Retrofit Measures for Substructure Components

Derrell Manceaux, P.E.
Purpose

- To describe typical retrofit measures for:
 - Piers and columns
 - Cap beams
 - Column to cap beam joints
Retrofit Methods

- Column replacement
- Supplemental columns
- Shear & flexure strengthening
- Improvement of ductility
 - Steel jacketing
 - Active confinement w/ prestressing wire
 - Composite fiber/epoxy jacket
 - Reinforced concrete jacket
Column replacement

- Replace when:
 - Damaged column
 - Flexure is greatly insufficient
 - Space limits other measures
Column replacement

- Construction issues
 - Very expensive
 - Longitudinal steel must be anchored into cap
 - Headed reinforcement may be considered
 - Provide pressure grout at top of column

Top of column
Near plastic hinge
Column replacement

- Column anchorage-(headed bars)
Column replacement

- Supplemental column
 - Must ensure existing column continue to carry vertical loads.
Flexural strengthening

- Not desirable in many cases
 - Shear capacity increases which attracts force to the pier cap and foundation
- Desirable case
 - Increase strength at lap splice to drive hinging to new location
- Two common methods:
 - Concrete overlay (additional reinforcement)
 - Adding reinforcement with steel shell
Flexural strengthening

- Concrete overlay
 - Concrete alone adds strength due to moment arm
 - Long steel adds additional strength
 - Must provide shear transfer with dowels
 - Must provide confinement-(hoops)
Column strengthening

- Adding reinforcement with steel shell
Column strengthening

- Adding reinforcement with steel shell
 - Must ensure shear transfer
 - Provide development length into footing/cap
Column strengthening

- Adding reinforcement with steel shell
 - Development of steel shell to ensure plastic strain
Ductility and shear improvement

- Low ductility occurs from using starter bars at base of column
- Concrete splits due to radial stresses from bars trying to pull out
- Proper confinement may stop splice failure
- Extend confinement to 75% of maximum moment or column diameter
Ductility and shear improvement

- Failure path of an unconfined column
 - Spalling begins at strain = 0.005
 - Ties began carrying more stress at this point and fail
 - Confinement is lost and concrete core crushes
 - Vertical steel buckles
 - Conc core fractures and loses axial, flexural and shear capacity
Ductility and shear improvement

- Steel jacketing
 - Use 2 half shells and weld
 - Fill void with grout
 - Confinement is provided AFTER expansion of conc occurs
 - Place 1-2” gap at end of jacket and supporting member
 - R factors=4-6 may be used
 - Stiffness increases 10-15%-Analyze with new stiffness
Ductility and shear improvement
Ductility and shear improvement

- Shell for rectangular columns
 - Rectangular shells do not have membrane action like circular shells. They act like bending members.

![Diagram of reinforced concrete column with steel shell and instructions for clearance and filling with concrete.](image-url)
Steel Shell Retrofit Example (for splice)

- Provide data
- Perform simplified dynamic analysis
- Conduct shell design
- Perform design check
 - Deflection capacity
 - Shear capacity
Structural configuration

Radius = 0.610 m (2.0 ft)

#13 @ 305 mm Hoops
(#4 @ 12"

20 - #35 (#11)

Steel Shell Retrofit

Single Column Pier

9.15 m (30 ft)
Required data (additional)

- Superstructure weight: \(W := 1000 \cdot \text{kip} \)
- Ground acceleration: \(F_{vS1} := 0.6 \cdot g \)
- Concrete strength: \(f' := 5 \cdot \text{ksi} \)
- Effective inertia: \(l_{\text{eff}} := 6.3 \cdot \text{ft}^4 \)
- Nominal moment capacity: \(M_n := 3317 \cdot \text{K ft} \)
- Nominal shear capacity: \(V_N := 110.6 \text{k} \)
- Concrete cover: \(\text{cover} := 2 \cdot \text{in} \)
Simplified dynamic analysis

- Structural stiffness
 \[k_c := \frac{3 \cdot E \cdot I_{\text{eff}}}{L^3} \]
 \[k_c = 406.426 \ \text{kN/m} \]

- Mass
 \[m := \frac{W}{g} \]
 \[m = 31.056 \ \text{kN/m} \]

- Structural period
 \[T := 2 \cdot \pi \cdot \sqrt{\frac{m}{k_c}} \]
 \[T = 1.737 \ \text{s} \]
Simplified dynamic analysis (cont’d)

