NOTICE OF 30-DAY PERIOD
FOR PUBLIC COMMENT

Preliminary Findings Regarding the Renewal of a
Part 70 Operating Permit

for Smoker Craft, Incorporated in Elkhart County

Part 70 Operating Permit Renewal No.: T039-41837-00073

The Indiana Department of Environmental Management (IDEM) has received an application from Smoker Craft, Incorporated, located at 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553, for a minor source modification and renewal of its Part 70 Operating Permit issued on June 18, 2015. If approved by IDEM’s Office of Air Quality (OAQ), this proposed permit would allow Smoker Craft, Incorporated to make certain changes at its existing source. Smoker Craft, Incorporated has applied to do the following:

(1) Addition of six (6) new glue stations.

(2) Replacement of the canister and dry filters used as particulate control for the two (2) fiberglass grinding and cutting operations with a baghouse identified as 24/25BH; and change in the exhaust stack from stack 24/25-1FGS and stack 24/25-2FGS respectively to 24/25BHS for both units.

(3) Addition of one (1) new Dust Collector System to vacuum boats.

(4) Addition of one (1) new polyurethane boat liner operation process.

(5) Addition of fifty (50) new welding machines.

The applicant intends to construct and operate new equipment that will emit air pollutants; therefore, the permit contains new or different permit conditions. In addition, some conditions from previously issued permits/approvals have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes (e.g. changes that add or modify synthetic minor emission limits). IDEM has reviewed this application and has developed preliminary findings, consisting of a draft permit and several supporting documents, which would allow the applicant to make this change.

A copy of the permit application and IDEM’s preliminary findings are available at:

Goshen Public Library
601 S. 5th Street
Goshen, IN 46526

and
A copy of the preliminary findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/.

A copy of the preliminary findings is also available via IDEM's Virtual File Cabinet (VFC.) Please go to: http://www.in.gov/idem/ and enter VFC in the search box. You will then have the option to search for permit documents using a variety of criteria.

How can you participate in this process?

The date that this notice is posted on IDEM’s website (https://www.in.gov/idem/5474.htm) marks the beginning of a 30-day public comment period. If the 30th day of the comment period falls on a day when IDEM offices are closed for business, all comments must be postmarked or delivered in person on the next business day that IDEM is open.

You may request that IDEM hold a public hearing about this draft permit. If adverse comments concerning the **air pollution impact** of this draft permit are received, with a request for a public hearing, IDEM will decide whether or not to hold a public hearing. IDEM could also decide to hold a public meeting instead of, or in addition to, a public hearing. If a public hearing or meeting is held, IDEM will make a separate announcement of the date, time, and location of that hearing or meeting. At a hearing, you would have an opportunity to submit written comments and make verbal comments. At a meeting, you would have an opportunity to submit written comments, ask questions, and discuss any air pollution concerns with IDEM staff.

Comments and supporting documentation, or a request for a public hearing should be sent in writing to IDEM at the address below. If you comment via e-mail, please include your full U.S. mailing address so that you can be added to IDEM’s mailing list to receive notice of future action related to this permit. If you do not want to comment at this time, but would like to receive notice of future action related to this permit application, please contact IDEM at the address below. Please refer to permit number T 039-41837-00073 in all correspondence.

Comments should be sent to:

Olajumoke Kayode
IDEM, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
(800) 451-6027, ask for Olajumoke Kayode or (317) 234-5373
Or dial directly: (317) 234-5373
Fax: (317) 232-6749 attn: Olajumoke Kayode
E-mail: okayode@idem.IN.gov

All comments will be considered by IDEM when we make a decision to issue or deny the permit. Comments that are most likely to affect final permit decisions are those based on the rules and laws governing this permitting process (326 IAC 2), air quality issues, and technical issues. IDEM does not have legal authority to regulate zoning, odor, or noise. For such issues, please contact your local officials.

For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
What will happen after IDEM makes a decision?

Following the end of the public comment period, IDEM will issue a Notice of Decision stating whether the permit has been issued or denied. If the permit is issued, it may be different than the draft permit because of comments that were received during the public comment period. If comments are received during the public notice period, the final decision will include a document that summarizes the comments and IDEM’s response to those comments. If you have submitted comments or have asked to be added to the mailing list, you will receive a Notice of the Decision. The notice will provide details on how you may appeal IDEM’s decision, if you disagree with that decision. The final decision will also be available on the Internet at the address indicated above, at the local library indicated above, at the IDEM Regional Office indicated above, and the IDEM public file room on the 12th floor of the Indiana Government Center North, 100 N. Senate Avenue, Indianapolis, Indiana 46204-2251.

If you have any questions, please contact Olajumoke Kayode of my staff at the above address.

Iryn Calilung, Section Chief
Permits Branch
Office of Air Quality
DRAFT

Part 70 Operating Permit Renewal
OFFICE OF AIR QUALITY

Smoker Craft, Incorporated
68143 Clunette Street
New Paris, Indiana 46553

(herein known as the Permittee) is hereby authorized to operate subject to the conditions contained herein, the source described in Section A (Source Summary) of this permit.

The Permittee must comply with all conditions of this permit. Noncompliance with any provisions of this permit is grounds for enforcement action; permit termination, revocation and reissuance, or modification; or denial of a permit renewal application. Noncompliance with any provision of this permit, except any provision specifically designated as not federally enforceable, constitutes a violation of the Clean Air Act. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. An emergency does constitute an affirmative defense in an enforcement action provided the Permittee complies with the applicable requirements set forth in Section B, Emergency Provisions.

This permit is issued in accordance with 326 IAC 2 and 40 CFR Part 70 Appendix A and contains the conditions and provisions specified in 326 IAC 2-7 as required by 42 U.S.C. 7401, et. seq. (Clean Air Act as amended by the 1990 Clean Air Act Amendments), 40 CFR Part 70.6, IC 13-15 and IC 13-17.

<table>
<thead>
<tr>
<th>Operation Permit No.: 039-41837-00073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Agency Interest ID: 11637</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issued by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iryn Calilung, Section Chief</td>
</tr>
<tr>
<td>Permits Branch</td>
</tr>
<tr>
<td>Office of Air Quality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issuance Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiration Date:</td>
</tr>
</tbody>
</table>

An Equal Opportunity Employer
Recycled Paper
TABLE OF CONTENTS

SECTION A SOURCE SUMMARY ... 5

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]
A.2 Source Definition [326 IAC 2-7-1(22)]
A.3 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]
A.4 Specifically Regulated Insignificant Activities [326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]
A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

SECTION B GENERAL CONDITIONS ... 10

B.1 Definitions [326 IAC 2-7-1]
B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]
B.3 Term of Conditions [326 IAC 2-1.1-9.5]
B.4 Enforceability [326 IAC 2-7-7][IC 13-17-12]
B.5 Severability [326 IAC 2-7-5(5)]
B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]
B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]
B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]
B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]
B.11 Emergency Provisions [326 IAC 2-7-16]
B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]
B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]
B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination [326 IAC 2-7-5(6)(C)][326 IAC 2-7-8(a)][326 IAC 2-7-9]
B.16 Permit Renewal [326 IAC 2-7-3][326 IAC 2-7-4][326 IAC 2-7-8(e)]
B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]
B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]
B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]
B.20 Source Modification Requirement [326 IAC 2-7-10.5]
B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]
B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

SECTION C SOURCE OPERATION CONDITIONS .. 21

Emission Limitations and Standards [326 IAC 2-7-5(1)] ... 21

C.1 Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]
C.2 Opacity [326 IAC 5-1]
C.3 Open Burning [326 IAC 4-1][IC 13-17-9]
C.4 Incineration [326 IAC 4-2][326 IAC 9-1-2]
C.5 Fugitive Dust Emissions [326 IAC 6-4]
C.6 Asbestos Abatement Projects [326 IAC 14-10][326 IAC 18] [40 CFR 61, Subpart M]

Testing Requirements [326 IAC 2-7-6(1)] .. 23

C.7 Performance Testing [326 IAC 3-6]

Compliance Requirements [326 IAC 2-1.1-11] ... 23

C.8 Compliance Requirements [326 IAC 2-1.1-11]
Compliance Monitoring Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.9</td>
<td>Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]</td>
</tr>
<tr>
<td>C.10</td>
<td>Instrument Specifications [326 IAC 2-1.1-11][326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]</td>
</tr>
</tbody>
</table>

Corrective Actions and Response Steps

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.11</td>
<td>Emergency Reduction Plans [326 IAC 1-5-2][326 IAC 1-5-3]</td>
</tr>
<tr>
<td>C.12</td>
<td>Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]</td>
</tr>
<tr>
<td>C.13</td>
<td>Response to Excursions or Exceedances [326 IAC 2-7-5][326 IAC 2-7-6]</td>
</tr>
<tr>
<td>C.14</td>
<td>Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]</td>
</tr>
</tbody>
</table>

Record Keeping and Reporting Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.15</td>
<td>Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]</td>
</tr>
<tr>
<td>C.16</td>
<td>General Record Keeping Requirements [326 IAC 2-7-5][326 IAC 2-7-6]</td>
</tr>
<tr>
<td>C.17</td>
<td>General Reporting Requirements [326 IAC 2-7-5(3)(C)][326 IAC 2-1.1-11]</td>
</tr>
</tbody>
</table>

Stratospheric Ozone Protection

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.18</td>
<td>Compliance with 40 CFR 82 and 326 IAC 22-1</td>
</tr>
</tbody>
</table>

SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.1</td>
<td>Emission Limitations and Standards [326 IAC 2-7-5(1)] [326 IAC 2-7-19]</td>
</tr>
<tr>
<td>D.1.2</td>
<td>Volatile Organic Compounds (VOC) PSD Minor Limit [326 IAC 2-2]</td>
</tr>
<tr>
<td>D.1.3</td>
<td>Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]</td>
</tr>
<tr>
<td>D.1.4</td>
<td>Emission Standards for Fiberglass Boat Manufacturing [326 IAC 20-48-2]</td>
</tr>
<tr>
<td>D.1.5</td>
<td>Work Practice Standards for Fiberglass Boat Manufacturing [326 IAC 20-48-3]</td>
</tr>
<tr>
<td>D.1.6</td>
<td>Operator Training for Fiberglass Boat Manufacturing [326 IAC 20-48-4]</td>
</tr>
</tbody>
</table>

Compliance Determination Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.7</td>
<td>Preventive Maintenance Plan [326 IAC 2-7-5(12)] [326 IAC 2-7-19]</td>
</tr>
</tbody>
</table>

Compliance Monitoring Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.8</td>
<td>Monitoring [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]</td>
</tr>
</tbody>
</table>

Record Keeping and Reporting Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1.9</td>
<td>Record Keeping Requirement [326 IAC 2-7-5(3)][326 IAC 2-7-19]</td>
</tr>
<tr>
<td>D.1.10</td>
<td>Reporting Requirements</td>
</tr>
</tbody>
</table>

SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.1</td>
<td>Emission Limitations and Standards [326 IAC 2-7-5(1)] [326 IAC 2-7-19]</td>
</tr>
<tr>
<td>D.2.2</td>
<td>Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]</td>
</tr>
<tr>
<td>D.2.3</td>
<td>Preventive Maintenance Plan [326 IAC 2-7-5(12)]</td>
</tr>
</tbody>
</table>

Compliance Determination Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.4</td>
<td>Particulate Control [326 IAC 2-7-5(1)]</td>
</tr>
</tbody>
</table>

Compliance Monitoring Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.5</td>
<td>Visible Emissions Notations [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]</td>
</tr>
<tr>
<td>D.2.6</td>
<td>Broken or Failed Bag Detection</td>
</tr>
<tr>
<td>D.2.7</td>
<td>Cyclone Failure Detection</td>
</tr>
</tbody>
</table>

Record Keeping and Reporting Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.8</td>
<td>Record Keeping Requirement [326 IAC 2-7-5(3)][326 IAC 2-7-19]</td>
</tr>
</tbody>
</table>

SECTION E.1 NESHAP

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1.1</td>
<td>National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements [326 IAC 2-7-5(1)] [326 IAC 2-7-6(1)]</td>
</tr>
</tbody>
</table>

E.1.2 National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing
NESHAP [40 CFR Part 63, Subpart VVVV] [326 IAC 20-48]

SECTIOE.2 NESHAP .. 43

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)] .. 43

E.2.1 General Provisions Relating to National Emission Standards for Hazardous Air
Pollutants under 40 CFR Part 63 [326 IAC 20-1] [40 CFR Part 63, Subpart A]

E.2.2 National Emission Standards for Hazardous Air Pollutants for Stationary
Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart
ZZZZ] [326 IAC 20-82]

CERTIFICATION .. 44

EMERGENCY OCCURRENCE REPORT .. 45

Part 70 Quarterly Report ... 47

QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT .. 48

Hazardous Air Pollutants for Boat Manufacturing.

for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion
Engines.
SECTION A SOURCE SUMMARY

This permit is based on information requested by the Indiana Department of Environmental Management (IDEM), Office of Air Quality (OAQ). The information describing the source contained in conditions A.1 through A.3 is descriptive information and does not constitute enforceable conditions. However, the Permittee should be aware that a physical change or a change in the method of operation that may render this descriptive information obsolete or inaccurate may trigger requirements for the Permittee to obtain additional permits or seek modification of this permit pursuant to 326 IAC 2, or change other applicable requirements presented in the permit application.

A.1 General Information [326 IAC 2-7-4(c)][326 IAC 2-7-5(14)][326 IAC 2-7-1(22)]

The Permittee owns and operates a stationary fiberglass and aluminum boat manufacturing operation.

Source Address: 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553

General Source Phone Number: (574) 831-2013

SIC Code: 3732 (Boat Building and Repairing)

County Location: Elkhart

Source Location Status: Attainment for all criteria pollutants

Source Status: Part 70 Operating Permit Program

Minor Source, under PSD and Emission Offset Rules

Major Source, Section 112 of the Clean Air Act

Not 1 of 28 Source Categories

A.2 Source Definition [326 IAC 2-7-1(22)]

This fiberglass and aluminum boat manufacturing operation consist of two (2) plants:

(a) Plant 1, consisting of 13 buildings, identified as Buildings 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15, is located at 68143 Clunette Street, New Paris, Indiana 46553, and

(b) Plant 2, consisting of 12 buildings, identified as Buildings 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, and 31, is located at 67977 Division Street, New Paris Indiana 46553.

Since the two (2) plants are located on adjacent properties, belong to the same industrial grouping, and under common control of the same entity, they are considered one (1) major source as defined by 326 IAC 2-7-1(22).

This determination was initially made under Part 70 Renewal No. 039-35173-00073, issued on June 18, 2015.

A.3 Emission Units and Pollution Control Equipment Summary [326 IAC 2-7-4(c)(3)][326 IAC 2-7-5(14)]

This stationary source consists of the following emission units and pollution control devices:

(a) Twenty three (23) glue stations, using manual application methods and air-assisted airless spray guns at low pressure resulting in no formation of airborne particulate, each glue station with a maximum throughput of 1.33 units per hour, applying adhesives to wood boat components, vinyl fabric, or carpeting, and only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats), using no controls, exhausting indoors and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1GS</td>
<td>2</td>
<td>Prior to 1980</td>
<td></td>
</tr>
</tbody>
</table>
(b) Five (5) paint booths, using air-assisted airless spray guns, each booth with a maximum throughput of 1.0 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1GS</td>
<td>3</td>
<td>1993</td>
<td>Formerly identified as 3-6GS</td>
</tr>
<tr>
<td>3-2GS</td>
<td>3</td>
<td>Prior to 1980</td>
<td>Formerly identified as 27-1GS, relocated from building 27</td>
</tr>
<tr>
<td>5-1GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-2GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-3GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-4GS</td>
<td>5</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-1GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-3GS, relocated from building 27</td>
</tr>
<tr>
<td>7-2GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-4GS, relocated from building 27</td>
</tr>
<tr>
<td>7-3GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-5GS, relocated from building 27</td>
</tr>
<tr>
<td>7-4GS</td>
<td>7</td>
<td>1992</td>
<td>Formerly identified as 25-6GS, relocated from building 25</td>
</tr>
<tr>
<td>7-5GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-6GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-7GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-8GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-9GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-10GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-11GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-12GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-13GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>14-1GS</td>
<td>14</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>27-1GS</td>
<td>27</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>27-2GS</td>
<td>27</td>
<td>Prior to 1980</td>
<td></td>
</tr>
</tbody>
</table>

(c) One (1) paint booth, identified as 6-3PB, constructed in 2008, using HVLP spray guns, with a total maximum throughput of 1.25 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control, and exhausting to stack 6-3.

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
<td>Prior to 1980</td>
<td>6-1</td>
</tr>
<tr>
<td>6-2PB</td>
<td></td>
<td>6-2</td>
</tr>
<tr>
<td>13-1PB</td>
<td></td>
<td>13-1</td>
</tr>
<tr>
<td>13-2PB</td>
<td></td>
<td>13-2</td>
</tr>
<tr>
<td>13-3PB.</td>
<td></td>
<td>13-3</td>
</tr>
</tbody>
</table>

(d) One (1) portable catalyst/fiber resin chop gun, identified as 24/25-1RC, constructed prior to 1980, using non-atomized (fluid impingement) application methods, with a maximum capacity of 2.0 units per hour, using no control, and exhausting indoors.
(e) Six (6) stationary catalyst/fiber resin chop guns, using non-atomized (fluid impingement) application methods, with a total maximum capacity of 2.0 units per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-2RC</td>
<td>Prior to 1980</td>
<td>24/25-2RCS</td>
</tr>
<tr>
<td>24/25-3RC</td>
<td></td>
<td>24/25-3RCS</td>
</tr>
<tr>
<td>24/25-4RC</td>
<td></td>
<td>24/25-4RCS</td>
</tr>
<tr>
<td>24/25-5RC</td>
<td></td>
<td>24/25-5RCS</td>
</tr>
<tr>
<td>24/25-6RC</td>
<td></td>
<td>24/25-6RCS</td>
</tr>
<tr>
<td>24/25-7RC</td>
<td></td>
<td>24/25-7RCS</td>
</tr>
</tbody>
</table>

(f) Three (3) gel coat booths, using air-assisted airless spray guns, each with a maximum capacity of 1.0 unit per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Prior to 1980</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td>Prior to 1980</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>2008</td>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

(g) Two (2) fiberglass grinding and cutting operations, constructed prior to 1980 and approved in 2019 to change control and exhaust stack, each with a maximum throughput of 2,900 pounds of fiberglass per hour, both using a baghouse (24/25-BH) for particulate control, and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Exhaust stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>24/25-BHS</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td></td>
</tr>
</tbody>
</table>

(h) One (1) Polyurethane liner operation to coat boats, identified as 24/25-BL, approved in 2019 for construction, with a maximum throughput of 2.00 units per hour, using dry filters (24/25-BLDF) as control and exhausting to stack 24/25-BLS.

[Under 40 CFR 63, Subpart VVVV, this fiberglass and aluminum boat manufacturing plant is considered an existing affected source.]

A.4 Specifically Regulated Insignificant Activities
[326 IAC 2-7-1(21)][326 IAC 2-7-4(c)][326 IAC 2-7-5(14)]

This stationary source also includes the following insignificant activities which are specifically regulated, as defined in 326 IAC 2-7-1(21):

(a) Two (2) gel coat/final finish touch-up operations, including manual cleaning, polishing and waxing operations, identified as 24/25-1TU and 24/25-2TU, located in buildings 24/25, constructed prior to 1980, each with a maximum throughput of 2.0 units per hour, using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, these units are considered existing affected sources.]
aluminum marine vessels (recreational boats), using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, this unit is considered an existing affected source.]

(c) Three (3) woodworking operations, with integral cyclones and return air bag filter collection systems for particulate control, exhausting indoors and consisting of the following:

1. One (1) woodworking operation, identified as 9-1W, with a maximum throughput of 1100 pounds of wood per hour;

2. One (1) woodworking operation, identified as 9-2W, with a maximum throughput of 200 pounds of wood per hour;

3. One (1) woodworking operation, identified as 7-1W, relocated from Building 23 to Building 7 in 2016, with a maximum throughput of 200 pounds of wood per hour.

(d) One (1) Dust Collector System used to vacuum boats, identified as 24/25-VAC, approved in 2019 for construction, with a material input rate of 5,800.00 pounds per hour, located in Building 24/25, using cartridge filters (24/25-VACCF) as control and exhausting to stack 24/25-VACS.

(e) Forty nine (49) welding machines, using electrostatic precipitators for particulate control, and exhausting indoors as follows:

<table>
<thead>
<tr>
<th>Building Number</th>
<th>Process</th>
<th>Number of Stations</th>
<th>Maximum Electrode Usage per Station (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIG Welding</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>MIG Welding</td>
<td>13</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>MIG Welding</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>27</td>
<td>TIG Welding</td>
<td>29</td>
<td>1.20</td>
</tr>
</tbody>
</table>

(f) Fifty (50) welding machines, approved in 2019 for construction, using no controls, and exhausting indoors as follows:

<table>
<thead>
<tr>
<th>Building Number</th>
<th>Process</th>
<th>Number of Stations</th>
<th>Maximum Electrode Usage per Station (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIG Welding</td>
<td>7</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>6</td>
<td>1.20</td>
</tr>
<tr>
<td>3</td>
<td>MIG Welding</td>
<td>8</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>5</td>
<td>1.20</td>
</tr>
<tr>
<td>5</td>
<td>MIG Welding</td>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>14</td>
<td>MIG Welding</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td>18</td>
<td>MIG Welding</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>2</td>
<td>1.20</td>
</tr>
<tr>
<td>22</td>
<td>MIG Welding</td>
<td>8</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>10</td>
<td>1.20</td>
</tr>
<tr>
<td>27</td>
<td>MIG Welding</td>
<td>17</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>25</td>
<td>1.20</td>
</tr>
<tr>
<td>31</td>
<td>MIG Welding</td>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>3</td>
<td>1.20</td>
</tr>
</tbody>
</table>

(g) Natural gas-fired combustion sources, each with heat input equal to or less than ten (10)
million Btu per hour, and total heat input capacity of 21.2 million Btu per hour.

(h) One (1) 155 horsepower diesel-fired emergency stationary fire pump, manufactured in 1976.

[Under 40 CFR 63, Subpart ZZZZ, this is considered an affected facility.]

(i) Paved and unpaved roads and parking lots with public access.

A.5 Part 70 Permit Applicability [326 IAC 2-7-2]

This stationary source is required to have a Part 70 permit by 326 IAC 2-7-2 (Applicability) because:

(a) It is a major source, as defined in 326 IAC 2-7-1(22);

(b) It is a source in a source category designated by the United States Environmental Protection Agency (U.S. EPA) under 40 CFR 70.3 (Part 70 - Applicability).

(c) It is an affected source under Title IV (Acid Deposition Control) of the Clean Air Act, as defined in 326 IAC 2-7-1(3);
SECTION B GENERAL CONDITIONS

B.1 Definitions [326 IAC 2-7-1]

Terms in this permit shall have the definition assigned to such terms in the referenced regulation. In the absence of definitions in the referenced regulation, the applicable definitions found in the statutes or regulations (IC 13-11, 326 IAC 1-2 and 326 IAC 2-7) shall prevail.

B.2 Permit Term [326 IAC 2-7-5(2)][326 IAC 2-1.1-9.5][326 IAC 2-7-4(a)(1)(D)][IC 13-15-3-6(a)]

(a) This permit, 039-41837-00073, is issued for a fixed term of five (5) years from the issuance date of this permit, as determined in accordance with IC 4-21.5-3-5(f) and IC 13-15-5-3. Subsequent revisions, modifications, or amendments of this permit do not affect the expiration date of this permit or of permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control).

(b) If IDEM, OAQ, upon receiving a timely and complete renewal permit application, fails to issue or deny the permit renewal prior to the expiration date of this permit, this existing permit shall not expire and all terms and conditions shall continue in effect, including any permit shield provided in 326 IAC 2-7-15, until the renewal permit has been issued or denied.

B.3 Term of Conditions [326 IAC 2-1.1-9.5]

Notwithstanding the permit term of a permit to construct, a permit to operate, or a permit modification, any condition established in a permit issued pursuant to a permitting program approved in the state implementation plan shall remain in effect until:

(a) the condition is modified in a subsequent permit action pursuant to Title I of the Clean Air Act; or

(b) the emission unit to which the condition pertains permanently ceases operation.

B.4 Enforceability [326 IAC 2-7-7] [IC 13-17-12]

Unless otherwise stated, all terms and conditions in this permit, including any provisions designed to limit the source's potential to emit, are enforceable by IDEM, the United States Environmental Protection Agency (U.S. EPA) and by citizens in accordance with the Clean Air Act.

B.5 Severability [326 IAC 2-7-5(5)]

The provisions of this permit are severable; a determination that any portion of this permit is invalid shall not affect the validity of the remainder of the permit.

B.6 Property Rights or Exclusive Privilege [326 IAC 2-7-5(6)(D)]

This permit does not convey any property rights of any sort or any exclusive privilege.

B.7 Duty to Provide Information [326 IAC 2-7-5(6)(E)]

(a) The Permittee shall furnish to IDEM, OAQ, within a reasonable time, any information that IDEM, OAQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. Upon request, the Permittee shall also furnish to IDEM, OAQ copies of records required to be kept by this permit.

(b) For information furnished by the Permittee to IDEM, OAQ, the Permittee may include a claim of confidentiality in accordance with 326 IAC 17.1. When furnishing copies of requested records directly to U. S. EPA, the Permittee may assert a claim of confidentiality in accordance with 40 CFR 2, Subpart B.
B.8 Certification [326 IAC 2-7-4(f)][326 IAC 2-7-6(1)][326 IAC 2-7-5(3)(C)]

(a) A certification required by this permit meets the requirements of 326 IAC 2-7-6(1) if:

(1) it contains a certification by a "responsible official" as defined by 326 IAC 2-7-1(35), and

(2) the certification states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(b) The Permittee may use the attached Certification Form, or its equivalent with each submittal requiring certification. One (1) certification may cover multiple forms in one (1) submittal.

(c) A "responsible official" is defined at 326 IAC 2-7-1(35).

B.9 Annual Compliance Certification [326 IAC 2-7-6(5)]

(a) The Permittee shall annually submit a compliance certification report which addresses the status of the source’s compliance with the terms and conditions contained in this permit, including emission limitations, standards, or work practices. All certifications shall cover the time period from January 1 to December 31 of the previous year, and shall be submitted no later than April 15 of each year to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Air Enforcement Branch - Indiana (AE-17J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

(b) The annual compliance certification report required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) The annual compliance certification report shall include the following:

(1) The appropriate identification of each term or condition of this permit that is the basis of the certification;

(2) The compliance status;

(3) Whether compliance was continuous or intermittent;

(4) The methods used for determining the compliance status of the source, currently and over the reporting period consistent with 326 IAC 2-7-5(3); and
(5) Such other facts, as specified in Sections D of this permit, as IDEM, OAQ may require to determine the compliance status of the source.

The submittal by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

B.10 Preventive Maintenance Plan [326 IAC 2-7-5(12)][326 IAC 1-6-3]

(a) A Preventive Maintenance Plan meets the requirements of 326 IAC 1-6-3 if it includes, at a minimum:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

The Permittee shall implement the PMPs.

(b) If required by specific condition(s) in Section D of this permit where no PMP was previously required, the Permittee shall prepare and maintain Preventive Maintenance Plans (PMPs) no later than ninety (90) days after issuance of this permit or ninety (90) days after initial start-up, whichever is later, including the following information on each facility:

(1) Identification of the individual(s) responsible for inspecting, maintaining, and repairing emission control devices;

(2) A description of the items or conditions that will be inspected and the inspection schedule for said items or conditions; and

(3) Identification and quantification of the replacement parts that will be maintained in inventory for quick replacement.

If, due to circumstances beyond the Permittee’s control, the PMPs cannot be prepared and maintained within the above time frame, the Permittee may extend the date an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The PMP extension notification does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

The Permittee shall implement the PMPs.

(c) A copy of the PMPs shall be submitted to IDEM, OAQ upon request and within a reasonable time, and shall be subject to review and approval by IDEM, OAQ. IDEM, OAQ may require the Permittee to revise its PMPs whenever lack of proper maintenance
causes or is the primary contributor to an exceedance of any limitation on emissions. The PMPs and their submittal do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) To the extent the Permittee is required by 40 CFR Part 60/63 to have an Operation Maintenance, and Monitoring (OMM) Plan for a unit, such Plan is deemed to satisfy the PMP requirements of 326 IAC 1-6-3 for that unit.

B.11 Emergency Provisions [326 IAC 2-7-16]

(a) An emergency, as defined in 326 IAC 2-7-1(12), is not an affirmative defense for an action brought for noncompliance with a federal or state health-based emission limitation.

(b) An emergency, as defined in 326 IAC 2-7-1(12), constitutes an affirmative defense to an action brought for noncompliance with a technology-based emission limitation if the affirmative defense of an emergency is demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that describe the following:

1. An emergency occurred and the Permittee can, to the extent possible, identify the causes of the emergency;
2. The permitted facility was at the time being properly operated;
3. During the period of an emergency, the Permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit;
4. For each emergency lasting one (1) hour or more, the Permittee notified IDEM, OAQ, or Northern Regional Office within four (4) daytime business hours after the beginning of the emergency, or after the emergency was discovered or reasonably should have been discovered;

 Telephone Number: 1-800-451-6027 (ask for Office of Air Quality, Compliance and Enforcement Branch), or
 Telephone Number: 317-233-0178 (ask for Office of Air Quality, Compliance and Enforcement Branch)
 Facsimile Number: 317-233-6865
 Northern Regional Office phone: (574) 245-4870; fax: (574) 245-4877.

5. For each emergency lasting one (1) hour or more, the Permittee submitted the attached Emergency Occurrence Report Form or its equivalent, either by mail or facsimile to:

 Indiana Department of Environmental Management
 Compliance and Enforcement Branch, Office of Air Quality
 100 North Senate Avenue
 MC 61-53 IGCN 1003
 Indianapolis, Indiana 46204-2251

 within two (2) working days of the time when emission limitations were exceeded due to the emergency.

The notice fulfills the requirement of 326 IAC 2-7-5(3)(C)(ii) and must contain the following:

(A) A description of the emergency;
(B) Any steps taken to mitigate the emissions; and

(C) Corrective actions taken.

The notification which shall be submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(6) The Permittee immediately took all reasonable steps to correct the emergency.

(c) In any enforcement proceeding, the Permittee seeking to establish the occurrence of an emergency has the burden of proof.

(d) This emergency provision supersedes 326 IAC 1-6 (Malfunctions). This permit condition is in addition to any emergency or upset provision contained in any applicable requirement.

(e) The Permittee seeking to establish the occurrence of an emergency shall make records available upon request to ensure that failure to implement a PMP did not cause or contribute to an exceedance of any limitations on emissions. However, IDEM, OAQ may require that the Preventive Maintenance Plans required under 326 IAC 2-7-4(c)(8) be revised in response to an emergency.

(f) Failure to notify IDEM, OAQ by telephone or facsimile of an emergency lasting more than one (1) hour in accordance with (b)(4) and (5) of this condition shall constitute a violation of 326 IAC 2-7 and any other applicable rules.

(g) If the emergency situation causes a deviation from a technology-based limit, the Permittee may continue to operate the affected emitting facilities during the emergency provided the Permittee immediately takes all reasonable steps to correct the emergency and minimize emissions.

B.12 Permit Shield [326 IAC 2-7-15][326 IAC 2-7-20][326 IAC 2-7-12]

(a) Pursuant to 326 IAC 2-7-15, the Permittee has been granted a permit shield. The permit shield provides that compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that either the applicable requirements are included and specifically identified in this permit or the permit contains an explicit determination or concise summary of a determination that other specifically identified requirements are not applicable. The Indiana statutes from IC 13 and rules from 326 IAC, referenced in conditions in this permit, are those applicable at the time the permit was issued. The issuance or possession of this permit shall not alone constitute a defense against an alleged violation of any law, regulation or standard, except for the requirement to obtain a Part 70 permit under 326 IAC 2-7 or for applicable requirements for which a permit shield has been granted.

This permit shield does not extend to applicable requirements which are promulgated after the date of issuance of this permit unless this permit has been modified to reflect such new requirements.

(b) If, after issuance of this permit, it is determined that the permit is in nonconformance with an applicable requirement that applied to the source on the date of permit issuance, IDEM, OAQ shall immediately take steps to reopen and revise this permit and issue a compliance order to the Permittee to ensure expeditious compliance with the applicable
requirement until the permit is reissued. The permit shield shall continue in effect so long as the Permittee is in compliance with the compliance order.

(c) No permit shield shall apply to any permit term or condition that is determined after issuance of this permit to have been based on erroneous information supplied in the permit application. Erroneous information means information that the Permittee knew to be false, or in the exercise of reasonable care should have been known to be false, at the time the information was submitted.

(d) Nothing in 326 IAC 2-7-15 or in this permit shall alter or affect the following:

(1) The provisions of Section 303 of the Clean Air Act (emergency orders), including the authority of the U.S. EPA under Section 303 of the Clean Air Act;

(2) The liability of the Permittee for any violation of applicable requirements prior to or at the time of this permit's issuance;

(3) The applicable requirements of the acid rain program, consistent with Section 408(a) of the Clean Air Act; and

(4) The ability of U.S. EPA to obtain information from the Permittee under Section 114 of the Clean Air Act.

(e) This permit shield is not applicable to any change made under 326 IAC 2-7-20(b)(2) (Sections 502(b)(10) of the Clean Air Act changes) and 326 IAC 2-7-20(c)(2) (trading based on State Implementation Plan (SIP) provisions).

(f) This permit shield is not applicable to modifications eligible for group processing until after IDEM, OAQ, has issued the modifications. [326 IAC 2-7-12(c)(7)]

(g) This permit shield is not applicable to minor Part 70 permit modifications until after IDEM, OAQ, has issued the modification. [326 IAC 2-7-12(b)(8)]

B.13 Prior Permits Superseded [326 IAC 2-1.1-9.5][326 IAC 2-7-10.5]

(a) All terms and conditions of permits established prior to 039-41837-00073 and issued pursuant to permitting programs approved into the state implementation plan have been either:

(1) incorporated as originally stated,

(2) revised under 326 IAC 2-7-10.5, or

(3) deleted under 326 IAC 2-7-10.5.

(b) Provided that all terms and conditions are accurately reflected in this combined permit, all previous registrations and permits are superseded by this combined new source review and part 70 operating permit, except for permits issued pursuant to Title IV of the Clean Air Act and 326 IAC 21 (Acid Deposition Control)

B.14 Termination of Right to Operate [326 IAC 2-7-10][326 IAC 2-7-4(a)]

The Permittee's right to operate this source terminates with the expiration of this permit unless a timely and complete renewal application is submitted at least nine (9) months prior to the date of expiration of the source's existing permit, consistent with 326 IAC 2-7-3 and 326 IAC 2-7-4(a).
B.15 Permit Modification, Reopening, Revocation and Reissuance, or Termination

(a) This permit may be modified, reopened, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a Part 70 Operating Permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any condition of this permit. [326 IAC 2-7-5(6)(C)] The notification by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) This permit shall be reopened and revised under any of the circumstances listed in IC 13-15-7-2 or if IDEM, OAQ determines any of the following:

(1) That this permit contains a material mistake.

(2) That inaccurate statements were made in establishing the emissions standards or other terms or conditions.

(3) That this permit must be revised or revoked to assure compliance with an applicable requirement. [326 IAC 2-7-9(a)(3)]

(c) Proceedings by IDEM, OAQ to reopen and revise this permit shall follow the same procedures as apply to initial permit issuance and shall affect only those parts of this permit for which cause to reopen exists. Such reopening and revision shall be made as expeditiously as practicable. [326 IAC 2-7-9(b)]

(d) The reopening and revision of this permit, under 326 IAC 2-7-9(a), shall not be initiated before notice of such intent is provided to the Permittee by IDEM, OAQ at least thirty (30) days in advance of the date this permit is to be reopened, except that IDEM, OAQ may provide a shorter time period in the case of an emergency. [326 IAC 2-7-9(c)]

B.16 Permit Renewal

(a) The application for renewal shall be submitted using the application form or forms prescribed by IDEM, OAQ and shall include the information specified in 326 IAC 2-7-4. Such information shall be included in the application for each emission unit at this source, except those emission units included on the trivial or insignificant activities list contained in 326 IAC 2-7-1(21) and 326 IAC 2-7-1(42). The renewal application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Request for renewal shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(b) A timely renewal application is one that is:

(1) Submitted at least nine (9) months prior to the date of the expiration of this permit; and

(2) If the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the
document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(c) If the Permittee submits a timely and complete application for renewal of this permit, the source’s failure to have a permit is not a violation of 326 IAC 2-7 until IDEM, OAQ takes final action on the renewal application, except that this protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit by the deadline specified, pursuant to 326 IAC 2-7-4(a)(2)(D), in writing by IDEM, OAQ any additional information identified as being needed to process the application.

B.17 Permit Amendment or Modification [326 IAC 2-7-11][326 IAC 2-7-12] [40 CFR 72]

(a) Permit amendments and modifications are governed by the requirements of 326 IAC 2-7-11 or 326 IAC 2-7-12 whenever the Permittee seeks to amend or modify this permit.

(b) Pursuant to 326 IAC 2-7-11(b) and 326 IAC 2-7-12(a), administrative Part 70 operating permit amendments and permit modifications for purposes of the acid rain portion of a Part 70 permit shall be governed by regulations promulgated under Title IV of the Clean Air Act. [40 CFR 72]

(c) Any application requesting an amendment or modification of this permit shall be submitted to:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(d) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.18 Permit Revision Under Economic Incentives and Other Programs [326 IAC 2-7-5(8)][326 IAC 2-7-12(b)(2)]

(a) No Part 70 permit revision or notice shall be required under any approved economic incentives, marketable Part 70 permits, emissions trading, and other similar programs or processes for changes that are provided for in a Part 70 permit.

(b) Notwithstanding 326 IAC 2-7-12(b)(1) and 326 IAC 2-7-12(c)(1), minor Part 70 permit modification procedures may be used for Part 70 modifications involving the use of economic incentives, marketable Part 70 permits, emissions trading, and other similar approaches to the extent that such minor Part 70 permit modification procedures are explicitly provided for in the applicable State Implementation Plan (SIP) or in applicable requirements promulgated or approved by the U.S. EPA.

B.19 Operational Flexibility [326 IAC 2-7-20][326 IAC 2-7-10.5]

(a) The Permittee may make any change or changes at the source that are described in 326 IAC 2-7-20(b) or (c) without a prior permit revision, if each of the following conditions is met:

(1) The changes are not modifications under any provision of Title I of the Clean Air Act;
(2) Any preconstruction approval required by 326 IAC 2-7-10.5 has been obtained;

(3) The changes do not result in emissions which exceed the limitations provided in this permit (whether expressed herein as a rate of emissions or in terms of total emissions);

(4) The Permittee notifies the:

Indiana Department of Environmental Management
Permit Administration and Support Section, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

and

United States Environmental Protection Agency, Region 5
Air and Radiation Division, Regulation Development Branch - Indiana (AR-18J)
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

in advance of the change by written notification at least ten (10) days in advance of the proposed change. The Permittee shall attach every such notice to the Permittee’s copy of this permit; and

(5) The Permittee maintains records on-site, on a rolling five (5) year basis, which document all such changes and emission trades that are subject to 326 IAC 2-7-20(b)(1) and (c)(1). The Permittee shall make such records available, upon reasonable request, for public review.

Such records shall consist of all information required to be submitted to IDEM, OAQ in the notices specified in 326 IAC 2-7-20(b)(1) and (c)(1).

(b) The Permittee may make Section 502(b)(10) of the Clean Air Act changes (this term is defined at 326 IAC 2-7-1(37)) without a permit revision, subject to the constraint of 326 IAC 2-7-20(a). For each such Section 502(b)(10) of the Clean Air Act change, the required written notification shall include the following:

(1) A brief description of the change within the source;

(2) The date on which the change will occur;

(3) Any change in emissions; and

(4) Any permit term or condition that is no longer applicable as a result of the change.

The notification which shall be submitted is not considered an application form, report or compliance certification. Therefore, the notification by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official” as defined by 326 IAC 2-7-1(35).
(c) Emission Trades [326 IAC 2-7-20(c)]
The Permittee may trade emissions increases and decreases at the source, where the applicable SIP provides for such emission trades without requiring a permit revision, subject to the constraints of Section (a) of this condition and those in 326 IAC 2-7-20(c).

(d) Alternative Operating Scenarios [326 IAC 2-7-20(d)]
The Permittee may make changes at the source within the range of alternative operating scenarios that are described in the terms and conditions of this permit in accordance with 326 IAC 2-7-5(9). No prior notification of IDEM, OAQ or U.S. EPA is required.

(e) Backup fuel switches specifically addressed in, and limited under, Section D of this permit shall not be considered alternative operating scenarios. Therefore, the notification requirements of part (a) of this condition do not apply.

(f) This condition does not apply to emission trades of SO2 or NOx under 326 IAC 21 or 326 IAC 10-4.

B.20 Source Modification Requirement [326 IAC 2-7-10.5]
A modification, construction, or reconstruction is governed by the requirements of 326 IAC 2.

B.21 Inspection and Entry [326 IAC 2-7-6][IC 13-14-2-2][IC 13-30-3-1][IC 13-17-3-2]
Upon presentation of proper identification cards, credentials, and other documents as may be required by law, and subject to the Permittee's right under all applicable laws and regulations to assert that the information collected by the agency is confidential and entitled to be treated as such, the Permittee shall allow IDEM, OAQ, U.S. EPA, or an authorized representative to perform the following:

(a) Enter upon the Permittee's premises where a Part 70 source is located, or emissions related activity is conducted, or where records must be kept under the conditions of this permit;

(b) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, have access to and copy any records that must be kept under the conditions of this permit;

(c) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, inspect any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit;

(d) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, sample or monitor substances or parameters for the purpose of assuring compliance with this permit or applicable requirements; and

(e) As authorized by the Clean Air Act, IC 13-14-2-2, IC 13-17-3-2, and IC 13-30-3-1, utilize any photographic, recording, testing, monitoring, or other equipment for the purpose of assuring compliance with this permit or applicable requirements.

B.22 Transfer of Ownership or Operational Control [326 IAC 2-7-11]
(a) The Permittee must comply with the requirements of 326 IAC 2-7-11 whenever the Permittee seeks to change the ownership or operational control of the source and no other change in the permit is necessary.

(b) Any application requesting a change in the ownership or operational control of the source shall contain a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee. The application shall be submitted to:
Any such application does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) The Permittee may implement administrative amendment changes addressed in the request for an administrative amendment immediately upon submittal of the request. [326 IAC 2-7-11(c)(3)]

B.23 Annual Fee Payment [326 IAC 2-7-19][326 IAC 2-7-5(7)][326 IAC 2-1.1-7]

(a) The Permittee shall pay annual fees to IDEM, OAQ within thirty (30) calendar days of receipt of a billing. Pursuant to 326 IAC 2-7-19(b), if the Permittee does not receive a bill from IDEM, OAQ the applicable fee is due April 1 of each year.

(b) Except as provided in 326 IAC 2-7-19(e), failure to pay may result in administrative enforcement action or revocation of this permit.

(c) The Permittee may call the following telephone numbers: 1-800-451-6027 or 317-233-4230 (ask for OAQ, Billing, Licensing, and Training Section), to determine the appropriate permit fee.

B.24 Credible Evidence [326 IAC 2-7-5(3)][326 IAC 2-7-6][62 FR 8314][326 IAC 1-1-6]

For the purpose of submitting compliance certifications or establishing whether or not the Permittee has violated or is in violation of any condition of this permit, nothing in this permit shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether the Permittee would have been in compliance with the condition of this permit if the appropriate performance or compliance test or procedure had been performed.
Entire Source

Emission Limitations and Standards [326 IAC 2-7-5(1)]

<table>
<thead>
<tr>
<th>C.1</th>
<th>Particulate Emission Limitations For Processes with Process Weight Rates Less Than One Hundred (100) Pounds per Hour [326 IAC 6-3-2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pursuant to 326 IAC 6-3-2(e)(2), particulate emissions from any process not exempt under 326 IAC 6-3-1(b) or (c) which has a maximum process weight rate less than 100 pounds per hour and the methods in 326 IAC 6-3-2(b) through (d) do not apply shall not exceed 0.551 pounds per hour.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.2</th>
<th>Opacity [326 IAC 5-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pursuant to 326 IAC 5-1-2 (Opacity Limitations), except as provided in 326 IAC 5-1-1 (Applicability) and 326 IAC 5-1-3 (Temporary Alternative Opacity Limitations), opacity shall meet the following, unless otherwise stated in this permit:</td>
</tr>
<tr>
<td></td>
<td>(a) Opacity shall not exceed an average of forty percent (40%) in any one (1) six (6) minute averaging period as determined in 326 IAC 5-1-4.</td>
</tr>
<tr>
<td></td>
<td>(b) Opacity shall not exceed sixty percent (60%) for more than a cumulative total of fifteen (15) minutes (sixty (60) readings as measured according to 40 CFR 60, Appendix A, Method 9 or fifteen (15) one (1) minute nonoverlapping integrated averages for a continuous opacity monitor) in a six (6) hour period.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.3</th>
<th>Open Burning [326 IAC 4-1] [IC 13-17-9]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Permittee shall not open burn any material except as provided in 326 IAC 4-1-3, 326 IAC 4-1-4 or 326 IAC 4-1-6. The previous sentence notwithstanding, the Permittee may open burn in accordance with an open burning approval issued by the Commissioner under 326 IAC 4-1-4.1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.4</th>
<th>Incineration [326 IAC 4-2] [326 IAC 9-1-2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Permittee shall not operate an incinerator except as provided in 326 IAC 4-2 or in this permit. The Permittee shall not operate a refuse incinerator or refuse burning equipment except as provided in 326 IAC 9-1-2 or in this permit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.5</th>
<th>Fugitive Dust Emissions [326 IAC 6-4]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The Permittee shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4 (Fugitive Dust Emissions). 326 IAC 6-4-2(4) is not federally enforceable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.6</th>
<th>Asbestos Abatement Projects [326 IAC 14-10] [326 IAC 18] [40 CFR 61, Subpart M]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) Notification requirements apply to each owner or operator. If the combined amount of regulated asbestos containing material (RACM) to be stripped, removed or disturbed is at least 260 linear feet on pipes or 160 square feet on other facility components, or at least thirty-five (35) cubic feet on all facility components, then the notification requirements of 326 IAC 14-10-3 are mandatory. All demolition projects require notification whether or not asbestos is present.</td>
</tr>
<tr>
<td></td>
<td>(b) The Permittee shall ensure that a written notification is sent on a form provided by the Commissioner at least ten (10) working days before asbestos stripping or removal work or before demolition begins, per 326 IAC 14-10-3, and shall update such notice as necessary, including, but not limited to the following:</td>
</tr>
</tbody>
</table>
(1) When the amount of affected asbestos containing material increases or decreases by at least twenty percent (20%); or

(2) If there is a change in the following:

(A) Asbestos removal or demolition start date;

(B) Removal or demolition contractor; or

(C) Waste disposal site.

(c) The Permittee shall ensure that the notice is postmarked or delivered according to the guidelines set forth in 326 IAC 14-10-3(2).

(d) The notice to be submitted shall include the information enumerated in 326 IAC 14-10-3(3).

All required notifications shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

The notice shall include a signed certification from the owner or operator that the information provided in this notification is correct and that only Indiana licensed workers and project supervisors will be used to implement the asbestos removal project. The notifications do not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(e) Procedures for Asbestos Emission Control
The Permittee shall comply with the applicable emission control procedures in 326 IAC 14-10-4 and 40 CFR 61.145(c). Per 326 IAC 14-10-1, emission control requirements are applicable for any removal or disturbance of RACM greater than three (3) linear feet on pipes or three (3) square feet on any other facility components or a total of at least 0.75 cubic feet on all facility components.

