

Sept 17, 2019

Create your own geoprocessing tools!

Trevor Laureys

Director – GIS & Data Analysis
Indiana State Dept. of Agriculture

October 30, 2018

Automated Report Generation using ArcGIS Pro, ArcPy MapSeries Module and Python

LAST YEAR WE COVERED ARCPY.MP

farmers
ently.

Meg Leader
Director of Soil Health
INFA State Coordinator

Trevor Laureys
Program Manager Data Analytics

Conservation Project Tracking

Indiana has a unique situation

Tracking ALL ICP cost-shared practices since 2013

ICP Conservation Database includes

- » NRCS Applied Conservation Practices/Agronomic
- » SWCD Applied Conservation Practices
- » ISDA-DSC & CWI Applied Conservation Practices
- » DNR-LARE Applied Conservation Practices
- » IDEM-319 Applied Conservation Practices

ONLY state with a comprehensive data sharing agreement with our federal partners

Tracking progress -

Key Regulatory Challenge:

Water Quality as it relates to Nutrients and Non-point Source Runoff

Tracking allows the ICP to monitor the success of cost-share programs in various geographic regions

All conservation data is stored in points geodatabase

Some parameters tracked include

- Practice Name
- Load Reductions
- UTM XY
- Applied Date
- Program
- Size

We can defend the work we do as conservationists as well as the work of private landowners

A WHOLE LOT OF DATA

“Geoprocessing is a framework and set of tools for processing geographic and related data.”

- Sir Esri Websitington

Geoprocessing Tools

I'll cover how we can create custom geoprocessing tools using:

- >Model Builder Method
- >Python Method

May touch on:

- >Command Line
- >ArcToolBox Basics

DISCLAIMER: This is geared towards novice users who have some GIS experience, but may not have ventured outside the normal toolboxes.

Some of you may be experts, and may not benefit from this presentation.

3D Analyst Tools.tbx
Analysis Tools.tbx
Cartography Tools.tbx
Conversion Tools.tbx
Data Interoperability Tools.tbx
Data Management Tools.tbx
Data Reviewer Tools.tbx
Drawing Tools.tbx
Encoding Tools.tbx
Statistical Analyst Tools.tbx
Referencing Tools.tbx
Dimension Tools.tbx
Book Analyst Tools.tbx
Fabric Tools.tbx
Location Mapping Tools.tbx
ArcScript Tools.tbx
Tools.tbx
File Pattern Mining Tools.pyt
Analyst Tools.tbx
Statistics Tools.tbx
Analyst Tools.tbx
Manager Tools.tbx


```
Python
>>> | F1 show help for current cursor location.
F2 check the syntax of current line (or code block if in multiple line mode).

import os
import arcpy

# Local variables:
input_featureclass = arcpy.GetParameterAsText(0)

arcpy.AddField_management(input_featureclass, "Img_Date", "DATE", "", "", "", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "S_Src", "TEXT", "", "", "10", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "App_Date", "DATE", "", "", "", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "P_Date", "DATE", "", "", "", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "Prev_Crop", "TEXT", "", "", "10", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "Tillage", "TEXT", "", "", "15", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "Cov_Crop", "TEXT", "", "", "10", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "Smp_Date", "DATE", "", "", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "TS1_N", "TEXT", "", "", "5", "", "NULLABLE", "NON_REQUIRED")
arcpy.AddField_management(input_featureclass, "TS1_S", "TEXT", "", "", "5", "", "NULLABLE", "NON_REQUIRED")
```

Why create your own tools?

Create toolboxes for workflows that one must do repetitively

Creating tools for users who aren't familiar with the software

Skip UI for certain tools and save time!

