

2019 Reference Site Monitoring Work Plan

PREPARED BY

Raissa Espejo Probabilistic Monitoring Section

WATERSHED ASSESSMENT and PLANNING BRANCH Indiana Department of Environmental Management Office of Water Quality 100 North Senate Avenue MC65-40-2 Shadeland Indianapolis, Indiana 46204-2251

July 19, 2019

B-045-OWQ-WAP-PRB-19-W-R0

This page is intended to be blank

SIGNATURE PAGE

2019 Reference Site Monitoring Work Plan

Indiana Department of Environmental Management Office of Water Quality Watershed Assessment and Planning Branch Indianapolis, Indiana B-045-OWQ-WAP-PRB-19-W-R0

Reviews and Approvals

Date

Date

Stacey Sobat, Section Chief Probabilistic Monitoring Section

Wagner, Section Chief Targeted Monitoring Section

Date 7-11-2019

Timothy Bowren, Project Quality Assurance Officer, Technical and Logistical Services Section

Marylou Renshaw, Branch Chief, Branch Quality Assurance Coordinator

IDEM Quality Assurance Staff reviewed and approved this Sampling and Analysis Work Plan.

Date 19 Jul 2019 Quality Assurance Staff

IDEM Office of Program Support

This page is intended to be blank

WORK PLAN ORGANIZATION

This sampling and analysis work plan is an extension of the existing Watershed Assessment and Planning Branch (WAPB), March 2017 Quality Assurance Project Plan (QAPP) for Indiana Surface Water Programs (Surface Water QAPP) and serves as a link to the existing QAPP and an independent QAPP of the project. Per the United States Environmental Protection Agency 2002 (U.S. EPA 2006) Guidance for QAPPs, this work plan establishes criteria and specifications pertaining to a specific water quality monitoring project usually described in the following four element groups or sections as QAPP elements:

Section A. Project Management

- A.1 Project Objective
- A.2 Project or Task Organization and Schedule
- A.3 Background and Project or Task Description
- A.4 Data Quality Objectives (DQOs)
- A.5 Training and Staffing Requirements

Section B. Measurement and Data Acquisition

- **B.1 Sampling Design and Site Locations**
- B.2 Sampling Methods
- **B.3 Analytical Methods**
- B.4 Quality Control and Custody Requirements
- B.5 Field Parameter Measurements/Instrument Testing/Calibration

Section C. Assessment and Oversight

C.1 External and Internal Checks

C.2 Audits

- C.3 Data Quality Assessments (DQAs)
- C.4 Quality Assurance and Quality Control (QA/QC) Review Reports

Section D. Data Validation and Usability

- D.1 Data Handling and associated QA/QC activities
- D.2 QA/QC Review Reports
- D.3 Laboratory and Estimated Cost

This page is intended to be blank

TABLE OF CONTENTS

SIGNATURE PAGE	i
WORK PLAN ORGANIZATION	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	vi
LIST OF TABLES	vi
LIST OF ATTACHMENTS	vi
LIST OF APPENDICES	vii
LIST OF ACRONYMS	. viii
DEFINITIONS	ix
A. PROJECT MANAGEMENT	1
A.1 Project Objective	1
A.2 Project or Task Organization and Schedule	1
A.3 Background and Project or Task Description	4
A.4 Data Quality Objectives (DQO)	4
A.5 Training and Staffing Requirements	. 14
B. MEASUREMENT AND DATA ACQUISITION	. 17
B.1 Sampling Design and Site Locations	. 17
B.2 Sampling Methods	. 20
B.3 Analytical Methods	. 23
B.4 Quality Control and Custody Requirements	. 27
B.5 Field Parameter Measurements/Instrument Testing/Calibration	. 29
C. ASSESSMENT AND OVERSIGHT	. 29
C.3 Data Quality Assessment Levels	. 30
D. DATA VALIDATION AND USABILITY	. 30
D.1. Data Handling and Associated QA/QC Activities	. 30
D.2. Data Usability	. 30
D.3. Laboratory and Estimated Cost	. 31
E. REFERENCES	. 33
F. DISTRIBUTION LIST	. 37

LIST OF FIGURES

Figure 1. 2019 Reference Sites for the Upper White (05120201), Driftwood	
(05120204), and Flatrock-Haw (05120205) Basins	18
Figure 2. 2019 Reference Sites for the Lower White (05120202) and Lower E	ast
Fork White (05120208) Basins	19

LIST OF TABLES

Table 1. Tasks, Schedule, and Evaluation	2
Table 2. Water Quality Criteria [327 IAC 2-1-6]	5
Table 3. List of 2019 Reference Sites for the Lower White (05120202) and Low	ver
East Fork White (05120208) Watersheds	9
Table 4. List of 2019 Reference Sites for the Upper White (05120201), Driftwo	od
(05120204), and Flatrock-Haw (05120205) Watersheds	.10
Table 5. Project Roles, Experience, and Training	.14
Table 6. Field Parameters Showing Method and IDEM Quantification Limit	.25
Table 7. Algal Parameters Showing Method and USGS Quantification Limit	.25
Table 8. Water Chemistry Sample Container, Preservative, and Holding Time	
Requirements	.25
Table 9. Water Chemistry Parameters, Test Method, IDEM, and Laboratory	
Reporting Limits	.26
Table 10. Total Estimated Laboratory Cost for the Project.	.31

LIST OF ATTACHMENTS

Attachment 1 IDEM Site Reconnaissance Form	38
Attachment 2 IDEM Stream Sampling Field Data Sheet	39
Attachment 3 IDEM Algal Biomass Lab Data Sheet	40
Attachment 4 IDEM Physical Description of Stream Site Form (front)	41
Attachment 5 IDEM Fish Collection Data Sheet (front)	43
Attachment 6 IDEM OWQ Macroinvertebrate Header Form	44
Attachment 7 IDEM OWQ Biological Qualitative Habitat Evaluation Index (fror	nt)
	45
Attachment 8 IDEM OWQ Chain of Custody Form	47
Attachment 9 2019 Reference Sites Water Sample Analysis Request Form	48
Attachment 10 Biological Samples Laboratory Chain of Custody Form	49

LIST OF APPENDICES

LIST OF ACRONYMS

AIMS ALUS ASTM CAC CALM	Assessment Information Management System Aquatic Life Use Support American Society for Testing and Materials Chronic Aquatic Criterion Consolidated Assessment Listing MethodologyDO	Dissolved
IAC	Indiana Administrative Code	
IBI	Index of Biotic Integrity	
IDEM	Indiana Department of Environmental Management	
MHAB	Multihabitat	
OHEPA	Ohio Environmental Protection Agency	
OWQ	Office of Water Quality	
QA	Quality Assurance	
QA/QC	Quality Assurance/Quality Control	
QC	Quality Control	
QAPP	Quality Assurance Project Plan	
QHEI	Qualitative Habitat Evaluation Index	
S.U.	Standard Units	
SOP	Standard Operating Procedures	
U.S. EPA	United States Environmental Protection Agency	
WAPB	Watershed Assessment and Planning Branch	

DEFINITIONS

Elutriate	To purify, separate, or remove lighter or finer particles by washing, decanting, and settling.
Fifteen-(15-)minute pick	A multihabitat macroinvertebrate sampling method in which the one-minute kick sample and fifty-meter sweep sample collected at a site are first combined and elutriated. Macroinvertebrates are then manually removed from the resulting sample for 15 minutes.
Fifty-(50-)meter sweep	A multihabitat macroinvertebrate sampling method in which approximately 50 meters (50m) of all available habitat in a stream or river is sampled with a standard 500 µm mesh width D-frame dipnet by taking 20—25 individual "jab" or "sweep" samples, which are then composited.
Macroinvertebrate	Aquatic animals which lack a backbone, are visible without a microscope, and spend some period of their lives in or around water.
One-(1-)minute kick sample	A multihabitat macroinvertebrate sampling method in which approximately 1 m ² of riffle or run substrate habitat in a stream or river is sampled with a standard 500 µm mesh width D-frame dipnet for approximately 1 minute.
Ocular reticle	A thin piece of glass marked with a linear or areal scale that is inserted into a microscope ocular, superimposing the scale onto the image viewed through the microscope.
Periphyton	Algae attached to an aquatic substrate.
Reach	A segment of a stream used for sampling. Seston Organic matter suspended in the water column generally comprised of phytoplankton, bacteria, and fine detritus.

A. PROJECT MANAGEMENT

A.1 Project Objective

The objective of the 2019 Reference Site Monitoring Project is to provide physical, chemical, and biological data from reference sites. These sites are located in areas with the least amount of anthropogenic disturbance and considered the most natural remaining areas within a specified geographic boundary. Candidate sampling reference sites are chosen based on abiotic factors such as land use, water chemistry, and in-stream physical habitat that function as potential stressors to the aquatic assemblages (i.e., fish, macroinvertebrate, and diatom communities) of the stream or river ecosystem. Data obtained from the chosen sites are used to establish and refine the Index of Biotic Integrity (IBI) for aquatic assemblages as well as biological criteria for aquatic life use assessments.

The IBI is composed of 12 biological assemblage characteristics or metrics that assess the aquatic communities' structural, compositional, and functional integrity. Different IBI metrics may be used depending on variables such as what part of the state is being sampled (ecoregion) and size of the stream (drainage area). The 12 different metrics can each score 0, 1, 3, or 5, which represents the deviation from expected community structure (i.e., 5 = no deviation from expectations, 0 = severe deviation from expected community structure (i.e., 5 = no deviation from expectations, 0 = severe deviation from expected community structure). The total IBI score can range from 0 (severe disturbance) to 60 (excellent, compared to "least impacted" conditions). For more information on fish and macroinvertebrate IBI calculations, view Appendices 2 and 3.

A.2 Project or Task Organization and Schedule

Sampling for this project will begin in April and continue through October 2019. Chemical, physical, and biological parameters will be collected. Laboratory processing and data analysis for the project will continue through spring of 2020 (see Table 1).

Activity	Date(s)	Number of Sites	Frequency of Sampling related activity	Parameters to be sampled	How evaluated	
Site reconnaissance	Jan through end of Mar	30 to ensure a minimum of 20 sites sampled during all three sampling events	Until 30 accessible target sites confirmed or Mar deadline reached	Safety to access stream and proper equipment for sampling	Land owner approval and best professional judgment	
Biological sampling	Jun 4 through Nov 15	Minimum of 20 sites, 30 if water	Once each for: Fish community (Jun 3-Oct 18),	Fish Community	Fish Index of Biotic Integrity (IBI)	
		present in at	Macroinvertebrate	Macroinvertebrate Community	Macroinvertebrate IBI	
		the sampling reach	(both may occur on same day from Jul 15 – Oct 18)	Habitat Quality	QHEI evaluated separately for fish and macroinvertebrate communities.	
Water chemistry	Apr, May, Sep	30 to ensure a minimum of 20 sites	Three times: Once each in Apr, May, and Sep, with a minimum of 30	Total Phosphorous	Nutrient Benchmarks: >0.3 mg/L (for nutrients)	
		sampled	days between sampling	Nitrogen, Nitrate + Nitrite	>10.0 mg/L (for nutrients)	
		three	events	Dissolved Oxygen (DO)	<4.0 mg/L; >12 mg/L (for nutrients)	
		sampling events		рН	>9.0 Standard Units (SU) (for nutrients); <6 or >9 SU (aquatic life)	
				Algal conditions	Excessive (for nutrients, based on observation)	
				From Table 2	Water Quality Standard Limits:	
				-Metals, dissolved -Arsenic	190 ug/L	

Table 1. Tasks, Schedule, and Evaluation

Activity	Date(s)	Number of Sites	Frequency of Sampling related activity	Parameters to be sampled	How evaluated
				-Un-ionized ammonia as N -Chloride -Sulfate -Dissolved Solids	750 mg/L
Algal samples	Sep	Minimum of 20 sites, 30 if water present in at least half the sampling reach	Once, with the 3 rd water chemistry sample, Sep	Algal diatoms Algal Biomass: Periphyton (Include Seston, if the drainage area >1000 square miles)	Diatom identification and enumeration Chlorophyll <i>a</i> and Pheophytin <i>a</i>

A.3 Background and Project or Task Description

The Reference Site Monitoring Project is operated through the WAPB OWQ IDEM. Other organizations assisting with data preparation, collection, and analysis include private laboratories under contract with the state of Indiana (Request For Proposals 16-74, see IDEM 2016a), Department of Biological and Environmental Sciences at Georgia College and State University, U.S. EPA Region V, and the Indiana Department of Natural Resources. Landowners and property managers throughout the state also participate in the Reference Site Monitoring Project through assisting staff with access to remote stream locations for collection of samples.

The Reference Site Monitoring Project provides physical, chemical, and biological data to continuously refine and calibrate the IBI for aquatic assemblages. Refining and Calibrating are accomplished through sampling reference sites in Indiana over 10 years to assess and characterize overall water quality and biological integrity. The following parameters are investigated and the data utilized for IBI and biological criteria refinement as well as assessment purposes: water chemistry; algal samples (seston and periphyton); fish, macroinvertebrate, and diatom assemblages; and habitat evaluations.

A.4 Data Quality Objectives (DQO)

The DQO process (U.S. EPA 2006) is U.S. EPA's recommended planning process for environmental data collection activities. It provides a basis for balancing decision uncertainty with available resources. The DQO process is required for all significant environmental data collection projects and is a sevenstep, systematic-planning process used to clarify study objectives; define the types and quantity of data needed to achieve the objectives; and establish decision criteria for evaluating data quality. The DQO process for the 2019 Reference Site Monitoring Project is identified in the following seven steps:

1. State the Problem

Surface waters of the state are designated for full body contact recreation; will be capable of supporting a well-balanced, warm water aquatic community; and in some northern portions of the state, put-and-take trout fishing [327 IAC 2-1-3]. Indiana is required to assess all waters of the state to determine their designated use attainment status. This project gathers biological (algal, fish, and macroinvertebrate), chemical, and habitat data at reference sites for the purpose of refining Indiana's IBI metrics and biological criteria thresholds, to more accurately assess aquatic life use attainment status.

2. Identify the Goals of the Study

The objective of this project is to sample reference sites throughout Indiana to determine whether the reference sites chosen still meet criteria for a reference site; collect reference data against which ALUS assessments can be measured; and develop the Diatom IBI to provide a more sensitive tool to determine ALUS status to refine and further validate IBI metrics and biological criteria thresholds every 10 years.

3. Identify the Information Inputs

Field monitoring activities are required to collect physical description, chemical, algal, biological, and habitat data. Samples will be collected for chemical parameters as well as biological communities. Collection procedures for field measurements, algal, chemical, biological, and habitat data will be described in detail under Section II MEASUREMENT/DATA ACQUISITION.

Water Quality Criteria

Chemical sampling data are used to validate the absence of anthropogenic disturbance or a minimal level of allowed disturbance at reference sites (U.S. EPA 2013). Thus, each site will be evaluated as "supporting" or "nonsupporting" when compared with water quality criteria shown in Table 2, which is derived from tables contained in [<u>327 IAC 2-1-6</u>] following Indiana's 2018 Consolidated Assessment Listing Methodology (IDEM 2018a, <u>CALM</u> 2018b).

Parameter	Level	Criterion
Metals (dissolved)	Calculated based on hardness	Calculated Chronic Aquatic Criterion (CAC)
Arsenic III (dissolved)	190 µg/L	Calculated CAC
Ammonia as Nitrogen	Calculated based on pH and temperature	Calculated CAC
Chloride	Calculated based on hardness and sulfate values	Calculated CAC
DO	At least 5.0 mg/L (warm water aquatic life)	Not less than 4.0 mg/L at any time.
рН	6.0—9.0 S.U.	Must remain between 6.0 and 9.0 S.U. except for daily fluctuations that exceed 9.0 due to photosynthetic activity
Nitrogen, Nitrate + Nitrite	<u><</u> 10 mg/L	Human Health point of drinking water intake
Sulfate	Calculated based on hardness and chloride	In all waters outside the mixing zone
Dissolved Solids	750 mg/L	Not-to-Exceed at point of drinking water intake

CAC = <u>Chronic Aquatic Criterion</u>, S.U. = Standard Units

Nutrient Criteria

In addition to the chemical criteria listed in Table 2, data for several nutrient parameters will be evaluated against the benchmarks below (IDEM 2018b). Assuming a minimum of three sampling events, if two or

more of the conditions below are met on the same date, the waterbody assessment unit will be classified as nonsupporting due to nutrients.

- Total Phosphorus: one or more measurements >0.3 mg/L.
- Nitrogen, (Nitrate + Nitrite): one or more measurements >10.0 mg/L.
- DO: one or more measurements <4.0 mg/L, or measurements that are consistently at or close to the standard, in the range of 4.0—5.0 mg/L, or >12.0 mg/L.
- pH: one or more measurements >9.0 S.U. or measurements consistently at or close to the standard, ranging from 8.7—9.0 S.U.
- Algal Conditions: visually observed as "excessive" by trained staff using best professional judgment. Further explanation of this observance is documented in Measurement and Data Acquisition under Algal Community Data on page 34.

