CHAPTER 3B. PAVEMENT AND CURB MARKINGS
Section 3B.01 Yellow Center Line Pavement Markings and Warrants

Standard:
01 Center line pavement markings, when used, shall be the pavement markings used to delineate the separation of traffic lanes that have opposite directions of travel on a roadway and shall be yellow.
Option:
02 Center line pavement markings may be placed at a location that is not the geometric center of the roadway.
03 On roadways without continuous center line pavement markings, short sections may be marked with center line pavement markings to control the position of traffic at specific locations, such as around curves, over hills, on approaches to grade crossings, at grade crossings, and at bridges.

Standard:
04 The center line markings on two-lane, two-way roadways shall be one of the following as shown in Figure 3B-1:
 A. Two-direction passing zone markings consisting of a normal broken yellow line where crossing the center line markings for passing with care is permitted for traffic traveling in either direction;
 B. One-direction no-passing zone markings consisting of a double yellow line, one of which is a normal broken yellow line and the other is a normal solid yellow line, where crossing the center line markings for passing with care is permitted for the traffic traveling adjacent to the broken line, but is prohibited for traffic traveling adjacent to the solid line; or
 C. Two-direction no-passing zone markings consisting of two normal solid yellow lines where crossing the center line markings for passing is prohibited for traffic traveling in either direction.
05 A single solid yellow line shall not be used as a center line marking on a two-way roadway.
06 The center line markings on undivided two-way roadways with four or more lanes for moving motor vehicle traffic always available shall be the two-direction no-passing zone markings consisting of a solid double yellow line as shown in Figure 3B-2.

Guidance:
07 On two-way roadways with three through lanes for moving motor vehicle traffic, two lanes should be designated for traffic in one direction by using one- or two-direction no-passing zone markings as shown in Figure 3B-3.

Support:
08 Sections 11-301(c) and 11-311(c) of the Uniform Vehicle Code (UVC) contain information regarding left turns across center line no-passing zone markings and paved medians, respectively. The UVC can be obtained from the National Committee on Uniform Traffic Laws and Ordinances at the address shown on Page i.

Standard:
09 Center line markings shall be placed on all paved urban arterials and collectors that have a traveled way of 20 feet or more in width and an ADT of 6,000 vehicles per day or greater. Center line markings shall also be placed on all paved two-way streets or highways that have three or more lanes for moving motor vehicle traffic.

Guidance:
10 Center line markings should be placed on paved urban arterials and collectors that have a traveled way of 20 feet or more in width and an ADT of 4,000 vehicles per day or greater. Center line markings should also be placed on all rural arterials and collectors that have a traveled way of 18 feet or more in width and an ADT of 3,000 vehicles per day or greater. Center line markings should also be placed on other traveled ways where an engineering study indicates such a need.

11 Engineering judgment should be used in determining whether to place center line markings on traveled ways that are less than 16 feet wide because of the potential for traffic encroaching on the pavement edges, traffic being affected by parked vehicles, and traffic encroaching into the opposing traffic lane.

Option:
12 Center line markings may be placed on other paved two-way traveled ways that are 16 feet or more in width.
13 If a traffic count is not available, the ADTs described in this Section may be estimates that are based on engineering judgment.
Figure 3B-1. Examples of Two-Lane, Two-Way Marking Applications

A - Typical two-lane, two-way marking with passing permitted in both directions

B - Typical two-lane, two-way marking with no-passing zones

Legend
→ Direction of travel

No-passing zone

No-passing zone
Figure 3B-2. Examples of Four-or-More Lane, Two-Way Marking Applications

A - Typical multi-lane, two-way marking

B - Typical multi-lane, two-way marking with single lane left turn channelization

Legend
★ Optional in some conditions (see Section 3B.20)
→ Direction of travel

Optional yellow diagonal crosshatch markings
Optional dotted extension
Section 3B.02 No-Passing Zone Pavement Markings and Warrants

Standard:

01 No-passing zones shall be marked by either the one direction no-passing zone pavement markings or the two-direction no-passing zone pavement markings described in Section 3B.01 and shown in Figures 3B-1 and 3B-3.

02 When center line markings are used, no-passing zone markings shall be used on two-way roadways at lane-reduction transitions (see Section 3B.09) and on approaches to obstructions that must be passed on the right (see Section 3B.10).

03 On two-way, two- or three-lane roadways where center line markings are installed, no-passing zones shall be established at vertical and horizontal curves and other locations where an engineering study indicates that passing must be prohibited because of inadequate sight distances or other special conditions.

04 On roadways with center line markings, no-passing zone markings shall be used at horizontal or vertical curves where the passing sight distance is less than the minimum shown in Table 3B-1 for the 85th-percentile speed or the posted or statutory speed limit. The passing sight distance on a vertical curve is the distance at which an object 3.5 feet above the pavement surface can be seen from a point 3.5 feet above the pavement (see Figure 3B-4). Similarly, the passing sight distance on a horizontal curve is the distance measured along the center line (or right-hand lane line of a three-lane roadway) between two points 3.5 feet above the pavement on a line tangent to the embankment or other obstruction that cuts off the view on the inside of the curve (see Figure 3B-4).

Support:

05 The upstream end of a no-passing zone at point “a” in Figure 3B-4 is that point where the sight distance first becomes less than that specified in Table 3B-1. The downstream end of the no-passing zone at point “b” in Figure 3B-4 is that point at which the sight distance again becomes greater than the minimum specified.

06 The values of the minimum passing sight distances that are shown in Table 3B-1 are for operational use in marking no-passing zones and are less than the values that are suggested for geometric design by the AASHTO Policy on Geometric Design of Streets and Highways (see Section 1A.11).

<table>
<thead>
<tr>
<th>Table 3B-1. Minimum Passing Sight Distances for No-Passing Zone Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>85th-Percentile or Posted or Statutory Speed Limit</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>25 mph</td>
</tr>
<tr>
<td>30 mph</td>
</tr>
<tr>
<td>35 mph</td>
</tr>
<tr>
<td>40 mph</td>
</tr>
<tr>
<td>45 mph</td>
</tr>
<tr>
<td>50 mph</td>
</tr>
<tr>
<td>55 mph</td>
</tr>
<tr>
<td>60 mph</td>
</tr>
<tr>
<td>65 mph</td>
</tr>
<tr>
<td>70 mph</td>
</tr>
</tbody>
</table>
Figure 3B-4. Method of Locating and Determining the Limits of No-Passing Zones at Curves

A - No-passing zone at VERTICAL CURVE

- Minimum passing sight distance for 85th-percentile posted or statutory speed
- Line of sight
- Pavement profile
- 3.5 ft

\[a, a' \text{ Begin no-passing zone} \]
\[b, b' \text{ End no-passing zone} \]
\[\text{Sight distance becomes less than minimum measured between points 3.5 feet above pavement} \]

Profile View

Note: No-passing zones in opposite directions may or may not overlap, depending on alignment

B - No-passing zone at HORIZONTAL CURVE

- Minimum passing sight distance for 85th-percentile posted or statutory speed
- Lines of sight

\[a, a' \text{ Begin no-passing zone} \]
\[b, b' \text{ End no-passing zone} \]
\[\text{Sight distance becomes less than minimum measured between points 3.5 feet above pavement} \]

Plan View

Note: No-passing zones in opposite directions may or may not overlap, depending on alignment
Guidance:
07 Where the distance between successive no-passing zones is less than 400 feet, no-passing markings should connect the zones.

Standard:
08 Where center line markings are used, no-passing zone markings shall be used on approaches to grade crossings in compliance with Section 8B.27.

Option:
09 In addition to pavement markings, no-passing zone signs (see Sections 2B.28, 2B.29, and 2C.45) may be used to emphasize the existence and extent of a no-passing zone.

Support:
10 Section 11-307 of the “Uniform Vehicle Code (UVC)” contains further information regarding required road user behavior in no-passing zones. The UVC can be obtained from the National Committee on Uniform Traffic Laws and Ordinances at the address shown on Page i.

Standard:
11 On three-lane roadways where the direction of travel in the center lane transitions from one direction to the other, a no-passing buffer zone shall be provided in the center lane as shown in Figure 3B-5. A lane-reduction transition (see Section 3B.09) shall be provided at each end of the buffer zone.
12 The buffer zone shall be a flush median island formed by two sets of double yellow center line markings that is at least 50 feet in length.

Option:
13 Yellow diagonal crosshatch markings (see Section 3B.24) may be placed in the flush median area between the two sets of no-passing zone markings as shown in Figure 3B-5.

Guidance:
14 For three-lane roadways having a posted or statutory speed limit of 45 mph or greater, the lane transition taper length should be computed by the formula \(L = WS \). For roadways where the posted or statutory speed limit is less than 45 mph, the formula \(L = WS^2 / 60 \) should be used to compute the taper length.

Support:
15 Under both formulas, \(L \) equals the taper length in feet, \(W \) equals the width of the center lane or offset distance in feet, and \(S \) equals the 85th-percentile speed or the posted or statutory speed limit, whichever is higher.

