
 - 842.78 lb/yd³

 Reagent Delivery:
 - 30 ton/ truck
 - 1 truck/month
 - 360 ton/year

 Silo loading is assumed to be completed in one hour per delivery.

2. Spent reagent is pneumatically loaded to the waste silo as needed.
 - Ratio of Spent/Fresh Reagent: 1.2

3. Waste reagent is emptied as needed via a flexible spout into a covered roll-off container for disposal.
 - Volume per Load: 25 yd³
 - 21,069 lb/load
 - 41 loads/year

 Unloading to each roll-off is assumed to be completed in one hour.

PM Emission Calculations

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Silo Loading Rate³</th>
<th>PM Emission Factor²</th>
<th>PM10/PM2.5 Emission Factor²</th>
<th>PTE of PM before Control</th>
<th>PM Emission Factor²</th>
<th>PM10/PM2.5 Emission Factor²</th>
<th>PTE of PM after Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Reagent Silo</td>
<td>30.00</td>
<td>0.13</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Spent Reagent Silo</td>
<td>36.00</td>
<td>0.16</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Waste Reagent Removal</td>
<td>10.53</td>
<td>0.001</td>
<td>0.001</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.29</td>
<td>0.19</td>
<td>0.19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes

2. The emission factors are from AP-42, Chapter 11.12 (Concrete Batching), Table 11.12-2 for cement unloading to elevated storage silo (pneumatic) (SCC 3-05-011-07).

3. It is assumed that each silo loading is completed in 1 hour, and there is only 1 truck delivery per month. Hence the emissions in tons/year are calculated as follows: PTE (tpy) = (PTE (lbs/hr)*12)/2000

4. Unloading of the spent reagent silo is assumed to be completed within one hour. A maximum of 41 disposals per year are expected based on historical records. Since this amount would be less than the number of weeks in any given year, the tons per day is equal to the tons per hour. The total amount of spent reagent cannot exceed 120% of the fresh reagent based on site specific data.

5. The emission factors are from AP-42, Chapter 11.12 (Concrete Batching), Table 11.12-2 for weigh hopper loading (3-05-011-08).

6. It is assumed that there are only 41 disposal per year. Hence the emissions in tons/year are calculated as follows: PTE (tpy) = (PTE (lbs/hr)*41)/2000

Conversion Factors

<table>
<thead>
<tr>
<th>Process Description</th>
<th>Uncontrolled</th>
<th>Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Reagent Silo</td>
<td>PM</td>
<td>PM10/PM2.5</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>0.88</td>
</tr>
<tr>
<td>Spent Reagent Silo</td>
<td>1.01</td>
<td>0.74</td>
</tr>
<tr>
<td>Waste Reagent Removal</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0.29</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Calculations

Emission Rate (lbs/hr) = Emission Factor (lb/ton) x Hourly Process Rate (ton/hr)

Uncontrolled Emission Rate (lbs/hr) = 2.20462 lb/kg

Controlled Emission Rate (lbs/hr) = 1.68555 lb/yd³ / kg/m³

1 ton/year = 4.38 days
Appendix A to the Technical Support Document (TSD)

PTE Calculations for Landfill Gas Flare

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Calculation Basis

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare Heat Input Capacity</td>
<td>26.1 MMult/hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (S)</td>
<td>32.065 lb/lb.mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating Value of Landfill Gas</td>
<td>580 Btu/CF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (SO2)</td>
<td>64.06 lb/lb.mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Gas Temperature</td>
<td>536.67 °R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (HCL)</td>
<td>36.458 lb/lb.mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Gas Pressure</td>
<td>1 atm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (CL -)</td>
<td>35.453 lb/lb.mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Flare Gas Flow</td>
<td>750 SCFM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight (Hexane)</td>
<td>86.18 lb/lb.mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume % Water in Landfill Gas</td>
<td>3.30%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methane Flow Rate at PTE