- Spec acc
 \[S_a := \frac{FvS1}{T} \]
 \[S_a = 0.345 \text{ g} \]

- EQ shear
 \[V_{EQ} := S_a \cdot W \]
 \[V_{EQ} = 345.454 \text{ kip} \]

- EQ moment
 \[M_{EQ} := V_{EQ} \cdot L \]
 \[M_{EQ} = 10363.61 \text{ kip ft} \]

- EQ deflection
 \[\Delta_{EQ} := \frac{V_{EQ}}{k_c} \]
 \[\Delta_{EQ} = 0.85 \text{ ft} \]
Shell design

- FBD

Confinement stress

\[2 \cdot f_s \cdot t = f_l \cdot D \]

- \(f_s \): stress induced in jacket = 29 ksi at strain = 0.001
- \(f_l \): confinement stress = 300 psi
Shell design

- Shell thickness
 - Use 10mm=3/8 in for handling

- Ductility factor
 \[t := f_l \cdot \frac{D}{2 \cdot f_s} \]
 \[R_{\text{demand}} := \frac{M_{\text{EQ}}}{M_n} \]
 \[t = 0.25 \text{ in} \]
 \[R_{\text{demand}} = 3.12 \]
 \[<4 \quad \text{OK} \]

- Plastic hinge zone
 \[l_p := 0.25 \cdot L \]
 \[l_p = 7.5 \text{ ft} \]
Design check

- Perform moment curvature analysis to determine rotational capacity
- Conduct pushover analysis to determine rotational demand
- Verify capacity is greater than demand
 - For deflection
 - For shear
Design check

- Perform moment curvature analysis with shell and existing reinforcing
 - Plastic rotation capacity: $\theta_p := 0.0591 \cdot \text{rad}$
 - L x (Øu – Øy)
 - Ultimate strain: $\varepsilon_{\text{cu}} := 0.03211$
 - Deflection at yield: $\Delta_y := 4 \cdot \text{in}$
Design check

- Perform pushover analysis
 - Target displacement from elastic analysis
 \[\Delta T := 1.5 \cdot \Delta_{EQ} \quad \Delta T = 1.27 \text{ ft} \]
 - Plastic displacement
 \[\Delta p := \Delta T - \Delta y \quad \Delta p = .94 \text{ ft} \]
 - Plastic rotation demand
 \[\theta_p := \frac{\Delta p}{L} \quad \theta_p = 0.03 \text{ rad} \]
 - Check rotation demand vs capacity
 \[\theta_p = 0.03 \text{ rad} < \theta_p := 0.0591 \cdot \text{rad} \]
Design check

- Retrofitted column can handle twice the plastic rotation.
- Actual required thickness would be about 0.16 in but constructability issues for thin shell
Design check

- Shear check outside plastic hinge region
 - Target shear
 \[V_p := 1.5 \cdot V_N \]
 \[V_p = 165.9 \text{ kip} \]
 - Shear capacity
 \[V_c := \phi \cdot A_g \cdot \sqrt{f'_c} \cdot \frac{2.8}{1000} \]
 \[V_c = 174.02 \text{ kip} \]

OK
Prestress Wrapping

- Better system for confinement (active system)
- Little effect on flexure strength, stiffness
- High losses due to friction
Prestress Wrapping

- Prestress wrapping with wedges
 - Machine pulls strand away from pier and wedges are placed to establish tension
 - Minimum losses
 - No data on rectangular systems
Prestress Wrapping
Prestress Wrapping

- Semi-circular reinforcing bars (same effect as prestress)
Ductility and shear improvement

- Semi-circular reinforcing bars
Ductility and shear improvement

- Composite fiber jacketing
 - High strength glass (E-glass)
 - Carbon
 - Aramid fibers
- Increases ductility/shear and not flexure strength
- Passive system is preferred method
 - (active systems creep and rupture)
- Loses strength due to moisture absorption
- R=4 for most columns
Infill shear wall
Infill shear wall

- Increases shear capacity
- Prevent hinges from forming (transverse)
- Must act composite with existing members (dowels)
Vertical capacity preservation

- Type “P” retrofit
 - Flexure strength not increased due to expansion material
 - Rubble is retained in shell to give vertical support
 - Very cost effective
Limitation of column forces

- Isolation bearings
- Flexural strength reduction
Limitation of column forces

- Sierra Point Overhead
Limitation of column forces

- Isolation
Limitation of column forces

- Not suited for isolation
 - Bridges on soft soil (acc increases)
 - Long period structures (little is gained)
 - Extreme seismicity (large deflections)
Limitation of column forces