Guidance:
16 The minimum lane transition taper length should be 100 feet in urban areas and 200 feet in rural areas.

Section 3B.03 Other Yellow Longitudinal Pavement Markings

Standard:
01 If reversible lanes are used, the lane line pavement markings on each side of reversible lanes shall consist of a normal broken double yellow line to delineate the edge of a lane in which the direction of travel is reversed from time to time, such that each of these markings serve as the center line markings of the roadway during some period (see Figure 3B-6).
02 Signs (see Section 2B.26), lane-use control signals (see Chapter 4M), or both shall be used to supplement reversible lane pavement markings.
03 If a two-way left-turn lane that is never operated as a reversible lane is used, the lane line pavement markings on each side of the two-way left-turn lane shall consist of a normal broken yellow line and a normal solid yellow line to delineate the edges of a lane that can be used by traffic in either direction as part of a left-turn maneuver. These markings shall be placed with the broken line toward the two-way left-turn lane and the solid line toward the adjacent traffic lane as shown in Figure 3B-7.

Guidance:
04 White two-way left-turn lane-use arrows (see Figure 3B-7), should be used in conjunction with the longitudinal two-way left-turn markings at the locations described in Section 3B.20.
05 Signs should be used in conjunction with the two-way left turn markings (see Section 2B.24).

Standard:
06 If a continuous flush median island formed by pavement markings separating travel in opposite directions is used, two sets of solid double yellow lines shall be used to form the island as shown in Figures 3B-2 and 3B-5. Other markings in the median island area shall also be yellow, except crosswalk markings which shall be white (see Section 3B.18).
Figure 3B-5. Example of Application of Three-Lane, Two-Way Marking for Changing Direction of the Center Lane

Legend

→ Direction of travel

Notes:
1. See Section 3B.02 for determining the minimum length of the buffer zone
2. Lane-reduction arrows are optional for speeds of 40 mph or less
3. See Figure 3B-14 for lane-reduction transition markings and determination of taper length L

Two directional no-passing marking

Car “Y”

Zone of limited sight distance, Car “Y”

Buffer zone

Car “X”

Zone of limited sight distance, Car “X”

Optional yellow diagonal crosshatch markings

Two directional no-passing marking

L (see Note 3)
Section 3B.04 White Lane Line Pavement Markings and Warrants

Standard:
01 When used, lane line pavement markings delineating the separation of traffic lanes that have the same direction of travel shall be white.
02 Lane line markings shall be used on all freeways and Interstate highways.

Guidance:
03 Lane line markings should be used on all roadways that are intended to operate with two or more adjacent traffic lanes in the same direction of travel, except as otherwise required for reversible lanes. Lane line markings should also be used at congested locations where the roadway will accommodate more traffic lanes with lane line markings than without the markings.

Support:
04 Examples of lane line markings are shown in Figures 3B-2, 3B-3, and 3B-7 through 3B-13.

Standard:
05 Except as provided in Paragraph 6, where crossing the lane line markings with care is permitted, the lane line markings shall consist of a normal broken white line.
06 A dotted white line marking shall be used as the lane line to separate a through lane that continues beyond the interchange or intersection from an adjacent lane for any of the following conditions:
 A. A deceleration or acceleration lane,
 B. A through lane that becomes a mandatory exit or turn lane,
 C. An auxiliary lane 2 miles or less in length between an entrance ramp and an exit ramp, or
 D. An auxiliary lane 1 mile or less in length between two adjacent intersections.
07 For exit ramps with a parallel deceleration lane, a normal width dotted white lane line shall be installed from the upstream end of the full-width deceleration lane to the theoretical gore or to the upstream end of a solid white lane line, if used, that extends upstream from the theoretical gore as shown in Drawings A and C of Figure 3B-8.
Option:
08 For exit ramps with a parallel deceleration lane, a normal width dotted white line extension may be installed in the taper area upstream from the full-width deceleration lane as shown in Drawings A and C of Figure 3B-8.
09 For an exit ramp with a tapered deceleration lane, a normal width dotted white line extension may be installed from the theoretical gore through the taper area such that it meets the edge line at the upstream end of the taper as shown in Drawing B of Figure 3B-8.

Standard:
10 For entrance ramps with a parallel acceleration lane, a normal width dotted white lane line shall be installed from the theoretical gore or from the downstream end of a solid white lane line, if used, that extends downstream from the theoretical gore, to a point at least one-half the distance from the theoretical gore to the downstream end of the acceleration taper, as shown in Drawing A of Figure 3B-9.
Option:
11 For entrance ramps with a parallel acceleration lane, a normal width dotted white line extension may be installed from the downstream end of the dotted white lane line to the downstream end of the acceleration taper, as shown in Drawing A of Figure 3B-9.
12 For entrance ramps with a tapered acceleration lane, a normal width dotted white line extension may be installed from the downstream end of the channelizing line adjacent to the through lane to the downstream end of the acceleration taper, as shown in Drawings B and C of Figure 3B-9.
Note: Single-direction left-turn arrows shall not be used in lanes bordered on both sides by two-way left-turn lane markings.

Legend

→ Direction of travel

See Section 3B.20 for use of additional arrows beyond the beginning of the two-way left-turn lane
Figure 3B-8. Examples of Dotted Line and Channelizing Line Applications for Exit Ramp Markings (Sheet 1 of 2)

A - Parallel deceleration lane
- Physical gore
- Optional white chevron markings in neutral area
- White channelizing lines
- Wide or normal width solid white lane line (optional, variable length) or normal width dotted white lane line
- Normal width dotted white lane line from upstream end of full width deceleration lane to theoretical gore or to upstream end of optional solid white lane line
- Normal width dotted lane line or dotted extension of right-hand edge line is optional in deceleration lane taper

B - Tapered deceleration lane
- Physical gore
- Optional white chevron markings in neutral area
- White channelizing lines
- Theoretical gore
- Optional normal width dotted white extension of right-hand edge line

Legend
- Direction of travel

Sect. 3B.04

November 2011
Figure 3B-8. Examples of Dotted Line and Channelizing Line Applications for Exit Ramp Markings (Sheet 2 of 2)

C – Parallel deceleration lane at a multi-lane exit ramp having an optional exit lane that also carries the through route

- White channelizing lines

- Normal width or wide solid white lane line (variable length)

- Normal width dotted white lane line from upstream end of full width deceleration lane to theoretical gore or to upstream end of solid white lane line

- Normal width dotted lane line or dotted extension of right-hand edge line is optional in deceleration lane taper

- Optional white chevron markings in neutral area

- Physical gore

- Varies

Legend:
- Direction of travel
Figure 3B-9. Examples of Dotted Line and Channelizing Line Applications for Entrance Ramp Markings (Sheet 1 of 2)

A - Parallel acceleration lane

B - Tapered acceleration lane

Legend

- Direction of travel

A = Length of acceleration lane plus taper

Optional normal width dotted white lane line or dotted extension of right-hand edge line downstream beyond the "0.5 A MIN." point

Normal width dotted white lane line for at least half the length of the full-width acceleration lane plus taper

Wide or normal width solid white lane line (optional, variable length) or normal width dotted white lane line

Optional white chevron markings in neutral area

Neutral area

White channelizing lines

Physical gore

Theoretical gore

Edge of through lane

0.5 A MIN.
Figure 3B-9. Examples of Dotted Line and Channelizing Line Applications for Entrance Ramp Markings (Sheet 2 of 2)

C - Tapered acceleration lane

Legend

- Direction of travel

B = Distance from physical gore to downstream end of full width acceleration lane

Optional normal width dotted extension of right-hand edge line

Full lane width

Theoretical gore

Neutral area

White channelizing lines

Physical gore

Edge of through lane

0.5 B MIN.
Standard:

A wide dotted white lane line shall be used:

A. As a lane drop marking in advance of lane drops at exit ramps to distinguish a lane drop from a normal exit ramp (see Drawings A, B, and C of Figure 3B-10),
B. In advance of freeway route splits with dedicated lanes (see Drawing D of Figure 3B-10),
C. To separate a through lane that continues beyond an interchange from an adjacent auxiliary lane between an entrance ramp and an exit ramp (see Drawing E of Figure 3B-10),
D. As a lane drop marking in advance of lane drops at intersections to distinguish a lane drop from an intersection through lane (see Drawing A of Figure 3B-11), and
E. To separate a through lane that continues beyond an intersection from an adjacent auxiliary lane between two intersections (see Drawing B of Figure 3B-11).

Guidance:

Lane drop markings used in advance of lane drops at freeway and expressway exit ramps should begin at least 1/2 mile in advance of the theoretical gore.

On the approach to a multi-lane exit ramp having an optional exit lane that also carries through traffic, lane line markings should be used as illustrated in Drawing B of Figure 3B-10. In this case, if the right-most exit lane is an added lane such as a parallel deceleration lane, the lane drop marking should begin at the upstream end of the full-width deceleration lane, as shown in Drawing C of Figure 3B-8.