(f) Demolition and Renovation
The Permittee shall thoroughly inspect the affected facility or part of the facility where the demolition or renovation will occur for the presence of asbestos pursuant to 40 CFR 61.145(a).

(g) Indiana Licensed Asbestos Inspector
The Permittee shall comply with 326 IAC 14-10-1(a) that requires the owner or operator, prior to a renovation/demolition, to use an Indiana Licensed Asbestos Inspector to thoroughly inspect the affected portion of the facility for the presence of asbestos. The requirement to use an Indiana Licensed Asbestos inspector is not federally enforceable.
Testing Requirements [326 IAC 2-7-6(1)]

C.7 Performance Testing [326 IAC 3-6]

(a) For performance testing required by this permit, a test protocol, except as provided elsewhere in this permit, shall be submitted to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

no later than thirty-five (35) days prior to the intended test date. The protocol submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(b) The Permittee shall notify IDEM, OAQ of the actual test date at least fourteen (14) days prior to the actual test date. The notification submitted by the Permittee does not require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

(c) Pursuant to 326 IAC 3-6-4(b), all test reports must be received by IDEM, OAQ not later than forty-five (45) days after the completion of the testing. An extension may be granted by IDEM, OAQ if the Permittee submits to IDEM, OAQ a reasonable written explanation not later than five (5) days prior to the end of the initial forty-five (45) day period.

Compliance Requirements [326 IAC 2-1.1-11]

C.8 Compliance Requirements [326 IAC 2-1.1-11]

The commissioner may require stack testing, monitoring, or reporting at any time to assure compliance with all applicable requirements by issuing an order under 326 IAC 2-1.1-11. Any monitoring or testing shall be performed in accordance with 326 IAC 3 or other methods approved by the commissioner or the U. S. EPA.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

C.9 Compliance Monitoring [326 IAC 2-7-5(3)][326 IAC 2-7-6(1)]

(a) For new units:
Unless otherwise specified in the approval for the new emission unit(s), compliance monitoring for new emission units shall be implemented on and after the date of initial start-up.

(b) For existing units:
Unless otherwise specified in this permit, for all monitoring requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance to begin such monitoring. If, due to circumstances beyond the Permittee’s control, any monitoring equipment required by this permit cannot be installed and operated no later than ninety (90) days after permit issuance, the Permittee may extend the compliance schedule related to the equipment for an additional ninety (90) days provided the Permittee notifies:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
in writing, prior to the end of the initial ninety (90) day compliance schedule, with full justification of the reasons for the inability to meet this date.

The notification which shall be submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.10 Instrument Specifications [326 IAC 2-1.1-11] [326 IAC 2-7-5(3)] [326 IAC 2-7-6(1)]

(a) When required by any condition of this permit, an analog instrument used to measure a parameter related to the operation of an air pollution control device shall have a scale such that the expected maximum reading for the normal range shall be no less than twenty percent (20%) of full scale. The analog instrument shall be capable of measuring values outside of the normal range.

(b) The Permittee may request that the IDEM, OAQ approve the use of an instrument that does not meet the above specifications provided the Permittee can demonstrate that an alternative instrument specification will adequately ensure compliance with permit conditions requiring the measurement of the parameters.

Corrective Actions and Response Steps [326 IAC 2-7-5][326 IAC 2-7-6]

C.11 Emergency Reduction Plans [326 IAC 1-5-2] [326 IAC 1-5-3]

Pursuant to 326 IAC 1-5-2 (Emergency Reduction Plans; Submission):

(a) The Permittee shall maintain the most recently submitted written emergency reduction plans (ERPs) consistent with safe operating procedures.

(b) Upon direct notification by IDEM, OAQ that a specific air pollution episode level is in effect, the Permittee shall immediately put into effect the actions stipulated in the approved ERP for the appropriate episode level. [326 IAC 1-5-3]

C.12 Risk Management Plan [326 IAC 2-7-5(11)] [40 CFR 68]

If a regulated substance, as defined in 40 CFR 68, is present at a source in more than a threshold quantity, the Permittee must comply with the applicable requirements of 40 CFR 68.

C.13 Response to Excursions or Exceedances [326 IAC 2-7-5] [326 IAC 2-7-6]

Upon detecting an excursion where a response step is required by the D Section or an exceedance of a limitation in this permit:

(a) The Permittee shall take reasonable response steps to restore operation of the emissions unit (including any control device and associated capture system) to its normal or usual manner of operation as expeditiously as practicable in accordance with good air pollution control practices for minimizing excess emissions.

(b) The response shall include minimizing the period of any startup, shutdown or malfunction. The response may include, but is not limited to, the following:

(1) initial inspection and evaluation;

(2) recording that operations returned or are returning to normal without operator action (such as through response by a computerized distribution control system); or
(3) any necessary follow-up actions to return operation to normal or usual manner of operation.

(c) A determination of whether the Permittee has used acceptable procedures in response to an excursion or exceedance will be based on information available, which may include, but is not limited to, the following:

(1) monitoring results;
(2) review of operation and maintenance procedures and records; and/or
(3) inspection of the control device, associated capture system, and the process.

(d) Failure to take reasonable response steps shall be considered a deviation from the permit.

(e) The Permittee shall record the reasonable response steps taken.

C.14 Actions Related to Noncompliance Demonstrated by a Stack Test [326 IAC 2-7-5][326 IAC 2-7-6]

(a) When the results of a stack test performed in conformance with Section C - Performance Testing, of this permit exceed the level specified in any condition of this permit, the Permittee shall submit a description of its response actions to IDEM, OAQ no later than seventy-five (75) days after the date of the test.

(b) A retest to demonstrate compliance shall be performed no later than one hundred eighty (180) days after the date of the test. Should the Permittee demonstrate to IDEM, OAQ that retesting in one hundred eighty (180) days is not practicable, IDEM, OAQ may extend the retesting deadline.

(c) IDEM, OAQ reserves the authority to take any actions allowed under law in response to noncompliant stack tests.

The response action documents submitted pursuant to this condition do require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

C.15 Emission Statement [326 IAC 2-7-5(3)(C)(iii)][326 IAC 2-7-5(7)][326 IAC 2-7-19(c)][326 IAC 2-6]

In accordance with the compliance schedule specified in 326 IAC 2-6-3(b)(1), starting in 2004 and every three (3) years thereafter, the Permittee shall submit by July 1 an emission statement covering the previous calendar year. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4(c) and shall meet the following requirements:

(1) Indicate estimated actual emissions of all pollutants listed in 326 IAC 2-6-4(a);

(2) Indicate estimated actual emissions of regulated pollutants as defined by 326 IAC 2-7-1(33) ("Regulated pollutant, which is used only for purposes of Section 19 of this rule") from the source, for purpose of fee assessment.

The statement must be submitted to:
Indiana Department of Environmental Management
Technical Support and Modeling Section, Office of Air Quality
100 North Senate Avenue
MC 61-50 IGCN 1003
Indianapolis, Indiana 46204-2251

The emission statement does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35).

C.16 General Record Keeping Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-6]
(a) Records of all required monitoring data, reports and support information required by this permit shall be retained for a period of at least five (5) years from the date of monitoring sample, measurement, report, or application. Support information includes the following, where applicable:
 (AA) All calibration and maintenance records.
 (BB) All original strip chart recordings for continuous monitoring instrumentation.
 (CC) Copies of all reports required by the Part 70 permit.

Records of required monitoring information include the following, where applicable:
 (AA) The date, place, as defined in this permit, and time of sampling or measurements.
 (BB) The dates analyses were performed.
 (CC) The company or entity that performed the analyses.
 (DD) The analytical techniques or methods used.
 (EE) The results of such analyses.
 (FF) The operating conditions as existing at the time of sampling or measurement.

These records shall be physically present or electronically accessible at the source location for a minimum of three (3) years. The records may be stored elsewhere for the remaining two (2) years as long as they are available upon request. If the Commissioner makes a request for records to the Permittee, the Permittee shall furnish the records to the Commissioner within a reasonable time.

(b) Unless otherwise specified in this permit, for all record keeping requirements not already legally required, the Permittee shall be allowed up to ninety (90) days from the date of permit issuance or the date of initial start-up, whichever is later, to begin such record keeping.

C.17 General Reporting Requirements [326 IAC 2-7-5(3)(C)] [326 IAC 2-1.1-11]
(a) The Permittee shall submit the attached Quarterly Deviation and Compliance Monitoring Report or its equivalent. Proper notice submittal under Section B –Emergency Provisions satisfies the reporting requirements of this paragraph. Any deviation from permit requirements, the date(s) of each deviation, the cause of the deviation, and the response steps taken must be reported except that a deviation required to be reported pursuant to an applicable requirement that exists independent of this permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. This report shall be submitted not later than thirty (30) days after the end of the reporting period. The Quarterly Deviation and Compliance Monitoring Report shall include a certification that meets the requirements of 326 IAC 2-7-6(1) by a "responsible official" as defined by 326 IAC 2-7-1(35). A deviation is an exceedance of a permit limitation or a failure to comply with a requirement of the permit.

(b) The address for report submittal is:
Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

(c) Unless otherwise specified in this permit, any notice, report, or other submission required by this permit shall be considered timely if the date postmarked on the envelope or certified mail receipt, or affixed by the shipper on the private shipping receipt, is on or before the date it is due. If the document is submitted by any other means, it shall be considered timely if received by IDEM, OAQ on or before the date it is due.

(d) Reporting periods are based on calendar years, unless otherwise specified in this permit. For the purpose of this permit “calendar year” means the twelve (12) month period from January 1 to December 31 inclusive.

Stratospheric Ozone Protection

C.18 Compliance with 40 CFR 82 and 326 IAC 22-1

Pursuant to 40 CFR 82 (Protection of Stratospheric Ozone), Subpart F, except as provided for motor vehicle air conditioners in Subpart B, the Permittee shall comply with applicable standards for recycling and emissions reduction.
SECTION D.1 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(a) Twenty three (23) glue stations, using manual application methods and air-assisted airless spray guns at low pressure resulting in no formation of airborne particulate, each glue station with a maximum throughput of 1.33 units per hour, applying adhesives to wood boat components, vinyl fabric, or carpeting, and only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats), using no controls, exhausting indoors and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1GS</td>
<td>2</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>3-1GS</td>
<td>3</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>3-2GS</td>
<td>3</td>
<td>Prior to 1980</td>
<td>Formerly identified as 27-1GS, relocated from building 27</td>
</tr>
<tr>
<td>5-1GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-2GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-3GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-4GS</td>
<td>5</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-1GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-3GS, relocated from building 27</td>
</tr>
<tr>
<td>7-2GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-4GS, relocated from building 27</td>
</tr>
<tr>
<td>7-3GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-5GS, relocated from building 27</td>
</tr>
<tr>
<td>7-4GS</td>
<td>7</td>
<td>1992</td>
<td>Formerly identified as 25-6GS, relocated from building 25</td>
</tr>
<tr>
<td>7-5GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-6GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-7GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-8GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-9GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-10GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-11GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-12GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-13GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>14-1GS</td>
<td>14</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>27-1GS</td>
<td>27</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>27-2GS</td>
<td>27</td>
<td>Prior to 1980</td>
<td></td>
</tr>
</tbody>
</table>

(b) Five (5) paint booths, using air-assisted airless spray guns, each booth with a maximum throughput of 1.0 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
<td></td>
<td>6-1</td>
</tr>
</tbody>
</table>
Prior to 1980

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-2PB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-1PB</td>
<td>Prior to 1980</td>
<td>13-1</td>
</tr>
<tr>
<td>13-2PB</td>
<td></td>
<td>13-2</td>
</tr>
<tr>
<td>13-3PB</td>
<td></td>
<td>13-3</td>
</tr>
</tbody>
</table>

(c) One (1) paint booth, identified as 6-3PB, constructed in 2008, using HVLP spray guns, with a total maximum throughput of 1.25 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control, and exhausting to stack 6-3.

(d) One (1) portable catalyst/fiber resin chop gun, identified as 24/25-1RC, constructed prior to 1980, using non-atomized (fluid impingement) application methods, with a maximum capacity of 2.0 units per hour, using no control, and exhausting indoors.

(e) Six (6) stationary catalyst/fiber resin chop guns, using non-atomized (fluid impingement) application methods, with a total maximum capacity of 2.0 units per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-2RC</td>
<td>Prior to 1980</td>
<td>24/25-2RCS</td>
</tr>
<tr>
<td>24/25-3RC</td>
<td></td>
<td>24/25-3RCS</td>
</tr>
<tr>
<td>24/25-4RC</td>
<td></td>
<td>24/25-4RCS</td>
</tr>
<tr>
<td>24/25-5RC</td>
<td></td>
<td>24/25-5RCS</td>
</tr>
<tr>
<td>24/25-6RC</td>
<td></td>
<td>24/25-6RCS</td>
</tr>
<tr>
<td>24/25-7RC</td>
<td></td>
<td>24/25-7RCS</td>
</tr>
</tbody>
</table>

(f) Three (3) gel coat booths, using air-assisted airless spray guns, each with a maximum capacity of 1.0 unit per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Prior to 1980</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td></td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>2008</td>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

(h) One (1) Polyurethane liner operation to coat boats, identified as 24/25-BL, approved in 2019 for construction, with a maximum throughput of 2.00 units per hour, using dry filters (24/25-BLDF) as control and exhausting to stack 24/25-BLS.

[Under 40 CFR 63, Subpart VVVV, this fiberglass and aluminum boat manufacturing plant is considered an existing affected source.]

Insignificant Activities:

(a) Two (2) gel coat/final finish touch-up operations, including manual cleaning, polishing and waxing operations, identified as 24/25-1TU and 24/25-2TU, located in buildings 24/25, constructed prior to 1980, each with a maximum throughput of 2.0 units per hour, using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, these units are considered existing affected sources.]

(b) One (1) paint touch-up operation, identified as 24/25-3TU, constructed prior to 1980, relocated from Building 1 to Building 24/25 in 2015, using air-assisted airless spray application, with a maximum throughput of 1.0 units per hour, uses less than 5 gallons of...
coating per day, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, this unit is considered an existing affected source.]

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.1.1 Volatile Organic Compounds (VOC) PSD Minor Limit [326 IAC 2-2]

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the combined VOC emissions from the facilities listed below shall not exceed 247 tons per twelve (12) consecutive month period, with compliance determined at the end of each month:

<table>
<thead>
<tr>
<th>Facility Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty three (23) Glue Stations</td>
</tr>
<tr>
<td>Five (5) Airless Paint Booths</td>
</tr>
<tr>
<td>One (1) HVLP Paint Booth</td>
</tr>
<tr>
<td>One (1) portable catalyst/fiber resin chop gun</td>
</tr>
<tr>
<td>Six (6) stationary catalyst/fiber resin chop guns</td>
</tr>
<tr>
<td>Three (3) gel coat booths</td>
</tr>
<tr>
<td>Two (2) Gel coat/final finish touch-up operations</td>
</tr>
<tr>
<td>One (1) Paint touch-up operation</td>
</tr>
<tr>
<td>One (1) Polyurethane Boat Lining Operation</td>
</tr>
</tbody>
</table>

Compliance with this limit, combined with the potential to emit VOC from all other emission units at this source, shall limit the source-wide total potential to emit of VOC to less than 250 tons per twelve (12) consecutive month period and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

D.1.2 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2(d), particulate from the following shall be controlled by dry filters, and the Permittee shall operate the control devices in accordance with manufacturer's specifications:

<table>
<thead>
<tr>
<th>Paint Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>13-1PB</td>
</tr>
<tr>
<td>13-2PB</td>
</tr>
<tr>
<td>13-3PB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gel Coat Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

D.1.3 Emission Standards for Fiberglass Boat Manufacturing [326 IAC 20-48-2]

Pursuant to 326 IAC 20-48-2, in addition to alternative organic HAP content requirements for open molding resin operations contained in Table 2 to 40 CFR 63, Subpart VVVV, the alternative HAP content requirements for gel coat operations are as follows:
Gel Coat Application

<table>
<thead>
<tr>
<th>For this operation</th>
<th>And this application method</th>
<th>The Permittee shall not exceed this weighted-average percent organic HAP content (weight percent) requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmented gel coat operations</td>
<td>Atomized (spray)</td>
<td>33 percent</td>
</tr>
<tr>
<td>Clear gel coat operations</td>
<td>Atomized (spray)</td>
<td>48 percent</td>
</tr>
<tr>
<td>Tooling gel coat operations</td>
<td>Atomized (spray)</td>
<td>40 percent</td>
</tr>
<tr>
<td>Pigmented gel coat operations</td>
<td>Nonatomized (nonspray)</td>
<td>40 percent</td>
</tr>
<tr>
<td>Clear gel coat operations</td>
<td>Nonatomized (nonspray)</td>
<td>55 percent</td>
</tr>
<tr>
<td>Tooling gel coat operations</td>
<td>Nonatomized (nonspray)</td>
<td>54 percent</td>
</tr>
</tbody>
</table>

D.1.4 Work Practice Standards for Fiberglass Boat Manufacturing [326 IAC 20-48-3]

Pursuant to 326 IAC 20-48-3, in addition to the requirements imposed by 40 CFR 63.5731 and 40 CFR 63.5734(b), the following work practice standards shall be implemented:

(a) Nonatomizing spray equipment shall not be operated at pressures that atomize the material during the application process.

(b) Solvents sprayed during cleanup and resin changes shall be directed into solvent collection containers.

(c) For routine flushing of resin and gel coat application equipment, such as spray guns, flowcoaters, brushes, rollers, and squeegees, owners or operators must use a cleaning solvent that contains no hazardous air pollutants (HAPs). However, recycled cleaning solvents that contain less than or equal to five percent (5%) HAP by weight are considered to contain no HAP for the purposes of this subdivision. For removing cured resin or gel coat from application equipment, no organic HAP limit applies.

(d) Clean-up rags with solvent shall be stored in closed containers.

(e) Closed containers shall be used for the storage of the following:

1. All production and tooling resins that contain HAPs.
2. All production and tooling gel coats that contain HAPs.
3. Waste resins and gel coats that contain HAPs.
4. Cleaning materials, including waste cleaning materials.
5. Other materials that contain HAPs.

(f) The covers of the closed containers must have no visible gaps and must be in place at all times, except when equipment is placed in or removed from the container.

D.1.5 Operator Training for Fiberglass Boat Manufacturing [326 IAC 20-48-4]

Pursuant to 326 IAC 20-48-4, all new and existing personnel, including contract personnel, who are involved in resin and gel coat spraying and spray-like applications that could result in excess emissions if performed improperly, shall be trained according to the following schedule:

(a) All personnel hired shall be trained within fifteen (15) days of hiring.
(b) To ensure training goals listed in Condition D.1.5(d) are maintained, all personnel shall be given refresher training annually.

(c) Personnel who have been trained by another owner or operator subject to 326 IAC 20-48 are exempt from requirements of Condition D.1.5(a) if written documentation that the employee’s training is current is provided to the new employer.

(d) The lesson plans shall cover, for the initial and refresher training, at a minimum, all of the following topics:

1. Appropriate application techniques.
2. Appropriate equipment cleaning procedures.
3. Appropriate equipment setup and adjustment to minimize material usage and overspray.

D.1.6 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee’s obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.1.7 Volatile Organic Compounds (VOC) [326 IAC 8-1-2][326 IAC 8-1-4]

(a) Compliance with the VOC emission limit contained in Condition D.1.1 shall be determined pursuant to 326 IAC 8-1-4 and 326 IAC 8-1-2(a), by preparing or obtaining from the manufacturer the copies of the VOC data sheets or Material Safety Data Sheets (MSDS). IDEM, OAQ, reserves the authority to determine compliance using Method 24 in conjunction with the analytical procedures specified in 326 IAC 8-1-4.

(b) Compliance with the VOC emission limit contained in Condition D.1.1 shall be determined by multiplying the monthly usage of each resin and gel coat by the emission factor provided in "Unified Emission Factors for Open Molding of Composites," Composites Fabricators Association, October 13, 2009, or its updates. VOC emissions from the open molding operations catalyst shall be calculated by multiplying the monthly usage of the catalyst by the emission factor provided in "Emission Factors for Liquid Organic Peroxide Catalysts used in the Open Molding of Composites." The emission factors for all other VOC emitting compounds shall be 100% of the input of volatile organic compounds.

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.1.8 Monitoring

(a) Daily inspections shall be performed to verify the placement, integrity, and particle loading of the filters controlling the following:

<table>
<thead>
<tr>
<th>Paint Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>13-1PB</td>
</tr>
<tr>
<td>13-2PB</td>
</tr>
<tr>
<td>13-3PB</td>
</tr>
<tr>
<td>Gel Coat Booths</td>
</tr>
<tr>
<td>24/25-1GC</td>
</tr>
</tbody>
</table>
To monitor the performance of the dry filters, weekly observations shall be made of the overspray from the stacks of the following:

<table>
<thead>
<tr>
<th>Paint Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-2GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

while one or more of the booths are in operation.

If a condition exists which should result in a response step, the Permittee shall take reasonable response steps. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

(b) Weekly observations shall be made of the overspray from the stacks of the following while one or more of the booths are in operation:

<table>
<thead>
<tr>
<th>Paint Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>13-1PB</td>
</tr>
<tr>
<td>13-2PB</td>
</tr>
<tr>
<td>13-3PB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gel Coat Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

If a condition exists which should result in a response step, the Permittee shall take reasonable response. Section C - Response to Excursions or Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

(c) Monthly inspections shall be performed of the coating emissions from the stacks of the following:

<table>
<thead>
<tr>
<th>Paint Booths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
<tr>
<td>6-2PB</td>
</tr>
</tbody>
</table>
and the presence of overspray on the rooftops and the nearby ground. When there is a noticeable change in overspray emissions, or when evidence of overspray emissions is observed, the Permittee shall take reasonable response steps. Section C - Response to Excursions or Exceedances contains the Permittee’s obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.1.9 Record Keeping Requirement

(a) To document the compliance status with Condition D.1.1, the Permittee shall maintain records in accordance with (1) through (3) below. Records maintained for (1) through (3) shall be taken monthly and shall be complete and sufficient to establish compliance with the VOC emission limit established in Condition D.1.1. Records necessary to demonstrate compliance shall be available no later than 30 days after the end of each compliance period.

(1) The amount and VOC content of each material and solvent used. Records shall include purchase orders, invoices; safety data sheets (SDS), waste manifests, and calculations necessary to verify the type and amount used.

(2) The total VOC usage for each month; and

(3) The weight of VOC emitted for each compliance period.

(b) Pursuant to 326 IAC 20-48-4, and in order to document the compliance status with Condition D.1.5, the Permittee shall maintain the following training records on site and available for inspection and review:

(1) A copy of the current training program.

(2) A list of all current personnel, by name, that are required to be trained and the dates they were trained and the date of the most recent refresher training.

Records of prior training programs and former personnel are not required to be maintained.

(c) To document the compliance status with Condition D.1.8, the Permittee shall maintain a log of daily filter inspections, weekly overspray observations, monthly emissions, and overspray inspections. The Permittee shall include in its daily record when an inspection or observation was not made and the reason for the lack of an inspection or observation notation (e.g. the process did not operate that day).

(d) Section C - General Record Keeping Requirements contains the Permittee’s obligations with regard to the records required by this condition.
D.1.10 Reporting Requirements

A quarterly summary of the information to document the compliance status with Condition D.1.1 shall be submitted using the reporting form located at the end of this permit, or its equivalent, not later than thirty (30) days after the end of the quarter being reported. Section C - General Reporting Requirements contains the Permittee's obligation with regard to the reporting required by this condition. The report submitted by the Permittee does require a certification that meets the requirements of 326 IAC 2-7-6(1) by a “responsible official,” as defined by 326 IAC 2-7-1(35).
SECTION D.2 EMISSIONS UNIT OPERATION CONDITIONS

Emissions Unit Description:

(g) Two (2) fiberglass grinding and cutting operations, constructed prior to 1980 and approved in 2019 to change control and exhaust stack, each with a maximum throughput of 2,900 pounds of fiberglass per hour, both using a baghouse (24/25-BH) for particulate control, and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Exhaust stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>24/25-BHS</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td>24/25-BHS</td>
</tr>
</tbody>
</table>

[Under 40 CFR 63, Subpart VVVV, this fiberglass and aluminum boat manufacturing plant is considered an existing affected source.]

Insignificant Activities:

(c) Three (3) woodworking operations, with integral cyclones and return air bagfilter collection systems for particulate control, exhausting indoors and consisting of the following:

(1) One (1) woodworking operation, identified as 9-1W, with a maximum throughput of 1100 pounds of wood per hour;

(2) One (1) woodworking operation, identified as 9-2W, with a maximum throughput of 200 pounds of wood per hour;

(3) One (1) woodworking operation, identified as 7-1W, relocated from Building 23 to Building 7 in 2016, with a maximum throughput of 200 pounds of wood per hour.

(d) One (1) Dust Collector System used to vacuum boats, identified as 24/25-VAC, approved in 2019 for construction, with a material input rate of 5,800.00 pounds per hour, located in Building 24/25, using cartridge filters (24/25-VACCF) as control and exhausting to stack 24/25-VACS.

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

Emission Limitations and Standards [326 IAC 2-7-5(1)]

D.2.1 Particulate Emission Limitations for Manufacturing Processes [326 IAC 6-3-2]

Pursuant to 326 IAC 6-3-2, the particulate from the facilities listed below shall be limited as specified when operating at the respective process weight rate:

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Process Weight Rate (tons/hr)</th>
<th>Emission Limitation (lbs/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass grinding and cutting operation (24/25-1FG)</td>
<td>1.45</td>
<td>5.26</td>
</tr>
<tr>
<td>Fiberglass grinding and cutting operation (24/25-2FG)</td>
<td>1.45</td>
<td>5.26</td>
</tr>
<tr>
<td>Dust Collector System (24/25-VAC)</td>
<td>2.90</td>
<td>8.37</td>
</tr>
</tbody>
</table>

The pounds per hour limitations were calculated with the following equation:
Interpolation of the data for the process weight rate up to 60,000 pounds per hour shall be accomplished by use of the equation:

\[E = 4.10 P^{0.67} \]

where \(E \) = rate of emission in pounds per hour; and \(P \) = process weight rate in tons per hour.

D.2.2 Preventive Maintenance Plan [326 IAC 2-7-5(12)]

A Preventive Maintenance Plan is required for these facilities and their control devices. Section B - Preventive Maintenance Plan contains the Permittee's obligation with regard to the preventive maintenance plan required by this condition.

Compliance Determination Requirements [326 IAC 2-7-5(1)]

D.2.3 Particulate Control

(a) The integral cyclones and return air bag filter collection systems for particulate control shall be in operation at all times when the woodworking operations are in operation.

(b) In order to assure compliance with Condition D.2.1, the baghouse (24/25-BH) and cartridge filters (24/25-VACCF) for particulate control shall be in operation and control emissions at all times when the following are in operation:

<table>
<thead>
<tr>
<th>fiberglass grinding and cutting operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24/25-1FG and 24/25-2FG)</td>
</tr>
<tr>
<td>Dust Collection System (24/25-VAC)</td>
</tr>
</tbody>
</table>

Compliance Monitoring Requirements [326 IAC 2-7-5(1)][326 IAC 2-7-6(1)]

D.2.4 Visible Emissions Notations

(a) Visible emission notations of the stack exhausts of the following:

(i) baghouse (24/25-BH) and

(ii) cartridge filters (24/25-VACCF)

shall be performed once per day during normal daylight operations. A trained employee shall record whether emissions are normal or abnormal.

(b) For processes operated continuously, "normal" means those conditions prevailing, or expected to prevail, eighty percent (80%) of the time the process is in operation, not counting startup or shut down time.

(c) In the case of batch or discontinuous operations, readings shall be taken during that part of the operation that would normally be expected to cause the greatest emissions.

(d) A trained employee is an employee who has worked at the plant at least one (1) month and has been trained in the appearance and characteristics of normal visible emissions for that specific process.

(e) If abnormal emissions are observed, the Permittee shall take a reasonable response. Section C – Response to Excursions and Exceedances contains the Permittee's obligation with regard to the reasonable response steps required by this condition. Failure to take response steps shall be considered a deviation from this permit.

D.2.5 Broken or Failed Bag Detection

(a) For a single compartment baghouse or filter controlling emissions from a process operated continuously, a failed unit and the associated process shall be shut down immediately until the failed unit has been repaired or replaced. Operations may continue
only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

(b) For a single compartment baghouse controlling emissions from a batch process, the feed to the process shall be shut down immediately until the failed unit has been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the line. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Bag failure can be indicated by a significant drop in the baghouse's pressure reading with abnormal visible emissions, by an opacity violation, or by other means such as gas temperature, flow rate, air infiltration, leaks, dust traces or triboflows.

D.2.6 Cyclone Failure Detection

In the event that cyclone failure has been observed:

Failed units and the associated process will be shut down immediately until the failed units have been repaired or replaced. The emissions unit shall be shut down no later than the completion of the processing of the material in the emissions unit. Operations may continue only if the event qualifies as an emergency and the Permittee satisfies the requirements of the emergency provisions of this permit (Section B - Emergency Provisions).

Record Keeping and Reporting Requirements [326 IAC 2-7-5(3)] [326 IAC 2-7-19]

D.2.7 Record Keeping Requirement

(a) To document the compliance status with Condition D.2.4, the Permittee shall maintain records of daily visible emission notations of the baghouse (24/25-BH) and the cartridge filters (24/25-VACCF) stack exhausts. The Permittee shall include in its daily record when a visible emission notation is not taken and the reason for the lack of a visible emission notation, (i.e. the process did not operate that day).

(b) Section C - General Record Keeping Requirements of this permit contains the Permittee's obligations with regard to the records required by this condition.
SECTION E.1 NESHAP

Emissions Unit Description:

(a) Twenty three (23) glue stations, using manual application methods and air-assisted airless spray guns at low pressure resulting in no formation of airborne particulate, each glue station with a maximum throughput of 1.33 units per hour, applying adhesives to wood boat components, vinyl fabric, or carpeting, and only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats), using no controls, exhausting indoors and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1GS</td>
<td>2</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>3-1GS</td>
<td>3</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>3-2GS</td>
<td>3</td>
<td>Prior to 1980</td>
<td>Formerly identified as 27-1GS, relocated from building 27</td>
</tr>
<tr>
<td>5-1GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-2GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-3GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-4GS</td>
<td>5</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-1GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-3GS, relocated from building 27</td>
</tr>
<tr>
<td>7-2GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-4GS, relocated from building 27</td>
</tr>
<tr>
<td>7-3GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-5GS, relocated from building 27</td>
</tr>
<tr>
<td>7-4GS</td>
<td>7</td>
<td>1992</td>
<td>Formerly identified as 25-6GS, relocated from building 25</td>
</tr>
<tr>
<td>7-5GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-6GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-7GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-8GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-9GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-10GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-11GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-12GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>7-13GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
<td></td>
</tr>
<tr>
<td>14-1GS</td>
<td>14</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>27-1GS</td>
<td>27</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>27-2GS</td>
<td>27</td>
<td>Prior to 1980</td>
<td></td>
</tr>
</tbody>
</table>

(b) Five (5) paint booths, using air-assisted airless spray guns, each booth with a maximum throughput of 1.0 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
<td></td>
<td>6-1</td>
</tr>
</tbody>
</table>
(c) One (1) paint booth, identified as 6-3PB, constructed in 2008, using HVLP spray guns, with a total maximum throughput of 1.25 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control, and exhausting to stack 6-3.

(d) One (1) portable catalyst/fiber resin chop gun, identified as 24/25-1RC, constructed prior to 1980, using non-atomized (fluid impingement) application methods, with a maximum capacity of 2.0 units per hour, using no control, and exhausting indoors.

(e) Six (6) stationary catalyst/fiber resin chop guns, using non-atomized (fluid impingement) application methods, with a total maximum capacity of 2.0 units per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-2RC</td>
<td>Prior to 1980</td>
<td>24/25-2RCS</td>
</tr>
<tr>
<td>24/25-3RC</td>
<td>Prior to 1980</td>
<td>24/25-3RCS</td>
</tr>
<tr>
<td>24/25-4RC</td>
<td>Prior to 1980</td>
<td>24/25-4RCS</td>
</tr>
<tr>
<td>24/25-5RC</td>
<td>Prior to 1980</td>
<td>24/25-5RCS</td>
</tr>
<tr>
<td>24/25-6RC</td>
<td>Prior to 1980</td>
<td>24/25-6RCS</td>
</tr>
<tr>
<td>24/25-7RC</td>
<td>Prior to 1980</td>
<td>24/25-7RCS</td>
</tr>
</tbody>
</table>

(f) Three (3) gel coat booths, using air-assisted airless spray guns, each with a maximum capacity of 1.0 unit per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Prior to 1980</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td>2008</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>2008</td>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

(h) One (1) Polyurethane liner operation to coat boats, identified as 24/25-BL, approved in 2019 for construction, with a maximum throughput of 2.00 units per hour, using dry filters (24/25-BLDF) as control and exhausting to stack 24/25-BLS.

[Under 40 CFR 63, Subpart VV, this fiberglass and aluminum boat manufacturing plant is considered an existing affected source.]

Insignificant Activities:

(a) Two (2) gel coat/final finish touch-up operations, including manual cleaning, polishing and waxing operations, identified as 24/25-1TU and 24/25-2TU, located in buildings 24/25, constructed prior to 1980, each with a maximum throughput of 2.0 units per hour, using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VV, these units are considered existing affected sources.]

(b) One (1) paint touch-up operation, identified as 24/25-3TU, constructed prior to 1980, relocated from Building 1 to Building 24/25 in 2015, using air-assisted airless spray application, with a maximum throughput of 1.0 units per hour, uses less than 5 gallons of coating per day, applying coatings only to the exterior, non-enclosed surfaces of the
aluminum marine vessels (recreational boats), using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVV, this unit is considered an existing affected source.]

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart VVV.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.1.2 National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing NESHAP [40 CFR Part 63, Subpart VVVV] [326 IAC 20-48]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart VVVV (included as Attachment A to the operating permit), which are incorporated by reference as 326 IAC 20-48, for the emission unit(s) listed above:

(1) 40 CFR 63.5680
(2) 40 CFR 63.5683
(3) 40 CFR 63.5689
(4) 40 CFR 63.5692
(5) 40 CFR 63.5695
(6) 40 CFR 63.5698
(7) 40 CFR 63.5701(a), (b)
(8) 40 CFR 63.5704(a), (b)
(9) 40 CFR 63.5707
(10) 40 CFR 63.5710
(11) 40 CFR 63.5713
(12) 40 CFR 63.5714
(13) 40 CFR 63.5728
(14) 40 CFR 63.5731
(15) 40 CFR 63.5734
(16) 40 CFR 63.5737
(17) 40 CFR 63.5740
(18) 40 CFR 63.5743
(19) 40 CFR 63.5746
(20) 40 CFR 63.5749
(21) 40 CFR 63.5752
(22) 40 CFR 63.5753
(23) 40 CFR 63.5755
(24) 40 CFR 63.5758
(25) 40 CFR 63.5761
(26) 40 CFR 63.5764(a), (b), (c)
(27) 40 CFR 63.5767(a), (b), (c)
(28) 40 CFR 63.5770
(29) 40 CFR 63.5773
(30) 40 CFR 63.5776
(31) 40 CFR 63.5779
(32) Table 1 to 40 CFR 63, Subpart VVVV
(33) Table 2 to 40 CFR 63, Subpart VVVV
(34) Table 3 to 40 CFR 63, Subpart VVVV
(35) Table 5 to 40 CFR 63, Subpart VVVV
(36) Table 6 to 40 CFR 63, Subpart VVVV
(37) Table 7 to 40 CFR 63, Subpart VVVV
(38) Table 8 to 40 CFR 63, Subpart VVVV
SECTION E.2 NESHAP

Emissions Unit Description: Insignificant Activities:

(h) One (1) 155 horsepower diesel-fired emergency stationary fire pump, manufactured in 1976.

[Under 40 CFR 63, Subpart ZZZZ, this is considered an affected facility.]

(The information describing the process contained in this emissions unit description box is descriptive information and does not constitute enforceable conditions.)

National Emission Standards for Hazardous Air Pollutants (NESHAP) Requirements
[326 IAC 2-7-5(1)]

(a) Pursuant to 40 CFR 63.1 the Permittee shall comply with the provisions of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated by reference as 326 IAC 20-1, for the emission unit(s) listed above, except as otherwise specified in 40 CFR Part 63, Subpart ZZZZ.

(b) Pursuant to 40 CFR 63.10, the Permittee shall submit all required notifications and reports to:

Indiana Department of Environmental Management
Compliance and Enforcement Branch, Office of Air Quality
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251

E.2.2 National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines NESHAP [40 CFR Part 63, Subpart ZZZZ] [326 IAC 20-82]

The Permittee shall comply with the following provisions of 40 CFR Part 63, Subpart ZZZZ (included as Attachment B to the operating permit), which are incorporated by reference as 326 IAC 20-82, for the emission unit listed above:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(ii)
(4) 40 CFR 63.6595(a)(1) and (c)
(5) 40 CFR 63.6602
(6) 40 CFR 63.6604(b)
(7) 40 CFR 63.6605
(8) 40 CFR 63.6625(e), (f), (h), and (i)
(9) 40 CFR 63.6640(a), (b), (d), (e), and (f)
(10) 40 CFR 63.6650(f)
(11) 40 CFR 63.6655(a), (b), (d), (e), and (f)
(12) 40 CFR 63.6660
(13) 40 CFR 63.6665
(14) 40 CFR 63.6670(a)
(15) 40 CFR 63.6675
(16) Table 2c to 40 CFR 63, Subpart ZZZZ
(17) Table 6 to 40 CFR 63, Subpart ZZZZ
(18) Table 8 to 40 CFR 63, Subpart ZZZZ
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
CERTIFICATION

Source Name: Smoker Craft, Incorporated
Source Address: 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553
Part 70 Permit No.: 039-41837-00073

This certification shall be included when submitting monitoring, testing reports/results or other documents as required by this permit.

Please check what document is being certified:

☐ Annual Compliance Certification Letter
☐ Test Result (specify)
☐ Report (specify)
☐ Notification (specify)
☐ Affidavit (specify)
☐ Other (specify)

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Signature: ____________________________
Printed Name: ____________________________
Title/Position: ____________________________
Phone: ____________________________
Date: ____________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
100 North Senate Avenue
MC 61-53 IGCN 1003
Indianapolis, Indiana 46204-2251
Phone: (317) 233-0178
Fax: (317) 233-6865

PART 70 OPERATING PERMIT
EMERGENCY OCCURRENCE REPORT

Source Name: Smoker Craft, Incorporated
Source Address: 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553
Part 70 Permit No.: 039-41837-00073

This form consists of 2 pages

<table>
<thead>
<tr>
<th>☐ This is an emergency as defined in 326 IAC 2-7-1(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The Permittee must notify the Office of Air Quality (OAQ), within four (4) daytime business hours (1-800-451-6027 or 317-233-0178, ask for Compliance Section); and</td>
</tr>
<tr>
<td>• The Permittee must submit notice in writing or by facsimile within two (2) working days (Facsimile Number: 317-233-6865), and follow the other requirements of 326 IAC 2-7-16.</td>
</tr>
</tbody>
</table>

If any of the following are not applicable, mark N/A

<table>
<thead>
<tr>
<th>Facility/Equipment/Operation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Equipment:</td>
</tr>
<tr>
<td>Permit Condition or Operation Limitation in Permit:</td>
</tr>
<tr>
<td>Description of the Emergency:</td>
</tr>
<tr>
<td>Describe the cause of the Emergency:</td>
</tr>
<tr>
<td>If any of the following are not applicable, mark N/A</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Date/Time Emergency started:</td>
</tr>
<tr>
<td>Date/Time Emergency was corrected:</td>
</tr>
<tr>
<td>Was the facility being properly operated at the time of the emergency?</td>
</tr>
<tr>
<td>Type of Pollutants Emitted: TSP, PM-10, SO₂, VOC, NOₓ, CO, Pb, other:</td>
</tr>
<tr>
<td>Estimated amount of pollutant(s) emitted during emergency:</td>
</tr>
<tr>
<td>Describe the steps taken to mitigate the problem:</td>
</tr>
<tr>
<td>Describe the corrective actions/response steps taken:</td>
</tr>
<tr>
<td>Describe the measures taken to minimize emissions:</td>
</tr>
<tr>
<td>If applicable, describe the reasons why continued operation of the facilities are necessary to prevent imminent injury to persons, severe damage to equipment, substantial loss of capital investment, or loss of product or raw materials of substantial economic value:</td>
</tr>
</tbody>
</table>

Form Completed by:______________________________
Title / Position: _______________________________
Date:__
Phone:_______________________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH

Part 70 Quarterly Report

Source Name: Smoker Craft, Incorporated
Source Address: 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553
Part 70 Permit No.: 039-41837-00073

Facility:

- Twenty three (23) Glue Stations
- Five (5) Airless Paint Booths
- One (1) HVLP Paint Booth
- One (1) portable catalyst/fiber resin chop gun
- Six (6) stationary catalyst/fiber resin chop guns
- Three (3) gel coat booths
- Two (2) Gel coat/final finish touch-up operations
- One (1) Paint touch-up operation
- One (1) Polyurethane Boat Lining Operation

Parameter: Combined VOC Emissions
Limit: Shall not exceed 247 tons per twelve (12) consecutive month period, with compliance determined at the end of each month

| QUARTER: _____________ | YEAR: ________________ |

<table>
<thead>
<tr>
<th>Month</th>
<th>Column 1 (tons)</th>
<th>Column 2 (tons)</th>
<th>Column 1 + Column 2 (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous 11 Months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Month Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ No deviation occurred in this quarter.

☐ Deviation/s occurred in this quarter.
Deviation has been reported on:

Submitted by: ________________________________
Title / Position: ________________________________
Signature: ________________________________
Date: ________________________________
Phone: ________________________________
INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT
OFFICE OF AIR QUALITY
COMPLIANCE AND ENFORCEMENT BRANCH
PART 70 OPERATING PERMIT
QUARTERLY DEVIATION AND COMPLIANCE MONITORING REPORT

Source Name: Smoker Craft, Incorporated
Source Address: 68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553
Part 70 Permit No.: 039-41837-00073

Months: _________ to ___________ Year: _____________

This report shall be submitted quarterly based on a calendar year. Proper notice submittal under Section B – Emergency Provisions satisfies the reporting requirements of paragraph (a) of Section C-Generic Reporting. Any deviation from the requirements of this permit, the date(s) of each deviation, the probable cause of the deviation, and the response steps taken must be reported. A deviation required to be reported pursuant to an applicable requirement that exists independent of the permit, shall be reported according to the schedule stated in the applicable requirement and does not need to be included in this report. Additional pages may be attached if necessary. If no deviations occurred, please specify in the box marked "No deviations occurred this reporting period".

□ NO DEVIATIONS OCCURRED THIS REPORTING PERIOD.

□ THE FOLLOWING DEVIATIONS OCCURRED THIS REPORTING PERIOD

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permit Requirement (specify permit condition #)</td>
<td>Date of Deviation:</td>
<td>Duration of Deviation:</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Requirement (specify permit condition #)</th>
<th>Date of Deviation:</th>
<th>Duration of Deviation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Deviations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable Cause of Deviation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Steps Taken:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form Completed by: ____________________________
Title / Position: ____________________________
Date: ____________________________
Phone: ____________________________
Title 40: Protection of Environment

Part 63 - National Emission Standards for Hazardous Air Pollutants (NESHAP)

Subpart VVVV—National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing

Source: 66 FR 44232, Aug. 22, 2001, unless otherwise noted.

What the Subpart Covers

§ 63.5680 What is the purpose of this subpart?

(a) This subpart establishes national emission standards for hazardous air pollutants (HAP) for new and existing boat manufacturing facilities with resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission standards.

§ 63.5683 Does this subpart apply to me?

(a) This subpart applies to you if you meet both of the criteria listed in paragraphs (a)(1) and (2) of this section.

(1) You are the owner or operator of a boat manufacturing facility that builds fiberglass boats or aluminum recreational boats.

(2) Your boat manufacturing facility is a major source of HAP either in and of itself, or because it is collocated with other sources of HAP, such that all sources combined constitute a major source.

(b) A boat manufacturing facility is a facility that manufactures hulls or decks of boats from fiberglass or aluminum, or assembles boats from premanufactured hulls and decks, or builds molds to make fiberglass hulls or decks. A facility that manufactures only parts of boats (such as hatches, seats, or lockers) or boat trailers is not considered a boat manufacturing facility for the purpose of this subpart.

(c) A major source is any stationary source or group of stationary sources located within a contiguous area and under common control that emits or can potentially emit, considering controls, in the aggregate, 9.1 megagrams (10 tons) or more per year of a single HAP or 22.7 megagrams (25 tons) or more per year of a combination of HAP.

(d) This subpart does not apply to aluminum coating operations on aluminum boats intended for commercial or military (nonrecreational) use, antifoulant coatings, assembly adhesives, fiberglass hull and deck coatings, research and development activities, mold sealing and release agents, mold stripping and cleaning solvents, and wood coatings as defined in §63.5779. This subpart does not apply to materials contained in handheld aerosol cans.

§ 63.5686 How do I demonstrate that my facility is not a major source?

You can demonstrate that your facility is not a major source by using the procedures in either paragraph (a) or (b) of this section.

(a) Emission option. You must demonstrate that your facility does not emit, and does not have the potential to emit as defined in §63.2, considering federally enforceable permit limits, 9.1 megagrams (10 tons) or more per year of a single HAP or 22.7 megagrams (25 tons) or more per year of a combination of HAP. To calculate your facility's potential to emit, you must include emissions from the boat manufacturing facility and all other sources that are collocated and under common ownership or control with the boat manufacturing facility.

(b) Material consumption option. This option can be used if you manufacture either fiberglass boats or aluminum recreational boats at your facility. You must meet the criteria in paragraph (b)(1), (2), or (3) of this section and comply with the requirements in paragraph (c) of this section. If you initially rely on the limits and criteria specified in paragraph (b)(1), (2), or (3) of this section to become an area source, but then exceed the relevant limit (without first obtaining and complying with other limits that keep
your potential to emit HAP below major source levels), your facility will then become a major source, and you must comply with all applicable provisions of this subpart beginning on the compliance date specified in §63.5695. Nothing in this paragraph is intended to preclude you from limiting your facility's potential to emit through other federally enforceable mechanisms available through your permitting authority.

(1) If your facility is primarily a fiberglass boat manufacturing facility, you must demonstrate that you consume less than 45.4 megagrams per rolling 12-month period of all combined polyester-and vinylester-based resins and gel coats (including tooling and production resins and gel coats, and clear gel coats), and you must demonstrate that at least 90 percent of total annual HAP emissions at the facility (including emissions from aluminum recreational boat manufacturing or other source categories) originate from the fiberglass boat manufacturing materials.

(2) If your facility is primarily an aluminum recreational boat manufacturing facility, you must demonstrate that it consumes less than 18.2 megagrams per rolling 12-month period of all combined surface coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives; and you must demonstrate that at least 90 percent of total annual HAP emissions at the facility (including emissions from fiberglass boat manufacturing or other source categories) originate from the aluminum recreational boat manufacturing materials.

(3) If your facility is a fiberglass boat or an aluminum recreational boat manufacturing facility, you must demonstrate that the boat manufacturing materials consumed per rolling 12-month period contain a total of less than 4.6 megagrams of any single HAP and less than 11.4 megagrams of all combined HAP, and you must demonstrate that at least 90 percent of total annual HAP emissions at the facility (including emissions from other source categories) originate from these boat manufacturing materials.

