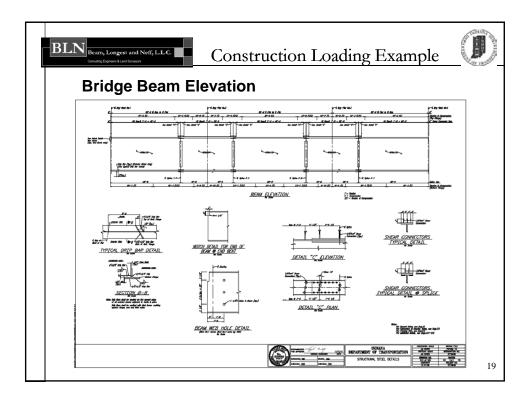
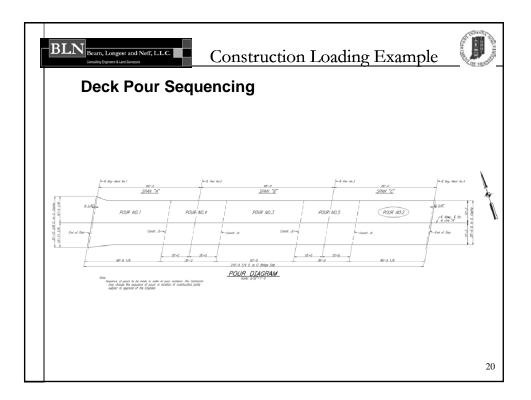
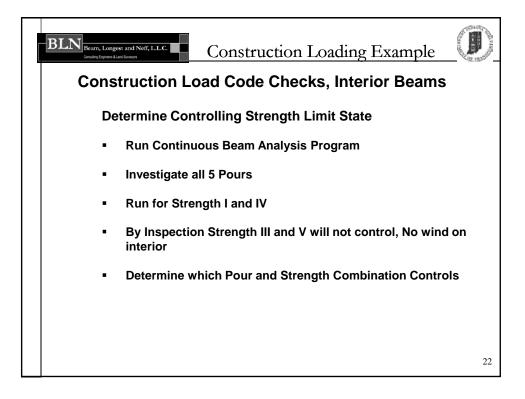
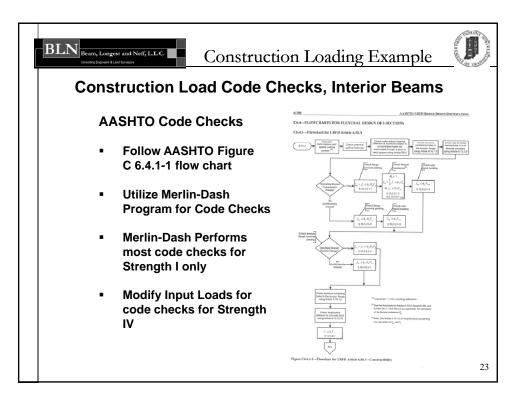
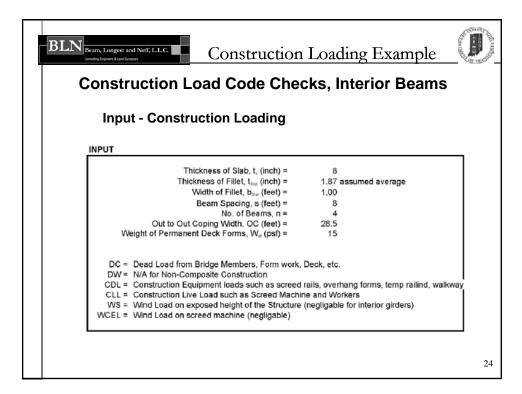

BLN Beam, Longest and Neff, LLC. Construct quent List States	Construction Loading E	Example				
Seven Limit Sta	te Checks					
1 - Yielding Limit	(6.10.3.2.1-1)					
	2 - Lateral Torsional Buckling and Flange Local Buckling Check					
3 - Web Bend Bud	3 - Web Bend Buckling Check					
4 - Flange Lateral	4 - Flange Lateral Bending Check					
5 - Discretely Bra	5 - Discretely Braced Flange in Tension Check					
		13				