Biological Criteria:

Indiana narrative biological criteria [<u>327 IAC 2-1-3</u>] states that "(2) All waters, except as described in subdivision (5)," (i.e., limited use waters) "will be capable of supporting: (A) a well-balanced, warm water aquatic community". The water quality standard definition of a "well-balanced aquatic community" is "an aquatic community that: (A) is diverse in species composition; (B) contains several different trophic levels; and (C) is not composed mainly of pollution tolerant species" [<u>327 IAC 2-1-9 (59)</u>]. An interpretation or translation of narrative biological criteria into numeric criteria is illustrated by the table in Appendix 2. A stream segment is nonsupporting for aquatic life use when the monitored fish or macroinvertebrate community receives an IBI score of less than 36 which is considered "Poor" or "Very Poor" (IDEM 2018b). Stream segments with IBI scores greater than or equal to 36 ("Fair" to "Excellent" on the scale of 0 to 60) are supporting for aquatic life use.

Assessment of each site sampled will be reported to U.S. EPA in the 2022 update of Indiana's Integrated Water Monitoring and Assessment Report. Site specific data will be used to classify associated assessment units (AU) into one of five major categories in the state's consolidated 303(d) list. Category definitions are available in Indiana's CALM (IDEM 2018b pages N-40 and N-41).

To develop the IBI for diatoms, as well as biological criteria for aquatic life use assessments, periphyton will be collected and analyzed separately for benthic diatoms and chlorophyll a in conjunction with chemical data from each site along with physical site descriptions. Once collected, the diatom samples will be preserved and transported to the laboratory where algae will be identified and enumerated as part of the development of algal metrics.

4. Define the Boundaries for the Study

In 2019, reference sites were chose in two separate areas of the state to allow flexibility in sampling, as a result of high water or bad weather preventing IDEM projects' sampling in other areas of the state. If the flow

is not dangerous for staff to enter the stream; barring any hazardous weather conditions; or unexpected physical barriers to access the site. Even if the weather conditions and stream flow are safe, sample collections for algal and biological communities may also be postponed at a particular site for one to four weeks due to scouring of the stream substrate or instream cover following a high water event resulting in nonrepresentative samples. Further explanation of site selection is explained in B.2.5 Sampling Methods in Section B. Measurement/Data Acquisition of this work plan. Develop the Analytical Approach All potential reference sites will be evaluated for aquatic life use support (ALUS) status. For assessment purposes in the Indiana Integrated Water Monitoring and Assessment Report, ALUS decisions will include independent evaluations of chemical and biological criteria as outlined in Indiana's 2018 CALM (IDEM 2018b). The fish and macroinvertebrate assemblage will be evaluated at each site using the appropriate IBI. Specifically, a site will be considered nonsupporting for aquatic life use when IBI scores are less than 36. Given more recent data, assessment decisions will be reported in the 2022 Indiana Integrated Water Monitoring and Assessment Report resulting in stream segments being delisted for impaired biotic community (now fully supporting aquatic life use), or listed as nonsupporting for aquatic life use due to a change in water quality or habitat that has impaired the biotic community.

Sites not supporting aquatic life use or sites violating the minimal allowable amount of disturbance will be rejected as reference sites due to chemical or physical alterations detected by current sampling efforts. To avoid circularity in deriving IBI calibrations, reference sites will not be chosen based on biological attributes (i.e., excellent IBI metrics or total scores) (U.S. EPA 2013).

After 10 years, however, IDEM may discover additional reference sites through review of land use criteria, chemical, and in-stream physical habitat data for sites where biological assemblage information is obtained during additional projects between 2014 and 2024.

IDEM's intention is to use algal metrics, once determined, as part of nutrient criteria being developed for Indiana's surface waters. Eventually, IDEM also plans to use algal metrics with macroinvertebrate and fish metrics for ALUS decisions. Given that ecological tolerances for many diatom species are known, changes in diatom community composition can be used to diagnose the environmental stressors affecting ecological health (Stevenson 1998; Stevenson and Pan 1999). Thus, periphyton IBI metrics have been developed and tested in many regions (Kentucky Department of Environmental Protection KDEP 1993; Hill 1997). The periphyton assemblage to include chlorphyll a and diatoms may be used to assess biological integrity of a waterbody without any other information. However, periphyton are most effective when used in conjunction with habitat and macroinvertebrate assessments, particularly because of the close relationship between periphyton and these elements of stream ecosystems (Barbour et al. 1999). For this reason, algal sampling will be conducted at the same sites where macroinvertebrates, fish, habitat, chemical, and physical data will be collected as part of the Reference Site Monitoring Program.

Table 3. List of 2019 Reference Sites for the Lower White (05120202) and Lower East Fork White (05120208)Watersheds

AIMS Site Name	Event ID	Stream Name and Location	County	Hydrologic Unit Code (HUC)	Latitude (DD)	Longitude (DD)	Drainage Area (mi ²)	Gradient (ft/mi)	Site Status
WEL090-0013	19R112	Henderson Creek @ CR off of SR 446	Lawrence	051202080804	38.9619444	-86.3688889	13	16.8	Approved
WEL090-0015	19R113	WolfCreek@CR825N	Lawrence	051202080806	38.9763889	-86.4777778	1.5	42.2	Approved
WEL040-010	19R114	Leatherwood Creek @ Cement Plant Rd	Lawrence	051202081003	38.8541431	-86.4704723	36	14.04	Approved
WWL-03-0029	19R116	Tributary of Richland Creek @ W Hendricks Rd	Monroe	051202020301	39.1589273	-86.6475142	5.5	105.2	Approved
WWL020-0054	19R117	Raccoon Creek @ Heddings Rd.	Owen	051202020207	39.2048429	-86.7566831	23.2	12.7	Approved
WWL020-0055	19R118	Fish Creek @ CR 550 S.	Owen	051202020209	39.2124524	-86.9057538	54	3.1	Approved
WWL-03-0015	19R119	Tributary of Richland Creek @ CR 525 N	Greene	051202020302	39.1025935	-86.7232878	3.7	17.5	Approved
WWL-03-0018	19R120	Camp Creek @ CR 515/460	Greene	051202020305	39.0950222	-86.8329276	3.0	12.1	Approved
WEL-09-0004	19R122	Indian Creek @ E SR 54	Greene	051202080902	38.9613814	-86.6982947	43.82	4.94	Approved
WWL-03-0022	19R124	Little Clifty Branch @ CR 875 E	Greene	051202020306	38.9882975	-86.7790281	3.4	19.7	Approved
WWL-03-0021	19R125	Ore Branch @ Private Drive Off of Ore Branch Rd	Greene	051202020308	39.0272846	-86.8703551	3.1	24.8	Approved
WWL-03-0033	19R126	Stalcup Branch @ CR 140 S	Greene	051202020306	39.0011582	-86.8351621	10.2	17.8	Approved
WWL-03-0010	19R129	Tributary of Black Ankle Creek @ CR 560 E	Greene	051202020307	38.9453013	-86.8404815	2.2	20.8	Approved
WWL-02-0003	19R132	Rattlesnake Creek @ Hyden Road	Owen	051202020204	39.2822672	-86.8059042	21.6	8.3	Approved
WWL-03-0036	19R133	Beech Creek @ CR 900 E	Greene	051202020304	39.0644062	-86.7743589	13.8	12.3	Approved

Table 4. List of 2019 Reference Sites for the Upper White (05120201), Driftwood (05120204), and Flatrock-Haw (05120205)Watersheds

AIMS Site Name	Event ID	Stream Name and Location	County	Hydrologic Unit Code (HUC)	Latitude (DD)	Longitude (DD)	Drainage Area (mi ²)	Gradient (ft/mi)	Site Status
WWU100-0110	19R097	Honey Creek @ CR 850 N (Bridge)	Henry	051202010801	40.05517	-85.49448	6.95	29.18	Approved
WWU100-0101	19R098	Deer Creek @ CR 575 N or CR 625 N	Henry	051202010803	40.02227	-85.53266	5.86	28.72	Approved
WWU100-0099	19R099	Mud Creek @ CR 575 N (Bridge)	Henry	051202010803	40.01328	-85.57018	3.09	33.4	Approved
WWU100-0083	19R101	Fall Creek @ CR 200 E (Rangeline Rd Bridge)	Madison	051202010804	40.01585	-85.63389	64.53	6.82	Approved
WWU100-0089	19R102	Lick Creek @ Connecticut Ave/W 1025 S (br	Madison	051202010807	39.95157	-85.85769	37.29	7.98	Approved
WWU100-0075	19R103	Lick Creek @ CR 1000 S (Reformatory Rd Bri	Madison	051202010805	39.95983	-85.72612	20.2	5.71	Approved
WWU100-0069	19R104	Lick Creek @ CR 1050 S (Bridge)	Madison	051202010807	39.95189	-85.77009	27.34	8.41	Approved
WWU100-0063	19R105	Lick Creek @ CR 400 E (Bridge)	Madison	051202010805	39.9753	-85.59548	1.56	11.3	Approved
WED040-0003	19R106	Brandywine Creek @ SR 9 (Bridge)	Shelby	051202040303	39.68694	-85.77389	65.8	4.9	Approved
WED020-0023	19R107	Big Blue River @ N Morristown Road	Shelby	051202040805	39.58169	-85.76206	299.75	4.21	Approved
WED030-0028	19R108	Little Blue River @ German Road	Shelby	051202040205	39.53976	-85.72694	100.41	4.67	Approved
WEF050-0006	19R110	Lewis Creek @ SR 252 (bridge)	Shelby	051202050503	39.36361	-85.85806	81.5	7.3	Approved
WWU-14-0005	19R111	North Prong Stotts Creek @ 2530 Firestatic	Morgan	051202011405	39.46689	-86.31262	21.9	11	Approved
WWU100-0041	19R130	Fall Creek @ CR 850 N @ Dietrich Memoria	Henry	051202010801	40.05524	-85.52735	16.26	6.65	Approved
WWU100-0104	19R131	Fall Creek @ Rock Bridge @ CR 850 N	Henry	051202010801	40.05516	-85.484	3.46	27.04	Approved

5. Specify Performance or Acceptance Criteria

Good quality data are essential for minimizing decision error. By identifying errors in the sampling design; measurement; and laboratory for physical, chemical, and biological parameters, more confidence can be placed in IBI calibrations and biological threshold determinations as well as aquatic life use assessments.

Site specific aquatic life use assessments include program specific controls to identify the introduction of errors. These controls include water chemistry blanks and duplicates; biological site revisits or duplicates; and laboratory controls through verification of species identifications as described in field procedure manuals (IDEM 2002; Ohio Environmental Protection Agency OHEPA 2006) and standard operating procedures (SOPs, IDEM 1992a, 1992b, 1992c, 2010a, 2015b, 2018c, 2018d, 2019b).

The QA/QC process detects deficiencies in the data collection as set forth in the for the Surface Water QAPP (IDEM 2017a). The QAPP requires all contract laboratories to adhere to rigorous standards during sample analyses and to provide good quality usable data. Chemists within the WAPB review the laboratory analytical results for quality assurance (QA). Any data which is "Rejected" due to analytical problems or errors will not be used for water quality assessment decisions. Any data flagged as "Estimated" may be used on a case-by-case basis. Criteria for acceptance or rejection of results as well as application of data quality flags is presented in the following Surface Water QAPP tables:

- Table D3-1 Data Qualifiers and Flags
- Table A7-1 Precision and Accuracy Goals for Data Acceptability by Matrix (Precision and accuracy goals with acceptance limits for applicable analytical methods)
- Table B2.1.1.8-2 Field Parameters

Further investigation will be conducted, in response to consistent "rejected" data, to determine the source of error. Field techniques, used during sample collection and preparation along with laboratory procedures, will be subject to evaluation by both the WAPB QA Manager and Project Manager to troubleshoot error introduced throughout the entire data collection process. Corrective actions will be implemented once the source of error is determined.

6. Develop the Plan for Obtaining Data

Sampling locations in this project have been selected based on sites that were previously sampled from 2003—2013. Reference sites were least impacted by anthropogenic sources, and had good habitat and water chemistry results compared to other sites sampled over the 10-year period. Sampling locations may be near bridges or in rem27ote areas due to being a historical probabilistic monitoring site.

Indiana's 2018 CALM requires at least three samples in order to complete an assessment for aquatic life use with water chemistry data. Sampling for water chemistry will occur in April, May, and September.

The primary filter used in selecting reference sites is land use criteria:

- Percent of agricultural or urban areas
- Impervious surface area
- Human population density and distribution
- Road density and crossings
- Proportion of active mining
- Proportion of protected lands
- Proximity to permitted facilities, confined feeding operations, and Superfund sites.

In altered watersheds, chemical and in-stream physical habitat data may be used as a secondary filter to select reference sites and develop biological expectations for:

- "Least disturbed condition" (best available condition given widespread disturbance)
- "Minimally disturbed condition" (nearly absent human disturbance)
- "Historical condition" (prior to major industrialization, urbanization, and intense agricultural practices) (Stoddard et al. 2006)

Ideally, reference sites should be sampled at least once every 10 years to monitor for changes in the biological expectations for "least disturbed condition" and possible revisions to biological criteria. Sampling at reference sites should include a minimum of two biological communities (fish, macroinvertebrates, or diatoms), habitat evaluations, and at least *insitu* water chemistry. Ideally, additional samples for laboratory water chemistry parameters, algal biomass, and flow could be collected, as resources allow.

The Indiana Department of Environmental Management (IDEM) Office of Water Quality (OWQ) worked with U.S. EPA and Tetra Tech in March 2015 to develop a framework and criteria for reference site selection (U.S. EPA Assistance Agreement I 96555711-1 IDEM). IDEM provided Tetra Tech with 1458 site locations previously sampled for fish or macroinvertebrates or both between 2003 and 2013, for possible selection as reference sites. Land use factors were the primary filter used by Tetra Tech to identify 324 potential reference sites. IDEM further narrowed the list by using in-stream chemical and physical data as a secondary filter.

A minimum of 20 reference sites are required in each of the natural environmental gradient classifications (i.e., ecoregion, stream size, etc.) to ensure an adequate level of statistical confidence in the linear regression models developed from the data. The model outputs will then accurately indicate changes in biological assemblage structure, given certain explanatory variables. Increasing the number of reference sites, however, reduces variability in calibrating the IBI and setting biological criteria thresholds (U.S. EPA 2013, Tetra Tech personal communication).

Based on the spatial distribution of the sites and available resources, IDEM will conduct site reconnaissance and sampling of reference sites with the goal of at least 20 reference sites each year over the next 10 years to refine biological indices, water quality criteria, and possibly develop other assessment indicators and thresholds.