Lane drop markings used in advance of lane drops at intersections should begin a distance in advance of the intersection that is determined by engineering judgment as suitable to enable drivers who do not desire to make the mandatory turn to move out of the lane being dropped prior to reaching the queue of vehicles that are waiting to make the turn. The lane drop marking should begin no closer to the intersection than the most upstream regulatory or warning sign associated with the lane drop.

The dotted white lane lines that are used for lane drop markings and that are used as a lane line separating through lanes from auxiliary lanes should consist of line segments that are 3 feet in length separated by 9-foot gaps.

Support:

Section 3B.20 contains information regarding other markings that are associated with lane drops, such as lane-use arrow markings and ONLY word markings.

Section 3B.09 contains information about the lane line markings that are to be used for transition areas where the number of through lanes is reduced.

Standard:

Where crossing the lane line markings is discouraged, the lane line markings shall consist of a normal or wide solid white line.

Option:

Where it is intended to discourage lane changing on the approach to an exit ramp, a wide solid white lane line may extend upstream from the theoretical gore or, for multi-lane exits, as shown in Drawing B of Figure 3B-10, for a distance that is determined by engineering judgment.

Where lane changes might cause conflicts, a wide or normal solid white lane line may extend upstream from an intersection.

In the case of a lane drop at an exit ramp or intersection, such a solid white line may replace a portion, but not all of the length of the wide dotted white lane line.

Support:

Section 3B.09 contains information about the lane line markings that are to be used for transition areas where the number of through lanes is reduced.

Guidance:

On approaches to intersections, a solid white lane line marking should be used to separate a through lane from an added mandatory turn lane.

Option:

On approaches to intersections, solid white lane line markings may be used to separate adjacent through lanes or adjacent mandatory turn lanes from each other.

Where the median width allows the left-turn lanes to be separated from the through lanes to give drivers on opposing approaches a less obstructed view of opposing through traffic, white pavement markings may be used to form channelizing islands as shown in Figure 2B-17.
Figure 3B-10. Examples of Applications of Freeway and Expressway Lane-Drop Markings (Sheet 1 of 5)

A – Lane drop at a single lane exit ramp

White channelizing lines

Optional white chevron markings in neutral area

Theoretical gore

1/2 mile MIN.

Exit Ramp

Physical gore

Optional speed measurement marking

Legend

→ Direction of travel
Figure 3B-10. Examples of Applications of Freeway and Expressway Lane-Drop Markings (Sheet 2 of 5)

B – Lane drop at a multi-lane exit ramp having an optional exit lane that also carries the through route

- White channelizing lines
- Wide solid white lane line
- Wide dotted white lane line
- Optional white chevron markings in neutral area
- Physical gore
- Varies
- 1/2 mile MIN.

Legend
- Direction of travel

Sect. 3B.04
Figure 3B-10. Examples of Applications of Freeway and Expressway
Lane-Drop Markings (Sheet 3 of 5)

C – Two-lane lane drop at an exit ramp

- White channelizing lines
- Wide solid white lane line (optional, variable length) or normal width broken white lane line
- Optional white chevron markings in neutral area
- Physical gore
- Optional white chevron markings in neutral area
- Theoretical gore
- Wide solid white lane line (optional, variable length) or normal width broken white lane line
- Physical gore
- Optional white chevron markings in neutral area
- Theoretical gore
- Wide dotted white lane line
- 1/2 mile MIN.

Legend
- Direction of travel
Figure 3B-10. Examples of Applications of Freeway and Expressway Lane-Drop Markings (Sheet 4 of 5)

D – Route split with dedicated lanes

- White channelizing lines
- Wide solid white lane line (optional, variable length) or wide dotted white lane line
- Wide dotted white lane line
- Physical gore
- Optional white chevron markings in neutral area
- Theoretical gore
- Varies
- 1/2 mile MIN.

Legend
- Direction of travel
Figure 3B-10. Examples of Applications of Freeway and Expressway Lane-Drop Markings (Sheet 5 of 5)

E – Auxiliary lane, such as at a cloverleaf interchange

Legend
→ Direction of travel

Physical gore

Optional white chevron markings in neutral area

White channelizing lines

Theoretical gore

Wide solid white lane line (optional, variable length) or wide dotted white lane line

Wide dotted white lane line for full length of auxiliary lane between the theoretical gorges of the entrance and exit ramps or between the upstream and downstream ends of the optional wide solid white lines

Wide solid white lane line (optional, variable length) or wide dotted white lane line

Theoretical gore

White channelizing lines

Neutral area

Physical gore
Figure 3B-11. Examples of Applications of Conventional Road Lane-Drop Markings
(Sheet 1 of 2)

A – Lane drop at an intersection
Figure 3B-11. Examples of Applications of Conventional Road Lane-Drop Markings
(Sheet 2 of 2)

B – Auxiliary lane between intersections

1 mile or less

Optional dotted extension

Wide solid white lane line

Wide dotted white lane line

More than 1 mile

Optional dotted extension

Varies

Varies (see Section 3B.04 for lane-drop markings at intersections)

Wide dotted white lane line

Normal width broken white lane line
Solid white lane line markings may be used to separate through traffic lanes from auxiliary lanes, such as an added uphill truck lane or a preferential lane (see Section 3D.02).

Wide solid lane line markings may be used for greater emphasis.

Standard:

Where crossing the lane line markings is prohibited, the lane line markings shall consist of a solid double white line (see Figure 3B-12).

Section 3B.05 Other White Longitudinal Pavement Markings

Standard:

A channelizing line shall be a wide or double solid white line.

Option:

Channelizing lines may be used to form channelizing islands where traffic traveling in the same direction is permitted on both sides of the island.

Standard:

Other pavement markings in the channelizing island area shall be white.

Support:

Examples of channelizing line applications are shown in Figures 3B-8, 3B-9, and 3B-10, and in Drawing C of Figure 3B-15.

Channelizing lines at exit ramps as shown in Figures 3B-8 and 3B-10 define the neutral area, direct exiting traffic at the proper angle for smooth divergence from the main lanes into the ramp, and reduce the probability of colliding with objects adjacent to the roadway.

Channelizing lines at entrance ramps as shown in Figures 3B-9 and 3B-10 promote orderly and efficient merging with the through traffic.

Standard:

For all exit ramps and for entrance ramps with parallel acceleration lanes, channelizing lines shall be placed on both sides of the neutral area (see Figures 3B-8 and 3B-10 and Drawing A of Figure 3B-9).

For entrance ramps with tapered acceleration lanes, channelizing lines shall be placed along both sides of the neutral area to a point at least one-half of the distance to the theoretical gore (see Drawing C of Figure 3B-9).

Option:

For entrance ramps with tapered acceleration lanes, the channelizing lines may extend to the theoretical gore as shown in Drawing B of Figure 3B-9.

Figure 3B-12. Example of Solid Double White Lines Used to Prohibit Lane Changing

![Figure 3B-12. Example of Solid Double White Lines Used to Prohibit Lane Changing](image)
White chevron crosshatch markings (see Section 3B.24) may be placed in the neutral area of exit ramp and entrance ramp gores for special emphasis as shown in Figures 3B-8 and 3B-10 and Drawing A of Figure 3B-9. The channelizing lines and the optional chevron crosshatch markings at exit ramp and entrance ramp gores may be supplemented with white retroreflective or internally illuminated raised pavement markers (see Sections 3B.11 and 3B.13) for enhanced nighttime visibility.

Section 3B.06 Edge Line Pavement Markings

Standard:
01 If used, edge line pavement markings shall delineate the right or left edges of a roadway.
02 Except for dotted edge line extensions (see Section 3B.08), edge line markings shall not be continued through intersections or major driveways.
03 If used on the roadways of divided highways or one-way streets, or on any ramp in the direction of travel, left edge line pavement markings shall consist of a normal solid yellow line to delineate the left-hand edge of a roadway or to indicate driving or passing restrictions left of these markings.
04 If used, right edge line pavement markings shall consist of a normal solid white line to delineate the right-hand edge of the roadway.

Guidance:
05 Edge line markings should not be broken for minor driveways.

Support:
06 Edge line markings have unique value as visual references to guide road users during adverse weather and visibility conditions.

Option:
07 Wide solid edge line markings may be used for greater emphasis.

Section 3B.07 Warrants for Use of Edge Lines

Standard:
01 Edge line markings shall be placed on paved streets or highways with the following characteristics:
 A. Freeways,
 B. Expressways, and
 C. Rural arterials with a traveled way of 20 feet or more in width and an ADT of 6,000 vehicles per day or greater.

Guidance:
02 Edge line markings should be placed on paved streets or highways with the following characteristics:
 A. Rural arterials and collectors with a traveled way of 20 feet or more in width and an ADT of 3,000 vehicles per day or greater.
 B. On other paved streets and highways where an engineering study indicates a need for edge line markings.
03 Edge line markings should not be placed where an engineering study or engineering judgment indicates that providing them is likely to decrease safety.