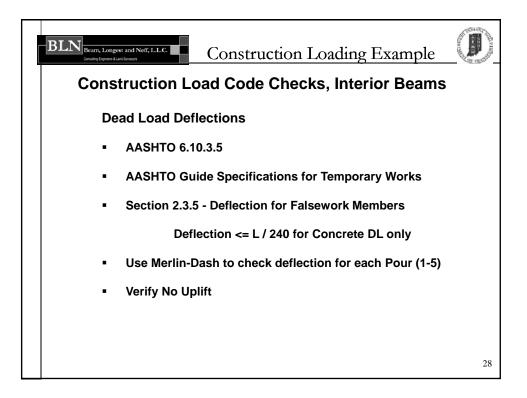


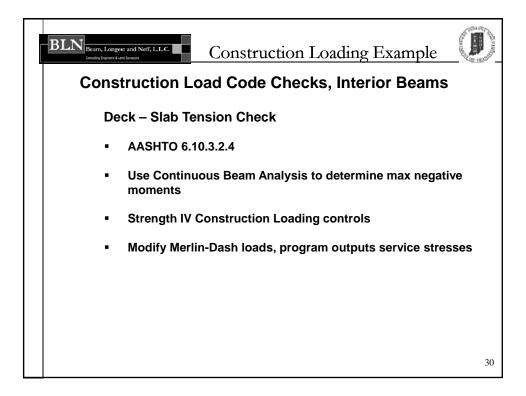






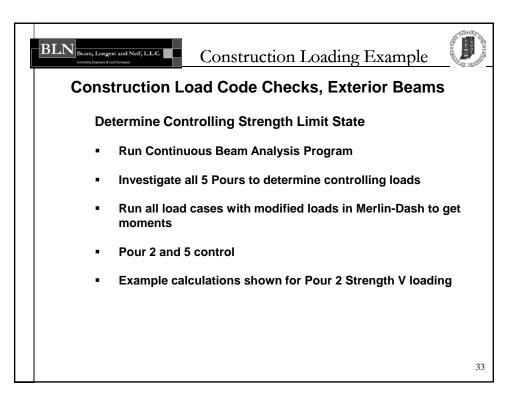
BLN Beam, Longest and Neff, LLC. Control Dopums Last Surgery Final Design Co	Construction Loading Exam	nple
	INDEX (cont'd)	
DESCRIPTION		PAGE
Structure Design Com	putations (Volume 2)	
Constructio Deck Slab Service II L Constr. Los	formation ad Code Checks, Interior Girder on Dead Load Deflections Tension Check, Interior Girder	1-4 5-60 61-92 93-120 121-200 201-366 367-377
		21



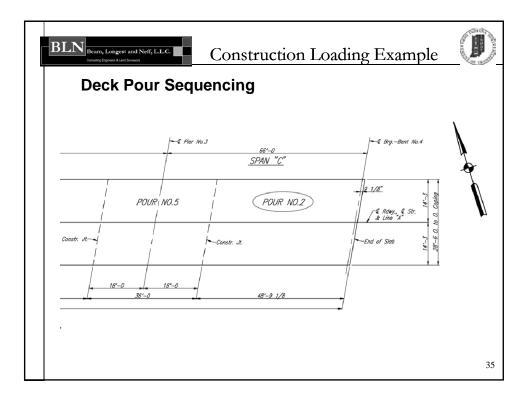

Appli	ed Construction Loading	
OUTPUT	OSITE DEAD LOADS (PER GIRDER)	
	SLAB: (s)*(t _s)*(1'/12")*(150 pcf) =	800 plf
	FILLET: (b _{filet})*(t _{fillet})*(1'/12")*(150 pcf) =	23 plf
	DECK FORMS: (s-b _{fillet} +1')*(W _{df}) =	120 plf
NON-COMPO	DSITE CONSTRUCTION LIVE LOADS	
DISTR CO	NSTR LL, CLL: (OC+2*2')*(20 PSF) / n =	163 plf over 30' of deck length

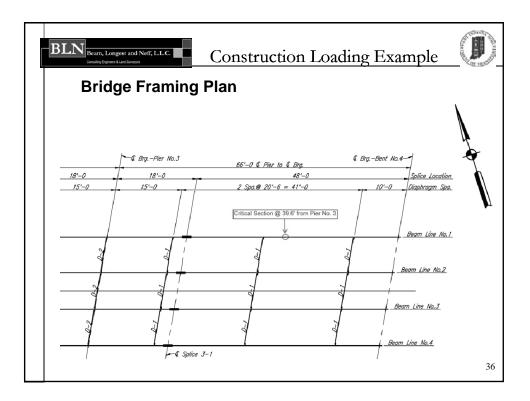
BLN Beam, Longest and Neff, LL.C. Construction	n Loa	ading Example	
Construction Load Code Che	ecks,	Interior Beams	
Applied Construction Loading			
INPUT FOR MERLIN-DASH - STRENGTH I - 1.25(DC + Slab Loads (Data Type:10012)	,	, , ,	7
DC1 = Deck Forms = Arbitrary Uniform Loads (Data Type:11012) Slab = Fillet = DC1 = Slab and Fillet =	0.12 0.8 0.023 0.82	klf over full str length klf klf klf *	
Constr. Live Load = CLL*(1.5/1.25) =	0.16	klf over 30' of str length * klf for Merlin-Dash Input	
* Apply loads to maximize moments and shea	ar for posit		
			26

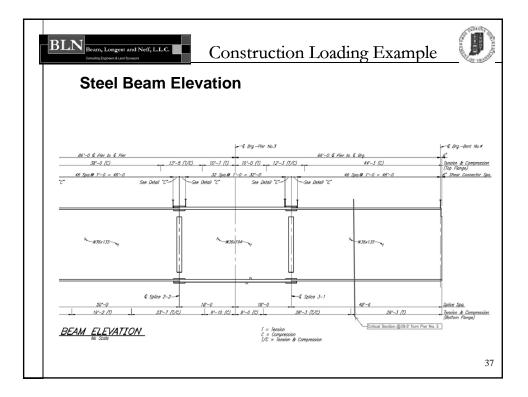
Construction Load Code Che Applied Construction Loading		
INPUT FOR MERLIN-DASH - STRENGTH IV - 1.5(DC	+ DW) + 1	5(CDL)
Slab Loads (Data Type:10012) DC1 = Deck Forms =	0.12	klf over full str length
DC1 = <u>Deck Forms*(1.5/1.25)</u> =	0.14	klf for Merlin-Dash Input
Arbitrary Uniform Loads (Data Type:11012) Slab =	0.8	klf
Fillet = DC1 = Slab and Fillet =	0.023 0.82	klf klf *
DC1 = <u>Slab and Fillet* (1.5/1.25)</u> =	0.99	klf for Merlin-Dash Input
* Apply loads to maximize moments and she	ar for posi	ive and negative



