CHAPTER 17

Quantity Estimating

NOTE: This chapter is currently being re-written and its content will be included in Chapter 108 in the future.

<table>
<thead>
<tr>
<th>Design Memorandum</th>
<th>Revision Date</th>
<th>Sections Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-01</td>
<td>Jan. 2013</td>
<td>Figure 17-1B</td>
</tr>
<tr>
<td>14-04</td>
<td>Mar. 2014</td>
<td>17-4.02(01)</td>
</tr>
<tr>
<td>15-04</td>
<td>Mar. 2015</td>
<td>17-2.9</td>
</tr>
<tr>
<td>15-06</td>
<td>Mar. 2015</td>
<td>17-4.10(03)</td>
</tr>
<tr>
<td>16-16</td>
<td>Apr. 2016</td>
<td>17-1.05, 17-4.06 and Figure 17-4D, 17-4.09, 17-4.10 (03), 17-5.09 and Figures 17-5G thru -5G(2) (deleted), Figures 17-5 I and 17-5J, 17-6.0 (added)</td>
</tr>
<tr>
<td>16-22</td>
<td>May 2016</td>
<td>17-4.10(01) through 17-4.10(04)</td>
</tr>
<tr>
<td>16-11 REV</td>
<td>Sep. 2016</td>
<td>17-4.10(01), 17-4.10(02), and 17-6.0</td>
</tr>
<tr>
<td>17-26</td>
<td>Dec. 2017</td>
<td>17-4.02(01)</td>
</tr>
<tr>
<td>19-05</td>
<td>May 2019</td>
<td>17-4.12 (deleted)</td>
</tr>
<tr>
<td>19-10</td>
<td>Sep. 2019</td>
<td>17-5.09(01)</td>
</tr>
<tr>
<td>20-03</td>
<td>Apr. 2020</td>
<td>17-5.11(01), 17-5.11(03), 17-5.11(04) Figures 17-5K(revised) and 17-5L(added)</td>
</tr>
<tr>
<td>20-04</td>
<td>Apr. 2020</td>
<td>17-4.02(01) and 17-4.02(02)</td>
</tr>
</tbody>
</table>

The design memorandum applicable revision date is noted in brackets next to each section heading below.
TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES .. 6

17-1.0 GENERAL ... 8
 17-1.01 Guidelines for Preparing Quantity Computations 8
 17-1.02 Computation Records ... 9
 17-1.03 Units of Measurement ... 9
 17-1.04 Non-Defined Work ... 10
 17-1.04(01) Lump Sum Pay Unit 10
 17-1.04(02) Item Included in Other Work 10
 17-1.05(01) Justification ... 11
 17-1.05(02) Approval Process .. 12

17-2.0 EARTHWORK QUANTITIES 13
 17-2.01 Computerized Computations 13
 17-2.02 Manual Computations ... 13
 17-2.03 Shrinkage and Swell Factors 14
 17-2.04 Balancing .. 15
 17-2.05 Earthwork Tabulation .. 15
 17-2.06 Linear Grading ... 16
 17-2.07 B Borrow ... 17
 17-2.08 Structure Backfill [Rev. Mar 2015] 17
 17-2.08(01) Structure Backfill Types 17
 17-2.08(02) Information to be Shown on Plans 19
 17-2.09 Flowable Backfill .. 19

17-3.0 DETERMINING PIPE BACKFILL QUANTITIES 19
 17-3.01 Background Information 20
 17-3.01(01) Pipe Shape ... 20
 17-3.01(02) Pipe Interior Designation 20
 17-3.01(03) Backfill Method ... 20
 17-3.01(04) Backfill Material .. 20
 17-3.02 Hand Calculation of Backfill Quantities 21
 17-3.02(01) Circular Pipe, Earth Foundation 21
 17-3.02(02) Circular Pipe, Rock Foundation 23
 17-3.02(03) Deformed Pipe, Earth Foundation 23
 17-3.02(04) Deformed Pipe, Rock Foundation 25
 17-3.03 Computer Program for Determining Backfill Quantities 25
 17-3.04 Video Inspection ... 26
17-4.0 ROADWAY QUANTITIES .. 26
17-4.01 Pavement Materials ... 26
17-4.02 Subgrade Treatment [Rev. Apr. 2020] .. 27
 17-4.02(02) Subgrade Treatment Type Determination [Rev. Apr. 2020] ... 27
 17-4.02(03) Determining Pay Items and Quantities .. 27
17-4.03 Placing Pipe Under Existing Pavement .. 28
 17-4.03(01) Determining the Longitudinal Pay Limits of the Pavement Replacement .. 28
 17-4.03(02) Determining Pavement Quantities ... 28
 17-4.03(03) Determining Backfill Quantities ... 29
 17-4.03(04) Determining Underdrain Quantities .. 30
17-4.04 Subbase and Underdrains for Cement Concrete Pavement .. 30
 17-4.04(01) Subbase .. 30
 17-4.04(02) Underdrains ... 30
17-4.05 Non-Standard Concrete Median Barrier .. 31
17-4.06 Curb Ramp and Detectable Warning Surface [Rev. Apr. 2016] .. 31
17-4.07 Sodded, Paved, or Riprap Ditch ... 32
 17-4.07(01) Sodded Ditch .. 32
 17-4.07(02) Paved Side Ditch ... 32
 17-4.07(03) Riprap-Lined Ditch .. 34
17-4.08 Mailbox Assembly and Mailbox Approach .. 34
 17-4.09(02) Section Monuments [Rev. Apr. 2016] ... 35
 17-4.09(04) INDOT Benchmark [Rev. Apr. 2016] ... 37
 17-4.09(06) Right-of-Way Marker ... 38
 17-4.09(07) National Geodetic Survey Benchmark .. 38
 17-4.09(08) NGS Horizontal Control Point [Rev. Apr. 2016] ... 38
17-4.10 Seeding and Sodding [Rev. May 2016] .. 39
 17-4.10(03) Seed Mixture Type D [Added May 2016] .. 41
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-1A</td>
<td>Proprietary-Material Transmittal Memorandum [Rev. Aug. 2011]</td>
</tr>
<tr>
<td>17-1B</td>
<td>Programmatic Approved Proprietary Materials [Deleted Apr. 2016]</td>
</tr>
<tr>
<td>17-2A</td>
<td>Earthwork Computation Worksheet</td>
</tr>
<tr>
<td>17-2B</td>
<td>End Area Template</td>
</tr>
<tr>
<td>17-2C</td>
<td>Shrinkage and Swell Factors</td>
</tr>
<tr>
<td>17-2D</td>
<td>Earthwork Balance Table (Road Project)</td>
</tr>
<tr>
<td>17-2E</td>
<td>Earthwork Tabulation (Bridge Project)</td>
</tr>
<tr>
<td>17-3A</td>
<td>Values Required for Determining Backfill Quantities</td>
</tr>
<tr>
<td>17-4A</td>
<td>Roadway Factors</td>
</tr>
<tr>
<td>17-4B</td>
<td>Example Tabulation of Subgrade Treatment Information to Accompany Memorandum to Materials and Tests Division</td>
</tr>
<tr>
<td>17-4C</td>
<td>Placing Pipe Under Existing Roadway</td>
</tr>
<tr>
<td>17-4D</td>
<td>Quantities for Curb Ramps [Rev. Apr. 2016]</td>
</tr>
<tr>
<td>17-4E</td>
<td>Sodded Ditch Quantities</td>
</tr>
<tr>
<td>17-4F</td>
<td>Paved Side Ditches</td>
</tr>
<tr>
<td>17-4G</td>
<td>Lug Intervals</td>
</tr>
<tr>
<td>17-4H</td>
<td>Mailbox Summary Table</td>
</tr>
<tr>
<td>17-4I</td>
<td>Sodding Locations</td>
</tr>
<tr>
<td>17-5A</td>
<td>Structure Excavations</td>
</tr>
<tr>
<td>17-5A(0)</td>
<td>Limits of Surface Seal to be Shown on Plans</td>
</tr>
<tr>
<td>17-5B</td>
<td>Cast-in-Place Concrete Retaining Wall Earthwork Quantities Limits</td>
</tr>
<tr>
<td>17-5D</td>
<td>MSE Retaining Wall Earthwork Quantities Limits, Showing Foundation Treatment</td>
</tr>
<tr>
<td>17-5E</td>
<td>Bridge Items in Road Plans</td>
</tr>
<tr>
<td>17-5F</td>
<td>Sign Post and Sheet Sign Summaries (Bridge Project)</td>
</tr>
<tr>
<td>17-5G</td>
<td>RCBA Thickness Determination [Deleted Apr. 2016]</td>
</tr>
<tr>
<td>17-5G(1)</td>
<td>RCBA for Square Structure [Deleted Apr. 2016]</td>
</tr>
<tr>
<td>17-5G(2)</td>
<td>RCBA for Skewed Structure [Deleted Apr. 2016]</td>
</tr>
<tr>
<td>17-5I</td>
<td>Riprap and Sodding Limits with Barrier Transitions on Bridge [Rev. Apr. 2016]</td>
</tr>
</tbody>
</table>
17-5J Riprap and Sodding Limits with Barrier Transitions on RCBA [Rev. Apr. 2016]
17-5L Cleaning and Painting Existing Structural Steel Members and Components [Add. May 2020]
17-7A Mathematical Formulas
CHAPTER 17

QUANTITY ESTIMATING

In addition to preparing clear and concise plans, as described in Chapter 14, the designer should compile an accurate summary of the project quantities. This information leads directly to the project cost estimate, which combines the computed quantities of work and the estimated unit prices. An accurate summary of quantities is critical to prospective contractors interested in submitting a bid on the project. In addition to the INDOT Standard Drawings and the INDOT Standard Specifications, Chapter 17 provides additional guidelines on calculating quantities for a highway, bridge, or traffic project.

17-1.0 GENERAL

17-1.01 Guidelines for Preparing Quantity Computations

When preparing quantity computations, the designer should consider the following guidelines.

1. Specifications. Cross check all items against the INDOT Standard Specifications to ensure that the appropriate pay items, methods of measurement, and bases of payment are used. If an item is not described in the Standard Specifications or recurring special provisions, a unique special provision must be included in the contract documents to cover the item. Chapter 19 discusses how to prepare special provisions.

2. Pay Item Code Number. Every pay item has a unique number assigned to it for data processing. This code number is located in the computer programs CES and Estimator. Section 20-2.01 describes these programs. Only the official pay item name and description should be used in the contract documents, special provisions, or summary of quantities.

3. Rounding. The quantity of any item should check exactly with the figure on the computation sheets. Indicate any rounding of the raw estimated figures on the computation sheets. Unless stated otherwise, rounding of the calculations should not be done until the value is incorporated into the Quantity Summary Tables.

4. Significant Digits. When calculating quantities, consider the implied correspondence between the accuracy of the data and the given number of digits.
5. **Cost Estimate.** Only use the total values from the Quantity Summary Tables to develop the cost estimate. Show all items described in the plans that will be included in the cost estimate. The designer will be responsible for inserting these values into either CES or Estimator.

17-1.02 Computation Records

Quantity-computation sheets may be generated by computer or by hand. Combine all computation sheets and bind them with a cover sheet. The preparer will sign or initial and date each sheet. The checker will also be required to sign or initial and date each sheet.

Check all values obtained through computations or use of standardized tables. For those pay items where agreements may be reached to make payment on the basis of plan quantities, an independent check should be performed and noted. The resolution of any differences between original and check computations should be identified. Where computations are performed by computer, an independent check is not required. However, check the input and review the computation output sheet for mistakes. Also, sign and date the computer output similarly to hand computation sheets.

Retain the quantity computations within the project file.

The contractor may request copies of the quantity calculations subsequent to the letting. Requests prior to the letting from contractors should be directed through the Legal Services Division.

17-1.03 Units of Measurement

Quantities for all contract pay items should be estimated using the measurement units shown in the INDOT Standard Specifications or the special provisions. The values determined from the computations should be rounded as described below and shown in the Quantity Summary Tables and elsewhere in the plans as required.

Rounding of values should be as follows.

1. **Small Quantity.** For a quantity of 10 or less, round to the nearer whole unit (i.e., 3.2 to 3, 5.5 to 6, or 9.8 to 10).

2. **Large Quantity.** For a quantity greater than 10, round up to the next whole unit (i.e., 27.8 to 28, or 146.2 to 147).

3. **Linearly-Measured Work.** Round each linear-measure quantity up to the next whole foot.
4. **Earthwork.** For an individual cross-section area, round to the nearer 0.1 ft². For an individual end-area volume, round to the nearer 1 yd³. For a total pay quantity, round up to the next multiple of 5 yd³.

5. **Structural Concrete.** Round each structural-concrete quantity to the nearest 0.1 yd³. This includes each individual pour or structure portion and the total quantity for each concrete class shown in bills of materials and the Bridge Summary sheet.

The values shown in the Estimate of Quantities and Cost Estimate developed by the designer should reflect this rounding procedure. The Engineer’s Estimate and Schedule of Pay Items developed by the Contract Administration Division’s Estimating Office will also reflect this procedure.

17-1.04 **Non-Defined Work**

17-1.04(01) **Lump Sum Pay Unit**

Only use a lump-sum pay unit where the scope of work for the item is clearly defined, and the amount of work has a minimal chance of changing during construction. The INDOT *Standard Specifications* defines which quantities may be estimated as lump sum. Where practical, list the quantities for the separate work that will be included within the lump-sum item. The list should note that the separate quantities are for estimating purposes only. Where there is a significant chance of quantity changes, the work must be by the unit and not lump sum.

17-1.04(02) **Item Included in Other Work**

No work should be shown as incidental to another pay item or the contract. If any work will be included as part of another item, it must be addressed by the specifications or with a special provision. The designer should only include an item of work in another pay item where the scope of work for both is clearly defined and the probability of the quantity of either item changing is minimal. Minimize the amount of work to be included in other pay items. It is impossible for bidders, or the Department, to prepare an estimate for a project which contains incidental items for which quantities or the scope of work is indeterminable.
A proprietary material is defined through specifications that are so specific that only one product will satisfy the requirements, or that the name of the product is actually specified. To ensure competitive bidding, the designer should restrict the use of proprietary materials on a project. However, if a situation occurs where the use of a proprietary material will enhance safety, control costs, or will otherwise improve the project design, the use of a proprietary material may be justifiable.

17-1.05(01) Justification

The designer must submit for approval one of the following certification or a public-interest finding requests for the use of a proprietary material. This should occur at Stage 2, but not later than Stage 3. Editable versions of the forms appear on the Department’s website at www.in.gov/dot/div/contracts/design/dmforms/, under Proprietary Materials.

