

ILEARN Biology End-of-Course Assessment Item and Item Cluster Specifications

Beginning School Year 2023-2024

Introduction

This document presents *cluster specifications* for use with the Next Generation Science Standards (NGSS). These standards are based on the Framework for K-12 Science Education. The present document is not intended to replace the standards, but rather to present guidelines for the development of items and item clusters used to measure those standards.

The remainder of this section provides a very brief introduction to the standards and the framework, an overview of the design and intent of the item clusters, and a description of the cluster specifications that follow. The bulk of the document is composed of cluster specifications, organized by grade and standard.

Background on the framework and standards

The Framework for K-12 Science Education are organized around three core dimensions of scientific understanding. The standards are derived from these same dimensions:

- Disciplinary Core Ideas: The fundamental ideas that are necessary for understanding a given science discipline. The core ideas all have broad importance within or across science or engineering disciplines, provide a key tool for understanding or investigating complex ideas and solving problems, relate to societal or personal concerns, and can be taught over multiple grade levels at progressive levels of depth and complexity.
- Science and Engineering Practices: The practices are what students DO to make sense of phenomena. They are both a set of skills and a set of knowledge to be internalized. The SEPs reflect the major practices that scientists and engineers use to investigate the world and design and build systems.
- Cross-Cutting Concepts: These are concepts that hold true across the natural and engineered world. Students can use them to make connections across seemingly disparate disciplines or situations, connect new learning to prior experiences, and more deeply engage with material across the other dimensions. The NGSS requires that students explicitly use their understanding of the CCCs to make sense of phenomena or solve problems.
- There is substantial overlap between and among the three dimensions. For example, the cross-cutting concepts are echoed in many of the disciplinary core ideas. The core ideas are often closely intertwined with the practices. This overlap reflects the nature of science itself. For example, we often come to understand and communicate causal relationships by employing models to make sense of observations. Even within a dimension, overlap exists. Quantifying characteristics of phenomena is important in developing an understanding of them, so employing computational and mathematical thinking in the construction and use of models is a very common scientific practice, and one of the cross-cutting concepts suggests that scientists often infer causality by observing patterns. In short, the dimensions are not orthogonal.

The framework envisions effective science education as occurring at the intersection of these interwoven dimensions: students learn science by doing science—applying the practices through the lens of the cross-cutting concepts to investigate phenomena that relate to the content of the disciplinary core ideas.

Item clusters

Each item cluster is designed to engage the examinee in a grade-appropriate, meaningful scientific activity aligned to a specific standard.

Each cluster begins with a phenomenon, an observable fact or design problem that engages student interest and can be explained, modeled, investigated, or designed using the knowledge and skill described by the standard in question.

What it means to be observable varies across practices. For example, a phenomenon for a performance expectation exercising the *analyze data* practice may be observable through regularities in a data set, while standards related to the *development and use of models* might be something that can be watched, seen, felt, smelled, or heard.

What it means to be observable also varies across grade levels. For example, elementary-level phenomena are very concrete and directly observable. At the high school level, an observation of the natural world may be more abstract--for

example, "observing" changes in the chemical composition of cells through the observation of macroscopic results of those changes on organism physiology, or through the measurement of system- or organ-level indications.

Content limits refine the intent of the performance expectations and provide limits on what may be asked of items in the cluster to structure the student activity. The content limits also reflect the disciplinary core ideas learning progressions that are present in the K-12 Framework for Science Education.

The task or goal should be explicitly stated in the stimulus or the first item in the cluster: statements such as "In the questions that follow, you will develop a model that will allow you to identify moons of Jupiter," or "In the questions below, you will complete a model to describe the processes that lead to the steam coming out of the teapot."

Whereas item clusters have been described elsewhere as "scaffolded," they are better described as providing structure to the task. For example, some clusters begin with students summarizing data to discover patterns that may have explanatory value. Depending on the grade level and nature of the standard, items may provide complete table shells or labeled graphs to be drawn, or may require the student to choose what to tabulate or graph. Subsequent items may ask the student to note patterns in the tabulated or graphed data and draw on domain content knowledge to posit explanations for the patterns.