(c) If you use the material consumption option described in paragraph (b) of this section to demonstrate that you are not a major source, you must comply with the requirements of paragraphs (c)(1) through (3) of this section.

(1) If your facility has HAP emissions that do not originate from boat manufacturing operations or materials described in paragraph (b), then you must keep any records necessary to demonstrate that the 90 percent criterion is met.

(2) A rolling 12-month period includes the previous 12 months of operation. You must maintain records of the total amount of materials described in paragraph (b) of this section used each month, and, if necessary, the HAP content of each material and the calculation of the total HAP consumed each month. Because records are needed for a 12-month period, you must keep records beginning no later than 12 months before the compliance date specified in §63.5695. Records must be kept for 5 years after they are created.

(3) In determining whether the 90 percent criterion included in paragraph (b) of this section is met, you do not need to include materials used in routine janitorial, building, or facility grounds maintenance; personal uses by employees or other persons; or products used for maintaining motor vehicles operated by the facility.

§ 63.5689 What parts of my facility are covered by this subpart?

The affected source (the portion of your boat manufacturing facility covered by this subpart) is the combination of all of the boat manufacturing operations listed in paragraphs (a) through (f) of this section.

(a) Open molding resin and gel coat operations (including pigmented gel coat, clear gel coat, production resin, tooling gel coat, and tooling resin).

(b) Closed molding resin operations.

(c) Resin and gel coat mixing operations.

(d) Resin and gel coat application equipment cleaning operations.

(e) Carpet and fabric adhesive operations.

(f) Aluminum hull and deck coating operations, including solvent wipedown operations and paint spray gun cleaning operations, on aluminum recreational boats.

§ 63.5692 How do I know if my boat manufacturing facility is a new source or an existing source?

(a) A boat manufacturing facility is a new source if it meets the criteria in paragraphs (a)(1) through (3) of this section.

(1) You commence construction of the affected source after July 14, 2000.
(2) It is a major source.

(3) It is a completely new boat manufacturing affected source where no other boat manufacturing affected source existed prior to the construction of the new source.

(b) For the purposes of this subpart, an existing source is any source that is not a new source.

§ 63.5695 When must I comply with this subpart?

You must comply with the standards in this subpart by the compliance dates specified in Table 1 to this subpart.

Standards for Open Molding Resin and Gel Coat Operations

§ 63.5698 What emission limit must I meet for open molding resin and gel coat operations?

(a) You must limit organic HAP emissions from the five open molding operations listed in paragraphs (a)(1) through (5) of this section to the emission limit specified in paragraph (b) of this section. Operations listed in paragraph (d) are exempt from this limit.

(1) Production resin.

(2) Pigmented gel coat.

(3) Clear gel coat.

(4) Tooling resin.

(5) Tooling gel coat.

(b) You must limit organic HAP emissions from open molding operations to the limit specified by equation 1 of this section, based on a 12-month rolling average.

\[
HAP \text{ Limit} = \left[\frac{46(M_R) + 159(M_{PG}) + 291(M_G) + 54(M_{TR}) + 214(M_{TG})}{(Eq. \ 1)} \right]
\]

Where:
HAP Limit= total allowable organic HAP that can be emitted from the open molding operations, kilograms.
M_R= mass of production resin used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.
M_PG= mass of pigmented gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.
M_G= mass of clear gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.
M_TR= mass of tooling resin used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.
M_TG= mass of tooling gel coat used in the past 12 months, excluding any materials exempt under paragraph (d) of this section, megagrams.

(c) The open molding emission limit is the same for both new and existing sources.

(d) The materials specified in paragraphs (d)(1) through (3) of this section are exempt from the open molding emission limit specified in paragraph (b) of this section.

(1) Production resins (including skin coat resins) that must meet specifications for use in military vessels or must be approved by the U.S. Coast Guard for use in the construction of lifeboats, rescue boats, and other life-saving appliances approved under 46 CFR subchapter Q or the construction of small passenger vessels regulated by 46 CFR subchapter T. Production resins for which this exemption is used must be applied with nonatomizing (non-spray) resin application equipment. You must keep a record of the resins for which you are using this exemption.

(2) Pigmented, clear, and tooling gel coat used for part or mold repair and touch up. The total gel coat materials included in this exemption must not exceed 1 percent by weight of all gel coat used at your facility on a 12-month rolling-average basis. You
must keep a record of the amount of gel coats used per month for which you are using this exemption and copies of calculations showing that the exempt amount does not exceed 1 percent of all gel coat used.

(3) Pure, 100 percent vinylester resin used for skin coats. This exemption does not apply to blends of vinylester and polyester resins used for skin coats. The total resin materials included in the exemption cannot exceed 5 percent by weight of all resin used at your facility on a 12-month rolling-average basis. You must keep a record of the amount of 100 percent vinylester skin coat resin used per month that is eligible for this exemption and copies of calculations showing that the exempt amount does not exceed 5 percent of all resin used.

§ 63.5701 What are my options for complying with the open molding emission limit?

You must use one or more of the options listed in paragraphs (a) through (c) of this section to meet the emission limit in §63.5698 for the resins and gel coats used in open molding operations at your facility.

(a) Maximum achievable control technology (MACT) model point value averaging (emissions averaging) option.

(1) Demonstrate that emissions from the open molding resin and gel coat operations that you average meet the emission limit in §63.5698 using the procedures described in §63.5710. Compliance with this option is based on a 12-month rolling average.

(2) Those operations and materials not included in the emissions average must comply with either paragraph (b) or (c) of this section.

(b) Compliant materials option. Demonstrate compliance by using resins and gel coats that meet the organic HAP content requirements in Table 2 to this subpart. Compliance with this option is based on a 12-month rolling average.

(c) Add-on control option. Use an enclosure and add-on control device, and demonstrate that the resulting emissions meet the emission limit in §63.5698. Compliance with this option is based on control device performance testing and control device monitoring.

§ 63.5704 What are the general requirements for complying with the open molding emission limit?

(a) Emissions averaging option. For those open molding operations and materials complying using the emissions averaging option, you must demonstrate compliance by performing the steps in paragraphs (a)(1) through (5) of this section.

(1) Use the methods specified in §63.5758 to determine the organic HAP content of resins and gel coats.

(2) Complete the calculations described in §63.5710 to show that the organic HAP emissions do not exceed the limit specified in §63.5698.

(3) Keep records as specified in paragraphs (a)(3)(i) through (iv) of this section for each resin and gel coat.

(i) Hazardous air pollutant content.

(ii) Amount of material used per month.

(iii) Application method used for production resin and tooling resin. This record is not required if all production resins and tooling resins are applied with nonatomized technology.

(iv) Calculations performed to demonstrate compliance based on MACT model point values, as described in §63.5710.

(4) Prepare and submit the implementation plan described in §63.5707 to the Administrator and keep it up to date.

(5) Submit semiannual compliance reports to the Administrator as specified in §63.5764.

(b) Compliant materials option. For each open molding operation complying using the compliant materials option, you must demonstrate compliance by performing the steps in paragraphs (b)(1) through (4) of this section.

(1) Use the methods specified in §63.5758 to determine the organic HAP content of resins and gel coats.

(2) Complete the calculations described in §63.5713 to show that the weighted-average organic HAP content does not exceed the limit specified in Table 2 to this subpart.
(3) Keep records as specified in paragraphs (b)(3)(i) through (iv) of this section for each resin and gel coat.

(i) Hazardous air pollutant content.

(ii) Application method for production resin and tooling resin. This record is not required if all production resins and tooling resins are applied with nonatomized technology.

(iii) Amount of material used per month. This record is not required for an operation if all materials used for that operation comply with the organic HAP content requirements.

(iv) Calculations performed, if required, to demonstrate compliance based on weighted-average organic HAP content as described in §63.5713.

(4) Submit semiannual compliance reports to the Administrator as specified in §63.5764.

(c) Add-on control option. If you are using an add-on control device, you must demonstrate compliance by performing the steps in paragraphs (c)(1) through (5) of this section.

(1) Conduct a performance test of the control device as specified in §§63.5719 and 63.5722 to demonstrate initial compliance.

(2) Use the performance test results to determine control device parameters to monitor after the performance test as specified in §63.5725.

(3) Comply with the operating limits specified in §63.5715 and the control device and emission capture system monitoring requirements specified in §63.5725 to demonstrate continuous compliance.

(4) Keep the records specified in §63.5767.

(5) Submit to the Administrator the notifications and reports specified in §§63.5761 and 63.5764.

§ 63.5707 What is an implementation plan for open molding operations and when do I need to prepare one?

(a) You must prepare an implementation plan for all open molding operations for which you comply by using the emissions averaging option described in §63.5704(a).

(b) The implementation plan must describe the steps you will take to bring the open molding operations covered by this subpart into compliance. For each operation included in the average, your implementation plan must include the elements listed in paragraphs (b)(1) through (3) of this section.

(1) A description of each operation included in the average.

(2) The maximum organic HAP content of the materials used, the application method used (if any atomized resin application methods are used in the average), and any other methods used to control emissions.

(3) Calculations showing that the operations covered by the plan will comply with the open molding emission limit specified in §63.5698.

(c) You must submit the implementation plan to the Administrator with the notification of compliance status specified in §63.5761.

(d) You must keep the implementation plan on site and provide it to the Administrator when asked.

(e) If you revise the implementation plan, you must submit the revised plan with your next semiannual compliance report specified in §63.5764.

§ 63.5710 How do I demonstrate compliance using emissions averaging?

(a) Compliance using the emissions averaging option is demonstrated on a 12-month rolling-average basis and is determined at the end of every month (12 times per year). The first 12-month rolling-average period begins on the compliance date specified in §63.5695.

(b) At the end of the twelfth month after your compliance date and at the end of every subsequent month, use equation 1 of this section to demonstrate that the organic HAP emissions from those operations included in the average do not exceed the
emission limit in §63.5698 calculated for the same 12-month period. (Include terms in equation 1 of §63.5698 and equation 1 of this section for only those operations and materials included in the average.)

\[
HAP \text{ emission} = \left[\left(PV_{IR} \right) \left(M_{IR} \right) + \left(PV_{PG} \right) \left(M_{PG} \right) + \left(PV_{CG} \right) \left(M_{CG} \right) + \left(PV_{TR} \right) \left(M_{TR} \right) + \left(PV_{TG} \right) \left(M_{TG} \right) \right] \quad (Eq. 1)
\]

Where:
HAP emissions = Organic HAP emissions calculated using MACT model point values for each operation included in the average, kilograms.
\(PV_{IR} \) = Weighted-average MACT model point value for production resin used in the past 12 months, kilograms per megagram.
\(M_{IR} \) = Mass of production resin used in the past 12 months, megagrams.
\(PV_{PG} \) = Weighted-average MACT model point value for pigmented gel coat used in the past 12 months, kilograms per megagram.
\(M_{PG} \) = Mass of pigmented gel coat used in the past 12 months, megagrams.
\(PV_{CG} \) = Weighted-average MACT model point value for clear gel coat used in the past 12 months, kilograms per megagram.
\(M_{CG} \) = Mass of clear gel coat used in the past 12 months, megagrams.
\(PV_{TR} \) = Weighted-average MACT model point value for tooling resin used in the past 12 months, kilograms per megagram.
\(M_{TR} \) = Mass of tooling resin used in the past 12 months, megagrams.
\(PV_{TG} \) = Weighted-average MACT model point value for tooling gel coat used in the past 12 months, kilograms per megagram.
\(M_{TG} \) = Mass of tooling gel coat used in the past 12 months, megagrams.

(c) At the end of every month, use equation 2 of this section to compute the weighted-average MACT model point value for each open molding resin and gel coat operation included in the average.

\[
PV_{OP} = \frac{\sum_{i=1}^{n} (M_i \cdot PV_i)}{\sum_{i=1}^{n} M_i} \quad (Eq. 2)
\]

Where:
\(PV_{OP} \) = weighted-average MACT model point value for each open molding operation (\(PV_{IR}, PV_{PG}, PV_{CG}, PV_{TR}, \) and \(PV_{TG} \)) included in the average, kilograms of HAP per megagram of material applied.
\(M_i \) = mass of resin or gel coat \(i \) used within an operation in the past 12 months, megagrams.
\(n \) = number of different open molding resins and gel coats used within an operation in the past 12 months.
\(PV_i \) = the MACT model point value for resin or gel coat \(i \) used within an operation in the past 12 months, kilograms of HAP per megagram of material applied.

(d) You must use the equations in Table 3 to this subpart to calculate the MACT model point value (\(PV_i \)) for each resin and gel coat used in each operation in the past 12 months.

(e) If the organic HAP emissions, as calculated in paragraph (b) of this section, are less than the organic HAP limit calculated in §63.5698(b) for the same 12-month period, then you are in compliance with the emission limit in §63.5698 for those operations and materials included in the average.

§ 63.5713 How do I demonstrate compliance using compliant materials?

(a) Compliance using the organic HAP content requirements listed in Table 2 to this subpart is based on a 12-month rolling average that is calculated at the end of every month. The first 12-month rolling-average period begins on the compliance date specified in §63.5695. If you are using filled material (production resin or tooling resin), you must comply according to the procedure described in §63.5714.

(b) At the end of the twelfth month after your compliance date and at the end of every subsequent month, review the organic HAP contents of the resins and gel coats used in the past 12 months in each operation. If all resins and gel coats used in an operation have organic HAP contents no greater than the applicable organic HAP content limits in Table 2 to this subpart, then you are in compliance with the emission limit specified in §63.5698 for that 12-month period for that operation. In addition, you do not need to complete the weighted-average organic HAP content calculation contained in paragraph (c) of this section for that operation.
(c) At the end of every month, you must use equation 1 of this section to calculate the weighted-average organic HAP content for all resins and gel coats used in each operation in the past 12 months.

\[
\text{Weighted-Average HAP Content (\%) = \frac{\sum_{i=1}^{n} (M_i \cdot HAP_i) \cdot \frac{100}{\sum_{i=1}^{n} M_i}}{n}}
\]

Where:
- \(M_i\) = mass of open molding resin or gel coat \(i\) used in the past 12 months in an operation, megagrams.
- \(HAP_i\) = Organic HAP content, by weight percent, of open molding resin or gel coat \(i\) used in the past 12 months in an operation.
- \(n\) = number of different open molding resins or gel coats used in the past 12 months in an operation.

(d) If the weighted-average organic HAP content does not exceed the applicable organic HAP content limit specified in Table 2 to this subpart, then you are in compliance with the emission limit specified in §63.5698.

§ 63.5714 How do I demonstrate compliance if I use filled resins?

(a) If you are using a filled production resin or filled tooling resin, you must demonstrate compliance for the filled material on an as-applied basis using equation 1 of this section.

\[PV_F = PV_u \times \frac{100 - \% \text{ Filler}}{100}\]

Where:
- \(PV_F\) = The as-applied MACT model point value for a filled production resin or tooling resin, kilograms organic HAP per megagram of filled material.
- \(PV_u\) = The MACT model point value for the neat (unfilled) resin, before filler is added, as calculated using the formulas in Table 3 to this subpart.
- \(\% \text{ Filler}\) = The weight-percent of filler in the as-applied filled resin system.

(b) If the filled resin is used as a production resin and the value of \(PV_F\) calculated by equation 1 of this section does not exceed 46 kilograms of organic HAP per megagram of filled resin applied, then the filled resin is in compliance.

(c) If the filled resin is used as a tooling resin and the value of \(PV_F\) calculated by equation 1 of this section does not exceed 54 kilograms of organic HAP per megagram of filled resin applied, then the filled resin is in compliance.

(d) If you are including a filled resin in the emissions averaging procedure described in §63.5710, then use the value of \(PV_F\) calculated using equation 1 of this section for the value of \(PV_i\) in equation 2 of §63.5710.

Demonstrating Compliance for Open Molding Operations Controlled by Add-On Control Devices

§ 63.5715 What operating limits must I meet?

(a) For open molding operations on which you use a thermal oxidizer as an add-on control device, you must meet the operating limits specified in Table 4 to this subpart that apply to the emission capture system and thermal oxidizer. You must establish the operating limits during the performance test according to the procedures in §63.5725. You must meet the operating limits at all times after you establish them.

(b) If you use an add-on control device other than a thermal oxidizer, or wish to monitor an alternative parameter and comply with a different operating limit, you must apply to the Administrator for approval of alternative monitoring under §63.8(f).

§ 63.5716 When must I conduct a performance test?

(a) If your source is an existing source, you must complete the add-on control device performance test no later than the compliance date specified in §63.5695.
(b) If your source is a new source, you must complete the add-on control device performance test no later than 180 days after the compliance date specified in §63.5695.

(c) You must conduct a performance test every 5 years as part of renewing your 40 CFR part 70 or 71 operating permit.

§ 63.5719 How do I conduct a performance test?

(a) You must capture the emissions using a permanent enclosure (such as a spray booth or similar containment device) and direct the captured emissions to the add-on control device.

(b) You must measure emissions as specified in paragraph (b)(1) or (2) of this section.

(1) If the enclosure vented to the control device is a permanent total enclosure as defined in Method 204 of appendix M to 40 CFR part 51, then you may measure emissions only at the outlet of the control device.

(2) If the permanent enclosure vented to the control device is not a total enclosure, you must build a temporary total enclosure, as defined in Method 204 of appendix M to 40 CFR part 51, around the permanent enclosure. You must then simultaneously measure emissions from the control device outlet and the emissions from the temporary total enclosure outlet. You determine compliance from the combined emissions from the control device outlet and the temporary total enclosure outlet.

(c) You must conduct the control device performance test using the emission measurement methods specified in paragraphs (c)(1) through (4) of this section.

(1) Use either Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select the sampling sites.

(2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.

(3) Use Method 18 of appendix A to 40 CFR part 60 to measure organic HAP emissions or use Method 25A of appendix A to 40 CFR part 60 to measure total gaseous organic emissions as a surrogate for total organic HAP emissions. If you use Method 25A, you must assume that all gaseous organic emissions measured as carbon are organic HAP emissions. If you use Method 18 and the number of organic HAP in the exhaust stream exceeds five, you must take into account the use of multiple chromatographic columns and analytical techniques to get an accurate measure of at least 90 percent of the total organic HAP mass emissions. Do not use Method 18 to measure organic HAP emissions from a combustion device; use instead Method 25A and assume that all gaseous organic mass emissions measured as carbon are organic HAP emissions.

(4) You may use American Society for Testing and Materials (ASTM) D6420–99 (available for purchase from at least one of the following addresses: 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.) in lieu of Method 18 of 40 CFR part 60, appendix A, under the conditions specified in paragraphs (c)(4)(i) through (iii) of this section.

(i) If the target compound(s) is listed in Section 1.1 of ASTM D6420–99 and the target concentration is between 150 parts per billion by volume and 100 parts per million by volume.

(ii) If the target compound(s) is not listed in Section 1.1 of ASTM D6420–99, but is potentially detected by mass spectrometry, an additional system continuing calibration check after each run, as detailed in Section 10.5.3 of ASTM D6420–99, must be followed, met, documented, and submitted with the performance test report even if you do not use a moisture condenser or the compound is not considered soluble.

(iii) If a minimum of one sample/analysis cycle is completed at least every 15 minutes.

(d) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates.

(e) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device.

§ 63.5722 How do I use the performance test data to demonstrate initial compliance?

 Demonstrate initial compliance with the open molding emission limit as described in paragraphs (a) through (c) of this section:
(a) Calculate the organic HAP limit you must achieve using equation 1 of §63.5698. For determining initial compliance, the organic HAP limit is based on the amount of material used during the performance test, in megagrams, rather than during the past 12 months. Calculate the limit using the megagrams of resin and gel coat applied inside the enclosure during the three runs of the performance test and equation 1 of §63.5698.

(b) Add the total measured emissions, in kilograms, from all three of the 1-hour runs of the performance test.

(c) If the total emissions from the three 1-hour runs of the performance test are less than the organic HAP limit calculated in paragraph (a) of this section, then you have demonstrated initial compliance with the emission limit in §63.5698 for those operations performed in the enclosure and controlled by the add-on control device.
§ 63.5725 What are the requirements for monitoring and demonstrating continuous compliance?

(a) You must establish control device parameters that indicate proper operation of the control device.

(b) You must install, operate, and maintain a continuous parameter monitoring system as specified in paragraphs (b)(1) through (8) of this section.

(1) The continuous parameter monitoring system must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four successive cycles of operation to have a valid hour of data.

(2) You must have valid data from at least 90 percent of the hours during which the process operated.

(3) You must determine the average of all recorded readings for each successive 3-hour period of the emission capture system and add-on control device operation.

(4) You must maintain the continuous parameter monitoring system at all times and have available necessary parts for routine repairs of the monitoring equipment.

(5) You must operate the continuous parameter monitoring system and collect emission capture system and add-on control device parameter data at all times that a controlled open molding operation is being performed, except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments).

(6) You must not use emission capture system or add-on control device parameter data recorded during monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities when calculating data averages. You must use all the data collected during all other periods in calculating the data averages for determining compliance with the emission capture system and add-on control device operating limits.

(7) You must record the results of each inspection, calibration, and validation check.

(8) Any period for which the monitoring system is out-of-control, as defined in §63.7(d)(7), or malfunctioning, and data are not available for required calculations is a deviation from the monitoring requirements. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the continuous parameter monitoring system to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) Enclosure bypass line. You must meet the requirements of paragraphs (c)(1) and (2) of this section for each emission capture system enclosure that contains bypass lines that could divert emissions away from the add-on control device to the atmosphere.

(1) You must monitor or secure the valve or closure mechanism controlling the bypass line in a nondiverting position in such a way that the valve or closure mechanism cannot be opened without creating a record that the valve was opened. The method used to monitor or secure the valve or closure mechanism must meet one of the requirements specified in paragraphs (c)(1)(i) through (iv) of this section.

(i) Flow control position indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow control position indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. The time of occurrence and flow control position must be recorded, as well as every time the flow direction is changed. The flow control position indicator must be installed at the entrance to any bypass line that could divert the emissions away from the add-on control device to the atmosphere.

(ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal or closure mechanism at least once every month to ensure that the valve is maintained in the closed position, and the emissions are not diverted away from the add-on control device to the atmosphere.

(iii) Valve closure continuous monitoring. Ensure that any bypass line valve is in the closed (non-diverting) position through monitoring of valve position at least once every 15 minutes. You must inspect the monitoring system at least once every month to verify that the monitor will indicate valve position.

(iv) Automatic shutdown system. Use an automatic shutdown system in which the open molding operation is stopped when flow is diverted by the bypass line away from the add-on control device to the atmosphere when the open molding operation is running. You must inspect the automatic shutdown system at least once every month to verify that it will detect diversions of flow and shut down the open molding operation.
(2) If any bypass line is opened, you must include a description of why the bypass line was opened and the length of time it remained open in the semiannual compliance reports required in §63.5764(d).

(d) **Thermal oxidizers.** If you are using a thermal oxidizer or incinerator as an add-on control device, you must comply with the requirements in paragraphs (d)(1) through (6) of this section.

(1) You must install a combustion temperature monitoring device in the firebox of the thermal oxidizer or incinerator, or in the duct immediately downstream of the firebox before any substantial heat exchange occurs. You must meet the requirements in paragraphs (b) and (d)(1)(i) through (vii) of this section for each temperature monitoring device.

(i) Locate the temperature sensor in a position that provides a representative temperature.

(ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger.

(iii) Shield the temperature sensor system from electromagnetic interference and chemical contaminants.

(iv) If a chart recorder is used, it must have a sensitivity in the minor division of at least 10 °C.

(v) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor must yield a reading within 16.7 °C of the process temperature sensor's reading.

(vi) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor.

(vii) At least monthly, inspect all components for integrity and all electrical connections for continuity, oxidation, and galvanic corrosion.

(2) Before or during the performance test, you must conduct a performance evaluation of the combustion temperature monitoring system according to §63.8(e). Section 63.8(e) specifies the general requirements for continuous monitoring systems and requirements for notifications, the site-specific performance evaluation plan, conduct of the performance evaluation, and reporting of performance evaluation results.

(3) During the performance test required by §63.5716, you must monitor and record the combustion temperature and determine the average combustion temperature for the three 1-hour test runs. This average temperature is the minimum operating limit for the thermal oxidizer.

(4) Following the performance test, you must continuously monitor the combustion temperature and record the average combustion temperature no less frequently than every 15 minutes.

(5) You must operate the incinerator or thermal oxidizer so that the average combustion temperature in any 3-hour period does not fall below the average combustion temperature recorded during the performance test.

(6) If the average combustion temperature in any 3-hour period falls below the average combustion temperature recorded during the performance test, or if you fail to collect the minimum data specified in paragraph (d)(4) of this section, it is a deviation for the operating limit in §63.5715.

(e) **Other control devices.** If you are using a control device other than a thermal oxidizer, then you must comply with alternative monitoring requirements and operating limits approved by the Administrator under §63.8(f).

(f) **Emission capture system.** For each enclosure in the emission capture system, you must comply with the requirements in paragraphs (f)(1) through (5) of this section.

(1) You must install a device to measure and record either the flow rate or the static pressure in the duct from each enclosure to the add-on control device.

(2) You must install a device to measure and record the pressure drop across at least one opening in each enclosure.

(3) Each flow measurement device must meet the requirements in paragraphs (b) and (f)(3)(i) through (iv) of this section.
(i) Locate the flow sensor in a position that provides a representative flow measurement in the duct between each enclosure in the emission capture system and the add-on control device.

(ii) Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances.

(iii) Conduct a flow sensor calibration check at least semiannually.

(iv) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.

(4) For each pressure measurement device, you must comply with the requirements in paragraphs (a) and (f)(4)(i) through (vii) of this section.

(i) Locate each pressure drop sensor in or as close to a position that provides a representative measurement of the pressure drop across each enclosure opening you are monitoring.

(ii) Locate each duct static pressure sensor in a position that provides a representative measurement of the static pressure in the duct between the enclosure and control device.

(iii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion.

(iv) Check the pressure tap for plugging daily.

(v) Use an inclined manometer with a measurement sensitivity of 0.0004 millimeters mercury (mmHg) to check gauge calibration quarterly and transducer calibration monthly.

(vi) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range or install a new pressure sensor.

(vii) At least monthly, inspect all components for integrity, all electrical connections for continuity, and all mechanical connections for leakage.

(5) For each capture device that is not part of a permanent total enclosure as defined in Method 204 in appendix M to 40 CFR part 51, you must establish an operating limit for either the gas volumetric flow rate or duct static pressure, as specified in paragraphs (f)(5)(i) and (ii) of this section. You must also establish an operating limit for pressure drop across at least one opening in each enclosure according to paragraphs (f)(5)(iii) and (iv) of this section. The operating limits for a permanent total enclosure are specified in Table 4 to this subpart.

(i) During the emission test required by §63.5716 and described in §63.5719, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate enclosure in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the enclosure and the add-on control device inlet.

(ii) Following the emission test, calculate and record the average gas volumetric flow rate or duct static pressure for the three test runs for each enclosure. This average gas volumetric flow rate or duct static pressure is the minimum operating limit for that specific enclosure.

(iii) During the emission test required by §63.5716 and described in §63.5719, you must monitor and record the pressure drop across the opening of each enclosure in your emission capture system at least once every 15 minutes during each of the three test runs.

(iv) Following the emission test, calculate and record the average pressure drop for the three test runs for each enclosure. This average pressure drop is the minimum operating limit for that specific enclosure.

Standards for Closed Molding Resin Operations

§ 63.5728 What standards must I meet for closed molding resin operations?

(a) If a resin application operation meets the definition of closed molding specified in §63.5779, there is no requirement to reduce emissions from that operation.

(b) If the resin application operation does not meet the definition of closed molding, then you must comply with the limit for open molding resin operations specified in §63.5698.
(c) Open molding resin operations that precede a closed molding operation must comply with the limit for open molding resin and gel coat operations specified in §63.5698. Examples of these operations include gel coat or skin coat layers that are applied before lamination is performed by closed molding.

Standards for Resin and Gel Coat Mixing Operations

§ 63.5731 What standards must I meet for resin and gel coat mixing operations?

(a) All resin and gel coat mixing containers with a capacity equal to or greater than 208 liters, including those used for on-site mixing of putties and polyputties, must have a cover with no visible gaps in place at all times.

(b) The work practice standard in paragraph (a) of this section does not apply when material is being manually added to or removed from a container, or when mixing or pumping equipment is being placed in or removed from a container.

(c) To demonstrate compliance with the work practice standard in paragraph (a) of this section, you must visually inspect all mixing containers subject to this standard at least once per month. The inspection should ensure that all containers have covers with no visible gaps between the cover and the container, or between the cover and equipment passing through the cover.

(d) You must keep records of which mixing containers are subject to this standard and the results of the inspections, including a description of any repairs or corrective actions taken.

Standards for Resin and Gel Coat Application Equipment Cleaning Operations

§ 63.5734 What standards must I meet for resin and gel coat application equipment cleaning operations?

(a) For routine flushing of resin and gel coat application equipment (e.g., spray guns, flowcoaters, brushes, rollers, and squeegees), you must use a cleaning solvent that contains no more than 5 percent organic HAP by weight. For removing cured resin or gel coat from application equipment, no organic HAP content limit applies.

(b) You must store organic HAP-containing solvents used for removing cured resin or gel coat in containers with covers. The covers must have no visible gaps and must be in place at all times, except when equipment to be cleaned is placed in or removed from the container. On containers with a capacity greater than 7.6 liters, the distance from the top of the container to the solvent surface must be no less than 0.75 times the diameter of the container. Containers that store organic HAP-containing solvents used for removing cured resin or gel coat are exempt from the requirements of 40 CFR part 63, subpart T. Cured resin or gel coat means resin or gel coat that has changed from a liquid to a solid.

§ 63.5737 How do I demonstrate compliance with the resin and gel coat application equipment cleaning standards?

(a) Determine and record the organic HAP content of the cleaning solvents subject to the standards specified in §63.5734 using the methods specified in §63.5758.

(b) If you recycle cleaning solvents on site, you may use documentation from the solvent manufacturer or supplier or a measurement of the organic HAP content of the cleaning solvent as originally obtained from the solvent supplier for demonstrating compliance, subject to the conditions in §63.5758 for demonstrating compliance with organic HAP content limits.

(c) At least once per month, you must visually inspect any containers holding organic HAP-containing solvents used for removing cured resin and gel coat to ensure that the containers have covers with no visible gaps. Keep records of the monthly inspections and any repairs made to the covers.

Standards for Carpet and Fabric Adhesive Operations

§ 63.5740 What emission limit must I meet for carpet and fabric adhesive operations?

(a) You must use carpet and fabric adhesives that contain no more than 5 percent organic HAP by weight.

(b) To demonstrate compliance with the emission limit in paragraph (a) of this section, you must determine and record the organic HAP content of the carpet and fabric adhesives using the methods in §63.5758.

Standards for Aluminum Recreational Boat Surface Coating Operations

§ 63.5743 What standards must I meet for aluminum recreational boat surface coating operations?
(a) For aluminum wipedown solvent operations and aluminum surface coating operations, you must comply with either the separate emission limits in paragraphs (a)(1) and (2) of this section, or the combined emission limit in paragraph (a)(3) of this section. Compliance with these limitations is based on a 12-month rolling average that is calculated at the end of every month.

(1) You must limit emissions from aluminum wipedown solvents to no more than 0.33 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined. No limit applies when cleaning surfaces are receiving decals or adhesive graphics.

(2) You must limit emissions from aluminum recreational boat surface coatings (including thinners, activators, primers, topcoats, and clear coats) to no more than 1.22 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined.

(3) You must limit emissions from the combined aluminum surface coatings and aluminum wipedown solvents to no more than 1.55 kilograms of organic HAP per liter of total coating solids applied from aluminum primers, clear coats, and top coats combined.

(b) You must comply with the work practice standard in paragraph (b)(1), (2), (3), or (4) of this section when cleaning aluminum coating spray guns with solvents containing more than 5 percent organic HAP by weight.

(1) Clean spray guns in an enclosed device. Keep the device closed except when you place spray guns in or remove them from the device.

(2) Disassemble the spray gun and manually clean the components in a vat. Keep the vat closed when you are not using it.

(3) Clean spray guns by placing solvent in the pressure pot and forcing the solvent through the gun. Do not use atomizing air during this procedure. Direct the used cleaning solvent from the spray gun into a container that you keep closed when you are not using it.

(4) An alternative gun cleaning process or technology approved by the Administrator according to the procedures in §63.6(g).

§ 63.5746 How do I demonstrate compliance with the emission limits for aluminum wipedown solvents and aluminum coatings?

To demonstrate compliance with the emission limits for aluminum wipedown solvents and aluminum coatings specified in §63.5743(a), you must meet the requirements of paragraphs (a) through (f) of this section.

(a) Determine and record the organic HAP content (kilograms of organic HAP per kilogram of material, or weight fraction) of each aluminum wipedown solvent and aluminum coating (including primers, topcoats, clear coats, thinners, and activators). Use the methods in §63.5758 to determine organic HAP content.

(b) Use the methods in §63.5758(b) to determine the solids content (liters of solids per liter of coating, or volume fraction) of each aluminum surface coating, including primers, topcoats, and clear coats. Keep records of the solids content.

(c) Use the methods in §63.5758(c) to determine the density of each aluminum surface coating and wipedown solvent.

(d) Compliance is based on a 12-month rolling average calculated at the end of every month. The first 12-month rolling-average period begins on the compliance date specified in §63.5695.

(e) At the end of the twelfth month after your compliance date and at the end of every subsequent month, use the procedures in §63.5749 to calculate the organic HAP from aluminum wipedown solvents per liter of coating solids, and use the procedures in §63.5752 to calculate the kilograms of organic HAP from aluminum coatings per liter of coating solids.

(f) Keep records of the calculations used to determine compliance.

(g) Approval of alternative means of demonstrating compliance. You may apply to the Administrator for permission to use an alternative means (such as an add-on control system) of limiting emissions from aluminum wipedown solvent and coating operations and demonstrating compliance with the emission limits in §63.5743(a).

(1) The application must include the information listed in paragraphs (g)(1)(i) through (iii) of this section.
(i) An engineering evaluation that compares the emissions using the alternative means to the emissions that would result from using the strategy specified in paragraphs (a) through (e) of this section. The engineering evaluation may include the results from an emission test that accurately measures the capture efficiency and control device efficiency achieved by the control system and the composition of the associated coatings so that the emissions comparison can be made.

(ii) A proposed monitoring protocol that includes operating parameter values to be monitored for compliance and an explanation of how the operating parameter values will be established through a performance test.

(iii) Details of appropriate recordkeeping and reporting procedures.

(2) The Administrator will approve the alternative means of limiting emissions if the Administrator determines that HAP emissions will be no greater than if the source uses the procedures described in paragraphs (a) through (e) of this section to demonstrate compliance.

(3) The Administrator's approval may specify operation, maintenance, and monitoring requirements to ensure that emissions from the regulated operations are no greater than those that would otherwise result from regulated operations in compliance with this subpart.

§ 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents?

(a) Use equation 1 of this section to calculate the weighted-average organic HAP content of aluminum wipedown solvents used in the past 12 months.

\[
HAP_{WD} = \frac{\sum_{j=1}^{n} (Vol_j)(D_j)(W_j)}{\sum_{i=1}^{m} (Vol_i)(Solids_i)} \quad (Eq. 1)
\]

Where:
- \(HAP_{WD}\) = weighted-average organic HAP content of aluminum wipedown solvents, kilograms of HAP per liter of total coating solids from aluminum primers, top coats, and clear coats.
- \(n\) = number of different wipedown solvents used in the past 12 months.
- \(Vol\) = volume of aluminum wipedown solvent \(j\) used in the past 12 months, liters.
- \(D\) = density of aluminum wipedown solvent \(j\), kilograms per liter.
- \(W\) = mass fraction of organic HAP in aluminum wipedown solvent \(j\).
- \(m\) = number of different aluminum surface coatings (primers, top coats, and clear coats) used in the past 12 months.
- \(Vol\) = volume of aluminum primer, top coat, or clear coat \(i\) used in the past 12 months, liters.
- \(Solids\) = solids content aluminum primer, top coat, or clear coat \(i\), liter solids per liter of coating.

(b) Compliance is based on a 12-month rolling average. If the weighted-average organic HAP content does not exceed 0.33 kilograms of organic HAP per liter of total coating solids, then you are in compliance with the emission limit specified in \(\S\)63.5743(a)(1).

§ 63.5752 How do I calculate the organic HAP content of aluminum recreational boat surface coatings?

(a) Use equation 1 of this section to calculate the weighted-average HAP content for all aluminum surface coatings used in the past 12 months.

\[
HAP_{SC} = \frac{\sum_{i=1}^{m} (Vol_i)(D_i)(W_i) + \sum_{i=1}^{D} (Vol_k)(D_k)(W_k)}{\sum_{i=1}^{m} (Vol_i)(Solids_i)} \quad (Eq. 1)
\]

Where:
- \(HAP_{SC}\) = weighted-average organic HAP content for all aluminum coating materials, kilograms of organic HAP per liter of coating solids.
- \(m\) = number of different aluminum primers, top coats, and clear coats used in the past 12 months.
Vol = volume of aluminum primer, top coat, or clear coat i used in the past 12 months, liters.
D = density of coating i, kilograms per liter.
Wi = mass fraction of organic HAP in coating i, kilograms of organic HAP per kilogram of coating.
p = number of different thinners, activators, and other coating additives used in the past 12 months.
Vol_k = total volume of thinner, activator, or additive k used in the past 12 months, liters.
D_k = density of thinner, activator, or additive k, kilograms per liter.
W_k = mass fraction of organic HAP in thinner, activator, or additive k, kilograms of organic HAP per kilogram of thinner or activator.
Solids_i = solids content of aluminum primer, top coat, or clear coat i, liter solids per liter of coating.

(b) Compliance is based on a 12-month rolling average. If the weighted-average organic HAP content does not exceed 1.22 kilograms of organic HAP per liter of coating solids, then you are in compliance with the emission limit specified in §63.5743(a)(2).

§ 63.5753 How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings?

(a) Use equation 1 of this section to calculate the combined weighted-average organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings.

\[HAP_{Combined} = HAP_{WD} + HAP_{SC} \] \(Eq. \ 1 \)

Where:
HAP_{WD} = the weighted-average organic HAP content of aluminum wipedown solvents used in the past 12 months, calculated using equation 1 of §63.5749.
HAP_{SC} = the weighted average organic HAP content of aluminum recreational boat surface coatings used in the past 12 months, calculated using equation 1 of §63.5752.

(b) Compliance is based on a 12-month rolling average. If the combined organic HAP content does not exceed 1.55 kilograms of organic HAP per liter of total coating solids, then you are in compliance with the emission limit specified in §63.5743(a)(3).

§ 63.5755 How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun cleaning work practice standards?

You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or (b) of this section.

(a) Demonstrate that solvents used to clean the aluminum coating spray guns contain no more than 5 percent organic HAP by weight by determining organic HAP content with the methods in §63.5758. Keep records of the organic HAP content determination.

(b) For solvents containing more than 5 percent organic HAP by weight, comply with the requirements in paragraph (b)(1) or (b)(2), and paragraph (b)(3) of this section.

(1) If you are using an enclosed spray gun cleaner, visually inspect it at least once per month to ensure that covers are in place and the covers have no visible gaps when the cleaner is not in use, and that there are no leaks from hoses or fittings.

(2) If you are manually cleaning the gun or spraying solvent into a container that can be closed, visually inspect all solvent containers at least once per month to ensure that the containers have covers and the covers fit with no visible gaps.

(3) Keep records of the monthly inspections and any repairs that are made to the enclosed gun cleaners or the covers.

Methods for Determining Hazardous Air Pollutant Content

§ 63.5758 How do I determine the organic HAP content of materials?

(a) Determine the organic HAP content for each material used. To determine the organic HAP content for each material used in your open molding resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations, you must use one of the options in paragraphs (a)(1) through (6) of this section.
(1) **Method 311 (appendix A to 40 CFR part 63).** You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs (a)(1)(i) and (ii) of this section when determining organic HAP content by Method 311.

(i) Include in the organic HAP total each organic HAP that is measured to be present at 0.1 percent by mass or more for Occupational Safety and Health Administration (OSHA)-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not need to include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value truncated to four places after the decimal point (for example, 0.1234).

(ii) Calculate the total organic HAP content in the test material by adding up the individual organic HAP contents and truncating the result to three places after the decimal point (for example, 0.123).

(2) **Method 24 (appendix A to 40 CFR part 60).** You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum coatings and use that value as a substitute for mass fraction of organic HAP.

(3) **ASTM D1259–85 (Standard Test Method for Nonvolatile Content of Resins).** You may use ASTM D1259–85 (available for purchase from ASTM) to measure the mass fraction of volatile matter of resins and gel coats for open molding operations and use that value as a substitute for mass fraction of organic HAP.

(4) **Alternative method.** You may use an alternative test method for determining mass fraction of organic HAP if you obtain prior approval by the Administrator. You must follow the procedure in §63.7(f) to submit an alternative test method for approval.

(5) **Information from the supplier or manufacturer of the material.** You may rely on information other than that generated by the test methods specified in paragraphs (a)(1) through (4) of this section, such as manufacturer's formulation data, according to paragraphs (a)(5)(i) through (iii) of this section.

(i) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to include it in the organic HAP total.

(ii) If the organic HAP content is provided by the material supplier or manufacturer as a range, then you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content using the methods specified in paragraphs (a)(1) through (4) of this section exceeds the upper limit of the range of the total organic HAP content provided by the material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.

(iii) If the organic HAP content is provided as a single value, you may assume the value is a manufacturing target value and actual organic HAP content may vary from the target value. If a separate measurement of the total organic HAP content using the methods specified in paragraphs (a)(1) through (4) of this section is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to determine compliance.

(6) **Solvent blends.** Solvent blends may be listed as single components for some regulated materials in certifications provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP content of the materials. When detailed organic HAP content data for solvent blends are not available, you may use the values for organic HAP content that are listed in Table 5 or 6 to this subpart. You may use Table 6 to this subpart only if the solvent blends in the materials you use do not match any of the solvent blends in Table 5 to this subpart and you know only whether the blend is either aliphatic or aromatic. However, if test results indicate higher values than those listed in Table 5 or 6 to this subpart, then the test results must be used for determining compliance.

(b) **Determine the volume fraction solids in aluminum recreational boat surface coatings.** To determine the volume fraction of coating solids (liters of coating solids per liter of coating) for each aluminum recreational boat surface coating, you must use one of the methods specified in paragraphs (b)(1) through (3) of this section. If the results obtained with paragraphs (b)(2) or (3) of this section do not agree with those obtained according to paragraph (b)(1) of this section, you must use the results obtained with paragraph (b)(1) of this section to determine compliance.

(1) **ASTM Method D2697–86(1998) or D6093–97.** You may use ASTM Method D2697–86(1998) or D6093–97 (available for purchase from ASTM) to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids.
(2) Information from the supplier or manufacturer of the material. You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer.

(3) Calculation of volume fraction of coating solids. You may determine it using equation 1 of this section:

\[
\text{Solids} = 1 - \frac{m_{\text{volatiles}}}{D_{\text{avg}}} \\
\text{(Eq. 1)}
\]

Where:
- Solids = volume fraction of coating solids, liters coating solids per liter coating.
- \(m_{\text{volatiles}} \) = total volatile matter content of the coating, including organic HAP, volatile organic compounds, water, and exempt compounds, determined according to Method 24 in appendix A of 40 CFR part 60, grams volatile matter per liter coating.
- \(D_{\text{avg}} \) = average density of volatile matter in the coating, grams volatile matter per liter volatile matter, determined from test results using ASTM Method D1475–90 (available for purchase from ASTM), information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475–90 test results and other information sources, the test results will take precedence.

(c) Determine the density of each aluminum recreational boat wipedown solvent and surface coating. Determine the density of all aluminum recreational boat wipedown solvents, surface coatings, thinners, and other additives from test results using ASTM Method D1475–90, information from the supplier or manufacturer of the material, or reference sources providing density or specific gravity data for pure materials. If there is disagreement between ASTM Method D1475–90 test results and other information sources, you must use the test results to demonstrate compliance.

Notifications, Reports, and Records

§ 63.5761 What notifications must I submit and when?

(a) You must submit all of the notifications in Table 7 to this subpart that apply to you by the dates in the table. The notifications are described more fully in 40 CFR part 63, subpart A, General Provisions, referenced in Table 8 to this subpart.

(b) If you change any information submitted in any notification, you must submit the changes in writing to the Administrator within 15 calendar days after the change.

§ 63.5764 What reports must I submit and when?

(a) You must submit the applicable reports specified in paragraphs (b) through (e) of this section. To the extent possible, you must organize each report according to the operations covered by this subpart and the compliance procedure followed for that operation.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the dates in paragraphs (b)(1) through (5) of this section.

(1) If your source is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), the first compliance report must cover the period beginning 12 months after the compliance date specified for your source in §63.5695 and ending on June 30 or December 31, whichever date is the first date following the end of the first 12-month period after the compliance date that is specified for your source in §63.5695. If your source is controlled by an add-on control device, the first compliance report must cover the period beginning on the compliance date specified for your source in §63.5695 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.5695.

(2) The first compliance report must be postmarked or delivered no later than 60 calendar days after the end of the compliance reporting period specified in paragraph (b)(1) of this section.

(3) Each subsequent compliance report must cover the applicable semiannual reporting period from January 1 through June 30 or from July 1 through December 31.

(4) Each subsequent compliance report must be postmarked or delivered no later than 60 calendar days after the end of the semiannual reporting period.
(5) For each affected source that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (4) of this section.

(c) The compliance report must include the information specified in paragraphs (c)(1) through (7) of this section.

(1) Company name and address.

(2) A statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the report.

(3) The date of the report and the beginning and ending dates of the reporting period.

(4) A description of any changes in the manufacturing process since the last compliance report.

(5) A statement or table showing, for each regulated operation, the applicable organic HAP content limit, application equipment requirement, or MACT model point value averaging provision with which you are complying. The statement or table must also show the actual weighted-average organic HAP content or weighted-average MACT model point value (if applicable) for each operation during each of the rolling 12-month averaging periods that end during the reporting period.

(6) If you were in compliance with the emission limits and work practice standards during the reporting period, you must include a statement to that effect.

(7) If you deviated from an emission limit or work practice standard during the reporting period, you must also include the information listed in paragraphs (c)(7)(i) through (iv) of this section in the semiannual compliance report.

(i) A description of the operation involved in the deviation.

(ii) The quantity, organic HAP content, and application method (if relevant) of the materials involved in the deviation.

(iii) A description of any corrective action you took to minimize the deviation and actions you have taken to prevent it from happening again.

(iv) A statement of whether or not your facility was in compliance for the 12-month averaging period that ended at the end of the reporting period.

(d) If your facility has an add-on control device, you must submit semiannual compliance reports and quarterly excess emission reports as specified in §63.10(e). The contents of the reports are specified in §63.10(e).

(e) If your facility has an add-on control device, you must complete a startup, shutdown, and malfunction plan as specified in §63.6(e), and you must submit the startup, shutdown, and malfunction reports specified in §63.10(e)(5).
§ 63.5767 What records must I keep?

You must keep the records specified in paragraphs (a) through (d) of this section in addition to records specified in individual sections of this subpart.

(a) You must keep a copy of each notification and report that you submitted to comply with this subpart.

(b) You must keep all documentation supporting any notification or report that you submitted.

(c) If your facility is not controlled by an add-on control device (i.e., you are complying with organic HAP content limits, application equipment requirements, or MACT model point value averaging provisions), you must keep the records specified in paragraphs (c)(1) through (3) of this section.