1. **Certification for No Suitable Existing Equal Material.** If no suitable equal material exists, a Certification should be prepared. Figure 17-1C should be used for this request.

2. **Certification for Product Essential for Synchronization.** A proprietary material may be justified where it is essential for synchronization with an existing highway facility, for which there is no equally-suitable alternative. Figure 17-1D should used for this request.

3. **Experimental.** A proprietary material may be justified for research purposes or for a distinctive type of roadway. A justification for an experimental or research item should include a work plan which details the evaluation to be conducted. For such a material to be used on the State highway system, the procedure described in the *INDOT Guidelines for Initiating and Reporting Experimental Features Studies* should be followed. Figure 17-1C should be used for this request.

4. **Public-Interest Finding for Proprietary-Material Use.** The designer should prepare a Public-Interest Finding (PIF) for the use of a material if suitable alternatives exist but are not the most cost-effective or in the public’s best interest. This should include a description of the circumstance being addressed due to use of the proprietary material, alternative solutions that were considered, and the reasoning why the proprietary material was chosen. Figure 17-1E should be used for this request.
5. **Programmatic Approval.** A PIF is required for a product approved on a program-wide basis if there are other suitable alternatives. A Programmatic Certification is required if no suitable alternatives exist. Figure 17-1F should be used for this request. The justification should include a work plan which details the evaluation to be conducted. A PIF or Programmatic Certification should include the length of time that the approval will be in effect. A Programmatic approval should be periodically reviewed to assess changes in the market conditions that can make them obsolete. If a pre-approved list has fewer than three vendors, a proprietary-product approval is required before that list can be used. The current Programmatic Proprietary Material Approvals list available on the Highway Design & Technical Support Division webpage, at http://www.in.gov/indot/2684.htm.

17-1.05(02) Approval Process

Each request should include Figure 17-1A, the Transmittal Memorandum. The request should be submitted through ERMS to the project manager, who will forward the request to either the Highway Design and Technical Support Division Director or the Bridges Division Director for approval. FHWA approval or concurrence is as follows:

1. INDOT approval is required for each Figure 17-1C request that no suitable equal exists, or each Figure 17-1D request for product essential for synchronization. FHWA concurrence will be required only for a project that requires FHWA oversight.

2. FHWA approval is required for each Figure 17-1C experimental proprietary-material request.

3. FHWA approval is required for each Figure 17-1E PIF request.

4. FHWA approval is required for each Figure 17-1E Programmatic PIF request.

5. FHWA approval is required for each Figure 17-1F Programmatic Certification request.

FHWA approval listed in 2 through 5 above is required without regard to FHWA oversight.

If the project is under construction and a proprietary material is added to the contract, the Certification or PIF should be prepared and approved prior to completion of the change order. If a pay item is changed to proprietary during construction, federal participation is limited to the lower of either the contract unit price or the change-ordered unit price.
17-2.0 EARTHWORK QUANTITIES

17-2.01 Computerized Computations

Earthwork computations can be determined using a computer and special design software packages. Earthwork quantities for a small project, approach, S-line, side road, ditch, or additional-grading feature may require manual calculations (see Section 17-2.02). For computer calculation of mainline earthwork quantities, the information required is as follows:

1. cross section showing existing and proposed ground surfaces;
2. shrinkage and swell factors; and
3. identification of sections not to be included (e.g., bridge section).

The computer can generate a computation of end areas and volumes for each cross section. Show the actual computed end areas and volumes on the plans cross sections.

17-2.02 Manual Computations

For a small project, or to calculate special features on a larger project (e.g., approach, ditch), it may be necessary to calculate the earthwork quantities manually. The following procedures apply.

1. Computation Sheet. See Figure 17-2A, Computation Sheet, for that used by the Department. This format can be used for documenting cross-sectional areas and volumes between cross sections.

2. End Areas. The end areas used to compute the quantities are defined by the ground lines and typical-section template. See Figure 17-2B, End Area Template. After the cross sections have been plotted, determine the areas of cut and fill for each cross section. Include the waste of unsuitable soils, undercut, rock excavation, trench excavation, or special excavation or embankment on the section. Record the cut and fill areas for each cross section on the computation sheet.

3. Sum of End Areas. The Sum of End Areas columns are the sum of adjacent cross-section areas for the Cut and Fill columns. The line in the figure is offset between the two end areas. This line indicates that two areas are to be added together.

4. Length. Record the distance between stations in this column.
5. **Volume Computation.** Volumes for excavation (cut) and embankment (fill) are determined using the average-end-area formula,

\[
V = \left(\frac{A_1 + A_2}{2} \right) (D)
\]

(Equation 17-2.1)

Where:
\(V \) = volume, yd\(^3\)
\(A_1 + A_2 \) = sum of cut or fill end areas of adjacent sections from the Sum of End Areas, yd\(^2\)
\(D \) = distance between sections, ft

These values are recorded in the appropriate Volume of Cut and Volume of Fill columns on the computation sheet.

17-2.03 Shrinkage and Swell Factors

Fill quantities calculated manually or by a computer must be adjusted by the appropriate shrinkage factor to account for the compaction of material, loss from hauling, subsidence of the existing ground caused by the overburden, erosion, and clearing operation. The factors used in the calculations will depend on the soil type, quantity to be moved, and engineering judgment. Sand and gravel have smaller shrinkage factors than clay or silt. For rock excavation, it may be necessary to apply an expansion or swell factor. Figure 17-2C, Shrinkage and Swell Factors, provides factors that may be used for preliminary design purposes. A more definitive value may be available from other sources (e.g., the Geotechnical Report).

Only use one shrinkage factor for the entire project or for each individual balance within the project. The district office may provide guidance in choosing the applicable factor(s) to be used in the calculations. The designer may need to adjust the shrinkage factor to account for smaller quantities.
17-2.04 Balancing

For a large project, it is desirable to approximately balance the earthwork (cut and adjusted fill) for the project. An unbalanced project will require the contractor to haul extra material (borrow) or remove the excess (excavation) from the project site, which will typically increase construction costs. Balancing within the project limits can be accomplished by revising the profile grade line, revising cut and fill slopes, revising ditch profiles, etc. To determine if balancing is appropriate, the designer should consider the following.

1. Rural New Construction or Reconstruction. It is desirable to make a reasonable effort to balance the earthwork quantities.

2. Rural 3R Project. The need for balancing will be determined for each project as required.

3. Other Project. For an urban-area, interchange, or partial 3R project it is impractical to provide a balanced grading design. Therefore, it will not be necessary to balance the earthwork.

For a long project, the designer should provide several intermediate balance points. The length of each balance section should not exceed 2000 ft unless an interchange, rest area, or area of deep cut or fill are included. A bridge is not included within the balance limits.

17-2.05 Earthwork Tabulation

To allow the contractor to determine the amount of excavation, borrow, etc., required the designer should include an earthwork balance table in the plans. For a long roadway project, provide a separate table for each balance section. Quantities for benching should be included in the earthwork balance. This table should be included on a Road Plan and Profile sheet, typically in the profile half of the sheet. Figure 17-2D, Earthwork Balance Table (Road Project), illustrates the typical format that should be used. For a bridge project, one earthwork tabulation table will be required for the entire project. Show this table on the Layout sheet. Figure 17-2E, Earthwork Tabulation (Bridge Project) illustrates the typical format that should be used.
17-2.06 Linear Grading

The use of the linear grading pay item is generally limited to a project with a minimal amount of earthwork. This will only include the applications as follows.

1. Preventative Maintenance, Functional, or Structural Pavement Treatment. Linear grading consists of earth wedging at the outside edge of each shoulder where the pavement is to receive one of these treatments. If this type of earthwork is significant enough to require benching, linear grading should not be considered.

2. Guardrail. Linear grading consists of earth wedging behind guardrail to obtain the required earth backup for the posts. If this type of earthwork is significant enough to require benching, linear grading should not be considered.

3. Median. Linear grading consists of earth filling a median required for paving shoulders and placement of a concrete median barrier where travel lanes are not being added.

All other earthwork should be paid for as common excavation and borrow.

Where linear grading is being considered, the measurement for payment will be based on the length of roadway per linear foot measured along the centerline actually constructed to the lines and grades shown in the typical cross section. Measurement will be made once per centerline per area. Typical cross sections should be separated.

The pay-quantity limits should be measured along the roadway centerline, with deductions for bridges, etc. For example, a divided-roadway project length is 25,000 ft, and includes two bridges with a combined length of 600 ft. Linear grading is to be done in the median and beyond the outside shoulders. The linear-grading pay length is 24,400 ft. The plans should indicate which work is to be included in the linear-grading pay item, both by typical section and in estimated quantities per area of linear grading, i.e., cubic yards of common excavation.

The pay unit for linear grading is linear-foot.
17-2.07 B Borrow

Where B borrow is specified, it should be considered as a separate pay item. All locations where B borrow is to be placed should be shown on the plans. When estimating the quantity of B borrow, the designer should consider the following.

1. **Mechanically Stabilized Earth Retaining Wall.** B borrow is placed outside of the limits of structure backfill (e.g., beyond the reinforcing straps). Section 17-4.05 provides additional information for determining backfill material quantities for a retaining wall.

2. **Unsuitable Materials.** B borrow is used to replace unsuitable materials (e.g., peat) within the roadway structure. Section 18-2.06 provides guidance for determining the locations for the placement of B borrow with peat excavation.

3. **Culvert Replacement.** Where a culvert is to be removed for an existing roadway, replace the culvert excavation material with B borrow.

17-2.08 Structure Backfill [Rev. Mar 2015]

17-2.08(01) Structure Backfill Types

Structure backfill has been subdivided into types. Each type should be specified as described below.

1. **Type 1.** This type should be specified for a location as follows:
 a. longitudinal or transverse structure placed under, or within 5 ft of, the back of paved shoulder or back of sidewalk of a new rural or urban facility, or
 b. such a structure for an existing rural facility where all existing pavement is to be replaced.
2. **Type 2.** This type should be specified for a location as follows:

 a. longitudinal or transverse structure placed under, or within 5 ft of, the back of paved shoulder or back of sidewalk for an existing urban facility where all existing pavement is to be replaced;

 b. longitudinal or transverse structure placed under, or within 5 ft of, the back of paved shoulder or back of sidewalk for a rural or urban facility where undisturbed existing pavement is to remain; or

 c. precast-concrete three-sided or four-sided structure with height of cover of 2 ft or greater.

3. **Type 3.** This type should be specified for use behind a mechanically-stabilized-earth retaining wall.

4. **Type 4.** This type should be specified for a location as follows:

 a. trench where a utility line is present; or

 b. behind a reinforced-concrete slab-bridge end bent.

5. **Type 5.** This type should be specified for a location as follows:

 a. precast-concrete three-sided or four-sided structure with height of cover of less than 2 ft;

 b. filling voids in an underground facility;

 c. filling in an abandoned pipe or structure; or

 d. other application that does not require excavation
17-2.08(02) Information to be Shown on Plans

Structure backfill is a separate pay item. The pay-item name should include the type. The pay unit is square yard. In estimating the quantity of structure backfill, the following should be considered.

1. **Drainage Structure.** Section 17-3.0 discusses the procedure for estimating structure-backfill quantities for a drainage structure.

2. **Abutment.** The quantity of structure backfill should be determined and shown similarly to that for a concrete retaining wall, i.e., 1:1 backslope to a point 1.5 ft outside the neat lines of the abutment footing. See Section 17-5.05(01).

3. **Retaining Wall.** The quantity of structure backfill should be determined and shown on the cross sections at each retaining-wall location. Section 17-5.05(02) provides additional information regarding retaining-wall structure backfill.

17-2.09 Flowable Backfill

Flowable backfill is a separate pay item. It is required for backfilling behind the end bents of a reinforced-concrete slab bridge, or behind the wingwalls of a precast-concrete three- or four-sided structure. It is also required for backfilling a new cross-culvert placed under an existing roadway.

Flowable backfill for use other than as structure backfill should be specified as either removable flowable or non-removable flowable backfill. R should be entered in Structure Data sheet’s Flowable Backfill column if the material is removable. N should be entered in the column if the material is non-removable.

17-3.0 DETERMINING PIPE BACKFILL QUANTITIES

The determination of pipe-backfill quantities is based on the pipe shape, pipe-interior designation, backfill method, and backfill material.

For additional guidance on determining pipe-backfill quantities, see the INDOT *Standard Specifications* or the INDOT *Standard Drawings*, or contact the Production Management Division’s Design Resources Team.
17-3.01 Background Information

17-3.01(01) Pipe Shape

The pipe shape is either circular or deformed.

17-3.01(02) Pipe Interior Designation

The interior of a pipe is either smooth or corrugated. For most pipe structures and pipe types, the contractor will have a choice of pipe materials, of either interior designation. For the purpose of determining backfill quantities, a corrugated interior should be assumed.

17-3.01(03) Backfill Method

The standard backfill methods are described below, and also shown on the INDOT Standard Drawings.

1. **Method 1.** This method should be used for a structure to be placed under a new- or replacement-roadway mainline or public road approach, for a structure to be placed under a median embankment, or for a new structure to be placed under an existing roadway mainline or public road approach.

2. **Method 2.** This method should be used for a structure to be placed under a drive in new or replacement work, or under an existing drive.

3. **Method 3.** This method should be used for a structure to be placed under a new- or replacement-roadway’s median trench.

17-3.01(04) Backfill Material

Unless instructed otherwise, structure backfill is required for each culvert or storm-drain structure, except a field-entrance culvert which is to be backfilled with suitable excavated material.

The contractor may substitute coarse aggregate as an option for structure backfill for backfilling a concrete culvert, pipe, structural plate pipe, pipe-arch, or arch. However, the backfill material should always be identified as structure backfill. If coarse aggregate is used, the ends and top of the trench are to be capped with geotextile as shown on the INDOT Standard Drawings. The geotextile is not a separate pay item.
A specific backfill type should be specified only if, for example, a pipe is to be placed in the vicinity of utilities. Then, flowable backfill should be specified. If structure backfill or flowable backfill are both acceptable alternates, the material should be identified and quantified as structure backfill.

See the INDOT Standard Drawings to determine the appropriate backfill materials for the structure based on the backfill method required.

17-3.02 Hand Calculation of Backfill Quantities

Figure 17-3A identifies the values described below which are required for determining backfill quantities.