These guidelines for clusters do not appear separately in the specifications. Rather, they apply to all clusters.

Structure of the cluster specifications

The item cluster specifications are designed to guide the work of item writers and the review of item clusters by stakeholders.

Each item cluster has the following elements:

- The text of the performance expectations, including the practice, core idea, and cross-cutting concept.
- Content limits, which refine the intent of the performance expectations and provide limits of what may be asked of examinees. For example, they may identify the specific formulae that students are expected to know or not know.
- Vocabulary, which identifies the relevant technical words that students are expected to know, and related words that they are explicitly not expected to know. Of course, the latter category should not be considered exhaustive, since the boundaries of relevance are ambiguous, and the list is limited by the imagination of the writers.
- Sample phenomena, which provide some examples of the sort of phenomena that would support effective item clusters related to the standard in question. In general, these should be guideposts, and item writers should seek comparable phenomena, rather than drawing on those within the documents. Novelty is valued when applying scientific practices.
- Task demands comprise the heart of the specifications. These statements identify the types of items and activities that item writers should use, and each item written should be clearly linked to one or more of the demands. The verbs in the demands (e.g., *select, identify, illustrate, describe*) provide guidance on the types of interactions that item writers might employ to elicit the student response. We avoid explicitly identifying interaction types or item formats to accommodate future innovations and to avoid discouraging imaginative work by the item writers.
- For each cluster we present, the printed documentation includes the cluster, the task demands represented by each item, and its linkage to the practice and cross-cutting concept identified in the performance expectation.

Item cluster specifications follow, organized by domain and standard.

Performance	HS-LS1-1	idence for bourths structure of DN	۸
Expectation	Construct an explanation based on e of proteins, which carry out the esse		
Dimensions	Constructing Explanations and Designing Solutions • Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.	 LS1.A: Structure and Function Systems of specialized cells within organisms help them perform the essential functions of life. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. 	Structure and Function • Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and the connections of these components in order to solve problems.
Clarifications and Content Limits		e identification of specific cell or tissund functions, or the biochemistry of p	
Science Vocabulary Students are Expected to Know Science Vocabulary Students are Not Expected	Nucleus, chromosome, DNA, nucleat thymine, deoxyribose, phosphate, hy primary, secondary, tertiary protein	ydrogen bond, nucleotide base, mRN	
to Know			
<u> </u>		Phenomena	
Context/ Phenomena	 Sample phenomena for HS-LS1-1: Sweat glands cool the body by releasing sweat onto the skin's surface. A protein transports salt to help carry the water to the skin's surface. In some individuals, the salt is not reabsorbed and is left on the skin. When a blood vessel is cut, several proteins act to form a blood clot. This blood clot helps to stop the loss of blood from the body. In some individuals, when a blood vessel is cut, a blood clot does not form. During cell division, a copy of DNA in the cell is made. Sometimes mistakes are made in the DNA copy that are corrected by specific proteins. In some cells, when those mistakes in the DNA are not corrected, uncontrolled cellular division results. After a person eats, sugars from food are absorbed from the bloodstream into the body's cells. Insulin—a polypeptide hormone—allows those cells to absorb glucose from the bloodstream. In some individuals, sugars are not absorbed into the body's cells and are left in the bloodstream. 		
This Per	Formance Expectation and associated E	Evidence Statements support the foll	owing Task Demands.
	Т	ask Demands	
	e the cause and effect relationship bet y include indicating the directions of ca	-	-

7816	
2.	Describe, identify, or select evidence that supports or contradicts a claim about the role of DNA in causing the phenomenon. The evidence may be obtained from valid source(s) or might be generated by students using a simulation.
3.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes to a DNA sequence in protein structure and function. Predictions may be selected from a collection of possibilities, including distractors, or they might be illustrated or described in writing.
4.	Use evidence to construct an explanation of how protein structure and subsequent function depend on a DNA sequence.
5.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.