Option:
04 Edge line markings may be placed on streets and highways with or without center line markings.
05 Edge line markings may be excluded, based on engineering judgment, for reasons such as if the traveled way edges are delineated by curbs, parking, or other markings.
06 If a bicycle lane is marked on the outside portion of the traveled way, the edge line that would mark the outside edge of the bicycle lane may be omitted.
07 Edge line markings may be used where edge delineation is desirable to minimize unnecessary driving on paved shoulders or on refuge areas that have lesser structural pavement strength than the adjacent roadway.

Section 3B.08 Extensions Through Intersections or Interchanges

Standard:
01 Except as provided in Paragraph 2, pavement markings extended into or continued through an intersection or interchange area shall be the same color and at least the same width as the line markings they extend (see Figure 3B-13).

Option:
02 A normal line may be used to extend a wide line through an intersection.
Figure 3B-13. Examples of Line Extensions through Intersections (Sheet 1 of 2)

A - Typical pavement markings with offset lane lines continued through the intersection and optional crosswalk lines and stop lines

Legend

↑ Direction of travel

Note: Lane line extensions in the intersection may be dotted or solid white lines

B - Typical pavement markings with double-turn lanes, lane-use turn arrows, and optional crosswalk lines, stop lines, and line extensions into intersection for double turns

Optional dotted extension

Note: Lane line extensions in the intersection may be dotted or solid white lines

Optional dotted extension
Figure 3B-13. Examples of Line Extensions through Intersections (Sheet 2 of 2)

C - Typical dotted line markings to extend lane line markings into the intersection

Legend
→ Direction of travel

Optional dotted extension

Note: Lane line extensions in the intersection may be dotted or solid white lines

D - Typical dotted line markings to extend center line and lane line markings into the intersection

Note: Lane line extensions in the intersection may be dotted or solid white lines. Center line extensions in the intersection shall be dotted yellow lines.
Guidance:
Where highway design or reduced visibility conditions make it desirable to provide control or to guide vehicles through an intersection or interchange, such as at offset, skewed, complex, or multi-legged intersections, on curved roadways, where multiple turn lanes are used, or where offset left turn lanes might cause driver confusion, dotted line extension markings consisting of 2-foot line segments and 2- to 6-foot gaps should be used to extend longitudinal line markings through an intersection or interchange area.

Option:
- Dotted edge line extensions may be placed through intersections or major driveways.

Guidance:
Where greater restriction is required, solid lane lines or channelizing lines should be extended into or continued through intersections or major driveways.

Standard:
- Solid lines shall not be used to extend edge lines into or through intersections or major driveways.

Guidance:
Where a double line is extended through an intersection, a single line of equal width to one of the lines of the double line should be used.

To the extent possible, pavement marking extensions through intersections should be designed in a manner that minimizes potential confusion for drivers in adjacent or opposing lanes.

Section 3B.09 Lane-Reduction Transition Markings

Support:
Lane-reduction transition markings are used where the number of through lanes is reduced because of narrowing of the roadway or because of a section of on-street parking in what would otherwise be a through lane. Lane-reduction transition markings are not used for lane drops.

Standard:
- Except as provided in Paragraph 3, where pavement markings are used, lane-reduction transition markings shall be used to guide traffic through transition areas where the number of through lanes is reduced, as shown in Figure 3B-14. On two-way roadways, no-passing zone markings shall be used to prohibit passing in the direction of the convergence, and shall continue through the transition area.

Option:
- On low-speed urban roadways where curbs clearly define the roadway edge in the lane-reduction transition, or where a through lane becomes a parking lane, the edge line and/or delineators shown in Figure 3B-14 may be omitted as determined by engineering judgment.

Guidance:
For roadways having a posted or statutory speed limit of 45 mph or greater, the transition taper length for a lane-reduction transition should be computed by the formula \(L = WS \). For roadways where the posted or statutory speed limit is less than 45 mph, the formula \(L = WS^2/60 \) should be used to compute the taper length.

Support:
Under both formulas, \(L \) equals the taper length in feet, \(W \) equals the width of the offset distance in feet, and \(S \) equals the 85th-percentile speed or the posted or statutory speed limit, whichever is higher.

Guidance:
Where observed speeds exceed posted or statutory speed limits, longer tapers should be used.

Option:
- On new construction, where no posted or statutory speed limit has been established, the design speed may be used in the transition taper length formula.

Guidance:
Lane line markings should be discontinued one-quarter of the distance between the Lane Ends sign (see Section 2C.42) and the point where the transition taper begins.

Except as provided in Paragraph 3 for low-speed urban roadways, the edge line markings shown in Figure 3B-14 should be installed from the location of the Lane Ends warning sign to beyond the beginning of the narrower roadway.

Support:
Pavement markings at lane-reduction transitions supplement the standard signs. See Section 3B.20 for provisions regarding use of lane-reduction arrows.
Figure 3B-14. Examples of Applications of Lane-Reduction Transition Markings

A – Lane reduction

B – Lane reduction with lateral shift to the left

Notes:
1. Lane-reduction arrows are optional for speeds of less than 45 mph
2. See Section 3E.04 for delineator spacing
3. $L = WS$ for speeds of 45 mph or greater and $L = WS/60$ for speeds of less than 45 mph, where:
 - L = Length of taper in feet
 - S =Posted, 85th-percentile, or statutory speed in mph
 - W = Offset in feet
4. d = Advance warning distance (see Section 2C.05)
Section 3B.10 Approach Markings for Obstructions

Standard:
01 Pavement markings shall be used to guide traffic away from fixed obstructions within a paved roadway. Approach markings for bridge supports, refuge islands, median islands, toll plaza islands, and raised channelization islands shall consist of a tapered line or lines extending from the center line or the lane line to a point 1 to 2 feet to the right-hand side, or to both sides, of the approach end of the obstruction (see Figure 3B-15).

Support:
02 See Chapter 3E for additional information on approach markings for toll plaza islands.

Guidance:
03 For roadways having a posted or statutory speed limit of 45 mph or greater, the taper length of the tapered line markings should be computed by the formula \(L = WS \). For roadways where the posted or statutory speed limit is less than 45 mph, the formula \(L = \frac{W S^2}{60} \) should be used to compute the taper length.

Support:
04 Under both formulas, \(L \) equals the taper length in feet, \(W \) equals the width of the offset distance in feet, and \(S \) equals the 85th-percentile speed or the posted or statutory speed limit, whichever is higher.

Guidance:
05 The minimum taper length should be 100 feet in urban areas and 200 feet in rural areas.

Support:
06 Examples of approach markings for obstructions in the roadway are shown in Figure 3B-15.

Standard:
07 If traffic is required to pass only to the right of the obstruction, the markings shall consist of a two-direction no-passing zone marking at least twice the length of the diagonal portion as determined by the appropriate taper formula (see Drawing A of Figure 3B-15).

Option:
08 If traffic is required to pass only to the right of the obstruction, yellow diagonal crosshatch markings (see Section 3B.24) may be placed in the flush median area between the no-passing zone markings as shown in Drawings A and B of Figure 3B-15. Other markings, such as yellow delineators, yellow channelizing devices, yellow raised pavement markers, and white crosswalk pavement markings, may also be placed in the flush median area.

Standard:
09 If traffic can pass either to the right or left of the obstruction, the markings shall consist of two channelizing lines diverging from the lane line, one to each side of the obstruction. In advance of the point of divergence, a wide solid white line or normal solid double white line shall be extended in place of the broken lane line for a distance equal to the length of the diverging lines (see Drawing C of Figure 3B-15).

Option:
10 If traffic can pass either to the right or left of the obstruction, additional white chevron crosshatch markings (see Section 3B.24) may be placed in the flush median area between the channelizing lines as shown in Drawing C of Figure 3B-15. Other markings, such as white delineators, white channelizing devices, white raised pavement markers, and white crosswalk markings may also be placed in the flush median area.

Section 3B.11 Raised Pavement Markers General

Standard:
01 The color of raised pavement markers under both daylight and nighttime conditions shall conform to the color of the marking for which they serve as a positioning guide, or for which they supplement or substitute.