<table>
<thead>
<tr>
<th>Flare Gas Flow Rate, Wet Basis</th>
<th>Flare Gas Flow Rate, Dry Basis</th>
<th>% Methane</th>
<th>Methane Flow Rate (Dry Basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750.00 SCFM</td>
<td>725.25 DSCFM</td>
<td>50.00%</td>
<td>362.63 SCFM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190.60 MMCF Methane / year, dry</td>
</tr>
</tbody>
</table>

Uncontrolled Potential to Emit Calculation for Flare

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Concentration (ppmv)</th>
<th>Pollutant Flow (SCFM)</th>
<th>Throughput</th>
<th>Emission Factor</th>
<th>PTE (TPY)</th>
<th>Emission Factor Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>190.60 MMCF/yr, CH4 dry</td>
<td>17 lb/MMCF, CH4 dry</td>
<td>1.62</td>
<td>AP-42, Ch. 2.4, 11/98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>190.60 MMCF/yr, CH4 dry</td>
<td>17 lb/MMCF, CH4 dry</td>
<td>1.62</td>
<td>Assumed the same as PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct PM2.5</td>
<td>190.60 MMCF/yr, CH4 dry</td>
<td>17 lb/MMCF, CH4 dry</td>
<td>1.62</td>
<td>Assumed the same as PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>46.9</td>
<td>0.0352</td>
<td>0.76</td>
<td>AP-42, Ch. 2.4 default, page 2.4-8, 11/98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>42.0</td>
<td>0.0315</td>
<td>0.75</td>
<td>AP-42, Ch. 2.4, 11/98, default value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCL</td>
<td>4.641</td>
<td>0.00348075</td>
<td>0.20</td>
<td>39% of NMOC of 595, 98% control, as hexane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>26.1</td>
<td>0.31 lb/MMBtu</td>
<td>35.44</td>
<td>AP-42, Ch. 13.5, Table 13.5-2, 02/18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>26.1</td>
<td>0.068 lb/MMBtu</td>
<td>7.77</td>
<td>AP-42, Ch. 13.5, Table 13.5-1, 02/18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1) Methane Flow Rate = Flare Gas Flow Rate x (% Methane)
2) DSCFM = SCFM x (1 - % Water)
3) Pollutant Flow (SCFM) = [Total Landfill Gas Flow (SCFM)] x [ppmv pollutant / 1,000,000]
4) PTE (TPY) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF) x (MMCF/1,000,000 CF) x [60 min/hr] x [4.38 hr-ton/lb-yr]
5) PTE (TPY) = Throughput (MMCF/yr) x [Heat Input (MMult/hr)] x Emission Factor (lb/MMult/hr) x (4.38 hr-ton/lb-yr)
6) PTE (TPY) = 360 x Pollutant Flow (SCFM) x Molecular Weight (lb/lb.mole) x P (atm) / T (°R); AP-42 Ch. 2.4, Eq. 4, Converted to US Units
7) PTE (TPY) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF) x 1 ton/2,000 lb
Appendix A: Emission Calculations