(1) The total amounts of open molding production resin, pigmented gel coat, clear gel coat, tooling resin, and tooling gel coat used per month and the weighted-average organic HAP contents for each operation, expressed as weight-percent. For open molding production resin and tooling resin, you must also record the amounts of each applied by atomized and nonatomized methods.

(2) The total amount of each aluminum coating used per month (including primers, top coats, clear coats, thinners, and activators) and the weighted-average organic HAP content as determined in §63.5752.

(3) The total amount of each aluminum wipedown solvent used per month and the weighted-average organic HAP content as determined in §63.5749.

(d) If your facility has an add-on control device, you must keep the records specified in §63.10(b) relative to control device startup, shut down, and malfunction events; control device performance tests; and continuous monitoring system performance evaluations.

§ 63.5770 In what form and for how long must I keep my records?

(a) Your records must be readily available and in a form so they can be easily inspected and reviewed.

(b) You must keep each record for 5 years following the date that each record is generated.

(c) You must keep each record on site for at least 2 years after the date that each record is generated. You can keep the records offsite for the remaining 3 years.

(d) You can keep the records on paper or an alternative media, such as microfilm, computer, computer disks, magnetic tapes, or on microfiche.

Other Information You Need To Know

§ 63.5773 What parts of the General Provisions apply to me?

You must comply with the requirements of the General Provisions in 40 CFR part 63, subpart A, as specified in Table 8 to this subpart.
§ 63.5776 Who implements and enforces this subpart?

(a) If the Administrator has delegated authority to your State or local agency, the State or local agency has the authority to implement and enforce this subpart.

(b) In delegating implementation and enforcement authority of this subpart to a State or local agency under 40 CFR part 63, subpart E, the authorities that are retained by the Administrator of the U.S. EPA and are not transferred to the State or local agency are listed in paragraphs (b)(1) through (4) of this section.

(1) Under §63.6(g), the authority to approve alternatives to the standards listed in paragraphs (b)(1)(i) through (vii) of this section is not delegated.

(i) §63.5698—Emission limit for open molding resin and gel coat operations.

(ii) §63.5728—Standards for closed molding resin operations.

(iii) §63.5731(a)—Standards for resin and gel coat mixing operations.

(iv) §63.5734—Standards for resin and gel coat application equipment cleaning operations.

(v) §63.5740(a)—Emission limit for carpet and fabric adhesive operations.

(vi) §63.5743—Standards for aluminum recreational boat surface coating operations.

(vii) §63.5746(g)—Approval of alternative means of demonstrating compliance with the emission limits for aluminum recreational boat surface coating operations.

(2) Under §63.7(e)(2)(ii) and (f), the authority to approve alternatives to the test methods listed in paragraphs (b)(2)(i) through (iv) of this section is not delegated.

(i) §63.5719(b)—Method for determining whether an enclosure is a total enclosure.

(ii) §63.5719(c)—Methods for measuring emissions from a control device.

(iii) §63.5725(d)(1)—Performance specifications for thermal oxidizer combustion temperature monitors.

(iv) §63.5758—Method for determining hazardous air pollutant content of regulated materials.

(3) Under §63.8(f), the authority to approve major alternatives to the monitoring requirements listed in §63.5725 is not delegated. A “major alternative” is defined in §63.90.

(4) Under §63.10(f), the authority to approve major alternatives to the reporting and recordkeeping requirements listed in §§63.5764, 63.5767, and 63.5770 is not delegated. A “major alternative” is defined in §63.90.

Definitions

§ 63.5779 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act, in §63.2, and in this section as follows:

Add-on control means an air pollution control device, such as a thermal oxidizer, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere.

Administrator means the Administrator of the United States Environmental Protection Agency (U.S. EPA) or an authorized representative (for example, a State delegated the authority to carry out the provisions of this subpart).

Aluminum recreational boat means any marine or freshwater recreational boat that has a hull or deck constructed primarily of aluminum. A recreational boat is a vessel which by design and construction is intended by the manufacturer to be operated primarily for pleasure, or to be leased, rented or chartered to another for the latter's pleasure (rather than for commercial or military purposes); and whose major structural components are fabricated and assembled in an indoor, production-line manufacturing plant or similar land-side operation and not in a dry dock, graving dock, or marine railway on the navigable waters of the United States.
Aluminum recreational boat surface coating operation means the application of primers or top coats to aluminum recreational boats. It also includes the application of clear coats over top coats. Aluminum recreational boat surface coating operations do not include the application of wood coatings or antifoulant coatings to aluminum recreational boats.

Aluminum coating spray gun cleaning means the process of flushing or removing paints or coatings from the interior or exterior of a spray gun used to apply aluminum primers, clear coats, or top coats to aluminum recreational boats.

Aluminum wipedown solvents means solvents used to remove oil, grease, welding smoke, or other contaminants from the aluminum surfaces of a boat before priming or painting. Aluminum wipedown solvents contain no coating solids; aluminum surface preparation materials that contain coating solids are considered coatings for the purpose of this subpart and are not wipedown solvents.

Antifoulant coating means any coating that is applied to the underwater portion of a boat specifically to prevent or reduce the attachment of biological organisms and that is registered with EPA as a pesticide under the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. section 136, et seq.). For the purpose of this subpart, primers used with antifoulant coatings to prepare the surface to accept the antifoulant coating are considered antifoulant coatings.

Assembly adhesive means any chemical material used in the joining of one fiberglass, metal, foam, or wood parts to another to form a temporary or permanently bonded assembly. Assembly adhesives include, but are not limited to, methacrylate adhesives and putties made from polyester or vinylester resin mixed with inert fillers or fibers.

Atomized resin application means a resin application technology in which the resin leaves the application equipment and breaks into droplets or an aerosol as it travels from the application equipment to the surface of the part. Atomized resin application includes, but is not limited to, resin spray guns and resin chopper spray guns.

Boat means any type of vessel, other than a seaplane, that can be used for transportation on the water.

Boat manufacturing facility means a facility that manufactures the hulls or decks of boats from fiberglass or aluminum or assembles boats from premanufactured hulls and decks, or builds molds to make fiberglass hulls or decks. A facility that manufactures only parts of boats (such as hatches, seats, or lockers) or boat trailers, but no boat hulls or decks or molds for fiberglass boat hulls or decks, is not considered a boat manufacturing facility for the purpose of this subpart.

Carpet and fabric adhesive means any chemical material that permanently attaches carpet, fabric, or upholstery to any surface of a boat.

Clear gel coat means gel coats that are clear or translucent so that underlying colors are visible. Clear gel coats are used to manufacture parts for sale. Clear gel coats do not include tooling gel coats used to build or repair molds.

Closed molding means any molding process in which pressure is used to distribute the resin through the reinforcing fabric placed between two mold surfaces to either saturate the fabric or fill the mold cavity. The pressure may be clamping pressure, fluid pressure, atmospheric pressure, or vacuum pressure used either alone or in combination. The mold surfaces may be rigid or flexible. Closed molding includes, but is not limited to, compression molding with sheet molding compound, infusion molding, resin injection molding (RIM), vacuum-assisted resin transfer molding (VARTM), resin transfer molding (RTM), and vacuum-assisted compression molding. Processes in which a closed mold is used only to compact saturated fabric or remove air or excess resin from the fabric (such as in vacuum bagging), are not considered closed molding. Open molding steps, such as application of a gel coat or skin coat layer by conventional open molding prior to a closed molding process, are not closed molding.

Cured resin and gel coat means resin or gel coat that has been polymerized and changed from a liquid to a solid.

Deviation means any instance in which an affected source subject to this subpart or an owner or operator of such a source: (1) Fails to meet any requirement or obligation established by this subpart, including, but not limited to, any emission limit, operating limit, or work practice requirement; (2) Fails to meet any term or condition which is adopted to implement an applicable requirement in this subpart and which is included in the operating permit for any affected source required to obtain such permit; or (3) Fails to meet any emission limit, operating limit, or work practice requirement in this subpart during any startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart.

Enclosure means a structure, such as a spray booth, that surrounds a source of emissions and captures and directs the emissions to an add-on control device.
Fiberglass boat means a vessel in which either the hull or deck is built from a composite material consisting of a thermosetting resin matrix reinforced with fibers of glass, carbon, aramid, or other material.

Fiberglass hull and deck coatings means coatings applied to the exterior or interior surface of fiberglass boat hulls and decks on the completed boat. Polyester and vinylester resins and gel coats used in building fiberglass parts are not fiberglass hull and deck coatings for the purpose of this subpart.

Filled resin means a resin to which an inert material has been added to change viscosity, density, shrinkage, or other physical properties.

Gel coat means a thermosetting resin surface coating containing styrene (Chemical Abstract Service or CAS No. 100–42–5) or methyl methacrylate (CAS No. 80–62–6), either pigmented or clear, that provides a cosmetic enhancement or improves resistance to degradation from exposure to the elements. Gel coat layers do not contain any reinforcing fibers and gel coats are applied directly to mold surfaces or to a finished laminate.

Hazardous air pollutant or HAP means any air pollutant listed in, or pursuant to section 112(b) of the Clean Air Act.

Hazardous air pollutant content or HAP content means the amount of HAP contained in a regulated material at the time it is applied to the part being manufactured. If no HAP is added to a material as a thinner or diluent, then the HAP content is the same as the HAP content of the material as purchased from the supplier. For resin and gel coat, HAP content does not include any HAP contained in the catalyst added to the resin or gel coat during application to initiate curing.

Hazardous air pollutant data sheet (HDS) means documentation furnished by a material supplier or an outside laboratory to provide the organic HAP content of the material by weight, measured using an EPA Method, manufacturer's formulation data, or an equivalent method. For aluminum coatings, the HDS also documents the solids content by volume, determined from the manufacturer's formulation data. The purpose of the HDS is to help the affected source in showing compliance with the organic HAP content limits contained in this subpart. The HDS must state the maximum total organic HAP concentration, by weight, of the material. It must include any organic HAP concentrations equal to or greater than 0.1 percent by weight for individual organic HAP that are carcinogens, as defined by the Occupational Safety and Health Administration Hazard Communication Standard (29 CFR part 1910), and 1.0 percent by weight for all other individual organic HAP, as formulated. The HDS must also include test conditions if EPA Method 311 is used for determining organic HAP content.

Maximum achievable control technology (MACT) model point value means a number calculated for open molding operations that is a surrogate for emissions and is used to determine if your open molding operations are in compliance with the provisions of this subpart. The units for MACT model point values are kilograms of organic HAP per megagram of resin or gel coat applied.

Manufacturer's certification means documentation furnished by a material supplier that shows the organic HAP content of a material and includes a HDS.

Mold means the cavity or surface into or on which gel coat, resin, and fibers are placed and from which finished fiberglass parts take their form.

Mold sealing and release agents means materials applied to a mold to seal, polish, and lubricate the mold to prevent parts from sticking to the mold. Mold sealers, waxes, and glazing and buffing compounds are considered mold sealing and release agents for the purposes of this subpart.

Mold stripping and cleaning solvents means materials used to remove mold sealing and release agents from a mold before the mold surface is repaired, polished, or lubricated during normal mold maintenance.

Month means a calendar month.

Neat resin means a resin to which no filler has been added.

Nonatomized resin application means any application technology in which the resin is not broken into droplets or an aerosol as it travels from the application equipment to the surface of the part. Nonatomized resin application technology includes, but is not limited to, flowcoaters, chopper flowcoaters, pressure fed resin rollers, resin impregnators, and hand application (for example, paint brush or paint roller).

Open molding resin and gel coat operation means any process in which the reinforcing fibers and resin are placed in the mold and are open to the surrounding air while the reinforcing fibers are saturated with resin. For the purposes of this subpart, open molding includes operations in which a vacuum bag or similar cover is used to compress an uncured laminate to remove air bubbles or excess resin, or to achieve a bond between a core material and a laminate.
Pigmented gel coat means opaque gel coats used to manufacture parts for sale. Pigmented gel coats do not include tooling gel coats used to build or repair molds.

Production resin means any resin used to manufacture parts for sale. Production resins do not include tooling resins used to build or repair molds, or assembly adhesives as defined in this section.

Recycled resin and gel coat application equipment cleaning solvent means cleaning solvents recycled on-site or returned to the supplier or another party to remove resin or gel coat residues so that the solvent can be reused.

Research and development activities means:
1. Activities conducted at a laboratory to analyze air, soil, water, waste, or product samples for contaminants, environmental impact, or quality control;
2. Activities conducted to test more efficient production processes or methods for preventing or reducing adverse environmental impacts, provided that the activities do not include the production of an intermediate or final product for sale or exchange for commercial profit, except in a de minimis manner; and
3. Activities conducted at a research or laboratory facility that is operated under the close supervision of technically trained personnel, the primary purpose of which is to conduct research and development into new processes and products and that is not engaged in the manufacture of products for sale or exchange for commercial profit, except in a de minimis manner.

Resin means any thermosetting resin with or without pigment containing styrene (CAS No. 100–42–5) or methyl methacrylate (CAS No. 80–62–6) and used to encapsulate and bind together reinforcement fibers in the construction of fiberglass parts.

Resin and gel coat application equipment cleaning means the process of flushing or removing resins and gel coats from the interior or exterior of equipment that is used to apply resin or gel coat in the manufacture of fiberglass parts.

Resin and gel coat mixing operation means any operation in which resin or gel coat, including the mixing of putties or polyputties, is combined with additives that include, but are not limited to, fillers, promoters, or catalysts.

Roll-out means the process of using rollers, squeegees, or similar tools to compact reinforcing materials saturated with resin to remove trapped air or excess resin.

Skin coat is a layer of resin and fibers applied over the gel coat to protect the gel coat from being deformed by the next laminate layers.

Tooling resin means the resin used to build or repair molds (also known as tools) or prototypes (also known as plugs) from which molds will be made.

Tooling gel coat means the gel coat used to build or repair molds (also known as tools) or prototypes (also known as plugs) from which molds will be made.

Vacuum bagging means any molding technique in which the reinforcing fabric is saturated with resin and then covered with a flexible sheet that is sealed to the edge of the mold and where a vacuum is applied under the sheet to compress the laminate, remove excess resin, or remove trapped air from the laminate during curing. Vacuum bagging does not include processes that meet the definition of closed molding.

Vinylester resin means a thermosetting resin containing esters of acrylic or methacrylic acids and having double-bond and ester linkage sites only at the ends of the resin molecules.

Volume fraction of coating solids means the ratio of the volume of coating solids (also known as volume of nonvolatiles) to the volume of coating; liters of coating solids per liter of coating.

Wood coatings means coatings applied to wooden parts and surfaces of boats, such as paneling, cabinets, railings, and trim. Wood coatings include, but are not limited to, primers, stains, sealers, varnishes, and enamels. Polyester and vinylester resins or gel coats applied to wooden parts to encapsulate them or bond them to other parts are not wood coatings.

Table 1 to Subpart VVVV of Part 63—Compliance Dates for New and Existing Boat Manufacturing Facilities

<table>
<thead>
<tr>
<th>If your facility is:</th>
<th>And:</th>
<th>Then you must comply by this date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An existing source</td>
<td>Is a major source on or before August 22, 2001(^1)</td>
<td>August 23, 2004.</td>
</tr>
</tbody>
</table>
2. An existing or new area source becomes a major source after August 22, 2001. 1 year after becoming a major source or August 22, 2002, whichever is later.

3. A new source is a major source at startup. Upon startup or August 22, 2001, whichever is later.

Your facility is a major source if it is a stationary source or group of stationary sources located within a contiguous area and under common control that emits or can potentially emit, considering controls, in the aggregate, 9.1 megagrams or more per year of a single hazardous air pollutant or 22.7 megagrams or more per year of a combination of hazardous air pollutants.

Table 2 to Subpart VVVV of Part 63—Alternative Organic HAP Content Requirements for Open Molding Resin and Gel Coat Operations

As specified in §§63.5701(b), 63.5704(b)(2), and 63.5713(a), (b), and (d), you must comply with the requirements in the following table:

<table>
<thead>
<tr>
<th>For this operation—</th>
<th>And this application method—</th>
<th>You must not exceed this weighted-average organic HAP content (weight percent) requirement—</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Production resin operations</td>
<td>Atomized (spray)</td>
<td>28 percent.</td>
</tr>
<tr>
<td>2. Production resin operations</td>
<td>Nonatomized (nonspray)</td>
<td>35 percent.</td>
</tr>
<tr>
<td>3. Pigmented gel coat operations</td>
<td>Any method</td>
<td>33 percent.</td>
</tr>
<tr>
<td>4. Clear gel coat operations</td>
<td>Any method</td>
<td>48 percent</td>
</tr>
<tr>
<td>5. Tooling resin operations</td>
<td>Atomized (spray)</td>
<td>30 percent.</td>
</tr>
<tr>
<td>6. Tooling resin operations</td>
<td>Nonatomized (nonspray)</td>
<td>39 percent.</td>
</tr>
<tr>
<td>7. Tooling gel coat operations</td>
<td>Any method</td>
<td>40 percent.</td>
</tr>
</tbody>
</table>

Table 3 to Subpart VVVV of Part 63—MACT Model Point Value Formulas for Open Molding Operations

As specified in §§63.5710(d) and 63.5714(a), you must calculate point values using the formulas in the following table:

<table>
<thead>
<tr>
<th>For this operation—</th>
<th>And this application method—</th>
<th>Use this formula to calculate the MACT model plant value for each resin and gel coat—</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Production resin, tooling resin</td>
<td>a. Atomized</td>
<td>0.014 × (Resin HAP%)^{2.425}</td>
</tr>
<tr>
<td></td>
<td>b. Atomized, plus vacuum bagging with roll-out</td>
<td>0.01185 × (Resin HAP%)^{2.425}</td>
</tr>
<tr>
<td></td>
<td>c. Atomized, plus vacuum bagging without roll-out</td>
<td>0.00945 × (Resin HAP%)^{2.425}</td>
</tr>
<tr>
<td></td>
<td>d. Nonatomized</td>
<td>0.014 × (Resin HAP%)^{2.275}</td>
</tr>
<tr>
<td></td>
<td>e. Nonatomized, plus vacuum bagging with roll-out</td>
<td>0.0110 × (Resin HAP%)^{2.275}</td>
</tr>
<tr>
<td></td>
<td>f. Nonatomized, plus vacuum bagging without roll-out</td>
<td>0.0076 × (Resin HAP%)^{2.275}</td>
</tr>
<tr>
<td>2. Pigmented gel coat, clear gel coat, tooling gel coat</td>
<td>All methods</td>
<td>0.445 × (Gel coat HAP%)^{1.675}</td>
</tr>
</tbody>
</table>
Equations calculate MACT model point value in kilograms of organic HAP per megagrams of resin or gel coat applied. The equations for vacuum bagging with roll-out are applicable when a facility rolls out the applied resin and fabric prior to applying the vacuum bagging materials. The equations for vacuum bagging without roll-out are applicable when a facility applies the vacuum bagging materials immediately after resin application without rolling out the resin and fabric. HAP% = organic HAP content as supplied, expressed as a weight-percent value between 0 and 100 percent.

Table 4 to Subpart VVVV of Part 63—Operating Limits if Using an Add-on Control Device for Open Molding Operations

As specified in §§63.5715(a) and 63.5725(f)(5), you must meet the operating limits in the following table:

<table>
<thead>
<tr>
<th>For the following device—</th>
<th>You must meet the following operating limit—</th>
<th>And you must demonstrate continuous compliance with the operating limit by—</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thermal oxidizer</td>
<td>The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to §63.5725(d)</td>
<td>a. Collecting the combustion temperature data according to §63.5725(d); b. reducing the data to 3-hour block averages; and c. maintaining the 3-hour average combustion temperature at or above the temperature limit.</td>
</tr>
<tr>
<td>2. Other control devices</td>
<td>An operating limit approved by the Administrator according to §63.8(f)</td>
<td>a. Collecting parameter monitoring as approved by the Administrator according to §63.8(f); and b. maintaining the parameters within the operating limits approved according to §63.8(f).</td>
</tr>
<tr>
<td>3. Emission capture system that is a PTE according to §63.5719(b)</td>
<td>a. The direction of the air flow at all times must be into the enclosure; and b. in any 3-hour period, either the average facial velocity of air through all natural draft openings in the enclosure must be at least 200 feet per minute; or c. the pressure drop across the enclosure must be at least 0.007 inch H2O, as established in Method 204 of appendix M to 40 CFR part 51</td>
<td>i. Collecting the direction of air flow, and either the facial velocity of air through all natural draft openings according to §63.5725(f)(3) or the pressure drop across the enclosure according to §63.5725(f)(4); and ii. reducing the data for facial velocity or pressure drop to 3-hour block averages; and iii. maintaining the 3-hour average facial velocity of air flow through all natural draft openings or the pressure drop at or above the facial velocity limit or pressure drop limit, and maintaining the direction of air flow into the enclosure at all times.</td>
</tr>
<tr>
<td>4. Emission capture system that is not a PTE according to §63.5719(b)</td>
<td>a. The average gas volumetric flow rate or duct static pressure in each duct between a capture device and add-on control device inlet in any 3-hour period must not fall below the average volumetric flow rate or duct static pressure limit established for that capture device according to §63.5725(f)(5); and b. the average pressure drop across an opening in each enclosure in any 3-hour period must not fall below the average pressure drop limit established for that capture device according to §63.5725(f)(5)</td>
<td>i. Collecting the gas volumetric flow rate or duct static pressure for each capture device according to §63.5725(f)(1) and (3); ii. reducing the data to 3-hour block averages; iii. maintaining the 3-hour average gas volumetric flow rate or duct static pressure for each capture device at or above the gas volumetric flow rate or duct static pressure limit; iv. collecting data for the pressure drop across an opening in each enclosure according to §63.5725(f)(2) and (4); v. reducing the data to 3-hour block averages; and vi. maintaining the 3-hour average pressure drop across the opening for each enclosure at or above the gas volumetric flow rate or duct static pressure limit.</td>
</tr>
</tbody>
</table>

Table 5 to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends

As specified in §63.5758(a)(6), when detailed organic HAP content data for solvent blends are not available, you may use the values in the following table:

<table>
<thead>
<tr>
<th>Solvent/solvent blend</th>
<th>CAS No.</th>
<th>Average organic HAP content, percent by mass</th>
<th>Typical organic HAP, percent by mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Xylene(s)</td>
<td>1330–20–7</td>
<td>100</td>
<td>Xylenes, ethylbenzene.</td>
</tr>
<tr>
<td>4. n-hexane</td>
<td>110–54–3</td>
<td>100</td>
<td>n-hexane.</td>
</tr>
<tr>
<td>5. Ethylbenzene</td>
<td>100–41–4</td>
<td>100</td>
<td>Ethylbenzene.</td>
</tr>
<tr>
<td>Solvent/solvent blend</td>
<td>CAS No.</td>
<td>Average organic HAP content, percent by mass</td>
<td>Typical organic HAP, percent by mass</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>6. Aliphatic 140</td>
<td></td>
<td>0</td>
<td>None.</td>
</tr>
<tr>
<td>7. Aromatic 100</td>
<td></td>
<td>2</td>
<td>1% xylene, 1% cumene.</td>
</tr>
<tr>
<td>8. Aromatic 150</td>
<td></td>
<td>9</td>
<td>Naphthalene.</td>
</tr>
<tr>
<td>9. Aromatic naphtha</td>
<td>64742–95–6</td>
<td>2</td>
<td>1% xylene, 1% cumene.</td>
</tr>
<tr>
<td>10. Aromatic solvent</td>
<td>64742–94–5</td>
<td>10</td>
<td>Naphthalene.</td>
</tr>
<tr>
<td>11. Exempt mineral spirits</td>
<td>8032–32–4</td>
<td>0</td>
<td>None.</td>
</tr>
<tr>
<td>12. Lignoines (VM & P)</td>
<td>8032–32–4</td>
<td>0</td>
<td>None.</td>
</tr>
<tr>
<td>14. Low aromatic white spirit</td>
<td>64742–82–1</td>
<td>0</td>
<td>None.</td>
</tr>
<tr>
<td>16. Hydrotreated naphtha</td>
<td>64742–48–9</td>
<td>0</td>
<td>None.</td>
</tr>
<tr>
<td>17. Hydrotreated light distillate</td>
<td>64742–47–8</td>
<td>0.1</td>
<td>Toluene.</td>
</tr>
<tr>
<td>20. Varol® solvent</td>
<td>8052–49–3</td>
<td>1</td>
<td>0.5% xylene, 0.5% ethyl benzene.</td>
</tr>
<tr>
<td>21. VM & P naphtha</td>
<td>64742–89–8</td>
<td>6</td>
<td>3% toluene, 3% xylene.</td>
</tr>
<tr>
<td>22. Petroleum distillate</td>
<td>68477–31–6</td>
<td>8</td>
<td>4% naphthalene, 4% biphenyl.</td>
</tr>
</tbody>
</table>

Table 6 to Subpart VVVV of Part 63—Default Organic HAP Contents of Petroleum Solvent Groups

As specified in §63.5758(a)(6), when detailed organic HAP content data for solvent blends are not available, you may use the values in the following table:

<table>
<thead>
<tr>
<th>Solvent type</th>
<th>Average organic HAP content, percent by mass</th>
<th>Typical organic HAP, percent by mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliphatic (Mineral Spirits 135, Mineral Spirits 150 EC, Naphtha, Mixed</td>
<td>3</td>
<td>1% Xylene, 1% Toluene, and 1% Ethylbenzene.</td>
</tr>
<tr>
<td>Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naphtha, Naphthol Spirits,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blend.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic (Medium-flash Naphtha, High-flash Naphtha, Aromatic Naphtha, Light</td>
<td>6</td>
<td>4% Xylene, 1% Toluene, and 1% Ethylbenzene.</td>
</tr>
<tr>
<td>Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic Solvent.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 to Subpart VVVV of Part 63—Applicability and Timing of Notifications

As specified in §63.5761(a), you must submit notifications according to the following table:

<table>
<thead>
<tr>
<th>If your facility—</th>
<th>You must submit—</th>
<th>By this date—</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is an existing source subject to this subpart</td>
<td>An initial notification containing the information specified in §63.9(b)(2)</td>
<td>No later than the dates specified in §63.9(b)(2).</td>
</tr>
<tr>
<td>2. Is a new source subject to this subpart</td>
<td>The notifications specified in §63.9(b)(3) to (5)</td>
<td>No later than the dates specified §63.9(b)(4) and (5).</td>
</tr>
<tr>
<td>3. Qualifies for a compliance extension as specified in §63.9(c)</td>
<td>A request for a compliance extension as specified in §63.9(c)</td>
<td>No later than the dates specified in §63.6(i).</td>
</tr>
<tr>
<td>4. Is complying with organic HAP content limits, application equipment requirements; or MACT model point value averaging provisions</td>
<td>A notification of compliance status as specified in §63.9(h)</td>
<td>No later than 30 calendar days after the end of the first 12-month averaging period after your facility's compliance date.</td>
</tr>
<tr>
<td>5. Is complying by using an add-on control device</td>
<td>a. notification of intent to conduct a performance test as specified in §63.9(e)</td>
<td>No later than the date specified in §63.9(e).</td>
</tr>
<tr>
<td></td>
<td>b. A notification of the date for the continuous monitoring system performance evaluation as specified in §63.9(g)</td>
<td>With the notification of intent to conduct a performance test.</td>
</tr>
<tr>
<td></td>
<td>c. A notification of compliance status as specified in §63.9(h)</td>
<td>No later than 60 calendar days after the completion of the add-on control device performance test and continuous monitoring system performance evaluation.</td>
</tr>
</tbody>
</table>
Table 8 to Subpart VVVV of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart VVVV

As specified in §63.5773, you must comply with the applicable requirements of the General Provisions according to the following table:

<table>
<thead>
<tr>
<th>Citation</th>
<th>Requirement</th>
<th>Applies to subpart VVVV</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1(a)</td>
<td>General Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(b)</td>
<td>Initial Applicability Determination</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(c)(1)</td>
<td>Applicability After Standard Established</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.1(c)(2)</td>
<td>Yes</td>
<td>Area sources are not regulated by subpart VVVV.</td>
<td></td>
</tr>
<tr>
<td>§63.1(c)(3)</td>
<td>No</td>
<td>[Reserved]</td>
<td></td>
</tr>
<tr>
<td>§63.1(c)(4)–(5)</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.1(d)</td>
<td>No</td>
<td>[Reserved]</td>
<td></td>
</tr>
<tr>
<td>§63.1(e)</td>
<td>Applicability of Permit Program</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional definitions are found in §63.5779.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and Abbreviations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.4(a)</td>
<td>Prohibited Activities</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.4(b)–(c)</td>
<td>Circumvention/Severability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(a)</td>
<td>Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(b)</td>
<td>Requirements for Existing, Newly Constructed, and Reconstructed Sources</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(c)</td>
<td>No</td>
<td>[Reserved]</td>
<td></td>
</tr>
<tr>
<td>§63.5(d)</td>
<td>Application for Approval of Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(e)</td>
<td>Approval of Construction/Reconstruction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.5(f)</td>
<td>Approval of Construction/Reconstruction Based on prior State Review</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Compliance with Standards and Maintenance Requirements—Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)</td>
<td>Compliance Dates for New and Reconstructed Sources</td>
<td>Yes</td>
<td>§63.695 specifies compliance dates, including the compliance date for new area sources that become major sources after the effective date of the rule.</td>
</tr>
<tr>
<td>§63.6(c)</td>
<td>Compliance Dates for Existing Sources</td>
<td>Yes</td>
<td>§63.5695 specifies compliance dates, including the compliance date for existing area sources that become major sources after the effective date of the rule.</td>
</tr>
<tr>
<td>§63.6(d)</td>
<td>No</td>
<td>[Reserved]</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Requirement</td>
<td>Applies to subpart VVVV</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>§63.6(e)(1) – (2)</td>
<td>Operation and Maintenance Requirements</td>
<td>No</td>
<td>Operating requirements for open molding operations with add-on controls are specified in §63.5725.</td>
</tr>
<tr>
<td>§63.6(e)(3)</td>
<td>Startup, Shut Down, and Malfunction Plans</td>
<td>Yes</td>
<td>Only sources with add-on controls must complete startup, shutdown, and malfunction plans.</td>
</tr>
<tr>
<td>§63.6(f)</td>
<td>Compliance with Nonopacity Emission Standards</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)</td>
<td>Use of an Alternative Nonopacity Emission Standard</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Compliance with Opacity/Visible Emissions Standards</td>
<td>No</td>
<td>Subpart VVV does not specify opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.6(i)</td>
<td>Extension of Compliance with Emission Standards</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Exemption from Compliance with Emission Standards</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)</td>
<td>Performance Test Requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(2)</td>
<td>Dates for performance tests</td>
<td>No</td>
<td>§63.5716 specifies performance test dates.</td>
</tr>
<tr>
<td>§63.7(a)(3)</td>
<td>Performance testing at other times</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(b) – (h)</td>
<td>Other performance testing requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1) – (2)</td>
<td>Monitoring Requirements—Applicability</td>
<td>Yes</td>
<td>All of §63.8 applies only to sources with add-on controls. Additional monitoring requirements for sources with add-on controls are found in §63.5725.</td>
</tr>
<tr>
<td>§63.8(a)(3)</td>
<td></td>
<td>No</td>
<td>[Reserved]</td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td></td>
<td>No</td>
<td>Subpart VVV does not refer directly or indirectly to §63.11.</td>
</tr>
<tr>
<td>§63.8(b)(1)</td>
<td>Conduct of Monitoring</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2) – (3)</td>
<td>Multiple Effluents and Multiple Continuous Monitoring Systems (CMS)</td>
<td>Yes</td>
<td>Applies to sources that use a CMS on the control device stack.</td>
</tr>
<tr>
<td>§63.8(c)(1) – (4)</td>
<td>Continuous Monitoring System Operation and Maintenance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>Continuous Opacity Monitoring Systems (COMS)</td>
<td>No</td>
<td>Subpart VVV does not have opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.8(c)(6) – (8)</td>
<td>Continuous Monitoring System Calibration Checks and Out-of-Control Periods</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>Quality Control Program</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS Performance Evaluation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(f)(1) – (5)</td>
<td>Use of an Alternative Monitoring Method</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Requirement</td>
<td>Applies to subpart VVVV</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to Relative Accuracy Test</td>
<td>Yes</td>
<td>Applies only to sources that use continuous emission monitoring systems (CEMS).</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data Reduction</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Notification Requirements—Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(b)</td>
<td>Initial Notifications</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for Compliance Extension</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification That a New Source Is Subject to Special Compliance Requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of Performance Test</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of Visible Emissions/Opacity Test</td>
<td>No</td>
<td>Subpart VVVV does not have opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.9(g)(1)</td>
<td>Additional CMS Notifications—Date of CMS Performance Evaluation</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.9(g)(2)</td>
<td>Use of COMS Data</td>
<td>No</td>
<td>Subpart VVVV does not require the use of COMS.</td>
</tr>
<tr>
<td>§63.9(g)(3)</td>
<td>Alternative to Relative Accuracy Testing</td>
<td>Yes</td>
<td>Applies only to sources with CEMS.</td>
</tr>
<tr>
<td>§63.9(h)</td>
<td>Notification of Compliance Status</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of Deadlines</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in Previous Information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Recordkeeping/Reporting—Applicability</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>General Recordkeeping Requirements</td>
<td>Yes</td>
<td>§§63.567 and 63.5770 specify additional recordkeeping requirements.</td>
</tr>
<tr>
<td>§63.10(b)(2)(i)–(xii)</td>
<td>Recordkeeping Relevant to Startup, Shutdown, and Malfunction Periods and CMS</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)–(xiv)</td>
<td>General Recordkeeping Requirements</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Recordkeeping Requirements for Applicability Determinations</td>
<td>Yes</td>
<td>§63.5686 specifies applicability determinations for non-major sources.</td>
</tr>
<tr>
<td>§63.10(c)</td>
<td>Additional Recordkeeping for Sources with CMS</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General Reporting Requirements</td>
<td>Yes</td>
<td>§63.5764 specifies additional reporting requirements.</td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Performance Test Results</td>
<td>Yes</td>
<td>§63.5764 specifies additional requirements for reporting performance test results.</td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Opacity or Visible Emissions Observations</td>
<td>No</td>
<td>Subpart VVVV does not specify opacity or visible emission standards.</td>
</tr>
<tr>
<td>Citation</td>
<td>Requirement</td>
<td>Applies to subpart VVVV</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress Reports for Sources with Compliance Extensions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>Startup, Shutdown, and Malfunction Reports</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(e)(1)</td>
<td>Additional CMS Reports—General</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(e)(2)</td>
<td>Reporting Results of CMS Performance Evaluations</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess Emissions/CMS Performance Reports</td>
<td>Yes</td>
<td>Applies only to sources with add-on controls.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>COMS Data Reports</td>
<td>No</td>
<td>Subpart VVVV does not specify opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Recordkeeping/Reporting Waiver</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Control Device Requirements—Applicability</td>
<td>No</td>
<td>Facilities subject to subpart VVVV do not use flares as control devices.</td>
</tr>
<tr>
<td>§63.12</td>
<td>State Authority and Delegations</td>
<td>Yes</td>
<td>§63.5776 lists those sections of subpart A that are not delegated.</td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorporation by Reference</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of Information/Confidentiality</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Title 40: Protection of Environment

Part 63 - National Emission Standards for Hazardous Air Pollutants (NESHAP)

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Source: 69 FR 33506, June 15, 2004, unless otherwise noted.

What This Subpart Covers

§63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

[73 FR 3603, Jan. 18, 2008]

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

(d) If you are an owner or operator of an area source subject to this subpart, your status as an entity subject to a standard or other requirements under this subpart does not subject you to the obligation to obtain a permit under 40 CFR part 70 or 71, provided you are not required to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a) for a reason other than your status as an area source under this subpart. Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart as applicable.

(e) If you are an owner or operator of a stationary RICE used for national security purposes, you may be eligible to request an exemption from the requirements of this subpart as described in 40 CFR part 1068, subpart C.

(f) The emergency stationary RICE listed in paragraphs (f)(1) through (3) of this section are not subject to this subpart. The stationary RICE must meet the definition of an emergency stationary RICE in §63.6675, which includes operating according to the provisions specified in §63.6640(f).
(1) Existing residential emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(2) Existing commercial emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

(3) Existing institutional emergency stationary RICE located at an area source of HAP emissions that do not operate or are not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) and that do not operate for the purpose specified in §63.6640(f)(4)(ii).

§63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) **Affected source.** An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) **Existing stationary RICE.**

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.

(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or reconstructed stationary RICE.

(2) **New stationary RICE.** (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(3) **Reconstructed stationary RICE.** (i) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after December 19, 2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is reconstructed if you meet the definition of reconstruction in §63.2 and reconstruction is commenced on or after June 12, 2006.
(b) **Stationary RICE subject to limited requirements.** (1) An affected source which meets either of the criteria in paragraphs (b)(1)(i) through (ii) of this section does not have to meet the requirements of this subpart and of subpart A of this part except for the initial notification requirements of §63.6645(f).

(i) The stationary RICE is a new or reconstructed emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(ii) The stationary RICE is a new or reconstructed limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(2) A new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis must meet the initial notification requirements of §63.6645(f) and the requirements of §§63.6625(c), 63.6650(g), and 63.6655(c). These stationary RICE do not have to meet the emission limitations and operating limitations of this subpart.

(3) The following stationary RICE do not have to meet the requirements of this subpart and of subpart A of this part, including initial notification requirements:

(i) Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(ii) Existing spark ignition 4 stroke lean burn (4SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(iii) Existing emergency stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that does not operate or is not contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(iv) Existing limited use stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions;

(v) Existing stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;

(c) **Stationary RICE subject to Regulations under 40 CFR Part 60.** An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart III, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

(2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;

(4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
(6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;

(7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

§63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the applicable emission limitations, operating limitations and other requirements no later than June 15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission limitations, operating limitations, and other requirements no later than October 19, 2013.

(2) If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.

(b) Area sources that become major sources. If you have an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP, the compliance dates in paragraphs (b)(1) and (2) of this section apply to you.

(1) Any stationary RICE for which construction or reconstruction is commenced after the date when your area source becomes a major source of HAP must be in compliance with this subpart upon startup of your affected source.

(2) Any stationary RICE for which construction or reconstruction is commenced before your area source becomes a major source of HAP must be in compliance with the provisions of this subpart that are applicable to RICE located at major sources within 3 years after your area source becomes a major source of HAP.
(c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645 and in 40 CFR part 63, subpart A.

Emission and Operating Limitations

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing, new, or reconstructed spark ignition 4SRB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 1a to this subpart and the operating limitations in Table 1b to this subpart which apply to you.

(b) If you own or operate a new or reconstructed 2SLB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, a new or reconstructed 4SLB stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, or a new or reconstructed CI stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

(c) If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to this subpart or operating limitations in Tables 1b and 2b to this subpart: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.

(d) If you own or operate an existing non-emergency stationary CI RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations in Table 2c to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP and less than or equal to 500 brake HP located at a major source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart. If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions manufactured on or after January 1, 2008, you must comply with the emission limitations in Table 2a to this subpart and the operating limitations in Table 2b to this subpart which apply to you.

§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions, you must comply with the emission limitations and other requirements in Table 2c to this subpart which apply to you. Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

[78 FR 6701, Jan. 30, 2013]
§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.

(b) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meets either paragraph (b)(1) or (2) of this section, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. Existing stationary non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP that meet either paragraph (b)(1) or (2) of this section must meet the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart.

(1) The area source is located in an area of Alaska that is not accessible by the Federal Aid Highway System (FAHS).

(2) The stationary RICE is located at an area source that meets paragraphs (b)(2)(i), (ii), and (iii) of this section.

(i) The only connection to the FAHS is through the Alaska Marine Highway System (AMHS), or the stationary RICE operation is within an isolated grid in Alaska that is not connected to the statewide electrical grid referred to as the Alaska Railbelt Grid.

(ii) At least 10 percent of the power generated by the stationary RICE on an annual basis is used for residential purposes.

(iii) The generating capacity of the area source is less than 12 megawatts, or the stationary RICE is used exclusively for backup power for renewable energy.

(c) If you own or operate an existing stationary non-emergency CI RICE with a site rating of more than 300 HP located on an offshore vessel that is an area source of HAP and is a nonroad vehicle that is an Outer Continental Shelf (OCS) source as defined in 40 CFR 55.2, you do not have to meet the numerical CO emission limitations specified in Table 2d of this subpart. You must meet all of the following management practices:

(1) Change oil every 1,000 hours of operation or annually, whichever comes first. Sources have the option to utilize an oil analysis program as described in §63.6625(i) in order to extend the specified oil change requirement.

(2) Inspect and clean air filters every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(3) Inspect fuel filters and belts, if installed, every 750 hours of operation or annually, whichever comes first, and replace as necessary.

(4) Inspect all flexible hoses every 1,000 hours of operation or annually, whichever comes first, and replace as necessary.

(d) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and that is subject to an enforceable state or local standard that requires the engine to be replaced no later than June 1, 2018, you may until January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018, choose to comply with the management practices that are shown for stationary non-emergency CI RICE with a site rating of less than or equal to 300 HP in Table 2d of this subpart instead of the applicable emission limitations in Table 2d, operating limitations in Table 2b, and crankcase ventilation system requirements in §63.6625(g). You must comply with the emission limitations in Table 2d and operating limitations in Table 2b that apply for non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018. You must also comply with the crankcase ventilation system requirements in §63.6625(g) by January 1, 2015, or 12 years after the installation date of the engine (whichever is later), but not later than June 1, 2018.

(e) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 3 (Tier 2 for engines above 560 kilowatt (kW)) emission standards in Table 1 of 40
CFR 89.112, you may comply with the requirements under this part by meeting the requirements for Tier 3 engines (Tier 2 for engines above 560 kW) in 40 CFR part 60 subpart III instead of the emission limitations and other requirements that would otherwise apply under this part for existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions.

(f) An existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP must meet the definition of remote stationary RICE in §63.6675 on the initial compliance date for the engine, October 19, 2013, in order to be considered a remote stationary RICE under this subpart. Owners and operators of existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that meet the definition of remote stationary RICE in §63.6675 of this subpart as of October 19, 2013 must evaluate the status of their stationary RICE every 12 months. Owners and operators must keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in §63.6675 of this subpart, the owner or operator must comply with all of the requirements for existing non-emergency SI 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within 1 year of the evaluation.

§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

(a) If you own or operate an existing non-emergency, non-black start CI stationary RICE with a site rating of more than 300 brake HP with a displacement of less than 30 liters per cylinder that uses diesel fuel, you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel.

(b) Beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(c) Beginning January 1, 2015, if you own or operate a new emergency CI stationary RICE with a site rating of more than 500 brake HP and a displacement of less than 30 liters per cylinder located at a major source of HAP that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii), you must use diesel fuel that meets the requirements in 40 CFR 80.510(b) for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

(d) Existing CI stationary RICE located in Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2), or are on offshore vessels that meet §63.6603(c) are exempt from the requirements of this section.

§63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.
Testing and Initial Compliance Requirements

§63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

If you own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct the initial performance test or other initial compliance demonstrations in Table 4 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must demonstrate initial compliance with either the proposed emission limitations or the promulgated emission limitations no later than February 10, 2005 or no later than 180 days after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(c) If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004 and own or operate stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, and you chose to comply with the proposed emission limitations when demonstrating initial compliance, you must conduct a second performance test to demonstrate compliance with the promulgated emission limitations by December 13, 2007 or after startup of the source, whichever is later, according to §63.7(a)(2)(ix).

(d) An owner or operator is not required to conduct an initial performance test on units for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (d)(1) through (5) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

(5) The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load.

[69 FR 33506, June 15, 2004, as amended at 73 FR 3605, Jan. 18, 2008]

§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

If you own or operate a new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must conduct an initial performance test within 240 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions specified in Table 4 to this subpart, as appropriate.

§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

(1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

(2) The test must not be older than 2 years.

(3) The test must be reviewed and accepted by the Administrator.

(4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

§63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

§63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

(1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

(3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]
(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad \text{(Eq. 1)}
\]

Where:

\(C_i = \) concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,

\(C_o = \) concentration of CO, THC, or formaldehyde at the control device outlet, and

\(R = \) percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO2). If pollutant concentrations are to be corrected to 15 percent oxygen and CO2 concentration is measured in lieu of oxygen concentration measurement, a CO2 correction factor is needed. Calculate the CO2 correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific \(F_o \) value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

\[
F_o = \frac{0.209 \cdot F_d}{F_c} \quad \text{(Eq. 2)}
\]

Where:

\(F_o = \) Fuel factor based on the ratio of oxygen volume to the ultimate CO2 volume produced by the fuel at zero percent excess air.

\(0.209 = \) Fraction of air that is oxygen, percent/100.

\(F_d = \) Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

\(F_c = \) Ratio of the volume of CO2 produced to the gross calorific value of the fuel from Method 19, dsm3/J (dscf/106 Btu).

(ii) Calculate the CO2 correction factor for correcting measurement data to 15 percent O2, as follows:

\[
X_{CO2} = \frac{5.9}{F_o} \quad \text{(Eq. 3)}
\]

Where:

\(X_{CO2} = \) CO2 correction factor, percent.

\(5.9 = 20.9 \text{ percent } O_2—15 \text{ percent } O_2, \) the defined O2 correction value, percent.

(iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent O2 using CO2 as follows:

\[
C_{adj} = C_d \cdot \frac{X_{CO2}}{5.9} \quad \text{(Eq. 4)}
\]

Where:
\[C_{\text{adj}} = \text{Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent O}_2. \]

\[C_d = \text{Measured concentration of CO, THC, or formaldehyde, uncorrected.} \]

\[X_{\text{CO}_2} = \text{CO}_2 \text{ correction factor, percent.} \]

\[\%\text{CO}_2 = \text{Measured CO}_2 \text{ concentration measured, dry basis, percent.} \]

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.
(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an estimate of its accurate in percentage of true value must be provided.

§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O₂ or CO₂ according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

(1) Each CEMS must be installed, operated, and maintained according to the applicable performance specifications of 40 CFR part 60, appendix B.

(2) You must conduct an initial performance evaluation and an annual relative accuracy test audit (RATA) of each CEMS according to the requirements in §63.8 and according to the applicable performance specifications of 40 CFR part 60, appendix B as well as daily and periodic data quality checks in accordance with 40 CFR part 60, appendix F, procedure 1.

(3) As specified in §63.8(c)(4)(ii), each CEMS must complete a minimum of one cycle of operation (sampling, analyzing, and data recording) for each successive 15-minute period. You must have at least two data points, with each representing a different 15-minute period, to have a valid hour of data.

(4) The CEMS data must be reduced as specified in §63.8(g)(2) and recorded in parts per million or parts per billion (as appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO₂ concentration.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

(1) You must prepare a site-specific monitoring plan that addresses the monitoring system design, data collection, and the quality assurance and quality control elements outlined in paragraphs (b)(1)(i) through (v) of this section and in §63.8(d). As specified in §63.8(f)(4), you may request approval of monitoring system quality assurance and quality control procedures alternative to those specified in paragraphs (b)(1) through (5) of this section in your site-specific monitoring plan.

(i) The performance criteria and design specifications for the monitoring system equipment, including the sample interface, detector signal analyzer, and data acquisition and calculations;

(ii) Sampling interface (e.g., thermocouple) location such that the monitoring system will provide representative measurements;

(iii) Equipment performance evaluations, system accuracy audits, or other audit procedures;

(iv) Ongoing operation and maintenance procedures in accordance with provisions in §63.8(c)(1)(ii) and (c)(3); and

(v) Ongoing reporting and recordkeeping procedures in accordance with provisions in §63.10(c), (e)(1), and (e)(2)(i).

(2) You must install, operate, and maintain each CPMS in continuous operation according to the procedures in your site-specific monitoring plan.
(3) The CPMS must collect data at least once every 15 minutes (see also §63.6635).