Option:
02 The side of a raised pavement marker that is visible to traffic proceeding in the wrong direction may be red (see Section 3A.05).
03 Retroreflective or internally illuminated raised pavement markers may be used in the roadway immediately adjacent to curbed approach ends of raised medians and curbs of islands, or on top of such curbs (see Section 3B.23).
Figure 3B-15. Examples of Applications of Markings for Obstructions in the Roadway

(Sheet 1 of 2)

A - Center of a two-lane road

B - Center of a four-lane road

Legend

→ Direction of travel
☒ Obstruction

For speeds 45 mph or more: \(L = WS \)
For speeds less than 45 mph: \(L = WS^2/60 \)
\(S \) = Posted, 85th-percentile, or statutory speed in mph
\(W \) = Offset distance in feet

Minimum length of:
- \(L = 100 \) feet in urban areas
- \(L = 200 \) feet in rural areas

Length "L" should be extended as required by sight distance conditions.
Figure 3B-15. Examples of Applications of Markings for Obstructions in the Roadway
(Sheet 2 of 2)

C - Traffic passing in the same direction on both sides of an obstruction

Legend

- Direction of travel
- Wide solid white lane line or normal width solid double white lane line
- Obstruction

For speeds of 45 mph or more: \(L = WS \)
For speeds of less than 45 mph: \(L = WS^2/60 \)
\(S \) = Posted, 85th-percentile, or statutory speed in mph
\(W \) = Offset distance in feet

Minimum length of: \(L = 100 \) feet in urban areas
\(L = 200 \) feet in rural areas

Length "L" should be extended as required by sight distance conditions
Retroreflective and internally illuminated raised pavement markers are available in mono-directional and bidirectional configurations. The bidirectional marker is capable of displaying the applicable color for each direction of travel. Blue raised pavement markers are sometimes used in the roadway to help emergency personnel locate fire hydrants.

Standard:

When used, internally illuminated raised pavement markers shall be steadily illuminated and shall not be flashed.

Support:

Flashing raised pavement markers are considered to be In-Roadway Lights (see Chapter 4N).

Guidance:

Non-retroreflective raised pavement markers should not be used alone, without supplemental retroreflective or internally illuminated markers, as a substitute for other types of pavement markings.

Directional configurations should be used to maximize correct information and to minimize confusing information provided to the road user. Directional configurations also should be used to avoid confusion resulting from visibility of markers that do not apply to the road user.

The spacing of raised pavement markers used to supplement or substitute for other types of longitudinal markings should correspond with the pattern of broken lines for which the markers supplement or substitute.

Standard:

The value of N cited in Sections 3B.12 through 3B.14 for the spacing of raised pavement markers shall equal the length of one line segment plus one gap of the broken lines used on the highway.

Option:

For additional emphasis, retroreflective raised pavement markers may be spaced closer than described in Sections 3B.12 through 3B.14, as determined by engineering judgment or engineering study.

Support:

Figures 9-20 through 9-22 in the “Traffic Control Devices Handbook” (see Section 1A.11) contain additional information regarding the spacing of raised pavement markers on longitudinal markings.

Section 3B.12 Raised Pavement Markers as Vehicle Positioning Guides with Other Longitudinal Markings

Option:

Retroreflective or internally illuminated raised pavement markers may be used as positioning guides with longitudinal line markings without necessarily conveying information to the road user about passing or lane-use restrictions. In such applications, markers may be positioned in line with or immediately adjacent to a single line marking, or positioned between the two lines of a double center line or double lane line marking.

Guidance:

The spacing for such applications should be $2N$, where N equals the length of one line segment plus one gap (see Section 3B.11).

Option:

Where it is desired to alert the road user to changes in the travel path, such as on sharp curves or on transitions that reduce the number of lanes or that shift traffic laterally, the spacing may be reduced to N or less.

On freeways and expressways, the spacing may be increased to $3N$ for relatively straight and level roadway segments where engineering judgment indicates that such spacing will provide adequate delineation under wet night conditions.

Section 3B.13 Raised Pavement Markers Supplementing Other Markings

Guidance:

The use of retroreflective or internally illuminated raised pavement markers for supplementing longitudinal line markings should comply with the following:

A. Lateral Positioning
 1. When supplementing double line markings, pairs of raised pavement markers placed laterally in line with or immediately outside of the two lines should be used.
 2. When supplementing wide line markings, pairs of raised pavement markers placed laterally adjacent to each other should be used.
B. Longitudinal Spacing

1. When supplementing solid line markings, raised pavement markers at a spacing no greater than \(N \) (see Section 3B.11) should be used, except that when supplementing channelizing lines or edge line markings, a spacing of no greater than \(N/2 \) should be used.

2. When supplementing broken line markings, a spacing no greater than \(3N \) should be used. However, when supplementing broken line markings identifying reversible lanes, a spacing of no greater than \(N \) should be used.

3. When supplementing dotted lane line markings, a spacing appropriate for the application should be used.

4. When supplementing longitudinal line extension markings through at-grade intersections, one raised pavement marker for each short line segment should be used.

5. When supplementing line extensions through freeway interchanges, a spacing of no greater than \(N \) should be used.

Raised pavement markers should not supplement right-hand edge lines unless an engineering study or engineering judgment indicates the benefits of enhanced delineation of a curve or other location would outweigh possible impacts on bicycles using the shoulder, and the spacing of raised pavement markers on the right-hand edge is close enough to avoid misinterpretation as a broken line during wet night conditions.

Option:

Raised pavement markers also may be used to supplement other markings such as channelizing islands, gore areas, approaches to obstructions, or wrong-way arrows.

To improve the visibility of horizontal curves, center lines may be supplemented with retroreflective or internally illuminated raised pavement markers for the entire curved section as well as for a distance in advance of the curve that approximates 5 seconds of travel time.

Section 3B.14 Raised Pavement Markers Substituting for Pavement Markings

Option:

Retroreflective or internally illuminated raised pavement markers, or non-retroreflective raised pavement markers supplemented by retroreflective or internally illuminated markers, may be substituted for markings of other types.

Guidance:

If used, the pattern of the raised pavement markers should simulate the pattern of the markings for which they substitute.

Standard:

If raised pavement markers are used to substitute for broken line markings, a group of three to five markers equally spaced at a distance no greater than \(N/8 \) (see Section 3B.11) shall be used. If \(N \) is other than 40 feet, the markers shall be equally spaced over the line segment length (at 1/2 points for three markers, at 1/3 points for four markers, and at 1/4 points for five markers). At least one retroreflective or internally illuminated marker per group shall be used or a retroreflective or internally illuminated marker shall be installed midway in each gap between successive groups of non-retroreflective markers.

When raised pavement markers substitute for solid line markings, the markers shall be equally spaced at no greater than \(N/4 \), with retroreflective or internally illuminated units at a spacing no greater than \(N/2 \).

Guidance:

Raised pavement markers should not substitute for right-hand edge line markings unless an engineering study or engineering judgment indicates the benefits of enhanced delineation of a curve or other location would outweigh possible impacts on bicycles using the shoulder, and the spacing of raised pavement markers on the right-hand edge line is close enough to avoid misinterpretation as a broken line during wet night conditions.

Standard:

When raised pavement markers substitute for dotted lines, they shall be spaced at no greater than \(N/4 \), with not less than one raised pavement marker per dotted line segment. At least one raised marker every \(N \) shall be retroreflective or internally illuminated.

Option:

When substituting for wide lines, raised pavement markers may be placed laterally adjacent to each other to simulate the width of the line.
Section 3B.15 Transverse Markings

Standard:

01 Transverse markings, which include shoulder markings, word and symbol markings, arrows, stop lines, yield lines, crosswalk lines, speed measurement markings, speed reduction markings, speed hump markings, parking space markings, and others, shall be white unless otherwise provided in this Manual.

Guidance:

02 Because of the low approach angle at which pavement markings are viewed, transverse lines should be proportioned to provide visibility at least equal to that of longitudinal lines.

Section 3B.16 Stop and Yield Lines

Guidance:

01 Stop lines should be used to indicate the point behind which vehicles are required to stop in compliance with a traffic control signal.

Option:

02 Stop lines may be used to indicate the point behind which vehicles are required to stop in compliance with a STOP (R1-1) sign, a Stop Here For Pedestrians (R1-5b or R1-5c) sign, or some other traffic control device that requires vehicles to stop, except YIELD signs that are not associated with passive grade crossings.

03 Yield lines may be used to indicate the point behind which vehicles are required to yield in compliance with a YIELD (R1-2) sign or a Yield Here To Pedestrians (R1-5 or R1-5a) sign.

Standard:

04 Except as provided in Section 8B.28, stop lines shall not be used at locations where drivers are required to yield in compliance with a YIELD (R1-2) sign or a Yield Here To Pedestrians (R1-5 or R1-5a) sign or at locations on uncontrolled approaches where drivers are required by State law to yield to pedestrians.

05 Yield lines shall not be used at locations where drivers are required to stop in compliance with a STOP (R1-1) sign, a Stop Here For Pedestrians (R1-5b or R1-5c) sign, a traffic control signal, or some other traffic control device.

06 Stop lines shall consist of solid white lines extending across approach lanes to indicate the point at which the stop is intended or required to be made.

07 Yield lines (see Figure 3B-16) shall consist of a row of solid white isosceles triangles pointing toward approaching vehicles extending across approach lanes to indicate the point at which the yield is intended or required to be made.

Guidance:

08 Stop lines should be 12 to 24 inches wide.

09 The individual triangles comprising the yield line should have a base of 12 to 24 inches wide and a height equal to 1.5 times the base. The space between the triangles should be 3 to 12 inches.