PTE Calculations for HAPs - Landfill Gas Flare

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

<table>
<thead>
<tr>
<th>Calculation Basis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare Heat Input Capacity</td>
<td>26.1 MMBtu/hr</td>
</tr>
<tr>
<td>Molecular Weight (S)</td>
<td>32.065 lb/lb.mole</td>
</tr>
<tr>
<td>Heating Value of Landfill Gas</td>
<td>580 Btu/CF</td>
</tr>
<tr>
<td>Molecular Weight (SO2)</td>
<td>64.06 lb/lb.mole</td>
</tr>
<tr>
<td>Inlet Gas Temperature</td>
<td>536.67 °R</td>
</tr>
<tr>
<td>Molecular Weight (HCL)</td>
<td>36.458 lb/lb.mole</td>
</tr>
<tr>
<td>Inlet Gas Pressure</td>
<td>1 atm</td>
</tr>
<tr>
<td>Molecular Weight (CL -)</td>
<td>35.453 lb/lb.mole</td>
</tr>
<tr>
<td>Design Flare Gas Flow</td>
<td>750 SCFM</td>
</tr>
<tr>
<td>Molecular Weight (Hexane)</td>
<td>86.18 lb/lb.mole</td>
</tr>
<tr>
<td>Volume % Water in Landfill Gas</td>
<td>3.30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meeting Flow Rate at PTE</th>
<th>Methane Flow Rate (Dry Basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare Gas Flow Rate, Wet Basis</td>
<td>Flare Gas Flow Rate, Dry Basis</td>
</tr>
<tr>
<td>750.00 SCFM</td>
<td>725.25 DSCFM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HAPs - Organic</th>
<th>Emission Factor (lb/MMCF)</th>
<th>PTE (t/yr)</th>
<th>HAPs - Metals</th>
<th>Emission Factor (lb/MMCF)</th>
<th>PTE (t/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>2.10E-03</td>
<td>2.00E-04</td>
<td>Lead</td>
<td>5.00E-04</td>
<td>4.77E-05</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>1.20E-03</td>
<td>1.14E-04</td>
<td>Cadmium</td>
<td>1.10E-03</td>
<td>1.05E-04</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.50E-02</td>
<td>7.15E-03</td>
<td>Chromium</td>
<td>1.40E-03</td>
<td>1.33E-04</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.80E+00</td>
<td>1.72E-01</td>
<td>Manganese</td>
<td>3.80E-04</td>
<td>3.62E-05</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.40E-03</td>
<td>3.24E-04</td>
<td>Nickel</td>
<td>2.10E-03</td>
<td>2.00E-04</td>
</tr>
<tr>
<td>Total Organic HAPs</td>
<td>0.179</td>
<td>Total Metal HAPs</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Single Highest HAP - Hexane | 0.17 tpy |
| Total HAPs | 0.18 tpy |

1 AP-42, Tables 1.4-3 and 1.4-4

Notes:
1) Methane Flow Rate = Flare Gas Flow Rate x (% Methane)
2) DSCFM = SCFM x (1 - % Water)
3) Pollutant Flow (SCFM) = [Total Landfill Gas Flow (SCFM) x (ppmv pollutant / 1,000,000)]
4) PTE (t/yr) = Flow (SCFM) x Emission Factor (lb/MMCF) x [MMCF/1,000,000 CF] x [80 min/ hr] x [4.38 hr/ton lb-yr]
5) PTE (t/yr) = Heat Input (MMBtu/hr) x Emission Factor (lb/MMBtu) x [4.38 hr/ton lb-yr]
6) PTE (t/yr) = 360 x Pollutant Flow (SCFM) x Molecular Weight (lb/mol) x P (atm) / T (°R); AP-42 Ch. 2.4, Eq. 4, Converted to US Units
7) PTE (t/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF) x 1 ton/2,000 lb
Appendix A: Emissions Calculations
Natural Gas Combustion Only

MM BTU/HR <100

Company Name:	Meridian Brick LLC
Source Address:	5601 E. Price Road, Terre Haute, Indiana 47802
Source Address:	REF
SPM No.:	T167-40457-00139
Reviewer:	Pavithra Ethi Rajan
Heat Input Capacity	

<table>
<thead>
<tr>
<th>Forced air heaters (10)</th>
<th>Radiant heaters (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBtu/hr (total)</td>
<td>1.7</td>
</tr>
<tr>
<td>MMBtu/hr (total)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Source Address:	#REF!
SPM No.:	T167-40457-00139
Reviewer:	Pavithra Ethi Rajan

Emission Factor in lb/MMCF

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor</td>
<td>1.9</td>
<td>7.6</td>
<td>7.6</td>
<td>0.6</td>
<td>100</td>
<td>5.5</td>
<td>84</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.02</td>
<td>0.08</td>
<td>0.08</td>
<td>0.01</td>
<td>1.12</td>
<td>0.06</td>
<td>0.94</td>
</tr>
</tbody>
</table>

see below

- PM emission factor is filterable PM only.
- PM10 emission factor is filterable and condensable PM10 combined.
- PM2.5 emission factor is filterable and condensable PM2.5 combined.