A.5 Training and Staffing Requirements

Role	Required	Responsibilities	Training
	Training/Experience		References
Project Manager	-Bachelor of Science Degree in biology or other closely related area plus four years of experience in aquatic ecosystems (Master's Degree with two years aquatic ecosystems experience may substitute) -Database experience -Experience in project management and QA/QC procedures	-Establish Project in the Assessment Information Management System (AIMS) II database -Oversee development of Project Work Plan -Oversee entry and QC of field data -Oversee querying of data from AIMS II database to determine results not meeting aquatic life use Water Quality Criteria	-AIMS II Database User Guide IDEM 2017b -Surface Water QAPP 2017a -U.S. EPA 2006 QA Documents on developing Work Plans (QAPPs)
Field Crew Chief - Fish or Macroinvertebrate Community Sampling	-Bachelor of Science Degree in biology or other closely related area -At least one year of experience in sampling methodology and taxonomy of aquatic communities in the region -Annually review the Principles and Techniques of Electrofishing -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Completion of field data sheets -Taxonomic accuracy -Sampling efficiency and representation -Voucher specimen tracking -Overall operation of field crew when remote from central office -Adherence to safety and field SOP procedures by crew members -Ensure datasondes calibrated weekly, field sampling equipment is functioning properly, and all equipment loaded into vehicles prior to field sampling activities	-Barbour et al. 1999 -Hydrolab Corporation 2002 -IDEM 1992e, 2002, 2010a, 2010b, 2010c, 2015a, 2017a, 2018 2019a -Klemm et al. 1990- Plafkin et al. 1989 -Simon and Dufour 2005 -YSI 2006
Field Crew members - Fish or Macroinvertebrate Community Sampling	-Complete hands-on training for sampling methodology prior to field sampling activities -Review the Principles and Techniques of Electrofishing -Review relevant safety procedures -Review relevant SOP documents for field operations	-Follow all safety and SOP procedures while engaged in field sampling activities -Follow direction of Field Crew Chief while conducting field sampling activities	-Barbour et al. 1999 -Hydrolab Corporation 2002 -IDEM 2002, 2010a, 2010b, 2010c, 2015a, 2017a, 2018c, 2019a, 2019b -Klemm et al. 1990 -Plafkin et al. 1989 -Simon and Dufour 2005 -YSI 2006

Role Required		Responsibilities	Training References	
Field Crew Chief -	-Bachelor of Science	-Field data sheets	-Hydrolab	
Water Chemistry and Algal Sampling	Degree in biology or other closely related area -At least one year of experience in sampling methodology -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	complete -Sampling efficiency and representation -Overall operation of field crew when remote from central office -Adherence to safety and field SOP procedures by crew members -Ensure datasondes calibrated weekly, field sampling equipment is functioning properly, and all equipment loaded into vehicles prior to field sampling activities	Corporation 2002 -IDEM 1997, 2002, 2010b, 2010c, 2015a, 2015b, 2017a, 2018d -YSI 2006	
Field Crew Members - Water Chemistry and Algal Sampling	-Complete hands-on training for sampling methodology prior to field sampling activities -Review relevant safety procedures and SOP documents for field operations	-Follow all safety and SOP procedures while conducting field sampling activities -Follow direction of Field Crew Chief while conducting field sampling activities	-Hydrolab Corporation 2002 -IDEM 1997, 2002, 2010b, 2010c, 2015a, 2015b, 2017a, 2018d -YSI 2006	
Laboratory Supervisor - Fish or Macroinvertebrate Community Sample Processing	-Bachelor of Science Degree in biology or other closely related area -At least one year of experience in taxonomy of aquatic communities in the region -Annually review relevant safety procedures -Annually review relevant SOP documents for laboratory operations	-Adherence to safety and SOP procedures by laboratory staff -Assist with identification of fish/macroinvertebrate specimens -Verify taxonomic accuracy of samples -Voucher specimen tracking -QC calculations on data sheets, check for completeness -Ensure data are entered into AIMS II correctly	-IDEM1992e, 2008, 2010b, 2010c, 2012, 2017a, 2018c -AIMS II Database User Guide 2017b	
Laboratory Staff - Fish or Macroinvertebrate Community Sample Processing	-Complete hands-on training for laboratory sample processing methodology prior to laboratory sample processing activities -Annually review relevant safety procedures and relevant SOP documents for laboratory operations	-Adhere to safety and SOP procedures -Follow Laboratory Supervisor direction while processing samples -Identify fish/ macroinvertebrate specimens -Perform necessary calculations on data, enter field sheets	-IDEM1992e, 2008, 2010b, 2010c, 2012, 2017a, 2018c -AIMS II Database User Guide 2017b	

Role	Required	Responsibilities	Training References
Laboratory Supervisor - Water Chemistry and Algal Sample Processing	-Bachelor of Science Degree in biology or other closely related area -Annually review relevant safety procedures -Annually review relevant SOP documents for field operations	-Adherence to safety and SOP procedures by laboratory staff -Identification of diatoms -Completion of laboratory data sheets -Check data for completeness -Perform all necessary calculations on the data -Ensure that data are entered into the AIMS II database	-IDEM 2010b, 2010c, 2012, 2015b, 2017a, - Barbour et al. 1999 -AIMS II Database User Guide 2017b
Quality Assurance Officer	-Bachelor of Science in chemistry or a related field of study -Familiarity with QA/QC practices and methodologies -Familiarity with the Surface Water QAPP and data qualification methodologies	-Ensure adherence to QA/QC requirements of Surface Water QAPP -Evaluate data collected by sampling crews for adherence to project Work Plan -Review data collected by field sampling crews for completeness and accuracy -Perform a data quality analysis of data generated by the project -Assign data quality levels based on the data quality analysis -Import data into the AIMS II database -Ensure that field sampling methodology audits are completed according to WAPB procedures	-IDEM 2017a, 2012 -U.S. EPA 2006 documentation on QAPP development and data qualification -AIMS II Database User Guide 2017b
Personnel Safety and Reference Manuals	-Basic First Aid and Cardiopulmonary Resuscitation (CPR) -Personal Protective Equipment (PPE) Policy	-A minimum of 4 hours of in-service training provided by WAPB (IDEM 2010b) -IDEM 2008	-Staff lacking 4 hours of in-service training or appropriate certification will be accompanied in the field at all times by WAPB staff that meet Health and Safety Training requirements
	-Personal Flotation Devices (PFD)	-February 29, 2000 WAPB internal memorandum regarding use of approved PFDs	-When working on Boundary waters as defined by Indiana Code (IC) [IC 14-8- 2-27] or between sunset and sunrise

Role	Required Training/Experience	Responsibilities	Training References
			on any waters of the state, all personnel in the watercraft must wear a high intensity whistle and Safety of Life at Sea (SOLAS) certified strobe light.

B. MEASUREMENT AND DATA ACQUISITION

B.1 Sampling Design and Site Locations

The reference site locations, proposed in this project, have been selected because they were previously sampled for fish and/or macroinvertebrates with habitat evaluations and some water chemistry results. After evaluating watershed characteristics (land use, pollution sources, road density, percent impervious surface, etc.) as well as habitat and chemistry results, these reference site locations were considered least impacted by anthropogenic sources.

Site reconnaissance activities will be conducted in-house and through physical site visits. In-house activities include preparation and review of site maps and aerial photographs. Physical site visits include verification of accessibility, safety considerations, equipment needed to properly sample the site, and property owner consultations, if required. All information will be recorded on the IDEM Site Reconnaissance Form (Attachment 1) and entered into the AIMS II database. Precise coordinates for each site will be determined during the physical site visits or at the beginning of the sampling phase of this project, using a Trimble Juno[™] SB Global Positioning System (GPS) or a Trimble Juno 3D GPS, both of which have an accuracy of two to five meters (IDEM 2015a). These coordinates will be entered into the AIMS II database. Table 3 and Figure 1 provide location information for reference sites sampled in 2019 from the Lower White and Lower East Fork White Basins. Table 4 and Figure 2 provide location information for reference sites sampled in 2019 from the Upper White, Driftwood, and Flatrock-Haw Basins.

2019 Reference Site Monitoring WP B-045-OWQ-WAP-PRB-19-W-R0 Date: July 19, 2019

Figure 1. 2019 Reference Sites for the Upper White (05120201), Driftwood (05120204), and Flatrock-Haw (05120205) Basins

B.2 Sampling Methods

1. Water Chemistry

During three discrete sampling events, one team of two staff will collect water chemistry grab samples, record water chemistry field measurements, and record physical site descriptions on the IDEM Stream Sampling Field Data Sheet (Attachment 2). All water chemistry sampling will adhere to the Water Quality Surveys Section Field Procedure Manual 2.1 (IDEM 2002).

2. Field Parameter Measurements

DO, pH, water temperature, specific conductance, and DO percent saturation will be measured with a Datasonde, during each sampling event regardless of the sample type being collected. Measurement procedures and operation of the Datasonde shall be performed according to the manufacturers' manuals (Hydrolab Corporation 2002; YSI 2006) and Sections 2.10—2.13 of the Water Quality Surveys Section Field Procedure Manual (IDEM 2002). Turbidity will be measured with a Hach[™] turbidity kit and the meter number written in the comments under the field parameter measurements. If a Hach[™] turbidity kit is not available, the Datasonde measurement for turbidity will be recorded and noted in the comments. All field parameter measurements and weather codes will be recorded on the IDEM Stream Sampling Field Data Sheet (Attachment 2). A digital photo will also be taken upstream and downstream of the site during each sampling event (IDEM 2018d).

3. Algal Sampling

In addition to standard water chemistry sampling, one team of two staff will collect chlorophyll *a* and pheophytin *a* from the seston community at sites with a drainage area greater than 1000 square miles and periphyton communities at all sites during the third round of water chemistry. Sampling for an average site that includes all of the above parameters will require approximately 2.5 hours of effort. The Algal Biomass Lab Data Sheet (Attachment 3) and Physical Description of Stream Site Form (Attachment 4) will be used to record information regarding substrates sampled for periphyton and physical parameters of the stream sampling area. See IDEM 2018d for a description of methods used in algal community sampling.

4. Laboratory Procedures for Diatom Identification and Enumeration See <u>IDEM 2015b</u> for a description of methods used in diatom identification and enumeration.

5. Fish Community Sampling

The fish community sampling will be completed by teams of three to five staff. Sampling will be performed using various standardized electrofishing methodologies dependent upon the stream size and site accessibility. Fish assemblage assessments will be performed in a sampling reach of 15

times the average wetted width, with a minimum reach of 50 meters and a maximum reach of 500 meters (IDEM 2018c). An attempt will be made to sample all habitat types available within the sample reach to ensure adequate representation of the fish community present at the time of the sampling event. The possible list of electrofishers to be utilized include: the Smith-Root LR-24 or LR-20B Series backpack electrofishers; the Smith-Root model 1.5KVA electrofishing system; the Smith-Root model 2.5 Generator Powered Pulsator (GPP) electrofisher with RCB-6B junction box and rat-tail cathode cable; or Midwest Lake Electrofishing Systems (MLES) Infinity Control Box with MLES junction box and rat-tail cathode cable, assembled in a canoe (if parts of the stream are not wadeable, the system may require the use of a dropper boom array outfitted in a canoe or possibly a 12 foot Loweline[™] boat; or for nonwadeable sites, the Smith-Root Type VI-A electrofisher assembled in a 16-foot Loweline[™] boat (IDEM 1992a, 1992b, 1992c, 2018c).

Sample collections during high flow or turbid conditions will be avoided due to 1) low collection rates which result in nonrepresentative samples and 2) safety considerations for the sampling team. Sample collection during late autumn will be avoided due to the cooling of water temperature, which may affect the responsiveness of some species to the electrical field. This lack of responsiveness can result in samples that are not representative of the stream's fish assemblage (IDEM 2018c).

Fish will be collected using dipnets with fiberglass handles and netting of 1/8-inch mesh bag. Fish collected in the sampling reach will be sorted by species into baskets and/or buckets. Young-of-the-year fish less than 20 millimeters (mm) total length will not be retained in the community sample (IDEM 2018c).

For each field taxonomist (generally the crew leader), a complete set of fish vouchers are retained for any different species encountered during the summer sampling season. Vouchers may consist of either preserved specimens or digital images. Prior to processing fish specimens and completion of the Fish Collection Data Sheet (Attachment 5), one to two individuals per new species encountered will be preserved in 3.7% formaldehyde solution to serve as representative fish vouchers, if the fish specimens can be positively identified and the individuals for preservation are small enough to fit in a 2000 mL jar. If however, the specimens are too large to preserve, a photo of key characteristics (e.g., fin shape, size, body coloration) will be taken for later examination (IDEM 2018c). Also, prior to sampling, 10% of the sites will be randomly selected for revisiting and a few representative individuals of all species found at the site will be preserved or photographed to serve as vouchers. Taxonomic characteristics for possible species encountered in the basin of interest will be reviewed prior to field work. Fish specimens should also be preserved if they cannot be positively identified in the field (i.e., those that co-occur like the Striped and Common Shiners, or are difficult to identify when immature); individuals that appear to be hybrids or have unusual

anomalies; or dead specimens that are taxonomically valuable for undescribed taxa (e.g., Red Shiner or Jade Darter); life history studies; or research projects (IDEM 2018c).

Data will be recorded for nonpreserved fish on the IDEM Fish Collection Data Sheet (Attachment 5) consisting of the following: number of individuals; minimum and maximum total length in millimeters (mm); mass weight in grams (g); and number of individuals with deformities eroded fins, lesions, tumors, and other anomalies (DELTs). Once the data is recorded, specimens are released within the sampling reach from which they were collected, when possible. Data will be recorded for preserved fish specimens following taxonomic identification in the laboratory (IDEM 2018c).

6. Macroinvertebrate Sampling

The macroinvertebrate community sampling may be conducted immediately following the fish community sampling event or on a different date by crews of two to three staff. Samples are collected using a modification of the U.S. EPA Rapid Bioassessment Protocol multi-habitat (MHAB) approach using a D-frame dip net with 500 µm mesh (Plafkin et al. 1989; Barbour et al. 1999; Klemm et al. 1990; IDEM 2010a). The IDEM MHAB approach (IDEM 2010a) is composed of a 1-minute "kick" sample within a riffle or run (collected by disturbing one square meter of stream bottom substrate in a riffle or run habitat and collecting the dislodged macroinvertebrates within the dip net) and a 50 meter "sweep" sample of all available habitats (collected by disturbing habitat such as emergent vegetation, root wads, coarse particulate organic matter, depositional zones, logs, and sticks and collecting the dislodged macroinvertebrates within the dip net). The 50 meter length of riparian corridor that is sampled at each site will be defined using a tape measure or rangefinder. If the stream is too deep to wade, a boat will be used to sample the 50 meter zone along the shoreline with the best available habitat. The 1-minute "kick" and 50 meter "sweep" samples are combined in a bucket of water. the combined sample will be elutriated through a U.S. standard number 35 (500 µm) sieve a minimum of five times so that all rocks, gravel, sand, and large pieces of organic debris are removed from the sample. The remaining sample is then transferred from the sieve to a white plastic tray. The collector (while still on-site) will conduct a 15-minute pick of macroinvertebrates at a single organism rate endeavoring to pick for maximum organism diversity, and relative abundance through turning and examining the entire sample in the tray. The resulting picked sample will be preserved in 80% isopropyl alcohol; returned to the laboratory for identification at the lowest practical taxonomic level (usually genus or species level, if possible); and evaluated using the MHAB mIBI. Before leaving the site, an IDEM OWQ Macroinvertebrate Header Form (IDEM 2019a, Attachment 6) will be completed for the sample.

In addition to the standard MHAB method of macroinvertebrate collection, three other macroinvertebrate sampling methods will be employed at each reference site. These three additional sampling methods were developed to validate components of the MHAB method. Specifically the 15-minute field pick and use of a 50 meter sample zone instead of a sample zone that is a multiple of the stream width (i.e., 15 times the streams wetted width). These methods were first employed at randomly selected sites in the 2013 and 2014 sample seasons (IDEM 2014). Analysis of the previous samples may prove an alternate method is superior, at which point only that method and the MHAB method will be used at reference sites. The three alternate methods are:

- 1. Keeping the "unpicked" remainder of the MHAB sample after completion of the 15-minute pick. The "unpicked" sample will be preserved and later subsampled in lab.
- Collection of three "jabs" taken with a D-frame dipnet at each equally spaced transect. Transects are calculated by measuring the wetted width of the stream at the site location times 15 and divide by 10 (10 transects x 3 jabs = 30 jabs total).
- 3. Collection of two 0.25 square meter "kick" samples taken with a 0.5 meter wide bottom kick net at each transect. Samples are collected from alternating thirds of each transect. Transects are calculated by measuring the wetted width of the stream at the site location times 15 and divide by 10 (10 transects x 2 kicks of $0.25m^2 = 5m^2$ of stream substrate).

At three reference sites, an additional duplicate set of all four sampling methods will be collected. The samples collected in 2019 will increase the total number of samples collected for the methods comparison study to 80 with 16 sets of duplicate samples.

7. Habitat Assessments

Habitat assessments will be completed immediately following macroinvertebrate and fish community sample collections at each site using a slightly modified version of the Ohio Environmental Protection Agency (OHEPA) QHEI, 2006 edition (Rankin 1995; OHEPA 2006). A separate QHEI (Attachment 7) must be completed for these two sample types, since the sampling reach length may differ (i.e., 50 meters for macroinvertebrates and between 50 and 500 meters for fish). See IDEM 2019b for a description of the method used in completing the QHEI.

B.3 Analytical Methods

Table 6 lists the field parameters with their respective test method and IDEM quantification limits. Table 7 lists the algal parameters with test method and IDEM quantification limits. Table 8 shows water chemistry sample container, preservative, and holding time requirements (all samples iced to 4 Degrees Celsius °C). Table 9 lists numerous parameters (priority metals, anions/physical chemistry, and nutrients/organic) with their respective test methods, IDEM reporting limits, and contract laboratory reporting limits. The IDEM OWQ Chain of Custody Form (Attachment 8) and the 2019 Reference Sites Water Sample

Analysis Request Form (Attachment 9) accompany each sample set through the analytical process.

Diatoms will be collected in the field according to protocols described in IDEM 2018d.

