SHRP2 ABC Toolkit and Projects using the Toolkit.

Bala Sivakumar, HNTB Corp. 2.16.2016

Indiana DOT

Outline

- Introduction to SHRP2 R04
- Obstacles to ABC Implementation
- SHRP 2 Project R04 – making ABC standard practice
- SHRP2 ABC Toolkit
- Lateral Slide Addendum to the Toolkit
- ABC Projects
ABC Elements and Methods

ACCELERATED BRIDGE CONSTRUCTION (ABC)

- Prefabricated Elements & Systems (PBES)
- Structure Placement Methods
- Accelerated Geo-tech Work
- Rapid Demolition
- Innovative Contracting

SHRP2 Project R04 – Making ABC Standard Practice

Innovative Bridge Designs for Rapid Renewal
2007 – 2013

HNTB – Prime Contractor
Iowa State University
Genesis Structures
Structural Engineering Assoc.
Goals of SHRP2 R04

Make accelerated bridge construction standard practice nationally

Develop standardized approaches to designing and constructing ABC projects

Identify and overcome impediments to widespread ABC use

What was accomplished?

- **Identified obstacles to ABC Implementation**
 - Owner/engineer/contractor surveys, interviews, review of past ABC projects
- Plan to overcome obstacles
- ABC Toolkit
- ABC Training Course
- Two ABC demonstration projects
- ABC implementation assistance
Obstacles to Implementing ABC
Owners’ Perspective

• Seek ability to balance the increase in construction costs for ABC projects against the user costs savings.
• Durability of connections.
• Need to standardizing components for ABC
• Challenges in getting industry support

Obstacles to Implementing ABC
Contractors’ Perspective

• ABC is perceived as raising the level of risk.
• Contractors concerns about the diminished profitability
• Greater outsourcing of work to precasters and specialty subcontractors.
• Contractors will be more willing to make equipment purchases if there are a greater number of projects to use the same equipment.
Obstacles to Implementing ABC
Engineers’ Perspective

- Lack of familiarity with ABC methods
- Looking for design manuals, specifications and design aids for ABC.
- Erection methods for large prefabricated elements
- Need for ABC training.

Engineers need to – “Think like a Contractor”

SHRP2 ABC Toolkit

Innovative Bridge Designs for Rapid Renewal
ABC Toolkit

Innovative Bridge Designs for Rapid Renewal
SHRP2 Toolkit Published 2012

- **SHRP2 ABC Toolkit** was developed for PBES and Lateral slide (2014 addendum)
- Focus on “workhorse” bridges / adaptable for more complex bridges
- Standards will foster more widespread use of ABC
- Make best use of program dollars by standardizing design through pre-engineered systems
- ABC standards can be incrementally improved through repeated use

SHRP2 R04 Websites

- FHWA’s GoSHRP2 site: http://www.fhwa.dot.gov/goshrp2/Solutions/all/R04/Toolkit_for_Rapid_Bridge_Construction/
- AASHTO’s SHRP2 site: http://shrp2.transportation.org/Pages/Bridge-Designs-for-Rapid-Renewal.aspx
SHRP2 R04 ABC Toolkit Contents

1. ABC Standard Design Concepts
2. ABC Erection Concepts
3. ABC Sample Design Calculations
4. ABC Design Calculations (LRFD)
5. ABC Construction Specifications

ABC Toolkit – Benefits

ALLOWS STANDARDIZATION OF DESIGN SECTIONS
- Decks
- Superstructure
- Wingwalls
- Columns
- Footings

CAN BE BUILT BY ANY BRIDGE CONTRACTOR
- Increases competition
- Enables use of local contractors

NO SPECIAL EQUIPMENT NEEDED
- No SPMTs
- No large gantry cranes
- No specialized contractors needed
- Onsite fabrication of bridge elements
Franklin Avenue Arch Rehabilitation
Minneapolis, MN

SELF-PERFORMING THE PRECASTING

Standard Design Concepts for PBES

- Decked steel girders
- Decked concrete girders
- Precast abutments and wingwalls
- Precast piers
- Precast footings
- Precast approach slabs
- ABC connections
Prefabricated Decked Beam Elements

Deck Bulb Tees

Double Tees

Composite Steel System

NJDOT Rte 18 Bridge
Weekend Replacement
Superstructure ABC Design

- Simple / continuous spans from 40 ft to 130 ft.
- Simple for DL; Continuous for LL; No Open Joints
- Plans are grouped in the following span ranges:
 - 40 ft to 70 ft
 - 70 ft to 100 ft
 - 100 ft to 130 ft.