17-3.02(01) Circular Pipe, Earth Foundation

\[C_t = \text{corrugations thickness} = 0.5 \text{ in.} \]

\[B_c = H_c = \frac{\text{Inside Dia.} + 2C_t}{12} \]

\[T_c = \text{trench cover depth over pipe} \]

\[V_c = 1 \text{ ft for } B_c \leq 1.5 \text{ ft, or 1.5 ft for } B_c > 1.5 \text{ ft} \]

For backfill method 1 or 2, \(L_B = 2(5) + \text{Pvmt. Width} + 2\left[2(T_c + H_c)\right], \) where \(T_c = V_c. \) The pavement width is that of the travel lanes plus shoulders.

For backfill method 3, or method 1 in a median embankment,

\[L_B = \text{Median Width} - 2\left[2(T_c + H_c)\right] - 2(5). \] The median width excludes the shoulder widths.

\[A_c = \frac{\pi(B_c)^2}{4} \]

\[W = 0.3B_c \text{ or 0.75 ft, whichever is greater} \]

\[W_b = 2W + B_c \]
\[K = 2W + B_c + \frac{2H_c}{12} \]

For backfill method 3, \(K_3 = 2W + B_c + \frac{2(H_c + V_c)}{12} \)

\[W_i = K + \frac{2T_c}{12} \]

All methods, backfill quantity, \(B_{BC} \), per linear foot from trench bottom to pipe crown:

\[B_{BC} = \frac{0.5H_c(W_b + K) - A_c}{27} \]

Method 1 or 2 backfill quantity, \(B_{CT} \), per linear foot from pipe crown to top of trench:

\[B_{CT} = \frac{T_c(K + W_i)}{54} \]

Method 3 backfill quantity, \(B_{CV} \), per linear foot from pipe crown to top of \(V_c \) dimension:

\[B_{CV} = \frac{V_c(K + K_3)}{54} \]

Method 3 backfill quantity, \(B_{VT} \), per linear foot from top of \(V_c \) dimension to top of trench:

\[B_{VT} = \frac{(T_c - V_c)(K_3 + W_i)}{54} \]

Method 1 backfill per linear foot = \(B_{BC} + B_{CT} \).
Method 1 total backfill quantity = \(Lb(B_{BC} + B_{CT}) \).

For backfill method 2, \(B_{BC} \) and \(B_{CT} \) each represent different materials, so the quantities should not be added. The total quantity for method 2’s \(B_{BC} \) material is \((Lb)(B_{BC}) \). The total quantity for method 2’s \(B_{CT} \) material is \((Lb)(B_{CT}) \).
For backfill method 3, \(B_{BC} \) and \(B_{CV} \) are the same material, so the total method 3 quantity of this material is \(L_B(B_{BC} + B_{CV}) \). \(B_{VT} \) represents a different material, so it should not be added to \(B_{BC} + B_{CV} \). The total quantity for method 3’s \(B_{VT} \) material is \((L_B)(B_{VT}) \).

17-3.02(02) Circular Pipe, Rock Foundation

The total backfill quantity is that required for an earth foundation plus the foundation backfill required below the pipe. The additional volume is determined as follows:

\[
A = 8 \text{ in. or } 2/3 \text{ ft.} \quad \text{The entry in the formula below for } W_F \text{ must be made in feet.}
\]

\[
W_F = 2W + B_c - \frac{2A}{12}
\]

Backfill quantity, \(B_F \), per linear foot of foundation area:

\[
B_F = A \left(\frac{W_b + W_F}{2} \right)
\]

Total foundation-backfill quantity = \((L_B)(B_F) \)

17-3.02(03) Deformed Pipe, Earth Foundation

\(C_t \) = corrugations thickness = 0.5 in.

\[
B_c = \frac{\text{Span} + 2C_t}{12}
\]

\[
H_c = \frac{\text{Rise} + 2C_t}{12}
\]

For backfill method 1 or 2, \(L_B = 2(5) + \text{Pvmt. Width} + 2\left[2(T_c + H_c)\right], \)

where \(T_c = V_c \). The pavement width is that of the travel lanes plus shoulders.

For backfill method 3, or method 1 in a median embankment,

\[
L_B = \text{Median Width} - 2\left[2(T_c + H_c)\right] - 2(5). \quad \text{The median width excludes the shoulder widths.}
\]
\[A_c = \frac{(\text{Pipe Opening})(C_i)(P)}{12} \]

\[W = 0.3B_c \text{ or } 0.75 \text{ ft, whichever is greater} \]

\[W_b = 2W + B_c \]

\[K = 2W + B_c + \frac{2H_c}{12} \]

All methods, backfill quantity, \(B_{BC} \), per linear foot from trench bottom to pipe crown:

\[B_{BC} = \frac{[0.5H_c(W_b + K)] - A_c}{27} \]

Method 1 or 2 backfill quantity, \(B_{CT} \), per linear foot from pipe crown to top of trench:

\[B_{CT} = \frac{T_c(K + W_i)}{54} \]

Method 3 backfill quantity, \(B_{CV} \), per linear foot from pipe crown to top of \(V_c \) dimension:

\[B_{CV} = \frac{V_c(K + K_3)}{54} \]

Method 3 backfill quantity, \(B_{VT} \), per linear foot from top of \(V_c \) dimension to top of trench:

\[B_{VT} = \frac{(T_c - V_c)(K_3 + W_i)}{54} \]

Method 1 total backfill per linear foot = \(B_{BC} + B_{CT} \).
Method 1 total backfill quantity = \(L_B(B_{BC} + B_{CT}) \).

For backfill method 2, \(B_{BC} \) and \(B_{CT} \) each represent different materials, so the quantities should not be added. The total quantity for method 2’s \(B_{BC} \) material is \((L_B)(B_{BC}) \). The total quantity for method 2’s \(B_{CT} \) material is \((L_B)(B_{CT}) \).
For backfill method 3, B_{BC} and B_{CV} are the same material, so the total method 3 quantity of this material is $L_B(B_{BC} + B_{CV})$. B_{VT} represents a different material, so it should not be added to $B_{BC} + B_{CV}$. The total quantity for method 3’s B_{VT} material is $(L_B)(B_{VT})$.

17-3.02(04) Deformed Pipe, Rock Foundation

The total backfill quantity is that required for an earth foundation plus the foundation backfill required below the pipe. The additional volume is determined in the same manner as for a circular pipe.

17-3.03 Computer Program for Determining Backfill Quantities

The computer program, Backfill Calculation Software, is now available on the Department’s website at www.in.gov/dot/div/contracts/standards/07Bkfl-qt.xls. Use of the program precludes the need for hand-calculations for cross-structures as shown in the INDOT Standard Drawings.

For a circular pipe, the input data include pipe diameter, pavement or median width as required, and T_c.

For a deformed pipe, the input data include pipe size, pavement or median width as required, T_c, span, rise, and perimeter P. Span, rise, and P can be determined from the reference sheets included with the program.

The following backfill quantities calculation examples are included with the program.

1. Method 1, Circular Corrugated Pipe, Rock Foundation
2. Method 1, Deformed Smooth-Interior Pipe, Earth Foundation
3. Method 1, Circular Smooth-Interior Pipe, Earth Foundation
4. Method 2, Circular Corrugated Pipe, Earth Foundation
5. Method 2, Circular Corrugated Pipe, Structural-Plate Metal, Rock Foundation
6. Method 2, Deformed Corrugated Pipe, Earth Foundation
7. Method 3, Circular Corrugated Pipe, Earth Foundation
8. Method 3, Deformed Corrug. Pipe, Structural-Plate Aluminum Alloy, Earth Foundation
9. Method 3, Deformed Corrugated Pipe, Structural-Plate Steel, Rock Foundation
17-3.04 **Video Inspection**

Video inspection will be required for each pipe that is inaccessible for visual inspection, or for which visual inspection is impossible. This includes each location considered to be in a confined space. Commercial- and private-drive pipes will not be video inspected. This is a pay item, and should be applied as necessary to each non-underdrain pipe pay item, without regard to INDOT Standard Specifications reference number.

17-3.05 **Information to be Shown on Plans**

The backfill method, material, and quantity; geotextile quantity if applicable; and video-inspection quantity if applicable, should be shown in the Structure Data table for each pipe structure.

17-4.0 **ROADWAY QUANTITIES**

17-4.01 **Pavement Materials**

Chapter 304 discusses INDOT pavement design criteria. It also provides information for quantity determinations of subgrades, asphalt materials, concrete materials, underdrains and geotextile wraps. Figure 17-4A, Roadway Factors, provides factors that can be used to determine asphalt pavement and other roadway quantities.

The following method should be used to determine quantities for shoulder corrugations. For an Interstate route, it is sufficient to multiply the number of shoulders requiring corrugations, usually four, by the gross project length in yards. For another type of facility, it is acceptable to multiply the number of shoulders that require corrugations by the gross project length in yards by 0.8 to account for the gaps in the intermittent corrugation pattern. It is not necessary to subtract the length of gaps at bridge approach slabs and bridge decks, driveways, median crossovers, or public road approaches when calculating the quantity. It is also not necessary to subtract the length of non-corrugated shoulder less than 7 ft wide adjacent to a roadside barrier.
17-4.02 Subgrade Treatment [Rev. Apr. 2020]

The subgrade is defined as the top surface of a roadbed upon which the pavement structure and shoulders are constructed. The subgrade area should be computed for all areas of new pavement or shoulders, including cuts and fills. The width of the treatment is between points which are 2 ft, or as determined, outside the edges of paved shoulders or back faces of curbs, as shown in Chapter 304, or as instructed by INDOT Geotechnical Services. The lateral limits and type of subgrade treatment should be shown on the Typical Cross Sections on the plans.

Standard subgrade treatment types are defined in INDOT Standard Specifications section 207. Where non-standard or modified subgrade treatments are recommended by INDOT Geotechnical Services, a unique special provision is required.

17-4.02(02) Subgrade Treatment Type Determination [Rev. Apr. 2020]

INDOT Geotechnical Services should be informed of possible shallow utilities, temporary pavement, need for a temporary runaround, or night construction so that it can make suitable recommendations for subgrade type. Such considerations should be documented in the field check minutes.

Chemical soil modification should not be used where groundwater is within 5 ft of the proposed subgrade treatment elevation. Due to equipment limitations, chemical soil modification should be limited to a subgrade width of at least 8 ft.

The type or types of subgrade treatments for each project will be specified in the geotechnical report. If the geotechnical report does not specify the subgrade treatment type, the designer should coordinate with INDOT Geotechnical Services for a subgrade treatment recommendation.

17-4.02(03) Determining Pay Items and Quantities

A divided highway may have parallel but separate subgrade treatment areas, likely of the same type, depending upon the width of the median. An isolated area such as that on an S-line, median crossover, or possibly a portion of the mainline, may be of a different treatment type than that of the mainline. Quantities should be determined for each required subgrade treatment pay item.
17-4.03 Placing Pipe Under Existing Pavement

Pay quantities for backfill and pavement replacement work at an installation or replacement of a pipe, culvert, structure, or utility line placed either transversely or longitudinally under an existing paved roadway alignment will be determined as described below.

17-4.03(01) Determining the Longitudinal Pay Limits of the Pavement Replacement

The following equations, along with the INDOT Standard Drawings, should be used to determine the longitudinal pay limits, L, in linear feet, of the pavement replacement.

1. Structure of 30 in. Diameter/Span or Smaller.

\[L = 5.5 + \frac{d}{6} + \frac{B_c}{12} \]

[Equation 17-3.1]

where d = vertical distance from flow line to profile grade, feet
B_c = inside diameter or span, inches

2. Structure of Diameter/Span of Greater Than 30 in.

\[L = 4 + \frac{d}{6} + 0.13B_c \]

[Equation 17-3.2]

17-4.03(02) Determining Pavement Quantities

The pavement material to be placed should match the existing pavement section as closely as possible. If the existing section is shallower than the minimum section shown on the INDOT Standard Drawings, such minimum section should be specified. The designer will determine the existing pavement section from the most recent approved pavement design or existing typical cross sections details. If the existing asphalt pavement section cannot be determined, the minimum HMA section shown on the INDOT Standard Drawings with 440 lb/yd2 HMA Base should be specified. If the existing concrete pavement section cannot be determined, a minimum PCCP section of 9 in. depth should be specified. The same new pavement section should be used for both travelway and shoulders.
1. **Asphalt Pavement.** Hot mix asphalt (HMA) pavement quantities should be determined for Surface, Intermediate, or Base courses. The thickness of each course should approximate that in place with consideration given to current practice in determining course thicknesses. If a thicker section than the minimum is required, the additional thickness should consist of HMA Base 25.0 mm. The courses and lay rates should be shown on the plans.

 The pay unit is ton. The type should be determined as described in Section 304-8.02. Quantities should be determined for each course and summed to obtain a total quantity of HMA for structure installation to be shown on the plans on the Structure Data sheet in the Pavement Replacement, HMA columns.

2. **Concrete Pavement.** The required portland cement concrete pavement (PCCP) quantity is the travelway and shoulder widths times \(L \) as determined above. The pay unit is square yard. The same pay item should be specified without regard to the required pavement depth. The required depth should be shown on the plans. The new subbase should match the existing thickness and type, whether the existing subbase is open graded or dense graded. The PCCP quantity should be shown on the plans on the Structure Data sheet in the Pavement Replacement, PCCP column.

3. **Composite Asphalt over Concrete Base.** HMA of the thickness in place should be placed on PCCP of the minimum or greater thickness if required. The HMA material should consist of HMA for Structure Installation as required. The new subbase should match the existing thickness and type, whether the existing subbase is open graded or dense graded. The quantities should be determined and shown on the plans as described in Items 1 and 2 above.

17-4.03(03) Determining Backfill Quantities

Quantities for backfill should be determined based on the section shown in the INDOT Standard Drawings, and as described in Section 17-3.01(03). The backfill quantities should be shown on the Structure Data sheet in the appropriate Backfill column. If no Structure Data sheet is included with the plans, the backfill quantities should still be shown on the plans.
17-4.03(04) Determining Underdrain Quantities

Underdrains, if present where placing a pipe under existing pavement, should be perpetuated. The only pay quantity will be for the linear measure of underdrains based on the existing configuration. The pay item is Underdrain, Patching and the pay unit is linear foot. Quantities should not be determined for underdrain pipe, aggregate for underdrains, geotextile for underdrains, HMA for underdrains, outlet protector if required, video inspection for underdrains, and all other incidentals for underdrains. This work is included in the cost of the pay item Underdrain, Patching.

17-4.04 Subbase and Underdrains for Cement Concrete Pavement

17-4.04(01) Subbase

The subbase under portland cement concrete pavement (PCCP) consists of two aggregates, Coarse Aggregate No. 8 on top of Coarse Aggregate No. 53. The INDOT Standard Specifications provides the criteria for thickness of these aggregates. The bottom layer of this composite subbase should be designated on the plans as a separation layer. Include this separation layer in a PCCP mainline, S-line, or approach pavement except a drive. For estimating and payment purposes, combine the quantities for both aggregate types and designate them together as Subbase for PCCP. For additional guidance, see Chapter 304 and the INDOT Standard Specifications, section 302.