Parameters	Method (SM=Standard Method)	IDEM Quantification Limit
DO (datasonde optical)	ASTM D888-09	0.05 mg/L
DO (datasonde)	SM 4500-OG	0.03 mg/L
DO (Winkler titration)	SM 4500-OC ¹	0.20 mg/L
DO % Saturation (datasonde optical)	ASTM D888-09	0.05 %
DO % Saturation (datasonde)	SM 4500-OG	0.01 %
pH (datasonde)	U.S. EPA 150.2	0.10 S.U.
pH (field pH meter)	SM 4500H-B ¹	0.10 S.U.
Specific Conductance (datasonde)	SM 2510B	1.00 µmho/cm
Temperature (datasonde)	SM 2550B(2)	0.1 °C
Temperature (field meter)	SM 2550B(2) ¹	0.1 °C
Turbidity (datasonde)	SM 2130B	0.02 NTU ²
Turbidity (Hach™ turbidity kit)	EPA 180.1	0.05 NTU ²

Table 6. Field Parameters Showing Method and IDEM Quantification Limit

¹ Method used for Field Calibration Check ² NTU = Nonholometric Turbidity Unit(s)

² NTU = Nephelometric Turbidity Unit(s)

Table 7. Algal Parameters Showing Method and USGS Quantification Limit

Algal Parameter	Method	IDEM Quantification Limit
Seston (Corrected) Chlorophyll a – Suspended	U.S. EPA 445.0	TBD
Seston Pheophytin a – Suspended	U.S. EPA 445.0	TBD
Seston (Uncorrected) Chlorophyll a – Suspended	Modified U.S. EPA 445.0	TBD
Periphyton (Corrected) Chlorophyll <i>a</i> – Attached	U.S. EPA 445.0	TBD
Periphyton Pheophytin <i>a</i> – Attached	U.S. EPA 445.0	TBD
Periphyton (Uncorrected) Chlorophyll a – Suspended	Modified U.S. EPA 445.0	TBD

Table 8. Water Chemistry Sample Container, Preservative, and HoldingTime Requirements

Parameter	Container	Preservative	Holding
¹ Alkalinity as CaCO ₃ *	1 L, plastic, narrow mouth	None	14 days
² Ammonia-N**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days
Chloride*	1 L, plastic, narrow mouth	None	28 days
Chemical Oxygen Demand**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days
Hardness (as CaCO₃*)	1 L, plastic, narrow mouth	HNO₃ < pH 2	6 months
Calculated			
Metals (Total & Dissolved)	1 L, plastic, narrow mouth	HNO₃ < pH 2	6 months
Nitrate + Nitrite-N**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days
Total Phosphorus**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days
Solids (All Forms)*	1 L, plastic, narrow mouth	None	7 days
Sulfate*	1 L, plastic, narrow mouth	None	28 days
Total Kjeldahl Nitrogen**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days
Total Organic Carbon**	1 L, Amber Glass Boston Round, narrow mouth	H ₂ SO ₄ < pH 2	28 days

¹General chemistry includes all parameters noted with an *.

²Nutrients include all parameters noted with a **.

Priority Metals						Anions/Physical			
<u>Parameter</u>	<u>Total</u>	Dissolved	<u>Test Method</u>	IDEM requested Reporting Limit (µg/L)	Pace Laboratory <u>Reporting</u> Limit (µg/L)	Parameter	Pace Test Method	<u>IDEM</u> requested <u>Reporting</u> <u>Limit</u> (mg/L)	Pace Laboratory Reporting Limit (mg/L)
Aluminum	X	X	U.S. EPA 200.8	10	10	Alkalinity (as CaCO ₃)	U.S. EPA 310.2	10	2
Antimony	X	X	U.S. EPA 200.8	1	1	Chloride	U.S. EPA 300.0	1	0.25
Arsenic	X	X	U.S. EPA 200.8	2	1	Dissolved Solids	SM 2540C	10	10
Cadmium	\mathbf{X}	X	U.S. EPA 200.8	1	0.2	Hardness (as CaCO ₃) by calculation	SM 2340B	0.4	1
Calcium	X		U.S. EPA 200.7	20	1,000	Sulfate	U.S. EPA 300.0	0.05	0.25
Chromium	X	X	U.S. EPA 200.8	3	2	Total Solids	SM 2540B	1	10
Copper	X	X	U.S. EPA 200.8	2	1	Total Suspended Solids	SM 2540D	1	5
Lead	X	X	U.S. EPA 200.8	2	1				
Magnesium	X		U.S. EPA 200.7	95	1,000	N4.	ionta/Organia		
Magnesium Nickel	X		U.S. EPA 200.7 U.S. EPA 200.8	95 1.5	1,000 0.5	Nuti	ients/Organic		
Magnesium Nickel Selenium	X X X		U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4	1,000 0.5 1	Nutr	rients/Organic		
Magnesium Nickel Selenium Silver	X X X X		U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3	1,000 0.5 1 0.5	Nuti	rients/Organic	IDEM	Pace
Magnesium Nickel Selenium Silver Zinc			U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	$ \begin{array}{r} 1,000 \\ 0.5 \\ 1 \\ 0.5 \\ 3 \end{array} $	Nutr Parameter	Pace Test Method	IDEM requested Reporting Limit (mg/L)	Pace Laboratory Reporting Limit (mg/L)
Magnesium Nickel Selenium Silver Zinc	X X X X X		U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	$ \begin{array}{r} 1,000 \\ 0.5 \\ 1 \\ 0.5 \\ 3 \end{array} $	Nutr Parameter Ammonia-N	Pace Test Method U.S. EPA 350.1	IDEM requested Reporting Limit (mg/L) 0.01	Pace Laboratory Reporting Limit (mg/L) 0.1
Magnesium Nickel Selenium Silver Zinc	X X X X X X		U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	1,000 0.5 1 0.5 3	<u>Parameter</u> Ammonia-N Chemical Oxygen Demand (COD)	Pace Test Method U.S. EPA 350.1 U.S. EPA 410.4	IDEM requested Reporting Limit (mg/L) 0.01 3	Pace Laboratory Reporting Limit (mg/L) 0.1 10
Magnesium Nickel Selenium Silver Zinc	X X X X X X X X X X X X X X X X X X X		U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	$ \begin{array}{r} 1,000 \\ 0.5 \\ 1 \\ 0.5 \\ 3 \end{array} $	<u>Parameter</u> <u>Ammonia-N</u> <u>Chemical Oxygen Demand (COD)</u> Nitrogen, Nitrate + Nitrite	Pace Test Method U.S. EPA 350.1 U.S. EPA 410.4 U.S. EPA 353.2	IDEM requested Reporting Limit (mg/L) 0.01 3 0.05	Pace Laboratory Reporting Limit (mg/L) 0.1 10 0.1
Magnesium Nickel Selenium Silver Zinc			U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	$ \begin{array}{r} 1,000 \\ 0.5 \\ 1 \\ 0.5 \\ 3 \end{array} $	Parameter Ammonia-N Chemical Oxygen Demand (COD) Nitrogen, Nitrate + Nitrite Total Kjeldahl Nitrogen (TKN)	Pace Test Method U.S. EPA 350.1 U.S. EPA 410.4 U.S. EPA 353.2 U.S. EPA 351.2	IDEM requestedReportingLimit (mg/L)0.0130.050.1	Pace Laboratory Reporting Limit (mg/L) 0.1 0.1 0.1 0.1 0.5
Magnesium Nickel Selenium Silver Zinc			U.S. EPA 200.7 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8 U.S. EPA 200.8	95 1.5 4 0.3 5	$ \begin{array}{r} 1,000 \\ 0.5 \\ 1 \\ 0.5 \\ 3 \end{array} $	Parameter Ammonia-N Chemical Oxygen Demand (COD) Nitrogen, Nitrate + Nitrite Total Kjeldahl Nitrogen (TKN) Total Organic Carbon (TOC)	Pace Test Method U.S. EPA 350.1 U.S. EPA 410.4 U.S. EPA 353.2 U.S. EPA 351.2 SM 5310C	IDEM requestedReportingLimit (mg/L)0.0130.050.11	Pace Laboratory Reporting Limit (mg/L) 0.1 0.1 0.1 0.5 1

Table 9. Water Chemistry Parameters, Test Method, IDEM, and Laboratory Reporting Limits

SM: Standard Methods for the Examination of Water and Wastewater

B.4 Quality Control and Custody Requirements

QA protocols will follow part B5 of the Surface Water QAPP (IDEM 2017a).

1. Water Chemistry Data

Sample bottles and preservatives certified for purity will be used. Sample collection containers for each parameter, preservative, and holding time (Table 8) will adhere to U.S. EPA requirements for water chemistry testing. Field duplicates and matrix spike/matrix spike duplicates (MS/MSD) shall be collected at the rate of one per sample analysis set or one per every 20 samples, whichever is greater. Additionally, field blank samples will be taken at a rate of one per sample analysis set or one per every 20 samples, whichever is greater. The sample collection portion of the Chain of Custody forms will be completed in the field (Attachment 8). Sample collector will be responsible for signing off on Chain of Custody form and ensuring that the lab receiving the samples records the date, time and signs for the samples. All samples collected for water chemistry analysis will be processed by Pace Analytical Services, Inc. (Indianapolis, Indiana) following the specifications set forth in Request for Proposals 16-074 (IDEM 2016a).

2. Algal Community Data

Excessive algal conditions will be recorded by staff if an algal bloom is observed on the waters' surface or in the water column. Staff are not calibrated on this rating (i.e., the decision as to the severity of the bloom is based on best professional judgement), but an algal mat on the surface of the water or a bloom that gives the water the appearance of green paint would be justification for a decision of excessive algal conditions.

To decrease the potential for cross contamination and bias of the algal samples, all equipment that has come in contact with the sample will be cleaned with detergent and rinsed with American Society for Testing and Materials (ASTM) D1193-91 Type III water after sampling has been completed at a given site. All sample labels must be accurately and thoroughly completed, including AIMS II database sample numbers, date, stream name, and sampling location. The sample collection portion of the Chain of Custody forms will be completed in the field (Attachment 8). The form will be completed when samples are transferred to the laboratory. Upon arrival to the laboratory, samples will be checked in by the laboratory manager. For the diatom samples, there will be another Chain of Custody form (Attachment 10) to document when the sample is removed from storage to be processed and made into a permanent mount (IDEM 2015b).

Analysis methods for chlorophyll *a* and pheophytin *a* can be viewed in Table 7. Beginning in 2019, all samples collected for chlorophyll *a* and pheophytin *a* will be processed by the new IDEM WAPB Algal Laboratory. Two methods will be used for the determination of total chlorophyll *a* during this sampling season. The first is the traditional U.S. EPA Method 445.0, which determines a "corrected" total chlorophyll *a* concentration fluorometrically by measuring both the initial chlorophyll *a* concentration followed by acidification to determine the pheophytin *a* concentration. The total corrected chlorophyll *a* concentration of a sample is determined quantitatively (equations 12.2 – 12.3 in U.S. EPA Method 445.0). The second method used will be the modified U.S. EPA Method 445.0, in which the "uncorrected" total chlorophyll *a* value is measured fluorometrically via a set of very narrow bandpass excitation and emission filters that are specific to chlorophyll *a*. No pheophytin *a* concentration is determined in the modified method, and this method is not impacted by other chlorophyll *a* degradation products which may be prevalent in inland waters. Method quantification limits for both methods will be determined using U.S. EPA Method 445.0 Section 9.0 (Quality Control) during laboratory set up prior to the 2019 sampling season.

Blank filters will be run for periphyton and seston chlorophyll *a*. All chlorophyll *a* and pheophytin *a* filters will be processed in quadruplicate for QC purposes (four filters are processed from the same sample per analysis method). Ten percent of these replicate field samples will be analyzed at a separate laboratory (TBD).

3. QC of the diatom sampling, enumeration, and identification project will be documented by QC checks of both field and laboratory data. See (IDEM 2015b) for description of QA/QC protocols used in diatom identification and enumeration. **Fish Community Data**

Fish community sampling revisits will be performed at a rate of 10 percent of the total fish community sites sampled, in this case, three for the project (IDEM 2018c). Revisit sampling will be performed with at least two weeks of recovery between the initial and revisit sampling events. The fish community revisit sampling and habitat assessment will be performed with either a partial or complete change in field team members (IDEM 2018c). The resulting IBI and QHEI total score between the initial visit and the revisit will be used to evaluate precision. The IDEM OWQ Chain of Custody Form (Attachment 8) is used to track samples from the field to the laboratory. All raw data are: 1) checked for completeness; 2) utilized to calculate derived data (i.e., total weight of all specimens of a taxon), which is entered into the AIMS II database; and 3) checked again for data entry errors.

4. Macroinvertebrate Community Data

Sites at which duplicate macroinvertebrate field samples will be collected are randomly selected prior to the beginning of the field season and occur at a rate of 10 percent of the total macroinvertebrate community sites sampled, approximately 3 for the project. The macroinvertebrate community duplicate sample and corresponding habitat assessment will be performed by the same team member who performed the original sample, immediately after the initial sample is collected. This will result in a precision evaluation based on a 10% duplicate of samples collected. The IDEM OWQ COC form (Attachment 8) is used to track samples from the field to the laboratory. Laboratory identifications and QA/QC of taxonomic work is maintained by the laboratory supervisor of the Probabilistic Monitoring Section of IDEM.

B.5 Field Parameter Measurements/Instrument Testing/Calibration

The datasonde will be calibrated prior to each week's sampling (IDEM 2002). Calibration results and drift values will be recorded, maintained, stored, and archived in log books located in the calibration laboratories at the Shadeland facility. The drift value is the difference between two successive calibrations. Field parameter calibrations will conform to the procedures as described in the instrument users' manuals (Hydrolab Corporation 2002; YSI 2006). The DO component of the calibration procedure will be conducted using the air calibration method (IDEM 2002, page 74). The unit will be field checked for accuracy once during the week by comparison with a Winkler DO test (IDEM 2002, page 64), Hach[™] turbidity, and a pH and temperature meter. Weekly calibration verification results will be recorded on the field calibrations portion of the Stream Sampling Field Data Sheet (Attachment 2) and entered into the AIMS II database. A Winkler DO test will also be conducted at sites where the DO concentration is 4.0 mg/L or less.

In-situ water chemistry field data are collected in the field using calibrated or standardized equipment. Calculations may be done in the field or later at the office. Analytical results, which have limited QC checks, are included in this category. Detection limits and ranges have been set for each analysis (Table 6). QC checks are performed on information for field or laboratory results to estimate precision, accuracy, and completeness for the project, as described in the Surface Water QAPP (IDEM 2017a) Section C1.1 on page 176.

A Nikon© differential interference contrast (DIC) microscope and Nikon© Elements D camera and imaging system will be used for identification and enumeration of diatoms. Branch staff calibrated the ocular reticle in the microscope. The ocular reticle was calibrated at each magnification with a stage micrometer. The calibration should be checked again if the microscope is moved to a new location.

C. ASSESSMENT AND OVERSIGHT

C.1 External and Internal Checks

Field and laboratory performance and system audits will be conducted to ensure good quality data. The field and laboratory performance checks include: precision measurements by relative percent difference (RPD) of field and laboratory duplicate (IDEM 2017a, pp. 56, 61—63), accuracy measurements by percent of recovery of MS/MSD samples analyzed in the laboratory (IDEM 2017a, pp. 58, 61—63), and completeness measurements by the percent of planned samples that are actually collected, analyzed, reported, and usable for the project (IDEM 2017a, page 58). Ten percent of diatom samples will be verified by the Department of Biological and Environmental Sciences of Georgia College and State University (Milledgeville, Georgia) following the specifications set forth in (IDEM 2015b). Fish taxonomic identifications made by IDEM staff in the laboratory may be verified by regionally recognized non-IDEM freshwater fish taxonomists (e.g., Brant Fisher, Nongame Aquatic Biologist, Indiana DNR). Ten percent of macroinvertebrate samples (the initial samples taken at sites where duplicate samples were collected) will be sent off to Rithron Associates, Inc. (Missoula, MT) for verification by an outside taxonomist (IDEM 2010a).

C.2 Audits

Field audits will be conducted biannually by staff of the IDEM WAPB to ensure that sampling activities adhere to approved SOPs. Audits are systematically conducted by WAPB QA staff to include all WAPB personnel that engage in field sampling activities. WAPB field staff involved with sample collection and preparation will be evaluated by QA staff trained in the associated sampling SOPs, and in the processes related to conducting an audit. QA staff will produce an evaluation report documenting each audit for review by those field staff audited as well as WAPB management. Corrective actions will be communicated to, and implemented by, field staff as a result of the audit process (IDEM 2017a, page 176).

C.3 Data Quality Assessment Levels

The samples and various types of data collected by this program are intended to meet the QA criteria and rated DQA Level 3, as described in the Surface Water QAPP (IDEM 2017a, page 182).

C.4 Quality Assurance and Quality Control (QA/QC) Review Reports

QA reports to management, and data validation and usability are also important components of the Surface Water QAPP, which ensures good quality data for this project.

D. DATA VALIDATION AND USABILITY

A QA audit report will be submitted to the QA Manager and Project Manager for review of this project, should problems arise, need to be investigated, and corrected. As described in Section D of the Surface Water QAPP (IDEM 2017a), data are reduced (converted from raw analytical data into final results in proper reporting units); validated (qualified based on the performance of field and laboratory QC measures incorporated into the sampling and analysis procedures); and reported (described so as to completely document the calibration, analysis, QC measures, and calculations). These steps allow users to assess the data to ensure it meets the project data quality objectives.