Sample Drawings from ABC Toolkit
Integral Abutment

- Only one row of vertical piles
- Fast construction

Precast Piers

- Non-prestressed so contractor can self-perform precasting
- Fast erection using grouted splice couplers
Precast Approach Slab

Using the ABC Toolkit

• **General Information Sheets** Introduce the intent and scope of the ABC standard plans and details -- includes instructions to designers on key ABC issues

• Engineer of Record (EOR) should perform own ABC design calculations for the project using the examples as a guide

• EOR to customize the standard plans for the site --- span lengths / bridge width / module size / skew / foundations / etc

• Sample ABC Special Provisions for construction
Erection Concepts for ABC

Erection methods in the *ABC Toolkit*:

1. Erection using mobile cranes
2. Erection using gantry cranes / ABC construction technologies
Sample Erection Concepts Drawing

Gantry Cranes / Above Deck Driven Carriers

- Allows fast rate of erection
- Rides on existing bridge or new bridge
- Ideal for bridges with many spans, long viaducts
Launched Temporary Bridge

- Sites with limited ground access or long spans
- Launched across to act as a “temporary bridge”
- Used to deliver the heavier modules without inducing large erection stresses.

PBES Connections

ABC Toolkit / SHRP2 R04 Report
Ultra High Performance Concrete (UHPC)

Compressive Strength:
20,000 to 32,000 psi

Flexural Strength:
3,000 to 7,000 psi

Ductility:
Greater capacity to deform and support flexural and tensile loads, even after initial cracking

Abrasion Resistance:
Similar to natural rock

Impermeability:
Almost no carbonation and penetration of chlorides

UHPC Joints in Bridge Deck

- Full moment transfer – no post tensioning required
- Only 6 inches wide—high strength; low permeability
Transverse UHPC Joints in Deck at Pier

Iowa State Univ. Lab Tests

- Simple for DL; Continuous for LL
- UHPC joint reinforced to carry the full LL tension
- First use on the Keg Creek Bridge replacement, Iowa

Grouted Splice Sleeve Couplers --- Substructure
Cap Pockets & Grouted Ducts for Precast Piers

Suitable for moderate seismic regions

Sample ABC Design Calculations

Three design examples for prefabricated systems
- Modular Decked Beams
- Decked Precast Prestressed Girder
- Precast Pier

Stages for design are demonstrated
- Prefabrication Stage (many support options)
- Erection Stage (many lift options)
- Final Stage (Modules are assembled on site)
Recommend LRFD Specs for ABC

Address impediments in LRFD Specs to ABC implementation:

- Loads and load combinations for ABC
- Construction load cases, erection stresses
- Dynamic allowance
- Design of connections
- Design responsibility --- EOR / contractor’s engineer
- Prefabrication tolerances, quality, rideability
- Limits on deformations during placement

ABC Construction Specifications

Recommended Special Requirements for ABC Construction

PROPOSED SECTION IN LRFD CONSTRUCTION SPECIFICATIONS

Xx.1 General
Xx.2 Responsibilities
Xx.3 Materials
Xx.4 Fabrication
Xx.5 Submittals
Xx.6 Quality Assurance
Xx.7 Handling, Storing, and Transportation
Xx.8 Geometry Control
Xx.9 Connections
Xx.10 Erection Methods
Xx.11 Erection Procedures
Components of slide-in construction

- Permanent Bridge Design
- Temporary Support System

Components of Slide-in Construction Bridge Design

ABC Toolkit Addendum Contents

1. Permanent bridge design
2. Temporary support system
3. Push/pull system
4. Sliding bearings
5. Sliding forces
1. Permanent Bridge Design

- Consideration of the how the new bridge will be slid into place.
- Transfer of vertical and lateral loads during move
- Strengthening or modifying components of the superstructure and the substructure
 - Local areas where the push/pull system will be attached,
 - Where the sliding plates and/or rollers will support the structure, and
 - Where the sliding track will be installed.

2. Temp Support System (falsework)

- Contractor designed system
- Anticipated load effects applied by the sliding system.
- Relative stiffness of permanent support structures (likely relatively stiff) versus stiffness of temporary support structures (likely relatively flexible).
- Anticipated deflection / settlement of the temporary system.
- Provisions for vertical adjustment of track girder
- Attach the temp support to the permanent structure for lateral restraint
3. Push/Pull System

- Adequate force to overcome frictional forces
- Hydraulic jacks can either push or pull the system.
- Pairs of opposing strand jacks or winches can be used
- System controls to ensure all components work together
- Displacement control during the slide to ensure that the ends of the superstructure move at the same rate
- Contingency planning in the event of equipment failure

Movement Systems

Push/pull hydraulic jacks

Pulling with strand jacks/power winch
4. Slide Bearings

- **Roller Bearings**
 - Coefficient of Friction: 5% of Vertical Load

- **Teflon-Coated Neoprene Bearing Pads**
 - Coefficient of Friction: 10% of Vertical Load