Emission Factors for NOx:
- Uncontrolled = 100
- Low NOx Burner = 50
- Low NOx Burners/Flue gas recirculation = 32

Methodology

All emission factors are based on normal firing.

- MMBtu = 1,000,000 Btu
- MMCF = 1,000,000 Cubic Feet of Gas

Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

Potential Throughput = Heat Input Capacity x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

Hazardous Air Pollutants (HAPs)

HAPs - Organics

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMCF</th>
<th>Benzene</th>
<th>Dichlorobenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Total - Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in tons/yr</td>
<td>2.1E-03</td>
<td>1.2E-03</td>
<td>7.5E-02</td>
<td>1.8E+00</td>
<td>3.4E-03</td>
<td>2.3E-03</td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMCF</th>
<th>Lead</th>
<th>Cadmium</th>
<th>Chromium</th>
<th>Manganese</th>
<th>Nickel</th>
<th>Total - Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in tons/yr</td>
<td>5.6E-04</td>
<td>1.1E-03</td>
<td>1.4E-03</td>
<td>3.8E-04</td>
<td>2.1E-03</td>
<td>5.6E-04</td>
</tr>
</tbody>
</table>

Methodology is the same as above.

Total HAPs: 0.02

Worst HAP: 0.02

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.
Unpaved Roads at Industrial Site

The following calculations determine the amount of emissions created by unpaved roads, based on 8,760 hours of use and AP-42, Ch 13.2.2 (11/2006).

Vehicle Information (provided by source)

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum number of vehicles</th>
<th>Number of one-way trips per day per vehicle</th>
<th>Maximum trips per day (trip/day)</th>
<th>Maximum Weight Loaded (tons/trip)</th>
<th>Total Weight driven per day (ton/day)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Maximum one-way distance (miles/trip)</th>
<th>Maximum one-way miles (miles/day)</th>
<th>Maximum one-way miles (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi outbound (empty)</td>
<td>2</td>
<td>1.0</td>
<td>2.0</td>
<td>20.0</td>
<td>40.0</td>
<td>528</td>
<td>0.1</td>
<td>0.2</td>
<td>73.0</td>
</tr>
<tr>
<td>Fork trucks</td>
<td>3</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>15.0</td>
<td>30.0</td>
<td>0.1</td>
<td>0.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Reagent Delivery</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>528</td>
<td>10.5</td>
<td>0.1</td>
<td>0.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Waste Removal</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>10.5</td>
<td>528</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Quarry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sump trucks</td>
<td>3</td>
<td>1.0</td>
<td>3.0</td>
<td>31.2</td>
<td>63.6</td>
<td>-</td>
<td>192.0</td>
<td>976.0</td>
<td>21024.0</td>
</tr>
<tr>
<td>excavator</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>25.0</td>
<td>25.0</td>
<td>-</td>
<td>192.0</td>
<td>192.0</td>
<td>70080.0</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>2</td>
<td>1.0</td>
<td>2.0</td>
<td>18.0</td>
<td>36.0</td>
<td>-</td>
<td>192.0</td>
<td>384.0</td>
<td>140160.0</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>13.0</td>
<td>250.1</td>
<td>1210.0</td>
<td>441650</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Estimated at 8 miles per hour per truck for 24 hours; 90% paved/10% unpaved
2Estimated at 8 miles per hour per truck for 24 hours.

Average Vehicle Weight Per Trip = 19.2 tons/trip

Average Miles Per Trip = 93.08 miles/trip

Unmitigated Emission Factor, \(E_f = k \times (s/12)^a \times (W/3)^b \) (Equation 1a from AP-42 13.2.2)

- \(k = 4.9 \text{ lb/mi} \)
- \(s = 8.3 \% \)
- \(a = 0.7 \)
- \(W = 19.2 \text{ tons} \)
- \(b = 0.45 \)

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{ext} = E \times \frac{(365 - P)}{365} \) (Equation 2 from AP-42 13.2.2)

- \(P = 125 \text{ days of rain greater than or equal to 0.01 inches} \)

Unmitigated Emission Factor, \(E_f = 8.74 \text{ lb/mile} \)