10 If used, stop and yield lines should be placed a minimum of 4 feet in advance of the nearest crosswalk line at controlled intersections, except for yield lines at roundabouts as provided for in Section 3C.04 and at midblock crosswalks. In the absence of a marked crosswalk, the stop line or yield line should be placed at the desired stopping or yielding point, but should not be placed more than 30 feet or less than 4 feet from the nearest edge of the intersecting traveled way.

11 Stop lines at midblock signalized locations should be placed at least 40 feet in advance of the nearest signal indication (see Section 4D.14).

12 If yield or stop lines are used at a crosswalk that crosses an uncontrolled multi-lane approach, the yield lines or stop lines should be placed 20 to 50 feet in advance of the nearest crosswalk line, and parking should be prohibited in the area between the yield or stop line and the crosswalk (see Figure 3B-17).

Standard:

13 If yield (stop) lines are used at a crosswalk that crosses an uncontrolled multi-lane approach, Yield Here To (Stop Here For) Pedestrians (R1-5 series) signs (see Section 2B.11) shall be used.

Guidance:

14 Yield (stop) lines and Yield Here To (Stop Here For) Pedestrians signs should not be used in advance of crosswalks that cross an approach to or departure from a roundabout.

Support:

15 When drivers yield or stop too close to crosswalks that cross uncontrolled multi-lane approaches, they place pedestrians at risk by blocking other drivers views of pedestrians and by blocking pedestrians views of vehicles approaching in the other lanes.
Stop and yield lines may be staggered longitudinally on a lane-by-lane basis (see Drawing D of Figure 3B-13).

Staggered stop lines and staggered yield lines can improve the drivers view of pedestrians, provide better sight distance for turning vehicles, and increase the turning radius for left-turning vehicles.

Section 8B.28 contains information regarding the use of stop lines and yield lines at grade crossings.

Section 3B.17 Do Not Block Intersection Markings

Option:

16. Do Not Block Intersection markings may be used to mark the edges of an intersection area that is in close proximity to a signalized intersection, railroad crossing, or other nearby traffic control that might cause vehicles to stop within the intersection and impede other traffic entering the intersection. If authorized by law, Do Not Block Intersection markings with appropriate signs may also be used at other locations.

Standard:

17. If used, Do Not Block Intersection markings (see Figure 3B-18) shall consist of one of the following alternatives:

 A. Wide solid white lines that outline the intersection area that vehicles must not block;
 B. Wide solid white lines that outline the intersection area that vehicles must not block and a white word message such as DO NOT BLOCK or KEEP CLEAR;
 C. Wide solid white lines that outline the intersection area that vehicles must not block and white cross-hatching within the intersection area; or
 D. A white word message, such as DO NOT BLOCK or KEEP CLEAR, within the intersection area that vehicles must not block.

18. Do Not Block Intersection markings shall be accompanied by one or more DO NOT BLOCK INTERSECTION (DRIVEWAY) (CROSSING) (R10-7) signs (see Section 2B.53), one or more DO NOT STOP ON TRACKS (R8-8) signs (see Section 8B.09), or one or more similar signs.
Section 3B.18 Crosswalk Markings

Support:
01 Crosswalk markings provide guidance for pedestrians who are crossing roadways by defining and delineating paths on approaches to and within signalized intersections, and on approaches to other intersections where traffic stops.
02 In conjunction with signs and other measures, crosswalk markings help to alert road users of a designated pedestrian crossing point across roadways at locations that are not controlled by traffic control signals or STOP or YIELD signs.
03 At non-intersection locations, crosswalk markings legally establish the crosswalk.

Standard:
04 When crosswalk lines are used, they shall consist of solid white lines that mark the crosswalk. They shall not be less than 6 inches or greater than 24 inches in width.

Guidance:
05 If transverse lines are used to mark a crosswalk, the gap between the lines should not be less than 6 feet.
If diagonal or longitudinal lines are used without transverse lines to mark a crosswalk, the crosswalk should be not less than 6 feet wide.
06 Crosswalk lines, if used on both sides of the crosswalk, should extend across the full width of pavement or to the edge of the intersecting crosswalk to discourage diagonal walking between crosswalks (see Figures 3B-17 and 3B-19).
07 At locations controlled by traffic control signals or on approaches controlled by STOP or YIELD signs, crosswalk lines should be installed where engineering judgment indicates they are needed to direct pedestrians to the proper crossing path(s).
Crosswalk lines should not be used indiscriminately. An engineering study should be performed before a marked crosswalk is installed at a location away from a traffic control signal or an approach controlled by a STOP or YIELD sign. The engineering study should consider the number of lanes, the presence of a median, the distance from adjacent signalized intersections, the pedestrian volumes and delays, the average daily traffic (ADT), the posted or statutory speed limit or 85th-percentile speed, the geometry of the location, the possible consolidation of multiple crossing points, the availability of street lighting, and other appropriate factors.

New marked crosswalks alone, without other measures designed to reduce traffic speeds, shorten crossing distances, enhance driver awareness of the crossing, and/or provide active warning of pedestrian presence, should not be installed across uncontrolled roadways where the speed limit exceeds 40 mph and either:

A. The roadway has four or more lanes of travel without a raised median or pedestrian refuge island and an ADT of 12,000 vehicles per day or greater; or

B. The roadway has four or more lanes of travel with a raised median or pedestrian refuge island and an ADT of 15,000 vehicles per day or greater.
Chapter 4F contains information on Pedestrian Hybrid Beacons. Section 4L.03 contains information regarding Warning Beacons to provide active warning of a pedestrian's presence. Section 4N.02 contains information regarding In-Roadway Warning Lights at crosswalks. Chapter 7D contains information regarding school crossing supervision.

Because non-intersection pedestrian crossings are generally unexpected by the road user, warning signs (see Section 2C.50) should be installed for all marked crosswalks at non-intersection locations and adequate visibility should be provided by parking prohibitions.

Section 3B.16 contains information regarding placement of stop line markings near crosswalk markings.

For added visibility, the area of the crosswalk may be marked with white diagonal lines at a 45-degree angle to the line of the crosswalk or with white longitudinal lines parallel to traffic flow as shown in Figure 3B-19.

When diagonal or longitudinal lines are used to mark a crosswalk, the transverse crosswalk lines may be omitted. This type of marking may be used at locations where substantial numbers of pedestrians cross without any other traffic control device, at locations where physical conditions are such that added visibility of the crosswalk is desired, or at places where a pedestrian crosswalk might not be expected.

If used, the diagonal or longitudinal lines should be 12 to 24 inches wide and separated by gaps of 12 to 60 inches. The design of the lines and gaps should avoid the wheel paths if possible, and the gap between the lines should not exceed 2.5 times the width of the diagonal or longitudinal lines.

When an exclusive pedestrian phase that permits diagonal crossing of an intersection is provided at a traffic control signal, a marking as shown in Figure 3B-20 may be used for the crosswalk.

Crosswalk markings should be located so that the curb ramps are within the extension of the crosswalk markings.

Detectable warning surfaces mark boundaries between pedestrian and vehicular ways where there is no raised curb. Detectable warning surfaces are required by 49 CFR, Part 37 and by the Americans with Disabilities Act (ADA) where curb ramps are constructed at the junction of sidewalks and the roadway, for marked and unmarked crosswalks. Detectable warning surfaces contrast visually with adjacent walking surfaces, either light-on-dark, or dark-on-light. “The Americans with Disabilities Act Accessibility Guidelines for Buildings and Facilities (ADAAG)” (see Section 1A.11) contains specifications for design and placement of detectable warning surfaces.

Section 3B.19 Parking Space Markings

Marking of parking space boundaries encourages more orderly and efficient use of parking spaces where parking turnover is substantial. Parking space markings tend to prevent encroachment into fire hydrant zones, bus stops, loading zones, approaches to intersections, curb ramps, and clearance spaces for islands and other zones where parking is restricted. Examples of parking space markings are shown in Figure 3B-21.

Parking space markings shall be white.
Figure 3B-21. Examples of Parking Space Markings

- **NO PARKING ZONE**
- 20 ft MIN. per UVC
- 20 ft typical for end space
- 22 to 26 ft
- 8 ft

- 20 ft typical for end space
- 22 to 26 ft
- 8 ft

- 12 inches
- 4 to 6 inches
- Extension enables driver to see limits of stall.

- 20 ft typical
- 8 ft

- Sidewalk
- 20 ft MIN. from unmarked crosswalk (see UVC Sections 1-118 and 11-1003)
- 8 ft

- 8 ft

- 20 ft MIN. from unmarked crosswalk (see UVC Sections 1-118 and 11-1003)
- 8 ft
Option:

Blue lines may supplement white parking space markings of each parking space designated for use only by persons with disabilities.

Support:

Additional parking space markings for the purpose of designating spaces for use only by persons with disabilities are discussed in Section 3B.20 and illustrated in Figure 3B-22. The design and layout of accessible parking spaces for persons with disabilities is provided in the Americans with Disabilities Act Accessibility Guidelines (ADAAG) (see Section 1A.11).