D.1. Data Handling and Associated QA/QC Activities

The various data qualifiers and flags that will be used for QA and validation of the data are found on pages 184—185 of the Surface Water QAPP (IDEM 2017a).

D.2. Data Usability

The environmental data collected and its usability are qualified per each lab or field result obtained and classified into one or more of the four categories: Acceptable Data, Enforcement Capable Results, Estimated Data, and Rejected Data as described on page 184 of the Surface Water QAPP (IDEM 2017a).

Data collected in 2019 will be recorded in the AIMS II database and presented in three compilation summaries:

- A general compilation of the 2019 Reference Site field and water chemistry data prepared for use in the Indiana Integrated Water Monitoring and Assessment Report.
- A database report format containing biological results and habitat evaluations, which will be produced for inclusion in the Integrated Report as well as individual site folders.
- Laboratory bench sheets of the species taxa names and enumerations of all diatoms collected.

All data and reports will be made available to public and private entities that find the data useful.

D.3. Laboratory and Estimated Cost

Laboratory analysis and data reporting for this project will comply with the Surface Water QAPP (IDEM 2017a); Request for Proposals 16-74 (see IDEM 2016a); and the IDEM Quality Management Plan (QMP) (IDEM 2018e). Analytical tests on the water chemistry parameters outlined in Table 9 will be performed by Pace Analytical Services in Indianapolis, Indiana. Algal samples will be collected by IDEM staff. Chlorophyll *a* and pheophytin *a* will be analyzed by the IDEM WAPB Algal Chlorophyll Laboratory staff. Diatom identification and enumeration will be performed by IDEM staff or an outside contractor. The Department of Biological and Environmental Sciences, Georgia College and State University will verifyi diatom taxa from ten percent of the sites sampled. All fish and macroinvertebrate samples will be collected and analyzed by IDEM staff. Ten percent of macroinvertebrate samples will be verified by Rhithron Associates, Inc. The anticipated budget for laboratory cost for the project is outlined in Table 10.

Analysis	Laboratory	Estimated Cost
Water Chemistry	Pace Analytical Services	
	7726 Moller Road.	\$43,803
	Indianapolis, Indiana 46268	
Algal Biomass	IDEM WAPB Algal Laboratory	
	2525 Shadeland Avenue,	\$11,000
	Indianapolis, IN 46204	
Diatom	Department of Biological and Environmental Sciences	
Verification	Georgia College and State University	\$750
	320 S. Wayne St. Milledgeville, GA 31061	
Macroinvertebrate	Rhithron Associates, Inc.	¢660
Identification	33 Fort Missoula Road	\$000

Table 10. Total Estimated Laboratory Cost for the Project.

		Missoula, Montana 59804	
--	--	-------------------------	--

Total \$50,880

E. REFERENCES

- (U.S. EPA 2006) <u>Guidance on Systematic Planning Using the Data Quality</u> <u>Objectives Process</u>. EPA/240/B-06/001. U.S. EPA, Office of Environmental Information, Washington D.C.
- (U.S. EPA 2013) <u>Biological Assessment Program Review: Assessing Level of</u> <u>Technical Rigor to Support Water Quality Management.</u> EPA 820-R-13-001. Office of Water, Washington, D.C. 144 pp.
- [IC 14-8-2] (Indiana Code), <u>Title 14</u> Natural and Cultural Resources, Article 8 General Provisions and Definitions, Chapter 2 Definitions.
- [327 IAC 2] IAC (Indiana Administrative Code), <u>Title 327 Water Pollution Control</u> <u>Division, Article 2. Water Quality Standards</u>. Last updated March 14, 2018.
- (IDEM 1992a) revision 1. Section 4, Standard Operating Procedures for Fish Collections, Use of Seines, Electrofishers, and Sample Processing. Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1992b) revision 1. Section 11, Standard Operating Procedures-Appendices of Operational Equipment Manuals and Procedures. Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1992c) revision 1. Section 2, Biological Studies Section Hazards Communications Manual (List of Contents). Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1997) Water Quality Surveys Section Laboratory and Field Hazard Communication Plan Supplement. IDEM 032/02/018/1998, Revised October 1998. Assessment Branch, IDEM, Indianapolis, Indiana.*
- (IDEM 2002) <u>Water Quality Surveys Section Field Procedure Manual</u>. Assessment Branch, IDEM, Indianapolis, Indiana.
- (IDEM 2008) <u>IDEM Personal Protective Equipment Policy, revised May 1, 2008</u>. A-059-OEA-08-P-R0. IDEM, Indianapolis, Indiana.
- (IDEM 2010a) <u>Multi-habitat (MHAB) Macroinvertebrate Collection Technical</u> <u>Standard Operating Procedure</u>. S-001-OWQ-W-BS-10-T-R0. Watershed Planning and Assessment Branch, Office of Water Quality, IDEM, Indianapolis, Indiana.
- (IDEM 2010b) <u>IDEM Health and Safety Training Policy, revised October 1, 2010</u>. A-030-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2010c) <u>IDEM Injury and Illness Resulting from Occupational Exposure</u> <u>Policy, revised October 1 2010</u>. A-034-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2014) Sampling and Analysis Work Plan for the Probabilistic Monitoring Program Great Miami River Basin 2014. B-016-OWQ-W-XX-14-R0. Office

of Water Quality, Watershed Assessment and Planning Branch, Indianapolis, Indiana.*

(IDEM 2015a) <u>Global Positioning System (GPS) Data Creation Technical</u> <u>Standard Operating Procedure</u>. B-001-OWQ-WAP-XXX-15-T-R0. Office of Water Quality, Watershed

Assessment and Planning Branch. Indianapolis, Indiana.

(IDEM 2015b) Processing and Identification of Diatom Samples Technical Standard Operating Procedure. B-002-OWQ-WAP-TGM-15-T-R0. Office of Water Quality, Watershed

Assessment and Planning Branch. Indianapolis, Indiana.

- (IDEM 2016a) "State of Indiana Request for Proposals 16-74, Solicitation for: Laboratory Analytical Services", Indiana Department of Administration, Indianapolis, IN, February 26, 2016.*
- (IDEM 2017a) <u>Quality Assurance Project Plan (QAPP) for Indiana Surface</u> <u>Waters, (Rev. 4, Mar. 2017).</u> B-001-OWQ-WAP-XX-17-Q-R4. Assessment Branch, OWQ, IDEM, Indianapolis, Indiana.
- (IDEM 2017b) AIMS II Database User Guide. Watershed Assessment and Planning Branch. Office of Water Quality, Indiana Department of Environmental Management. Indianapolis, Indiana.*
- (IDEM 2018a). Indiana Integrated Water Monitoring and Assessment Report 2018. Edited by Jody Arthur. Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2018b). Indiana's 2018 Consolidated Assessment and Listing Methodology (CALM). Edited by Jody Arthur. Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2018c) Fish Community Field Collection Procedures. B-009-OWQ-WAP-XXX-18-T-R0. Office of Water Quality. Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2018d). <u>Phytoplankton and Periphyton Field Collection Procedures.</u> B-004-OWQ-WAP-XX-18-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2018e). <u>IDEM Agency Wide Quality Management Plan</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave., Indianapolis, Indiana, 46204.
- (IDEM 2019a). <u>Procedures for Completing the Macroinvertebrate Header Field</u> <u>Data Sheet. B-010-OWQ-WAP-XXX-19-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2019b). <u>Procedures for Completing the Qualitative Habitat Evaluation</u> <u>Index. B-003-OWQ-WAP-XX-19-T-R1.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.

- (OHEPA 2006) Ohio Environmental Protection Agency (OHEPA). 2006. <u>Methods</u> for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat <u>Evaluation Index (QHEI)</u>. OHIO EPA Technical Bulletin EAS/2006-06-1. Revised by the Midwest Biodiversity Institute for State of Ohio Environmental Protection Agency, Division of Surface Water, Ecological Assessment Section, Groveport, Ohio.
- (KDEP 1993) Kentucky Department of Environmental Protection (KDEP). 1993. <u>Methods for assessing biological integrity of surface waters.</u> Kentucky Department of Environmental Protection, Division of Water, Frankfort, Kentucky.
- (Barbour et al. 1999) Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. <u>Rapid Bioassessment Protocols for Use in Streams and Wadeable</u> <u>Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition.</u> EPA/841/B-99/002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- (Hill 1997) Hill, B. H. 1997. The use of periphyton assemblage data in an Index of Biotic Integrity. Bulletin of the North American Benthological Society 14, 158.*
- (Klemm et al. 1990) Klemm, D.J., Lewis, P.A., Fulk, F. and Lazorchak, J.M. 1990. <u>Macroinvertebrate Field and Laboratory Methods for Evaluating the</u> <u>Biological Integrity of Surface Waters</u>. EPA/600/4-90/030. Environmental Monitoring Systems Laboratory, Monitoring Systems and Quality Assurance, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- (Plafkin et al. 1989) Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K. and Hughes, R.M. 1989. <u>Rapid Bioassessment Protocols for Use in Streams</u> <u>and Rivers: Benthic Macroinvertebrates and Fish</u>. EPA/440/4-89/001. Assessment and Watershed Protection Division, U.S. Environmental Protection Agency, Washington, D.C.
- (Rankin 1995) Rankin, E.T. 1995. Habitat Indices in Water Resource Quality Assessments. pp. 181—208, Chapter 13, Biological Assessment and Criteria: Tools for the Risk-based Planning and Decision Making, edited by Wayne S. Davis and Thomas P. Simon, Lewis Publishers, Boca Raton, Florida.*
- (Simon and Dufour 2005) Simon, T.P. and Dufour, R.L. 2005. <u>Guide to</u> <u>appropriate metric selection for calculating the Index of Biotic Integrity (IBI)</u> for Indiana Large and Great Rivers, Inland Lakes, and Great Lakes <u>nearshore</u>. U.S. Department of the Interior, Fish and Wildlife Service, Bloomington Field Office, Bloomington, Indiana.
- (Stevenson 1998) Stevenson, R. J. 1998. Diatom indicators of stream and wetland stressors in a risk management framework. Environmental Monitoring and Assessment 51:107—118.*

- (Stevenson and Pan 1999) Stevenson, R. J. and Pan, Y. 1999. Assessing ecological conditions in rivers and streams with diatoms. Pages 11—40 in E. F. Stoermer and J. P. Smol, editors. The Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.*
- (Stoddard et al. 2006) Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson, and R. H. Norris. 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16(4):1267—1276.*
- (Hydrolab Corporation 2002) Hydrolab Corporation. 2002, Revision C. <u>Quanta</u> <u>Water Quality Monitoring System Operating Manual</u>. Loveland, Colorado.
- (YSI 2006) YSI Incorporated. 2006, revision b. <u>6-Series Environmental</u> <u>Monitoring Systems Manual</u>, Yellow Springs, Ohio.

*Document may be inspected at the Watershed and Assessment Branch office, located at 2525 North Shadeland Avenue, Indianapolis, IN.

F. DISTRIBUTION LIST

Electronic Distribution Only:

<u>Name</u>	<u>Organization</u>
Kristen Arnold	IDEM/OWQ/WAPB/Technical and Logistical Services
	Section
Jody Arthur	IDEM/OWQ/WAPB/Technical E7
James Bailey	Office of Program Support
Timothy Bowren	IDEM/OWQ/WAPB/Technical and Logistical Services
	Section
Josh Brosmer	IDEM/OWQ/WAPB/Watershed Planning and Restoration
	Section
Angela Brown	IDEM/OWQ/WAPB/Watershed Planning and Restoration
	Section
Todd Davis	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Raissa Espejo	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Jessica Faust	IDEM/OWQ/WAPB/Watershed Planning and Restoration
	Section
Tim Fields	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Kevin Gaston	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Maddie Genco	IDEM/OWQ/WAPB/Targeted Monitoring Section
Kassia Groszewski	IDEM/OWQ/WAPB/Targeted Monitoring Section
Kathleen Hagan	IDEM/OWQ/WAPB/Watershed Planning and Restoration
	Section
Paul Higginbotham	IDEM/OWQ/Deputy Assistant Commissioner
Charles Hostetter	IDEM/OWQ/WAPB/Technical and Logistical Services
	Section
David Jordan	IDEM/OWQ/WAPB/Technical and Logistical Services
	Section
Kalina Manoylov	Georgia College and State University/Department of
	Biological and Environmental Sciences
Paul McMurray	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Martha Clark Mettler	IDEM/OWQ/Assistant Commissioner
Marylou Renshaw	IDEM/OWQ/WAPB/Branch Chief
Michelle Ruan	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Stacey Sobat	IDEM/OWQ/WAPB/Probabilistic Monitoring Section
Jim Stahl	IDEM/OWQ/WAPB/Technical E7
Amanda Studor Bond	IDEM/OWQ/WAPB/Targeted Monitoring Section
Cyndi Wagner	IDEM/OWQ/WAPB/Targeted Monitoring Section
Kayla Werbianskyj	IDEM/OWQ/WAPB/Targeted Monitoring Section
Scott Zello-Dean	IDEM/OWQ/WAPB/Probabilisitic Monitoring Section

2019 Reference Site Monitoring WP B-045-OWQ-WAP-PRB-19-W-R0 Date: July 19, 2019

Site Decomposition	noo Form	EPA Site	Identifier Rank
Site Reconnaissa	nce Form	INRB15-00	01 1
		Recon #:	R-6551
		Trip #: R1	5WQW-1
Site Number: WUW-07-0014 Stream: Mossburg D	Ditch	County:	Wells
Location Description: CR SSO W			
Reconnaissance Data Collected	Landow	ner/Contact I	nformation
Recon Date Crew Members	First Name	Las	t Name
3/9/2015 TAF KAG			
Avg. Width (m) Avg. Depth (m) Max. Depth (m) Nearest Town	Street A ddress		
2,2,5 Liberty Center			
Water Site Wadaabla2 Riffle/Run Road/Public	City	\checkmark	State 7in
Present? Site Wadeable? Present? Access Possible?	City	\frown	State Zip
Site Impacted by Collect Sediment? Gauge Present?	Telephone	E	-Mail Address
	Pamphlet P	Please Call In	Results
	Distributed?	Advance?	Requested?
Rating, Results, Comme	ents, and Planning		
Site Rating By Category (1=easy, 10=difficult) Reconnaissance Decision	Equipment Sele	ected	Circle Equipment
Access Route Pre-Recon			Backmack
Recon in process			васкраск
Approved Site			Boat
No, Landowner denied access			Totebarge
No, Stream channel missing			Longline
No, Physical barriers			Scanoe
No, Impounded stream			Color
No, Marsh/Wetland			Seme
Sampling Effort No, Bridge gone or not accessible			Weighted Handline
No, Unsafe due to traffic or location			Waders
3 No, Site impacted by backwater			Gill Net
Comments			
Sketch of Stream & Access Route – Indicate Flow, Direction, Obstacles, & Land	d Use (Use Back of Page,	if Necessary)
All crews park off of the CR SSC	bridge,	trozer	during
recon so it was hard to tell where	the best	parking	is. Max
have to park at the cemetary N of	site if th	here isi	nt a good
pull off. Site ~ 250fet V of bridge.	Site was z	ipped 1	back to the
ditch during recon. Walk N bank to	site, do n	of hav	e 5 bank
permission.		11-	
ENT KAG 3.16.15		40 43	17.540711
QE1 Kew 3/6/15	-	85 19	39.426530
1/16/2015 15:34:42 PM Site Reconnaissance Form, Page 2 of 101			

Attachment 1 IDEM Site Reconnaissance Form

Attachment 2 IDEM Stream Sampling Field Data Sheet

	З,	Γ	S	tr	ean	n Samp	lin	g Fie	ld I	Dat	ta S	heet	Analysis S	et#	EPA	Site ID	Rank
Sample #	ŧ		Site	#			Sample Medium Sample Type Dup								uplica	ite Samp	le #
Stream Nan	ne:			River Mile: County:													
Site Descrip	tion:																
Survey	S	ample C	olle	ctor	rs	Sample	Collec	ted:	Hydro	olab	Dent	Nater	Water Flow	Flov	N	Alessa 2	Aquatic
Crew Chief	1	2	3		4	Date		Time	*	# Depth/Gage Ht (cf/sec)			Estima	ted?	Algae ?	Life?	
Samp	ole Tak	ten?			A	iquots		Water	Flow T	ype		Wa	ter Appearan	ce	Ca	anopy Clo	osed %
Yes	•	No; Froze	n	° 1	° 2	◇3 ◇4	○ RIf	fle 🗠 Dr	y	 State 	agnant	Clear	o Green os	heen	 0-; 	20% ◊	60-80%
No; Stream	Dry 🛛 I	No; Other	r	° 6	8 8	◇ 12 ◇ 24	O PO	ol 🗠 Ru	IN	FIG	bod	Murky	Slack	Other	20	-40% ◇	80-100%
No; Owner r	efused	Access		<u>ه</u> 4	8 ° 72	◇ AS-Flow	OII	de 🔶 Ec	idy	 ot 	her	Brown	Gray (Septic	:/Sewage)	40	-60%	
Special Notes:																	