Mitigated Emission Factor, \(E_{ext} = 5.74 \text{ lb/mile} \)

Dust Control Efficiency = 50% (pursuant to control measures outlined in fugitive dust control plan)

Process

<table>
<thead>
<tr>
<th>Process</th>
<th>Unmitigated PTE of PM (tons/yr)</th>
<th>Mitigated PTE of PM (tons/yr)</th>
<th>Controlled PTE of PM (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi outbound</td>
<td>0.32</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Fork trucks</td>
<td>91.6</td>
<td>60.38</td>
<td>17.17</td>
</tr>
<tr>
<td>Reagent Delivery</td>
<td>0.16</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Waste Removal</td>
<td>0.16</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Quarry</td>
<td>918.29</td>
<td>603.81</td>
<td>171.70</td>
</tr>
<tr>
<td>Excavator</td>
<td>306.10</td>
<td>201.27</td>
<td>57.52</td>
</tr>
<tr>
<td>Bulldozers</td>
<td>612.20</td>
<td>402.54</td>
<td>114.47</td>
</tr>
<tr>
<td>Totals</td>
<td>1929.05</td>
<td>1268.42</td>
<td>360.69</td>
</tr>
</tbody>
</table>

Methodology

- \(\text{Maximum Weight Loaded per day (ton/day)} = \text{Average Vehicle Weight Per Trip (ton/trip)} \times \text{Maximum Weight Loaded (tons/trip)} \)
- \(\text{Total Weight driven per day (ton/day)} = \text{Average Vehicle Weight Per Tri (ton/trip)} \times \text{Maximum trips per day (trip/day)} \)
- \(\text{Maximum one-way distance (feet/trip)} = [\text{Maximum Weight Loaded (tons/trip)}] / [5280 \text{ ft/mile}] \)
- \(\text{Maximum one-way distance (miles/trip)} = \text{Maximum one-way distance (feet/trip)} / 5280 \text{ ft/mile} \)
- \(\text{Mitigated PTE (tons/yr)} = \text{Mitigated PTE of PM (tons/yr)} \times (1 - \text{Dust Control Efficiency}) \)
- \(\text{Controlled PTE (tons/yr)} = \text{Mitigated PTE (tons/yr)} \times (1 - \text{Dust Control Efficiency}) \)

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particulate Matter (<2.5 um)
- PTE = Potential to Emit
Appendix A: Emission Calculations
Fugitive Dust Emissions - Paved Roads

Company Name: Meridian Brick LLC
Address City IN Zip: 5601 E. Price Road, Terre Haute, Indiana 47802
SPM No.: T167-40457-00139
Reviewer: Pavithra Ethi Rajan

Paved Roads at Industrial Site
The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

Vehicle Information (provided by source)

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum number of vehicles per day</th>
<th>Number of one-way trips per day per vehicle</th>
<th>Maximum trips per day (trip/day)</th>
<th>Maximum Weight Loaded (tons/trip)</th>
<th>Total Weight driven per day (ton/day)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Maximum one-way distance (miles/day)</th>
<th>Maximum one-way distance (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi inbound (full)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>40.0</td>
<td>80.0</td>
<td>1267</td>
<td>0.24</td>
<td>0.5</td>
</tr>
<tr>
<td>Semi outbound (empty)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>20.0</td>
<td>40.0</td>
<td>1690</td>
<td>0.32</td>
<td>0.6</td>
</tr>
<tr>
<td>Dump truck inbound</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>72.3</td>
<td>361.5</td>
<td>739</td>
<td>0.14</td>
<td>0.3</td>
</tr>
<tr>
<td>Dump truck outbound</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>20.0</td>
<td>100.0</td>
<td>739</td>
<td>0.14</td>
<td>0.3</td>
</tr>
<tr>
<td>Fork trucks</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5.0</td>
<td>15.0</td>
<td>1267</td>
<td>0.24</td>
<td>0.6</td>
</tr>
<tr>
<td>Reagent Delivery</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30.0</td>
<td>30.0</td>
<td>1267</td>
<td>0.24</td>
<td>0.6</td>
</tr>
<tr>
<td>Waste Removal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11.0</td>
<td>11.0</td>
<td>1680</td>
<td>0.32</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*Estimated at 5 miles per hour per truck for 24 hours, 90% paved
Tons = average vehicle weight (provided by source)