EDUCAT			
Performance	HS-LS1-2		
Expectation	Develop and use a model to illustrate the hierarchical organization of interacting systems that		
	provide specific functions within multicellular organisms.		
Dimensions	Developing and Using ModelsLS1.A: Structure and FunctionSystems and System Models• Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system.• Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level.• Models (e.g., physical, mathematical, and computer models) can be used to simulate systems and interactions — including energy, matter, and information flows — within and between systems.		
Clarifications	Clarification Statements		
and Content Limits	 Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system. 		
	 Content Limits Assessment does not include interactions and functions at the molecular or chemical reaction level (e.g., hydrolysis, oxidation, reduction, etc.). Assessment does not include mutations in genes that could contribute to modified bodily functions. 		
Science Vocabulary Students Are Expected to Know	Circulatory, respiratory, digestive, excretory, nervous, immune, integumentary, skeletal, muscle, reproductive, external stimuli, cell, tissue, organ,		
Science Vocabulary Students Are Not Expected to Know	ilary ts Are bected		
	Phenomena		
Context/	Some example phenomena for HS-LS1-2:		
Phenomena	 After a healthy person eats a large meal, both their blood pressure and heart rate increase. When a normal adult male exercises, both his breathing rate and heart rate increase. The area around a person's skin where a small scab has formed feels warm to the touch. Skin surface capillaries dilate when a person feels hot. 		
This Perfo	prmance Expectation and associated Evidence Statements support the following Task Demands.		
	Task Demands		
more) bo existing	le or complete an illustration or flow chart that is capable of representing how structures in two (or ody systems interact to carry out normal, necessary bodily functions. This <u>does not</u> include labeling an diagram.*		
coordina	e developed model, identify and describe the relationships between the structures and their ated functions in two (or more) body systems.		
-	e developed model, show that interacting systems have a hierarchical organization and provide functions within the body at those specific levels or organization.*		

_	7816	
	4.	Make predictions about, or generate explanations for, how additions/substitutions/removal of certain
		components in the model can interrupt or change the relationships between those components and, thus, the
		bodily functions carried out by those structures in two (or more) body systems.
Γ	5.	Given models or diagrams of hierarchical organization of interacting systems, identify the components and
		the mechanism in each level of the hierarchy OR identify the properties of the components that allow those
		functions to occur.
	6.	Identify missing components, relationships, or other limitations of the model.

Performance	HS-LS1-3		
Expectation	Plan and conduct an investigation to pr	ovide evidence that feedback mechan	isms maintain
	homeostasis.		
Dimensions	 Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence. In the design decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. 	 LS1.A: Structure and Function Feedback mechanisms maintain a living system's internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. 	 Stability and Change Feedback (negative or positive) can stabilize or destabilize a system.
Clarifications and Content Limits			
Science Vocabulary Students Are Expected to Know Science	 Equilibrium, steady state, stable state, balanced state, stimulus, receptor, biotic factor, abiotic factor, external environment, internal environment, muscle, nerve, hormone, enzyme, chemical regulator, gland, system, metabolism, disturbance, fluctuation, maintenance, concentration, hibernation, convection, conduction, radiation, evaporation. Effector, osmoregulation, conformer, set point, sensor, circadian rhythm, acclimatization, 		
Vocabulary Students Are Not Expected to Know	thermoregulation, endothermic, ectothermic, integumentary system, countercurrent exchange, bioenergetics, basal metabolic rate, standard metabolic rate, torpor, poikilotherm, homeotherm,		
	Pł	nenomena	
Context/	Some example phenomena for HS-LS1-	3:	
Phenomena	 Fruit ripeness (positive feedback loop): In nature, a tree or bush will suddenly ripen all of its fruits or vegetables without any visible signal. Human blood sugar concentration (negative feedback loop): The liver both stores and produces sugar in response to blood glucose concentration. The pancreas releases either glucagon or insulin in response to blood glucose concentration. Sunning lizards (negative feedback loop): Lizards sun on a warm rock to regulate body temperature. Thermoregulation in dolphins due to counter-current arrangement of veins around arteries (negative feedback loop): The counter-current system minimizes the loss of heat incurred when blood travels to the different parts of dolphins' bodies. 		
	(negative feedback loop): o The counter-current sy	stem minimizes the loss of heat incurr	
Thic Dor	(negative feedback loop): o The counter-current sy	rstem minimizes the loss of heat incurre olphins' bodies.	ed when blood travels to