17-4.04(02) Underdrains

Underdrains are required under new pavement. Locate the underdrain in the pavement structure as shown in Chapter 304 and provide a detail in the construction plans. For additional guidance, see Chapter 304 and the INDOT Standard Specifications. Where underdrains are used, include the following pay items.

1. **Underdrain.** The underdrain will consist of the pay items as follows:

 a. Pipe, Type 4, Circular, \((size) \) in.;

 b. Geotextile for Underdrains; and

 c. Aggregate for Underdrains. Only the aggregate placed below the subgrade is included as aggregate for underdrains.
2. **Underdrain Outlets.** Underdrain outlets will consist of the pay items as follows:

 a. Pipe Underdrain Outlet,

 b. Outlet Protector,

 c. Delineator Post.

17-4.05 Non-Standard Concrete Median Barrier

A non-standard concrete median barrier may be required on a horizontal curve, superelevation transition, or other locations where the barrier height varies from the standard dimensions, or where the median barrier is attached to a concrete footing or wall cap. Identify these locations on the plans and include the pay items Concrete, Class A and Reinforcing Steel, on the plans. Also, include a special provision in the contract.

A short length of irregular concrete median barrier section used in conjunction with the standard shape, a barrier at an approach to a bridge pier, sign foundation, or other similar support should be considered concrete median barrier and quantified as concrete barrier.

17-4.06 Curb Ramp and Detectable Warning Surface [Rev. Apr. 2016]

The pay limit for a curb ramp should include the ramp, blended transition, turning space, flared side and return curb as required. Where a turning space is shared by more than one curb ramp the turning space should only be measured for payment once.

Quantities for curb or combined curb and gutter within the curb ramp limits should not be included in the curb ramp quantity. These quantities should be incorporated into the project’s appropriate curb or curb-and-gutter quantities. Quantities for sidewalk required outside the curb ramp pay limit, should be incorporated into the project concrete sidewalk quantities. If flared sides are sod instead of concrete, such sodding should be incorporated into the project sodding quantities. The following pay items apply to curb ramps.

1. **Curb Ramp, Concrete (SYS).** Include the area of the ramp, blended transition, turning space, flared side, and return curb.

2. **Detectable Warning Surface (SYS).** Include the area of the detectable warning surface for the full width of the ramp, or blended transition, or turning space, as appropriate.
The pay item Detectable Warning Surface, Retrofit, should be included where a detectable warning surface is replaced or placed without construction of a new curb ramp. The pay limits of the detectable warning surface, retrofit should only include the detectable warning surface area. The Detectable Warning Surface, Retrofit pay item will include the removal, disposal, and replacement of portions of the concrete ramp, concrete base, including border, detectable warning surface, thin set mortar, and fine aggregate (where required) for filling joints.

Figure 17-4D, Quantities for Curb Ramp, illustrates the pay limits for curb ramps.

17-4.07 Sodded, Paved, or Riprap Ditch

A longitudinal-ditch slope of flatter than 1% will be seeded. A slope of 1% or steeper but flatter than 3% will require sodding. A slope of 3% or steeper will require a paved side ditch or riprap lining. However, in an area of poor soil, a slope of flatter than 3% may be paved or lined with riprap. A riprap ditch is typically used in a rural area and should be avoided in an urban area. The final ditch-protection type will be determined at the field check in consultation with the district office. The following discusses how to estimate the quantities for each ditch type.

17-4.07(01) Sodded Ditch

A standard sodded ditch is that which is parallel to the pavement profile grade line. A special sodded ditch is that which varies in elevation with respect to the pavement profile grade line. Depending on the side slopes, either ditch type may be used within the clear zone. Do not use a ditch with side slopes of 3:1 or steeper within the clear zone.

A ditch should be sodded to a point 1 ft above the flow line. Figure 17-4E, Sodded Ditch Quantities, provides the factors that can be used to determine the sodding quantities for a 4-ft wide sodded ditch based on various side slopes.

17-4.07(02) Paved Side Ditch

The INDOT Standard Drawings and Figure 17-4F, Paved Side Ditch, illustrate the types of paved side ditch used by the Department. To determine the type of paved side ditch, use the criteria provided in Section 30-3.03(02).
When computing quantities, the designer should consider the following.

1. **Limits.** Where a paved side ditch meets a sodded or unsodded ditch flowing in the same direction, extend the limits of the paved side ditch 25-ft beyond the theoretical point of termination. A longer distance may be required under special circumstances.

2. **Measurement.** Paved side ditch is measured from station to station in meters. For a grade of 20% or flatter, increase the measured distance from the plans by 5% to compensate for grade. For a grade steeper than 20%, increase the measured distance by 10%.

3. **Transition.** A paved-side-ditch transition is required at an intersection with an earth ditch or pipe culvert. Convert the transition to an equivalent length of the type of paved side ditch specified. A transition of 10 ft or shorter is also required between two different types of paved side ditches. The transition is provided for in the pay length of the larger type of paved side ditch type specified.

4. **Cutoff Wall.** A cutoff wall is required at the beginning and end of each paved side ditch. Each cutoff wall is considered to be equivalent to 8 lft of the paved-side-ditch type specified at a location. Therefore, add an additional 8 lft to the measured paved-side-ditch quantity for each cutoff wall required.

5. **Lug.** A lug is provided to prevent sliding on a steep slope. Each lug is considered equivalent to 8 lft of the paved-side-ditch type specified at a location. Therefore, add an additional 8 lft to the measured paved-side-ditch quantity for each lug required. Lugs should be provided at the locations as follows:
 a. 10 ft downslope from a grade change;
 b. 10 ft downslope from the intersection of two different types of paved side ditches;
 c. at the downslope end of a transition between two different types of paved side ditches; or
 d. at the intervals shown in Figure 17-4G, Lug Intervals.

6. **Sodding.** Provide sodding next to a paved side ditch as shown in Figure 17-4F, Paved Side Ditches. To determine the sodding quantity, use a factor of 2.6 yd² per linear foot of paved side ditch. This factor is applicable for all paved-side-ditch types.
17-4.07(03) Riprap-Lined Ditch

When designing a riprap-lined ditch, consider the following:

1. Revetment riprap may be used for a slope of 3% or steeper, but 10% or flatter. Class I or class II riprap should be used for a slope steeper than 10%.

2. At a bridge cone, use the riprap type specified for the bridge cone.

3. Where a riprap ditch meets a sodded or unsodded ditch flowing the same direction, extend the limits of the riprap 25 ft beyond the theoretical point of termination.

4. Place geotextile under the riprap.

5. Show the ditch details on the plans.

6. Use uniform riprap for a ditch which is within the clear zone.

17-4.08 Mailbox Assembly and Mailbox Approach

A project on a rural non-Interstate-route will require mailbox assemblies. Section 51-11.0 provides guidance on the design and location of a mailbox approach. If mailbox locations are not shown on the topographic survey, the designer should not assume that mailboxes are not present on the route. In the absence of survey information, the designer should check for mailboxes at the field check review. The use of the videolog will also aid in determining the location and number of mailboxes.

Figure 17-4H, Mailbox Summary Table, illustrates the mailbox quantities that should be used. If the designer is certain that mailboxes are not located within the project limits, there is no need to include the work in the plans.
17-4.09 Monuments [Rev. Apr. 2016]

17-4.09(01) General [Rev. Apr. 2016]

A monument is set to perpetuate the location of a disturbed public land survey or grant corner within a right of way, to reestablish an alignment monument that may be disturbed during construction or created from a PR line, or to establish and define a vertical reference point. Monuments used by the Department are shown in the INDOT Standard Drawings series E 615-SCMN, E 615-SLBM, and E 615-SLMN and are defined as follows.

1. **Monument Type A.** Use this type with vitrified brick or asphalt surface on concrete base.

2. **Monument Type B.** Use this type with an asphalt pavement.

3. **Monument Type C.** Use this type where a monument is required outside the pavement area.

4. **Monument Type D.** Use this type with a concrete pavement.

5. **Benchmark Post.** Use this type to establish a Department benchmark.

6. **Section Corner Monument.** Use this type to perpetuate the location of a public land survey or grant corner.

It is the responsibility of the designer to select the type of monument that best suits the location where a monument is required.

17-4.09(02) Section Monuments [Rev. Apr. 2016]

The following will apply.

1. **Location.** Provide a monument at each section corner, quarter-section corner, and grant corner that lies within the right of way for a new facility, or for a facility to be reconstructed except as described in item 2 below.
2. Responsibilities. The district office will request the county surveyor to establish each public land survey and grant corner located within the right of way that is not already defined by a monument at the time of construction. If the county surveyor fails to establish each such point as requested, the district office will eliminate each monument provided for this purpose from the contract. Those section corner, quarter-section corner or grant corners that lie within the right of way that were previously monumented, but will be destroyed during construction, must be re-established.

3. Plans. Designate each monument by type and show it on the plans with an arrow to its approximate location.

17-4.09(03) Survey Line Control Point [Rev. Apr. 2016]

A survey or design alignment is used as the basis for the descriptions of acquired right of way. With respect to right-of-way descriptions, it is as significant as a section corner. A survey line control point and survey and design alignment monuments must be set by an Indiana registered land surveyor. A partial 3R project or a project not requiring additional right of way is exempt from this requirement. The following will apply.

1. Monumenting PI, PC, and PT. The following will apply.

a. Where a PI appears within the right of way, provide a monument at the PI.

b. Provide a monument for each PC and PT.

c. Designate each monument by type and show it on the plans with an arrow to its approximate location.

d. Place a monument at the intersection of the main line with the “S” line.

2. Monumenting Beginning and End Point of Project. Place a monument on the survey and/or design alignment centerline at each of these points.

3. Monumenting POT and POC. The following will apply.

a. It is not necessary to monument each POT and POC. These intermediate points are to be monumented as necessary so the maximum interval between adjacent monuments does not typically exceed one quarter mile.
b. Where practical, a monument required to define a POC or POT should coincide with a POC or POT established during the original survey.

c. Designate each POC and POT monument by type and station and show it on the plans with an arrow to its approximate location.

17-4.09(04) INDOT Benchmark [Rev. Apr. 2016]

One benchmark should be provided at least every 1.5 mile. Benchmarks should be located as follows.

1. **Structure.** Include a benchmark tablet on each bridge. Where twin structures or dual structures are constructed in the same vicinity, a benchmark is only required on one structure. Benchmark tablets should be installed at locations with continuous, deep foundations such as abutment, pier or pile cap. Avoid locations such as curbs, sidewalks, bridge decks, and railings. Location must accommodate the establishment of an accurate elevation of the benchmark. Benchmark tablets set as noted above or in a benchmark post should not be paid for directly.

2. **Non-Structure.** Where the spacing of structures is in excess of 1.5 miles, show benchmark posts on the plans and space them such that the maximum spacing between benchmarks is 1.5 miles. Benchmark posts should be paid for per INDOT *Standard Specifications*.

3. **Plans.** Designate each benchmark post or tablet on the plans with a note as follows:

 Benchmark Post (or Tablet) Required
 Station ______ + ______
 Offset distance _______ Direction (Lt. or Rt.) ______

17-4.09(05) Correcting Plans [Rev. Apr. 2016]

The district construction engineer will notify the district Capital Program Manager, project manager, and district Survey Manager in which the project is located, for approval prior to any monument being eliminated from the contract or if the location of a monument is proposed to be changed. The as-built plans are to reflect any changes made to the monument locations shown in the construction plans.
17-4.09(06) Right-of-Way Marker

See Section 85-7.0 for information.

17-4.09(07) National Geodetic Survey Benchmark

Each National Geodetic Survey (NGS) benchmark disturbed by highway construction must be re-established. It is the responsibility of the Contractor to secure the replacement disk for such a benchmark. In addition, the construction plans should include the note as follows:

N.G.S. Benchmark Post No. __________,
Station __________, (Rt.) (Lt.) shall be re-established by the Contractor.

Procedures for re-establishing soon-to-be disturbed or destroyed bench marks should follow the guidelines established in the NGS Bench Mark Reset Procedures document and can be obtained at the link provided below:

17-4.09(08) NGS Horizontal Control Point [Rev. Apr. 2016]

The designer is responsible for notifying the NGS if a NGS horizontal control point (formerly triangulation point) will be destroyed due to proposed highway construction. This notification will be made by the Highway Design and Technical Support Division director and should be made at the time the plans are sent to the district office. Sufficient detail of the mark should be provided with notification to ensure positive identification. Said notifications will be made to the following:

NOAA, National Geodetic Survey, N/NGS43
Bldg. SSMC3, Room 8545
1315 East-West Highway
Silver Spring, MD 20910
Phone: 301-713-3242

It is not necessary to show a monument in the plans for use in re-establishing a NGS horizontal-control point.

Each United States Geological Survey (USGS) benchmark disturbed by highway construction must also be re-established. Information on resetting such may be obtained by contacting the following:

National Spatial Data Infrastructure Partnership Office
U.S. Geological Survey
Ohio Mapping Partnership Office
6480 Doubletree Avenue
Columbus, OH 43229
Phone: (614)-430-7768

17-4.10 Seeding and Sodding [Rev. May 2016]

Permanent seeding and sodding requirements can be found in the INDOT Standard Specifications, section 621.

17-4.10(01) Seeding for Grading and Paving Project [Rev. May 2016, Sep. 2016]

The following will apply.
1. Rural Area of 1 ac or Larger. An area within the right of way that is not sodded or paved should be seeded as follows.

 a. Seeding. Use Seed Mixture R as specified in the INDOT Standard Specifications. Estimate the quantity assuming an application rate of 205 lb/ac.

 b. Mulching. Use the pay item Mulching Material and estimate it at a rate of 2 T/ac.

 c. Fertilizer. For estimating purposes, assume an application rate of 800 lb/ac. Use the pay item Fertilizer and include the supplemental description “for permanent seeding.”
2. **Urban Area of 1 ac or Larger.** An area within the right of way that is not sodded or paved should be seeded as follows.

 a. **Seeding.** Use Seed Mixture U as specified in the INDOT *Standard Specifications*. Estimate the quantity assuming an application rate of 200 lb/ac.

 b. **Mulching.** Use the pay item Mulching Material and estimate it at a rate of 2 T/ac.

 c. **Fertilizer.** For estimating purposes, assume an application rate of 800 lb/ac. Use the pay item Fertilizer and include the supplemental description “for permanent seeding.”