Field Data:

Date	24-hr Time	D.O.		Water	Spec Cond	Turbidity	94 6-4	Chlorine	Chloride	Chlorophyll	We	athe	r Cod	les
(m/d/yy)	(hh:mm)	(mg/l)	рп	Temp (°C)	(µohms/cm)	(NTU)	70 Jal.	(mg/l)	(mg/l)	(mg/l)	SC	WD	WS	AT
Comments														
Comments				•	•									<u> </u>
Comments														
Comments														<u> </u>
Comments														
Comments				•	•	•								

				۷	< Min. Meter	Measurem	ent			Weather Code Defini	tions	
		Measure Flag	ement JS	× R	 Max. Meter Measurement Estimated (See Comments) Rejected (See Comments) 			SC Sky Conditions		WD Wind Direction	WS Wind Strength	AT Air Temp
Field Cal	ibrations	<u>s:</u>						1 Clear 2 Scattered	8 Rain 9 Snow	00 North (0 degrees) 09 East (90 degrees)	0 Calm 1 Light	1 < 32 2 33-45
Date	Time (hh:	Calibrator			Calibrati	ons		3 Partly	10 Sleet	18 South (180 degrees)	2 Mod /Light	346-60
(m/d/yy)	mm)	Initials	Тур	e	Meter #	Value	Units	5 Mist		27 West (270 degrees)	4 Mod/Strong	576-85
								6 Fog			5 Strong	6 > 86
								7 Shower			6 Gale	
				_								

Calibration DO Type Turbldity

Preservatives/Bottle Lots:				Groups: Preservatives	Bottle Types	
Group: Preservative Preservative Lo	t # Bottle Type	Bottle Lot #	GC	General Chemistry: Ice	2000P	2000mL Plastic, Narrow Mouth
			Metals	Metals: HNO3	500P	500mL Plastic, Narrow Mouth
			O&G	Oll & Grease: H2SO4	1000G	1000mL Glass, Narrow Mouth
			Toxics Ecoli	Toxics: Ice Bacteriology: Ice	500G 250G	500mL Glass, Wide Mouth 250mL Glass, Wide Mouth
			VOA Pest	Volatile Organics: HCI & Thiosulfate Pesticides: Ice	125G 40GV	125mL Glass, Wide Mouth 40mL Glass Vial
			Phen	Phenols: H2SO4	120PB	120ml Plastic (Bacteria Only)
			Sed Gly	Sediment: Ice Glyphosate: Thiosulfate	1000PF 500PF	500mL Plastic, Coming Filter
			Hg Cr6	Mercury(1631): HCI ChromlumVI(1636): NaOH	60P 250T	60mL Plastic 250ml Tetion
			MeHg	Methyl Mercury(1630): HCl	500T	500mL Teflon
					125T	125mL Teflon

Data Entered By: _____ QC1: _____ QC2: _____

Attachment 3 IDEM Algal Biomass Lab Data Sheet

Algal Biomass Lab Datasheet

Sample #	Site	Stream

Supporting Site Information

Traditional Forestry % Clos	sed Canopy: 🛛 🖛	10m 🗆 >10m (Me	asure center only if w	idth <=10m, record to	o nearest whole percent)
	North	East	South	West	Average x 1.04 -
Left Bank					
Center					
Right Bank					
Total %CC (Avera	age from above, or Ce	nter only = %CC)		100 - %CC	

Phytopiankton Information

Sampling Method: 🛛 Grab Sample	e (Dip) 🛛 Multiple Ver	ticles	Number of Verticles:					
Chiorphyli A	Blank	Filter 1	Filter 2	Filter 3	Filter 4			
Sample Time								
Sample Volume (mL)								

Periphyton Information

Periphyton Habitat:	Epilithic (Area-Scape) Epidendric (Cylinder Scrape) Epipsammic (Petri Dish)										
Diatom Sample Collected:	Yes No	Diatom Volume: mL	Formalin Vo	lume: mL	Slurry Volume mL						
Chlorphyll A	Blank	Filter 1	Filter 2	Filter 3	Filter 4						
Sample TI	me										
Sample Volume (n	nL)										

Periphyton Area Calculation

Cylinder	Scrape						Area S	crape (crape (Using SG	crape (Using SG-92)	crape (Using \$G-92)	crape (Using \$G-92)
	Length	C	rcumferen	ce		Area	Rock#		1	1 2	1 2 3	1 2 3 4
Snag #	(cm)(L)	U1	U ₂	Us	U	(L*U)	Area (cm ²)		7.38	7.38 7.38	7.38 7.38 7.38	7.38 7.38 7.38 7.38
1							Total (cm ²)				36.9	36.9
2												
3							Petri Dish					
4							Number of Disc		rete Sam	rrete Samples (n):	rrete Samples (n):	rete Samples (n):
5							Total Area of C		one Samp	one Sampler (a):	One Sampler (a): 19.01	Dne Sampler (a): 19.01 cm ²
				Total Ar	ea (cm²)		Total Sample /		Area (n * a	Area (n * a):	Area (n * a):	Area (n * a):

Stream Discharge / Rainfall Information

Nearest USGS Gage Site: Dupstream Downstream No USGS Gage Near

River miles from site:	Discharge CFS at sampling: CFS
Gage location:	Discharge days since 50% flow exceeded: days
Rainfall data source: 🗆 NOAA 📄 CoCoRaHS 📄 Indiana State Climate O	fice 🗆 USGS gage rain gauge 🗖 Other:
Total precipitation at sampling: In. on date:	Cumulative rain 7 days previous to sampling: In.
Rain station location, county:	Days since last rainfail previous to sampling: In.

Identifier	Date	Reviewer 1	Date	Reviewer 2	Date	Notes:
		Review 1 C	Completed	Review 2 0	Completed	

Attachment 4 IDEM Physical Description of Stream Site Form (front)

Revised 4/20/12

Probabi	ilistic Monito	oring Section	on Physical De	scription of St	ream Site			
Stream :		A	IMS #	Program #:				
Date:	Time:	C	rew Chief:	Cr	Crew			
General Strea	am Description:							
Characteris	tics at the site a	and immedia	tely upstream (c	heck All that app	oly).			
Outer Riparia	an Zone	Inne	r Riparian Zone	L.Width(m)	R.Width(m)			
	hural Row crop		Agricultural Roy	VCTOD				
	hural Pasture		Agricultural Pas	ture				
	of Vegetation		Devoid of Vege	tation				
	er regenater		Fallow					
	ł		Forest					
C Residen	tial		Residential					
	rcial/Industrial		Commercial/Ind	ustrial				
U U Weeds a	and Scrub		Treeline					
Other_			Weeds and Scru	b				
			Other					
Flow above s	ite	Flow at site		Substrate (if visal	ble)			
Riffle		□ Riffle	•	Cobble				
D Pool		D Pool		□ Boulder				
□ Eddy		□ Eddy		□ Sand				
🗆 Run		🗆 Run		□ Muck				
□ Glide		□ Glide		□ Silt				
□ Other □ Other				Gravel				
				Bedrock				
				□ Other				

Characteristics at site and immediately upstream (check ONE).

Water Description	Sinuosity of Channel	Discharge Pipe Present
□ Clear	🗆 High	□ No
☐ Grey (Septic)	☐ Moderate	🗆 Yes
□ Murky	□ Low	If yes, Effluent Flowing?
Black	□ Channelized	□ No
Brown		🗆 Yes
□ Green		Description of Effluent
□ Other		

Continued on back

Attachment 4 IDEM Physical Description of Stream Site Form (back)

Revised 4/20/12

Stream Bank

Functional Slope:	Bank Erosion:	Percent Canopy Clo	osed:
□ □ 0-30°		Stream Stage 1-5 (I	.ow-High):
□□ 31-50° □□ 51-70° □□ 71-90°	□□ Moderate □□ High	Velocity of Stream	1-5 (Slow-Fast):
Visible Stream Degra	dation? 🗆 Yes 🗆 N	lo	
Description:			
Aquatic Life Observe	ad? □ Yes □ No		
Description:			
Algae Observed?	ĭes □ No		
Description:			
Rooted Macrophytes	Observed? □ Yes [] No	
Description:			
Additional Comment	S:		
Follow Up Date:	Time:	_Crew Chief:	Crew:
Follow Up Date:	Time:	_Crew Chief:	Crew:
Photography Date: Notes (include items	Time: relevant for determi	Number(s): ning scale – items of kr	;;; nown measurement, etc.)

Attachment 5 IDEM Fish Collection Data Sheet (front)

IDEM

OWQ-WATERSHED ASSESSMENT AND PLANNING BRANCH

Event ID	Voucher jars	Unknown jars	Equipment	Page of				
Voltage	Time fished (sec)	Distance fished (m)	Max. depth (m)	Avg. depth (m)				
Avg. width (m)	Bridge in reach	Is reach representative	_ If no, why					
Elapsed time at site (hh:mm) Comments								

Museum data: Initials_____ ID date_____ Jar count_____ Fish Total___

Coding for Anomalies: D – deformities E – eroded fins L – lesions T – tumor M – multiple DELT anomalies O – other (A – anchor worm C – leeches W – swirled scales Y – popeye S – emaciated F – fungus P – parasites) H – heavy L – light (these codes may be combined with above codes)

то	TAI # (OF FISH	. I					WEIGHT (s)		ANOMALIES						
	1736 11 3			(mass g)						(length mm)						
										Min length	D	E	L	т	м	0
			Ī							Maylongth						
├ ──┐					_		_			Iviax length						
V		Р														
										Min length	D	E	L	т	м	0
										Max length						
v		Ρ														
										Min length	D	E	L	т	м	0
			-			ļ				1						
					_					Max length						
V		Р														
										Min length	D	E	L	т	м	0
			Ī							May length						
v		Ρ								Maxicigat						
–			Ì		٦					Min length	D	E	L	т	м	0
						4										
					_		_			Max length						
v		Ρ														
										Min length	D	E	L	т	м	0
			Ī		-					Max length						
v		Р								max rengul						
KDW, D	100.26	10 01	1.0		C1 .				<u> </u>	L		L				

Attachment 6 IDEM OWQ Macroinvertebrate Header Form

A	Office of Wat	er Quality: I	Macroinve	ertebrate	e Header	
L-Site	Stream N	ame	Locatio	on	County	Surveyor
Sample Date S	ample # Macro#	# Containers	Macro Sample Black Light CPOM Hester-Dendy	Type: Kick MHAB Qualitative	□ Normal □ Duplicate _ □ Replicate _	
<u>Riparian Zo</u>	one/Instream Fe	atures	Macro Sub San	nple (Field or	Lab):	
Watershed Eros	ion: Watershe	ed NPS Pollution: nce Sources tential Sources	Macro Reach S	ampled (m):		
Stream Depth Riffle (m):	Stream Depth Stream Run (m): Pool	n Depth (m):	Distances Riffle-Riffle (m):	Distances Bend-Bend (5 (m):	
Stream Width (m): High Water Mar	rk (m):	•	•		
Stream Type:	Turbidity (Est): Clear Sligh Opaque Turbi	tły Turbid d				
🗆 Channelizati	on 🛛 🗆 Dam Present					
Predominant So Other	urrounding Land Use: 🗆] Forest 🛛 Field/Pastu	re 🗆 Agricultural	🗆 Residential 🛛	Commercial	Industrial

Sediment

Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relic Shells Other
Sediment Oils: Absent Absent Profuse Slight

□ Are the undersides of stones, which are not deeply embedded, black?

Substrate Components

(Note: Select from 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% for each inorganic/ organic substrate component)

Inorganic Substrate Components (% Diameter)								Org	anic Substr	ate Components (% 1	ſype)
Bedrock	Boulder	Cobble	Gravel	Sand	Silt	Clay		Detritus	Detritus	Muck/Mud	Marl(gray w/
	(>10 in)	(2.5-10 in)	(0.1-2.5 in)	(gritty)		(slick)		(sticks, wood)	(CPOM)	(black, fine FPOM)	shell fragments)

Water Quality

 Water Odors:
 Normal
 Sewage
 Petroleum
 Chemical
 None
 Other

 Water Surface Oils:
 Slick
 Sheen
 Glob
 Flocks
 None

IDEM 03/8/18

Attachment 7 IDEM OWQ Biological Qualitative Habitat Evaluation Index (front)

IDEM		OWQ Bio	ogical QHE	I (Qualitat	tive Habitat	Evaluation	Index)	
10	Sample #		bioSample #	Stre	eam Name		Location	
1	Surveyor	Sample Date	County	Macro S	ample Type	Habitat Complete	QHEI Sco	ore:
1] <i>SUE</i>	STRATE C	heck ONLY Two pre	dominant substra	te TYPE BOXES		Check ONE (Or	2.6 mercea)	
B	EST TYPE	S PRESENT	OTHER T	YPES PRESENT	OR DITME	IGIN STONE[1]		TY -21
E BL C C C C C C C C C C C C C C C C C	DR/SLABS[1 DULDER[9] DBBLE[8] RAVEL[7] NND[6] EDROCK[5] ER OF BEST ents	10]	HARDPAN DETRITUS MUCK [2] SILT [2] ARTIFICIA ral substrates; ignore more [2] less [0]	P/G R/R [4]	SUUCES)	510HE[1] [1] ANDS[0] STONE[0] STONE[0] STRINE[0] E[-1] .FINES[-2]		-ZJ ATE [-1] L [0] Substrate
2] INS of margin 3-Highes diameter pools.) UNI OVE SHA ROO	TREAM CO nal quality; 2-4 st quality in mo log that is sta DERCUT BANK ERHANGING V NLOWS (IN S DTMATS [1] DENTS	OVER Indicate pre Moderate amounts, oderate or greater a ble, well developed (S[1] /EGETATION [1] LOW WATER) [1]	sence 0 to 3: 0-A but not of highest mounts (e.g., ven root wad in deep/ POOLS > 70 ROOTWADS BOULDERS [bsent; 1–Very : quality or in sr y large boulders fast water, or o cm [2] 0 [1] Au [1] L0	small amounts or if nall amounts of hig i in deep or fast wa leep, well-defined, XBOWS, BACKWA QUATIC MACROPH DGS OR WOODY D	f more common hest quality; ater, large functional TERS [1] IVTES [1] EBRIS [1]	An Check ONE EXTENSIVE MODERATE SPARSE 5 - NEARLY AB	10UNT (0r 2 & average) > 75% [11] : 25 - 75% [7] < 25% [3] SENT < 5% [1] Cover Maximum 20
3] <i>CHA</i> SINUC HIGA MOD LOW NON	A <i>NNEL MO</i> DSITY H[4] XERATE[3] H[1] E[1] ents	DRPHOLOGY CH DEVELO EXCELL GOOD[FAIR[3 POOR[eck ONE in each o PMENT BNT[7] 5]] 1]	CHANNEL CHANNEL NONE[6] RECOVER RECOVER RECOVER	& average) IZATION ED [4] ING [3] IR NO RECOVERY]	STAB: Hig MOU LOW [1]	ILITY H[3] DERATE [2] /[1]	Channel Maximum 20
4] <i>BAI</i>	VK EROSIC right looking down EROSION DNE/LITTLE[ODERATE[2] EAVY/SEVERE INNES	ON AND RIPA stream L R RIPA UNDE 3] UNDE NARR E[1] UVERY NONE	RIAN ZONE () NRIAN WIDTI > 50m [4] RATE 10-50m [3] OW 5-10m [2] NARROW [1] [0]	H L R FLOC	ch category for EA(DD PLAIN QU, ST, SWAMP [3] IB OR OLD FIELD [DENTIAL, PARK, N ED PASTURE [1] I PASTURE, ROWC	CH BANK (Or 2 p ALITY 2] [EW FIELD [1] [Indica ROP [0] past 1	er bank & average) L R D CONSERVAT URBAN OR J MINING / CO te predominant lan 00m riparian.	TON TILLAGE [1] NDUSTRIAL [0] MSTRUCTION [0] d use(s) Riparian Maximum
5] POC MAXI Check 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DL/GLIDE [MUM DEP ONE (ONLY!) 1m[6] 7 - < 1m[4] 4 - < 0.7m[2] 2 - < 0.4m[1] 0.2m[0] [me ents the for function	AND RIFFLE/ TH CHANI Check ONE POOL WI POOL WI POOL WI stric = 0]	RUN QUALIT NEL WIDTH : (Or 2 & average) DTH > RIFFLE WI DTH = RIFFLE WI DTH < RIFFLE WI	У DTH [2] [] DTH [1] [] DTH [0] []]	CURRENT VI Check ALL th TORRENTIAL[-1] VERY FAST [1] FAST [1] MODERATE [1] Indicate for reach -	ELOCITY at apply SLOW[1] INTERSTI DINTERMII EDDIES[1 pools and riffle	Recre (Check one F FIAL[-1] = S TENT[-2]] s.	eation Potential and comment on back) Primary Contact Secondary Contact Pool/ Current Maximum 12
of riff RIFFL BEST BEST Comm	le-obligate spe IE DEPTH FAREAS > 100 FAREAS > 100 FAREAS < 5 o ents	ecies: RUND am [2]	EPTH MUM > 50cm [2] MUM < 50cm [1]	RIFFLE/RI STABLE (e MOD.STA UNSTABL	Check ONE (UN SUBSTRAT ag, Cobble, Boulde BLE (e.g., Large Gr E (e.g., Fine Gravel,	Or 2 & average) [E R] r)[2] avel)[1] .Sand)[0] 	□ NO RIFF IFFLE/RUN EN NONE[2] LOW[1] MODERATE[0] EXTENSIVE[-1]	LE [metric = 0] IBEDDEDNESS Riffle/ Maximum 8
6] GRA	ADIENT (AINAGE A	ft/mi) REA(mi²)	VERY LOW MODERATE HIGH-VER	·LOW [2-4] [6-10] YHIGH [10-6]	%POOL:(%RUN:(%GL %RIF	IDE:	Gradient Maximum 10
Entered		QC1		QC2				IDEM 02/28/2018

Attachment 7 (continued) IDEM OWQ Biological QHEI (back)

Stream Drawing:

Attachment 8 IDEM OWQ Chain of Custody Form

Indiana Department of Environmental Management OWQ Chain of Custody Form

Project:

OWQ Sample Set or Trip #:

Date: I Certify that the sample(s) listed below was/were collected by me, or in my presence.