7816	
1.	Identify the outcome data that should be collected in an investigation to provide evidence that feedback mechanisms maintain homeostasis. This could include measurements and/or identifications of changes in the external environment, the response of the living system, stabilization/destabilization of the system's internal conditions, and/or the number of systems for which data are collected.
2.	Make and/or record observations about the external factors affecting systems interacting to maintain homeostasis, responses of living systems to external conditions, and/or stabilization/destabilization of the systems' internal conditions.*
3.	Identify or describe the relationships, interactions, and/or processes that contribute to and/or participate in the feedback mechanisms maintaining homeostasis that lead to the observed data.
4.	Using the collected data, express or complete a causal chain explaining how the components of (a) mechanism(s) interact in response to a disturbance in equilibrium in order to maintain homeostasis. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*
5.	Evaluate the sufficiency and limitations of data collected to explain the cause and effect mechanism(s) maintaining homeostasis.

Performance	HS-LS1-4			
Expectation	Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and			
	maintaining complex org		1	
Dimensions	Developing and Using Models • Use a model based on evidence to illustrate the relationships between systems or between components of a system.	 LS1.B: Growth and Development of Organisms In multicellular organisms, individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. 	Systems and System Models • Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.	
Clarifications	Clarification Statements			
and Content	Assessment doe	s not include specific gene control mechanisms or	rote memorization of the	
Limits	steps of mitosis.			
		<u>need to know</u> : Specific names of the stages of mit G2 phase, prophase, metaphase, anaphase, teloph	•	
Science Vocabulary Students Are Expected to Know	Nucleus, chromosome, sister chromatids, sperm cell, egg cell, fertilize, genome, gene, differential gene expression, cellular differentiation, cellular division, cytoplasm, daughter cell, parent cell, somatic cell, cell cycle, homologous, haploid, diploid, DNA.			
Science	Spindle, metaphase plat	e, cleavage furrow, chromatin modification, transo	cription regulation	
Vocabulary Students Are Not Expected to Know	initiation, enhancers, transcription factors, post-transcriptional regulation; noncoding RNAs, cytoplasmic determinants, inductive signals, chiasmata, kinetochore, microtubule.			
	<u> </u>	Phenomena		
Context/	Some example phenome	ena for HS-LS1-4:		
Phenomena	same genetic ma	•		
At the end of an hour, approximately 30,000 skin cells were shed by a		by a person, but a loss of		
	 mass was not noticeable. Ears and noses can be grown from stem cells in laboratory. 			
		bot tip longitudinal cross section are different sizes	s and shapes.	
This Perfe	ormance Expectation and a	associated Evidence Statements support the follow	wing Task Demands.	
		Task Demands		
formed contain	through fertilization, unde	on or flow chart that is capable of representing ho ergoes cellular division, forming daughter cells, and the parent cells but differentiate via gene expres agram.*	d how those daughter cells	

2.	Using the model, identify and describe the relationship between the amount and composition of the genetic material that daughter cells receive from parent cells.
3.	Using the model, show that in multicellular organisms, different cell types arise from differential gene expression, not because of dissimilar genetic material within the cell's nucleus.
4.	Use a model of cellular division and differentiation to explain/illustrates the relationships between components that allow multicellular organisms to grow and carry out specific and necessary functions.*
5.	Given models or diagrams of cellular division and differentiation, show that cells form tissues and organs that have specific structures and interact to carry out specific and necessary functions.
6.	Identify missing components, relationships, or other limitations of the model.