3. **Rural Area of Smaller Than 1 ac.** For an area within the right of way which is not sodded or paved, use the pay item Mulched Seeding R. Estimate the area and pay quantity in square yards.

4. **Urban Area of Smaller Than 1 ac.** For an area within the right of way which is not sodded or paved, use the pay item Mulched Seeding U. Estimate the area and pay quantity in square yards.

17-4.10(02) Seeding for Grading Project[Rev. May 2016, Sep. 2016]

The following will apply.

1. **Shoulder Point to Shoulder Point.** The area between the outside shoulder points should be seeded as follows.

 a. **Seeding.** Use Seed Mixture P as specified in the INDOT *Standard Specifications*. Estimate the quantity assuming an application rate of 130 lb/ac.

 b. **Fertilizer.** For estimating purposes, assume an application rate of 400 lb/ac. Use the pay item Fertilizer and include the supplemental description “for permanent seeding.”

2. **Shoulder Point to Right-of-Way Line.** The area between the outside shoulder point and the right-of-way line should be seeded according to the requirements for a grading and paving project as discussed in Section 17-4.10(01).
17-4.10(03) Seed Mixture Type D [Added May 2016]

Seed Mixture Type D is intended for ditch applications where seasonal or chronic saturated soils exist. Estimate the quantity assuming an application rate of 16 lb/ac. Fertilizer is not used. This mixture should be specified for use only on maintenance contracts. The use on other contract types should be coordinated with the Environmental Services Division landscape architect.

17-4.10(04) Seeding for Environmental Mitigation [Rev. May 2016]

Where environmental mitigation is required by the environmental document, or as determined from a field check, specify one of the following seed mixtures.

1. Seed Mixture Grass. The following will apply.
 a. Type 1. Specify this mixture where a special grass is required in addition to the regular seed mixture. The pay item is Seed Mixture Grass Type 1. For estimating purposes, assume an application rate of 235 lb/ac.

 b. Type 2. This mixture is to be furnished at the contractor’s expense instead of the regular seed mixture in an urban area that has been disturbed beyond the construction limits.

2. Seed Mixture Legume. The following will apply.
 a. Type 1. Specify this mixture where a special legume mixture is required in addition to the regular seed mixture. The pay item is Seed Mixture Legume Type 1. For estimating purposes, assume an application rate of 230 lb/ac.

 b. Type 2. This mixture is to be furnished at the contractor’s expense instead of the regular seed mixture in a rural area that has been disturbed beyond the construction limits.

 c. Signs. Include “Do Not Spray” signs where this mixture is specified.
17-4.10(05) Wildflower Seed Mixture

Where a wildflower seed mixture is specified, prepare the necessary special provisions so that at least three alternatives of equal cost, type, and growing condition are available for the contractor to select. These alternates may be designated by alternate vendors’ formulations, by the designer’s own non-proprietary formulations, or any combination thereof that results in three equal alternatives. Ensure that alternate component varieties for non-proprietary formulations allow the contractor to make substitutions for component varieties that may be in short supply. If the designer has any questions regarding application rates, method of measurement, or pay item descriptions, he or she should contact the Production Management Division’s landscape architect.

17-4.10(06) Sodding

In determining the need for sodding, the designer should consider the following.

1. **Sod.** Sod should be included as described as follows:
 a. in an earth ditch with longitudinal slope of 1% or steeper but flatter than 3%;
 b. along a paved side ditch (see INDOT Standard Drawings);
 c. at a bridge-cone area near a bridge structure as shown in Figure 17-5 I, Riprap and Sodding Limits with Barrier Transitions on Bridge, or Figure 17-5J, Riprap and Sodding Limits with Barrier Transitions on RCBA;
 d. in a median ditch of a divided highway; see Figure 17-4 I, Sodding Locations; and
 e. at side-slope break points; see Figure 17-4 I.

2. **Nursery Sod.** Nursery sod will be required for all exposed surfaces within the right of way of a developed area (i.e., commercial, industrial, residential). A maintained lawn expected to be disturbed by construction a rural area will also require nursery sod.

3. **Estimates.** Estimate the area of sod and nursery sod in square yards.

4. **Water.** To estimate the amount of additional water required for sod and nursery sod, assume a rate of 4 gal./yd². The pay unit is kilogallon, symbol kGAL.
17-4.10(07) Mobilization and Demobilization for Seeding

If pay items for seeding are required, at least one each of the pay item Mobilization and Demobilization for Seeding is required. If the project includes a temporary runaround, add at least one additional unit to the estimate. Additional units may be added as required for the likely progression of work (e.g., for the various construction phases).

17-4.11 No-Passing-Zone Pavement Markings

If a no-passing zone extends beyond the project limits, striping quantities should include required solid-yellow lines and adjacent broken-yellow lines to the ends of such no-passing zone.

17-4.12 Spare Parts Package for Guardrail End Treatment or Impact Attenuator [Del. May 2019]

17-4.13 Temporary Traffic Barrier (TTB)

The total pay quantity of each type of TTB should be computed only once, regardless of how many traffic-maintenance phases it is to be used in, or how many times it must be moved.

The length of the longitudinal portion of TTB should be taken from the beginning point of where it is required to the ending point of where it is required. Gaps required to accommodate public road approaches or drives should be subtracted out. The length of each such gap should be taken as the approach or drive width plus its radii. The lengths of each flared portion should be measured along the flare.

A construction-zone energy-absorbing terminal, if required for use with TTB type 1 or type 3, is a separate pay item to be quantified only once, regardless of how many traffic-maintenance phases it is to be used in, or how many times it must be moved. The length of each construction-zone energy-absorbing terminal, if required for use with TTB type 2 or 4, should be taken as 37.58 ft where used along an outside shoulder, or 12.5 ft where used along a median shoulder. Such lengths should be included in the linear quantities of TTB.

Delineation, and anchoring or other means required to control deflection, are included in the TTB quantities, so they should not be considered when determining the pay quantities.
17-4.14 High-Tension Cable Barrier System (CBS)

1. Plans. The longitudinal and transverse CBS locations should be shown on the plans. A geotechnical investigation of the soil conditions will be required for the approximate locations of the safety terminal and the representative locations of the intermediate line-post foundations at the respective sites throughout the entire length of the proposed barrier installation. The geotechnical-investigation results should be incorporated into the contract documents.

2. Quantities. The length of each end terminal should be included in the quantities for CBS. A safety terminal should be included for each end of each CBS run. One spare-parts set should be included. The plans should show all necessary linear-grading work to be done in the median. The quantities should be included in a pay item for linear grading. A traffic-control plan should be included, along with a pay item for maintaining traffic.

17-5.0 BRIDGE QUANTITIES

17-5.01 Structural Concrete Quantities

17-5.01(01) Cast-In-Place Concrete

Measure concrete quantities, in cubic yards, based on the theoretical volume for the class and use specified. Do not deduct for the volume of piles, joint material, or reinforcing steel within the concrete.

17-5.01(02) Concrete Structural Members

Prestressed I beams and bulb-tee beams will be measured by the linear foot. There is no measurement per each or lump sum. Prestressed box beams will be measured by the square yard.

17-5.01(03) Surface Seal

The manner of showing the limits of surface seal on the plans, and the pay quantity of surface seal, should be determined based on attached Figure 17-5A(0). The quantity in square feet (square meters) should be shown where appropriate on the Bridge Summary of Quantities.
For a bridge with concrete structural members, the tops of all such members, and the outside faces of the fascia members should also be surface sealed. This quantity is included in the concrete-structural-member quantities. It should not be calculated, nor included in the surface-seal quantity shown on the Bridge Summary of Quantities.

17-5.02 Excavation Quantities

Structure excavation can consist of several types of excavation. In addition to the INDOT Standard Specifications, Figure 17-5A, Structure Excavations, and the following discuss the various structure-excavation types and how to determine the applicable quantities.

1. **Class X Excavation.** Specify the pay item Excavation, X, where solid rock, loose stones, boulders of more than 0.5 yd³ in volume, concrete footings from old structures not shown on the plans, timber grillages, piles, or other similar materials are encountered within the limits of foundation excavation. The volume of class X excavation is determined as follows:

 $$\text{Class X Excavation} = \frac{(L)(W)(D)}{27}$$

 Where:
 - L = length of footing, ft
 - W = width of footing, ft
 - D = depth of class X excavation, ft (See Figure 17-5A)

 D extends from the bottom of the footing to the top of the rock elevation.

2. **Wet Excavation.** Specify the pay item Excavation, Wet, where foundation excavation is encountered below a horizontal plane designated on the plans as the upper limit of wet excavation. The limits for wet excavation quantities are defined as the theoretical volume bounded by the bottom of the footing, the upper limit of wet excavation and vertical planes which are 1.5 ft outside the neat lines of the footing and parallel thereto. The elevation of the upper limit of wet excavation is the low-water elevation plus 1 ft. The volume of wet excavation is determined as follows:

 $$\text{Wet Excavation} = \frac{(L + 3)(W + 3)D}{27}$$

 Where:
 - L = length of footing, ft
 - W = width of footing, ft
 - D = depth of wet excavation, ft (See Figure 17-5A)
Additional quantities may be required outside these limits for the following conditions.

a. The plans show a cofferdam with dimensions that exceed 1.5 ft outside the footing and the cofferdam is not a pay item. The theoretical volume for wet excavation will be based on the dimensions of the cofferdam as shown in the plans.

b. A foundation seal is required. The wet-excavation limits will be extended to the bottom elevation of the foundation seal.

c. The volume of any class X excavation encountered within the limits of wet excavation is not to be subtracted from the wet excavation. The volume of class X excavation should be included as a separate pay quantity.

If a portion of the present structure lies wholly or partially within the limits of wet excavation, do not alter the pay quantities for wet excavation.

3. **Dry Excavation.** The volume of dry excavation is the amount of excavation required from the top of wet excavation to the top of proposed ground line. Only include the pay item Excavation, Dry, if the quantity exceeds 250 yd3. Where dry excavation is not included as a pay item, the quantity is included the concrete quantity. The volume of dry excavation is determined as follows:

$$
\text{Dry Excavation} = \frac{(L + 3)(W + 3)D}{27}
$$

Where:
- $L =$ length of footing, ft
- $W =$ width of footing, ft
- $D =$ depth of dry excavation, ft (See Figure 17-5A)

4. **Waterway Excavation or Common Excavation.** The volume of waterway or common excavation is the amount of excavation required from the existing ground line to the proposed ground line. If this excavation is in the main-channel area, the pay item is Excavation, Waterway. Otherwise it is Excavation, Common. If it is as common excavation, add this quantity to the previously computed quantity for the road work. If extensive channel work is required, compute the waterway excavation separately.
5. **Foundation Excavation (Unclassified).** If there are no other types of structure excavation, the excavation pay item required at each end bent is Excavation, Foundation, Unclassified. The volume of foundation excavation (unclassified) is determined as follows:

\[
\text{Foundation Excavation (Unclassified)} = \frac{(L + 3)(W + 3)D}{27}
\]

Where:
- \(L\) = length of footing or end bent cap, ft
- \(W\) = width of footing or end bent cap, ft
- \(D\) = depth of excavation from the natural ground line to bottom of the foundation, ft

17-5.03 **Piling [Rev. Jan. 2011]**

17-5.03(01) Test Piles [Added Jan. 2011]

The geotechnical report will specify the test method for determining the nominal driving resistance of a driven pile as dynamic formula, dynamic-pile load, or static load. If the number of hours required before restriking can occur is not provided in the geotechnical report, 0 should be entered in the appropriate recurring special provision’s appropriate blank. The appropriate test-piling-related pay items are as follows.

1. **Dynamic-Formula Method, INDOT Standard Specifications Section 701.05(a).**

 a. Test Pile, Indicator, Production. One such pile per support is required.

 b. Test Pile, Indicator, Restrike. A quantity of one each is required for each test pile.

 If the geotechnical report does not specify a number of hours before restrike can occur, the pay items for indicator test pile and indicator test pile restrike are not required.

 In addition to the criteria shown in the INDOT Standard Specifications, the designer should consider the following.
2. **Dynamic Pile-Load Test, INDOT Standard Specifications Section 701.05(b).**

a. Test Pile, Dynamic, Production. The required number and locations of such piles per support or structure will be shown in the geotechnical report.

b. Test Pile, Dynamic, Restrike. A quantity of one each is required for each test pile.

c. Dynamic Pile Load Test. A quantity of one each is required for each test pile.

3. **Static-Load Test, INDOT Standard Specifications Section 701.05(c).**

a. Test Pile, Static Load, pile size, Non-Production. The required number of such piles per support or structure will be shown in the geotechnical report.

b. Static Pile Load Test. A quantity of one each is required for the test pile.

 If this test method is specified, the static-load test-pile location area should be shown on the plans. The geotechnical report will also specify the dynamic-pile-load test for the same piles. The pay items for test pile, dynamic restrike, and dynamic pile load test will also be required.

 If the geotechnical report specifies epoxy-coated or reinforced-concrete-encased piling, the portion of the production test pile that is to be so treated should be quantified as an epoxy-coated or reinforced-concrete-encased pile. The remainder of the pile length should be quantified as a test pile, as described above.

 Quantities should not be included for restock piling. This is for construction-oversight personnel use at the conclusion of pile-driving operations.

17-5.03(02) Permanent Piles [Added Jan. 2011]

1. **Exposed or Buried Piles.** Piles which consist of an exposed portion and a buried portion should be measured as two pay items. The buried portion of a steel-pipe pile is Pile, Steel Pipe, \((pipe\text{-well thickness})\) in, \((diameter)\) in. The exposed portion is Pile, Steel Pipe, Epoxy Coated, \((pipe\text{-well thickness})\) in, \((diameter)\) in.

2. **Pay Items.** The pay items defined in the INDOT Standard Specifications should be used. The pay item names will include information on the pile diameter or size, the type of encasement, reinforcing-steel requirements, and the wall thickness of the steel shell.
3. **Measurement.** The minimum pile tip elevation shown on the General Plan sheet for a stream crossing is established to provide adequate penetration to protect against scour and does not necessarily indicate the penetration needed to obtain the required bearing. The estimated elevation needed to obtain the required bearing is shown only in the Geotechnical Report. The billed length of piling should be computed based on the lower of the minimum tip elevation shown on the General Plan sheet or the estimated bearing elevation shown in the Geotechnical Report.

4. **Incidental Items.** Do not include separate pay items for pile encasement, reinforcing steel, or concrete filling. These are included in the pay items for the piles.