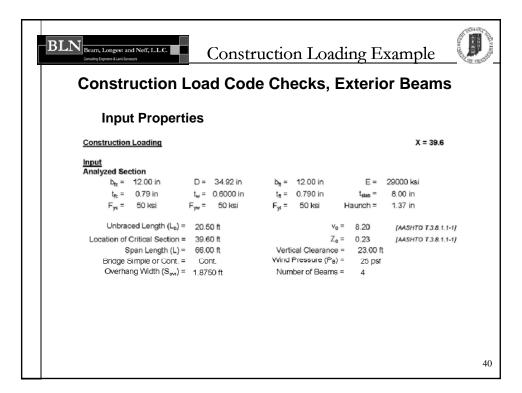
Jon	sti	ruci	tion L	.oad (Cod	le C	Check	ks, Ir	nterio	r Bea	ms
C)ea	d Lo	bad De	flectio	ons						
TA	BLE	0.0.		B LOAD DI							
				SLA					SLAP	B LOAD DA	ATA
			CRIPTION	INITIAL (in)		DAY	N1=3n N1	N2=n	INTENSIT	FROM	ITION TO (ft)
1	1	Pour	1	0.0	7.5	1	24.0	8.0	0.94	0.00	48.0
2	2	Pour	2	0.0	7.5	7	24.0	8.0	0.94	170.00	218.0
3	3	Pour	3	0.0	7.5	14	24.0	8.0	0.94	84.00	134.0
4	4	Pour	4	0.0	7.5	21	24.0	8.0	0.94	48.00	84.0
	-	Pour	5	0 0	7.5	28	24.0	8.0	0.94	134.00	170.0




		ction	Load C					
D				ode Ch	ecks, In	terior B	eams	
	eck –	Slab	Tension	Check				
TA	BLE 1.1	.5.1A=M	OMENTS AND	ACCUMULATED	STRESSES FOR	******	3 (UNFACTOR	3D
SP	IN ID	D FROM	DEAD LOAD MOMENT	ACCUMULATEI		(+) is tension (si) & DEFLE		
NO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO NO 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1	E 10011	(k-ft) 0.0 -22.0 -44.1 -66.1 -110.2 -132.2 -154.2 -176.3 -220.3 -242.4 -266.4 -266.4 -308.5 -332.5	TOP CONC. 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.00	TOP STEEL F 0.00 -2.84 -5.30 -7.38 -9.07 -10.37 -11.29 -11.83 -11.98 -11.74 -11.12 -10.12 -8.73 -6.95 -4.79 2.64 4.64	80T. STEEL 0.00 2.57 4.76 6.55 7.97 9.00 9.64 9.90 9.77 9.25 8.35 7.07 5.40 3.34 0.90 -2.64 -4.65	DEFL. 0.0000 -0.1940 -0.3799 -0.5506 -0.7002 -0.8241 -0.9186 -0.9813 -1.0112 -1.0081 -0.9732 -0.9088 -0.8184 -0.7066 -0.5792 -0.4443 -0.3157	31


BLN Beam, Longest and Neff; L.L.C. Comming Engineers East Everyon	Construction Loadi	ng Example
Construction L	oad Code Checks, In	terior Beams
Service II Load	ling for Slip Critical Chec	ks
Check Slip Critical Bolts @ Service Divide Flange Force Equally betwe	en inner & outer plates per AASHTO 6.13.6.1.4c	[AASHTO 6.10.3]
$P_{u bl}/2 = 9.7 \text{ kips}$		
$\label{eq:rescaled} \begin{array}{l} R_n = K_k K_k N_k P_l \\ K_n = 1.0 \\ R_n = 19.5 \ \text{kips} \end{array}$	K _s = 0.5 P _t = 39.0 kips	(AASHTO 6.13.2.8-1)
$N_{bots Redd} = P_{u,b}/R_n$ $N_{bots Redd} = 0.5 Bolts$	< N _{bots Provid} = 14 Bolts	ок
		32

onstruction Load Code Checks,	- 0 -
Input for Construction Loading	
NPUT	
Thickness of Slab, t, (inch) =	8
Thickness of Fillet, t _{nitet} (inch) =	1.87 assumed average
Width of Fillet, b _{ritet} (feet) =	1.00
Beam Spacing, s (feet) =	8.25
Overhang, oh (feet) = Additional Overhang Thickness, oht (in) =	1.833 2.01
Weight of Permanent and Removable Deck Forms, W _{at} (psf) =	15
Weight of Temporary Walkway, Wwww-1 (psf) =	15
Vertical Railing and Walkway Load, Www.y.2 (plf) =	75
DC = Dead Load from Bridge Members, Form work, Deck, etc.	
DW = N/A for Non-Composite Construction CDL = Construction Equipment loads such as screed rails, overhal	na forme, tomn milina, walkwa
CLL = Construction Equipment loads such as Screed Machine and Worke	
WS = Wind Load on exposed height of the Structure (negligable for	
	•