Section 3B.20 Pavement Word, Symbol, and Arrow Markings

Support:

Word, symbol, and arrow markings on the pavement are used for the purpose of guiding, warning, or regulating traffic. These pavement markings can be helpful to road users in some locations by supplementing signs and providing additional emphasis for important regulatory, warning, or guidance messages, because the markings do not require diversion of the road users attention from the roadway surface. Symbol messages are preferable to word messages. Examples of standard word and arrow pavement markings are shown in Figures 3B-23 and 3B-24.

Figure 3B-22. International Symbol of Accessibility Parking Space Marking

Figure 3B-23. Example of Elongated Letters for Word Pavement Markings
Figure 3B-24. Examples of Standard Arrows for Pavement Markings

A - Through Lane-Use Arrow

B - Turn Lane-Use Arrow

C - Turn and Through Lane-Use Arrow

D - Wrong-Way Arrow

E - Wrong-Way Arrow Using Retroreflective Raised Pavement Markers

F - Lane-Reduction Arrow

Notes:
1. Typical sizes for normal installation; sizes may be reduced approximately one-third for low-speed urban conditions; larger sizes may be needed for freeways, above average speeds, and other critical locations.
2. The narrow elongated arrow designs shown in Drawings A, B, and C are optional.
3. For proper proportion, see the Pavement Markings chapter of the "Standard Highway Signs and Markings" book (see Section 1A.11).
Option:

Word, symbol, and arrow markings, including those contained in the “Standard Highway Signs and Markings” book (see Section 1A.11), may be used as determined by engineering judgment to supplement signs and/or to provide additional emphasis for regulatory, warning, or guidance messages. Among the word, symbol, and arrow markings that may be used are the following:

A. Regulatory:
1. STOP
2. YIELD
3. RIGHT (LEFT) TURN ONLY
4. 25 MPH
5. Lane-use and wrong-way arrows
6. Diamond symbol for HOV lanes
7. Other preferential lane word markings

B. Warning:
1. STOP AHEAD
2. YIELD AHEAD
3. YIELD AHEAD triangle symbol
4. SCHOOL XING
5. SIGNAL AHEAD
6. PED XING
7. SCHOOL
8. R X R
9. BUMP
10. HUMP
11. Lane-reduction arrows

C. Guide:
1. Route numbers (route shield pavement marking symbols and/or words such as I-65, US 40, SR 135, or ROUTE 10)
2. Cardinal directions (NORTH, SOUTH, EAST, or WEST)
3. TO
4. Destination names or abbreviations thereof

Standard:

Word, symbol, and arrow markings shall be white, except as otherwise provided in this Section.

Pavement marking letters, numerals, symbols, and arrows shall be installed in accordance with the design details in the Pavement Markings chapter of the Standard Highway Signs and Markings book (see Section 1A.11).

Guidance:

Letters and numerals should be 6 feet or more in height.

Word and symbol markings should not exceed three lines of information.

If a pavement marking word message consists of more than one line of information, it should read in the direction of travel. The first word of the message should be nearest to the road user.

Except for the two opposing arrows of a two-way left-turn lane marking (see Figure 3B-7), the longitudinal space between word or symbol message markings, including arrow markings, should be at least four times the height of the characters for low-speed roads, but not more than ten times the height of the characters under any conditions.

The number of different word and symbol markings used should be minimized to provide effective guidance and avoid misunderstanding.

Except for the SCHOOL word marking (see Section 7C.03), pavement word, symbol, and arrow markings should be no more than one lane in width.

Pavement word, symbol, and arrow markings should be proportionally scaled to fit within the width of the facility upon which they are applied.

Option:

On narrow, low-speed shared-use paths, the pavement words, symbols, and arrows may be smaller than suggested, but to the relative scale.
Pavement markings simulating Interstate, U.S., State, and other official highway route shield signs (see Figure 2D-3) with appropriate route numbers, but elongated for proper proportioning when viewed as a marking, may be used to guide road users to their destinations (see Figure 3B-25).

Standard:

Except at the ends of aisles in parking lots, the word STOP shall not be used on the pavement unless accompanied by a stop line (see Section 3B.16) and STOP sign (see Section 2B.05). At the ends of aisles in parking lots, the word STOP shall not be used on the pavement unless accompanied by a stop line.

The word STOP shall not be placed on the pavement in advance of a stop line, unless every vehicle is required to stop at all times.

Option:

A yield-ahead triangle symbol (see Figure 3B-26) or YIELD AHEAD word pavement marking may be used on approaches to intersections where the approaching traffic will encounter a YIELD sign at the intersection.

Standard:

The yield-ahead triangle symbol or YIELD AHEAD word pavement marking shall not be used unless a YIELD sign (see Section 2B.08) is in place at the intersection. The yield-ahead symbol marking shall be as shown in Figure 3B-26.

Guidance:

The International Symbol of Accessibility parking space marking (see Figure 3B-22) should be placed in each parking space designated for use by persons with disabilities.

Option:

A blue background with white border may supplement the wheelchair symbol as shown in Figure 3B-22.

Support:

Lane-use arrow markings (see Figure 3B-24) are used to indicate the mandatory or permissible movements in certain lanes (see Figure 3B-27) and in two-way left-turn lanes (see Figure 3B-7).

Guidance:

Lane-use arrow markings (see Figure 3B-24) should be used in lanes designated for the exclusive use of a turning movement, including turn bays, except where engineering judgment determines that physical conditions or other markings (such as a dotted extension of the lane line through the taper into the turn bay) clearly discourage unintentional use of a turn bay by through vehicles. Lane-use arrow markings should also be used in lanes from which movements are allowed that are contrary to the normal rules of the road (see Drawing B of Figure 3B-13). When used in turn lanes, at least two arrows should be used, one at or near the upstream end of the full-width turn lane and one an appropriate distance upstream from the stop line or intersection (see Drawing A of Figure 3B-11).

Figure 3B-25. Examples of Elongated Route Shields for Pavement Markings

<table>
<thead>
<tr>
<th>A - Interstate Shield on dark or light pavement</th>
<th>B - U.S. Route Shield on dark pavement</th>
<th>C - U.S. Route Shield on light pavement</th>
<th>D - State Route Shield on dark pavement</th>
<th>E - State Route Shield on light pavement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. See the "Standard Highway Signs and Markings" book for other sizes and details
2. Colors and elongated shapes simulating State route shield signs may be used for route shield pavement markings where appropriate
An additional arrow or arrows may be used in a turn lane. When arrows are used for a short turn lane, the second (downstream) arrow may be omitted based on engineering judgment.

Guidance:
22 Where opposing offset channelized left-turn lanes exist, lane-use arrow markings should be placed near the downstream terminus of the offset left-turn lanes to reduce wrong-way movements (see Figure 2B-17).

Support:
24 An arrow at the downstream end of a turn lane can help to prevent wrong way movements.

Standard:
25 Where through lanes approaching an intersection become mandatory turn lanes, lane-use arrow markings (see Figure 3B-24) shall be used and shall be accompanied by standard signs.

Guidance:
26 Where through lanes approaching an intersection become mandatory turn lanes, ONLY word markings (see Figure 3B-23) should be used in addition to the required lane-use arrow markings and signs (see Sections 2B.19 and 2B.20). These markings and signs should be placed well in advance of the turn and should be repeated as necessary to prevent entrapment and to help the road user select the appropriate lane in advance of reaching a queue of waiting vehicles (see Drawing A of Figure 3B-11).

Option:
27 On freeways or expressways where a through lane becomes a mandatory exit lane, lane-use arrow markings may be used on the approach to the exit in the dropped lane and in an adjacent optional through-or-exit lane if one exists.

Guidance:
28 A two-way left-turn lane-use arrow pavement marking, with opposing arrows spaced as shown in Figure 3B-7, should be used at or just downstream from the beginning of a two-way left-turn lane.

Option:
29 Additional two-way left-turn lane-use arrow markings may be used at other locations along a two-way left-turn lane where engineering judgment determines that such additional markings are needed to emphasize the proper use of the lane.
Standard:
30 A single-direction lane-use arrow shall not be used in a lane bordered on both sides by yellow two-way left-turn lane longitudinal markings.
31 Lane-use, lane-reduction, and wrong-way arrow markings shall be designed as shown in Figure 3B-24 and in the “Standard Highway Signs and Markings” book (see Section 1A.11).

Option:
32 The ONLY word marking (see Figure 3B-23) may be used to supplement the lane-use arrow markings in lanes that are designated for the exclusive use of a single movement (see Figure 3B-27) or to supplement a preferential lane word or symbol marking (see Section 3D.01).

Standard:
33 The ONLY word marking shall not be used in a lane that is shared by more than one movement.
Where a lane-reduction transition occurs on a roadway with a speed limit of 45 mph or more, the lane-reduction arrow markings shown in Drawing f in Figure 3B-24 should be used (see Figure 3B-14). Except for acceleration lanes, where a lane-reduction transition occurs on a roadway with a speed limit of less than 45 mph, the lane-reduction arrow markings shown in Drawing f in Figure 3B-24 should be used if determined to be appropriate based on engineering judgment.

