CHAPTER 607

Pavement Pay Items

<table>
<thead>
<tr>
<th>Design Memorandum</th>
<th>Revision Date</th>
<th>Sections Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-01</td>
<td>Jan. 2020</td>
<td>Previously 304-15.0 and 16.0</td>
</tr>
</tbody>
</table>

The design memorandum applicable revision date is noted in brackets next to each section heading below.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>607-1.0</td>
<td>HMA PAVEMENT AND PAY ITEMS</td>
<td>3</td>
</tr>
<tr>
<td>607-1.01</td>
<td>Performance Grade (PG) Binder</td>
<td>4</td>
</tr>
<tr>
<td>607-1.02</td>
<td>HMA Shoulders</td>
<td>5</td>
</tr>
<tr>
<td>607-1.03</td>
<td>HMA for Approaches</td>
<td>5</td>
</tr>
<tr>
<td>607-1.04</td>
<td>Composite Pavement Rehabilitation</td>
<td>6</td>
</tr>
<tr>
<td>607-2.0</td>
<td>PCC PAVEMENT AND PAY ITEMS</td>
<td>6</td>
</tr>
<tr>
<td>607-2.01</td>
<td>Portland Cement Concrete Pavement (PCCP)</td>
<td>6</td>
</tr>
<tr>
<td>607-2.02</td>
<td>Continuously Reinforced Concrete Pavement (CRCP)</td>
<td>7</td>
</tr>
</tbody>
</table>
CHAPTER 607

PAVEMENT PAY ITEMS

607-1.0 HMA PAVEMENT PAY ITEMS

The INDOT Standard Specifications section 401 QC/QA-HMA pay item should use the format as follows:

QC/QA-HMA, _______, _______, _______, ______ mm
(ESAL Category) (PG Binder) (Course) (Mixture Designation)

The ESAL categories can be found in Section 601-4.0, INDOT Pavement Philosophy.

EXAMPLE: The pay item QC/QA-HMA, 4, 76, Surface, 9.5 mm represents a QC/QA-HMA-mixture with between 10,000,000 and 30,000,000 ESALs, a PG 76 high-temperature binder, a Surface course, and a mixture designation size of 9.5 mm.

The project designer should use the pay-item descriptions shown in the INDOT Standard Specifications for QC/QA-HMA mixtures.

When Section 401 HMA is specified on mainline or shoulders and the original contract pay item quantities are less than 300 tons, acceptance will be based upon Type D certification.

For Section 402 miscellaneous mixtures such as HMA Rumble Strips, HMA for Approaches, HMA for Temporary Pavement, Widening with HMA, and HMA for Sidewalks, the project designer should specify the applicable pay item and mixtures as listed in the INDOT Standard Specifications.

An HMA pay item should use the following format:

Widening with HMA, Type _______
The widening pavement section is shown in the pavement design and on the plans as

Widening with HMA, Type B, consisting of
165 lbs/sys HMA Surface, Type B, on
275 lbs/sys HMA Intermediate, Type B, on
660 lbs/sys HMA Base, Type B, on
Subgrade Treatment Type IC, (12 in. of subgrade excavated and replaced with No. 53 aggregate) on Natural Subgrade

The mixture type is determined from ESALs calculated for the project’s pavement design.

EXAMPLE: The pay item HMA Patching, Type B represents an HMA mixture for the range of
0.3 million ≤ ESAL < 3 million, and Patching.

The project designer should use the pay item descriptions shown for HMA mixtures in the INDOT Standard Specifications Section 401.

607-1.01 Performance Grade (PG) Binder

Performance Graded (PG) Binders for QC/QA mixtures are designed based on their performance-related properties determined for the project’s climate (temperature) and location within the pavement structure. A program developed by FHWA’s Long-Term Pavement Performance (LTPP) program, LTPPBind ™ should be used to select the grades of the PG Binder for a specific project. Information related to this software is available at http://www.fhwa.dot.gov/pavement/ltpp/ltppbind.cfm.

Base mixtures are designed for a lower high-temperature than the surface and intermediate mixtures. The PG binder is determined using the LTPP Bind program with inputs based on the speed and amount of traffic for the project. For an HMA overlay, the type and condition of the existing pavement should also be considered. For intersections and roundabouts with traffic of more than 3 million ESALs, it is recommended to bump the PG binder grade one grade up, e.g., if LTPPBind determines PG 64, then use PG 70.

PG binders are identified with high and low Celsius temperature values. For example, PG 70-22 identifies 70°C as the high-temperature design value and -22°C as the low-temperature design value. The high-temperature value is the average seven-day maximum pavement temperature. The low-temperature value is the lowest air temperature recorded at the weather station(s) nearest the project site.
The binder selection reliability is used to indicate the probability that the design high and low temperatures will not be exceeded during the design life. A value of 64, 70, or 76 should be used for the high-temperature design and a value of -22 will be used for the low-temperature design. The value selected for design high temperature should be evaluated for 98% reliability. However, a design high-temperature value satisfying 90% reliability may be considered for a Traffic Group A roadway (TWRG).

The PG binder for a QC/QA project will be identified in the pay item designation in accordance with INDOT Standard Specifications.

607-1.02 HMA Shoulders

For an HMA paved shoulder of 4 ft. or narrower, the project designer should specify the same HMA pay item designations and thicknesses as those used for the adjacent travel lane. For an HMA paved shoulder wider than 4 ft., the project designer should specify the thicknesses and HMA pay item designations for the appropriate pavement section.

Shoulder corrugations should be in accordance with INDOT Standard Specifications Section 302.