5. **Oversized Predrilled Pile Holes.** For an integral end bent structure, include a special provision to define the additional payment breakdown required for oversized predrilled holes and uncrushed gravel backfill. The piles themselves should be measured as described in the INDOT *Standard Specifications*. Include the special provision where the blow count (N) exceeds 35 blows per foot within the 10-ft interval below the bottom of the cap.

17-5.04 Steel Sheet Piling

Steel sheet piling required for railroad protection should be shown on the plans. Sheet piling with a higher section modulus than that specified may be required by the railroad company or by the contractor’s bearing design. Sheet piling is cut to 10 ft below the final ground elevation, and left in place after construction is complete. The sheeting is not required for permanent support, but disturbance caused by its removal may be damaging. Steel sheet piling to be left in place is measured by the square foot.

The specified section modulus should be included in the pay item name.

17-5.05 Backfill for a Structure

17-5.05(01) Backfill at Bridge Support

1. **End Support.**
 a. Beam or Girder Type Superstructure. Backfill behind an end bent should consist of coarse aggregate wrapped in a geotextile as shown in the INDOT *Standard Drawings*. An end bent drain pipe should also be included. A structure over water should have the outlet located on the downstream side wherever possible.
b. Reinforced Concrete Slab Bridge. Flowable backfill should be used to backfill behind an end bent as shown in the INDOT Standard Drawings. End bent drain pipes will not be required.

2. Interior Support.

a. Railroad or Roadway Grade Separation Structure. The area to a point 1.5 ft outside the neat lines of each footing should be backfilled with structure backfill as shown on the INDOT Standard Drawings. The neat-line limits and estimated quantities should be shown on the Layout sheet for each support location.

b. Bridge Over Waterway. The area to a point 1.5 ft outside the neat lines of each footing should be backfilled with common fill or borrow material.

17-5.05(02) Backfill for Retaining Wall

Chapter 410 provides the design criteria and warrants for the placement of a retaining wall.

Figure 17-5B, Cast-in-Place Concrete Retaining Wall Earthwork Quantities Limits; Figure 17-5C, MSE Retaining Wall Earthwork Quantities Limits; and Figure 17-5D, MSE Retaining Wall Earthwork Quantities Limits Showing Foundation Treatment, each illustrate the typical pay limits for excavation and backfill material quantities for a retaining wall. The contractor may select an alternate wall design. However, the earthwork quantities should be calculated based on the outermost neat-line construction limits for the wall type shown on the plans.

All excavation quantities required for placement of retaining walls should be incorporated into the project’s earthwork quantities tabulation and balancing. The required pay items for a cast-in-place concrete wall are common excavation and structure backfill. The required pay items for an MSE wall are common excavation, structure backfill, and B borrow.

17-5.06 Roadway Items

Where bridge construction is to be included within road-project limits, the bridge designer should provide the road designer with a Layout sheet and a General Plan sheet indicating the proposed roadway construction near the bridge. In addition, the bridge designer will be responsible for providing the road designer with the quantities for the pay items listed in Figure 17-5E, Bridge Pay Items in Road Plans, so that they can be included with the roadway quantities.
17-5.07 Pavement Markings

A bridge project should include pay items and quantities for traffic-lane stripes, edge lines, and signs. A detail or a table illustrating permanent pavement-marking limits and quantities should be shown in the plans; see INDOT Typical Plan Sheets. The designer should consider the following.

1. **Edge and Center Lines.** Determine the quantity for solid-white edge lines and for broken-yellow center lines directly from the plans.

2. **No-Passing Zones.** The quantity for solid-yellow lines to denote a no-passing zone is an undistributed item. New solid-yellow lines for a no-passing zone should be provided for the entire no-passing zone, even if the no-passing zone extends beyond the limits of the bridge project. Approximate lengths may be determined during the field check. However, actual limits will be determined by the district Office of Traffic.

17-5.08 Regulatory or Warning Traffic Signs

The designer, in conjunction with district-office personnel during the field check review, should determine whether new traffic signs will be required or if the present ones can be reset.

The method of determining quantities for new regulatory or warning traffic signs is as follows.

1. **Posts.** Sign posts are measured by the linear ft and specified by type.

2. **Signs.** Sheet signs are measured by the area, in square feet, according to the sheeting type and thickness.

Figure 17-5F, Sign Post and Sheet Sign Summary (Bridge Project), illustrates the signing tables that should be placed on the Bridge Summary sheet or on the Approach Details sheet. For a project with a small number of signs, the totals may be omitted.

Sign codes, description, size, location, post length, and type are listed in the tables according to the guidelines in the Manual on Uniform Traffic Control Devices, the INDOT Standard Drawings and Section 502-1.0. The type and quantity of posts should be determined as shown on the INDOT Standard Drawings.
The designer should provide complete RCBA details on the bridge plans.

1. **Dimensions.** The RCBA length, width, skew, thickness, and bill of materials should be determined and shown on the plans. The length and width should be also shown on the General Plan sheet. INDOT Standard Drawings Series E 609-RCBA contains information on the spacing of reinforcement and connection to the bridge deck. The *Standard Drawings* are intended for new construction. The RCBA width should equal the bridge clear-roadway width and RCBA extensions utilized as needed.

2. **Anchoring.** The RCBA should be anchored to the end of the superstructure where integral end bent construction is used. Where a bridge deck expansion joint is used at the end of the superstructure, an alternate anchoring detail should be utilized.

3. **Polyethylene Fabric.** Two layers of polyethylene fabric, each of minimum thickness 0.02 in., should be placed between the RCBA and the dense-graded subbase where the RCBA is anchored to the superstructure.

4. **Terminal Joint.** The need for a terminal joint considers the type of end bent, expansion length, and type of approach pavement. See Section 409-2.04(01) for terminal joint criteria. See RPD 503-R-692d for terminal joint details until such time as the detail are incorporated into INDOT *Standard Drawings* Series E 503-BATJ. Separate details have been created for HMA and PCCP approach pavement types.

 a. **Terminal Joint, Type HMA,** requires 30 feet of a thickened full depth HMA pavement. The pavement section will be provided in the approved pavement design should be shown on the plans. The need for a terminal joint should be noted in the pavement design request. In general, where the roadway work consists of full depth reconstruction, the HMA base layer can be increased as needed to obtain the thickness shown in the notes on the drawing. Where the scope of the roadway work consists of only HMA overlay and transition milling, HMA for Patching, Type___(based on roadway traffic) will be used for the 30 feet of thickened full depth HMA pavement. Transition milling and QA/QC HMA Surface should extend over the full depth HMA pavement. See IDM Figure 304-15B. The pre-compressed foam joint is paid for by the linear foot.
b. Terminal Joint, Type PCCP requires a series of jointed reinforced concrete pavement (JRCP) sections. The JRCP is paid for by the square yard for the thickness required. Reinforcing bars are included in the cost of JCRP. The pre-compressed foam joint, D-1 contraction joint and the expansion joint with load transfer are paid for by the linear foot.

5. Extension for Bridge-Railing Transition. An extension should be provided under each bridge-railing transition as shown on INDOT Standard Drawings Series E 609-TBAE. The extension should be considered part of the RCBA, and not part of the transition.

17-5.09(02) Quantities [Rev. July 2012]

Quantities for the following pay items should be included on the Bridge Summary sheet, in the Summary of Bridge Quantities table, separate from other bridge quantities.

1. RCBA of the required thickness, including extensions for bridge railing transitions, per square yard.

2. Epoxy-coated reinforcing bars in the RCBA and extensions, per pound.

3. Dense-graded subbase placed under the RCBA and extensions, per cubic yard.

17-5.10 Riprap and Sodding Limits at Bridge Cone

Figure 17-5 I, Riprap and Sodding Limits with Barrier Transitions on Bridge, and Figure 17-5J, Riprap and Sodding Limits with Barrier Transitions on RCBA, illustrate the placement of riprap and sodding at a bridge cone to control erosion. Figure 17-5 I illustrates the placement where the barrier transitions are on the bridge and Figure 17-5J where they are on the RCBA. Riprapping the surfaces of the bridge cones and fill slopes adjacent to the RCBA is recommended for a new bridge at a stream crossing. Where mowing equipment experiences difficulty traversing riprap drainage turnouts for a grade separation structure (e.g., at an interchange), the bridge cone surfaces may be sodded instead.

For a bridge rehabilitation project, the designer should review proposed erosion control techniques (e.g., erosion control mat, riprap drainage turnout, sodded flume, curb inlet/piping) with the Bridges Division Bridge Rehabilitation Department and the district office.

If possible, the number of bridge sites in one contract should be limited to three or four. This will result in more contracts, but it should result in more-competitive bidding. It will also provide a better opportunity of completing the contract within the temperature and humidity restrictions and within the construction season.

17-5.11(01) Cleaning and Painting Existing Structural Steel Members and Components [Rev. Apr. 2020]

The oldest year of any existing structural steel should be shown on the plans. This information is used by the Contractor to assess the likelihood of hazardous materials being present.

Bridge cleaning and partial-bridge cleaning on an existing bridge are designated by QP type. The QP designation refers to the contractor’s required certification level. If the structure was built in 1995 or later, the QP-1 designation should be used. If all or a portion of the structure to be cleaned was built in 1994 or earlier, the QP-2 designation should be used.

The waste generated from cleaning an existing coating off a bridge is required to be disposed of at an appropriate facility and is a separate pay item from the cleaning and painting activity. The waste type to be designated in the disposal of cleaning waste pay item should be determined by the same criteria as the QP designation. For bridges built in 1994 or earlier, the hazardous designation should be used. Otherwise, the non-hazardous designation should be used. The Department’s Bridge Inventory Log Book’s year built should be used to determine the QP type.

See Figure 17-5L for guidance on selecting pay items based on the scope of work. When more than one bridge is included in a contract, each bridge within the contract stands alone and should contain all necessary pay items for the work to be performed on that specific bridge. This is accomplished by adding a supplemental description “Br. No._” to each pay item.

17-5.11(02) New Structural Steel Members

Regardless of whether the steel is regular or weathering, cleaning and painting of new structural-steel members is included in the furnishing of new structural steel. No painting-related pay items should be specified.

For weathering steel, the portions of new structural-steel members to be caulked and painted are shown in Standard Drawings.
17-5.11(03) Paint Colors [Rev. Apr. 2020]

Standard paint colors and associated color numbers are provided in the Standard Specifications – section 909.02(c) for allowable color numbers for full bridge painting and section 909.02(d)4 for partial bridge painting. One of these colors should be specified for the final coat, and the color number from the Standard Specifications placed in the appropriate blank on the Bridge Painting Locations and Information table, Figure 17-5K. Light blue or green is typically specified for full bridge painting and light blue or light green for partial bridge painting. Colors not listed in the Standard Specifications should be specified only after consultation with the district Bridge Asset Engineer. Reasons for using non-standard colors may include a request from an LPA, desire to match surroundings, etc. Darker colors, especially the color black, should be avoided as there can be longer lead times with obtaining approved paint due to intricacies with the darker color formulations. Dark colors also present a problem with future bridge inspections.

An editable version of the Bridge Painting Locations and Information table, Figure 17-5K is available on the Department’s Editable Documents website, at www.in.gov/dot/div/contracts/design/dmforms/, under Bridges. The completed table should be included on the plans.

17-5.11(04) Quantities Determination [Rev. Apr. 2020]

Pay item selection based on work included is summarized in Figure 17-5L, Bridge Painting Pay Item Selection. Pay items related to painting should be specified only for existing structural steel.

All pay items related to bridge painting are quantified as a lump sum.

A pay item for disposal of cleaning waste should be included with cleaning and painting activity. The waste type designated in the pay item should be determined using same criteria as the QP designation.

If only the end diaphragms, beam ends, etc., are to be cleaned and painted, such work should be identified on the plans and should be paid for as partial painting.

If the bearings are being cleaned and painted and the bridge is not being clean and painted (full or partial), such as on a variable depth concrete girder bridge, such work should be paid for as clean and paint bearing assemblies.

If the bearings are being cleaned and painted in conjunction with the bridge (full or partial) cleaned and painted, such work is not paid for directly. It should be included in the appropriate clean steel bridge and paint steel bridge pay items.
If steel piling is being cleaned and painted, such work should be paid for as clean and paint steel piling, regardless of other bridge members or components being painted.

If the bridge deck is removed, include the pay item cleaning steel bridge top flange, even if no other component on the bridge is being cleaned or painted.

A pay item for maintaining traffic should be included. Corresponding pay items for other traffic maintenance appurtenances, such as construction signs, temporary traffic barrier, attenuator truck, etc., should also be included. The designer should discuss the need for the inclusion of other site-specific work such as clearing, tree trimming, guardrail removal and replacement, working platform, or other unique items that may be required, with the district Construction project engineer or supervisor who typically handles painting contracts.

17-6.0 TEMPORARY EROSION AND SEDIMENT CONTROL [Add. Apr. 2016]

17-6.01 Temporary Seeding and Temporary Mulch [Rev. Apr. 2016]

The designer should be alert to recognize each work area where soil will be disturbed by construction operations, and is likely to remain in an uncovered state, especially on a multi-phase project, for an extended period of time. Temporary seeding and mulch are used to reduce erosion and sedimentation damage by means of stabilizing a disturbed area where additional work is not scheduled for at least 7 calendar days. The cost of the items will be included in the total dollar amount for Storm Water Management Budget. The following will apply.

1. Seeding. The quantity for Temporary Seed Mixture should be estimated assuming an application rate of 150 lb/ac. The area used for the temporary seeding should be determined based on the contract type as follows:
 a. Bridge Contract. The quantity is based on 1.5 times the area of permanent seeding.
 b. Road Contract. The quantity is based on 2 times the area of permanent seeding.
 c. Maintenance, Traffic, or Preservation. A pay quantity should not be included unless soil disturbance is known. Quantities should then be based on the same area as the permanent seeding.

2. Mulching. The quantity for Temporary Mulch should be estimated using the same area used for temporary seeding. Estimate the quantity assuming an application rate of 2.5 tons/ac.
On a slope of 3:1 or steeper but flatter than 2:1 Temporary Mulch Stabilization, Type A, B or C is required in addition to Temporary Mulch. On a slope of 2:1 or steeper, a Manufactured Surface Protection Product is required. See section 205 of the INDOT *Standard Specifications* for the various types of mulching stabilization and manufactured surface protection products.

17-6.02 Storm Water Quality Management Budget [Add. Apr. 2016]

Most contracts will include two pay items Storm Water Quality Management Budget and Storm Water Quality Control Plan (SWQCP). Once the necessary temporary and erosion and sediment control measures and quantities are determined, the established prices should be applied to each item and the total dollar amount entered as the Storm Water Management Budget pay item. Establish prices are included in RSP 205-R-636 until such time as the RSP is incorporated into the *Standard Specifications*. Specialty measures that do not have established prices, such as turbidity curtains, will require a unique special provision, and should be included in the contract as individual pay items.