(4) For a CPMS for measuring temperature range, the temperature sensor must have a minimum tolerance of 2.8 degrees Celsius (5 degrees Fahrenheit) or 1 percent of the measurement range, whichever is larger.

(5) You must conduct the CPMS equipment performance evaluation, system accuracy audits, or other audit procedures specified in your site-specific monitoring plan at least annually.

(6) You must conduct a performance evaluation of each CPMS in accordance with your site-specific monitoring plan.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.

(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.
(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).

(1) Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere, or

(2) Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates and metals.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.

(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.
(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least three test runs.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O2 using one of the O2 measurement methods specified in Table 4 of this subpart. Measurements to determine O2 concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O2 emissions simultaneously at the inlet and outlet of the control device.

Continuous Compliance Requirements

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

[69 FR 33506, June 15, 2004, as amended at 76 FR 12867, Mar. 9, 2011]

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.
(b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

(1) The compliance demonstration must consist of at least one test run.

(2) Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

(3) If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

(4) If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

(5) You must measure O₂ using one of the O₂ measurement methods specified in Table 4 of this subpart. Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.

(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and O₂ emissions simultaneously at the inlet and outlet of the control device.

(7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

(d) For new, reconstructed, and rebuilt stationary RICE, deviations from the emission or operating limitations that occur during the first 200 hours of operation from engine startup (engine burn-in period) are not violations. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a).

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

(f) If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in paragraphs (f)(1) through (4) of this section. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in paragraphs (f)(1) through (4) of this section, is prohibited. If you do not operate the engine according to the requirements in paragraphs (f)(1) through (4) of this
section, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

(1) There is no time limit on the use of emergency stationary RICE in emergency situations.

(2) You may operate your emergency stationary RICE for any combination of the purposes specified in paragraphs (f)(2)(i) through (iii) of this section for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed by paragraphs (f)(3) and (4) of this section counts as part of the 100 hours per calendar year allowed by this paragraph (f)(2).

(i) Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

(ii) Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

(iii) Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

(3) Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. The 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(4) Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in paragraph (f)(2) of this section. Except as provided in paragraphs (f)(4)(i) and (ii) of this section, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

(i) Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility, or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

(ii) The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

(A) The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

(B) The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

(C) The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

(D) The power is provided only to the facility itself or to support the local transmission and distribution system.
(E) The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

Notifications, Reports, and Records

§63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following:

(1) An existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions.

(2) An existing stationary RICE located at an area source of HAP emissions.

(3) A stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

(4) A new or reconstructed 4SLB stationary RICE with a site rating of greater than or equal to 250 HP located at a major source of HAP emissions.

(5) This requirement does not apply if you own or operate an existing stationary RICE less than 100 HP, an existing stationary emergency RICE, or an existing stationary RICE that is not subject to any numerical emission standards.

(b) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart, you must submit an Initial Notification not later than December 13, 2004.

(c) If you start up your new or reconstructed stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions on or after August 16, 2004, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(d) As specified in §63.9(b)(2), if you start up your stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions before the effective date of this subpart and you are required to submit an initial notification, you must submit an Initial Notification not later than July 16, 2008.

(e) If you start up your new or reconstructed stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions on or after March 18, 2008 and you are required to submit an initial notification, you must submit an Initial Notification not later than 120 days after you become subject to this subpart.

(f) If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1).

(h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).
(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).

(i) If you own or operate an existing non-emergency CI RICE with a site rating of more than 300 HP located at an area source of HAP emissions that is certified to the Tier 1 or Tier 2 emission standards in Table 1 of 40 CFR 89.112 and subject to an enforceable state or local standard requiring engine replacement and you intend to meet management practices rather than emission limits, as specified in §63.6603(d), you must submit a notification by March 3, 2013, stating that you intend to use the provision in §63.6603(d) and identifying the state or local regulation that the engine is subject to.

§63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.

(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.

(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.
(1) Company name and address.

(2) Statement by a responsible official, with that official’s name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.

(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.

(1) The date and time that each malfunction started and stopped.

(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.

(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.

(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.

(9) A brief description of the stationary RICE.
(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If an affected source submits a Compliance report pursuant to Table 7 of this subpart along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the Compliance report includes all required information concerning deviations from any emission or operating limitation in this subpart, submission of the Compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a Compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permit authority.

(g) If you are operating as a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must submit an annual report according to Table 7 of this subpart by the date specified unless the Administrator has approved a different schedule, according to the information described in paragraphs (b)(1) through (b)(5) of this section. You must report the data specified in (g)(1) through (g)(3) of this section.

(1) Fuel flow rate of each fuel and the heating values that were used in your calculations. You must also demonstrate that the percentage of heat input provided by landfill gas or digester gas is equivalent to 10 percent or more of the total fuel consumption on an annual basis.

(2) The operating limits provided in your federally enforceable permit, and any deviations from these limits.

(3) Any problems or errors suspected with the meters.

(h) If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (h)(1) through (3) of this section.

(1) The report must contain the following information:

(i) Company name and address where the engine is located.

(ii) Date of the report and beginning and ending dates of the reporting period.

(iii) Engine site rating and model year.

(iv) Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.

(v) Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vi) Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).

(vii) Hours spent for operation for the purpose specified in §63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.

(viii) If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.
(ix) If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

(2) The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

(3) The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

§63.6655 What records must I keep?

(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).

(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.

(3) Records of performance tests and performance evaluations as required in §63.10(b)(2)(viii).

(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.

(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.

(b) For each CEMS or CPMS, you must keep the records listed in paragraphs (b)(1) through (3) of this section.

(1) Records described in §63.10(b)(2)(vi) through (xi).

(2) Previous (i.e., superseded) versions of the performance evaluation plan as required in §63.8(d)(3).

(3) Requests for alternatives to the relative accuracy test for CEMS or CPMS as required in §63.8(f)(6)(i), if applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must keep the records of your daily fuel usage monitors.

(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.

(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;

(1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

(2) An existing stationary emergency RICE.
(3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

(f) If you own or operate any of the stationary RICE in paragraphs (f)(1) through (2) of this section, you must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in §63.6640(f)(2)(ii) or (iii) or §63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

(1) An existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions that does not meet the standards applicable to non-emergency engines.

(2) An existing emergency stationary RICE located at an area source of HAP emissions that does not meet the standards applicable to non-emergency engines.

§63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

Other Requirements and Information

§63.6665 What parts of the General Provisions apply to me?

Table 8 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with any of the requirements of the General Provisions specified in Table 8: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing stationary RICE that combats landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, an existing emergency stationary RICE, or an existing limited use stationary RICE. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in the General Provisions specified in Table 8 except for the initial notification requirements: A new stationary RICE that combats landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new emergency stationary RICE, or a new limited use stationary RICE.

[75 FR 9678, Mar. 3, 2010]

§63.6670 Who implements and enforces this subpart?

(a) This subpart is implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as the U.S. EPA) has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out whether this subpart is delegated to your State, local, or tribal agency.
(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(c) The authorities that will not be delegated to State, local, or tribal agencies are:

(1) Approval of alternatives to the non-opacity emission limitations and operating limitations in §63.6600 under §63.6(g).

(2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

(5) Approval of a performance test which was conducted prior to the effective date of the rule, as specified in §63.6610(b).

§63.6675 What definitions apply to this subpart?

Terms used in this subpart are defined in the Clean Air Act (CAA); in 40 CFR 63.2, the General Provisions of this part; and in this section as follows:

Alaska Railbelt Grid means the service areas of the six regulated public utilities that extend from Fairbanks to Anchorage and the Kenai Peninsula. These utilities are Golden Valley Electric Association; Chugach Electric Association; Matanuska Electric Association; Homer Electric Association; Anchorage Municipal Light & Power; and the City of Seward Electric System.

Area source means any stationary source of HAP that is not a major source as defined in part 63.

Associated equipment as used in this subpart and as referred to in section 112(n)(4) of the CAA, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the well bore to the point of custody transfer, except glycol dehydration units, storage vessels with potential for flash emissions, combustion turbines, and stationary RICE.

Backup power for renewable energy means an engine that provides backup power to a facility that generates electricity from renewable energy resources, as that term is defined in Alaska Statute 42.45.045(l)(5) (incorporated by reference, see §63.14).

Black start engine means an engine whose only purpose is to start up a combustion turbine.

CAA means the Clean Air Act (42 U.S.C. 7401 et seq., as amended by Public Law 101-549, 104 Stat. 2399).

Commercial emergency stationary RICE means an emergency stationary RICE used in commercial establishments such as office buildings, hotels, stores, telecommunications facilities, restaurants, financial institutions such as banks, doctor's offices, and sports and performing arts facilities.

Compression ignition means relating to a type of stationary internal combustion engine that is not a spark ignition engine.

Custody transfer means the transfer of hydrocarbon liquids or natural gas: After processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer.

Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) Fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation or operating limitation;
(2) Fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or

(3) Fails to meet any emission limitation or operating limitation in this subpart during malfunction, regardless or whether or not such failure is permitted by this subpart.

(4) Fails to satisfy the general duty to minimize emissions established by §63.6(e)(1)(i).

Diesel engine means any stationary RICE in which a high boiling point liquid fuel injected into the combustion chamber ignites when the air charge has been compressed to a temperature sufficiently high for auto-ignition. This process is also known as compression ignition.

Diesel fuel means any liquid obtained from the distillation of petroleum with a boiling point of approximately 150 to 360 degrees Celsius. One commonly used form is fuel oil number 2. Diesel fuel also includes any non-distillate fuel with comparable physical and chemical properties (e.g. biodiesel) that is suitable for use in compression ignition engines.

Digester gas means any gaseous by-product of wastewater treatment typically formed through the anaerobic decomposition of organic waste materials and composed principally of methane and CO2.

Dual-fuel engine means any stationary RICE in which a liquid fuel (typically diesel fuel) is used for compression ignition and gaseous fuel (typically natural gas) is used as the primary fuel.

Emergency stationary RICE means any stationary reciprocating internal combustion engine that meets all of the criteria in paragraphs (1) through (3) of this definition. All emergency stationary RICE must comply with the requirements specified in §63.6640(f) in order to be considered emergency stationary RICE. If the engine does not comply with the requirements specified in §63.6640(f), then it is not considered to be an emergency stationary RICE under this subpart.

(1) The stationary RICE is operated to provide electrical power or mechanical work during an emergency situation. Examples include stationary RICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary RICE used to pump water in the case of fire or flood, etc.

(2) The stationary RICE is operated under limited circumstances for situations not included in paragraph (1) of this definition, as specified in §63.6640(f).

(3) The stationary RICE operates as part of a financial arrangement with another entity in situations not included in paragraph (1) of this definition only as allowed in §63.6640(f)(2)(ii) or (iii) and §63.6640(f)(4)(i) or (ii).

Engine startup means the time from initial start until applied load and engine and associated equipment reaches steady state or normal operation. For stationary engine with catalytic controls, engine startup means the time from initial start until applied load and engine and associated equipment, including the catalyst, reaches steady state or normal operation.

Four-stroke engine means any type of engine which completes the power cycle in two crankshaft revolutions, with intake and compression strokes in the first revolution and power and exhaust strokes in the second revolution.

Gaseous fuel means a material used for combustion which is in the gaseous state at standard atmospheric temperature and pressure conditions.

Gasoline means any fuel sold in any State for use in motor vehicles and motor vehicle engines, or nonroad or stationary engines, and commonly or commercially known or sold as gasoline.

Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes “rich” glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The “lean” glycol is then recycled.
Hazardous air pollutants (HAP) means any air pollutants listed in or pursuant to section 112(b) of the CAA.

Institutional emergency stationary RICE means an emergency stationary RICE used in institutional establishments such as medical centers, nursing homes, research centers, institutions of higher education, correctional facilities, elementary and secondary schools, libraries, religious establishments, police stations, and fire stations.

ISO standard day conditions means 288 degrees Kelvin (15 degrees Celsius), 60 percent relative humidity and 101.3 kilopascals pressure.

Landfill gas means a gaseous by-product of the land application of municipal refuse typically formed through the anaerobic decomposition of waste materials and composed principally of methane and CO₂.

Lean burn engine means any two-stroke or four-stroke spark ignited engine that does not meet the definition of a rich burn engine.

Limited use stationary RICE means any stationary RICE that operates less than 100 hours per year.

Liquefied petroleum gas means any liquefied hydrocarbon gas obtained as a by-product in petroleum refining of natural gas production.

Liquid fuel means any fuel in liquid form at standard temperature and pressure, including but not limited to diesel, residual/crude oil, kerosene/naphtha (jet fuel), and gasoline.

Major Source, as used in this subpart, shall have the same meaning as in §63.2, except that:

1. Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control;

2. For oil and gas production facilities, emissions from processes, operations, or equipment that are not part of the same oil and gas production facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated;

3. For production field facilities, only HAP emissions from glycol dehydration units, storage vessel with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated for a major source determination; and

4. Emissions from processes, operations, and equipment that are not part of the same natural gas transmission and storage facility, as defined in §63.1271 of subpart HHH of this part, shall not be aggregated.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner which causes, or has the potential to cause, the emission limitations in an applicable standard to be exceeded. Failures that are caused in part by poor maintenance or careless operation are not malfunctions.

Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the Earth’s surface, of which the principal constituent is methane. Natural gas may be field or pipeline quality.

Non-selective catalytic reduction (NSCR) means an add-on catalytic nitrogen oxides (NOₓ) control device for rich burn engines that, in a two-step reaction, promotes the conversion of excess oxygen, NOₓ, CO, and volatile organic compounds (VOC) into CO₂, nitrogen, and water.

Oil and gas production facility as used in this subpart means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For purposes of a major source determination, facility (including a building, structure, or installation)
means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants.

Oxidation catalyst means an add-on catalytic control device that controls CO and VOC by oxidation.

Peaking unit or engine means any standby engine intended for use during periods of high demand that are not emergencies.

Percent load means the fractional power of an engine compared to its maximum manufacturer's design capacity at engine site conditions. Percent load may range between 0 percent to above 100 percent.

Potential to emit means the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the stationary source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable. For oil and natural gas production facilities subject to subpart HH of this part, the potential to emit provisions in §63.760(a) may be used. For natural gas transmission and storage facilities subject to subpart HHH of this part, the maximum annual facility gas throughput for storage facilities may be determined according to §63.1270(a)(1) and the maximum annual throughput for transmission facilities may be determined according to §63.1270(a)(2).

Production field facility means those oil and gas production facilities located prior to the point of custody transfer.

Production well means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted.

Propane means a colorless gas derived from petroleum and natural gas, with the molecular structure C₃H₈.

Remote stationary RICE means stationary RICE meeting any of the following criteria:

(1) Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.

(2) Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (2)(i) and (ii) of this definition.

(i) A pipeline segment with 10 or fewer buildings intended for human occupancy and no buildings with four or more stories within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.

(ii) The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12-month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.

(iii) For purposes of this paragraph (2), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 meters) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

(3) Stationary RICE that are not located on gas pipelines and that have 5 or fewer buildings intended for human occupancy and no buildings with four or more stories within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.
Residential emergency stationary RICE means an emergency stationary RICE used in residential establishments such as homes or apartment buildings.

Responsible official means responsible official as defined in 40 CFR 70.2.

Rich burn engine means any four-stroke spark ignited engine where the manufacturer's recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOx (such as pre-combustion chambers) will be considered lean burn engines. Also, existing engines where there are no manufacturer's recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the exhaust at full load conditions is less than or equal to 2 percent.

Site-rated HP means the maximum manufacturer's design capacity at engine site conditions.

Spark ignition means relating to either: A gasoline-fueled engine; or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark ignition engines usually use a throttle to regulate intake air flow to control power during normal operation. Dual-fuel engines in which a liquid fuel (typically diesel fuel) is used for CI and gaseous fuel (typically natural gas) is used as the primary fuel at an annual average ratio of less than 2 parts diesel fuel to 100 parts total fuel on an energy equivalent basis are spark ignition engines.

Stationary reciprocating internal combustion engine (RICE) means any reciprocating internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

Stationary RICE test cell/stand means an engine test cell/stand, as defined in subpart PPPPPP of this part, that tests stationary RICE.

Stoichiometric means the theoretical air-to-fuel ratio required for complete combustion.

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Subpart means 40 CFR part 63, subpart ZZZZ.

Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed.

Two-stroke engine means a type of engine which completes the power cycle in single crankshaft revolution by combining the intake and compression operations into one stroke and the power and exhaust operations into a second stroke. This system requires auxiliary scavenging and inherently runs lean of stoichiometric.

Table 1a to Subpart ZZZZ of Part 63—Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations at 100 percent load plus or minus 10 percent for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4SRB stationary RICE</td>
<td>a. Reduce formaldehyde emissions by 76 percent or more. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may reduce formaldehyde emissions by 75 percent or more until June 15, 2007 or</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂</td>
<td></td>
</tr>
</tbody>
</table>

¹ Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

Table 1b to Subpart ZZZZ of Part 63—Operating Limitations for Existing, New, and Reconstructed SI 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6603, 63.6630 and 63.6640, you must comply with the following operating limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and using NSCR;</td>
<td>a. Maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst measured during the initial performance test; and b. Maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 750 °F and less than or equal to 1250 °F.¹</td>
</tr>
<tr>
<td>2. existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or by 75 percent or more, if applicable) and not using NSCR; or existing, new and reconstructed 4SRB stationary RICE >500 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust to 350 ppbvd or less at 15 percent O₂ and not using NSCR.</td>
<td>Comply with any operating limitations approved by the Administrator.</td>
</tr>
</tbody>
</table>

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6706, Jan. 30, 2013]
Table 2a to Subpart ZZZZ of Part 63—Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600 and 63.6640, you must comply with the following emission limitations for new and reconstructed lean burn and new and reconstructed compression ignition stationary RICE at 100 percent load plus or minus 10 percent:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following emission limitation, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB stationary RICE</td>
<td>a. Reduce CO emissions by 58 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 12 ppmvd or less at 15 percent O2. If you commenced construction or reconstruction between December 19, 2002 and June 15, 2004, you may limit concentration of formaldehyde to 17 ppmvd or less at 15 percent O2 until June 15, 2007.</td>
<td>Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1</td>
</tr>
<tr>
<td>2. 4SLB stationary RICE</td>
<td>a. Reduce CO emissions by 93 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 14 ppmvd or less at 15 percent O2.</td>
<td></td>
</tr>
<tr>
<td>3. CI stationary RICE</td>
<td>a. Reduce CO emissions by 70 percent or more; or b. Limit concentration of formaldehyde in the stationary RICE exhaust to 580 ppbvd or less at 15 percent O2.</td>
<td></td>
</tr>
</tbody>
</table>

1Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[75 FR 9680, Mar. 3, 2010]

Table 2b to Subpart ZZZZ of Part 63—Operating Limitations for New and Reconstructed 2SLB and CI Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE ≥250 HP Located at a Major Source of HAP Emissions, Existing CI Stationary RICE >500 HP

As stated in §§63.6600, 63.6601, 63.6603, 63.6630, and 63.6640, you must comply with the following operating limitations for new and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions; new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions; and existing CI stationary RICE >500 HP:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following operating limitation, except during periods of startup . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to reduce CO emissions and using an oxidation catalyst; and New and reconstructed 2SLB and CI stationary RICE >500 HP located at a major source of HAP emissions and new and reconstructed 4SLB stationary RICE ≥250 HP located at a major source of HAP emissions complying with the requirement to limit the concentration of formaldehyde in the stationary RICE exhaust and using an oxidation catalyst.</td>
<td>a. maintain your catalyst so that the pressure drop across the catalyst does not change by more than 2 inches of water at 100 percent load plus or minus 10 percent from the pressure drop across the catalyst that was measured during the initial performance test; and b. maintain the temperature of your stationary RICE exhaust so that the catalyst inlet temperature is greater than or equal to 450 °F and less than or equal to 1350 °F.1</td>
</tr>
</tbody>
</table>
Table 2c to Subpart ZZZZ of Part 63—Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤500 HP Located at a Major Source of HAP Emissions

As stated in §§63.6600, 63.6602, and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE located at a major source of HAP emissions and existing spark ignition stationary RICE ≤500 HP located at a major source of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirements, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| **1. Emergency stationary CI RICE and black start stationary CI RICE**¹ | **a.** Change oil and filter every 500 hours of operation or annually, whichever comes first.²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.³ |

¹Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.8(f) for a different temperature range.

[78 FR 6707, Jan. 30, 2013]
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 2. Non-Emergency, non-black start stationary CI RICE <100 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first.²
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
| 3. Non-Emergency, non-black start CI stationary RICE 100≤HP≤300 HP | Limit concentration of CO in the stationary RICE exhaust to 230 ppmvd or less at 15 percent O₂. | |
| 4. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd or less at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 5. Non-Emergency, non-black start stationary CI RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or less at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 6. Emergency stationary SI RICE and black start stationary SI RICE.¹ | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;²
b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
| 7. Non-Emergency, non-black start stationary SI RICE <100 HP that are not 2SLB stationary RICE | a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;²
b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.³ | |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 8. Non-Emergency, non-black start 2SLB stationary SI RICE <100 HP | a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first.\(^2\)
b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.\(^3\) | |
| 9. Non-emergency, non-black start 2SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 225 ppmvd or less at 15 percent O\(_2\). | |
| 10. Non-emergency, non-black start 4SLB stationary RICE 100≤HP≤500 | Limit concentration of CO in the stationary RICE exhaust to 47 ppmvd or less at 15 percent O\(_2\). | |
| 11. Non-emergency, non-black start 4SRB stationary RICE 100≤HP≤500 | Limit concentration of formaldehyde in the stationary RICE exhaust to 10.3 ppmvd or less at 15 percent O\(_2\). | |
| 12. Non-emergency, non-black start stationary RICE 100≤HP≤500 which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis | Limit concentration of CO in the stationary RICE exhaust to 177 ppmvd or less at 15 percent O\(_2\). | |

\(^{1}\) If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required in Table 2c of this subpart, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

\(^{2}\) Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2c of this subpart.

\(^{3}\) Sources can petition the Administrator pursuant to the requirements of 40 CFR 63.6(g) for alternative work practices.

[78 FR 6708, Jan. 30, 2013, as amended at 78 FR 14457, Mar. 6, 2013]
As stated in §§63.6603 and 63.6640, you must comply with the following requirements for existing stationary RICE located at area sources of HAP emissions:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
</table>
| 1. Non-Emergency, non-black start CI stationary RICE ≤300 HP | a. Change oil and filter every 1,000 hours of operation or annually, whichever comes first;¹
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary;
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. |
| 2. Non-Emergency, non-black start CI stationary RICE 300<HP≤500 | a. Limit concentration of CO in the stationary RICE exhaust to 49 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 3. Non-Emergency, non-black start CI stationary RICE >500 HP | a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd at 15 percent O₂; or
b. Reduce CO emissions by 70 percent or more. | |
| 4. Emergency stationary CI RICE and black start stationary CI RICE.² | a. Change oil and filter every 500 hours of operation or annually, whichever comes first;¹
b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and
c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. | |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must meet the following requirement, except during periods of startup . . .</th>
<th>During periods of startup you must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Emergency stationary SI RICE; black start stationary SI RICE; non-emergency, non-black start 4SLB stationary RICE >500 HP that operate 24 hours or less per calendar year; non-emergency, non-black start 4SRB stationary RICE >500 HP that operate 24 hours or less per calendar year.²</td>
<td>a. Change oil and filter every 500 hours of operation or annually, whichever comes first;¹ b. Inspect spark plugs every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>6. Non-emergency, non-black start 2SLB stationary RICE</td>
<td>a. Change oil and filter every 4,320 hours of operation or annually, whichever comes first;¹ b. Inspect spark plugs every 4,320 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 4,320 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>7. Non-emergency, non-black start 4SLB stationary RICE ≤500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹ b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary; and c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
</tr>
<tr>
<td>8. Non-emergency, non-black start 4SLB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;¹ b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and</td>
<td></td>
</tr>
<tr>
<td>For each . . .</td>
<td>You must meet the following requirement, except during periods of startup . . .</td>
<td>During periods of startup you must . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Non-emergency, non-black start 4SLB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Install an oxidation catalyst to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>10. Non-emergency, non-black start 4SRB stationary RICE ≤500 HP</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Non-emergency, non-black start 4SRB remote stationary RICE >500 HP</td>
<td>a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
<tr>
<td>c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Non-emergency, non-black start 4SRB stationary RICE >500 HP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Install NSCR to reduce HAP emissions from the stationary RICE.</td>
<td></td>
</tr>
<tr>
<td>13. Non-emergency, non-black start stationary RICE which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first;¹</td>
<td></td>
</tr>
</tbody>
</table>
For each . . . | You must meet the following requirement, except during periods of startup . . . | During periods of startup you must . . .
--- | --- | ---
| | c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. |

Sources have the option to utilize an oil analysis program as described in §63.6625(i) or (j) in order to extend the specified oil change requirement in Table 2d of this subpart.

If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the management practice requirements on the schedule required in Table 2d of this subpart, or if performing the management practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the management practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The management practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has abated. Sources must report any failure to perform the management practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable.

[78 FR 6709, Jan. 30, 2013]

Table 3 to Subpart ZZZZ of Part 63—Subsequent Performance Tests

As stated in §§63.6615 and 63.6620, you must comply with the following subsequent performance test requirements:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed 2SLB stationary RICE >500 HP located at major sources; new or reconstructed 4SLB stationary RICE ≥250 HP located at major sources; and new or reconstructed CI stationary RICE >500 HP located at major sources</td>
<td>Reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE ≥5,000 HP located at major sources</td>
<td>Reduce formaldehyde emissions</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>3. Stationary RICE >500 HP located at major sources and new or reconstructed 4SLB stationary RICE 250≤HP≤500 located at major sources</td>
<td>Limit the concentration of formaldehyde in the stationary RICE exhaust</td>
<td>Conduct subsequent performance tests semiannually.¹</td>
</tr>
<tr>
<td>4. Existing non-emergency, non-black start CI stationary RICE >500 HP that are not limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 3 years, whichever comes first.</td>
</tr>
<tr>
<td>5. Existing non-emergency, non-black start CI stationary RICE >500 HP that are limited use stationary RICE</td>
<td>Limit or reduce CO emissions and not using a CEMS</td>
<td>Conduct subsequent performance tests every 8,760 hours or 5 years, whichever comes first.</td>
</tr>
</tbody>
</table>

¹After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.

[78 FR 6711, Jan. 30, 2013]
Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests

As stated in §§63.6610, 63.6611, 63.6620, and 63.6640, you must comply with the following requirements for performance tests for stationary RICE:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must . . .</th>
<th>Using . . .</th>
<th>According to the following requirements . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2SLB, 4SLB, and CI stationary RICE</td>
<td>a. reduce CO emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)abc (heated probe not necessary)</td>
<td>(a) For CO and O\textsubscript{2} measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ("3-point long line"). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A-1, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A-4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Measurements to determine O\textsubscript{2} must be made at the same time as the measurements for CO concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Measure the O\textsubscript{2} at the inlet and outlet of the control device; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Measure the CO at the inlet and the outlet of the control device</td>
<td>(1) ASTM D6522-00 (Reapproved 2005)abc (heated probe not necessary) or Method 10 of 40 CFR part 60, appendix A-4</td>
<td>(c) The CO concentration must be at 15 percent O\textsubscript{2}, dry basis.</td>
</tr>
<tr>
<td>2. 4SRB stationary RICE</td>
<td>a. reduce formaldehyde emissions</td>
<td>i. Select the sampling port location and the number/location of traverse points at the inlet and outlet of the control device; and</td>
<td></td>
<td>(a) For formaldehyde, O\textsubscript{2}, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ("3-point long line"). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at '3-point long line'; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A.</td>
</tr>
<tr>
<td>For each</td>
<td>Complying with the requirement to . . .</td>
<td>You must . . .</td>
<td>Using . . .</td>
<td>According to the following requirements . . .</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>ii. Measure O₂ at the inlet and outlet of the control device; and</td>
<td>(1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)² (heated probe not necessary)</td>
<td>(a) Measurements to determine O₂ concentration must be made at the same time as the measurements for formaldehyde or THC concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. Measure moisture content at the inlet and outlet of the control device; and</td>
<td>(1) Method 4 of 40 CFR part 60, appendix A-3, or Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03²</td>
<td>(a) Measurements to determine moisture content must be made at the same time and location as the measurements for formaldehyde or THC concentration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. If demonstrating compliance with the formaldehyde percent reduction requirement, measure formaldehyde at the inlet and the outlet of the control device</td>
<td>(1) Method 320 or 323 of 40 CFR part 63, appendix A; or ASTM D6348-03², provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater than or equal to 70 and less than or equal to 130</td>
<td>(a) Formaldehyde concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. If demonstrating compliance with the THC percent reduction requirement, measure THC at the inlet and the outlet of the control device</td>
<td>(1) Method 25A, reported as propane, of 40 CFR part 60, appendix A-7</td>
<td>(a) THC concentration must be at 15 percent O₂, dry basis. Results of this test consist of the average of the three 1-hour or longer runs.</td>
<td></td>
</tr>
</tbody>
</table>

3. Stationary RICE

 a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust

 i. Select the sampling port location and the number/location of traverse points at the exhaust of the stationary RICE; and

 (1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)² (heated probe not necessary) | (a) For formaldehyde, CO, O₂, and moisture measurement, ducts ≤6 inches in diameter may be sampled at a single point located at the duct centroid and ducts >6 and ≤12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line (‘3-point long line’). If the duct is >12 inches in diameter and the sampling port location meets the two and half-diameter criterion of Section 11.1.1 of Method 1 of 40 CFR part 60, appendix A, the duct may be sampled at ‘3-point long line’; otherwise, conduct the stratification testing and select sampling points according to Section 8.1.2 of Method 7E of 40 CFR part 60, appendix A. If using a control device, the sampling site must be located at the outlet of the control device. |

 ii. Determine the O₂ concentration of the stationary RICE exhaust at the sampling port location; and

 (1) Method 3 or 3A or 3B of 40 CFR part 60, appendix A-2, or ASTM Method D6522-00 (Reapproved 2005)² (heated probe not necessary) | (a) Measurements to determine O₂ concentration must be made at the same time and location as the measurements for formaldehyde or CO concentration. |
Table 5 to Subpart ZZZZ of Part 63—Initial Compliance With Emission Limitations, Operating Limitations, and Other Requirements

As stated in §§63.6612, 63.6625 and 63.6630, you must initially comply with the emission and operating limitations as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
</table>
| 1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP | a. Reduce CO emissions and using oxidation catalyst, and using a CPMS | i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and
ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and
iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test. |
<p>| 2. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP | a. Limit the concentration of CO, using oxidation catalyst, and using a CPMS | i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and |</p>
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You have demonstrated initial compliance if . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions and not using oxidation catalyst</td>
<td>i. The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>4. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, and not using oxidation catalyst</td>
<td>i. The average CO concentration determined from the initial performance test is less than or equal to the CO emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>5. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Reduce CO emissions, and using a CEMS</td>
<td>i. You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at both the inlet and outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and iii. The average reduction of CO calculated using §63.6620 equals or exceeds the required percent reduction. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average percent reduction achieved during the 4-hour period.</td>
</tr>
<tr>
<td>6. Non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP located at an area source of HAP</td>
<td>a. Limit the concentration of CO, and using a CEMS</td>
<td>i. You have installed a CEMS to continuously monitor CO and either O₂ or CO₂ at the outlet of the oxidation catalyst according to the requirements in §63.6625(a); and ii. You have conducted a performance evaluation of your CEMS using PS 3 and 4A of 40 CFR part 60, appendix B; and iii. The average concentration of CO calculated using §63.6620 is less than or equal to the CO emission limitation. The initial test comprises the first 4-hour period after successful validation of the CEMS. Compliance is based on the average concentration measured during the 4-hour period.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You have demonstrated initial compliance if . . .</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>7. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and using NSCR</td>
<td>i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction, or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>8. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions and not using NSCR</td>
<td>i. The average reduction of emissions of formaldehyde determined from the initial performance test is equal to or greater than the required formaldehyde percent reduction or the average reduction of emissions of THC determined from the initial performance test is equal to or greater than 30 percent; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>9. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</td>
<td>i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b); and iii. You have recorded the catalyst pressure drop and catalyst inlet temperature during the initial performance test.</td>
</tr>
<tr>
<td>10. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP, and existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR</td>
<td>i. The average formaldehyde concentration, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde emission limitation; and ii. You have installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in §63.6625(b); and iii. You have recorded the approved operating parameters (if any) during the initial performance test.</td>
</tr>
<tr>
<td>11. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP</td>
<td>a. Reduce CO emissions</td>
<td>i. The average reduction of emissions of CO or formaldehyde, as applicable determined from the initial performance test is equal to or greater than the required CO or formaldehyde, as applicable, percent reduction.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You have demonstrated initial compliance if . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>12. Existing non-emergency stationary RICE 100≤HP≤500 located at a major source of HAP, and existing non-emergency stationary CI RICE 300<HP≤500 located at an area source of HAP</td>
<td>a. Limit the concentration of formaldehyde or CO in the stationary RICE exhaust</td>
<td>i. The average formaldehyde or CO concentration, as applicable, corrected to 15 percent O₂, dry basis, from the three test runs is less than or equal to the formaldehyde or CO emission limitation, as applicable.</td>
</tr>
<tr>
<td>13. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install an oxidation catalyst</td>
<td>i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O₂; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
</tr>
<tr>
<td>14. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td>a. Install NSCR</td>
<td>i. You have conducted an initial compliance demonstration as specified in §63.6630(e) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more; ii. You have installed a CPMS to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or you have installed equipment to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
</tr>
</tbody>
</table>

[78 FR 6712, Jan. 30, 2013]

Table 6 to Subpart ZZZZ of Part 63—Continuous Compliance With Emission Limitations, and Other Requirements

As stated in §63.6640, you must continuously comply with the emissions and operating limitations and work or management practices as required by the following:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP</td>
<td>a. Reduce CO emissions and using an oxidation catalyst, and using a CPMS</td>
<td>i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 2. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, and new or reconstructed non-emergency CI stationary RICE >500 HP located at a major source of HAP | a. Reduce CO emissions and not using an oxidation catalyst, and using a CPMS | i. Conducting semiannual performance tests for CO to demonstrate that the required CO percent reduction is achieved; and
ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
iii. Reducing these data to 4-hour rolling averages; and |
| 3. New or reconstructed non-emergency 2SLB stationary RICE >500 HP located at a major source of HAP, new or reconstructed non-emergency 4SLB stationary RICE ≥250 HP located at a major source of HAP, new or reconstructed non-emergency stationary CI RICE >500 HP located at a major source of HAP, and existing non-emergency stationary CI RICE >500 HP | a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using a CEMS | i. Collecting the monitoring data according to §63.6625(a), reducing the measurements to 1-hour averages, calculating the percent reduction or concentration of CO emissions according to §63.6620; and
ii. Demonstrating that the catalyst achieves the required percent reduction of CO emissions over the 4-hour averaging period, or that the emission remain at or below the CO concentration limit; and |
| 4. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Reduce formaldehyde emissions and using NSCR | i. Collecting the catalyst inlet temperature data according to §63.6625(b); and
ii. Reducing these data to 4-hour rolling averages; and
iii. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and |
| 5. Non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP | a. Reduce formaldehyde emissions and not using NSCR | i. Collecting the approved operating parameter (if any) data according to §63.6625(b); and
ii. Reducing these data to 4-hour rolling averages; and
iii. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test. |
<table>
<thead>
<tr>
<th>For each . . .</th>
<th>Complying with the requirement to . . .</th>
<th>You must demonstrate continuous compliance by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Non-emergency 4SRB stationary RICE with a brake HP ≥5,000 located at a major source of HAP</td>
<td>a. Reduce formaldehyde emissions</td>
<td>Conducting semiannual performance tests for formaldehyde to demonstrate that the required formaldehyde percent reduction is achieved, or to demonstrate that the average reduction of emissions of THC determined from the performance test is equal to or greater than 30 percent. a</td>
</tr>
<tr>
<td>7. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>8. New or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP and new or reconstructed non-emergency 4SLB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>a. Limit the concentration of formaldehyde in the stationary RICE exhaust and not using oxidation catalyst or NSCR</td>
<td>i. Conducting semiannual performance tests for formaldehyde to demonstrate that your emissions remain at or below the formaldehyde concentration limit; and ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and iii. Reducing these data to 4-hour rolling averages; and iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>9. Existing emergency and black start stationary RICE ≤500 HP located at a major source of HAP, existing non-emergency stationary RICE <100 HP located at a major source of HAP, existing emergency and black start stationary RICE located at an area source of HAP, existing non-emergency stationary CI RICE ≤300 HP located at an area source of HAP, existing non-emergency 2SLB stationary RICE located at an area source of HAP, existing non-emergency stationary SI RICE located at an area source of HAP which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, existing non-emergency 4SLB and 4SRB stationary RICE ≤500 HP located at an area source of HAP, existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that operate 24 hours or less per calendar year, and existing non-emergency 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are remote stationary RICE</td>
<td>a. Work or Management practices</td>
<td>i. Operating and maintaining the stationary RICE according to the manufacturer’s emission-related operation and maintenance instructions; or ii. Develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>10. Existing stationary CI RICE >500 HP that are not limited use stationary RICE</td>
<td>a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and using oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
</tr>
<tr>
<td>11. Existing stationary CI RICE >500 HP that are not limited use stationary RICE</td>
<td>a. Reduce CO emissions, or limit the concentration of CO in the stationary RICE exhaust, and not using oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
</tr>
<tr>
<td>12. Existing limited use CI stationary RICE >500 HP</td>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and using an oxidation catalyst</td>
<td>i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b); and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the catalyst inlet temperature; and</td>
</tr>
<tr>
<td>For each . . .</td>
<td>Complying with the requirement to . . .</td>
<td>You must demonstrate continuous compliance by . . .</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>v. Measuring the pressure drop across the catalyst once per month and demonstrating that the pressure drop across the catalyst is within the operating limitation established during the performance test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reduce CO emissions or limit the concentration of CO in the stationary RICE exhaust, and not using an oxidation catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Conducting performance tests every 8,760 hours or 5 years, whichever comes first, for CO or formaldehyde, as appropriate, to demonstrate that the required CO or formaldehyde, as appropriate, percent reduction is achieved or that your emissions remain at or below the CO or formaldehyde concentration limit; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Existing limited use CI stationary RICE >500 HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Collecting the approved operating parameter (if any) data according to §63.6625(b); and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Reducing these data to 4-hour rolling averages; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Install an oxidation catalyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 93 percent or more, or the average CO concentration is less than or equal to 47 ppmvd at 15 percent O2; and either</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than 450 °F and less than or equal to 1350 °F for the catalyst inlet temperature; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1350 °F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Existing non-emergency 4SLB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Install NSCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Conducting annual compliance demonstrations as specified in §63.6640(c) to show that the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmvd at 15 percent O2, or the average reduction of emissions of THC is 30 percent or more; and either</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Collecting the catalyst inlet temperature data according to §63.6625(b), reducing these data to 4-hour rolling averages; and maintaining the 4-hour rolling averages within the limitation of greater than or equal to 750 °F and less than or equal to 1250 °F for the catalyst inlet temperature; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Immediately shutting down the engine if the catalyst inlet temperature exceeds 1250 °F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Existing non-emergency 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After you have demonstrated compliance for two consecutive tests, you may reduce the frequency of subsequent performance tests to annually. If the results of any subsequent annual performance test indicate the stationary RICE is not in compliance with the CO or formaldehyde emission limitation, or you deviate from any of your operating limitations, you must resume semiannual performance tests.
As stated in §63.6650, you must comply with the following requirements for reports:

<table>
<thead>
<tr>
<th>For each . . .</th>
<th>You must submit a . . .</th>
<th>The report must contain . . .</th>
<th>You must submit the report . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Existing non-emergency, non-black start stationary RICE 100≤HP≤500 located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >500 HP located at a major source of HAP; existing non-emergency 4SRB stationary RICE >500 HP located at a major source of HAP; existing non-emergency, non-black start stationary CI RICE >300 HP located at an area source of HAP; new or reconstructed non-emergency stationary RICE >500 HP located at a major source of HAP; and new or reconstructed non-emergency 4SRB stationary RICE 250≤HP≤500 located at a major source of HAP</td>
<td>Compliance report</td>
<td>a. If there are no deviations from any emission limitations or operating limitations that apply to you, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5) for engines that are not limited use stationary RICE subject to numerical emission limitations; and ii. Annually according to the requirements in §63.6650(b)(6)-(9) for engines that are limited use stationary RICE subject to numerical emission limitations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. If you had a deviation from any emission limitation or operating limitation during the reporting period, the information in §63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), the information in §63.6650(e); or</td>
<td>i. Semiannually according to the requirements in §63.6650(b).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. If you had a malfunction during the reporting period, the information in §63.6650(c)(4).</td>
<td>i. Semiannually according to the requirements in §63.6650(b).</td>
</tr>
<tr>
<td>2. New or reconstructed non-emergency stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis</td>
<td>Report</td>
<td>a. The fuel flow rate of each fuel and the heating values that were used in your calculations, and you must demonstrate that the percentage of heat input provided by landfill gas or digester gas, is equivalent to 10 percent or more of the gross heat input on an annual basis; and</td>
<td>i. Annually, according to the requirements in §63.6650.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. The operating limits provided in your federally enforceable permit, and any deviations from these limits; and</td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Any problems or errors suspected with the meters.</td>
<td>i. See item 2.a.i.</td>
</tr>
<tr>
<td>3. Existing non-emergency, non-black start 4SLB and 4SRB stationary RICE >500 HP located at an area source of HAP that are not remote stationary RICE and that operate more than 24 hours per calendar year</td>
<td>Compliance report</td>
<td>a. The results of the annual compliance demonstration, if conducted during the reporting period.</td>
<td>i. Semiannually according to the requirements in §63.6650(b)(1)-(5).</td>
</tr>
</tbody>
</table>
For each . . . | You must submit a . . . | The report must contain . . . | You must submit the report . . .
---|---|---|---
4. Emergency stationary RICE that operate or are contractually obligated to be available for more than 15 hours per year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operate for the purposes specified in §63.6640(f)(4)(ii) | Report | a. The information in §63.6650(h)(1) | i. annually according to the requirements in §63.6650(h)(2)-(3).

[78 FR 6719, Jan. 30, 2013]

Table 8 to Subpart ZZZZ of Part 63—Applicability of General Provisions to Subpart ZZZZ.

As stated in §63.6665, you must comply with the following applicable general provisions.

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§63.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §63.6675.</td>
</tr>
<tr>
<td>§63.3</td>
<td>Units and abbreviations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.4</td>
<td>Prohibited activities and circumvention</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.5</td>
<td>Construction and reconstruction</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(a)</td>
<td>Applicability</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(1)-(4)</td>
<td>Compliance dates for new and reconstructed sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(5)</td>
<td>Notification</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(6)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(b)(7)</td>
<td>Compliance dates for new and reconstructed area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(1)-(2)</td>
<td>Compliance dates for existing sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(3)-(4)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(c)(5)</td>
<td>Compliance dates for existing area sources that become major sources</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(d)</td>
<td>[Reserved]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.6(e)</td>
<td>Operation and maintenance</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(1)</td>
<td>Applicability of standards</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(2)</td>
<td>Methods for determining compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(f)(3)</td>
<td>Finding of compliance</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(g)(1)-(3)</td>
<td>Use of alternate standard</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(h)</td>
<td>Opacity and visible emission standards</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or visible emission standards.</td>
</tr>
<tr>
<td>§63.6(i)</td>
<td>Compliance extension procedures and criteria</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.6(j)</td>
<td>Presidential compliance exemption</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.7(a)(1)-(2)</td>
<td>Performance test dates</td>
<td>Yes</td>
<td>Subpart ZZZZ contains performance test dates at §§63.6610, 63.6611, and 63.6612.</td>
</tr>
<tr>
<td>§63.7(a)(3)</td>
<td>CAA section 114 authority</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.7(b)(1)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.7(b)(1) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(b)(2)</td>
<td>Notification of rescheduling</td>
<td>Yes</td>
<td>Except that §63.7(b)(2) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(c)</td>
<td>Quality assurance/test plan</td>
<td>Yes</td>
<td>Except that §63.7(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.7(d)</td>
<td>Testing facilities</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.7(e)(1)</td>
<td>Conditions for conducting performance tests</td>
<td>No.</td>
<td>Subpart ZZZZ specifies conditions for conducting performance tests at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(2)</td>
<td>Conduct of performance tests and reduction of data</td>
<td>Yes</td>
<td>Subpart ZZZZ specifies test methods at §63.6620.</td>
</tr>
<tr>
<td>§63.7(e)(3)</td>
<td>Test run duration</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(1)</td>
<td>Applicability of monitoring requirements</td>
<td>Yes</td>
<td>Subpart ZZZZ contains specific requirements for monitoring at §63.6625.</td>
</tr>
<tr>
<td>§63.8(a)(2)</td>
<td>Performance specifications</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(3) [Reserved]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§63.8(a)(4)</td>
<td>Monitoring for control devices</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(1)</td>
<td>Monitoring</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(b)(2)(3)</td>
<td>Multiple effluents and multiple monitoring systems</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)</td>
<td>Monitoring system operation and maintenance</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(i)</td>
<td>Routine and predictable SSM</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(ii)</td>
<td>SSM not in Startup Shutdown Malfunction Plan</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(1)(iii)</td>
<td>Compliance with operation and maintenance requirements</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(2)(3)</td>
<td>Monitoring system installation</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(c)(4)</td>
<td>Continuous monitoring system (CMS) requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require Continuous Opacity Monitoring System (COMS).</td>
</tr>
<tr>
<td>§63.8(c)(5)</td>
<td>COMS minimum procedures</td>
<td>No.</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(c)(6)-(8)</td>
<td>CMS requirements</td>
<td>Yes</td>
<td>Except that subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.8(d)</td>
<td>CMS quality control</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§63.8(e)</td>
<td>CMS performance evaluation</td>
<td>Yes</td>
<td>Except for §63.8(e)(5)(ii), which applies to COMS.</td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>§63.8(f)(1)-(5)</td>
<td>Alternative monitoring method</td>
<td>Yes</td>
<td>Except that §63.8(f)(4) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(f)(6)</td>
<td>Alternative to relative accuracy test</td>
<td>Yes</td>
<td>Except that §63.8(f)(6) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.8(g)</td>
<td>Data reduction</td>
<td>Yes</td>
<td>Except that provisions for COMS are not applicable. Averaging periods for demonstrating compliance are specified at §§63.6635 and 63.6640.</td>
</tr>
<tr>
<td>§63.9(a)</td>
<td>Applicability and State delegation of notification requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.9(b)(1)-(5)</td>
<td>Initial notifications</td>
<td>Yes</td>
<td>Except that §63.9(b)(3) is reserved.</td>
</tr>
<tr>
<td>§63.9(c)</td>
<td>Request for compliance extension</td>
<td>Yes</td>
<td>Except that §63.9(c) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(d)</td>
<td>Notification of special compliance requirements for new sources</td>
<td>Yes</td>
<td>Except that §63.9(d) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(e)</td>
<td>Notification of performance test</td>
<td>Yes</td>
<td>Except that §63.9(e) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(f)</td>
<td>Notification of visible emission (VE)/opacity test</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(1)</td>
<td>Notification of performance evaluation</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(g)(2)</td>
<td>Notification of use of COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.9(g)(3)</td>
<td>Notification that criterion for alternative to RATA is exceeded</td>
<td>Yes</td>
<td>If alternative is in use.</td>
</tr>
<tr>
<td>§63.9(h)(1)-(6)</td>
<td>Notification of compliance status</td>
<td>Yes</td>
<td>Except that §63.9(g) only applies as specified in §63.6645.</td>
</tr>
<tr>
<td>§63.9(i)</td>
<td>Adjustment of submittal deadlines</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.9(j)</td>
<td>Change in previous information</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(a)</td>
<td>Administrative provisions for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(1)</td>
<td>Record retention</td>
<td>Yes</td>
<td>Except that the most recent 2 years of data do not have to be retained on site.</td>
</tr>
<tr>
<td>§63.10(b)(2)(i)-(v)</td>
<td>Records related to SSM</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(vi)-(xii)</td>
<td>Records</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xii)</td>
<td>Record when under waiver</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(2)(xiii)</td>
<td>Records when using alternative to RATA</td>
<td>Yes</td>
<td>For CO standard if using RATA alternative.</td>
</tr>
<tr>
<td>General provisions citation</td>
<td>Subject of citation</td>
<td>Applies to subpart</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>§63.10(b)(2)(xiv)</td>
<td>Records of supporting documentation</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(b)(3)</td>
<td>Records of applicability determination</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(c)</td>
<td>Additional records for sources using CEMS</td>
<td>Yes</td>
<td>Except that §63.10(c)(2)-(4) and (9) are reserved.</td>
</tr>
<tr>
<td>§63.10(d)(1)</td>
<td>General reporting requirements</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(2)</td>
<td>Report of performance test results</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(3)</td>
<td>Reporting opacity or VE observations</td>
<td>No</td>
<td>Subpart ZZZZ does not contain opacity or VE standards.</td>
</tr>
<tr>
<td>§63.10(d)(4)</td>
<td>Progress reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(d)(5)</td>
<td>Startup, shutdown, and malfunction reports</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(1) and (2)(i)</td>
<td>Additional CMS Reports</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.10(e)(2)(ii)</td>
<td>COMS-related report</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(e)(3)</td>
<td>Excess emission and parameter exceedances reports</td>
<td>Yes.</td>
<td>Except that §63.10(e)(3)(i) (C) is reserved.</td>
</tr>
<tr>
<td>§63.10(e)(4)</td>
<td>Reporting COMS data</td>
<td>No</td>
<td>Subpart ZZZZ does not require COMS.</td>
</tr>
<tr>
<td>§63.10(f)</td>
<td>Waiver for recordkeeping/reporting</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.11</td>
<td>Flares</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>§63.12</td>
<td>State authority and delegations</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.13</td>
<td>Addresses</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.14</td>
<td>Incorporation by reference</td>
<td>Yes.</td>
<td></td>
</tr>
<tr>
<td>§63.15</td>
<td>Availability of information</td>
<td>Yes.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A—Protocol for Using an Electrochemical Analyzer to Determine Oxygen and Carbon Monoxide Concentrations From Certain Engines

1.0 Scope and Application. What is this Protocol?

This protocol is a procedure for using portable electrochemical (EC) cells for measuring carbon monoxide (CO) and oxygen (O₂) concentrations in controlled and uncontrolled emissions from existing stationary 4-stroke lean burn and 4-stroke rich burn reciprocating internal combustion engines as specified in the applicable rule.