5. Sliding Forces

- Coefficients of friction for PTFE bearings are given in the AASHTO LRFD Specifications.
- Static and dynamic coefficients of friction.
- Use a trial slide to verify friction values.
- Rollers have lower friction values / support heavier loads.
- Jacks should have a capacity well in excess of the highest frictional effects.
ABC and Toolkit Training Courses

ABC Training Courses (One Day)
- PennDOT
- MIDOT
- MNDOT
- VTDOT
- National bridge conferences

National ABC Webinars
- FIU Webinars
- FHWA Webinars

Implementing the SHRP2 ABC Toolkit
Assist with ABC Implementation
Apply the SHRP 2 Toolkit

Vermont Agency of Transportation
Using the SHRP2 ABC Toolkit for Hurricane Irene damaged bridges (17 bridges replaced)

First Demonstration Project -- 14 Day Bridge Replacement Keg Creek Bridge, Iowa

Use of ABC Toolkit Concepts Developed in SHRP2 R04

- Total prefabricated bridge
- 14 day closure
- 14 day ABC period
- Opened November 1, 2011
Rapid Replacement 2011
Keg Creek Bridge

IowaDOT Design – Conventional Construction
- 6-month closure
- ADT = 4000; 14 mile detour

Redesigned for ABC by HNTB
- Modular construction
- 14 day ABC period (Road closure)
- 3 span bridge
- Jointless construction
- Predecked steel beam units

Cross-Sections/Plan
Bids – Keg Creek Bridge, Iowa

- Seven local bidders
- Contract letting: February 2011
- Contractor: Godbersen-Smith, Iowa
- Low bid: $2.67 million
- Bridge cost = $231 / SF
- Incentive / disincentive = $22,000 / day during 14 day ABC period

Prefabication Yard Adjacent to Bridge – Iowa Bridge Farm
Prefabrication of Abutments and Piers

- Completed within a single day
- Two hydraulic breakers mounted on excavators
- Crane with wrecking ball

Rapid Demolition Day 1: October 17
Precast Abutment Assembly
Days 3 and 4
Precast Abutment Assembly
Days 3 and 4

Precast Pier Assembly
Day 5

- Pier caps: 168 kips
- Required two 110 ton cranes to lift into place
Erection of Superstructure Elements Days 7 and 8

Span – 70 ft
Semi-Integral Abutment – Suspended Backwall Days 7 and 8

- Allows superstructure expansion / contraction
- Easy fit up
- Well suited for rapid construction

UHPC Deck Closure Pours Day 10

- Full moment transfer
- No post-tensioning required
- Only 6 in. wide; low-permeability
- Hairpin bars or straight bars
Precast Approach Slab — Day 10

- Precast Sleeper Slab

Deck Riding Surface — Day 13

- No open deck joints
- Integral wearing surface --- overlay not required
- Extra ½ inch for grinding for smooth riding surface
- Longitudinal grooving for skid resistance
Second Demonstration Project
I-84 Bridges Slide-In Replacement — New York

• Weekend Replacements
• 20 Hr Closure

NY I-84 Bridges Over Dingle Ridge Road

• Over 75,000 ADT
• 16% trucks
• Existing bridges are too narrow for cross-overs
• Elevation differences between EB & WB roadways
• Underpassing road at 16% grade
Original Plan

- Build new temporary bridge in the median
- Build substantial cross-over roadway system due to grade differences
- Additional cost of approximately $2.0 M
- One construction season for each bridge
- Significant traffic impact
- Planned construction duration: 2 years

ABC Design – Slide-In Replacement

- Slide-In replacement over two weekend nights
- Traffic disruption on I-84 reduced from two years to two Saturday nights (20 hour closures).
- Incentive/disincentive clause: $10,000 per hour for early or late completion ($50K max incentive)
- Eliminates need for a temporary bridge and cross-overs – over; $2M savings ($2M HFL funds)
- Both slides completed within 10 months after NTP
Slide-In Construction
NY I-84 Twin Bridges

Superstructure Sections

- NEXT (Double Tee) beams
- Precast approach slabs
- UHPC closure pour
Abutment Construction -- Drilled Shafts Outside Existing Footprint

New Straddle Bent Abutment
T-Wall Modular Wingwalls

T-Wall

Cap Beam

Drilled shafts supporting cap beam

Slide-In Replacement Concept

Temporary end span

Slide Surface

During Slide

Modular walls
End Diaphragm and Slide Shoe

Slide Shoe

Precast Approach Slabs -- Temporary End Spans Carrying Traffic
Bridge Slide – October 21, 2013

7 hours to demolish existing bridge and slide in new bridge

Both Bridge Slides Completed
10 Months After NTP
PRESS

Thank You

Questions?