BLN	Beam, Longest and Neff; LLC. Construction Loa	ding	gExample	
	Construction Load Code Checks,	Exte	erior Beams	
	Applied Construction Loading – Stre	ngth	v	
	INPUT FOR MERLIN-DASH - STRENGTH V - 1.25(DC+DW)+1.5(CDL)+1.35(C	:LL)+0.4(WS)+ (WCEL)	_
	Slab Loads (Data Type:10012) DC1 = Deck Forms =	0.06	klf over full str length	
	Arbitrary Uniform Loads (Data Type:11012) Slab = Fillet = Overhang = DC1 = Slab and Fillet =	0.62 0.02 0.05 0.69	klf klf _klf _klf ∙	
	Arbitrary Uniform Loads (Data Type:11012) Removable Coping Deck Forms = CDL1* 1.5/1.25 = Temp Screed rail and Walkway = CDL2*1.5/1.25 = Constr. Dead Load = CDL =	0.03 0.04 0.07	klf over full str length	
	Distr Constr. Live Load = CLL1*(1.35/1.25) =	0.17	klf over 30' of str length *	
	Screed Constr. Live Load = CLL2*(1.35/1.25) =	0.49	klf over 10' of str length *	
	Vertical Railing and Walkway Load = CLL3*(1.35/1.25) =	0.08	klf over 30' of str length *	
	 Apply loads to maximize moments for positive and negative 	e		39

BLIN Beam, Longest and Neff, L.L.C.	Construc	tion Loading E	xample	
Construction Lo	oad Code (Checks, Exterio	or Beams	
Input from Mer	lin-Dash			
Moments Strength1 (M-Desh T Factored Vertical Moment at Lt. Bracing Poi Moment at Rt. Bracing Poi Moment at Rt. Bracing Poi M at Mid. of Unbraced Leng Strength IV Factored Vertical M at Critica M at Lt. Bracing Point (Magent Att. Bt. Bt. Bt. Bt. Bt. Bt. Bt. Bt. Bt.	Critical = 621.9 k-ft int (M _a) = 600.2 k-ft int (M _b) = 362.2 k-ft ith (M _b) = 579.6 k-ft al = 523.1 k-ft al = 509.0 k-ft b) = 509.0 k-ft c) = 327.4 k-ft c) = 495.6 k-ft ith (M _b) = 509.0 k-ft c) = 100.0 k-ft c	Strength III Factored Vertical M at (M at Lt. Bracing Poir M at Rt. Bracing Poir M at Mid. of Unbraced Ler Strength V Factored Vertical M at (M at Lt. Bracing Poir M at Rt. Bracing Poir M at Mid. of Unbraced Ler	$\label{eq:masses} \begin{split} & \text{tt}~(M_{a}) = 422.9~\text{k-ft} \\ & \text{tt}~(M_{b}) = 197.9~\text{k-ft} \\ & \text{t}~(M_{b}) = 411.2~\text{k-ft} \\ & \text{critical} = 603.3~\text{k-ft} \\ & \text{critical} = 603.4~\text{k-ft} \\ & \text{tt}~(M_{e}) = 582.6~\text{k-ft} \\ & \text{tt}~(M_{b}) = 353.2~\text{k-ft} \end{split}$	
S_{xc} for Rt. Section = 438.3 S_{xc} for Mid. Section = 438.3				41

BLN Beam, Longest ar Construction Constr					ading Ex Exterio				
Bear	Beam Properties								
Beam Heig	ght = 0.79+34.92+0.7§) =	36.50 in						
Top Flange Web Bot. Flange	(from top) A (in ²) Y (in) 9.48 0.40 20.95 18.25 9.48 36.11 39.91	382.4		0.5 2129.1	Ad ² (in ⁴) 3022.2 0.0 3022.2 6044.5				
	∑AY/∑A = 728.39/39. 18.25 in	91			$S_{fc} = bh^2/6 =$ = 18.96				
	ly = 8,174.5/18.25 447.9 in ³	-			$S_n = bh^2/6 =$ = 18.96				
							4		

BLIN Beam, Longest and Neff, LLC.	Construc	tion Loadin	ıg Example	A TRANSPORT
Construction Lo	ad Code C	hecks, Ex	terior Beam	S
Flange Compre	ssive Stress	– <i>f</i> _{bu}		
Determine f _{nu} Strength I f _{bu-comp} = M*12/S _{xc} = 16.66 k		f _{bu-tens} = M*12/S _{st} = = 16.66 ksi	621.9*12/447.9	
Strength III f _{bu-comp} = M*12/S _{xc} = 11.64 k		f _{butens} = M*12/S _{st} = = 11.64 ksi	434.5*12/447.9	
Strength IV f _{bu-comp} = M*12/S _{xc} = 14.01 k		f _{bu-tens} = M*12/S _{st} = = 14.01 ksi	523.1*12/447.9	
Strength V $f_{bu-comp} = M^*12/S_{xc}$ = 16.16 k	= 603.3*12/447.9 si	f _{bu-tens} = M*12/S _{xt} = = 16.16 ksi	603.3*12/447.9	
				43