1.1 Analytes. What does this protocol determine?

This protocol measures the engine exhaust gas concentrations of carbon monoxide (CO) and oxygen (O₂).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>630-08-0</td>
<td>Minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.</td>
</tr>
<tr>
<td>Oxygen (O₂)</td>
<td>7782-44-7</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Applicability. When is this protocol acceptable?

This protocol is applicable to 40 CFR part 63, subpart ZZZZ. Because of inherent cross sensitivities of EC cells, you must not apply this protocol to other emissions sources without specific instruction to that effect.

1.3 Data Quality Objectives. How good must my collected data be?

Refer to Section 13 to verify and document acceptable analyzer performance.

1.4 Range. What is the targeted analytical range for this protocol?

The measurement system and EC cell design(s) conforming to this protocol will determine the analytical range for each gas component. The nominal ranges are defined by choosing up-scale calibration gas concentrations near the maximum anticipated flue gas concentrations for CO and O₂, or no more than twice the permitted CO level.

1.5 Sensitivity. What minimum detectable limit will this protocol yield for a particular gas component?

The minimum detectable limit depends on the nominal range and resolution of the specific EC cell used, and the signal to noise ratio of the measurement system. The minimum detectable limit should be 2 percent of the nominal range or 1 ppm, whichever is less restrictive.

2.0 Summary of Protocol

In this protocol, a gas sample is extracted from an engine exhaust system and then conveyed to a portable EC analyzer for measurement of CO and O₂ gas concentrations. This method provides measurement system performance specifications and sampling protocols to ensure reliable data. You may use additions to, or modifications of vendor supplied measurement systems (e.g., heated or unheated sample lines, thermocouples, flow meters, selective gas scrubbers, etc.) to meet the design specifications of this protocol. Do not make changes to the measurement system from the as-verified configuration (Section 3.12).
3.0 Definitions

3.1 Measurement System. The total equipment required for the measurement of CO and O2 concentrations. The measurement system consists of the following major subsystems:

3.1.1 Data Recorder. A strip chart recorder, computer or digital recorder for logging measurement data from the analyzer output. You may record measurement data from the digital data display manually or electronically.

3.1.2 Electrochemical (EC) Cell. A device, similar to a fuel cell, used to sense the presence of a specific analyte and generate an electrical current output proportional to the analyte concentration.

3.1.3 Interference Gas Scrubber. A device used to remove or neutralize chemical compounds that may interfere with the selective operation of an EC cell.

3.1.4 Moisture Removal System. Any device used to reduce the concentration of moisture in the sample stream so as to protect the EC cells from the damaging effects of condensation and to minimize errors in measurements caused by the scrubbing of soluble gases.

3.1.5 Sample Interface. The portion of the system used for one or more of the following: sample acquisition; sample transport; sample conditioning or protection of the EC cell from any degrading effects of the engine exhaust effluent; removal of particulate matter and condensed moisture.

3.2 Nominal Range. The range of analyte concentrations over which each EC cell is operated (normally 25 percent to 150 percent of up-scale calibration gas value). Several nominal ranges can be used for any given cell so long as the calibration and repeatability checks for that range remain within specifications.

3.3 Calibration Gas. A vendor certified concentration of a specific analyte in an appropriate balance gas.

3.4 Zero Calibration Error. The analyte concentration output exhibited by the EC cell in response to zero-level calibration gas.

3.5 Up-Scale Calibration Error. The mean of the difference between the analyte concentration exhibited by the EC cell and the certified concentration of the up-scale calibration gas.

3.6 Interference Check. A procedure for quantifying analytical interference from components in the engine exhaust gas other than the targeted analytes.

3.7 Repeatability Check. A protocol for demonstrating that an EC cell operated over a given nominal analyte concentration range provides a stable and consistent response and is not significantly affected by repeated exposure to that gas.

3.8 Sample Flow Rate. The flow rate of the gas sample as it passes through the EC cell. In some situations, EC cells can experience drift with changes in flow rate. The flow rate must be monitored and documented during all phases of a sampling run.

3.9 Sampling Run. A timed three-phase event whereby an EC cell's response rises and plateaus in a sample conditioning phase, remains relatively constant during a measurement data phase, then declines during a refresh phase. The sample conditioning phase exposes the EC cell to the gas sample for a length of time sufficient to reach a constant response. The measurement data phase is the time interval during which gas sample measurements can be made that meet the acceptance criteria of this protocol. The refresh phase then purges the EC cells with CO-free air. The refresh phase replenishes requisite O2 and moisture in the electrolyte reserve and provides a mechanism to de-gas or desorb any interference gas scrubbers or filters so as to enable a stable CO EC cell response. There are four primary types of sampling runs: pre-sampling calibrations; stack gas sampling; post-sampling calibration checks; and measurement system repeatability checks. Stack gas sampling runs can be chained together for extended evaluations, providing all other procedural specifications are met.

3.10 Sampling Day. A time not to exceed twelve hours from the time of the pre-sampling calibration to the post-sampling calibration check. During this time, stack gas sampling runs can be repeated without repeated recalibrations, providing all other sampling specifications have been met.
3.11 Pre-Sampling Calibration/Post-Sampling Calibration Check. The protocols executed at the beginning and end of each sampling day to bracket measurement readings with controlled performance checks.

3.12 Performance-Established Configuration. The EC cell and sampling system configuration that existed at the time that it initially met the performance requirements of this protocol.

4.0 Interferences.

When present in sufficient concentrations, NO and NO₂ are two gas species that have been reported to interfere with CO concentration measurements. In the likelihood of this occurrence, it is the protocol user's responsibility to employ and properly maintain an appropriate CO EC cell filter or scrubber for removal of these gases, as described in Section 6.2.12.

5.0 Safety. [Reserved]

6.0 Equipment and Supplies.

6.1 What equipment do I need for the measurement system?

The system must maintain the gas sample at conditions that will prevent moisture condensation in the sample transport lines, both before and as the sample gas contacts the EC cells. The essential components of the measurement system are described below.

6.2 Measurement System Components.

6.2.1 Sample Probe. A single extraction-point probe constructed of glass, stainless steel or other non-reactive material, and of length sufficient to reach any designated sampling point. The sample probe must be designed to prevent plugging due to condensation or particulate matter.

6.2.2 Sample Line. Non-reactive tubing to transport the effluent from the sample probe to the EC cell.

6.2.3 Calibration Assembly (optional). A three-way valve assembly or equivalent to introduce calibration gases at ambient pressure at the exit end of the sample probe during calibration checks. The assembly must be designed such that only stack gas or calibration gas flows in the sample line and all gases flow through any gas path filters.

6.2.4 Particulate Filter (optional). Filters before the inlet of the EC cell to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters must be fabricated of materials that are non-reactive to the gas mixtures being sampled.

6.2.5 Sample Pump. A leak-free pump to provide undiluted sample gas to the system at a flow rate sufficient to minimize the response time of the measurement system. If located upstream of the EC cells, the pump must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.8 Sample Flow Rate Monitoring. An adjustable rotameter or equivalent device used to adjust and maintain the sample flow rate through the analyzer as prescribed.

6.2.9 Sample Gas Manifold (optional). A manifold to divert a portion of the sample gas stream to the analyzer and the remainder to a by-pass discharge vent. The sample gas manifold may also include provisions for introducing calibration gases directly to the analyzer. The manifold must be constructed of a material that is non-reactive to the gas mixtures being sampled.

6.2.10 EC cell. A device containing one or more EC cells to determine the CO and O₂ concentrations in the sample gas stream. The EC cell(s) must meet the applicable performance specifications of Section 13 of this protocol.

6.2.11 Data Recorder. A strip chart recorder, computer or digital recorder to make a record of analyzer output data. The data recorder resolution (i.e., readability) must be no greater than 1 ppm for CO; 0.1 percent for O₂; and one degree (either °C or °F) for temperature. Alternatively, you may use a digital or analog meter having the same resolution to observe and manually record the analyzer responses.
6.2.12 Interference Gas Filter or Scrubber. A device to remove interfering compounds upstream of the CO EC cell. Specific interference gas filters or scrubbers used in the performance-established configuration of the analyzer must continue to be used. Such a filter or scrubber must have a means to determine when the removal agent is exhausted. Periodically replace or replenish it in accordance with the manufacturer's recommendations.

7.0 Reagents and Standards. What calibration gases are needed?

7.1 Calibration Gases. CO calibration gases for the EC cell must be CO in nitrogen or CO in a mixture of nitrogen and O2. Use CO calibration gases with labeled concentration values certified by the manufacturer to be within ±5 percent of the label value. Dry ambient air (20.9 percent O2) is acceptable for calibration of the O2 cell. If needed, any lower percentage O2 calibration gas must be a mixture of O2 in nitrogen.

7.1.1 Up-Scale CO Calibration Gas Concentration. Choose one or more up-scale gas concentrations such that the average of the stack gas measurements for each stack gas sampling run are between 25 and 150 percent of those concentrations. Alternatively, choose an up-scale gas that does not exceed twice the concentration of the applicable outlet standard. If a measured gas value exceeds 150 percent of the up-scale CO calibration gas value at any time during the stack gas sampling run, the run must be discarded and repeated.

7.1.2 Up-Scale O2 Calibration Gas Concentration. Select an O2 gas concentration such that the difference between the gas concentration and the average stack gas measurement or reading for each sample run is less than 15 percent O2. When the average exhaust gas O2 readings are above 6 percent, you may use dry ambient air (20.9 percent O2) for the up-scale O2 calibration gas.

7.1.3 Zero Gas. Use an inert gas that contains less than 0.25 percent of the up-scale CO calibration gas concentration. You may use dry air that is free from ambient CO and other combustion gas products (e.g., CO2).

8.0 Sample Collection and Analysis

8.1 Selection of Sampling Sites.

8.1.1 Control Device Inlet. Select a sampling site sufficiently downstream of the engine so that the combustion gases should be well mixed. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.1.2 Exhaust Gas Outlet. Select a sampling site located at least two stack diameters downstream of any disturbance (e.g., turbocharger exhaust, crossover junction or recirculation take-off) and at least one-half stack diameter upstream of the gas discharge to the atmosphere. Use a single sampling extraction point near the center of the duct (e.g., within the 10 percent centroidal area), unless instructed otherwise.

8.2 Stack Gas Collection and Analysis. Prior to the first stack gas sampling run, conduct the pre-sampling calibration in accordance with Section 10.1. Use Figure 1 to record all data. Zero the analyzer with zero gas. Confirm and record that the scrubber media color is correct and not exhausted. Then position the probe at the sampling point and begin the sampling run at the same flow rate used during the up-scale calibration. Record the start time. Record all EC cell output responses and the flow rate during the “sample conditioning phase” once per minute until constant readings are obtained. Then begin the “measurement data phase” and record readings every 15 seconds for at least two minutes (or eight readings), or as otherwise required to achieve two continuous minutes of data that meet the specification given in Section 13.1. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until several minute-to-minute readings of consistent value have been obtained. For each run use the “measurement data phase” readings to calculate the average stack gas CO and O2 concentrations.

8.3 EC Cell Rate. Maintain the EC cell sample flow rate so that it does not vary by more than ±10 percent throughout the pre-sampling calibration, stack gas sampling and post-sampling calibration check. Alternatively, the EC cell sample flow rate can be maintained within a tolerance range that does not affect the gas concentration readings by more than ±3 percent, as instructed by the EC cell manufacturer.

9.0 Quality Control (Reserved)
10.0 Calibration and Standardization

10.1 Pre-Sampling Calibration. Conduct the following protocol once for each nominal range to be used on each EC cell before performing a stack gas sampling run on each field sampling day. Repeat the calibration if you replace an EC cell before completing all of the sampling runs. There is no prescribed order for calibration of the EC cells; however, each cell must complete the measurement data phase during calibration. Assemble the measurement system by following the manufacturer’s recommended protocols including for preparing and preconditioning the EC cell. Assure the measurement system has no leaks and verify the gas scrubbing agent is not depleted. Use Figure 1 to record all data.

10.1.1 Zero Calibration. For both the O₂ and CO cells, introduce zero gas to the measurement system (e.g., at the calibration assembly) and record the concentration reading every minute until readings are constant for at least two consecutive minutes. Include the time and sample flow rate. Repeat the steps in this section at least once to verify the zero calibration for each component gas.

10.1.2 Zero Calibration Tolerance. For each zero gas introduction, the zero level output must be less than or equal to ±3 percent of the up-scale gas value or ±1 ppm, whichever is less restrictive, for the CO channel and less than or equal to ±0.3 percent O₂ for the O₂ channel.

10.1.3 Up-Scale Calibration. Individually introduce each calibration gas to the measurement system (e.g., at the calibration assembly) and record the start time. Record all EC cell output responses and the flow rate during this “sample conditioning phase” once per minute until readings are constant for at least two minutes. Then begin the “measurement data phase” and record readings every 15 seconds for a total of two minutes, or as otherwise required. Finally, perform the “refresh phase” by introducing dry air, free from CO and other combustion gases, until readings are constant for at least two consecutive minutes. Then repeat the steps in this section at least once to verify the calibration for each component gas. Introduce all gases to flow through the entire sample handling system (i.e., at the exit end of the sampling probe or the calibration assembly).

10.1.4 Up-Scale Calibration Error. The mean of the difference of the “measurement data phase” readings from the reported standard gas value must be less than or equal to ±5 percent or ±1 ppm for CO or ±0.5 percent O₂, whichever is less restrictive, respectively. The maximum allowable deviation from the mean measured value of any single “measurement data phase” reading must be less than or equal to ±2 percent or ±1 ppm for CO or ±0.5 percent O₂, whichever is less restrictive, respectively.

10.2 Post-Sampling Calibration Check. Conduct a stack gas post-sampling calibration check after the stack gas sampling run or set of runs and within 12 hours of the initial calibration. Conduct up-scale and zero calibration checks using the protocol in Section 10.1. Make no changes to the sampling system or EC cell calibration until all post-sampling calibration checks have been recorded. If either the zero or up-scale calibration error exceeds the respective specification in Sections 10.1.2 and 10.1.4 then all measurement data collected since the previous successful calibrations are invalid and re-calibration and re-sampling are required. If the sampling system is disassembled or the EC cell calibration is adjusted, repeat the calibration check before conducting the next analyzer sampling run.

11.0 Analytical Procedure

The analytical procedure is fully discussed in Section 8.

12.0 Calculations and Data Analysis

Determine the CO and O₂ concentrations for each stack gas sampling run by calculating the mean gas concentrations of the data recorded during the “measurement data phase”.

13.0 Protocol Performance

Use the following protocols to verify consistent analyzer performance during each field sampling day.

13.1 Measurement Data Phase Performance Check. Calculate the mean of the readings from the “measurement data phase”. The maximum allowable deviation from the mean for each of the individual readings is ±2 percent, or ±1 ppm, whichever is less restrictive. Record the mean value and maximum deviation for each gas monitored. Data must conform to Section 10.1.4. The EC cell flow rate must conform to the specification in Section 8.3.
Example: A measurement data phase is invalid if the maximum deviation of any single reading comprising that mean is greater than ±2 percent or ±1 ppm (the default criteria). For example, if the mean = 30 ppm, single readings of below 29 ppm and above 31 ppm are disallowed.

13.2 Interference Check. Before the initial use of the EC cell and interference gas scrubber in the field, and semi-annually thereafter, challenge the interference gas scrubber with NO and NO₂ gas standards that are generally recognized as representative of diesel-fueled engine NO and NO₂ emission values. Record the responses displayed by the CO EC cell and other pertinent data on Figure 1 or a similar form.

13.2.1 Interference Response. The combined NO and NO₂ interference response should be less than or equal to ±5 percent of the up-scale CO calibration gas concentration.

13.3 Repeatability Check. Conduct the following check once for each nominal range that is to be used on the CO EC cell within 5 days prior to each field sampling program. If a field sampling program lasts longer than 5 days, repeat this check every 5 days. Immediately repeat the check if the EC cell is replaced or if the EC cell is exposed to gas concentrations greater than 150 percent of the highest up-scale gas concentration.

13.3.1 Repeatability Check Procedure. Perform a complete EC cell sampling run (all three phases) by introducing the CO calibration gas to the measurement system and record the response. Follow Section 10.1.3. Use Figure 1 to record all data. Repeat the run three times for a total of four complete runs. During the four repeatability check runs, do not adjust the system except where necessary to achieve the correct calibration gas flow rate at the analyzer.

13.3.2 Repeatability Check Calculations. Determine the highest and lowest average “measurement data phase” CO concentrations from the four repeatability check runs and record the results on Figure 1 or a similar form. The absolute value of the difference between the maximum and minimum average values recorded must not vary more than ±3 percent or ±1 ppm of the up-scale gas value, whichever is less restrictive.

14.0 Pollution Prevention (Reserved)

15.0 Waste Management (Reserved)

16.0 Alternative Procedures (Reserved)

17.0 References

Table 1: Appendix A—Sampling Run Data.

<table>
<thead>
<tr>
<th>Run Type:</th>
<th>Facility</th>
<th>Engine I.D.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Pre-Sample Calibration</td>
<td>Stack Gas Sample</td>
<td>Post-Sample Cal. Check</td>
<td>Repeatability Check</td>
</tr>
<tr>
<td>Run #</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Gas</td>
<td>O₂</td>
<td>CO</td>
<td>O₂</td>
</tr>
<tr>
<td>Sample Cond. Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Data Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[78 FR 6721, Jan. 30, 2013]
Indiana Department of Environmental Management
Office of Air Quality

Technical Support Document (TSD) for a Part 70 Operating Permit Renewal and Minor Source Modification

Source Description and Location

<table>
<thead>
<tr>
<th>Source Name:</th>
<th>Smoker Craft Incorporated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Location:</td>
<td>68143 Clunette Street and 67977 Division Street, New Paris, Indiana 46553</td>
</tr>
<tr>
<td>County:</td>
<td>Elkhart</td>
</tr>
<tr>
<td>SIC Code:</td>
<td>3732 (Boat Building and Repairing)</td>
</tr>
<tr>
<td>Permit Renewal No.:</td>
<td>T 039-41837-00073</td>
</tr>
<tr>
<td>Minor Modification No.:</td>
<td>MSM 039-41844-00073</td>
</tr>
<tr>
<td>Permit Reviewer:</td>
<td>Olajumoke Kayode</td>
</tr>
</tbody>
</table>

On August 23, 2019, Smoker Craft, Incorporated submitted an application to the Office of Air Quality (OAQ) requesting to renew its operating permit. OAQ has reviewed the operating permit renewal application from Smoker Craft, Incorporated relating to the operation of a stationary fiberglass and aluminum boat manufacturing operation. Smoker Craft, Incorporated was issued its third Part 70 Operating Permit Renewal (T 039-35173-00073) on June 18, 2015.

In addition, as part of the renewal application, Smoker Craft, Incorporated is proposing to construct new emission units.

This TSD covers both the renewal and the review of the new emission units.

Source Definition

This determination was initially made under Part 70 Renewal No. 039-35173-00073, issued on June 18, 2015. No change is being made in this renewal.

This source consists of the following plants:

(a) Plant 1 consisting of 13 buildings, identified as Buildings 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15 is located at 68143 Clunette Street, New Paris, Indiana 46553, and

(b) Plant 2 consisting of 12 buildings, identified as Buildings 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, and 31 is located at 67977 Division Street, New Paris Indiana 46553.

IDEM, OAQ has determined that these two plants are part of the same source based on the following criteria:

1. the plants are under common ownership or common control;

2. the plants have the same two-digit Standard Industrial Classification (SIC) Code or one must serve as a support facility for the other; and,

3. the plants are located on the same, contiguous or adjacent properties.

The existing plants (Plant 1 and Plant 2) are owned and operated directly by Smoker Craft, Inc. In addition, Plant 1 is run by the same plant management that runs Plant 2. As a result, common ownership and common control exists and the first part of the major source definition is met for both plants.
Plant 1 and Plant 2 manufacture fiberglass and aluminum boats under the two-digit SIC Code 37 for the Major Group Transportation Equipment. This group includes the four-digit SIC Code 3732, which includes boat building and repairing. Since both plants have the same two-digit SIC Code they meet the second part of the major source definition.

The plants are located on separate properties that do not share a common boundary. The existing plant (Plant 1) is directly across the street from plant (Plant 2). The two plants have the same plant manager, share employees and materials, and the production process is split between the plants. Considering all of these factors, IDEM, OAQ finds that the plants are located on adjacent properties.

Existing Approvals

The source was issued Part 70 Operating Permit Renewal No. T 039-35173-00073 on June 18, 2015. The source has since received the following approval:

All terms and conditions of previous permits issued pursuant to permitting programs approved into the State Implementation Plan have been either incorporated as originally stated, revised, or deleted by this permit. All previous registrations and permits are superseded by this permit.

Emission Units and Pollution Control Equipment

Smoker Craft, Incorporated has requested that some emission unit IDs be updated in this renewal to reference new asset numbers. The source also requested that some emission units be relocated between buildings in the source.

The source consists of the following permitted emission units:

(a) Seventeen (17) glue stations, using manual application methods and air-assisted airless spray guns at low pressure resulting in no formation of airborne particulate, each glue station with a maximum throughput of 1.33 units per hour, applying adhesives to wood boat components, vinyl fabric, or carpeting, and only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats), using no controls, exhausting indoors and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1GS</td>
<td>2</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>3-1GS</td>
<td>3</td>
<td>1993</td>
<td>Formerly identified as 3-6GS</td>
</tr>
<tr>
<td>5-1GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-2GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-3GS</td>
<td>5</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>5-4GS</td>
<td>5</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>14-1GS</td>
<td>14</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>27-1GS</td>
<td>27</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>27-2GS</td>
<td>27</td>
<td>Prior to 1980</td>
<td></td>
</tr>
<tr>
<td>7-1GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-3GS, relocated from building 27</td>
</tr>
<tr>
<td>7-2GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-4GS, relocated from building 27</td>
</tr>
<tr>
<td>7-3GS</td>
<td>7</td>
<td>2012</td>
<td>Formerly identified as 27-5GS, relocated from building 27</td>
</tr>
<tr>
<td>7-6GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-7GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-8GS</td>
<td>7</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>7-4GS</td>
<td>7</td>
<td>1992</td>
<td>Formerly identified as 25-6GS, relocated from building 25</td>
</tr>
<tr>
<td>3-2GS</td>
<td>3</td>
<td>Prior to 1980</td>
<td>Formerly identified as 27-1GS, relocated from building 27</td>
</tr>
</tbody>
</table>
(b) Five (5) paint booths, using air-assisted airless spray guns, each booth with a maximum throughput of 1.0 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1PB</td>
<td>Prior to 1980</td>
<td>6-1</td>
</tr>
<tr>
<td>6-2PB</td>
<td>Prior to 1980</td>
<td>6-2</td>
</tr>
<tr>
<td>13-1PB</td>
<td></td>
<td>13-1</td>
</tr>
<tr>
<td>13-2PB</td>
<td></td>
<td>13-2</td>
</tr>
<tr>
<td>13-3PB.</td>
<td></td>
<td>13-3</td>
</tr>
</tbody>
</table>

(c) One (1) paint booth, identified as 6-3PB, constructed in 2008, using HVLP spray guns, with a total maximum throughput of 1.25 units per hour, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using dry filters for particulate control, and exhausting to stack 6-3.

(d) One (1) portable catalyst/fiber resin chop gun, identified as 24/25-1RC, constructed prior to 1980, using non-atomized (fluid impingement) application methods, with a maximum capacity of 2.0 units per hour, using no control, and exhausting indoors.

(e) Six (6) stationary catalyst/fiber resin chop guns, using non-atomized (fluid impingement) application methods, with a total maximum capacity of 2.0 units per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-2RC</td>
<td>Prior to 1980</td>
<td>24/25-2RCS</td>
</tr>
<tr>
<td>24/25-3RC</td>
<td>Prior to 1980</td>
<td>24/25-3RCS</td>
</tr>
<tr>
<td>24/25-4RC</td>
<td>Prior to 1980</td>
<td>24/25-4RCS</td>
</tr>
<tr>
<td>24/25-5RC</td>
<td>Prior to 1980</td>
<td>24/25-5RCS</td>
</tr>
<tr>
<td>24/25-6RC</td>
<td></td>
<td>24/25-6RCS</td>
</tr>
<tr>
<td>24/25-7RC</td>
<td></td>
<td>24/25-7RCS</td>
</tr>
</tbody>
</table>

(f) Three (3) gel coat booths, using air-assisted airless spray guns, each with a maximum capacity of 1.0 unit per hour, using dry filters for particulate control and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Prior to 1980</td>
<td>24/25-1GC</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td>Prior to 1980</td>
<td>24/25-2GC</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>2008</td>
<td>24/25-3GC</td>
</tr>
</tbody>
</table>

(g) Two (2) fiberglass grinding and cutting operations, each with a maximum throughput of 2,900 pounds of fiberglass per hour, both using canister filters and dry filters for particulate control, and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Year Constructed</th>
<th>Exhaust Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>Prior to 1980</td>
<td>24/25-1FGS</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td>Prior to 1980</td>
<td>24/25-2FGS</td>
</tr>
</tbody>
</table>

[Under 40 CFR 63, Subpart VVVV, this fiberglass and aluminum boat manufacturing plant is considered an existing affected source.]
Emission Units and Pollution Control Equipment Removed From the Source

The source has removed the following emission units:

(a) The following six (6) glue/adhesive spray booths, using air-assisted airless spray guns, each booth with a maximum throughput of 1.5 units per hour, applying glues and adhesives to vinyl fabric or carpeting, and using baffles for particulate control:

1. One (1) spray booth, identified as 7-1GA, constructed in 1988, relocated from Building 23 to Building 7 in 2016, and exhausting to stack 7-1;
2. One (1) spray booth, identified as 7-2GA, constructed in 1993, relocated from Building 23 to Building 7 in 2016, exhausting to stack 7-2;
3. One (1) spray booth, identified as 7-3GA, constructed in 1996, relocated from Building 23 to Building 7 in 2016, and exhausting to stack 7-3;
4. One (1) spray booth, identified as 7-4GA, constructed prior to 1980, relocated from Building 23 to Building 7 in 2016, and exhausting to stack 7-4;
5. One (1) spray booth, identified as 7-5GA, constructed prior to 1980, relocated from Building 23 to Building 7 in 2016, and exhausting to stack 7-5;
6. One (1) spray booth, identified as 7-6GA, constructed prior to 1980, relocated from Building 23 to Building 7 in 2016, and exhausting to stack 7-6.

(b) Degreasing operations that do not exceed 145 gallons per 12 months, except if subject to 326 IAC 20-6;

(c) One (1) 185 horsepower diesel-fired emergency generator, manufactured in 1995;

Under 40 CFR 63, Subpart ZZZZ, this is considered an affected facility.

Insignificant Activities

The source also consists of the following insignificant activities:

(a) Two (2) gel coat/final finish touch-up operations, including manual cleaning, polishing and waxing operations, identified as 24/25-1TU and 24/25-2TU, located in buildings 24/25, constructed prior to 1980, each with a maximum throughput of 2.0 units per hour, using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, these units are considered existing affected sources.]

(b) One (1) paint touch-up operation, identified as 24/25-3TU, constructed prior to 1980, relocated from Building 1 to Building 24/25 in 2015, using air-assisted airless spray application, with a maximum throughput of 1.0 units per hour, uses less than 5 gallons of coating per day, applying coatings only to the exterior, non-enclosed surfaces of the aluminum marine vessels (recreational boats), using no control, and exhausting indoors.

[Under 40 CFR 63, Subpart VVVV, this unit is considered an existing affected source.]

(c) Three (3) woodworking operations, with integral cyclones and return air bagfilter collection systems for particulate control, exhausting indoors and consisting of the following:

1. One (1) woodworking operation, identified as 9-1W, with a maximum throughput of 1100 pounds of wood per hour;
(2) One (1) woodworking operation, identified as 9-2W, with a maximum throughput of 200 pounds of wood per hour;

(3) One (1) woodworking operation, identified as 7-1W, relocated from Building 23 to Building 7 in 2016, with a maximum throughput of 200 pounds of wood per hour.

d) Forty nine (49) welding machines, using electrostatic precipitators for particulate control, and exhausting indoors as follows:

<table>
<thead>
<tr>
<th>Building number</th>
<th>Process</th>
<th>Number of Stations</th>
<th>Maximum electrode usage per station (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIG Welding</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>MIG Welding</td>
<td>13</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>MIG Welding</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>27</td>
<td>TIG Welding</td>
<td>29</td>
<td>1.20</td>
</tr>
</tbody>
</table>

e) Natural gas-fired combustion sources, each with heat input equal to or less than ten (10) million Btu per hour, and total heat input capacity of 21.2 million Btu per hour.

(f) One (1) 155 horsepower diesel-fired emergency stationary fire pump, manufactured in 1976.

[Under 40 CFR 63, Subpart ZZZZ, this is considered an affected facility.]

(g) Paved and unpaved roads and parking lots with public access.

“Integral Part of the Process” Determination

In October 1993 a Final Order Granting Summary Judgment was signed by Administrative Law Judge (“ALJ”) Garretson resolving an appeal filed by Kimball Hospitality Furniture Inc. (Cause Nos. 92-A-J-730 and 92-A-J-833) related to the method by which IDEM calculated potential emissions from woodworking operations. In his findings, the ALJ determined that particulate controls are necessary for the facility to produce its normal product and are integral to the normal operation of the facility, and therefore, potential emissions should be calculated after controls. Based on this ruling, the potential to emit particulate matter from the woodworking operations was calculated after control for purposes of determining permitting level and applicability of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)).

Enforcement Issue

There are no enforcement actions pending.

Emission Calculations

See Appendix A of this Technical Support Document for detailed emission calculations.

County Attainment Status

The source is located in Elkhart County.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Better than national standards.</td>
</tr>
<tr>
<td>CO</td>
<td>Unclassifiable or attainment effective November 15, 1990.</td>
</tr>
<tr>
<td>O₃</td>
<td>Unclassifiable or attainment effective July 20, 2012, for the 2008 8-hour ozone standard.¹</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective April 5, 2005, for the annual PM₂.₅ standard.</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Unclassifiable or attainment effective December 13, 2009, for the 24-hour PM₂.₅ standard.</td>
</tr>
</tbody>
</table>
Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{10})</td>
<td>Unclassifiable effective November 15, 1990.</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>Cannot be classified or better than national standards.</td>
</tr>
<tr>
<td>Pb</td>
<td>Unclassifiable or attainment effective December 31, 2011.</td>
</tr>
</tbody>
</table>

\(^1\)Unclassifiable or attainment effective October 18, 2000, for the 1-hour ozone standard which was revoked effective June 15, 2005.

(a) **Ozone Standards**

Volatile organic compounds (VOC) and Nitrogen Oxides (NO\(_x\)) are regulated under the Clean Air Act (CAA) for the purposes of attaining and maintaining the National Ambient Air Quality Standards (NAAQS) for ozone. Therefore, VOC and NO\(_x\) emissions are considered when evaluating the rule applicability relating to ozone. Elkhart County has been designated as attainment or unclassifiable for ozone. Therefore, VOC and NO\(_x\) emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(b) **PM\(_{2.5}\)**

Elkhart County has been classified as attainment for PM\(_{2.5}\). Therefore, direct PM\(_{2.5}\), SO\(_2\), and NO\(_x\) emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

(c) **Other Criteria Pollutants**

Elkhart County has been classified as attainment or unclassifiable in Indiana for all the other criteria pollutants. Therefore, these emissions were reviewed pursuant to the requirements for Prevention of Significant Deterioration (PSD), 326 IAC 2-2.

Fugitive Emissions

Since this type of operation is not one (1) of the twenty-eight (28) listed source categories under 326 IAC 2-2-1(ff)(1), 326 IAC 2-3-2(g), or 326 IAC 2-7-1(22)(B), and there is no applicable New Source Performance Standard or National Emission Standard for Hazardous Air Pollutants that was in effect on August 7, 1980, fugitive emissions are not counted toward the determination of PSD, Emission Offset, and Part 70 Permit applicability.

The fugitive emissions of hazardous air pollutants (HAP) are counted toward the determination of Part 70 Permit applicability and source status under Section 112 of the Clean Air Act (CAA).

Greenhouse Gas (GHG) Emissions

On June 23, 2014, in the case of *Utility Air Regulatory Group v. EPA*, cause no. 12-1146, (available at http://www.supremecourt.gov/opinions/13pdf/12-1146_4q18.pdf) the United States Supreme Court ruled that the U.S. EPA does not have the authority to treat greenhouse gases (GHGs) as an air pollutant for the purpose of determining operating permit applicability or PSD Major source status. On July 24, 2014, the U.S. EPA issued a memorandum to the Regional Administrators outlining next steps in permitting decisions in light of the Supreme Court’s decision. U.S. EPA’s guidance states that U.S. EPA will no longer require PSD or Title V permits for sources “previously classified as ‘Major’ based solely on greenhouse gas emissions.”

The Indiana Environmental Rules Board adopted the GHG regulations required by U.S. EPA at 326 IAC 2-2-1(zz), pursuant to Ind. Code § 13-14-9-8(h) (Section 8 rulemaking). A rule, or part of a rule, adopted under Section 8 is automatically invalidated when the corresponding federal rule, or part of the rule, is invalidated. Due to the United States Supreme Court Ruling, IDEM, OAQ cannot consider GHG emissions to determine operating permit applicability or PSD applicability to a source or modification.
Unrestricted Potential Emissions

This table reflects the unrestricted potential emissions of the source.

<table>
<thead>
<tr>
<th>Unrestricted Potential Emissions (ton/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PM}^1)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Total PTE of Entire Source Excluding Fugitive Emissions</td>
</tr>
<tr>
<td>Title V Major Source Thresholds</td>
</tr>
<tr>
<td>PSD Major Source Thresholds</td>
</tr>
</tbody>
</table>

1Under the Part 70 Permit program (40 CFR 70), \(\text{PM}_{10} \) and \(\text{PM}_{2.5} \), not particulate matter (PM), are each considered as a "regulated air pollutant."

2\(\text{PM}_{2.5} \) listed is direct \(\text{PM}_{2.5} \).

3Single highest source-wide HAP

*Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed unrestricted potential emissions of the source.

(a) The potential to emit (as defined in 326 IAC 2-7-1(30)) of \(\text{PM}_{10} \) \(\text{PM}_{2.5} \) and \(\text{VOC} \) is each equal to or greater than one hundred (100) tons per year. Therefore, the source is subject to the provisions of 326 IAC 2-7 and will be issued a Part 70 Operating Permit Renewal.

(b) The potential to emit (as defined in 326 IAC 2-7-1(30)) of any single HAP is equal to or greater than ten (10) tons per year and/or the potential to emit (as defined in 326 IAC 2-7-1(30)) of a combination of HAPs is equal to or greater than twenty-five (25) tons per year. The source will be issued a Part 70 Operating Permit Renewal.

Part 70 Permit Conditions

This source is subject to the requirements of 326 IAC 2-7, because the source met the following:

(a) Emission limitations and standards, including those operational requirements and limitations that assure compliance with all applicable requirements at the time of issuance of Part 70 permits.

(b) Monitoring and related record keeping requirements which assume that all reasonable information is provided to evaluate continuous compliance with the applicable requirements.

Description of Proposed Modification to an Existing Source

In addition to the renewal application, the Office of Air Quality (OAQ) has reviewed an application, submitted by Smoker Craft, Incorporated on August 23, 2019, relating to the following:

(1) Addition of six (6) new glue stations.

(2) Replacement of the canister and dry filters used as particulate control for the two (2) fiberglass grinding and cutting operations with a baghouse identified as 24/25BH; and change in the exhaust stack from stack 24/25-1FGS and stack 24/25-2FGS respectively to 24/25BHS for both units. There are no changes in the maximum capacities and potential emissions due to this change in control and exhaust.

(3) Addition of one (1) new Dust Collector System to vacuum boats.
(4) Addition of one (1) new polyurethane boat liner operation process.

(5) Addition of fifty (50) new welding machines.

The following is a list of the new and modified emission units and pollution control device(s):

Modified emission unit:

(a) Two (2) fiberglass grinding and cutting operations, constructed prior to 1980 and approved in 2019 to change control and exhaust stack, each with a maximum throughput of 2,900 pounds of fiberglass per hour, both using a baghouse (24/25-BH) for particulate control, and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Exhaust stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>24/25-BHS</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td>24/25-BHS</td>
</tr>
</tbody>
</table>

[Under 40 CFR 63, Subpart VVVV, these units are considered existing affected sources.]

New emission units:

(b) Six (6) glue stations, approved in 2019 for construction, using manual application methods and air-assisted airless spray guns at low pressure resulting in no formation of airborne particulate, each glue station with a maximum throughput of 1.33 units per hour, applying adhesives to wood boat components, vinyl fabric, or carpeting, and only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats), using no control, exhausting indoors and consisting of the following:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-5GS</td>
<td>7</td>
</tr>
<tr>
<td>7-9GS</td>
<td>7</td>
</tr>
<tr>
<td>7-10GS</td>
<td>7</td>
</tr>
<tr>
<td>7-11GS</td>
<td>7</td>
</tr>
<tr>
<td>7-12GS</td>
<td>7</td>
</tr>
<tr>
<td>7-13GS</td>
<td>7</td>
</tr>
</tbody>
</table>

These 6 glue stations are similar to the existing 17 existing glue stations. After this modification, there will be a total of 23 glue stations.

(c) One (1) Dust Collector System used to vacuum boats, identified as 24/25-VAC, approved in 2019 for construction, with a material input rate of 5,800.00 pounds per hour, located in Building 24/25, using cartridge filters (24/25-VACCF) as control and exhausting to stack 24/25-VACS.

(d) One (1) Polyurethane liner operation to coat boats, identified as 24/25-BL, approved in 2019 for construction, with a maximum throughput of 2.00 units per hour, using dry filters (24/25-BLDF) as control and exhausting to stack 24/25-BLS.

[Under 40 CFR 63, Subpart VVVV, this unit is considered an existing affected source.]

(e) Fifty (50) welding machines, approved in 2019 for construction, using no controls, and exhausting indoors as follows:

<table>
<thead>
<tr>
<th>Building number</th>
<th>Process</th>
<th>Number of Stations</th>
<th>Maximum electrode usage per station (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MIG Welding</td>
<td>7</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>TIG Welding</td>
<td>6</td>
<td>1.20</td>
</tr>
</tbody>
</table>
Permit Level Determination – Part 70 Modification to an Existing Source

Pursuant to 326 IAC 2-1.1-1(12), Potential to Emit is defined as “the maximum capacity of a stationary source or emission unit to emit any air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of a source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or type or amount of material combusted, stored, or processed shall be treated as part of its design if the limitation is enforceable by the U. S. EPA, IDEM, or the appropriate local air pollution control agency.”

The following table is used to determine the appropriate permit level under 326 IAC 2-7-10.5. This table reflects the PTE before controls. If the control equipment has been determined to be integral, the table reflects the potential to emit (PTE) after consideration of the integral control device.

<table>
<thead>
<tr>
<th>Process / Emission Unit</th>
<th>PM</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_X$</th>
<th>VOC</th>
<th>CO</th>
<th>Single HAP2</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 New Glue Stations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 New Vacuum Operation (24/25-VAC)</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 New Polyurethane Boat Lining Operation (24/25-BL)</td>
<td>5.06</td>
<td>5.06</td>
<td>5.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.85 (Isocyanate)</td>
<td>1.85</td>
</tr>
<tr>
<td>50 New Welding stations</td>
<td>2.92</td>
<td>2.92</td>
<td>2.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.27 (Manganese)</td>
<td>0.27</td>
</tr>
<tr>
<td>Total PTE Before Controls of the New Emission Units:</td>
<td>10.79</td>
<td>10.79</td>
<td>10.79</td>
<td>0.00</td>
<td>0.00</td>
<td>22.38</td>
<td>0.00</td>
<td>1.85 (Isocyanate)</td>
<td>2.12</td>
</tr>
</tbody>
</table>

1PM$_{2.5}$ listed is direct PM$_{2.5}$.
2Single highest HAP.

Appendix A of this TSD reflects the detailed potential emissions of the modification.

(a) Approval to Construct
(1) Pursuant to 326 IAC 2-7-10.5(e)(1)(A), a Minor Source Modification is required because this modification has the potential to emit PM, PM10 and direct PM2.5 that is less than twenty-five (25) tons per year and equal to or greater than five (5) tons per year.
(2) Pursuant to 326 IAC 2-7-10.5(e)(1)(B), a Minor Source Modification is required because this modification has the potential to emit VOC that is less than twenty-five (25) tons per year and equal to or greater than ten (10) tons per year.

(b) Approval to Operate

In lieu of a Significant Permit Modification, a renewal of the Operating Permit will be done. This will grant the source the appropriate operating approval for the proposed modification.

Potential to Emit After Issuance

The table below summarizes the potential to emit, reflecting all limits, of the emission units. Any new control equipment is considered federally enforceable only after issuance of this Part 70 permit renewal, and only to the extent that the effect of the control equipment is made practically enforceable in the permit.

| Potential To Emit of the Entire Source After Issuance of Renewal (tons/year) |
|---------------------------------|----------------|----------------|--------------|---------------|-------------|----------------|----------------|
| PM1 | PM10 | PM2.5 | SO2 | NOx | VOC | CO | Single HAP | Total HAP |
| Total PTE of Entire Source Excluding Fugitive Emissions* | 48.10 | 48.62 | 48.62 | 0.13 | 10.30 | 247.60 | 7.91 | 394.04 (Styrene) | 462.19 |
| Title V Major Source Thresholds | NA | 100 | 100 | 100 | 100 | 100 | 100 | 10 | 25 |
| PSD Major Source Thresholds | 250 | 250 | 250 | 250 | 250 | 250 | 250 | NA | NA |

* Under the Part 70 Permit program (40 CFR 70), PM10 and PM2.5, not particulate matter (PM), are each considered as a "regulated air pollutant."

PM2.5 listed is direct PM2.5.

Single highest source-wide HAP.

Fugitive HAP emissions are always included in the source-wide emissions.

Appendix A of this TSD reflects the detailed potential to emit of the entire source after issuance.

The source opted to take limit(s) in order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable to this source. See Technical Support Document (TSD) State Rule Applicability - Entire Source section, 326 IAC 2-2 (PSD) for more information regarding the limit(s).

(a) This existing source is not a major stationary source, under PSD (326 IAC 2-2), because no PSD regulated pollutant is emitted at a rate of two hundred fifty (250) tons per year or more and it is not one of the twenty-eight (28) listed source categories, as specified in 326 IAC 2-2-1(ff)(1).

(b) This source is a major source of HAP, as defined in 40 CFR 63.2, because HAP emissions are equal to or greater than ten (10) tons per year for a single HAP and equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, this source is a major source under Section 112 of the Clean Air Act (CAA).

Federal Rule Applicability

Federal rule applicability for this source has been reviewed as follows:

New Source Performance Standards (NSPS):
(a) The requirements for the New Source Performance Standards for Industrial-Commercial-
Institutional Steam Generating Units, 40 CFR 60, Subpart Db and 326 IAC 12 are not included in
the permit for the natural gas-fired combustion units, because the natural gas-fired combustion
units are not steam generating units.

(b) The requirements for the New Source Performance Standards for Small Industrial-Commercial-
Institutional Steam Generating Units, 40 CFR 60, Subpart Dc and 326 IAC 12 are not included in
the permit for the natural gas-fired combustion units, because the natural gas-fired combustion
units are not steam generating units.

(c) The requirements of the New Source Performance Standard for Surface Coating of Metal
Furniture, 40 CFR 60, Subpart EE and 326 IAC 12, are not included in the permit for this source,
because this source does not carry out surface coating of metal furniture.

(d) The requirements of the New Source Performance Standard for Automobile and Light Duty Truck
Surface Coating Operations, 40 CFR 60, Subpart MM and 326 IAC 12, are not included in the
permit for this source, because this source is not an automobile or light duty assembly plant.

(e) The requirements of the New Source Performance Standard for Pressure Sensitive Tape and
Label Surface Coating Operations, 40 CFR 60, Subpart RR and 326 IAC 12, are not included in the
permit for this source, because this source does not operate coating lines used in the
manufacture of pressure sensitive tape and label materials.

(f) The requirements of the New Source Performance Standard for Industrial Surface Coating: Large
Appliances, 40 CFR 60, Subpart SS and 326 IAC 12, are not included in the permit for this source,
because this source does not perform surface coating of large appliances.

(g) The requirements of the New Source Performance Standard for Metal Coil Surface Coating, 40
CFR 60, Subpart TT and 326 IAC 12, are not included in the permit for this source, because this
source does not perform metal coil surface coating operations.

(h) The requirements of the New Source Performance Standard for the Beverage Can Surface Coating
Industry, 40 CFR 60, Subpart WW and 326 IAC 12, are not included in the permit for this source,
because this source does not operate beverage can surface coating lines.