Insert persuasion.txt

Model Builder Approach

Simple example workflow from Trev's life: Cropping & land histories for different watersheds/political boundaries

Arctoolbox workflow

Export feature

Locate CDL Raster

Raster Clip + UI

Add Field + UI

Calculate Field + UI

Table to table + UI

Multiplied by # of Years of interest going back ~10 years

OID	VALUE	CLASS_NAME	RED	GREEN	BLUE	OPACITY	Count	Acres	
0	1	Corn	1	0.827451	0	1	142062	31593.736428	
1	5	Soybeans	0.14902	0.439216	0	1	203058	45156.880052	
2	13	Pop or Orn Corn	0.666667	0.647059	0.047059	1	43	9.562942	
3	24	Winter Wheat	0.647059	0.439216	0	1	3312	736.568928	
4	26	Dbi Crop WnWht/Soybeans	0.439216	0.439216	0	1	1063	236.404822	
5	27	Rye	0.678431	0.348623	0.486275	1	1	0.222394	
6	29	Oats	0.627442	0.372755	0.372755	1	154	4.223486	
7	30	Alfalfa	1	0.647059	0.647059	0.647059	1	3245	73.468953
8	41	Other Hay/ton Alfalfa	0.647059	0.64902	0.54902	1	3249	722.551916	
9	44	Other Crops	0	0.686275	0.298039	1	2	0.444768	
10	54	Tomatoes	0.94902	0.639216	0.466667	1	330	73.39002	
11	56	Hops	0	0.686275	0.298039	1	1	0.222394	
12	59	Clover/Wildflowers	0.698604	0.74902	1	1	12	2.688728	
13	59	Sod/Grass Seed	0.666275	1	0.666667	1	63	14.010822	
14	61	Fallow/Idle Cropland	0.74902	0.74902	0.466667	1	104	23.128976	
15	111	Open Water	0.298039	0.439216	0.639216	1	11200	2490.8128	
16	121	Developed/Open Space	0.607843	0.607843	0.607843	1	58708	13056.306952	
17	122	Developed/Low Intensity	0.607843	0.607843	0.607843	1	42018	9344.551092	
18	123	Developed/Med Intensity	0.607843	0.607843	0.607843	1	12675	2818.84395	
19	124	Developed/High Intensity	0.607843	0.607843	0.607843	1	3911	869.782934	
20	131	Barren	0.8	0.74902	0.639216	1	175	38.91895	
21	141	Deciduous Forest	0.576471	0.8	0.576471	1	55234	12283.710166	
22	142	Evergreen Forest	0.576471	0.8	0.576471	1	17	3.780668	
23	143	Mixed Forest	0.576471	0.8	0.576471	1	3	0.667162	
24	152	Shrubland	0.776471	0.839216	0.619608	1	53	118.758396	
25	176	Grass/Pasture	0.698604	1	0.74902	1	87551	19470.817094	
26	196	Woody Wetlands	0.698604	0.6986039	0.6986039	1	376	83.620144	
27	196	Herbaceous Wetlands	0.698604	0.6986039	0.6986039	1	870	193.48278	
28	216	Peppers	1	0.4	0.4	1	9	2.001546	
29	229	Pumpkins	1	0.4	0.4	1	281	62.492714	

Model Builder Approach cont.

Environment Settings

Workspace

Current Workspace
\\state.in.us\\file1\\ISDA\\HOME\\TLaureys\\ArcGIS\\Default.gdb

Scratch Workspace
\\state.in.us\\file1\\ISDA\\HOME\\TLaureys\\ArcGIS\\Default.gdb

Output Coordinates

Processing Extent

XY Resolution and Tolerance

M Values

Z Values

Geodatabase

Geodatabase Advanced

Fields

Random Numbers

Cartography

Coverage

Raster Analysis

Raster Storage

Geostatistical Analysis

Current Workspace

Look in: Geoprocessing

Name	Type
Rasters.gdb	File Geodatabase
Geoprocessing.gdb	File Geodatabase
CDLs.gdb	File Geodatabase
Index	Folder
ImportLog	Folder

Name: Geoprocessing.gdb

Show of type: All filters listed

OK Cancel Tool Help

Current Workspace

Tools that honor the Current Workspace environment setting use the workspace specified as the default location for geoprocessing tool inputs and outputs.