Option:
Lane-reduction arrow markings may be used in long acceleration lanes based on engineering judgment.

Guidance:

Where crossroad channelization or ramp geometrics do not make wrong-way movements difficult, the appropriate lane-use arrow should be placed in each lane of an exit ramp near the crossroad terminal where it will be clearly visible to a potential wrong-way road user (see Figure 2B-18).

Option:
The wrong-way arrow markings shown in Drawing D in Figure 3B-24 may be placed near the downstream terminus of a ramp as shown in Figures 2B-18 and 2B-19, or at other locations where lane-use arrows are not appropriate, to indicate the correct direction of traffic flow and to discourage drivers from traveling in the wrong direction.

Section 3B.21 Speed Measurement Markings

Support:
A speed measurement marking is a transverse marking placed on the roadway to assist the enforcement of speed regulations.

Standard:

- Speed measurement markings, if used, shall be white, and shall not be greater than 24 inches in width.

Option:
Speed measurement markings may extend 24 inches on either side of the center line or 24 inches on either side of edge line markings at 1/4-mile intervals over a 1-mile length of roadway. When paved shoulders of sufficient width are available, the speed measurement markings may be placed entirely on these shoulders (see Drawing A of Figure 3B-10). Advisory signs may be used in conjunction with these markings.

Section 3B.22 Speed Reduction Markings

Support:

- Speed reduction markings (see Figure 3B-28) are transverse markings that are placed on the roadway within a lane (along both edges of the lane) in a pattern of progressively reduced spacing to give drivers the impression that their speed is increasing. These markings might be placed in advance of an unexpectedly severe horizontal or vertical curve or other roadway feature where drivers need to decelerate prior to reaching the feature and where the desired reduction in speeds has not been achieved by the installation of warning signs and/or other traffic control devices.

Guidance:

- If used, speed reduction markings should be reserved for unexpected curves and should not be used on long tangent sections of roadway or in areas frequented mainly by local or familiar drivers, (e.g., school zones). If used, speed reduction markings should supplement the appropriate warning signs and other traffic control devices and should not substitute for these devices.

Standard:

- If used, speed reduction markings shall be a series of white transverse lines on both sides of the lane that are perpendicular to the center line, edge line, or lane line. The longitudinal spacing between the markings shall be progressively reduced from the upstream to the downstream end of the marked portion of the lane.

Guidance:

- Speed reduction markings should not be greater than 12 inches in width, and should not extend more than 18 inches into the lane.

Standard:

- Speed reduction markings shall not be used in lanes that do not have a longitudinal line (center line, edge line, or lane line) on both sides of the lane.
Section 3B.23 Curb Markings

Support:
01 Curb markings are most often used to indicate parking regulations or to delineate the curb.

Standard:
02 Where curbs are marked to convey parking regulations in areas where curb markings are frequently obscured by snow and ice accumulation, signs shall be used with the curb markings except as provided in Paragraph 4.

Guidance:
03 Except as provided in Paragraph 4, when curb markings are used without signs to convey parking regulations, a legible word marking regarding the regulation (such as “No Parking” or “No Standing”) should be placed on the curb.

Option:
04 Curb markings without word markings or signs may be used to convey a general prohibition by statute of parking within a specified distance of a STOP sign, YIELD sign, driveway, fire hydrant, or crosswalk.
05 Local highway agencies may prescribe special colors for curb markings to supplement standard signs for parking regulation.

Support:
06 Since yellow and white curb markings are frequently used for curb delineation and visibility, it is advisable to establish parking regulations through the installation of standard signs (see Sections 2B.46 through 2B.48).

Standard:
07 Where curbs are marked for delineation or visibility purposes, the colors shall comply with the general principles of markings (see Section 3A.05).

Guidance:
08 Retroreflective solid yellow markings should be placed on the approach ends of raised medians and curbs of islands that are located in the line of traffic flow where the curb serves to channel traffic to the right of the obstruction.
09 Retroreflective solid white markings should be used when traffic is permitted to pass on either side of the island.

Support:
10 Where the curbs of the islands become parallel to the direction of traffic flow, it is not necessary to mark the curbs unless an engineering study indicates the need for this type of delineation.
Curbs at openings in a continuous median island need not be marked unless an engineering study indicates the need for this type of marking.

Option:

Retroreflective or internally illuminated raised pavement markers of the appropriate color may be placed on the pavement in front of the curb and/or on the top of curbed noses of raised medians and curbs of islands, as a supplement to or substitute for retroreflective curb markings used for delineation.

Section 3B.24 Chevron and Diagonal Crosshatch Markings

Option:

Chevron and diagonal crosshatch markings may be used to discourage travel on certain paved areas, such as shoulders, gore areas, flush median areas between solid double yellow center line markings or between white channelizing lines approaching obstructions in the roadway (see Section 3B.10 and Figure 3B-15), between solid double yellow center line markings forming flush medians or channelized travel paths at intersections (see Figures 3B-2 and 3B-5), buffer spaces between preferential lanes and general-purpose lanes (see Figures 3D-2 and 3D-4), and at grade crossings (see Part 8).

Standard:

When crosshatch markings are used in paved areas that separate traffic flows in the same general direction, they shall be white and they shall be shaped as chevron markings, with the point of each chevron facing toward approaching traffic, as shown in Figure 3B-8, Drawing A of Figure 3B-9, Figure 3B-10, and Drawing C of Figure 3B-15.

When crosshatch markings are used in paved areas that separate opposing directions of traffic, they shall be yellow diagonal markings that slant away from traffic in the adjacent travel lanes, as shown in Figures 3B-2 and 3B-5 and Drawings A and B of Figure 3B-15.

When crosshatch markings are used on paved shoulders, they shall be diagonal markings that slant away from traffic in the adjacent travel lane. The diagonal markings shall be yellow when used on the left-hand shoulders of the roadways of divided highways and on the left-hand shoulders of one-way streets or ramps. The diagonal markings shall be white when used on right-hand shoulders.

Guidance:

The chevrons and diagonal lines used for crosshatch markings should be at least 12 inches wide for roadways having a posted or statutory speed limit of 45 mph or greater, and at least 8 inches wide for roadways having posted or statutory speed limit of less than 45 mph. The longitudinal spacing of the chevrons or diagonal lines should be determined by engineering judgment considering factors such as speeds and desired visual impacts. The chevrons and diagonal lines should form an angle of approximately 30 to 45 degrees with the longitudinal lines that they intersect.

Section 3B.25 Speed Hump Markings

Standard:

If speed hump markings are used, they shall be a series of white markings placed on a speed hump to identify its location. If markings are used for a speed hump that does not also function as a crosswalk or speed table, the markings shall comply with Option A, B, or C shown in Figure 3B-29. If markings are used for a speed hump that also functions as a crosswalk or speed table, the markings shall comply with Option A or B shown in Figure 3B-30.

Section 3B.26 Advance Speed Hump Markings

Option:

Advance speed hump markings (see Figure 3B-31) may be used in advance of speed humps or other engineered vertical roadway deflections such as dips where added visibility is desired or where such deflection is not expected.

Advance pavement wording such as BUMP or HUMP (see Section 3B.20) may be used on the approach to a speed hump either alone or in conjunction with advance speed hump markings. Appropriate advance warning signs may be used in compliance with Section 2C.29.

Standard:

If advance speed hump markings are used, they shall be a series of eight white 12-inch transverse lines that become longer and are spaced closer together as the vehicle approaches the speed hump or other deflection. If advance markings are used, they shall comply with the detailed design shown in Figure 3B-31.

Guidance:

If used, advance speed hump markings should be installed in each approach lane.
Figure 3B-29. Pavement Markings for Speed Humps without Crosswalks

OPTION A

OPTION B

OPTION C

Legend

- Direction of travel

Center of travel lane

Center of speed hump

12-inch white markings

12 inches

6 ft

12 ft typical

9.5 ft typical

10.4 inches

12 inches
Figure 3B-30. Pavement Markings for Speed Tables or Speed Humps with Crosswalks

OPTION A
- Center of travel lane
- 12 inches
- 12-inch white markings

OPTION B
- Center of travel lane
- 12 inches
- 12-inch white markings

Note: Optional crosswalk lines are not shown in this figure

Legend
- Direction of travel
- 6 ft typical
- 10 ft typical
- 12 ft typical

Crosswalk or speed table area
Figure 3B-31. Advance Warning Markings for Speed Humps

Legend

- Direction of travel

- Leading edge of speed hump

- Speed hump design width

- 12-inch white pavement markings

- 12-inch white pavement markings (see detail on this sheet)

- Width varies (see detail on this sheet)

- Center line of travel lane

- Center of speed hump

★See Figures 3B-29 and 3B-30 for pavement markings on speed humps

DETAIL—SPEED HUMP ADVANCE WARNING MARKINGS