(i) The requirements of the New Source Performance Standard for Magnetic Tape Coating Facilities,
40 CFR 60, Subpart SSS and 326 IAC 12, are not included in the permit for this source, because
the does not carry out coating of magnetic tapes.

(j) The requirements of the New Source Performance Standard for Industrial Surface Coating: Surface
Coating of Plastic Parts for Business Machines, 40 CFR 60, Subpart TTT and 326 IAC 12, are not
included in the permit for this source, because this source does not carry out surface coating of
plastic parts for use in the manufacture of business machines.

(k) The requirements of the New Source Performance Standard for Polymeric Coating of Supporting
Substrates Facilities, 40 CFR 60, Subpart VVV and 326 IAC 12, are not included in the permit for
this source, because this source does not carry out polymeric coating of supporting substrates.

(l) There are no New Source Performance Standards (40 CFR Part 60) and 326 IAC 12 included in
the permit.

National Emission Standards for Hazardous Air Pollutants (NESHAP):

(a) This source is still subject to the National Emission Standards for Hazardous Air Pollutants for
Boat Manufacturing, 40 CFR 63, Subpart VVVV, which is incorporated by reference as 326 IAC
20-48, because this source operates a fiberglass boat manufacturing facility and is a major
source of HAP.
Pursuant to 40 CFR 63.5683 and 40 CFR 63.5689, an affected source that is subject to the requirements of 40 CFR 63, Subpart VVVV consists of all facilities located at the source engaged in the following operations:

(1) Open molding resin and gel coat operations (including pigmented gel coat, clear gel coat, production resin, tooling gel coat, and tooling resin).

(2) Closed molding resin operations.

(3) Resin and gel coat mixing operations.

(4) Resin and gel coat application equipment cleaning operations.

(5) Carpet and fabric adhesive operations.

(6) Aluminum hull and deck coating operations, including solvent wipedown operations and paint spray gun cleaning operations, on aluminum recreational boats.

The units subject to this rule include the following:

i. Twenty three (23) Glue Stations;
ii. Five (5) Airless Paint Booths;
iii. One (1) HVLP Paint Booth;
iv. One (1) portable catalyst/fiber resin chop gun;
v. Six (6) stationary catalyst/fiber resin chop guns;
vi. Three (3) gel coat booths;
vii. Two (2) Gel coat touch-up Operations;
viii. One (1) Paint touch-up Operation and
ix. One (1) Polyurethane Boat Lining Operation.

These emission units are subject to the following portions of Subpart VVVV:

(1) 40 CFR 63.5680
(2) 40 CFR 63.5683
(3) 40 CFR 63.5689
(4) 40 CFR 63.5692
(5) 40 CFR 63.5695
(6) 40 CFR 63.5698
(7) 40 CFR 63.5701(a), (b)
(8) 40 CFR 63.5704(a), (b)
(9) 40 CFR 63.5707
(10) 40 CFR 63.5710
(11) 40 CFR 63.5713
(12) 40 CFR 63.5714
(13) 40 CFR 63.5728
(14) 40 CFR 63.5731
(15) 40 CFR 63.5734
(16) 40 CFR 63.5737
(17) 40 CFR 63.5740
(18) 40 CFR 63.5743
(19) 40 CFR 63.5746
(20) 40 CFR 63.5749
(21) 40 CFR 63.5752
(22) 40 CFR 63.5753
(23) 40 CFR 63.5755
(24) 40 CFR 63.5758
(25) 40 CFR 63.5761
(26) 40 CFR 63.5764(a), (b), (c)
The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to these units except as otherwise specified in 40 CFR 63, Subpart VVVV.

(b) The emergency fire pump is still subject to the National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines, 40 CFR 63, Subpart ZZZZ, which is incorporated by reference as 326 IAC 20-82, because this unit is considered existing emergency stationary RICE.

This emission unit is subject to the following portions of Subpart ZZZZ:

(1) 40 CFR 63.6580
(2) 40 CFR 63.6585
(3) 40 CFR 63.6590(a)(1)(ii)
(4) 40 CFR 63.6595(a)(1) and (c)
(5) 40 CFR 63.6602
(6) 40 CFR 63.6604(b)
(7) 40 CFR 63.6605
(8) 40 CFR 63.6625(e), (f), (h), and (i)
(9) 40 CFR 63.6640(a), (b), (d), (e), and (f)
(10) 40 CFR 63.6650(f)
(11) 40 CFR 63.6655(a), (b), (d), (e), and (f)
(12) 40 CFR 63.6660
(13) 40 CFR 63.6665
(14) 40 CFR 63.6670(a)
(15) 40 CFR 63.6675
(16) Table 2c to 40 CFR 63, Subpart ZZZZ
(17) Table 6 to 40 CFR 63, Subpart ZZZZ
(18) Table 8 to 40 CFR 63, Subpart ZZZZ

The requirements of 40 CFR Part 63, Subpart A – General Provisions, which are incorporated as 326 IAC 20-1, apply to the emergency fire pump except as otherwise specified in 40 CFR 63, Subpart ZZZZ.

(c) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Shipbuilding and Ship Repair (Surface Coating), 40 CFR 63, Subpart II and 326 IAC 20-26 are not included in the permit for this source, since the marine vessels produced at this source do not meet the definition of a ship, as defined in 40 CFR 63.782. Pleasure craft are not considered to be ships and are therefore not subject to this subpart.

(d) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Wet-Formed Fiberglass Mat Production, 40 CFR 63, Subpart HHHH and 326 IAC 20-52 are not included in the permit for this source, since this source does not manufacture wet-formed fiberglass mat, as defined in 40 CFR 63.3004.
(e) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Automobiles and Light Duty Trucks, 40 CFR 63, Subpart IIII and 326 IAC 20-85 are not included in the permit for this source, since the source does not operate Automobiles and Light Duty Trucks coating lines.

(f) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Paper and Other Web Coating, 40 CFR 63, Subpart JJJJ and 326 IAC 20-65 are not included in the permit for this source, since the source does not operate web coating lines.

(g) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Metal Cans, 40 CFR 63, Subpart KKKK and 326 IAC 20-86 are not included in the permit for this source, since this source does not operate metal can coating facilities.

(h) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Miscellaneous Metal Parts and Products, 40 CFR 63, Subpart MMMM and 326 IAC 20-80 are not included in the permit for this source, since the boat manufacturing sources at this source are subject to subpart VVVV of this part. Also, Subpart MMMM applies to metal coating operations performed on personal watercraft and this source is not subject because it will not coat personal watercraft(s), as defined in 40 CFR 63.3981. Personal watercraft means a vessel (boat) which uses an inboard motor powering a water jet pump as its primary source of motive power and which is designed to be operated by a person or persons sitting, standing, or kneeling on the vessel, rather than in the conventional manner of sitting or standing inside the vessel.

(i) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Large Appliances, 40 CFR 63, Subpart NNNN and 326 IAC 20-63 are not included in the permit for this source, since this source does not operate lines for applying surface coating to large appliance parts or products.

(j) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Plastic Parts and Products, 40 CFR 63, Subpart PPPP and 326 IAC 20-81 are not included in the permit for this source, since this source is subject to the requirements of Subpart VVVV.

(k) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Wood Building Products, 40 CFR 63, Subpart QQQQ and 326 IAC 20-79 are not included in the permit for this source, since this source does not perform surface coating of wood building products.

(l) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Metal Furniture, 40 CFR 63, Subpart RRRR and 326 IAC 20-78 are not included in the permit for this source, since this source does not perform surface coating of metal furniture.

(m) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Surface Coating of Metal Coil, 40 CFR 63, Subpart SSSS and 326 IAC 20-64 are not included in the permit for this source, since this source does not operate coil coating lines.

(n) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs): Reinforced Plastic Composites Production, 40 CFR 63, Subpart VVVV and 326 IAC 20-56 are not included in the permit for this source, since this source is subject to the requirements of Subpart VVVV and the source uses all of the reinforced plastics composites manufactured onsite in manufacturing of fiberglass boats.

(o) The requirements of the National Emission Standards for Hazardous Air Pollutants (NESHAPs) for Paint Stripping and Miscellaneous Coating Operations at Area Sources, 40 CFR 63, Subpart
HHHHHH is not included in the permit for this source, since the source is a major source of HAPs.

There are no other National Emission Standards for Hazardous Air Pollutants under 40 CFR 63, 326 IAC 14 and 326 IAC 20 included in the permit.

Compliance Assurance Monitoring (CAM):

(a) Pursuant to 40 CFR 64.2, Compliance Assurance Monitoring (CAM) is applicable to each existing pollutant-specific emission unit that meets the following criteria:

1. has a potential to emit before controls equal to or greater than the major source threshold for the regulated pollutant involved;

2. is subject to an emission limitation or standard for that pollutant (or a surrogate thereof); and

3. uses a control device, as defined in 40 CFR 64.1, to comply with that emission limitation or standard.

(b) Pursuant to 40 CFR 64.2(b)(1)(i), emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act are exempt from the requirements of CAM. Therefore, an evaluation was not conducted for any emission limitations or standards proposed after November 15, 1990 pursuant to a NSPS or NESHAP under Section 111 or 112 of the Clean Air Act.

There are no emissions units at this source subject to CAM because:

(a) Emissions units with VOC and HAPs emissions do not have VOC/HAP control devices, and

(b) Emissions units with particulate control devices have emissions less than the major source threshold.

<table>
<thead>
<tr>
<th>State Rule Applicability - Entire Source</th>
</tr>
</thead>
</table>

State rule applicability for this source has been reviewed as follows:

326 IAC 1-6-3 (Preventive Maintenance Plan)
The source is subject to 326 IAC 1-6-3.

326 IAC 1-5-2 (Emergency Reduction Plans)
The source is subject to 326 IAC 1-5-2.

326 IAC 2-2 (PSD) and 326 IAC 2-3 (Emission Offset)
PSD and Emission Offset applicability is discussed under the Potential to Emit After Issuance section of this document.

PSD Minor Source Limits

(a) VOC

The source still has unlimited VOC PTE of greater than 250 tons/year.
The existing permit has the following condition and it is being clarified in this renewal:

In order to continue to not be subject to the requirements of 326 IAC 2-2 (PSD), the source shall comply with the following:
The VOC emissions from the entire source (excluding combustion units) from the use of resins, gel coats, catalysts, surface coatings, adhesives, dilution solvents, cleaning solvents, and degreasing solvents shall be less than 247 tons per twelve (12) consecutive month period, with compliance determined at the end of each month.

In order to render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable, the combined VOC emissions from the facilities listed below shall not exceed 247 tons per twelve (12) consecutive month period, with compliance determined at the end of each month:

<table>
<thead>
<tr>
<th>Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty three (23) Glue Stations</td>
</tr>
<tr>
<td>Five (5) Airless Paint Booths</td>
</tr>
<tr>
<td>One (1) HVLP Paint Booth</td>
</tr>
<tr>
<td>One (1) portable catalyst/fiber resin chop gun</td>
</tr>
<tr>
<td>Six (6) stationary catalyst/fiber resin chop guns</td>
</tr>
<tr>
<td>Three (3) gel coat booths</td>
</tr>
<tr>
<td>Two (2) Gel coat touch-up operations</td>
</tr>
<tr>
<td>One (1) Paint touch-up operation</td>
</tr>
<tr>
<td>One (1) Polyurethane Boat Lining Operation</td>
</tr>
</tbody>
</table>

Compliance with this limit, combined with the potential to emit VOC from all other emission units at this source, shall limit the source-wide total potential to emit of VOC to less than 250 tons per twelve (12) consecutive month period, and shall render the requirements of 326 IAC 2-2 (Prevention of Significant Deterioration (PSD)) not applicable.

326 IAC 2-4.1 (Major Sources of Hazardous Air Pollutants (HAP))

The provisions of 326 IAC 2-4.1 apply to any owner or operator who constructs or reconstructs a major source of hazardous air pollutants (HAP), as defined in 40 CFR 63.41, after July 27, 1997, unless the major source has been specifically regulated under or exempted from regulation under a NESHAP that was issued pursuant to Section 112(d), 112(h), or 112(j) of the Clean Air Act (CAA) and incorporated under 40 CFR 63. On and after June 29, 1998, 326 IAC 2-4.1 is intended to implement the requirements of Section 112(g)(2)(B) of the Clean Air Act (CAA).

The operation of this source will still emit equal to or greater than ten (10) tons per year for a single HAP and equal to or greater than twenty-five (25) tons per year for a combination of HAPs. Therefore, 326 IAC 2-4.1 would apply to this source. However, pursuant to 326 IAC 2-4.1-1(b)(2), because all units with a potential to emit greater than ten (10) tons per year for a single HAP and greater than twenty-five (25) tons per year for a combination of HAPs are specifically regulated under NESHAP 40 CFR 63, Subpart VVVV, which was issued pursuant to Section 112(d) of the CAA, this source is exempt from the requirements of 326 IAC 2-4.1.

326 IAC 2-6 (Emission Reporting)

This source, not located in Lake, Porter, or LaPorte County, is still subject to 326 IAC 2-6 (Emission Reporting) because it is required to have an operating permit pursuant to 326 IAC 2-7 (Part 70). The potential to emit of VOC and PM10 is less than 250 tons per year; and the potential to emit of CO, NOx, and SO2 is less than 2,500 tons per year. Therefore, pursuant to 326 IAC 2-6-3(a)(2), triennial reporting is required. An emission statement shall be submitted in accordance with the compliance schedule in 326 IAC 2-6-3 and every three (3) years thereafter. The emission statement shall contain, at a minimum, the information specified in 326 IAC 2-6-4.

There is no change to this requirement in the renewal.

326 IAC 2-7-6(5) (Annual Compliance Certification)

The U.S. EPA Federal Register 79 FR 54978 notice does not exempt Title V Permittees from the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D), but the submittal of the Title V annual compliance certification to IDEM satisfies the requirement to submit the Title V annual compliance...
certifications to EPA. IDEM does not intend to revise any permits since the requirements of 40 CFR 70.6(c)(5)(iv) or 326 IAC 2-7-6(5)(D) still apply, but Permittees can note on their Title V annual compliance certifications that submission to IDEM has satisfied reporting to EPA per Federal Register 79 FR 54978. This only applies to Title V Permittees and Title V compliance certifications.

326 IAC 5-1 (Opacity Limitations)
This source is subject to the opacity limitations specified in 326 IAC 5-1-2(2)

326 IAC 6-4 (Fugitive Dust Emissions Limitations)
Pursuant to 326 IAC 6-4 (Fugitive Dust Emissions Limitations), the source shall not allow fugitive dust to escape beyond the property line or boundaries of the property, right-of-way, or easement on which the source is located, in a manner that would violate 326 IAC 6-4.

326 IAC 6-5 (Fugitive Particulate Matter Emission Limitations)
This source is not subject to the requirements of 326 IAC 6-5, because the source has potential fugitive particulate emissions of less than twenty-five (25) tons per year.

326 IAC 6.5 (Particulate Matter Limitations Except Lake County)
Pursuant to 326 IAC 6.5-1-1(a), this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.5 because it is not located in one of the following counties: Clark, Dearborn, Dubois, Howard, Marion, St. Joseph, Vanderburgh, Vigo or Wayne.

326 IAC 6.8 (Particulate Matter Limitations for Lake County)
Pursuant to 326 IAC 6.8-1-1(a), this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.8 because it is not located in Lake County.

326 IAC 6.8-10 (Lake County: Fugitive Particulate Matter)
Pursuant to 326 IAC 6.8-10-1, this source (located in Elkhart County) is not subject to the requirements of 326 IAC 6.8-10 because it is not located in Lake County.

326 IAC 20-48 (Emission Standards for Hazardous Air Pollutants for Boat Manufacturing)
This source is still subject to 326 IAC 20-48 because the source is a fiberglass boat manufacturing facility, a major source of HAPs and is subject to the requirements of 40 CFR 63, Subpart VVVV, which is incorporated by reference as 326 IAC 20-48.

(1) Pursuant to 326 IAC 20-48-2, in addition to alternative organic HAP content requirements for open molding resin operations contained in Table 2 to Subpart VVVV, 40 CFR 63, the alternative HAP content requirements for gel coat operations are as follows:

<table>
<thead>
<tr>
<th>Gel Coat Application</th>
<th>For this operation</th>
<th>And this application method</th>
<th>You must not exceed this weighted average percent organic HAP content (weight percent) requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigmented Gel Coat Operations</td>
<td>Atomized (spray)</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Pigmented Gel Coat Operations</td>
<td>Nonatomized (nonspray)</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Clear Gel Coat Operations</td>
<td>Atomized (spray)</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>Clear Gel Coat Operations</td>
<td>Nonatomized (nonspray)</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Tooling Gel Coat Operations</td>
<td>Atomized (spray)</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Tooling Gel Coat Operations</td>
<td>Nonatomized (nonspray)</td>
<td>54%</td>
<td></td>
</tr>
</tbody>
</table>

(2) Pursuant to 326 IAC 20-48-3, in addition to the requirements imposed by 40 CFR 63.5731 and 40 CFR 63.5734(b), the following work practice standards are required:

(A) Nonatomizing spray equipment shall not be operated at pressures that atomize the material during the application process.
(B) Solvents sprayed during cleanup and resin changes shall be directed into solvent collection containers.

(C) For routine flushing of resin and gel coat application equipment, such as spray guns, flowcoaters, brushes, rollers, and squeegees, owners or operators must use a cleaning solvent that contains no hazardous air pollutants (HAP). However, recycled cleaning solvents that contain less than or equal to five (5) percent HAP by weight are considered to contain no HAP for the purposes of this condition. For removing cured resin or gel coat from application equipment, no organic HAP limit applies.

(D) Clean-up rags with solvent shall be stored in closed containers.

(E) Closed containers shall be used for the storage of the following:

(i) All production and tooling resins that contain HAP.
(ii) All production and tooling gel coats that contain HAP.
(iii) Waste resins and gel coats that contain HAP.
(iv) Cleaning materials, including waste cleaning materials.
(v) Other materials that contain HAP.
(vi) The covers of the closed containers must have no visible gaps and must be in place at all times, except when equipment is placed in or removed from the container.

(3) Pursuant to 326 IAC 20-48-4, the Permittee shall comply with the following operator training:

(A) Train all new and existing personnel, including contract personnel, who are involved in resin and gel coat spraying and applications that could result in excess emissions if performed improperly according to the following schedule:

(i) All personnel hired shall be trained within fifteen (15) days of hiring.
(ii) To ensure training goals listed in paragraph (b) of this condition are maintained, all personnel shall be given refresher training annually.
(iii) Personnel who have been trained by another owner or operator subject to this rule are exempt from paragraph (a)(1) of this condition if written documentation that the employee’s training is current is provided to the new employer.

(B) The lesson plans shall cover, for the initial and refresher training, at a minimum, all of the following topics:

(i) Appropriate application techniques.
(ii) Appropriate equipment cleaning procedures.
(iii) Appropriate equipment setup and adjustment to minimize material usage and overspray.

(C) Maintain the following training records on site and available for inspection and review:
(i) A copy of the current training program.

(ii) A list of all current personnel, by name, that are required to be trained and the dates they were trained and the date of the most recent refresher training.

(D) Records of prior training programs and former personnel are not required to be maintained.

State Rule Applicability – Individual Facilities

State rule applicability has been reviewed as follows:

Glue Stations

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1.5(5), the twenty three (23) glue stations are not subject to the requirements of 326 IAC 6-3, since their operation do not result in the emission of particulates.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The following seven (7) of the glue stations are not subject to the requirements of 326 IAC 8-1-6 because they were constructed before January 1, 1980:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1GS</td>
<td>2</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>3-2GS</td>
<td>3</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>5-1GS</td>
<td>5</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>5-2GS</td>
<td>5</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>5-3GS</td>
<td>5</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>14-1GS</td>
<td>14</td>
<td>Prior to 1980</td>
</tr>
<tr>
<td>27-2GS</td>
<td>27</td>
<td>Prior to 1980</td>
</tr>
</tbody>
</table>

Even though, the following remaining sixteen (16) glue stations were constructed after January 1, 1980, they are not subject to the requirements of 326 IAC 8-1-6 because each of their unlimited VOC potential emissions are less than twenty-five (25) tons per year:

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Building Number</th>
<th>Year Constructed/Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1GS</td>
<td>3</td>
<td>1993</td>
</tr>
<tr>
<td>5-4GS</td>
<td>5</td>
<td>2012</td>
</tr>
<tr>
<td>7-1GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-2GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-3GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-4GS</td>
<td>7</td>
<td>1992</td>
</tr>
<tr>
<td>7-5GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>7-6GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-7GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-8GS</td>
<td>7</td>
<td>2012</td>
</tr>
<tr>
<td>7-9GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>7-10GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>7-11GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>7-12GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>7-13GS</td>
<td>7</td>
<td>Approved in 2019 for construction</td>
</tr>
<tr>
<td>27-1GS</td>
<td>27</td>
<td>2012</td>
</tr>
</tbody>
</table>

326 IAC 8-2-9 (Miscellaneous Metal and Plastic Parts Coating Operations)
Pursuant to 326 IAC 8-2-1(a) and 326 IAC 8-2-9(b), the twenty three (23) glue stations are not subject to the requirements of 326 IAC 8-2-9 because they apply adhesives only to the exterior, non-enclosed
surfaces of the marine vessels (recreational boats) manufactured at this source and each of their unlimited VOC potential emissions are less than twenty-five (25) tons per year.

Paint Booths

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are still applicable to the six (6) paint booths, since these are manufacturing processes not exempted from this rule under 326 IAC 6-3-1(b) and are not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Particulate from the surface coating shall be controlled by dry particulate filters and the Permittee shall operate the control device in accordance with manufacturer's specifications.

326 IAC 8-1-6 (VOC) Rules: General Reduction Requirements for New Facilities
The five (5) paint booths, using air-assisted airless spray guns, are not subject to the requirements of 326 IAC 8-1-6 because they were each constructed before January 1, 1980.

Even though, the one (1) paint booth, using HVLP spray guns, was constructed after January 1, 1980, it is not subject to the requirements of 326 IAC 8-1-6 because its unlimited VOC potential emissions are less than twenty-five (25) tons per year.

326 IAC 8-2-9 (Miscellaneous Metal and Plastic Parts Coating Operations)
Pursuant to 326 IAC 8-2-9(b) the six (6) paint booths are not subject to the requirements of 326 IAC 8-2-9 because they apply coatings only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats) manufactured at this source.

Resin Chop Guns

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1.5(5), the 7 Resin chop guns are not subject to the requirements of 326 IAC 6-3, since they apply resin using FIT applicators that use a flow coat style nozzle to provide continuous streams of resin and catalyst, thereby generating no particulate emissions. Therefore, the resin chop guns are exempt from the requirements of 326 IAC 6-3-2 because they do not meet the definition of surface coating as defined in 326 IAC 6-3-1.5(5).

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The 7 Resin chop guns are not subject to the requirements of 326 IAC 8-1-6 because they were constructed before January 1, 1980.

Gel Coat Booths

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(b)(14), the 3 Gel coat booths are not subject to the requirements of 326 IAC 6-3, since they are used for reinforced plastics composite manufacturing processes.

The dry filters at the 3 Gel coat booths shall be in operation at all times the booths are in operation, in order to continue to render the requirements of 326 IAC 6-3-2 not applicable.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
(a) 24/25-1GC and 24/25-2GC
The Gel coat booths identified as 24/25-1GC and 24/25-2GC are not subject to the requirements of 326 IAC 8-1-6 because they were constructed before January 1, 1980.

(b) 24/25-3GC
Even though, the Gel coat booth identified as 24/25-3GC was constructed after January 1, 1980, it is not subject to the requirements of 326 IAC 8-1-6 pursuant to 8-1-6(3)(b) because it is regulated by 326 IAC 20-48.

326 IAC 20 (Hazardous Air Pollutants)
See Federal Rule Applicability and State Rule Applicability - Entire Source Sections of this TSD.

Fiberglass Grinding and Cutting operations (24/25-1FG and 24/25-2FG)

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are still applicable to the fiberglass grinding and cutting operations, since these are manufacturing processes not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the fiberglass grinding and cutting operations shall be limited as specified when operating at the respective process weight rate.

<table>
<thead>
<tr>
<th>Summary of Process Weight Rate Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Unit</td>
</tr>
<tr>
<td>Fiberglass grinding and cutting operation (24/25-1FG)</td>
</tr>
<tr>
<td>Fiberglass grinding and cutting operation (24/25-2FG)</td>
</tr>
</tbody>
</table>

The pound per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to sixty thousand (60,000) pounds per hour shall be accomplished by use of the equation:

$$E = 4.10 P^{0.67}$$

where $E = \text{rate of emission in pounds per hour}$ and $P = \text{process weight rate in tons per hour}$

The baghouse (24/25-BH) shall be in operation at all times the units are in operation, in order to comply with this limit.

Dust Collection System (24/25-VAC)

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the dust collection system, since it is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and is not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Pursuant to 326 IAC 6-3-2, the particulate matter (PM) from the dust collection system shall not exceed 8.37 pounds per hour when operating at a process weight rate of 2.90 tons per hour (5,800 pounds per hour). The pound per hour limitation was calculated with the following equation:

Interpolation of the data for the process weight rate up to sixty thousand (60,000) pounds per hour shall be accomplished by use of the equation:

$$E = 4.10 P^{0.67}$$

where $E = \text{rate of emission in pounds per hour}$ and $P = \text{process weight rate in tons per hour}$

The cartridge filters shall be in operation at all times the process is in operation, in order to comply with this limit.
326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(a), the requirements of 326 IAC 6-3-2 are applicable to the Polyurethane boat lining operation, since this is a manufacturing process not exempted from this rule under 326 IAC 6-3-1(b) and not subject to a particulate matter limitation that is as stringent as or more stringent than the particulate limitation established in this rule as specified in 326 IAC 6-3-1(c).

Particulate from the Polyurethane boat lining operation shall be controlled by dry particulate filters and the Permittee shall operate the control device in accordance with manufacturer’s specifications.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
Even though, the Polyurethane boat lining operation was constructed after January 1, 1980, it is not subject to the requirements of 326 IAC 8-1-6 pursuant to 8-1-6(3)(b) because it is regulated by 326 IAC 20-48.

326 IAC 20 (Hazardous Air Pollutants)
See Federal Rule Applicability and State Rule Applicability - Entire Source Sections of this TSD.

Gel Coat/final finish and Paint Touch-up operations

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
(a) 24/25-1TU and 24/25-2TU
Pursuant to 326 IAC 6-3-1(b)(8), the two (2) gel coat/final finish touch-up operations, identified as 24/25-1TU and 24/25-2TU, are not subject to the requirements of 326 IAC 6-3, since they apply surface coatings using brushes.

(b) 24/25-3TU
Pursuant to 326 IAC 6-3-1(b)(15), the paint touch-up booth, identified as 24/25-3TU, is not subject to the requirements of 326 IAC 6-3, since it uses less than five (5) gallons of coatings per day, when operating at maximum capacity.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
The two (2) gel coat/final touch-up operations and the paint touch-up operation are not subject to the requirements of 326 IAC 8-1-6 because they were constructed before January 1, 1980.

326 IAC 8-2-9 (Miscellaneous Metal and Plastic Parts Coating Operations)
Pursuant to 8-2-9(b)(5) the two (2) gel coat/final touch-up operations and the paint touch-up operation are not subject to the requirements of 326 IAC 8-2-9 because they apply coatings only to the exterior, non-enclosed surfaces of the marine vessels (recreational boats) manufactured at this source.

326 IAC 20 (Hazardous Air Pollutants)
See Federal Rule Applicability and State Rule Applicability - Entire Source Sections of this TSD.

Woodworking

326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(b)(14), the 3 woodworking operations are not subject to the requirements of 326 IAC 6-3, since the potential particulate emissions after the integral controls for each operation are less than 0.551 pounds per hour.

The integral cyclones and return air bagfilter collection systems of the 3 woodworking operations shall be in operation at all times the woodworking operations are in operation, in order to continue to render the requirements of 326 IAC 6-3-2 not applicable.

Welding
326 IAC 6-3-2 (Particulate Emission Limitations for Manufacturing Processes)
Pursuant to 326 IAC 6-3-1(b)(9), the ninety nine (99) welding machines are not subject to the requirements of 326 IAC 6-3, since each of these machines consume less than 625 pounds of rod or wire per day.

Combustion units
Natural Gas-fired combustion unit and Diesel-fired emergency fire pump

326 IAC 6-2-1 (Particulate Emission Limitations for Sources of Indirect Heating)
Pursuant to 326 IAC 6-2-1, the requirements of 326 IAC 6-2 are not applicable to these combustion units, because the units are not considered combustion for indirect heating as defined in 326 IAC 1-2-19.

326 IAC 7-1.1 Sulfur Dioxide Emission Limitations
These emission units are not subject to 326 IAC 326 IAC 7-1.1 because they each have potential to emit (or limited potential to emit) sulfur dioxide (SO2) of less than 25 tons per year or 10 pounds per hour.

326 IAC 8-1-6 (VOC Rules: General Reduction Requirements for New Facilities)
These combustion units are not subject to the requirements of 326 IAC 8-1-6 because they each have unlimited VOC potential emissions are less than twenty-five (25) tons per year.

326 IAC 9-1 (Carbon Monoxide Emission Limits)
The requirements of 326 IAC 9-1 do not apply to the Combustion units, because this source does not operate a catalyst regeneration petroleum cracking system or a petroleum fluid coker, grey iron cupola, blast furnace, basic oxygen steel furnace, or other ferrous metal smelting equipment.

326 IAC 10-3 (Nitrogen Oxide Reduction Program for Specific Source Categories)
The requirements of 326 IAC 10-3 do not apply to the combustion units, since these units are not blast furnace gas-fired boilers, Portland cement kilns, or facilities specifically listed under 326 IAC 10-3-1(a)(2).

Compliance Determination and Monitoring Requirements

Permits issued under 326 IAC 2-7 are required to assure that sources can demonstrate compliance with all applicable state and federal rules on a continuous basis. All state and federal rules contain compliance provisions, however, these provisions do not always fulfill the requirement for a continuous demonstration. When this occurs, IDEM, OAQ, in conjunction with the source, must develop specific conditions to satisfy 326 IAC 2-7-5. As a result, Compliance Determination Requirements are included in the permit. The Compliance Determination Requirements in Section D of the permit are those conditions that are found directly within state and federal rules and the violation of which serves as grounds for enforcement action.

If the Compliance Determination Requirements are not sufficient to demonstrate continuous compliance, they will be supplemented with Compliance Monitoring Requirements, also in Section D of the permit. Unlike Compliance Determination Requirements, failure to meet Compliance Monitoring conditions would serve as a trigger for corrective actions and not grounds for enforcement action. However, a violation in relation to a compliance monitoring condition will arise through a source’s failure to take the appropriate corrective actions within a specific time period.

(a) The Compliance Determination Requirements applicable to this source are as follows:

Testing Requirements:

There are no testing requirements applicable to this source.

However, the source will demonstrate compliance with the VOC limit by keeping records of their total resins, gel coats, catalysts, surface coatings, adhesives, dilution solvents, cleaning solvents, and degreasing solvents usage and VOC and HAP contents of each resin, gel coat, catalyst, surface coating, adhesive, dilution solvent and cleaning solvent.
VOC and HAPs emissions from the open molding operations shall be calculated by multiplying the monthly usage of each resin and gel coat by the emission factor provided in "Unified Emission Factors for Open Molding of Composites," Composites Fabricators Association, October 13, 2009, or its updates.

VOC emissions from the open molding operations catalyst shall be calculated by multiplying the monthly usage of the catalyst by the emission factor provided in "Emission Factors for Liquid Organic Peroxide Catalysts used in the Open Molding of Composites."

The emission factors for all other VOC emitting compounds shall be 100% of the input of volatile organic compounds.

(b) The Compliance Monitoring Requirements applicable to this source are as follows:

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Type of Parametric Monitoring</th>
<th>Frequency</th>
<th>Range or Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Booths</td>
<td>Dry Filter Inspections</td>
<td>Daily</td>
<td>Verify the placement, integrity and particle loading of the filters</td>
</tr>
<tr>
<td></td>
<td>Observations for stack overspray</td>
<td>Weekly</td>
<td>Verify if there is an overspray condition that should result in a response</td>
</tr>
<tr>
<td></td>
<td>Inspections for stack emissions and presence of overspray</td>
<td>Monthly</td>
<td>Verify if there is a noticeable change in overspray emissions or evidence of overspray</td>
</tr>
<tr>
<td>Gel Coat Booths</td>
<td>Dry Filter Inspections</td>
<td>Daily</td>
<td>Verify the placement, integrity and particle loading of the filters</td>
</tr>
<tr>
<td></td>
<td>Observations for stack overspray</td>
<td>Weekly</td>
<td>Verify if there is an overspray condition that should result in a response</td>
</tr>
<tr>
<td></td>
<td>Inspections for stack emissions and presence of overspray</td>
<td>Monthly</td>
<td>Verify if there is a noticeable change in overspray emissions or evidence of overspray</td>
</tr>
<tr>
<td>Fiberglass Grinding and Cutting Operations</td>
<td>Visible emission notations</td>
<td>Daily</td>
<td>Verify whether emissions are normal or abnormal</td>
</tr>
<tr>
<td>Vacuuming Operation</td>
<td>Visible emission notations</td>
<td>Daily</td>
<td>Verify whether emissions are normal or abnormal</td>
</tr>
</tbody>
</table>

(1) These monitoring conditions are necessary because the control devices for the emission units must operate properly to assure compliance with 326 IAC 6-3 (Particulate Emissions Limitations for Manufacturing Processes).

(2) The integral cyclones and return air bagfilter collection systems shall be in operation at all times the woodworking operations are in operation, in order to continue to render the requirements of 326 IAC 6-3-2 not applicable. The cyclones and return air bagfilter collection systems for the woodworking operations are integral and exhaust indoors. As a result, there is no applicable compliance monitoring requirements for the integral cyclones and return air bagfilter collection systems.

Proposed Changes

As part of this permit approval, the permit may contain new or different permit conditions and some conditions from previously issued permits/approvals may have been corrected, changed, or removed. These corrections, changes, and removals may include Title I changes.
The following changes were made to conditions contained previously issued permits/approvals (these changes may include Title I changes):

(1) Modified description of the fiberglass cutting and grinding operations and applicable requirements have been added to Sections A.3 and D.2 of the permit.

(2) Compliance determination, monitoring and record keeping requirements in section D.2 have been updated

Conclusion and Recommendation

Unless otherwise stated, information used in this review was derived from the application and additional information submitted by the applicant. An application for the purposes of this review was received on August 23, 2019.

The construction of this proposed modification shall be subject to the conditions of the attached proposed Part 70 Minor Source Modification No. 039-41844-00073.

The operation of this stationary fiberglass and aluminum boat (pleasure craft) manufacturing plant shall be subject to the conditions of the attached proposed Part 70 Operating Permit Renewal No. 039-41837-00073.

The staff recommends to the Commissioner that the Part 70 Operating Permit Renewal and Minor Source Modification be approved.

IDEM Contact

(a) If you have any questions regarding this permit, please contact Olajumoke Kayode, Indiana Department Environmental Management, Office of Air Quality, Permits Branch, 100 North Senate Avenue, MC 61-53 IGCN 1003, Indianapolis, Indiana 46204-2251, or by telephone at (317) 234-5373 or (800) 451-6027, and ask for Olajumoke Kayode or (317) 234-5373.

(b) A copy of the findings is available on the Internet at: http://www.in.gov/ai/appfiles/idem-caats/

(c) For additional information about air permits and how the public and interested parties can participate, refer to the IDEM Air Permits page on the Internet at: http://www.in.gov/idem/airquality/2356.htm; and the Citizens’ Guide to IDEM on the Internet at: http://www.in.gov/idem/6900.htm.
Appendix A: Emission Calculations

PTE Summary

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

Uncontrolled Potential to Emit (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5 *</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glue Stations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Airless Paint Booths</td>
<td>33.11</td>
<td>33.11</td>
<td>33.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HVLP Paint Booth</td>
<td>8.28</td>
<td>8.28</td>
<td>8.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>portable catalyst/fiber resin chop gun</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stationary catalyst/fiber resin chop guns</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gel coat booths</td>
<td>36.20</td>
<td>36.20</td>
<td>36.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grinding and cutting operations</td>
<td>13.55</td>
<td>13.55</td>
<td>13.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polyurethane Boat Lining Operation</td>
<td>5.06</td>
<td>5.06</td>
<td>5.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gel coat touch-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paint touch-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Woodworking**</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Welding</td>
<td>2.92</td>
<td>2.92</td>
<td>2.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas-Fired Combustion</td>
<td>0.17</td>
<td>0.69</td>
<td>0.69</td>
<td>0.05</td>
<td>9.10</td>
<td>0.50</td>
<td>7.65</td>
<td>0.17</td>
</tr>
<tr>
<td>diesel-fired emergency stationary fire pump</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>1.20</td>
<td>0.10</td>
<td>0.26</td>
<td>1.05E-03</td>
</tr>
<tr>
<td>Total</td>
<td>104.86</td>
<td>105.38</td>
<td>105.38</td>
<td>0.13</td>
<td>10.30</td>
<td>607.94</td>
<td>7.91</td>
<td>462.19</td>
</tr>
</tbody>
</table>

Fugitive Emissions

| Paved Roads | 1.42 | 0.28 | 0.07 | - | - | - | - | - |

Notes:
* PM2.5 listed is direct PM2.5
* * Control devices for woodworking operations are considered integral to the process. Therefore, PTE is considered after control

Potential to Emit after Issuance (tons/yr)

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5 *</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glue Stations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Airless Paint Booths</td>
<td>33.11</td>
<td>33.11</td>
<td>33.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HVLP Paint Booth</td>
<td>8.28</td>
<td>8.28</td>
<td>8.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>portable catalyst/fiber resin chop gun</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stationary catalyst/fiber resin chop guns</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gel coat booths</td>
<td>36.20</td>
<td>36.20</td>
<td>36.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grinding and cutting operations</td>
<td>13.55</td>
<td>13.55</td>
<td>13.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polyurethane Boat Lining Operation</td>
<td>5.06</td>
<td>5.06</td>
<td>5.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gel coat touch-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paint touch-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Woodworking**</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Welding</td>
<td>2.92</td>
<td>2.92</td>
<td>2.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas-Fired Combustion</td>
<td>0.17</td>
<td>0.69</td>
<td>0.69</td>
<td>0.05</td>
<td>9.10</td>
<td>0.50</td>
<td>7.65</td>
<td>0.17</td>
</tr>
<tr>
<td>diesel-fired emergency stationary fire pump</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>1.20</td>
<td>0.10</td>
<td>0.26</td>
<td>1.05E-03</td>
</tr>
<tr>
<td>Total</td>
<td>48.10</td>
<td>48.62</td>
<td>48.62</td>
<td>0.13</td>
<td>10.30</td>
<td>247.00</td>
<td>7.91</td>
<td>462.19</td>
</tr>
</tbody>
</table>

Fugitive Emissions

| Paved Roads | 1.42 | 0.28 | 0.07 | - | - | - | - | - |

Notes:
* PM2.5 listed is direct PM2.5
* * Control devices for woodworking operations are considered integral to the process. Therefore, PTE is considered after control
Appendix A: Emission Calculations

Summary of HAPs

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Xylene</th>
<th>Styrene</th>
<th>Manganese</th>
<th>Hexane</th>
<th>Isocyanates</th>
<th>Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glue Stations</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Airless Paint Booths</td>
<td>52.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HVLP Paint Booth</td>
<td>13.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>portable catalyst/fiber resin chop gun</td>
<td>-</td>
<td>37.71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stationary catalyst/fiber resin chop guns</td>
<td>-</td>
<td>227.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gel coat booths</td>
<td>-</td>
<td>129.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>grinding and cutting operations</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boat Lining Operation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.85</td>
<td>-</td>
</tr>
<tr>
<td>Gel coat touch-up</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paint touch-up</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Woodworking</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Welding</td>
<td>-</td>
<td>-</td>
<td>0.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural Gas-Fired Combustion</td>
<td>-</td>
<td></td>
<td>3.46E-05</td>
<td>0.16</td>
<td>-</td>
<td>6.83E-03</td>
</tr>
<tr>
<td>diesel-fired emergency stationary fire pump</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.20E-04</td>
</tr>
<tr>
<td>Total</td>
<td>65.83</td>
<td>394.04</td>
<td>0.27</td>
<td>0.16</td>
<td>1.85</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The shaded cells indicate the Source-wide worst case HAP
Appendix A: Emission Calculations

New Emissions Summary

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>PM</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
<th>Total HAPs</th>
<th>Worst HAP</th>
<th>Uncontrolled Potential to Emit (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Glue Stations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Isocyanates</td>
</tr>
<tr>
<td>New Vacuum Operation (24/25-VAC)</td>
<td>2.82</td>
<td>2.82</td>
<td>2.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Isocyanates</td>
</tr>
<tr>
<td>New Boat Lining Operation (24/25-BL)</td>
<td>5.06</td>
<td>5.06</td>
<td>5.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.85</td>
<td>1.85</td>
<td>Manganese</td>
</tr>
<tr>
<td>New Welding stations</td>
<td>2.92</td>
<td>2.92</td>
<td>2.92</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.27</td>
<td>0.27</td>
<td>Manganese</td>
</tr>
<tr>
<td>Total</td>
<td>10.79</td>
<td>10.79</td>
<td>10.79</td>
<td>0.00</td>
<td>0.00</td>
<td>22.38</td>
<td>0.00</td>
<td>2.12</td>
<td>1.85</td>
<td>Isocyanates</td>
</tr>
</tbody>
</table>
Appendix A: Emissions Calculations

Glue Stations

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Smoker Craft, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address City IN Zip</td>
<td>68143 Clunette St. & 67977 Division St., New Paris, IN 46553</td>
</tr>
<tr>
<td>Minor Source Modification No</td>
<td>039-41844-00073</td>
</tr>
<tr>
<td>Permit Renewal No</td>
<td>039-41837-00073</td>
</tr>
<tr>
<td>Reviewer</td>
<td>Olajumoke Kayode</td>
</tr>
<tr>
<td>Date</td>
<td>9/13/2019</td>
</tr>
</tbody>
</table>

Stations: 2-1GS, 3-1GS, 3-2GS, 5-1GS, 5-2GS, 5-3GS, 5-4GS, 14-1GS, 27-1GS, 27-2GS

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Volatile (Water & Organics)</th>
<th>Weight % Water</th>
<th>Volume % Water</th>
<th>Weight % VOC</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Maximum usage (gal/day)</th>
<th>VOC content (lb/gal coating)</th>
<th>VOC content (lb/gal coating less water)</th>
<th>PTE of VOC (lb/hr)</th>
<th>PTE of VOC (ton/yr)</th>
<th>PTE of HAP (xylene and toluene) (ton/yr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray adhesive #737</td>
<td>8.92</td>
<td>31.0%</td>
<td>31%</td>
<td>0.0%</td>
<td>33.2%</td>
<td>0.884</td>
<td>1.33</td>
<td>28.28</td>
<td>-</td>
<td>-</td>
<td>6.51</td>
<td>0.11</td>
<td>0.49</td>
<td>100%</td>
</tr>
<tr>
<td>Mineral spirits</td>
<td>6.51</td>
<td>100.0%</td>
<td>0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.013</td>
<td>1.33</td>
<td>4.22</td>
<td>6.51</td>
<td>0.11</td>
<td>0.49</td>
<td>0.0049</td>
<td>-</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total per station:

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Volatile (Water & Organics)</th>
<th>Weight % Water</th>
<th>Volume % Water</th>
<th>Weight % VOC</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Maximum usage (gal/day)</th>
<th>VOC content (lb/gal coating)</th>
<th>VOC content (lb/gal coating less water)</th>
<th>PTE of VOC (lb/hr)</th>
<th>PTE of VOC (ton/yr)</th>
<th>PTE of PM (ton/yr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for all 10 stations</td>
<td></td>
<td>1.13</td>
<td>4.94</td>
</tr>
</tbody>
</table>

Stations: 7-1GS, 7-2GS, 7-3GS, 7-4GS, 7-5GS, 7-6GS, 7-7GS, 7-8GS, 7-9GS, 7-10GS, 7-11GS, 7-12GS, 7-13GS

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Volatile (Water & Organics)</th>
<th>Weight % Water</th>
<th>Volume % Water</th>
<th>Weight % VOC</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Maximum usage (gal/day)</th>
<th>VOC content (lb/gal coating)</th>
<th>VOC content (lb/gal coating less water)</th>
<th>PTE of VOC (lb/hr)</th>
<th>PTE of VOC (ton/yr)</th>
<th>PTE of PM (ton/yr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray adhesive #7113</td>
<td>6.84</td>
<td>71.3%</td>
<td>38.8%</td>
<td>34.5%</td>
<td>38.1%</td>
<td>0.125</td>
<td>1.33</td>
<td>4.00</td>
<td>3.36</td>
<td>3.81</td>
<td>0.39</td>
<td>1.72</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>Acetone</td>
<td>6.61</td>
<td>100.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>0.0%</td>
<td>0.013</td>
<td>1.33</td>
<td>0.42</td>
<td>#DIV/0!</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total per station:

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Volatile (Water & Organics)</th>
<th>Weight % Water</th>
<th>Volume % Water</th>
<th>Weight % VOC</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Maximum usage (gal/day)</th>
<th>VOC content (lb/gal coating)</th>
<th>VOC content (lb/gal coating less water)</th>
<th>PTE of VOC (lb/hr)</th>
<th>PTE of VOC (ton/yr)</th>
<th>PTE of PM (ton/yr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for all 13 stations</td>
<td></td>
<td>5.11</td>
<td>22.38</td>
</tr>
</tbody>
</table>

Notes:

- PM=PM$_{10}$=PM$_{2.5}$
- The spray adhesive #737 contains no VOC or HAPs.
- *Transfer Efficiency* = 100% for Mechanical Non-Atomized Application

Methodology:

- Density (lb/gal) = Specific gravity * Density of water (8.34 lb/gal) or Provided in MSDS
- Weight % VOC = Weight % Volatile (Water & Organics) - Weight % Water
- Maximum usage (gal/day) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * 24 hrs/day
- VOC content (lb/gal coating) = Density (lb/gal) * Weight % VOC
- PTE of VOC (lb/hr) = VOC content (lb/gal coating) * Usage rate (gal/unit) * Maximum throughput (unit/hr)
- **Potential to Emit VOC (lbs/hr) for all 23 stations**: 6.24
- **Potential to Emit VOC (tons/year) for all 23 stations**: 27.33
Appendix A: Emissions Calculations
Paint booths (6-1PB, 6-2PB, 13-1PB, 13-2PB and 13-3PB)

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Xylene % Weight</th>
<th>PTE (ton/yr)</th>
<th>Toluene % Weight</th>
<th>PTE (ton/yr)</th>
<th>Zinc Chromate % Weight</th>
<th>PTE (ton/yr)</th>
<th>Total HAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priming operation</td>
<td></td>
</tr>
<tr>
<td>Wash primer 6181P</td>
<td>7.76</td>
<td>0.1250</td>
<td>1.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.02%</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Acid thinner 6182T</td>
<td>6.96</td>
<td>0.1250</td>
<td>1.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Painting operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Stone White 6202E</td>
<td>9.67</td>
<td>0.7500</td>
<td>1.0000</td>
<td>25.84%</td>
<td>8.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elpolydur Hardener</td>
<td>8.14</td>
<td>0.1875</td>
<td>1.0000</td>
<td>33.19%</td>
<td>2.22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VM&P Naphtha (clean-up)</td>
<td>6.24</td>
<td>0.0156</td>
<td>1.0000</td>
<td>3.0%</td>
<td>0.01</td>
<td>3.0%</td>
<td>0.01</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for painting per booth (worst-case): 10.44 0.01 - 10.45
Total for all 5 booths (worst-case): 52.20 0.06 - 52.26