Usage notes:

- In ArcMap, the Scratch Workspace and Current Workspace environments are synchronized by default to the map document's default

Model Builder Approach cont.

Model Builder Approach cont.

Analysis Tab>ModelBuilder

Geoprocessing>ModelBuilder

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

Model Builder Approach cont.

- +
- +
- +
- +
- + D:\Presentations
 - + Geoprocessing
 - + ImportLog
 - + Index
 - + CDLs.gdb
 - + Geoprocessing.gdb
 - + Rasters.gdb
 - + CDL_2010
 - + CDL_2011
 - + CDL_2012
 - + CDL_2013
 - + CDL_2014
 - + CDL_2015
 - + CDL_2017
 - + CDL_2018
 - + Geoprocessing.tbx
 - + Workflow.tbx
- + Materials
- + Tables
 - + CDL_2010.dbf
 - + CDL_2011.dbf
 - + CDL_2012.dbf
 - + CDL_2013.dbf
 - + CDL_2014.dbf
 - + CDL_2015.dbf
 - + CDL_2017.dbf
 - + CDL_2018.dbf

Python Script Approach

Arctoolbox workflow

Export feature

Locate NHD Stream Data

Clip

Buffer

Clip

Python Script Approach

Python Script Approach

```
import arcpy

#set parameters
Clip_Boundary = arcpy.GetParameterAsText(0)
CY_Practices = arcpy.GetParameterAsText(1)
Distance__value_or_field_ = arcpy.GetParameterAsText(2)
Stream_Clip_Name = arcpy.GetParameterAsText(3)
Stream_Buffer_Name = arcpy.GetParameterAsText(4)

# variables:
NHDFlowline_shp = "D:\\\\NHD\\\\NHDFlowline.shp"
RiparianPractices = "D:\\\\Presentations\\\\Geoprocessing\\\\Geoprocessing.gdb\\\\RiparianPractices"

# Process: Clip, buffer, clip
arcpy.Clip_analysis(NHDFlowline_shp, Clip_Boundary, Stream_Clip_Name, "")

arcpy.AddMessage("Clipping by watershed")

arcpy.Buffer_analysis(Stream_Clip_Name, Stream_Buffer_Name, Distance__value_or_field_, "FULL", "ROUND", "NONE", "", "PLANAR")

arcpy.AddMessage("Buffering streams")

arcpy.Clip_analysis(CY_Practices, Stream_Buffer_Name, RiparianPractices, "")

arcpy.AddMessage("Clipping practices")
```

Python Script Approach

Python Script Approach

Python Script Approach

```

import arcpy

#set parameters
Clip_Boundary = arcpy.GetParameterAsText(0)
CY_Practices = arcpy.GetParameterAsText(1)
Distance_value_or_field_ = arcpy.GetParameterAsText(2)
Stream_Clip_Name = arcpy.GetParameterAsText(3)
Stream_Buffer_Name = arcpy.GetParameterAsText(4)

# variables:
NHDFlowline_shp = "D:\\\\NHD\\\\NHDFlowline.shp"
RiparianPractices = "D:\\\\Presentations\\\\Geoprocessing\\\\Geoprocessing.gdb\\\\RiparianPractices"

# Process: Clip, buffer, clip
arcpy.Clip_analysis(NHDFlowline_shp, Clip_Boundary, Stream_Clip_Name, "")

arcpy.AddMessage("Clipping by watershed")

arcpy.Buffer_analysis(Stream_Clip_Name, Stream_Buffer_Name, Distance_value_or_field_, "FULL", "ROUND", "NONE", "",

arcpy.AddMessage("Buffering streams")

arcpy.Clip_analysis(CY_Practices, Stream_Buffer_Name, RiparianPractices, "")

arcpy.AddMessage("Clipping practices")
  
```


Python Script Approach

Python Script Approach

GIS

What my friends think I do

What my mom thinks I do

What society thinks I do

What my clients think I do

What I think I do

What I really do

CONTACT ME

Trevor Laureys

EMAIL

Tlaureys@isda.in.gov

PHONE NUMBER

317.476.1106