1 mile = 5280 ft
Average Vehicle Weight Per Trip (tons/trip) = 33.6 tons/trip
Average Miles Per Trip = 27.45 miles/trip

Unmitigated Emission Factor, $E_f = [k * (sL)^0.91 * (W)^1.02]$ (Equation 1 from AP-42 13.2.1)

where $k = 0.011$, 0.0022, 0.00054 lb/VMT = particle size multiplier (AP-42 Table 13.2.1-1)
$W = 33.6$, 33.6, 33.6 tons = average vehicle weight (provided by source)
$sL = 9.7$, 9.7, 9.7 g/m² = silt loading value for paved roads at iron and steel production facilities - Table 13.2.1-3

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, $E_{ext} = E_f * [1 - (p/4N)]$ (Equation 2 from AP-42 13.2.1)

where $p = 125$ days of rain greater than or equal to 0.01 inches (see Fig. 13.2.1-2)
$N = 365$ days per year

Mitigated Emission Factor, $E_{ext} = [3.130 - 0.0626 * 0.1537]$ lb/mile

Dust Control Efficiency = 50% (pursuant to control measures outlined in fugitive dust control plan)

<table>
<thead>
<tr>
<th>Process</th>
<th>Unmitigated PTE of PM (tons/yr)</th>
<th>Unmitigated PTE of PM10 (tons/yr)</th>
<th>Unmitigated PTE of PM2.5 (tons/yr)</th>
<th>Mitigated PTE of PM (tons/yr)</th>
<th>Mitigated PTE of PM10 (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (tons/yr)</th>
<th>Controlled PTE of PM (tons/yr)</th>
<th>Controlled PTE of PM10 (tons/yr)</th>
<th>Controlled PTE of PM2.5 (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi inbound (full)</td>
<td>0.27</td>
<td>0.05</td>
<td>0.01</td>
<td>0.25</td>
<td>0.05</td>
<td>0.01</td>
<td>0.13</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Semi outbound (empty)</td>
<td>0.40</td>
<td>0.08</td>
<td>0.02</td>
<td>0.37</td>
<td>0.07</td>
<td>0.02</td>
<td>0.18</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Dump truck inbound</td>
<td>0.40</td>
<td>0.08</td>
<td>0.02</td>
<td>0.37</td>
<td>0.07</td>
<td>0.02</td>
<td>0.18</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Dump truck outbound</td>
<td>0.40</td>
<td>0.08</td>
<td>0.02</td>
<td>0.37</td>
<td>0.07</td>
<td>0.02</td>
<td>0.18</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Fork trucks</td>
<td>296.16</td>
<td>59.23</td>
<td>14.54</td>
<td>270.80</td>
<td>54.18</td>
<td>13.29</td>
<td>135.40</td>
<td>27.08</td>
<td>6.65</td>
</tr>
<tr>
<td>Reagent Delivery</td>
<td>0.14</td>
<td>0.03</td>
<td>0.01</td>
<td>0.13</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Waste Removal</td>
<td>0.18</td>
<td>0.04</td>
<td>0.01</td>
<td>0.17</td>
<td>0.03</td>
<td>0.01</td>
<td>0.08</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Totals 297.95 59.59 14.63 272.44 54.49 13.37 136.22 27.24 6.69

Methodology

Total Weight driven per day (ton/day) = [Maximum Weight Loaded (tons/trip)] * [Maximum trips per day (trip/day)]
Maximum one-way distance (m/mile) = [Maximum one-way distance (feet/trip) / 5280 ft/mile]
Average Vehicle Weight Per Trip (tons/trip) = SUM(Maximum Weight driven per day (ton/day)) / SUM(Maximum trips per year (trip/day))
Unmitigated PTE (tons/yr) = [Maximum one-way miles (miles/yr)] * [Unmitigated Emission Factor (lb/mile)] * (ton/2000 lbs)
Mitigated PTE (tons/yr) = (Mitigated PTE (tons/yr)) * (1 - Dust Control Efficiency)