Signature:									Se	ction:				
Sample Media (🗆	Water, 🗆 Alga	e,🗆 Fisl	h, 🗆 Ma	cro, 🗆	Cyanob	acteria/I	Microcy	stin, 🗆	Sedime	nt)				
Lab Assigned	IDEM	alde pe		ы Ш	M a	Ēa	ml act)	o ml ene	ml ene	ml 88	Date and Ti	me Collected	ted One cl	
Number / Event ID	Control Number	T _T		1000 P.N.	1000 G.N.	₫ Ş	120 P (B	2000 Nalg	250 Nalg	125 Gla	Date	Time	F	present
													<u> </u>	
													<u> </u>	
													<u> </u>	
													+	
							<u> </u>						+	
							<u> </u>						+	
													+	
													+	
													+	
													+	
													+	
													+	
													+	
P = Plastic	G = Glass	N.	M. = Na	rrow Mo	outh	Bact =	Bacter	iologica	I Only		Should samples	s be iced?	Y	N
M = MS/MSD	B = Blank	D	= Dupli	cate		R = R	evisit							

Carriers

Signature	Date	Time	Seals Intact		Comments
Relinquished By:			v	N	
Received By:					
Relinquished By:			~	N	
Received By:			'	N.	
Relinquished By:			~	N	
Received By:			'	14	
IDEM Storage Room #					

Lab Custodian

I certify that I have received the above sample(s), which has/have been recorded in the official record book. The same sample(s) will be in the custody of competent laboratory personnel at all times, or locked in a secured area.

Address:

Signature:_____

I certify that I have received the above sample(s).

Date:_____ Time:_____

Lab:_____

Revision Date: 4/27/2016

Attachment 9 2019 Reference Sites Water Sample Analysis Request Form

Indiana Department of Environmental Management Office of Water Quality Watershed Planning and Assessment Branch www.idem.IN.gov

Water Sample Analysis Request

Pi	roject Name: 2019 Reference Sites	EComposite 🗆 Grab	
OWQ Sample Set	19WQW	IDEM Sample Nos.	
Crew Chief	Raissa Espejo	Lab Sample Nos.	
Collection Date	Apr Oct.	Lab Delivery Date	

Anions and Physical Parameters Test Method Total Dissolved Parameter ⊠ ** Alkalinity 310.2 ⊠ ** Total Solids SM2540B ⊠ ** SM2540D Suspended Solids Dissolved Solids SM2540C ⊠ ** □ ** Sulfate 300.0 ⊠ ** 300.0 Chloride □ ** \boxtimes Hardness (Calculated) SM-2340B ⊠ ** SM4500-F-C □ ** Fluoride Priority Pollutant Metals Water Parameters Parameter Test Method | Total Dissolved Antimony 200.8 ⊠ Χ 200.8 \boxtimes Arsenic \boxtimes 200.8 Beryllium Cadmium 200.8 \boxtimes \boxtimes 200.7 \boxtimes \boxtimes Chromium 200.8 Χ Χ Copper 200.8 \boxtimes Lead \boxtimes Mercury, Low Level 1631, Rev E. 200.8 Nickel 200.8 \boxtimes ⊠ Selenium \boxtimes Silver 200.8 \boxtimes 200.8 Thallium

.

Cations and Secondary Metals Parameters Dissolved Parameter Test Method | Total Aluminum 200.7, 200.8 X X 200.8 Barium Boron 200.8 200.7, 200.8 ⊠ *** Calcium Cobalt 200.8 200.7 Iron 200.7, 200.8 Magnesium ⊠ *** Manganese 200.8 Sodium 200.7 200.7 Silica, Total Reactive Strontium 200.8

200.7

Send reports (Fed. Ex. or UPS) to: Deliver reports to:

Tim Bowren - IDEM STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

Zinc

Tim Bowren – IDEM STE 100 2525 North Shadeland Ave. Indianapolis, IN 46219

 \boxtimes

 \boxtimes

Organic Water Parameters

Parameter	Lest Method	lotal
Priority Pollutants: Oranochlorine Pesticides and PCBs	608	
Priority Pollutants: VOCs - Purgeable Organics	624	
Priority Pollutants: Base/Neutral Extractables	625	
Priority Pollutants: Acid Extractables	625	
Phenolics, 4AAP	420.4	
Oil and Grease, Total	1664A	

Nutrient & Organic Water Chemistry Parameters

······································							
Parameter	Test Method	Total	Dissolved				
Ammonia Nitrogen	SM4500NH3-G	\boxtimes					
CBOD₅	SM5210B						
Total Kjeldahl Nitrogen (TKN)	SM4500N(Org)	X					
Nitrate + Nitrite	353.2	X					
Total Phosphorus	365.1	X					
TOC	SM 5310C	\boxtimes					
COD	410.4	\boxtimes					
Cyanide (Total)	335.4						
Cyanide (Free)	SM4500CN-I						
Cyanide (Amenable)	SM4500CN-G	□ *					
Sulfide, Total	376.2						

RFP 16-74	018620 (Pace-Indy)
Contract Number:	PO#0017549294-6 (Pace-Indy)

30 day reporting time required.

Notes:

- ** = DO NOT RUN PARAMETER IF SAMPLE IDENTIFIED AS A BLANK ON THE CHAIN OF CUSTODY
- * = RUN ONLY IF TOTAL CYANIDE IS DETECTED

*** = Report Calcium, Magnesium as Total Hardness components

Testing Laboratory:	Pace Analytical Services, Inc.
	Attn: Sue Brotherton
Phone: 317-228-3136	7726 Moller Road
	Indianapolis, IN 46268

Attachment 10 Biological Samples Laboratory Chain of Custody Form

IDEM	INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT																
LABORATORY CHAIN OF CUSTODY																	
						ROO	M#										
By placing your initials below, you are certifying that the sample(s) listed below was/were processed by you or in your presence in the processing room noted below and returned to the noted storage room.																	
Sample Type AD = Algae Diatom AS = Algae, Soft	Event ID or Macro #	IDEM Sample #	00 mL to Jac	8 ml. e Jer	11 A	Remove Stora Proce	Removed from Storage for Processing		Placed in after Pr		Storage ocessing	eRom #	-	ive or Jans	ides	one Top abes	Sample Split P=Permanent
M = macro	(YY) or		C all	A of 2	f of l	Date	Time	From	hiteb	Date	Time (18k)	Storing	hitel	Voud	# of5	# ofC Test T	T = Temporary
	· · · · · ·		\top			(100.00.3333)	:			(1004-04-3333)	:						
							:				:						
							-				:						
							=				:						
							=				:						
							:				:						
							-				:						
							:				:						
							:				:						
							:				:						
							:				:						
							-				:						
							:				:						
							-				:						
							:				:						
			\vdash				:				:						
							-				:						
							:				:						
L							:				:						
							-				:						
							:				:						
Lab: Indiana Department of Environmental Management Address: 2525 N. Shadeland Ave., Laboratory Room 121, 124, 125, Indianapolis, IN 46219																	

Appendix 1 List of IDEM Documents and SOPs used in the Development of the 2019 Reference Site Monitoring Program Sampling and Analysis Work Plan.

- (IDEM 1992a) revision 1. Section 4, Standard Operating Procedures for Fish Collections, Use of Seines, Electrofishers, and Sample Processing. Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1992b), revision 1. Section 11, Standard Operating Procedures-Appendices of Operational Equipment Manuals and Procedures. Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1992c), revision 1. Section 2, Biological Studies Section Hazards Communications Manual (List of Contents). Biological Studies Section, Surveillance and Standards Branch, OWM, IDEM, Indianapolis, Indiana.*
- (IDEM 1997) Water Quality Surveys Section Laboratory and Field Hazard Communication Plan Supplement. IDEM 032/02/018/1998, Revised October 1998. Assessment Branch, IDEM, Indianapolis, Indiana.*
- (IDEM 2002) <u>Water Quality Surveys Section Field Procedure Manual</u>. Assessment Branch, IDEM, Indianapolis, Indiana.
- (IDEM 2008) <u>IDEM Personal Protective Equipment Policy, revised May 1, 2008</u>. A-059-OEA-08-P-R0. IDEM, Indianapolis, Indiana.
- (IDEM 2010a) <u>Multi-habitat (MHAB) Macroinvertebrate Collection Technical Standard</u> <u>Operating Procedure</u>. S-001-OWQ-W-BS-10-T-R0. Watershed Planning and Assessment Branch, Office of Water Quality, IDEM, Indianapolis, Indiana.
- (IDEM 2010b) <u>IDEM Health and Safety Training Policy, revised October 1, 2010</u>. A-030-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2010c) <u>IDEM Injury and Illness Resulting from Occupational Exposure Policy,</u> revised October 1 2010. A-034-OEA-10-P-R2. IDEM, Indianapolis, Indiana.
- (IDEM 2015a) <u>Global Positioning System (GPS) Data Creation Technical Standard</u> <u>Operating Procedure</u>. B-001-OWQ-WAP-XXX-15-T-R0. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2015b) <u>Processing and Identification of Diatom Samples Technical Standard</u> <u>Operating Procedure</u>. B-002-OWQ-WAP-TGM-15-T-R0. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2017a) <u>Quality Assurance Project Plan (QAPP) for Indiana Surface Waters,</u> (<u>Rev. 4, Mar. 2017</u>). B-001-OWQ-WAP-XX-17-Q-R4. Assessment Branch, OWQ, IDEM, Indianapolis, Indiana.
- (IDEM 2017b) AIMS II Database User Guide. Watershed Assessment and Planning Branch. Office of Water Quality, Indiana Department of Environmental Management. Indianapolis, Indiana.*
- (IDEM 2018a). Indiana Integrated Water Monitoring and Assessment Report 2018. Edited by Jody Arthur. Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.

- (IDEM 2018b). Indiana's 2018 Consolidated Assessment and Listing Methodology (CALM). Edited by Jody Arthur. Office of Water Quality, Indiana Department of Environmental Management, Indianapolis, Indiana.
- (IDEM 2018c) Fish Community Field Collection Procedures. B-009-OWQ-WAP-XXX-18-<u>T-R0.</u> Office of Water Quality. Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2018d). <u>Phytoplankton and Periphyton Field Collection Procedures</u>. B-004-OWQ-WAP-XX-18-T-R1. Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2018e). <u>IDEM Agency Wide Quality Management Plan</u>. IDEM, Indiana Government Center North, 100 N. Senate Ave., Indianapolis, Indiana, 46204.
- (IDEM 2019a). <u>Procedures for Completing the Macroinvertebrate Header Field Data</u> <u>Sheet. B-010-OWQ-WAP-XXX-19-T-R0.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.
- (IDEM 2019b). <u>Procedures for Completing the Qualitative Habitat Evaluation Index. B-003-OWQ-WAP-XX-19-T-R1.</u> Office of Water Quality, Watershed Assessment and Planning Branch. Indianapolis, Indiana.

*This document may be inspected at the Watershed and Assessment Branch office, located at 2525 North Shadeland Avenue, Indianapolis, IN.

Appendix 2 IDEM Fish Community Assessments for Aquatic Life Use

IDEM collects fish along with other data (chemical parameters, nutrients, macroinvertebrate, and habitat) to monitor the health of streams and rivers in Indiana. There are many advantages of using fish for monitoring stream health:

- Many fish have life spans of greater than three years, allowing detection of degradation in habitat or water chemistry over time which will alter the expected fish community structure.
- The knowledge of fish life history, feeding, and reproductive behavior is well known and can be used to detect changes in water chemistry or habitat alterations.
- Identification of fish species can usually be made in the field so that fish are returned to the stream and time utilized for laboratory identifications kept minimal.

The Indiana Administrative Code [327 IAC 2-1-3(a)(2); 327 IAC 2-1.5-5(a)(2)] has narrative biological criteria that states "all waters, except those designated as limited use, will be capable of supporting a well-balanced, warm water aquatic community." The water quality standard definition of a "well-balanced aquatic community" is "an aquatic community that is diverse in species composition, contains several different trophic levels, and is not composed mainly of pollution tolerant species" [327 IAC 2-1-9(59)]. To measure whether or not the fish community meets this definition, IDEM uses an Index of Biotic Integrity (IBI), which is composed of 12 fish community characteristics chosen based on what part of the state you are sampling (ecoregion) and the size of stream (drainage area). The 12 different characteristics can score a 0, 1, 3, or 5, each of which represents a deviation from expected fish community structure (i.e. 5 = no deviation from expectations, 1 = severe deviation from expected fish community structure). The total score can range from 0 (no fish) to 60 (excellent, comparable to "least impacted" conditions). Indiana expects streams to score at least 36 out of 60 to meet aquatic life use water quality standards. The chart below, modified from a table developed by Karr et al. 1986, uses total IBI score, integrity class and attributes to define the fish community characteristics in Indiana streams and rivers.

Total IBI Score	Integrity Class	Attributes
53—60	Excellent	Comparable to "least impacted" conditions, exceptional assemblage of species.
45—52	Good	Decreased species richness (intolerant species in particular), sensitive species present.
36—44	Fair	Intolerant and sensitive species absent, skewed trophic structure.
23—35	Poor	Top carnivores and many expected species absent or rare, omnivores and tolerant species dominant.
12—22	Very Poor	Few species and individuals present, tolerant species dominant, diseased fish frequent.
<12	No Fish	No fish captured during sampling.

Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication 5. 28 p.

Some examples of metrics and fish specimens for the Index of Biotic Integrity (IBI) looking at species composition, trophic levels, and tolerance to water pollution or habitat disturbance.