BLN Beam, Longest and Neff, L.L.C. constructions List Compose	Construction Loadin	g Example
Construction L	oad Code Checks, Ext	erior Beams
First-order ve	rsus Second-order analysis	3
Determine if geometry s	atisfies provisions of [AASHTO 6.10.1.6]:	
L _b ≤ 1.2*L _p *[C _b *R _b /(f _{bu} /	= _{ye})] ^{0.5}	(AASHTO 6.10.1.6-2)
	$ \begin{array}{l} f_1 = b_{e_2} [12^* (h/d + 1/3^* D_{e_1} w^{2}/ (D_{e_1} * t_{e_1} * h^* d))]^{0.5} \\ \text{where: } D_e = 18.25 \cdot 0.79 = 17.46 \text{ in} \\ h = 0.79/2 + 34.92 + 0.79/2 = 35. \\ r_1 = 12.004 12^* (35.71/38.50 + 1/3^* 17.46^* 0.60^* 34.92^* 2/(12) \\ r_1 = 3.01 \text{ in} \\ 01^* (29,000/50)^* 0.5 \end{array} $	
		44

	on Loading Example
Construction Load Code Ch	ecks, Exterior Beams
First-order versus Second-ord	der analysis
R _b : * Section is not composite yet * No longitudinal Stiffeners are provided	[AASHTO 6.10.1.10.2]
$\begin{array}{rcl} 2 D_{d} A_{w} & \leq & \lambda_{nw} \\ & \lambda_{nw} = 5.7 * (E / F_{yc})^{0.5} \\ & = 5.7 * (E 9,000/50)^{0.5} \\ & = 137.3 \end{array}$	(AASHTO 6.10.1.10.2-2) (AASHTO 6.10.1.10.2-4)
2D _c /t _w = 2*17.46/0.60 = 58.2	< 137.3
$\begin{aligned} R_{b} &= 1 \cdot \{(a_{wc})/(1200 + 300^* a_{wc})\} [(2D_{v}/t_{w}) - \lambda_{nw}] \\ a_{wc} &= 2D_{c} t_{w} \mathcal{D}_{tr} \mathcal{D}_{tr} \mathcal{D}_{tr} \\ &= 2^* 17.46^* 0.60/12.00/0.79 \\ &= 2.21 \end{aligned}$]≤1.0 (AASHTO 6.10.1.10.2-3) (AASHTO 6.10.1.10.2-5)
R _b = 58.2 < 137.3 - Use Rb = 1.00 = 1.00	
	45

BLN Beam, Longest and Neff, LLC. Construction Loading Exa	ample
Construction Load Code Checks, Exterior	Beams
First-order versus Second-order analysis	
Strength V C _b .	
$C_b = 1.75 \cdot 1.05 (f_1 f_2) + 0.3 (f_1 f_2)^2 \le 2.3$ where: $f_2 = 582.6^{+1} 2/438.3$	(AASHTO 6.10.8.2.3-7)
= 15.95 ksi < Controls or = 353.2*12/438.3 f ₂ = = 9.67 ksi	15.95 ksi
	(AASHTO 6.10.8.2.3-11)
where: $f_{mid} = 563.0*12/438.3$ = 15.41 ksi	(adjusted for sign)
	(adjusted for sign)
f ₁ = 14.88 ksi < Controls for f1	
f _{mid} /f ₂ = 15.41/15.95 = 0.97	
0.97<=1.0, Equation 6.10.8.2.3-7 is valid	
	46

Beam, Longest and Neff, L.L.C.	Construction Loading Example	A TRANSPORT
Construction Lo	oad Code Checks, Exterior Beams	
First-order ver	sus Second-order analysis	
$L_{b} \leq 1.2^{n}L_{p}^{n}C_{b}^{n}R_{b}$ $L_{b} \leq 1.2^{n}L_{p}^{n}C_{b}^{n}R_{b}$ $= 1.2^{n}72.5$ $= 13.0 \text{ ft}$		
		47