Abbreviations
PM = Particulate Matter
PM10 = Particulate Matter (<10 um)
PM2.5 = Particle Matter (<2.5 um)
PTE = Potential to Emit
October 16, 2019

Brandon Chaney
Meridian Brick LLC – Terre Haute Plant
5601 E Price Rd
Terre Haute, IN 47802

Re: Public Notice
Meridian Brick LLC – Terre Haute Plant
Permit Level: Title V Sig Permit Mod
Permit Number: 167-40457-00139

Dear Mr. Chaney:

Enclosed is a copy of your draft Title V Significant Permit Modification, Technical Support Document, emission calculations, and the Public Notice.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Vigo County Public Library, 1 Library Square in Terre Haute, IN. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Pavithra Ethi Rajan, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 3-7511 or dial (317) 233-7511.

Sincerely,

Theresa Weaver

Theresa Weaver
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover Letter 4/12/19
October 16, 2019

To: Vigo County Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Meridian Brick LLC – Terre Haute Plant
Permit Number: 167-40457-00139

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

October 16, 2019
Meridian Brick LLC – Terre Haute Plant
167-40457-00139

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure
PN AAA Cover Letter 4/12/2019
AFFECTED STATE NOTIFICATION OF PUBLIC COMMENT PERIOD
DRAFT INDIANA AIR PERMIT

October 16, 2019

A 30-day public comment period has been initiated for:

Permit Number: 167-40457-00139
Applicant Name: Meridian Brick LLC – Terre Haute Plant
Location: Terre Haute, Vigo County, Indiana

The public notice, draft permit and technical support documents can be accessed via the IDEM Air Permits Online site at:
http://www.in.gov/ai/appfiles/idem-caats/

Questions or comments on this draft permit should be directed to the person identified in the public notice by telephone or in writing to:

Indiana Department of Environmental Management
Office of Air Quality, Permits Branch
100 North Senate Avenue
Indianapolis, IN 46204

Questions or comments regarding this email notification or access to this information from the EPA Internet site can be directed to Chris Hammack at chammack@idem.IN.gov or (317) 233-2414.

Affected States Notification 1/9/2017
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>TWEAVER 10/16/2019</th>
<th>Meridian Brick LLC 167-40457-00139 (draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of Sender</td>
<td>Indiana Department of Environmental Management Office of Air Quality – Permits Branch 100 N. Senate Indianapolis, IN 46204</td>
<td></td>
</tr>
<tr>
<td>Type of Mail:</td>
<td>CERTIFICATE OF MAILING ONLY</td>
<td></td>
</tr>
<tr>
<td>AFFIX STAMP HERE IF USED AS CERTIFICATE OF MAILING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Brandon Chaney Meridian Brick LLC 5601 E Price Rd Terre Haute IN 47802 (Source CAATS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Basil Postupack Plant Manager Meridian Brick LLC 5601 E Price Rd Terre Haute IN 47802 (RO CAATS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Vigo County Board of Commissioners County Annex, 121 Oak Street Terre Haute IN 47807 (Local Official)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Terre Haute City Council and Mayors Office 17 Harding Ave Terre Haute IN 47807 (Local Official)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Vigo County Health Department 147 Oak Street Terre Haute IN 47807 (Health Department)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Vigo County Public Library 1 Library Square Terre Haute IN 47807-3609 (Library)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>J.P. Roehm PO Box 303 Clinton IN 47842 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Christa Russell Trinity Consultants 8910 Purdue Dr, Ste 670 Indianapolis IN 46268 (Consultant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Mr. Mark Fitton Tribune-Star 222 S. 7th Street Terre Haute IN 47807 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender: 10

Total number of Pieces Received at Post Office: 10

Postmaster, Per (Name of Receiving employee):

The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See Domestic Mail Manual R900, S913, and S921 for limitations of coverage on insured and COD mail. See International Mail Manual for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.