- Flexure strength reduction
 - Reduces plastic moment and shear demand
 - Must improve ductility capacity
 - Consider making hinge on frames
Concrete pier wall retrofit

- Stiff and strong in transverse direction
 - Ensure foundation can carry load
 - Retrofit usually not required unless starter bars exist
Concrete pier wall retrofit
Bent cap configurations

- Pinned connections have minimum stress
- Integral caps have significant longitudinal forces

(a) Drop (Separate) Cap

(b) Integral Cap
Bent cap configurations

- Outrigger piers have high torsional stresses due to longitudinal forces
Pier cap/joint replacement

- Consider if column is being replaced
- Difficult
- Expensive
Bent cap strengthening

- Add bolster to side
 - Must act composite to provide flexure and shear
 - Dowels help ensure composite action by shear friction
 - Add extra reinforcing and prestress
Bent cap strengthening

- Integral caps more difficult to retrofit
 - Add additional bars in deck for neg moment
 - Add bolsters to lower side of cap for positive moment
 - Prestressing may be most economical
Reduction in pier cap forces

- Link beam retrofit
 - Creates new critical section below link
 - Limits shear in column to value just below link
 - Must carefully locate beam to ensure cap remains elastic
Strengthening of column and beam joints

- Integral bent cap retrofit
Strengthening of column and beam joints

- Knee joint retrofit
Pier and column limit states

<table>
<thead>
<tr>
<th>Column or Beam Limit State</th>
<th>Plastic Curvature, $\phi_p^{1,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression failure, unconfined concrete</td>
<td>$\phi_p = \frac{\varepsilon_{cu}}{c} - \phi_y$</td>
</tr>
<tr>
<td>Compression failure, confined concrete</td>
<td>$\phi_p = \frac{\varepsilon_{cu}}{(c - d')} - \phi_y$</td>
</tr>
<tr>
<td>Buckling of longitudinal bars</td>
<td>$\phi_p = \frac{\varepsilon_b}{(c - d')} - \phi_y$</td>
</tr>
<tr>
<td>Fracture of longitudinal reinforcement</td>
<td>$\phi_p = \frac{\varepsilon_{s,\text{max}}}{(d - c)} - \phi_y$</td>
</tr>
<tr>
<td>Low-cycle fatigue of longitudinal reinforcement</td>
<td>$\phi_p = \frac{2\varepsilon_{ap}}{(d - d')} = \frac{2\varepsilon_{ap}}{D'}$</td>
</tr>
<tr>
<td>Lap-splice failure: (a) long / confined lap-splices</td>
<td>See low cycle fatigue \phi_p = (\mu_{lap} + 7)\phi_y</td>
</tr>
<tr>
<td>(b) short / unconfined lap-splices</td>
<td></td>
</tr>
<tr>
<td>Shear failure: (a) brittle</td>
<td>$\phi_p = 0$</td>
</tr>
<tr>
<td>(b) semi-ductile</td>
<td>$\phi_p = \left(5\frac{V_m - V_f}{V_i - V_f} + 2\right)\phi_y$</td>
</tr>
<tr>
<td>Joint or connection failure: (a) weak joint / strong column</td>
<td>$\theta_p = 0.04 \text{ rad}$</td>
</tr>
<tr>
<td>(b) semi-ductile</td>
<td>$\phi_p = \left(4\frac{V_{bh} - V_{hf}}{V_{bf} - V_{hf}} + 2\right)\phi_y$</td>
</tr>
</tbody>
</table>

Notes:
1. Hinge rotation $\theta_p = \phi_p L_p$ where L_p is length of plastic hinge
2. Notation is defined in section 7.8.2.
Pier and column limit states

Moment-Curvature

Moment

Curvature

Force

Displacement

C.L. Column

C.G.

Idealized Yield Curvature

Equivalen Curvature

Actual Curvature

\(\phi_u \)

\(\phi_p \)

\(\phi_Y \)

\(\Delta_c \)

\(\Delta_p \)

\(\Delta_{y}^{col} \)

\(\Delta_y \)

\(\Delta_u \)

\(\theta_p \)

\(L \)

\(L_p \)
Summary

- To describe typical retrofit measures for:
 - Piers and columns
 - Cap beams
 - Column to cap beam joints
What questions do you have?