For contracts that are anticipated to extend over a single construction season, the dollar amount should be increased by 10% for each season

17-6.03 Storm Water Quality Control Plan Preparation and Implementation [Add. Apr. 2016]

The SWQCP Preparation and Implementation pay item includes all narrative information, plan sheets, sequencing, and implementation information necessary for storm water management utilized on the contract. The SWQCP Preparation and Implementation also includes the costs for the Storm Water Quality Manager (SWQM), at level indicated for the contract, and the costs for weekly Storm Water inspections for the contract.

Guidelines for quantifying SWQCP Preparation and Implementation Pay Items Associated with RSP 205-R-636

In the absence of more accurate data, the following should be used for estimating purposes. The total should be entered as the lump sum amount for the SWQCP Preparation and Implementation pay item.
Storm Water Quality Control Plan
- **Cost**: $15,000

Storm Water Management inspections
- **Cost**: $400 per week of the contract term

Attendance of SWQM at scheduling meetings
- **Cost**: $400 per each 2-week period from beginning of the contract to the intermediate completion date.

SWQM Level 1 or Level 2
- **Level 1**: $500 for SWQM Level 1
- **Level 2**: $1000 for SWQM Level 2

17-7.0 MATHEMATICAL FORMULAS

Figure 17-7A provides mathematical formulas to be used for various quantity determinations.
This figure deleted [Oct. 2017]

Figure 17-1A, Proprietary Material Transmittal Memorandum has been deleted as an IDM figure. The document is available from the Department’s Editable Documents webpage at http://www.in.gov/dot/div/contracts/design/dmforms/, under Proprietary Materials.

PROPRIETARY MATERIAL TRANSMITTAL MEMORANDUM

Figure 17-1A
This figure deleted [Mar. 2016]

The current Approved Proprietary Materials list can be found on the Department’s website at http://www.in.gov/indot/2684.htm

APPROVED PROPRIETARY MATERIALS

Figure 17-1B
These figures deleted [Oct. 2017]

Figures 17-1C, 17-1D, 17-1E, and 17-1F, related to requests for proprietary material use have been deleted. These documents are available from the Department’s Editable Documents webpage at http://www.in.gov/dot/div/contracts/design/dmforms/ , under Proprietary Materials.

PROPRIETARY MATERIAL USE
Figures 17-1C, 17-1D, 17-1E, and 17-1F
Figures 17-1C, 17-1D, 17-1E, and 17-1F, related to requests for proprietary material use have been deleted. These documents are available from the Department’s Editable Documents webpage at http://www.in.gov/dot/div/contracts/design/dmforms/, under Proprietary Materials.

PROPRIETARY MATERIAL USE
Figures 17-1C, 17-1D, 17-1E, and 17-1F
These figures deleted [Oct. 2017]

Figures 17-1C, 17-1D, 17-1E, and 17-1F, related to requests for proprietary material use have been
deleted. These documents are available from the Department’s Editable Documents webpage at

PROPRIETARY MATERIAL USE
Figures 17-1C, 17-1D, 17-1E, and 17-1F
These figures deleted [Oct. 2017]

Figures 17-1C, 17-1D, 17-1E, and 17-1F, related to requests for proprietary material use have been deleted. These documents are available from the Department’s Editable Documents webpage at http://www.in.gov/dot/div/contracts/design/dmforms/ , under Proprietary Materials.

PROPRIETARY MATERIAL USE

Figures 17-1C, 17-1D, 17-1E, and 17-1F
<table>
<thead>
<tr>
<th>STATION</th>
<th>AREA CUT (ft²)</th>
<th>AREA FILL (ft²)</th>
<th>CUT, SUM END AREAS (ft²)</th>
<th>FILL, SUM END AREAS (ft²)</th>
<th>LENGTH (ft)</th>
<th>VOL. CUT (cys)</th>
<th>VOL. FILL (cys)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommended shrinkage factor to be used for divided-roadway project:

- $0 < \text{cys} < 1000 / 100 \text{ lft} = 25\%$
- $1000 \leq \text{cys} < 2000 / 100 \text{ lft} = 20\%$
- $\geq 2000 \text{ cys} / 100 \text{ lft} = 15\%$

Recommended shrinkage factor to be used for two-lane-roadway project:

- $0 < \text{cys} < 500 / 100 \text{ lft} = 25\%$
- $500 \leq \text{cys} < 1000 / 100 \text{ lft} = 20\%$
- $\geq 1000 \text{ cys} / 100 \text{ lft} = 15\%$

The recommended shrinkage factor to be used for a shoulder-widening project is 30% to 35%.

The recommended swell factor to be used for a rock fill is 30% to 35%.

SHRINKAGE AND SWELL FACTORS

Figure 17-2C
Earthwork Balance

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill + ____</td>
<td>________ cys</td>
</tr>
<tr>
<td>Common Excavation</td>
<td>________ cys</td>
</tr>
<tr>
<td>Unclassified Excavation</td>
<td>________ cys</td>
</tr>
<tr>
<td>Rock Excavation</td>
<td>________ cys</td>
</tr>
<tr>
<td>Borrow or Waste</td>
<td>________ cys</td>
</tr>
<tr>
<td>Peat Excavation</td>
<td>________ cys</td>
</tr>
<tr>
<td>Benching</td>
<td>________ cys</td>
</tr>
</tbody>
</table>

Notes:

1. *For shrinkage and swell factors to be used, see Figure 17-2C.*
2. *When the project is on new alignment, increase both the excavation and fill quantities to include any benching required. See Figure 107-6B for typical benching procedures.*
3. *Where benching is required for construction of a new embankment over an existing embankment, no direct payment is made for benching.*
4. *Excavation for subgrade treatment is not included in the excavation quantities.*
5. *If applicable, include a note that the ________ excavation quantity includes ______ cys of unsuitable material and/or ______ cys of benching.*

EARTHWORK BALANCE TABLE
(Road Project)

Figure 17-2D
Earthwork Tabulation

Fill +20% ________ cys
Common Excavation ① ________ cys
Usable Waterway Excavation (_____ %) ② ________ cys
Surplus Foundation Excavation ③ ________ cys
Borrow or Waste ________ cys
Total Waterway Excavation④ ________ cys
Benching (Estimated) ⑤ ________ cys

① Excavation for subgrade treatment is not included in the above excavation quantities.

② Show the actual usable portion on the plans (______ %). Estimate the percentage during the field check. If no other information is available, use 70%.

③ Includes earth volume displaced by substructure concrete or structure backfill at foundation excavations. If this volume < 100 cys, do not include it in the earthwork tabulation.

④ Include all material excavated to shape the channel under the structure, reduced by the estimated concrete volume of existing piers or abutments above the channel-clearing line. Abutment backfill above the clearing line should be included in waterway excavation.

⑤ Benching is to be shown on the cross sections. Benches are to be 8 ft to 10 ft wide where practical. Volume should be estimated and shown in the earthwork tabulation. The benching quantity is not included in the common-excavation quantity.

EARTHWORK TABULATION,
BRIDGE PROJECT

Figure 17-2E
Notes:
1. Area A_c is the pipe area to the outside edge of the corrugations.
2. For a circular pipe, $B_c = H_c$.
3. For backfill method 1 or 2, $V_c = T_c$.

BACKFILL AREA PER LINEAR FOOT OF PIPE, EARTH FOUNDATION

Method 1: Structure or flowable backfill as required, $B_{EC} + B_{CV} + B_{VT}$

Method 2: Structure or flowable backfill as required, B_{EC}
- Compacted earth backfill, $B_{CV} + B_{VT}$

Method 3: Structure or flowable backfill as required, $B_{EC} + B_{CV}$
- Compacted earth backfill, B_{VT}

BACKFILL AREA PER LINEAR FOOT OF PIPE, ROCK FOUNDATION

Method 1: Structure backfill, B_f
- Structure or flowable backfill as required, $B_{EC} + B_{CV} + B_{VT}$

Method 2: Structure backfill, B_f
- Structure or flowable backfill as required, B_{EC}
- Compacted earth backfill, $B_{CV} + B_{VT}$

Method 3: Structure backfill, B_f
- Structure or flowable backfill as required, $B_{EC} + B_{CV}$
- Compacted earth backfill, B_{VT}

VALUES REQUIRED FOR DETERMINING BACKFILL QUANTITIES

Figure 17-3A
<table>
<thead>
<tr>
<th>Pavement Thickness</th>
<th>Asphalt Mixtures</th>
<th>Compacted Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Aggregate Factor</td>
<td>Thickness</td>
</tr>
<tr>
<td>1 in.</td>
<td>110 lb/yd² = 0.055 T/yd²</td>
<td>1 in. 0.167 T/yd²</td>
</tr>
<tr>
<td>1.25 in.</td>
<td>140 lb/yd² = 0.070 T/yd²</td>
<td>3 in. 0.167 T/yd²</td>
</tr>
<tr>
<td>1.5 in.</td>
<td>165 lb/yd² = 0.083 T/yd²</td>
<td>4 in. 0.222 T/yd²</td>
</tr>
<tr>
<td>1.65 in.</td>
<td>180 lb/yd² = 0.090 T/yd²</td>
<td>5 in. 0.278 T/yd²</td>
</tr>
<tr>
<td>2 in.</td>
<td>220 lb/yd² = 0.110 T/yd²</td>
<td>6 in. 0.333 T/yd²</td>
</tr>
<tr>
<td>2.25 in.</td>
<td>250 lb/yd² = 0.125 T/yd²</td>
<td>7 in. 0.389 T/yd²</td>
</tr>
<tr>
<td>2.5 in.</td>
<td>275 lb/yd² = 0.138 T/yd²</td>
<td>8 in. 0.444 T/yd²</td>
</tr>
<tr>
<td>2.75 in.</td>
<td>300 lb/yd² = 0.150 T/yd²</td>
<td>9 in. 0.500 T/yd²</td>
</tr>
<tr>
<td>3 in.</td>
<td>330 lb/yd² = 0.165 T/yd²</td>
<td>12 in. 0.667 T/yd²</td>
</tr>
</tbody>
</table>

B Borrow for Draintile

<table>
<thead>
<tr>
<th>Pipe Dia.</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25 in.</td>
<td>360 lb/yd² = 0.180 T/yd²</td>
</tr>
<tr>
<td>3.5 in.</td>
<td>385 lb/yd² = 0.193 T/yd²</td>
</tr>
<tr>
<td>4.5 in.</td>
<td>495 lb/yd² = 0.248 T/yd²</td>
</tr>
<tr>
<td>8 in.</td>
<td>880 lb/yd² = 0.440 T/yd²</td>
</tr>
</tbody>
</table>

| Asphalt for Prime Coat | 0.63 gal./yd² = 0.0028 T/yd² |
| Asphalt for Tack Coat | 0.08 gal./yd² = 0.00025 T/yd² |

<table>
<thead>
<tr>
<th>Pipe Dia.</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0.257 yd³/lft</td>
</tr>
<tr>
<td>8 in.</td>
<td>0.269 yd³/lft</td>
</tr>
<tr>
<td>10 in.</td>
<td>0.278 yd³/lft</td>
</tr>
</tbody>
</table>

| Asphalt for Prime Coat | 12 in. 0.304 yd³/lft |
| Asphalt for Tack Coat | 18 in. 0.502 yd³/lft |

Aggregate for Underdrains

<table>
<thead>
<tr>
<th>Pipe Dia.</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>0.090 yd³/lft</td>
</tr>
<tr>
<td>8 in.</td>
<td>0.110 yd³/lft</td>
</tr>
<tr>
<td>10 in.</td>
<td>0.136 yd³/lft</td>
</tr>
</tbody>
</table>

Pavement Markings

Flat Terrain	24.8 T/mi
Rolling Terrain	30.2 T/mi
Hilly Terrain	35.5 T/mi

ROADWAY QUANTITIES FACTORS

Figure 17-4A
Example Tabulation of Subgrade Treatment Information to Accompany Memorandum to Materials and Tests Division

<table>
<thead>
<tr>
<th>Line</th>
<th>Design-Year AADT</th>
<th>Treatment Area, SYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A”</td>
<td>20,000</td>
<td>10,000</td>
</tr>
<tr>
<td>“S-1-A”</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>“S-2-A”</td>
<td>400</td>
<td>950</td>
</tr>
</tbody>
</table>

Figure 17-4B
Note:
\[B_c = \text{Overall diameter or span} \]
\[H_c = \text{Overall diameter or span} \]
\[T_c = \text{Trench cover depth} \]

PLACING PIPE UNDER EXISTING ROADWAY

Figure 17-4C
CURB RAMP PAY ITEMS

Figure 17-4D
<table>
<thead>
<tr>
<th>Foreslope</th>
<th>Backslope</th>
<th>Sodding Factor (syd/lft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:1</td>
<td>4:1</td>
<td>1.56</td>
</tr>
<tr>
<td>4:1</td>
<td>4:1</td>
<td>1.33</td>
</tr>
<tr>
<td>4:1</td>
<td>3:1</td>
<td>1.22</td>
</tr>
<tr>
<td>3:1</td>
<td>3:1</td>
<td>1.11</td>
</tr>
<tr>
<td>3:1</td>
<td>2:1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes:

1. Sodding factor assumes a 4-ft wide ditch bottom.
2. Sodding factor assumes sodding is placed to a height of 1 ft above the flow line.
3. For sodding next to a paved side ditch, use a sodding factor of 0.3 syd/lft.

SODDED-DITCH QUANTITIES

Figure 17-4E
ELEVATION VIEW
PAVED SIDE DITCH TYPES A THROUGH D

"TOE OF DITCH"

VARIABLE

2:1 SLOPE

AREA TO BE SODDED

DITCH FL GRADE (GRADE AS SHOWN ON PLANS)

ELEVATION VIEW
PAVED SIDE DITCH TYPES J THROUGH M

"TOE OF DITCH"

VARIABLE

DITCH FL GRADE (GRADE AS SHOWN ON PLANS)

ELEVATION VIEW
PAVED SIDE DITCH TYPES E THROUGH H

"TOE OF DITCH"

VARIABLE

2:1 SLOPE

AREA TO BE SODDED

AREA TO BE SODDED

Note: Do not use 2:1 side slopes within the clear zone.

