Sample Scour Report

Crystal Weaver, PE
Hydraulics Manager, INDOT

February 11, 2015

Agenda

- Scour Reminders
- Sample Scour Report
Basic Scour Reminders

- Still required for bridge rehabs
- Call Hydraulics to look for previous scour calculations
- Use Q_{100} only for bridge rehabs
- If overtopping present, use flow rate just prior to road overflow

Sample Scour Report

- Ease reporting for consultants
- Speed reviews for Hydraulics staff
- Available on Editable Documents webpage
Sample Scour Report

- **Six Main Sections**
 - Cover page
 - Introduction/Project Summary
 - Hydrology
 - Modeling discussion
 - Scour conclusions/countermeasures
 - Appendices with supporting data

Cover Page

- **Basic Project Information**
 - Route
 - Reference Post
 - County
 - Stream name
 - Des number
 - Signed & sealed
Location Map

- Location Map should be early in report
- Cover page is acceptable location for map, if desired
- Helps reviewer get their bearings

Introduction

- General details about the bridge
- Discussion about location
- Other scour related issues
Project Summary

- General discussion of project
- Include permit requirements

Project Summary

- Very similar to Introduction
- Can be combined into one discussion if desired
- Goal is to help the reviewer become familiar with the project
Hydrologic Data

- Discussion of calculations, particularly if multiple methods are used.
- Continue to follow guidance in Design Manual Figure 202-3A

Hydraulic Analysis & Modeling

- Provide source of data (i.e. existing plans, FIS, LiDAR)
- Discuss design decisions, such as the approach cross section
Scour Conclusions

- Scour Critical if low scour elevation is below foundation
- Scour Critical if low scour elevation is within 10 ft of pile tip

Scour Conclusions

- Not scour critical if low structure is above foundation
- Not scour critical if founded on competent rock
- If not scour critical, but piling is exposed, structural or geotechnical analysis may be needed
Scour Countermeasures

- State required countermeasures if scour critical

- Based on Design Manual and Standard Specs

- If sufficient countermeasures are in place, no further countermeasures are needed

Scour Countermeasures

- If structure is not scour critical, recommend no further countermeasures

- Still provide a countermeasure design, in case of future stream changes
Scour Data Requirements

- **Summary Table:**
 - Drainage Area
 - Q_{100} – from hydrology study
 - Q_{100} Water Surface Elevation
 - Q_{100} Maximum Velocity
 - Flowline Elevation

Scour Data Requirements

- **Summary Table:**
 - Q_{100} Contraction Scour Depth
 - Q_{100} Total Scour Depth
 - Q_{100} Low Scour Elevation
 - Foundation Elevations – optional. Can include in Scour Conclusions instead.
Scour Data Requirements

- **Q₁₀₀ Water Surface Elevation**
 - Taken from downstream bridge face
 - Do not need a natural/unconstricted model

- **Q₁₀₀ Maximum Velocity**
 - From HEC-RAS velocity distribution at bridge
 - Highest value from either upstream or downstream
 - Need 20+ data points across channel
 - Used to determine countermeasure size

Scour Data Requirements

- **Q₁₀₀ Total Scour Depth**
 - Summation of Contraction and Pier scour
 - Ignore Abutment scour

- **Q₁₀₀ Low Scour Elevation**
 - Subtract total scour depth from flowline elevation
Appendix A - General Info

- Pictures of bridge & site
- Existing Bridge Plans
- Include Layout Sheet and General Plan to verify data
 - Waterway Opening
 - Pile tip/footing elevations
 - Pier Width
 - Soil borings (if available)

Appendix B - Hydrologic Data

- Calculations placed here
- Follow Design Manual Figure 202-3A for methodology preferences
Appendix B - Hydrologic Data

For ease of review, suggested calculation order
- Drainage Area delineation
- Curve Number calculations
- Time of Concentration Calculations
- TR-20 or HEC-HMS input & output

Appendix B - Hydrologic Data

Supplemental Support Information
- StreamStats maps & output
- Purdue Regression Equations & supporting output
- Historic flooding information
Appendix C - Modeling Calcs

- **Cross Section Map**
 - Location & extent of cross sections
 - Cross section labels should match HEC-RAS model
 - Include topographic contours
 - Show ineffective flow lines

- **Starting Water Surface Elevation calculations**
 - Various methods are acceptable
Appendix C - Modeling Calcs

- **Known water surface elevation:**
 - Clearly document source & include flood profile from FIS
 - Not based on the backwater from a receiving stream.

- **Slope-conveyance method:**
 - Include mapping or profile used to compute slope
 - Include slope computations based on the mapping

Appendix C - Modeling Calcs

- **Slope-conveyance method calculations:**
 - Use USGS topo map and find slope based on 20 ft of fall through the bridge
 - One contour line upstream of bridge to two contour lines downstream
 - Use more detailed mapping – LiDAR from Indiana Spatial Data Portal, county or other local GIS websites
 - Provide profile used for calculation
Appendix C - Modeling Calcs

- **Slope-conveyance method calculations:**
 - Don’t use stream profile plot from existing plans
 - Usually distance is too short and local to the bridge
 - A more average slope is needed.

Appendix C - Modeling Calcs

- **Existing condition HEC-RAS outputs**
 - All HEC-RAS data files should be included in the model
 - Plots of cross sections, and profiles not required in the report.
Appendix C - Modeling Calcs

- HEC- RAS scour outputs:
 - Include full scour report
 - Highlight approach cross section, pier width, maximum velocity, & scour depths
 - Include plot of the bridge opening with the computed scour depths
 - Include low scour elevation calculation

Summary

- Use Q100 for bridge rehabilitations
- Modify flow rate for road overtopping
- Summary report available on INDOT website, with other editable documents
- Document goes into more detail