Notes:
PM=PM_{10}=PM_{2.5}

Methodology:
- Weight % Volatile (Water & Organics) = Coating VOC (lb/gal) (as provided in MSDS) / Density (lb/gal)
- Weight % VOC = Weight % Volatile (Water & Organics) - Weight % Water
- Volume % Water = Weight % Water / Density (lb/gal) / Density of acetone (6.61 lb/gal)
- Maximum usage (gal/day) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * 24 hrs/day
- VOC content (lb/gal coating) = Density (lb/gal) * Weight % VOC
- VOC content (lb/gal coating less water) = Density (lb/gal) * Weight % VOC / (1-Volume % Water)
- PTE of VOC (lb/hr) = VOC content (lb/gal coating) * Usage rate (gal/unit) * Maximum throughput (unit/hr)
- PTE of VOC (ton/day) = PTE of VOC (lb/hr) * 24 hrs/day
- PTE of PM (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) * (1-Weight % volatile) * (1-Transfer efficiency) * 8760 hrs/yr * 1 ton/2000 lbs
- PTE of HAP (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) * Weight % HAP * 8760 hrs/yr * 1 ton/2000 lbs
- PTE of HAP (zinc chromate) (ton/yr) = PTE of PM (tons/yr) * Weight % zinc chromate
Appendix A: Emissions Calculations

Paint booth (6-3PB)

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

Material Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>% Weight</th>
<th>Xylene PTE (ton/yr)</th>
<th>Toluene PTE (ton/yr)</th>
<th>Zinc Chromate PTE (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primining operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash primer 6181P</td>
<td>7.76</td>
<td>0.1250</td>
<td>1.2500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.02%</td>
</tr>
<tr>
<td>Acid thinner 6182T</td>
<td>6.96</td>
<td>0.1250</td>
<td>1.2500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Painting operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone White 6202E</td>
<td>9.67</td>
<td>0.7500</td>
<td>1.25</td>
<td>25.84%</td>
<td>10.26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Epolydur Hardener</td>
<td>8.14</td>
<td>0.1875</td>
<td>1.25</td>
<td>33.19%</td>
<td>2.77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VM&P Naptha (clean-up)</td>
<td>6.24</td>
<td>0.0156</td>
<td>1.25</td>
<td>3.0%</td>
<td>0.02</td>
<td>3.0%</td>
<td>0.02</td>
</tr>
<tr>
<td>Total HAPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for priming per booth</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for painting for booth (worst-case):</td>
<td>5.70</td>
<td>136.72</td>
<td>24.95</td>
<td>8.28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
PM=PM_{10}=PM_{2.5}

Methodology:
- Weight % Volatile (Water & Organics) = Coating VOC (lb/gal) (as provided in MSDS) / Density (lb/gal)
- Weight % VOC = Weight % Volatile (Water & Organics) - Weight % Water
- Volume % Water = Weight % Water / Density (lb/gal) * Density of acetone (6.61 lb/gal)
- Maximum usage (gal/day) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * 24 hrs/day
- VOC content (lb/gal coating) = Density (lb/gal) * Weight % VOC
- VOC content (lb/gal coating less water) = Density (lb/gal) * Weight % VOC / (1-Volume % Water)
- PTE of VOC (lb/hr) = VOC content (lb/gal coating) * Usage rate (gal/unit) * Maximum throughput (unit/hr)
- PTE of VOC (lb/day) = PTE of VOC (lb/hr) * 24 hrs/day
- PTE of VOC (ton/yr) = PTE of VOC (lb/hr) * 8760 hrs/yr * 1 ton/2000 lbs
- PTE of PM (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) * (1-Weight % volatile) * (1-Transfer efficiency) * 8760 hrs/yr * 1 ton/2000 lbs
- PTE of HAP (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) * Weight % HAP * 8760 hrs/yr * 1 ton/2000 lbs
- PTE of HAP (zinc chromate) (ton/yr) = PTE of PM (ton/yr) * Weight % zinc chromate
Appendix A: Emissions Calculations
Reinforced Plastic Composites - Resin

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

Resins

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Styrene</th>
<th>Maximum usage (gal/unit)</th>
<th>Maximum throughput (unit/hour)</th>
<th>UEF (lbs Styrene/ton resin)</th>
<th>PTE of styrene (tons/yr)</th>
<th>Transfer efficiency</th>
<th>Uncontrolled PTE of PM (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable chop gun</td>
<td>24/25-1RC</td>
<td>Production resin</td>
<td>9.09</td>
<td>35.0%</td>
<td>12.30</td>
<td>2.00</td>
<td>77.0</td>
<td>37.71</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Stationary chop guns</td>
<td>24/25-2RC - 24/25-7RC</td>
<td>Production resin</td>
<td>9.09</td>
<td>35.0%</td>
<td>74.10</td>
<td>2.00</td>
<td>77.0</td>
<td>227.17</td>
<td>100%</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
Assume all monomer in resin is styrene (worst-case).
Chop guns use mechanical non-atomized (fluid impingement technology (FIT)) application, with 100% transfer efficiency
\[PM = PM_{10} = PM_{2.5} \]

Methodology:
\[\text{PTE of VOC/styrene (ton/yr)} = \text{Density (lb/gal)} \times \text{Maximum usage (gal/unit)} \times \text{Maximum throughput (unit/hr)} \times \text{UEF (lb VOC or styrene/ton resin)} \times \frac{1 \text{ ton}}{2000 \text{ lb resin}} \times 8760 \text{ hr/yr} \times \frac{1 \text{ ton}}{2000 \text{ lb}} \]

Catalyst

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % MEK</th>
<th>Weight % TPD</th>
<th>Maximum usage (gal/unit)</th>
<th>Maximum throughput (unit/hour)</th>
<th>% of styrene emitted</th>
<th>TPD emission factor (% TPD emitted)</th>
<th>PTE of MEK (tons/yr)</th>
<th>PTE of TPD (tons/yr)</th>
<th>PTE of VOC (tons/yr)</th>
<th>Transfer efficiency</th>
<th>Uncontrolled PTE of PM (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable chop gun</td>
<td>24/25-1RC</td>
<td>Cadox D-30</td>
<td>8.34</td>
<td>2.00%</td>
<td>83.0%</td>
<td>0.078</td>
<td>2.00</td>
<td>11.0%</td>
<td>0.01%</td>
<td>0.11</td>
<td>0.0004</td>
<td>0.11</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>Stationary chop guns</td>
<td>24/25-2RC - 24/25-7RC</td>
<td>Cadox D-30</td>
<td>8.34</td>
<td>2.00%</td>
<td>83.0%</td>
<td>0.465</td>
<td>2.00</td>
<td>11.0%</td>
<td>0.01%</td>
<td>0.68</td>
<td>0.0027</td>
<td>0.68</td>
<td>100%</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
The catalyst contains methyl ethyl ketone (MEK), methyl ethyl ketone peroxide (MEKP), and 2,2,4-Trimethyl-1,3-pentanediol diisobutanoate (TPD), all of which are non-HAP VOCs.
MEKP is not emitted after being sprayed together with resin because it is immediately consumed by the resin to initiate the curing process.
TPD is a plasticizer performing the same function as dimethyl phthalate (DMP) and also has low vapor pressure (0.003880 mm Hg at 25 degrees Celsius).
TPD emission factor is based on "Emission Factors for Liquid Organic Peroxide Catalysts used in the Open Molding of Composites", Robert A. Haberlain, Ph.D., QEP - Engineering Environmental Consulting Services (March 24, 1999)

Methodology:
\[\% \text{ styrene emitted} = \text{UEF (lb styrene/ton of resin)} \times 1 \text{ ton/2000 lbs} \times \% \text{ styrene} \]
\[\text{TPD emission factor (% TPD emitted)} = \frac{\text{Vapor pressure of TPD (0.00388 mm Hg) \times Vapor pressure of styrene (4.5 mm Hg) \times % styrene emitted}}{\text{TPD emission factor}} \]
\[\text{PTE of MEK (tons/yr)} = \text{Density (lb/gal)} \times \text{Maximum usage (gal material/unit)} \times \text{Maximum throughput (unit/hr)} \times \text{Weight % MEK} \times 8760 \text{ hr/yr} \times \frac{1 \text{ ton}}{2000 \text{ lb}} \]
Appendix A: Emissions Calculations

Reinforced Plastic Composites - Gel coat

Gel Coats

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % styrene</th>
<th>Weight % MMA</th>
<th>Maximum usage (gal/unit)</th>
<th>Maximum throughput (unit/hour)</th>
<th>UEF (lbs styrene/ton gel)</th>
<th>UEF (lbs MMA/ton gel)</th>
<th>PTE of styrene (tons/yr)</th>
<th>PTE of MMA (tons/yr)</th>
<th>PTE of VOC (tons/yr)</th>
<th>Transfer efficiency</th>
<th>Uncontrolled PTE of PM (tons/yr)</th>
<th>PM control efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Tooling gel coat</td>
<td>9.89</td>
<td>31.14%</td>
<td>4.50%</td>
<td>1.15</td>
<td>1.0</td>
<td>277.1</td>
<td>67.5</td>
<td>0.89</td>
<td>0.17</td>
<td>0.86</td>
<td>95%</td>
<td>0.16</td>
<td>95%</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td>Clear production gel coat</td>
<td>6.79</td>
<td>37.51%</td>
<td>7.47%</td>
<td>2.86</td>
<td>1.0</td>
<td>387.7</td>
<td>112.1</td>
<td>23.14</td>
<td>6.17</td>
<td>27.52</td>
<td>95%</td>
<td>3.03</td>
<td>95%</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>Tooling gel coat</td>
<td>9.89</td>
<td>31.14%</td>
<td>4.50%</td>
<td>1.15</td>
<td>1.0</td>
<td>277.1</td>
<td>67.5</td>
<td>0.89</td>
<td>0.17</td>
<td>0.86</td>
<td>95%</td>
<td>0.16</td>
<td>95%</td>
</tr>
</tbody>
</table>

Notes:
- **MMA** is Methyl Methacrylate
- Unified emission factors (UEF) are from "Unified Emission Factors for Open Molding of Composites," Composites Fabricators Association (October 13, 2009).
- Gel coats are applied using mechanical, atomized application
- PM = PM\textsubscript{10} = PM\textsubscript{2.5}
- **Methodology:**
 - PTE of styrene (ton/yr) = Density (lb/gal) * Maximum usage (gal/unit) * Maximum throughput (unit/hour) * UEF (lb styrene/ton gel) + 1 ton material/2000 lbs material * 8760 hr/yr * 1 ton/2000 lb
 - PTE of MMA (ton/yr) = Density (lb/gal) * Maximum usage (gal/unit) * Maximum throughput (unit/hour) * UEF (lb MMA/ton gel) + 1 ton material/2000 lbs material * 8760 hr/yr * 1 ton/2000 lb
 - PTE of VOC (ton/yr) = PTE of styrene (ton/yr) + PTE of MMA (ton/yr) + PTE of TPD (ton/yr) (if applicable)
 - Interpolation of UEF factors for non-integer styrene contents (between 33% and 50%) or MMA content calculated as follows:
 - Where: A = Actual styrene/MMA content of resin of gelcoat
 - E = Closed styrene/MMA content expressed as an integer higher than actual styrene content
 - D = Closed styrene/MMA content expressed as an integer lower than actual styrene content
 - B = UEF for closest styrene/MMA content higher than actual
 - C = UEF for closest styrene/MMA content higher than actual
 - **UEF of PM** = C - (((B-A) * (C-E)) / (B-D))

Catalyst

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % MEK</th>
<th>Weight % TPD</th>
<th>Maximum usage (gal/unit)</th>
<th>Maximum throughput (unit/hour)</th>
<th>% of monomer emitted</th>
<th>TPD emission factor (% TPD emitted)</th>
<th>PTE of MEK (tons/yr)</th>
<th>PTE of TPD (tons/yr)</th>
<th>PTE of VOC (tons/yr)</th>
<th>Transfer efficiency</th>
<th>Uncontrolled PTE of PM (tons/yr)</th>
<th>PM control efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1GC</td>
<td>Cadox D-30</td>
<td>8.34</td>
<td>2.00%</td>
<td>83.0%</td>
<td>0.15</td>
<td>1.0</td>
<td>55.6%</td>
<td>0.05%</td>
<td>0.11</td>
<td>0.0022</td>
<td>0.11</td>
<td>95%</td>
<td>0.27</td>
<td>95%</td>
</tr>
<tr>
<td>24/25-2GC</td>
<td>Cadox D-30</td>
<td>8.34</td>
<td>2.00%</td>
<td>83.0%</td>
<td>0.15</td>
<td>1.0</td>
<td>55.6%</td>
<td>0.05%</td>
<td>0.11</td>
<td>0.0022</td>
<td>0.11</td>
<td>95%</td>
<td>0.27</td>
<td>95%</td>
</tr>
<tr>
<td>24/25-3GC</td>
<td>Cadox D-30</td>
<td>8.34</td>
<td>2.00%</td>
<td>83.0%</td>
<td>0.15</td>
<td>1.0</td>
<td>55.6%</td>
<td>0.05%</td>
<td>0.11</td>
<td>0.0022</td>
<td>0.11</td>
<td>95%</td>
<td>0.27</td>
<td>95%</td>
</tr>
</tbody>
</table>

Notes:
- The catalyst contains methyl ethyl ketone (MEK), methyl ethyl ketone peroxide (MEKP), and 2,2,4-Trimethyl-1,3-pentanediol diisobutanoate (TPD), all of which are non-HAP VOCs.
- Catalyst contains no solids. Therefore there are no particulate emissions.
- MEKP in the catalyst is not emitted after being sprayed together with resin because it is immediately consumed by the gel coat to initiate the curing process.
- TPD is a plasticizer performing the same function as dimethyl phthalate (DMP) and also has low vapor pressure (0.003880 mm Hg at 25 degrees Celsius). TPD emission factor is based on "Emission Factors for Liquid Organic Peroxide Catalysts used in the Open Molding of Composites*,
 - Robert A. Haberlain, Ph.D., QEP - Engineering Environmental Consulting Services (March 24, 1999)
Appendix A: Emissions Calculations

Fiberglass grinding and cutting

Company Name:
Smoker Craft, Inc.

Address City IN Zip:
68143 Clunette St. & 67977 Division St., New Paris, IN 46553

Minor Source Modification No:
039-41844-00073

Permit Renewal No:
039-41837-00073

Reviewer:
Olajumoke Kayode

Date:
9/13/2019

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>Air to Cloth Ratio Air Flow (acfm sq/ft)</th>
<th>Total Filter Area (sq ft)</th>
<th>Control Efficiency</th>
<th>Uncontrolled PTE (lb/hr)</th>
<th>Uncontrolled PTE (ton/yr)</th>
<th>Controlled PTE (lb/hr)</th>
<th>Controlled PTE (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>7,500</td>
<td>2.41E-04</td>
<td>7.14</td>
<td>1050.00</td>
<td>99%</td>
<td>1.55</td>
<td>6.78</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td>7,500</td>
<td>2.41E-04</td>
<td>7.14</td>
<td>1050.00</td>
<td>99%</td>
<td>1.55</td>
<td>6.78</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Totals</td>
<td>15,000</td>
<td>3.09</td>
<td>13.55</td>
<td>0.03</td>
<td></td>
<td>0.03</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
PM=PM_{10}=PM_{2.5}

Methodology:

Uncontrolled Potential Emission (tons/yr) = [No. Units * Loading (grains/acf) * Air/Cloth Ratio (acfm/sq ft) * Filter Area (ft²) * 1 lb/7,000 grains * 60 min/hr * 8760 hr/yr * 1 ton/2,000 lbs * 1/(1-Control Efficiency)]

Controlled Potential Emission (tons/yr) = [No. Units * Loading (grains/acf) * Air/Cloth Ratio (acfm/sq ft) * Filter Area (ft²) * 1 lb/7,000 grains * 60 min/hr * 8760 hr/yr * 1 ton/2,000 lbs]

326 IAC 6-3-2 Limit

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Material throughput (lb/hr)</th>
<th>Process weight rate (ton/hr)</th>
<th>Allowable emissions (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1FG</td>
<td>2900</td>
<td>1.45</td>
<td>5.26</td>
</tr>
<tr>
<td>24/25-2FG</td>
<td>2900</td>
<td>1.45</td>
<td>5.26</td>
</tr>
</tbody>
</table>

Methodology:

Process weight rate (ton/hr) = Material throughput (lb/hr) / 2000 lb/ton

Allowable emission (lb/hr) = 4.10 * Process weight rate (ton/hr)$^{0.67}$, pursuant to 326 IAC 6-3-2(e)
Appendix A: Emissions Calculations

Boat Lining Operation (24/25-BL)

Company Name: Smoker Craft, Inc.

Address: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553

Minor Source Modification No: 039-41844-00073

Permit Renewal No: 039-41837-00073

Reviewer: Olajumoke Kayode

Date: 9/13/2019

Material Density and Emissions Calculations

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Weight % Volatile (Water & Organics)</th>
<th>Weight % Water</th>
<th>Weight % VOC</th>
<th>Volume % Water</th>
<th>Weight % Isocyanates</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Maximum usage (gal/day)</th>
<th>VOC content (lb/gal coating)</th>
<th>VOC content (lb/gal coating less water)</th>
<th>PTE of VOC (lb/hr)</th>
<th>PTE of VOC (lb/day)</th>
<th>PTE of VOC (ton/yr)</th>
<th>PTE of Isocyanates (ton/yr)</th>
<th>PTE of PM (tons/yr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gator Shield 93AR-30S, A-Side</td>
<td>9.80</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.125</td>
<td>2.00</td>
<td>6.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.85</td>
<td>2.68</td>
<td>75%</td>
</tr>
<tr>
<td>Gator Shield 93AR-30S, B-Side</td>
<td>8.67</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.125</td>
<td>2.00</td>
<td>6.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.37</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Control Efficiency: 0.00% 0.00% 0.00% 0.00% 95.00%
- PM = PM\(_{10}\) + PM\(_{2.5}\)

Total PTE Before Control (ton/yr):
- 0.00 0.00 0.00 1.85 0.00

Total PTE After Control (ton/yr):
- 0.00 0.00 0.00 1.85 0.25

Methodology:
- Application method is air HVLP
- Density (lb/gal) = Specific gravity * Density of water (8.34 lb/gal) or Provided in MSDS
- Weight % VOC = Weight % Volatile (Water & Organics) - Weight % Water
- Volume % Water = Weight % Water * Density (lb/gal) / Density of water (8.34 lb/gal)
- Maximum usage (gal/day) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * 24 hrs/day
- VOC content (lb/gal coating) = Density (lb/gal) * Weight % VOC
- VOC content (lb/gal coating less water) = Density (lb/gal) * Weight % VOC / (1 - Volume % Water)
- PTE of VOC (lb/hr) = VOC content (lb/gal coating less water) * Usage rate (gal/unit) * Maximum throughput (unit/hr)
- PTE of VOC (lb/day) = PTE of VOC (lb/hr) * 24 hrs/day
- PTE of VOC (ton/yr) = PTE of VOC (lb/hr) * 8760 hrs/yr * 1 ton/2000 lbs

*According to the manufacturer’s SDS, the materials used in this process contain no volatile components; presume isocyanate emissions equal to the weight percent of isocyanate compounds multiplied by the PM emissions.
Emission Calculations

Vacuum Operation

Company Name: Smoker Craft, Inc.
Address: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Airflow (acfm)</th>
<th>Grain Loading per Actual Cubic Foot of Outlet Air</th>
<th>Air to Cloth Ratio Air Flow (acfm/ft²)</th>
<th>Total Filter Area (ft²)</th>
<th>Control Efficiency</th>
<th>Uncontrolled PTE of PM (lb/hr)</th>
<th>Controlled PTE of PM (lb/hr)</th>
<th>Controlled PTE of PM (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-VAC</td>
<td>3000</td>
<td>0.00025</td>
<td>8.57</td>
<td>350.00</td>
<td>0.99</td>
<td>0.64</td>
<td>2.82</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note:
PM=PM₁₀=PM₂.₅

Methodology:

Uncontrolled PTE = Grain loading rate (grains/acfm) * Air flow rate (acfm) * 60 min/hr * 1 lb/7000 grains / (1 - Control efficiency)
Controlled PTE of PM (lb/hr) = Grain loading rate (grains/acfm) * Air flow rate (acfm) * 60 min/hr * 1 lb/7000 grains
PTE of PM (ton/yr) = PTE of PM (lb/hr) * 8760 hrs/yr * 1 ton/2000 lbs

326 IAC 6-3-2 Limit

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Material throughput (lb/hr)</th>
<th>Process weight rate (ton/hr)</th>
<th>Allowable emissions (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-VAC</td>
<td>5800</td>
<td>2.90</td>
<td>8.37</td>
</tr>
</tbody>
</table>

Methodology:
Process weight rate (ton/hr) = Material throughput (lb/hr) / 2000 lb/ton
Allowable emission (lb/hr) = 4.10 * Process weight rate (ton/hr)²*², pursuant to 326 IAC 6-3-2(e)
Appendix A: Emissions Calculations

Paint/ Gel Coat Touch up

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

Emission Calculations

<table>
<thead>
<tr>
<th>Emission unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Usage rate (gal/unit)</th>
<th>Maximum throughput (unit/hr)</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1TU</td>
<td>3M Perfect It</td>
<td>10.01</td>
<td>0.0156</td>
<td>2.0</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>6.61</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24/25-2TU</td>
<td>3M Perfect It</td>
<td>10.01</td>
<td>0.0156</td>
<td>2.0</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>6.61</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24/25-3TU</td>
<td>Stone White 6202E</td>
<td>9.67</td>
<td>0.0078</td>
<td>2.0</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Elpolydur Hardener</td>
<td>8.14</td>
<td>0.0078</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

HAPs

<table>
<thead>
<tr>
<th>Emission unit ID</th>
<th>Material</th>
<th>Density (lb/gal)</th>
<th>Usage rate (gal/unit)</th>
<th>Xylene % Weight</th>
<th>Transfer Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/25-1TU</td>
<td>3M Perfect It</td>
<td>10.01</td>
<td>0.0156</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>6.61</td>
<td>0.0078</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24/25-2TU</td>
<td>3M Perfect It</td>
<td>10.01</td>
<td>0.0156</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>6.61</td>
<td>0.0078</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24/25-3TU</td>
<td>Stone White 6202E</td>
<td>9.67</td>
<td>0.0156</td>
<td>25.84%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elpolydur Hardener</td>
<td>8.14</td>
<td>0.0078</td>
<td>33.19%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

PM=PM_{10}=PM_{2.5}

Methodology:

- **Weight % Volatile (Water & Organics)** = Coating VOC (lb/gal) (as provided in MSDS) / Density (lb/gal)
- **Weight % Water** = Density (lb/gal) / Density of acetone (6.61 lb/gal)
- **Volume % Water** = Weight % Water
- **Maximum usage (gal/day)** = Usage rate (gal/unit) * Maximum throughput (unit/hr) * 24 hrs/day
- **VOC content (lb/gal coating) = Density (lb/gal) * Weight % VOC**
- **VOC content (lb/gal coating less water) = Density (lb/gal) * Weight % VOC / (1-Volume % Water)**
- **PTE of VOC (lb/hr) = VOC content (lb/gal coating) * Usage rate (gal/unit) * Maximum throughput (unit/hr)**
- **PTE of VOC (lb/day) = PTE of VOC (lb/hr) * 24 hrs/day**
- **PTE of VOC (ton/yr) = PTE of VOC (lb/hr) * 8760 hrs/yr / 1 ton/2000 lbs**
- **PTE of PM (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) / (1-Weight % volatile) * (1-Transfer efficiency) * 8760 hrs/yr / 1 ton/2000 lbs**
- **PTE of HAP (ton/yr) = Usage rate (gal/unit) * Maximum throughput (unit/hr) * Density (lb/gal) * Weight % HAP * 8760 hrs/yr / 1 ton/2000 lbs**
Appendix A: Emissions Calculations
Woodworking

Company Name: Smoker Craft, Inc.
Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Airflow (acfm)</th>
<th>Particulate outflow grain loading (gr/acf)</th>
<th>Control Efficiency</th>
<th>Uncontrolled PTE of PM (lb/hr)</th>
<th>Uncontrolled PTE of PM (ton/yr)</th>
<th>Controlled PTE of PM (lb/hr)</th>
<th>Controlled PTE of PM (ton/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1W</td>
<td>6,284</td>
<td>0.002</td>
<td>98.0%</td>
<td>5.39</td>
<td>23.59</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>9-2W</td>
<td>950</td>
<td>0.003</td>
<td>99.0%</td>
<td>2.44</td>
<td>10.70</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>7-1W</td>
<td>950</td>
<td>0.003</td>
<td>99.0%</td>
<td>2.44</td>
<td>10.70</td>
<td>0.02</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Totals: 10.27 44.99 0.16 0.69

Note:
PM=PM$_{10}$=PM$_{2.5}$

Methodology:
Uncontrolled PTE = Grain loading rate (grains/acf) * Air flow rate (acfm) * 60 min/hr * 1 lb/7000 grains / (1 - Control efficiency)
Controlled PTE of PM (lb/hr) = Grain loading rate (grains/acf) * Air flow rate (acfm) * 60 min/hr * 1 lb/7000 grains
PTE of PM (ton/yr) = PTE of PM (lb/hr) * 8760 hrs/yr * 1 ton/2000 lbs

326 IAC 6-3-2 Limit

<table>
<thead>
<tr>
<th>Emission Unit ID</th>
<th>Material throughput (lb/hr)</th>
<th>Process weight rate (ton/hr)</th>
<th>Allowable emissions (lb/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1100</td>
<td>0.55</td>
<td>2.75</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>0.10</td>
<td>0.88</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>0.10</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Methodology:
Process weight rate (ton/hr) = Material throughput (lb/hr) / 2000 lb/ton
Allowable emission (lb/hr) = 4.10 * Process weight rate (ton/hr)$^{0.67}$, pursuant to 326 IAC 6-3-2(e)
Appendix A: Emissions Calculations

Welding and Thermal Cutting

Company Name: Smoker Craft, Inc.
Address: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No: 039-41844-00073
Permit Renewal No: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

<table>
<thead>
<tr>
<th>Process</th>
<th>Number of Stations</th>
<th>Maximum electrode consumption per station (lbs/hr)</th>
<th>Maximum electrode consumption per station (lbs/day)</th>
<th>Emission Factors* (lbs pollutant/lb electrode)</th>
<th>Potential to Emit (lbs/hr)</th>
<th>HAPs (lbs/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding</td>
<td></td>
<td></td>
<td></td>
<td>PM/PM10/PM2.5 Mn Ni Cr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Metal Inert Gas (MIG)(carbon steel)</td>
<td>20</td>
<td>1.25</td>
<td>30</td>
<td>0.0055 0.0005</td>
<td>0.138 1.3E-02 0 0 1.3E-02</td>
<td></td>
</tr>
<tr>
<td>Existing Tungsten Inert Gas (TIG)(carbon steel)</td>
<td>29</td>
<td>1.2</td>
<td>28.8</td>
<td>0.0055 0.0005</td>
<td>0.191 1.7E-02 0 0 1.7E-02</td>
<td></td>
</tr>
<tr>
<td>New Metal Inert Gas (MIG)(carbon steel)</td>
<td>26</td>
<td>1.25</td>
<td>30</td>
<td>0.0055 0.0005</td>
<td>0.179 1.6E-02 0 0 1.6E-02</td>
<td></td>
</tr>
<tr>
<td>New Tungsten Inert Gas (TIG)(carbon steel)</td>
<td>24</td>
<td>1.2</td>
<td>28.8</td>
<td>0.0055 0.0005</td>
<td>0.158 1.4E-02 0 0 1.4E-02</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>PM/PM10/PM2.5 Mn Ni Cr</td>
<td>Potential to Emit (lbs/hr)</td>
<td>HAPs (lbs/hr)</td>
</tr>
<tr>
<td>Potential to Emit (lbs/hr)</td>
<td>3.87</td>
<td>6.1E-02</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>6.1E-02</td>
<td></td>
</tr>
<tr>
<td>Potential to Emit (lbs/day)</td>
<td>15.99</td>
<td>1.453</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>1.453</td>
<td></td>
</tr>
<tr>
<td>Potential to Emit (tons/year)</td>
<td>2.92</td>
<td>2.7E-01</td>
<td>0.0E+00</td>
<td>0.0E+00</td>
<td>2.7E-01</td>
<td></td>
</tr>
</tbody>
</table>

Methodology:

*Emission Factors are default values for carbon steel unless a specific electrode type is noted in the Process column.

Therefore, the emission factor for plasma cutting is for 8 mm thick rather than 1 inch, and the maximum metal thickness is not used in calculating the emissions.

Using AWS average values: $(0.25 \text{ g/min})/(3.6 \text{ m/min}) \times (0.0022 \text{ lb/g})/(39.37 \text{ in./m}) \times (1,000 \text{ in.)}) = 0.0039 \text{ lb/in., 8 mm thick}$

Plasma cutting: Potential to Emit (lbs/hr) = (Number of stations) x (Maximum Metal Thickness, inches) x (Maximum Metal Cutting Rate, inches/minute) x (60 minutes/hour) x (Emission Factor, lb pollutant/1,000 inches cut, 8 mm thick)

Cutting: Potential to Emit (lbs/hr) = (Number of stations) x (Maximum Metal Thickness, inches) x (Maximum Metal Cutting Rate, inches/minute) x (60 minutes/hour) x (Emission Factor, lb pollutant/1,000 inches cut, 1" thick)

Welding: Potential to Emit (lbs/hr) = (Number of stations) x (Maximum electrode consumption per station, lbs/hr) x (Emission Factor, lb pollutant/lb of electrode used)

Potential to Emit (lbs/day) = Potential to Emit (lbs/hr) x (24 hours/day)

Potential to Emit (tons/year) = Potential to Emit (lbs/hr) x (8,760 hours/year) x (1 ton/2,000 lbs)
Natural Gas Combustion Only

Company Name:
Smoker Craft, Inc.

Address City IN Zip:
68143 Clunette St. & 67977 Division St., New Paris, IN 46553

Minor Source Modification No:
039-41844-00073

Permit Renewal No:
039-41837-00073

Reviewer:
Olajumoke Kayode

Date:
9/13/2019

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor in lb/MMCF</th>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM*</td>
<td>1.9</td>
<td>0.17</td>
</tr>
<tr>
<td>PM10*</td>
<td>7.6</td>
<td>0.69</td>
</tr>
<tr>
<td>direct PM2.5*</td>
<td>7.6</td>
<td>0.69</td>
</tr>
<tr>
<td>SO2</td>
<td>0.6</td>
<td>0.05</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>9.10</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>0.50</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>7.65</td>
</tr>
</tbody>
</table>

*PM emission factor is filterable PM only. PM10 emission factor is filterable and condensable PM10 combined. PM2.5 emission factor is filterable and condensable PM2.5 combined.

**Emission Factors for NOx: Uncontrolled = 100, Low NOx Burner = 50, Low NOx Burners/Flue gas recirculation = 32

Methodology

All emission factors are based on normal firing.

MMBtu = 1,000,000 Btu

MMCF = 1,000,000 Cubic Feet of Gas

Emission Factors are from AP 42, Chapter 1.4, Tables 1.4-1, 1.4-2, 1.4-3, SCC #1-02-006-02, 1-01-006-02, 1-03-006-02, and 1-03-006-03

Potential Throughput (MMCF) = Heat Input Capacity (MMBtu/hr) x 8,760 hrs/yr x 1 MMCF/1,020 MMBtu

Emission (tons/yr) = Throughput (MMCF/yr) x Emission Factor (lb/MMCF)/2,000 lb/ton

Hazardous Air Pollutants (HAPs)

HAPs - Organics

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMcf</th>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td>1.2E-03</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>7.5E-02</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.8E+00</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.4E-03</td>
</tr>
<tr>
<td>Total - Organics</td>
<td>0.17</td>
</tr>
</tbody>
</table>

HAPs - Metals

<table>
<thead>
<tr>
<th>Emission Factor in lb/MMcf</th>
<th>Potential Emission in tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>5.0E-04</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.1E-03</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>Manganese</td>
<td>3.8E-04</td>
</tr>
<tr>
<td>Nickel</td>
<td>2.1E-03</td>
</tr>
<tr>
<td>Total - Metals</td>
<td>5.0E-04</td>
</tr>
</tbody>
</table>

Methodology is the same as above.

The five highest organic and metal HAPs emission factors are provided above.

Additional HAPs emission factors are available in AP-42, Chapter 1.4.

<table>
<thead>
<tr>
<th>HAPs - Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HAPs</td>
</tr>
<tr>
<td>Worst HAP</td>
</tr>
</tbody>
</table>
Appendix A: Emission Calculations

Reciprocating Internal Combustion Engines - Diesel Fuel

Output Rating (<=600 HP)

Maximum Input Rate (<=4.2 MMBtu/hr)

Company Name: Smoker Craft, Inc.

Address City IN Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553

Minor Source Modification No: 039-41844-00073

Permit Renewal No: 039-41837-00073

Reviewer: Olajumoke Kayode

Date: 9/13/2019

Emissions calculated based on output rating (hp)

<table>
<thead>
<tr>
<th>Output Horsepower Rating (hp)</th>
<th>155.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hours Operated per Year</td>
<td>500</td>
</tr>
<tr>
<td>Potential Throughput (hp-hr/yr)</td>
<td>77,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>PM*</th>
<th>PM10*</th>
<th>direct PM2.5*</th>
<th>SO2</th>
<th>NOx</th>
<th>VOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.00205</td>
<td>0.0310</td>
<td>0.0025</td>
<td>0.00668</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>1.20</td>
<td>0.10</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*PM and PM2.5 emission factors are assumed to be equivalent to PM10 emission factors. No information was given regarding which method was used to determine the factor or the fraction of PM10 which is condensable.

Hazardous Air Pollutants (HAPs)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Xylene</th>
<th>1,3-Butadiene</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Total PAH HAPs***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Factor in lb/hp-hr****</td>
<td>6.53E-06</td>
<td>2.86E-06</td>
<td>2.00E-06</td>
<td>2.74E-07</td>
<td>8.26E-06</td>
<td>5.37E-06</td>
<td>6.48E-07</td>
<td>1.18E-06</td>
</tr>
<tr>
<td>Potential Emission in tons/yr</td>
<td>2.53E-04</td>
<td>1.11E-04</td>
<td>7.73E-05</td>
<td>1.06E-05</td>
<td>3.20E-04</td>
<td>2.08E-04</td>
<td>2.51E-05</td>
<td>4.56E-05</td>
</tr>
</tbody>
</table>

***PAH = Polycyclic Organic Matter (PAHs are considered HAPs, since they are considered Polycyclic Organic Matter)

****Emission factors in lb/hp-hr were calculated using emission factors in lb/MMBtu and a brake specific fuel consumption of 7,000 Btu / hp-hr (AP-42 Table 3.3-1).

<table>
<thead>
<tr>
<th>Potential Emission of Total HAPs (tons/yr)</th>
<th>1.05E-03</th>
</tr>
</thead>
</table>

Methodology

Emission Factors are from AP 42 (Supplement B 10/96) Tables 3.3-1 and 3.3-2.

- Potential Throughput (hp-hr/yr) = [Output Horsepower Rating (hp)] * [Maximum Hours Operated per Year]
- Potential Emission (tons/yr) = [Potential Throughput (hp-hr/yr)] * [Emission Factor (lb/hp-hr)] / [2,000 lb/ton]
Appendix A: Emission Calculations
Fugitive Dust Emissions - Paved Roads

Company Name: Smoker Craft, Inc.
Address City/State/Zip: 68143 Clunette St. & 67977 Division St., New Paris, IN 46553
Minor Source Modification No.: 039-41844-00073
Permit Renewal No.: 039-41837-00073
Reviewer: Olajumoke Kayode
Date: 9/13/2019

Paved Roads at Industrial Site

The following calculations determine the amount of emissions created by paved roads, based on 8,760 hours of use and AP-42, Ch 13.2.1 (1/2011).

Vehicle Information (provided by source)

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum number of vehicles per day</th>
<th>Number of one-way trips per day per vehicle</th>
<th>Maximum trips per day</th>
<th>Maximum Weight of Loaded Vehicle (tons/trip)</th>
<th>Total Weight driven per day (ton/day)</th>
<th>Maximum one-way distance (feet/trip)</th>
<th>Maximum one-way distance (mi/trip)</th>
<th>Maximum one-way miles (miles/day)</th>
<th>Maximum one-way miles (miles/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle (entering plant) (one-way trip)</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>40.0</td>
<td>160.0</td>
<td>1500</td>
<td>0.284</td>
<td>1.1</td>
<td>414.8</td>
</tr>
<tr>
<td>Vehicle (leaving plant) (one-way trip)</td>
<td>4.0</td>
<td>1.0</td>
<td>4.0</td>
<td>40.0</td>
<td>160.0</td>
<td>1500</td>
<td>0.284</td>
<td>1.1</td>
<td>414.8</td>
</tr>
</tbody>
</table>

Totals

| | 8.0 | 320.0 | 2.3 | 829.5 | 3.84 | 4100 | 0.57 | 2.3 | 948.5 |

Average Vehicle Weight Per Trip = 40.0 tons/trip
Average Miles Per Trip = 0.28 miles/trip

Unmitigated Emission Factor, \(E_f \) = [k * (sL)^0.91 * (W)^1.02] \quad (Equation 1 from AP-42 13.2.1)

where

- \(k = \frac{0.011}{PM} \times \frac{0.0022}{PM10} \times \frac{0.00054}{PM2.5} \) per vehicle mile (AP-42 Table 13.2.1-1)
- \(W = \frac{40.0}{PM} \times \frac{40.0}{PM10} \times \frac{40.0}{PM2.5} \) tons = average vehicle weight
- \(sL = \frac{9.7}{PM} \times \frac{9.7}{PM10} \times \frac{9.7}{PM2.5} \) g/m² = silt loading value for paved roads at iron and steel production facilities - Table 13.2.1-3)

Taking natural mitigation due to precipitation into consideration, Mitigated Emission Factor, \(E_{ext} = E_f \times \left[1 - \left(\frac{P}{4N}\right)\right] \quad (Equation 2 from AP-42 13.2.1)

where

- \(P = 125 \) days of rain greater than or equal to 0.01 inches (see Fig. 13.2.1-2)
- \(N = 365 \) days per year

Mitigated Emission Factor, \(E_{ext} = E_f \times \left[1 - \left(\frac{P}{4N}\right)\right] \quad (Equation 2 from AP-42 13.2.1)

<table>
<thead>
<tr>
<th>Process</th>
<th>Mitigated PTE of PM (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM10 (Before Control) (tons/yr)</th>
<th>Mitigated PTE of PM2.5 (Before Control) (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle (entering plant) (one-way trip)</td>
<td>0.71</td>
<td>0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>Vehicle (leaving plant) (one-way trip)</td>
<td>0.71</td>
<td>0.14</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Totals

| | 1.42 | 0.28 | 0.07 |

Methodology

- **Total Weight driven per day (ton/day)** = \[\text{Maximum Weight of Loaded Vehicle (tons/trip)} \times \text{Maximum trips per day (trip/day)}\]
- **Maximum one-way distance (mi/trip)** = \[\text{Maximum one-way distance (feet/trip)} / 5280 \\text{feet/mile}\]
- **Average Vehicle Weight Per Trip (ton/trip)** = \[\text{Total Weight driven per day (ton/day)} / \text{Maximum trips per day (trip/day)}\]
- **Average Miles Per Trip (miles/trip)** = \[\text{Maximum one-way miles (miles/day)} / \text{Maximum trips per year (trip/day)}\]
- **Unmitigated PTE of PM (tons/yr)** = \[\text{Maximum one-way miles (mi/yr)} \times \text{Unmitigated Emission Factor (ton/mi)}\]
- **Mitigated PTE of PM (Before Control) (tons/yr)** = \[\text{Maximum one-way miles (mi/yr)} \times \text{Mitigated Emission Factor (ton/mi)}\] \times 2000 lbs
- **Mitigated PTE (After Control) (tons/yr)** = \[\text{Mitigated PTE of PM (Before Control) (tons/yr)} \times \text{Dust Control Efficiency}\]

Abbreviations

- PM = Particulate Matter
- PM10 = Particulate Matter (<10 um)
- PM2.5 = Particle Matter (<2.5 um)
- PTE = Potential to Emit
October 10, 2019

John Auld
Smoker Craft, Incorporated
68143 Clunette St
New Paris, IN 46553

Re: Public Notice
Smoker Craft, Incorporated
Permit Level: Title V Renewal
Permit Number: 039-41837-00073

Dear Mr. Auld:

Enclosed is a copy of your draft Title V Operating Permit Renewal, Technical Support Document, emission calculations, and the Public Notice.

The Public Notice period will begin the date the Notice is published on the IDEM Official Public Notice website. Publication has been requested and is expected within 2-3 business days. You may check the exact Public Notice begins and ends date here: https://www.in.gov/idem/5474.htm

Please note that as of April 17, 2019, IDEM is no longer required to publish the notice in a newspaper.

OAQ has submitted the draft permit package to the Goshen Public Library, 601 South 5th Street in Goshen, IN. As a reminder, you are obligated by 326 IAC 2-1.1-6(c) to place a copy of the complete permit application at this library no later than ten (10) days after submittal of the application or additional information to our department. We highly recommend that even if you have already placed these materials at the library, that you confirm with the library that these materials are available for review and request that the library keep the materials available for review during the entire permitting process.

Please review the enclosed documents carefully. This is your opportunity to comment on the draft permit and notify the OAQ of any corrections that are needed before the final decision. Questions or comments about the enclosed documents should be directed to Olajumoke Kayode, Indiana Department of Environmental Management, Office of Air Quality, 100 N. Senate Avenue, Indianapolis, Indiana, 46204 or call (800) 451-6027, and ask for extension 4-5373 or dial (317) 234-5373.

Sincerely,

Theresa Weaver
Theresa Weaver
Permits Branch
Office of Air Quality

Enclosures
PN Applicant Cover Letter 4/12/19
October 10, 2019

To: Goshen Public Library

From: Jenny Acker, Branch Chief
Permits Branch
Office of Air Quality

Subject: Important Information to Display Regarding a Public Notice for an Air Permit

Applicant Name: Smoker Craft, Incorporated
Permit Number: 039-41837-00073

Enclosed is a copy of important information to make available to the public. This proposed project is regarding a source that may have the potential to significantly impact air quality. Librarians are encouraged to educate the public to make them aware of the availability of this information. The following information is enclosed for public reference at your library:

- Notice of a 30-day Period for Public Comment
- Draft Permit and Technical Support Document

You will not be responsible for collecting any comments from the citizens. Please refer all questions and request for the copies of any pertinent information to the person named below.

Members of your community could be very concerned in how these projects might affect them and their families. Please make this information readily available until you receive a copy of the final package.

If you have any questions concerning this public review process, please contact Joanne Smiddle-Brush, OAQ Permits Administration Section at 1-800-451-6027, extension 3-0185. Questions pertaining to the permit itself should be directed to the contact listed on the notice.

Enclosures
PN Library updated 4/2019
Notice of Public Comment

October 10, 2019
Smoker Craft, Incorporated
039-41837-00073

Dear Concerned Citizen(s):

You have been identified as someone who could potentially be affected by this proposed air permit. The Indiana Department of Environmental Management, in our ongoing efforts to better communicate with concerned citizens, invites your comment on the draft permit.

Enclosed is a Notice of Public Comment, which has posted on IDEM’s Public Notice website at https://www.in.gov/idem/5474.htm.

The application and supporting documentation for this proposed permit have been placed at the library indicated in the Notice. These documents more fully describe the project, the applicable air pollution control requirements and how the applicant will comply with these requirements.

If you would like to comment on this draft permit, please contact the person named in the enclosed Public Notice. Thank you for your interest in the Indiana’s Air Permitting Program.

Please Note: If you feel you have received this Notice in error, or would like to be removed from the Air Permits mailing list, please contact Patricia Pear with the Air Permits Administration Section at 1-800-451-6027, ext. 3-6875 or via e-mail at PPEAR@IDEM.IN.GOV. If you have recently moved and this Notice has been forwarded to you, please notify us of your new address and if you wish to remain on the mailing list. Mail that is returned to IDEM by the Post Office with a forwarding address in a different county will be removed from our list unless otherwise requested.

Enclosure
PN AAA Cover Letter 4/12/2019
AFFECTED STATE NOTIFICATION OF PUBLIC COMMENT PERIOD
DRAFT INDIANA AIR PERMIT

October 10, 2019

A 30-day public comment period has been initiated for:

Permit Number: 039-41837-00073
Applicant Name: Smoker Craft, Incorporated
Location: New Paris, Elkhart County, Indiana

The public notice, draft permit and technical support documents can be accessed via the IDEM Air Permits Online site at:
http://www.in.gov/ai/appfiles/idem-caats/

Questions or comments on this draft permit should be directed to the person identified in the public notice by telephone or in writing to:

Indiana Department of Environmental Management
Office of Air Quality, Permits Branch
100 North Senate Avenue
Indianapolis, IN 46204

Questions or comments regarding this email notification or access to this information from the EPA Internet site can be directed to Chris Hammack at chammack@idem.IN.gov or (317) 233-2414.

Affected States Notification 1/9/2017
Mail Code 61-53

<table>
<thead>
<tr>
<th>IDEM Staff</th>
<th>TAWEAVER 10/10/2019</th>
<th>Smoker Craft Incorporated 039-41837-00073 (draft)</th>
<th>AFFIX STAMP HERE IF USED AS CERTIFICATE OF MAILING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and address of Sender</td>
<td>Indiana Department of Environmental Management Office of Air Quality – Permits Branch 100 N. Senate Indianapolis, IN 46204</td>
<td>Type of Mail: CERTIFICATE OF MAILING ONLY</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Article Number</th>
<th>Name, Address, Street and Post Office Address</th>
<th>Postage</th>
<th>Handing Charges</th>
<th>Act. Value (If Registered)</th>
<th>Insured Value</th>
<th>Due Send if COD</th>
<th>R.R. Fee</th>
<th>S.D. Fee</th>
<th>S.H. Fee</th>
<th>Rest. Del. Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>John Auld Smoker Craft Incorporated 68143 Clunette St New Paris IN 46553 (Source CAATS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Doug Smoker Smoker Craft Incorporated 68143 Clunette St New Paris IN 46553 (RO CAATS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Elkhart County Health Department 608 Oakland Avenue Elkhart IN 46516 (Health Department)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Goshen Public Library 601 S 5th St Goshen IN 46526-3994 (Library)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Elkhart County Board of Commissioners 117 North Second St. Goshen IN 46526 (Local Official)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Mr. Kevin Parks D & B Environmental Services, Inc. 401 Lincoln Way West Osceola IN 46561 (Consultant)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Jeri Seely The Mail-Journal PO Box 188 Milford IN 46542 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Mr. Roger Schneider The Goshen News 114 S. Main St Goshen IN 46526 (Affected Party)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total number of pieces Listed by Sender: 8

Total number of Pieces Received at Post Office: 8

Postmaster, Per (Name of Receiving employee):

Remarks: The full declaration of value is required on all domestic and international registered mail. The maximum indemnity payable for the reconstruction of nonnegotiable documents under Express Mail document reconstructing insurance is $50,000 per piece subject to a limit of $50,000 per occurrence. The maximum indemnity payable on Express mail merchandise insurance is $500. The maximum indemnity payable is $25,000 for registered mail, sent with optional postal insurance. See *Domestic Mail Manual* R900, S913, and S921 for limitations of coverage on insured and COD mail. See *International Mail Manual* for limitations of coverage on international mail. Special handling charges apply only to Standard Mail (A) and Standard Mail (B) parcels.