PAVED SIDE DITCHES
Figure 17-4F
<table>
<thead>
<tr>
<th>Grade Range</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>3% (\leq) Grade < 5%</td>
<td>200 ft</td>
</tr>
<tr>
<td>5% (\leq) Grade < 8%</td>
<td>150 ft</td>
</tr>
<tr>
<td>8% (\leq) Grade < 10%</td>
<td>100 ft</td>
</tr>
<tr>
<td>10% or greater</td>
<td>50 ft</td>
</tr>
</tbody>
</table>

LUG INTERVALS

Figure 17-4G
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>WIDTH (ft)</th>
<th>MAILBOX ASSEMBLIES REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT 106+41</td>
<td>Paved Shoulder, Mailbox Beyond Drive</td>
<td>10</td>
<td>-- 1</td>
</tr>
<tr>
<td>RT 106+54</td>
<td>Paved Shoulder, Mailbox Before Drive</td>
<td>10</td>
<td>1 --</td>
</tr>
<tr>
<td>LT 124+32</td>
<td>Paved Shoulder, Mailbox Beyond Drive</td>
<td>8</td>
<td>2 1</td>
</tr>
</tbody>
</table>

* See the INDOT Standard Drawings.

SAMPLE MAILBOX SUMMARY TABLE

Figure 17-4H
SODDING LOCATIONS
Figure 17-41
① Class "X" Excavation
② Wet Excavation
③ Dry Excavation
④ Waterway Excavation or Common Excavation

Note: See Section 17-4.02 and INDOT Standard Specifications for additional guidance

STRUCTURE EXCAVATION
Figure 17-5A
BRIDGE WITH STRUCTURAL MEMBERS

Drip Bead

LIMITS OF SURFACE SEAL TO BE SHOWN ON PLANS

Figure 17-5A (0)

REINFORCED-CONCRETE SLAB BRIDGE

Drip Bead

Limits of Surface Seal
CAST-IN-PLACE CONCRETE RETAINING WALL EARTHWORK QUANTITIES LIMITS

Figure 17-5B
MSE RETAINING WALL EARTHWORK QUANTITIES LIMITS

Figure 17-5C
MSE RETAINING WALL EARTHWORK QUANTITIES LIMITS
(Showing Foundation Treatment)
Figure 17-5D

NOTES:
1. SEE GEOTECHNICAL REPORT FOR X.
<table>
<thead>
<tr>
<th>Spec. Ref.</th>
<th>Item</th>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>Excavation, Waterway</td>
<td>cyd</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>B Borrow</td>
<td>cyd</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Structure Backfill</td>
<td>cyd</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Flowable Backfill</td>
<td>cyd</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Dense Graded Subbase</td>
<td>cyd</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>Terminal Joint</td>
<td>lft</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Bridge Railing Transition, TGB</td>
<td>each</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Bridge Railing Transition, WGB</td>
<td>each</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>Reinforced Concrete Bridge Approach, ____ in.</td>
<td>syd</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>Reinforcing Steel</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>Grates, Basins, and Fittings, Cast Iron</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>Pipe, Type 4, Circular, 6 in.</td>
<td>lft</td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>Pipe, Type 5, Circular, 12 in.</td>
<td>lft</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Surplus Foundation Excavation [not a pay item]</td>
<td>cyd</td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE PAY ITEMS IN ROAD PLANS

Figure 17-5E
SIGN POST SUMMARY

<table>
<thead>
<tr>
<th>SIGN CODE</th>
<th>LOCATION</th>
<th>NO. OF POSTS</th>
<th>POST TYPE</th>
<th>TOTAL LENGTH (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL
- **A**
- **B**
- **1**
- **2**

Note: Sign location and post lengths are approximate. Exact location and length to be determined in the field in accordance with the Manual on Uniform Traffic Control Devices.

SHEET SIGN SUMMARY

<table>
<thead>
<tr>
<th>SIGN CODE</th>
<th>SIGN DESCRIPTION</th>
<th>NO. OF SIGNS</th>
<th>SHEETING TYPE*</th>
<th>THICKNESS (in.)</th>
<th>TOTAL AREA (sft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL
- **I** 0.080
- **II** 0.080
- **I** 0.100
- **II** 0.100
- **I** 0.125
- **II** 0.125

*Type I – “Enclosed lens” reflective sheeting
*Type II – “Encapsulated lens” reflective sheeting

SIGN POST AND SHEET SIGN SUMMARIES

(Bridge Project)

Figure 17-5F
This figure deleted [Mar. 2016]

See INDOT Standard Drawing Series E 609-RCBA

RCBA
Figure 17-5G, -5G(1), and -5G(2)
This figure deleted [Mar. 2016]

See INDOT Standard Drawing Series E 609-RCBA

RCBA
Figure 17-5G, -5G(1), and -5G(2)
This figure deleted [Mar. 2016]

See INDOT Standard Drawing Series E 609-RCBA

RCBA
Figure 17-5G, -5G(1), and -5G(2)
RIPRAP AND SODDING LIMITS WITH BARRIER TRANSITIONS ON BRIDGE

Figure 17-51
RIPRAP AND SODDING LIMITS WITH BARRIER TRANSITIONS ON APPROACH SLAB

Figure 17-5J
BRIDGE PAINTING LOCATIONS AND INFORMATION

<table>
<thead>
<tr>
<th>Contract Bridge No. (1)</th>
<th>Des. No.</th>
<th>Bridge File Number</th>
<th>Route and Crossing</th>
<th>Route</th>
<th>Ref. Post</th>
<th>County</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000000</td>
<td>I65-116-04914 C</td>
<td>I-65 over Clifton St</td>
<td>I-65</td>
<td>116+21</td>
<td>Marion</td>
<td>6.00 mi. N. of I-70</td>
</tr>
</tbody>
</table>

Additional Information

<table>
<thead>
<tr>
<th>Contract Bridge No. (1)</th>
<th>Year Built</th>
<th>Year Last Painted</th>
<th>Existing Primer Type (hazardous or non-hazardous)</th>
<th>No. Spans</th>
<th>Span Lengths</th>
<th>Tons of Structural Steel, (tons) (2)</th>
<th>Surf. Area Structural Steel, (ft²) (2)</th>
<th>New Paint Color Name (number) (3)</th>
<th>Clean and Paint Casting, (each)</th>
<th>Roadway Drain Casting Extension, (each)</th>
<th>Clean and Paint Bearing Assy., (each)</th>
<th>Clean and Paint Steel Piling, (ft²) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1968</td>
<td>1993</td>
<td>hazardous</td>
<td>3</td>
<td>51'-0", 78'-0", 51'-0"</td>
<td>234</td>
<td>38,789</td>
<td>Green (14260)</td>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

(1) See RSP 101-B-042, Bridge Number for Pay Items

(2) Quantities shown are approximate. The Contractor shall determine the quantities upon which to base its bid.

(3) See Standard Specifications section 909.02(c) for allowable color numbers for full bridge painting and section 909.02(d)4 for partial bridge painting.

BRIDGE PAINTING LOCATIONS AND INFORMATION

Figure 17-5K
<table>
<thead>
<tr>
<th>If project contains …</th>
<th>And…</th>
<th>Use the following pay items:</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting bearing assemblies</td>
<td>Beams are being fully or partially painted</td>
<td>Cost of cleaning and painting of bearings is included in the appropriate clean steel bridge and paint steel bridge pay items, respectively.</td>
<td>The contract bridge number should be included as a pay item supplemental description.</td>
</tr>
<tr>
<td>Painting bearing assemblies</td>
<td>Beams are not being fully or partially painted</td>
<td>Clean and Paint Bearing Assemblies, Br. No. (LS) Disposal of Cleaning Waste, [waste type], Br. No. (LS)</td>
<td>QP-1 applies to bridges built after 1994 and is based on the low probability that hazardous materials are present in the existing paint system.</td>
</tr>
</tbody>
</table>
| Painting or partial painting steel bridge | | Clean Steel Bridge, QP-[1 or 2], Br. No. (LS) Paint Steel Bridge, Br. No. (LS)
-or-
Clean Steel Bridge, Partial, QP-[1 or 2], Br. No. (LS) Paint Steel Bridge, Partial, Br. No. (LS)
-and-
Disposal of Cleaning Waste, [waste type], Br. No. (LS) | QP-2 applies to bridges built before 1995 and is based on the likelihood that hazardous materials are present in the existing paint system. |
| Painting steel piles | | Clean and Paint Steel Piling, Br. No. (LS) Disposal of Cleaning Waste, [waste type], Br. No. (LS) | [Waste type] is hazardous or non-hazardous based on the same criteria as QP-1 & QP-2 shown above. |
| Bridge deck replacement | | Clean Steel Bridge, Top Flanges, QP-2*, Br. No. (LS) Disposal of Cleaning Waste, [waste type], Br. No. (LS) | Indicate the oldest year of any existing structural steel on the plans. This communicates the likelihood of hazardous materials being present. |
| (existing steel beam superstructure) | | | |
| Bridge superstructure replacement or | Present Structure, Remove Portions (LS)
-or-
Present Structure, Remove (LS)
(Contractor has option to recycle steel or clean prior to removing from project site. No additional payment) | | |
| complete bridge replacement | | | |
| (existing steel beam superstructure) | | | |

(LS) = Lump Sum

BRIDGE PAINTING PAY ITEM SELECTION

Figure 17-5L
RIGHT TRIANGLES

\[
\begin{align*}
\sin A &= \frac{a}{c} = \cos B \\
\csc A &= \frac{c}{a} = \sec B \\
\cos A &= \frac{b}{c} = \sin B \\
\sec A &= \frac{c}{b} = \csc B \\
\tan A &= \frac{a}{b} = \cot B \\
\cot A &= \frac{b}{a} = \tan B
\end{align*}
\]

\[
a = c \sin A = c \cos B = b \tan A = b \cot B = \sqrt{c^2 - b^2}
\]

\[
b = c \cos A = c \sin B = a \cot A = a \tan B = \sqrt{c^2 - a^2}
\]

\[
c = \frac{a}{\sin A} = \frac{b}{\cos B} = \frac{b}{\sin B} = \frac{b}{\cos B}
\]

OBLIQUE TRIANGLES

<table>
<thead>
<tr>
<th>Given</th>
<th>Sought</th>
<th>Formula</th>
</tr>
</thead>
</table>
| A, B, a | b, c | \[b = \frac{a}{\sin A} \times \sin B \]
| | | \[c = \frac{a}{\sin A} \times \sin (A + B) \] |
| A, a, b | B, c | \[\sin B = \frac{\sin A}{a} \times b \]
| | | \[c = \frac{a}{\sin A} \times \sin C \] |
| C, a, b | \(\frac{1}{2} (A + B) \) | \[
\frac{1}{2} (A + B) = 90^\circ \cdot \frac{1}{2} C
\]
| | \(\frac{1}{2} (A - B) \) | \[\tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \times \tan \frac{1}{2} (A + B) \] |
| a, b, c | A | Given \(s = 1/2 (a + b + c) \), then:
\[
\sin \frac{1}{2} A = \sqrt{\frac{(s - b)(s - c)}{bc}}
\]
\[
\cos \frac{1}{2} A = \sqrt{\frac{s(s - a)}{bc}}
\]
\[
\tan \frac{1}{2} A = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}
\]
\[
\sin A = 2 \sqrt{\frac{(s - a)(s - b)(s - c)}{bc}}
\]

| Area | \[\text{Area} = \frac{1}{2} ab \sin C \] |

MATHEMATICAL FORMULAS

Figure 17-7A
(page 1 of 3)
Nomenclature
- \(A \) = total surface area
- \(d \) = distance
- \(h \) = height
- \(p \) = perimeter
- \(r \) = radius
- \(s \) = side (edge) length, arc length
- \(V \) = volume
- \(\theta \) = vertex angle, in radians
- \(\phi \) = central angle, in radians

Parabola

\[
A = \frac{2bh}{3} \quad A = \frac{1}{3} bh
\]

Circle

\[
p = 2\pi r \\
A = \pi r^2 = \frac{p^2}{4\pi}
\]

Circle Segment

\[
A = \frac{1}{2} r^2 (\phi - \sin \phi) \quad (\phi \text{ in rad})
\]

\[
\phi = \frac{S}{r} = 2 \left(\arccos \left(\frac{r - d}{r} \right) \right)
\]

Circle Sector (1)

\[
A = \frac{1}{2} \phi r^2 = \frac{1}{2} sr \quad (\phi \text{ in rad})
\]

\[
\phi = \frac{S}{r}
\]

Circle Sector (2)

\[
\cos \phi = \frac{r - x}{r}
\]

Area of Triangle

\[
A_1 = \frac{1}{2} (r - x)(r \sin \phi) \quad (\phi \text{ in deg})
\]

Area of Circle Sector

\[
A_2 = \frac{\phi}{360^{\circ}} \pi r^2
\]

External Area

External Area = Total Area - Area of Circle Sector

\[
t = \frac{r}{\tan \frac{\theta}{2}}
\]

\[
\phi = 180^{\circ} - \theta \quad (\phi, \theta \text{ in deg})
\]

Total Area = \(rt = \frac{r^2}{\tan \frac{\theta}{2}} \)

Area of Circle Sector = \(\frac{\phi}{360^{\circ}} \pi r^2 \)

External Area = \(r^2 \left[\frac{1}{\tan \frac{\theta}{2}} - \frac{\pi \phi}{360^{\circ}} \right] \)

Mathematical Formulas

Figure 17-7A

(page 2 of 3)
<table>
<thead>
<tr>
<th>Number of Sides</th>
<th>Name of Polygon</th>
<th>Triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>triangle</td>
<td>$A = \frac{1}{2}bh$</td>
</tr>
<tr>
<td>4</td>
<td>rectangle</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>pentagon</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>hexagon</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>heptagon</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>octagon</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>nonagon</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>decagon</td>
<td></td>
</tr>
</tbody>
</table>

Trapezoid

\[p = a + b + c + d \]

\[A = \frac{1}{2} h (a + b) \]

If $c = d$, the trapezoid is isosceles.

Parallelogram

\[p = 2(a + b) \]

\[d_1 = \sqrt{a^2 + b^2 - 2ab\cos(\phi)} \]

\[d_2 = \sqrt{a^2 + b^2 + 2ab\cos(\phi)} \]

\[d_1^2 + d_2^2 = 2(a^2 + b^2) \]

\[A = ah = ab\sin(\phi) \]

If $a = b$, the parallelogram is a rhombus

Regular Polygon

\[\phi = \frac{2\pi}{n} \text{ (}\phi\text{ in rad)} \]

\[\theta = \frac{\pi (n - 2)}{n} \text{ (}\theta\text{ in rad)} \]

\[p = ns \]

\[s = 2r \left[\tan \left(\frac{\phi}{2} \right) \right] \]

\[A = \frac{1}{2} nsr \]

MATHEMATICAl FORMULAS

Figure 17-7A

(page 3 of 3)