607-1.03 HMA for Approaches

HMA for Approaches is a mixture designated for a drive, public-road approach, crossover, turn lane, acceleration or deceleration lane, mailbox approach on a non-paved shoulder, etc. It should be used where the paving involves a large amount of handwork or non-paving movement of the paver and rollers. The limits and the pavement section for HMA for Approaches are shown in the INDOT Standard Drawings for drives, public-road approaches, and crossovers. Where the AADT exceeds the amount shown on the Standard Drawings, the HMA pavement section must be determined in accordance with Section 604-2.0. See INDOT Standard Specifications Sections 610 and 611.

For a public-road approach, the limits for HMA mixtures for approaches may be extended to include up to an additional 100 ft of pavement to satisfy project requirements. If the project requires more than 100 ft of additional pavement, the entire public approach section will be designed based on MEPDG.

For a mailbox approach on a non-stabilized shoulder, HMA for Approaches of the type required, should be used as specified on the INDOT Standard Drawings.
607-1.04 Composite Pavement Rehabilitation

HMA over existing asphalt and PCC composite pavement will be designed to match the existing pavement. If there is existing excessive reflective cracking, the designer needs to obtain enough information to determine where partial depth patching and full depth patching is required. FWD is recommended on composite pavements to determine the structural integrity and the need for undersealing. The longitudinal joint of the widened composite pavement should not be placed in a wheel path of a travel lane.

If the existing pavement has an open-graded subbase with underdrains, the existing longitudinal underdrain system will be perpetuated with additional outlets added in accordance with Section 605-2.0. If the existing pavement has a dense-graded subbase, underdrains are typically not added. The existing asphalt over PCC composite pavement should be milled in accordance with Section 603-2.0 and prepared in accordance with the INDOT Standard Specifications Section 306.

607-2.0 PCC PAVEMENT PAY ITEMS

607-2.01 Portland Cement Concrete Pavement (PCCP)

The requirements for Portland Cement Concrete Pavement (PCCP) are given in the INDOT Standard Specifications Division 500. The latest pay items listed should be used. PCCP is constructed on Subbase for PCCP (drainable aggregate layer and aggregate separation layer), or Dense Graded Subbase on a prepared subgrade.

The subgrade should be designed in accordance with the Geotechnical Report. The geotechnical recommendations may include a soil modification or stabilization process, subgrade-treatment type, or a compacted-aggregate stabilization layer.

Subbase for PCCP is placed on the prepared subgrade and is composed of 3 in. of a drainable aggregate layer on 6 in. of a compacted aggregate separation layer. The drainable aggregate is a permeable layer that collects and removes water entering the pavement system. The compacted aggregate separation layer is a dense layer that separates the subgrade from water entering the pavement subbase system. Underdrains must be included where Subbase for PCCP is specified. Dense Graded Subbase may be used where underdrains are not warranted, although in the case where Dense Graded Subbase is used the design life may be reduced to 20 years. Dense Graded Subbase is composed of 6 in. of a compacted aggregate.

The designed thickness of PCCP, determined by the AASHTOWare Pavement ME Design software. The transverse joint spacing and dowel bar diameter in the concrete pavement joints are
designed in accordance with MEPDG and are constructed as contraction joints type D-1. The minimum concrete cover over the dowel should be at least 3 in. The joint spacing should be shortened where necessary to meet a drive, inlet, adjacent lane, etc., so that all joints are continuous across the entire width of pavement, including shoulders. The additional D-1 joints should be included in the contract quantities. “Hot Pour” material used for the sealant material for D-1 joints is preferred.

Non-standard joints are not to be used in a pavement without approval from Central Office Pavement Design. If a project designer desires to utilize non-standard pavement joints in an individual contract, a submittal should be made to Central Office Pavement Design.

Quality Control/Quality Assurance (QC/QA) PCCP pay items and PCCP pay items, as described in the INDOT Standard Specifications Division 500 are used for a project specifying PCCP. The criteria for using QC/QA-PCCP or PCCP are based on the area of PCC pavement specified. For a project requiring a PCCP quantity of 7200 yd² (one lot) or greater, the pay item should be “QC/QA-PCCP, ___ in.” For a project requiring a PCCP quantity of less than 7200 yd², the pay item should be “PCCP, ___ in.”

607-2.02 Continuously Reinforced Concrete Pavement (CRCP)

The pavement designer is to reference FHWA-HIF-16-026 Continuously Reinforced Concrete Pavement Manual for designing CRCP. INDOT adopts the latest version of this manual for designing CRCP. CRCP has the potential to provide a long-term, zero-maintenance, service life under heavy traffic loadings and challenging environmental conditions, provided proper design and quality construction practices are utilized. AASHTOWare Pavement ME Design software should be utilized to design a CRCP.

CRCP design focuses on managing the cracking that develops so as to reduce the structural distress that may develop as a result of traffic and environmental loadings. These distresses include punchouts, steel rupture, and crack spalling.

CRCP design involves determining the proper combination of the following:

1. slab thickness;
2. concrete mixture constituents and properties;
3. steel reinforcement content and location (critical element); and
4. expansion system type or end restraint lug.
Other important features that a designer must require for a good CRCP design are as follows:

1. provide for sufficient slab edge support (critical element);
2. strengthen or treat the subgrade; and
3. provide a dense graded HMA base that also minimizes friction.

Most transverse cracks form at very early ages before a pavement is open to traffic, and cracking may continue for several years after concrete placement. Transverse cracks occur when and where the tensile stress, due to the restrained volume changes in the concrete, exceeds the concrete’s developing tensile strength. New transverse cracks occur roughly at the midpoint between two previously formed cracks, where the maximum concrete stress occurs. Crack formation continues until concrete strength exceeds the stresses due to the restrained volume change. Recognizing that the tensile strength of the concrete and the tensile stresses vary along the length of the slab, the transverse crack spacing pattern is never uniform, but the majority of cracks should be spaced within the desired range of 2 to 4 ft, as designed.