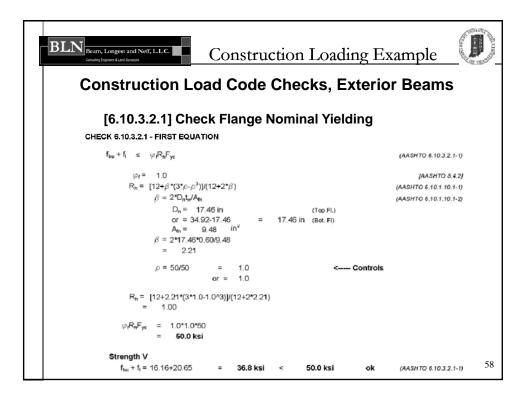
BLIN Beam, Longest and Neff, LLC.	Construction Loading	Example
Construction L	oad Code Checks, Exter	ior Beams
First-order ver	sus Second-order analysis	
Amplification Fa	actor	
Strength V Amplification Factor (A):	Accounts for second order effects from lateral bending	j stress.
$A = 0.85/(1-f_{bu}/F_{cr})$	≥ 1.0	(AASHTO 6.10.1.6-4)
F _{cr} ;		
	4 ² *E/(L _b /r _t) ² *[1+0.078*J/(S _{xc} *h)*(L _b /r _t) ²] ^{0.5}	*(AASHTO A6.3.3-8)
where:	$C_{b} = 1.03$ E = 29000 ksi	*Eqn. can only be used when
	$L_{b} = 2000 \text{ ks}$ $L_{b} = 20.50^{\circ} 12 = 246.0 \text{ in}$	web is compact or non compact
	rt = 3.01 in	
\$	$B_{xe} = 447.92 \text{ in}^3 \text{ h} = 35.71 \text{ in}$	
F _{er} = 48.58	$ \begin{array}{l} J = Dt_w^{3}/3 + b_{R_{c}}t_{e}^{3}/3(1 - 0.63t_{e}/b_{R_{c}}) + b_{R_{c}}t_{e}^{3}/3(1 - 0.63t_{e}/b_{R}) \\ = 34.92^{\circ}.60^{\circ}.30^{\circ}.12.00^{\circ}.79^{\circ}.33^{\circ}(1 - 0.63^{\circ}.0.79^{\circ}/12.00) + 12.00^{\circ}.00^{\circ} \\ = 6.29 in^{4} \\ ksi \end{array} $	
		48

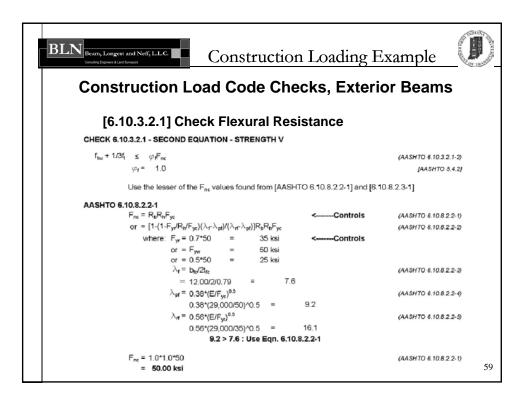
BLN Beam, Longest and Neff, L.L.C.	Constr	uction Loading Exan	ple
Construction Lo	ad Cod	e Checks, Exterior B	eams
First-order vers	sus Secon	d-order analysis	
Amplification Fac	ctor		
	Or use AA	SHTO 6.10.8.2.3-8	
$F_{cr} = C_b * R_b * 3.$ $= 44.26 \text{ k}$		1.03*1.00*3.14^2*29,000/(20.50*12/3.01)	^2
F _{er} = 48.58 k	si		
A = 0.85/(1-16.16/48.58) = 1.27			
Bracing Length	exceeds allowal	ble range, Amplification Factor = 1.27	
			49

BLN Beam, Longest and Neff, I.L.C.	Construction Loading E	xample 🚺
Construction L	oad Code Checks, Exteri	or Beams
Flange Lateral	Bending Stress – f_{ℓ}	
Determine f _I - Flange Lateral Ben	ding Stress	
Wind		(AASHTO 6.10.3.2.1)
Calculate Wind Load		[AASHTO 4.6.2.7]
	201 Use 70 mph per AASHTO Guide Design Specs 201 ph for Bridge Temporary Works 2016;50+1.37+8.00)/12 2017 ft < 30.0 ft	(AASHTO 3.8.1.2.1-1) (AASHTO 7.3.8.1.2.1-1) (AASHTO 3.8.1.1-1) [AASHTO 3.8.1.1] [AASHTO 3.8.1.1]
= 0.012 Kst		50

BLN Beam, Longest and Neff, L.L.C. Orwing Engens & Line Surgos	Construction Load	ling Example
Construction Lo	ad Code Checks, E	xterior Beams
Flange Lateral B	Bending Stress – f_{ℓ}	
Wind transmitted to support	s by 3rd load path - bending of flanges	
M _w = wL _b ² /10 + w*x/2/N _b *(L	x)*α	(AASHTO C4.6.2.7.1-3)
w = 0.012*3.82	37+8.00)/12 = 3.82 ft : 0.30 k/ft *70²/100² = 0.15 k/ft	Use 0.15 k/ft [AASHTO 3.8.1.2.1]
Proportion wind load using I	lever rule onto top and bottom flange	
w _c = 0.15*(3.82/2-0.7 0.09 k/ft	79/2/12)/(0.79/2+34.92+0.79/2)*12	
α = 0.8 for contin	uous bridges	
M _{we} = 0.09*20.50^2/10+0.09 = 13.6 k-ft	9*39.60/2/4*(66.0-39.60)*0.8	
f⊧ _{⊮wind} = M _{we} /S ₆ *12 = 13.6*12/19.0 = 8.61 ksi		
		51