1. <u>Number of Species</u> (generally more species = better quality stream)

- <u>Number of Darter, Madtom, Sculpin Species</u> (species require high dissolved oxygen and clean rocky substrates so higher number = better quality stream) Examples: rainbow darter, brindled madtom, mottled sculpin
- <u>% Large River Individuals</u> (species require habitats typical in great rivers in terms of bottom substrates, current velocity, backwater areas, etc., so higher percentage = better quality river) Examples: chestnut lamprey, channel catfish, bullhead minnow, silver chub
- 3. <u>% Headwater Individuals</u> (species in small streams occupying permanent habitat with low environmental stress so greater percentage = better quality stream) Examples: western blacknose dace, southern redbelly dace, fantail darter
- <u>Number of Sunfish or Centrarchidae Species</u> (species occupy pools which act as "sinks" for potential pollutants and silt so fewer number of these species = low quality stream) Examples: rock bass, bluegill, largemouth bass
- 4. <u>Number of Sucker or Round Body Sucker Species</u> (species do not tolerate habitat and water quality degradation so more = better quality stream) Examples: black redhorse, northern hog sucker
- <u>Number of Minnow Species</u> (generally more minnow species = better quality stream) Examples: spotfin shiner, silverjaw minnow, hornyhead chub
- 5. <u>Number of Sensitive Species</u> (species sensitive to pollution so more species = better quality stream) Examples: greenside darter, smallmouth bass, longear sunfish
- 6. <u>% Tolerant Individuals</u> (species tolerant to pollution so greater percentage = low quality stream) Examples: yellow bullhead, green sunfish, central mudminnow
- 7. <u>% Omnivore/Detritivore Individuals</u> (species that consume at least 25% plant and 25% animal material which makes them opportunistic feeders when other food sources are scarce; thus, greater percentage = lower quality stream) Examples: bluntnose minnow, white sucker, gizzard shad
- 8. <u>% Insectivore/Invertivore Individuals</u> (species whose diet is mainly benthic insects so the metric is a reflection of the food source; thus, lower percentage = lower quality stream) Examples: blackstripe topminnow, emerald shiner, logperch
- 9. <u>% Carnivore Individuals</u> (species whose diet is carnivorous and also reflects the availability of the food source; too high or too low percentage of carnivores = lower quality stream and imbalance of trophic levels)
 - Examples: spotted bass, grass pickerel
- <u>% Pioneer Individuals</u> (species that are first to colonize a stream after environmental disturbance so higher percentage of pioneer individuals = lower quality stream) Examples: creek chub, central stoneroller, johnny darter
- 10. *Number of Individuals* (generally more individuals = better quality stream)
- 11. <u>% Simple Lithophilic Individuals</u> (species that require clean gravel or cobble for successful reproduction since they simply broadcast their eggs on the substrate, fertilize, and provide no parental care; thus, heavy siltation or environmental disturbance will result in a lower percentage of simple lithophilic species = lower quality stream) Examples: bigeye chub, striped shiner, orangethroat darter
- 12. <u>% Individuals with Deformities, Eroded Fins, Lesions, and Tumors (DELT's)</u> (diseased individuals with external anomalies as a result of bacterial, fungal, viral, and parasitic infections, chemical pollutants, overcrowding, improper diet, and other environmental degradation. Percentages should be absent or very low naturally so higher percentage = low quality stream) Examples: deformed blackstripe topminnow, creek chub with tumors

Appendix 3 Calculating IDEM Macroinvertebrate Index of Biotic Integrity (mIBI)

The purpose of this document is to describe the laboratory processing and data analysis procedures used by the Indiana Department of Environmental Management (IDEM) to calculate the macroinvertebrate Index of Biotic Integrity (mIBI). Standard Operating Procedures (SOPs) are being developed to describe these processes but it may be some time before they are finalized.

An SOP describing the methods used by IDEM to collect macroinvertebrate samples with a multi-habitat (MHAB) sampling method was recently completed (available at

http://monitoringprotocols.pbworks.com/f/S-001-OWQ-W-BS-10-S-R0.pdf). The index period for collection of macroinvertebrate samples with the MHAB sampling method is July 15 to October 30. The entire sample is processed in the laboratory as subsampling has already been performed in the field. All macroinvertebrate individuals are counted with the exception of empty snail and clam shells, microcrustaceans (Ostracoda, Branchiopoda, Copepoda), larval and pupal insect exuviae, and terrestrial insects (including the terrestrial adults of aquatic insect larvae); invertebrate specimens missing their head are also excluded.

The level of taxonomic resolution used in the identification of macroinvertebrates may depend in large part on the condition (instar and physical condition) of the specimens and the availability of taxonomic resources that are comprehensive and appropriate for Indiana's fauna. Specimens are generally identified to the "lowest practical" taxonomic level.

- Oligochaeta (aquatic worms, Hirudinea and Branchiobdellida), Planaria and Acari are only identified to family or a higher level.
- Freshwater snails and clams are identified to genus.
- Freshwater crustacea are identified to genus (Amphipoda and Isopoda) or species (Decapoda).
- Aquatic insects are identified to family (Collembola and several Dipteran families).
- Genus and species (all other insects).

The following table lists insect genera that are often identified to species (and may contain multiple species in a sample) and taxonomic resources commonly used by IDEM biologists for their identification (full citations for these resources are listed in the Taxonomic References at the end of this document.

Ephemeroptera:

Baetidae: *Baetis* (separate *B. intercalaris* and *B. flavistriga* with Moriharra and McCafferty 1979, leave everything else at *Baetis*)

Caenidae: Caenis: Provonsha 1990

Heptageniidae: *Mccaffertium* (formerly *Stenonema* subgenus *Mccaffertium*): Bednarik and McCafferty 1979

Odonata:

Gomphidae: *Dromogomphus*: Westfall and Tennessen 1979 Coenagrionidae: *Argia* and *Enallagma*: Westfall and May 1996

Hemiptera:

Corixidae: Trichocorixa and Palmacorixa: Hungerford 1948, Hilsenhoff 1984

Megaloptera:

Corydalidae: Chauliodes and Nigronia: Rasmussen and Pescador 2002

Coleoptera:

Haliplidae: Peltodytes: Brigham 1996

Dytiscidae: *Neoporus, Heterosternuta, Laccophilus, Coptotomus*: Larson et al. 2000 Hydrophilidae: *Tropisternus, Berosus, Enochrus*: Hilsenhoff 1995A and 1995B Elmidae: *Stenelmis, Dubiraphia, Optioservus*: Hilsenhoff and Schmude, Hilsenhoff 1982

Trichoptera:

Philopotamidae: *Chimarra*: Hilsenhoff 1982 Leptoceridae: *Nectopsyche*: Glover and Floyd 2004 Hydropsychidae: *Hydropsyche*: Schuster and Etnier 1978

Diptera:

Chironomidae: *Ablabesmyia*: Roback 1985 (subgenus/ species group) *Polypedilum*: Maschwitz and Cook 2000 (subgenus/ species group) *Cricotopus/Orthocladius*: Merritt et al 2007 (subgenus/ species group) After all organisms in the sample have been identified to the lowest practical taxon, those taxa are then associated with their corresponding tolerance, functional feeding group and habit values (found in the spreadsheet "Indiana Macroinvertebrate Attributes"). Organisms without a tolerance value, functional feeding group, or habit are not included in the calculations for those specific metrics (this may become more evident while looking at the metric example provided). For taxa metrics, all of the taxa listed for a specific group (EPT, Diptera) are counted, regardless of level of identification (i.e., if there were 4 taxa under the Chironomidae family (1 family level ID, 1 *Cricotopus* genus level ID, and 2 distinct species level IDs under the *Cricotopus* genus) this would be considered 4 taxa).

The metrics are then calculated as follows:

1 - Total Number of Taxa: Numerical count of all identified taxa in the sample

2 - Total Number of Individuals: Numerical count of the number of individual specimens in the sample

3 - Total Number of EPT Taxa: Numerical count of all Ephemeroptera, Plecoptera and Trichoptera taxa in the sample

4 - Total Number of Diptera Taxa: Numerical count of all Diptera taxa in the sample

5 - % Orthocladiinae + Tanytarsini of Chironomidae: Number of individuals in the chironomid subfamily Orthocladiinae and tribe Tanytarsini divided by the total number of Chironomidae in the sample

6 - % Noninsect (minus crayfish): Number of individuals, except for crayfish, that are not in the Class Insecta (Isopoda, Amphipoda, Acari, snails, freshwater clams, Oligochaeta, Nematoda, Nematomorpha) divided by the total number of individuals in the sample

7 - % Intolerant: Number of individuals with a tolerance value of 0—3 divided by the total number of individuals in the sample

8 - % Tolerant: Number of individuals with a tolerance value of 8—10 divided by the total number of individuals in the sample

9 - % Predators: Number of individuals with a functional feeding group designation of "Predator" divided by the total number of individuals in the sample

10 - % Shredders + Scrapers: Combined number of individuals in the functional feeding groups "Shredder" and "Scraper" divided by the total number of individuals in the sample

11 - % Collector-Filterers: Number of individuals in the functional feeding group "Collector-Filterer" divided by the total number of individuals in the sample

12 - % Sprawlers: Number of individuals with a habit specificity of "Sprawler" divided by the total number of individuals in the sample

Those met		are then	and an a	1 2	orF	according	to the	oritorio	in the	following	table
These met	ic values	are men s	scoreu as a	1, 3	0,010	according	lo li le	Cillena	in uie	IONOWING	lable.

Metric	1	3	5
Number of Taxa	< 21	≥ 21 and <41	≥ 41
Number of Individuals	< 129	≥ 129 and < 258	≥ 258
Number of EPT Taxa			
Drainage Area: < 5 mi ²	< 2	≥ 2 and < 4	≥ 4
Drainage Area: ≥ 5 and < 50 mi ²	< 4	≥ 4 and < 8	≥ 8
Drainage Area: ≥ 50 mi ²	< 6	≥ 6 and < 12	≥ 12
% Orthocladiinae + Tanytarsini of Chironomidae	≥ 47	≥ 24 and < 47	< 24
% Noninsects Minus Crayfish	≥ 35	≥ 18 and < 35	< 18
Number of Diptera Taxa	< 7	≥ 7 and < 14	≥ 14
% Intolerant	< 15.9	≥ 15.9 and < 31.8	≥ 31.8
% Tolerant	≥ 25.3	≥ 12.6 and < 25.3	< 12.6
% Predators	< 18	≥ 18 and < 36	≥ 36
% Shredders + Scrapers	< 10	≥ 10 and < 20	≥ 20
% Collector-Filterers	≥ 20 ≥ 10 and < 20		< 10
% Sprawlers	< 3	≥ 3 and < 6	≥ 6

Most scoring classifications are the same regardless of stream drainage area; the exception is the "Number of EPT Taxa" metric which increases with increasing drainage area. After all metrics have been scored, the individual metric scores are summed and the total is the mIBI score for that particular site. Scores less than 36 are considered impaired while those greater than or equal to 36 are unimpaired.

TAXA NAME	FEED GRP	TOL	HAB/BHV	# OF IND
Heptagenia	SC	3		1
Leucrocuta	SC	2	cn	1
Acerpenna pygmaea	ОМ	2	sw	1
Baetis flavistriga	GC	3	sw	1
Callibaetis	GC	6	sw	1
Ephemera simulans				1
Ischnura verticalis	PR			1
Berosus peregrinus	SH	6	sw	1
Dubiraphia	GC	5	cn	1
Macronychus glabratus	ОМ	3	cn	1
Ceratopsyche bronta		5		1
Pycnopsyche	SH	3	sp	1
Chrysops	GC	5		1
Procladius	PR	7	sp	1
Paraphaenocladius	GC		sp	1
Lirceus	GC	8	cr	1
Ferrissia rivularis	SC	6		1
Physella	SC	8		1
Corbicula fluminea	FC	6		1
NAIDIDAE	GC	8		1
Acariformes		4		1
Maccaffertium pulchellum	SC	2		2
Tricorythodes	GC	3	sw	2
Boyeria vinosa	PR	4	cb	2
Rheumatobates	PR		sk	2
Trepobates	PR			2
Stenelmis	SC	5	cn	2
Polypedilum flavum				2
Stictochironomus	ОМ	4	bu	2
Caenis latipennis	GC			3
Palmacorixa nana	PI	4	sw	3
Cheumatopsyche	FC	3	cn	3
Orconectes	GC	4		3
Hetaerina americana	PR			4
Ancyronyx variegatus	OM	4		5
Baetis intercalaris	OM	3	sw	6
Peltodytes duodecimpunctata				6
Trepobates inermis				7
Dubiraphia minima				7
Hyalella azteca	GC	8	cr	9
Polypedilum illinoense		7		16
Stenelmis sexlineata				18
Grand Total				127

Example of Derivation of Metric Scores for the Macroinvertebrate Index of Biotic Integrity

Metrics	Metric Values	Metric Scores
Total Number of Taxa	42	3
Total Abundance of Individuals	127	1
Number of EPT Taxa	13	5
% Orthocladinae + Tanytarsinii of Chironomidae	4.55	5
% Noninsects - Crayfish	11.81	5
Number of Diptera Taxa	6	1
% Intolerant Taxa (Score 0—3)	14.96	1
% Tolerant Taxa (Score 8—10)	9.45	5
% Predators	9.45	1
% Shredders + Scrapers	7.87	1
% Collector-Filterers	3.15	5
% Sprawlers	2.36	1
mIBI Score		34

Taxonomic References

Bednarik A.F. and W.P. McCafferty. 1979. <u>Biosystematic revision of the genus *Stenonema* <u>Ephemeroptera: Heptageniidae</u>). Canadian Bulletin of Fisheries and Aquatic Sciences 201: 1— 73.</u>

Brigham, W.L. 1996. Key to adult Peltodytes of the U.S. and Canada (Coleoptera: Haliplidae).

- Glover, J.B. and M. A. Floyd. 2004. Larvae of the genus *Nectopsyche* (Trichoptera:Leptoceridae) in <u>eastern North America, including a new species from North Carolina</u>. Journal of the North American Benthological Society 23(3) 526—541.
- Hilsenhoff WL. 1982. <u>Using a biotic index to evaluate water quality in streams</u>. Department of Natural Resources, Technical Bulletin 132, Madison, Wisconsin.

Hilsenhoff, W.L. 1984. Aquatic Hemiptera of Wisconsin. Great Lakes Entomologist 17: 29-50.

- Hilsenhoff, W.L. 1995. <u>Aquatic Hydrophilidae and Hydraenidae of Wisconsin (Coleoptera). I. Introduction,</u> <u>key to genera of adults, and distribution, habitat, life cycle, and identification of species of</u> <u>Helophorus Fabricius, Hydrochus Leach, and Berosus Leach (Hydrophilidae), and Hydraenidae</u>. The Great Lakes Entomologist 28(1): 25–53.
- Hilsenhoff, W.L. 1995. <u>Aquatic Hydrophilidae and Hydraenidae of Wisconsin (Coleoptera). II. Introduction,</u> <u>key to genera of adults, and distribution, habitat, life cycle, and identification of species of</u> <u>Hydrobini and Hydrophili (Hydrophilidae: Hydrohilinae)</u>. The Great Lakes Entomologist 28(2): 97—126.
- Hilsenhoff, W.L. and K.L. Schmude. 1992. <u>Riffle beetles of Wisconsin (Coleoptera: Dryopidae, Elmidae, Lutrochidae, Psepheniidae) with notes on distribution, habitat, and identification</u>. The Great Lakes Entomologist 25(3): 191–213.
- Hungerford H.B. 1948. <u>The Corixidae of the Western Hemisphere (Hemiptera)</u>. Reprint of <u>The University</u> <u>of Kansas Science Bulletin</u> 32:1—827, reprinted (1977) by Entomological Reprint Specialists: Los Angeles, California.
- Larson, D.J., Y. Alarie, and R.E. Roughley. 2000. <u>Predaceous Diving Beetles (Coleoptera: Dytiscidae) of</u> <u>the Nearctic Region, with emphasis on the fauna of Canada and Alaska</u>. NRC Research Press, Ottawa.
- Maschwitz, D.E. and E. F. Cook. 2000. <u>Revision of the Nearctic Species of the Genus Polypedilum Kieffer</u> (Diptera: Chironomidae) in the Subgenera P. (Polypedilum) Kieffer and P. (Urespedilum) Oyewo and Saether. Ohio Biological Survey Bulletin (New Series) 12(3). 135 pp.
- Morihara D.K. and McCafferty W.P. 1979. <u>The *Baetis* larvae of North America (Ephemeroptera:</u> <u>Baetidae</u>). Transactions of the American Entomological Society 105:139–221.

- Provonsha A.V. 1990. <u>A revision of the genus *Caenis* in North America (Ephemeroptera: Caenidae)</u>. Transactions of the American Entomological Society 116:801—884.
- Rasmussen, A.K. and M.L. Pescador. 2002. <u>A Guide to the Megaloptera and Aquatic Neuroptera of</u> <u>Florida</u>. <u>http://publicfiles.dep.state.fl.us/dear/labs/biology/biokeys/megaloptera.pdf</u>
- Roback, S.S. 1985. <u>The immature chironomids of the eastern United States VI genus Ablabesmyia</u>. Proceedings of the Academy of Natural Sciences of Philadelphia 137(2): 153—212.
- Schuster, G.A. and D.A. Etnier. 1978. <u>Manual for the Identification of the Larvae of the Caddisfly Genera</u> <u>Hydropsyche Pictet and Symphitopsyche Ulmer in Eastern and Central North America</u> (<u>Trichoptera:Hydropsychidae</u>) EPA -600-4-78-060

Westfall, M.J., Jr. and M.L. May. 2006. Damselflies of North America (Revised Edition).

Westfall, M.J. Jr. and K.J. Tennessen. 1979. <u>Taxonomic clarification within the genus Dromogomphus</u> <u>Selys (Odonata: Gomphidae)</u>. Florida Entomologist 62(3). 266—273.

If you have further questions regarding the IDEM mIBI please contact:

Paul D. McMurray, Jr. Environmental Manager Indiana Department of Environmental Management Office of Water Quality, Watershed Assessment and Planning Branch Probabilistic Monitoring Section 100 N. Senate Ave. MC 65-40-2 Shadeland Indianapolis, IN 46204-2251 317-308-3210 pmcmurra@idem.in.gov