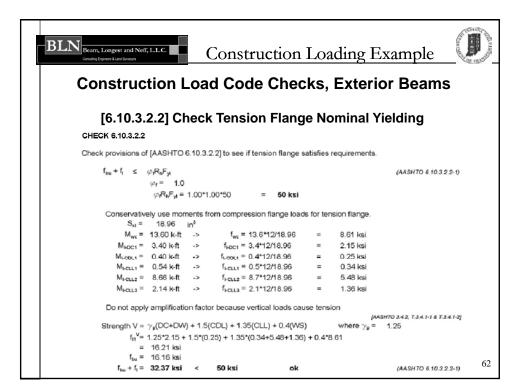
BLN Bearn, Longest and Neff, LI Condity Expens 1 Lat Surapon	Construction Loading	g Example
Constructi	on Load Code Checks, Ext	erior Beams
Flange La	ateral Bending Stress – f_{l}	
Construction Loads Based on AAS	HTO C6.10.1.6, Flanges act elastically	
Geometry of o x = 1.8 y =	75+0.5 = 2.4 ft	
	1 50 pcf (For wet concrete) 00+(1.37+0.79)]/12*(150/1000)*1.88/2*(2.4/2.9) = 0.10	0 k/ft
1501 1	_b ² /12 = 0.10*20.50^2/12 .40 k-ft	(AASHTO C6.10.3.4-2)
	_{DC1} /S ₆ *12 = 3.40*12/19.0 .1 5 ksi	
		52

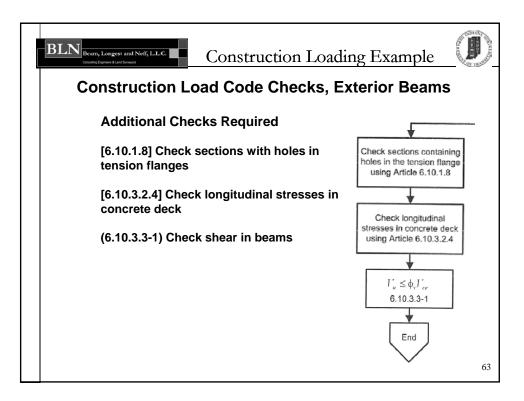

BLN Beam, Longest and Neff, L.L.C.	Construction Loading Ex	ample 🚺
Construction Lo	oad Code Checks, Exterio	r Beams
Flange Lateral	Bending Stress – f_{ℓ}	
Exterior Forms - CDL1	(2.4/2.9)/1000 = 0.01 k/ft	
$M_{\text{FCDL1}} = F_{\text{I}}L_{\text{b}}^{2}/12 = 0.40 \text{ k-ft}$	= 0.01*20.50^2/12	(AASHTO C6.10.3.4-2)
f _{FCDL1} = M _{FCDL1} /S _c *12 = 0.25 ksi	= 0.40*12/19.0	
		53

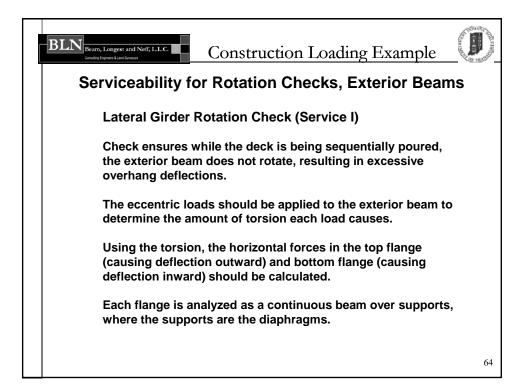

BLIN Beam, Longest and Neff, LLLC.	Construc	tion Loading E	xample	THE MAN
Construction L	oad Code C	Checks, Exterio	or Beams	
Flange Latera	Bending Stre	$ess - f_{\ell}$		
Construction Loads - C Constr. Loads = 20 psf (n screed machine)		
$F_{\mu CLL} = 20/1000^{+1.8i}$ = 0.02 k/ft	8/2*(2.4/2.9)			
$M_{\mu CLL} = F_{\mu CLL} L_{\mu}^{2}/12 = 0.54 \text{ k-ft}$	0.02*20.50^2/12	(Assume bracing length < 30')	(AASHTO C6.10.3.4-2)	
$f_{FGLL} = M_{FGLL}/S_c^{+12} = 0.54^{+12/19.0} = 0.34^{+12/19.0} = 0.34^{+12/19.0}$				
				54

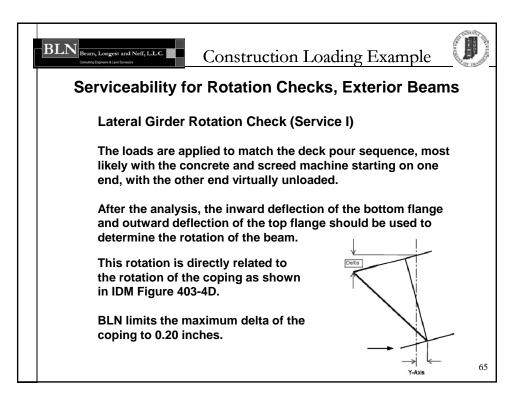
BLN Beam, Lorgest and Neff, L.L.C. Construction Loading Example	
Construction Load Code Checks, Exterior Beams	i
Flange Lateral Bending Stress – f_{ℓ}	
Finishing Machine - CLL2 Screed = 450 plf (Distributed over 10')	
$F_{\text{FCLL2}} = 450/1000^{\circ}(2.4/2.9) \\ = 0.37 \text{ k/ft}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
= 0.37*20.5^2/12*[1-6*(5.25/20.50)^2+4*(5.25/20.50)^3] = 8.66 k-ft	
$f_{\text{HCIL2}} = M_{\text{HCIL2}}/S_c^{*12}$ = 8.66*12/19.0 = 5.48 ksi	
	55

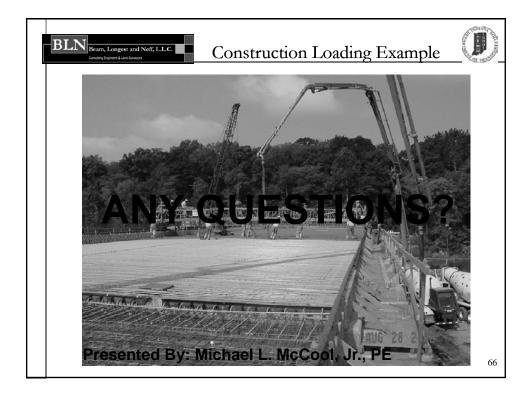
BLN Beam, Longest and Neff, LLC. Constity Eigners 8 Last Europes	Construction Loading Ex	ample 🚺		
Construction Load Code Checks, Exterior Beams				
Flange Latera	I Bending Stress – f _/			
	ray - CLL3 (From AASHTO Guide Design Specs for Bridges (95) 2.2.3.1) 9)/1000 = 0.06 k/ft			
$M_{\text{FCLL3}} = F_{\text{I}}L_{\text{b}}^{2}/12$ $= 2.14 \text{ k-ft}$	= 0.06*20.50^2/12	(AASHTO C6.10.3.4-2)		
f _{FCLL3} = M _{FCLL3} /S _c *12 = 1.36 ksi	2 = 2.14*12/19.0			
		56		


BLN Beam, Longest and Neff, L.L.C.	Construction Loadi	ng Example					
Construction Load Code Checks, Exterior Beams							
Flange Lateral	Bending Stress – f_{ℓ}						
	1.5(CDL) + 1.35(CLL) + 0.4(WS) wh 5*(0.25) + 1.35*(0.34+5.48+1.36) + 0.4*8.61	(AASHTO 3.42, 7.3.4.1-1 8 7.3.4.1-2) ere γ _p = 1.25					
1 - Approximate Second Ord	er Analysis	(AASHTO 6.10.1.6-4)					
$f_L = A^* f_{i1}$ $f_L^V = 1.27 * 16.21 = 2$	0.65 ksi < 0.6*F _{yc} = 0.6*50.0 = 30.00	(AASHTO 6.10.1.6-1) Iksi ok					
		57					






B	Construction Load Code Checks, Exterior Beams				
	[6.10.3.2.1] Check Flexural Resistance				
	AASHTO 6.10.8.2.3-1 $L_b = 20.50 \text{ ft}$ $L_p = 6.04 \text{ ft}$ $L_r = \pi \pi (EF_{st})^{0.5}$ (AASHTO 6.10.8.2.3-9 = 3.14*3.01/12*(29,000/35)^0.5 = 22.70 \text{ ft}				
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
	$F_{nc} = 1.03[1-(1-35/1.0/50)*(20.50-6.04)/(22.70-6.04)]*1.0*1.0*50$ = 38.15 ksi < $R_b R_b F_{yc}$ = 1.0*1.0*50 = 50.0 ksi $F_{nc} =$ 38.15 ksi Use a F_{nc} Value of 38.15 ksi				
	$\varphi_{\rm f}F_{\rm nc} = 1.00^{*38.15}$ = 38.1 ksi				
	f _{bu} + 1/3*f _l = 16.16+ 1/3*20.65 = 23.0 ksi < 38.1 ksi ok (AASHTO 6.10.3.2.1-2)	60			


BLIN Beam, Longest and Neff, LaLC.	Construction	n Loading Exan	nple		
Construction Load Code Checks, Exterior Beams					
[6.10.3.2.1] Check Web Bend Buckling					
CHECK 6.10.3.2.1 - THIRD EQU	ATION				
$f_{bu} \le \varphi_{f} F_{crw}$		(A)	SHTO 6.10.3.2.1-3)		
arphir = 1.0 F _{erw} = 0.9*E*k/(D/t _w)	$^2 \leq R_h F_{ye} \text{ or } F_{yw}/0.7$	(AA	(AASHTO 6.5.4.2) SHTO 6.10.1.9.1-1)		
	/(D _e /D) ² /(17.46/34.92)^2 =	36.00 (AA	SHTO 6.10.1.9.1-2)		
	= 277.4 ksi	Controls			
<i>φ</i> _f F _{erw} = 1.0*50 = 50.0 ksi					
Strength V f _{bu} = 16.16 ksi	< 50.0 ksi	ok (A4	shto 6.10.3.2.1-3) 61		