Performance	HS-LS1-5		
Expectation	Use a model to illustrate ho energy.	ow photosynthesis transforms light ene	rgy into stored chemical
Dimensions	 Developing and Using Models Use a model based on evidence to illustrate the relationship between systems or between components of a system. 	 LS1.C: Organization for Matter and Energy Flow in Organisms The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. 	 Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.
Clarifications and Content Limits	transformation of e organisms. • Examples of model models. Content Limits	strating inputs and outputs of matter ar energy in photosynthesis by plants and s could include diagrams, chemical equ not include specific biochemical steps or	other photosynthesizing ations, and conceptual
Science Vocabulary Students are Expected to Know	Organic, hydrocarbon, net transfer, chloroplast, chlorophyll, cytoplasm, mitochondria, vacuole, nucleus, protein, ATP, amino acid, autotroph(s), heterotroph(s), algae		
Science Vocabulary Students are Not Expected to Know	oxidative phosphorylation,	in cycle, carbon fixation, redox reaction photoautotroph(s), mesophyll, stomata reactions, carotenoids, cytochrome co	a, stroma, thylakoids,
	1	Phenomena	
Context/ Phenomena	 The waters of the L night when disturb On the sill of a stain than a soy plant be 	ashington state survives in the winter af Laguna Grande lagoon in Puerto Rico giv	ve off a bluish-green glow at ne red glass panel grew taller
This Perform	nance Expectation and assoc	iated Evidence Statements support the	following Task Demands.
		Task Demands	
	-	tion of potential model components an senting the transformation of light energy	
2. Use a m	odel to identify and describe is and the products of photos	the relationships in terms of matter an synthesis.*	nd/or energy between the
	odel to show the transfer of nent during photosynthesis.	matter and flow of energy between an *	organism and its

116	
4.	Make predictions about how additions/substitutions/removals of model components affect the transformation of light energy into stored chemical energy.*
5.	Sort relevant from irrelevant information to support a model that demonstrates how sugar and oxygen are produced by carbon dioxide and water through the process of photosynthesis.
6.	Given models or diagrams of photosynthesis, identify the components and the mechanism in each scenario OR identify the properties of the components that allow photosynthesis to occur.*
7.	Identify missing components, relationships, or other limitations of a model intended to show how photosynthesis transforms light energy into stored chemical energy.
8.	Describe changes of energy and matter that occur in a system due to photosynthesis.

1816			
Performance	HS-LS1-6		
Expectation Construct and revise an explanation based on evidence for how carbon, hydrogen, an			
		nay combine with other elements to for	m amino acids and/or
	other large carbon-based mole		-
Dimensions	Constructing Explanations	LS1.C: Organization for Matter and	Energy and Matter
	and Designing Solutions	Energy Flow in Organisms	Changes of energy
	 Construct and revise an explanation based on valid 	 Sugar molecules formed contain carbon, hydrogen, and oxygen. 	and matter in a system can be
	and reliable evidence	Their hydrocarbon backbones are	described as energy
	obtained from a variety of	used to make amino acids and	and matter flowing
	sources (including students'	other carbon-based molecules that	into, out of, and
	own investigations, models,	can be assembled into larger	within that system.
	theories, simulations, peer	molecules (such as proteins or	
	review) and the assumption	DNA), used, for example, to form	
	that theories and laws that	new cells.	
	describe the natural world	 As matter and energy flow through 	
	operate today as they did in	different organizational levels of	
	the past and will continue	living systems, chemical elements	
	to do so in the future.	are recombined in different ways	
		to form different products.	
Clarifications	Clarification Statements		
and Content		vidence from models and simulations to	support evaluations
Limits			
	Content Limits		
	 Assessment does not 	include the details of the specific	chemical reactions or
	identification of macro	-	
	<u>Students do not need t</u>	o know: Specific biochemical pathways	and processes. Specific
	enzymes, oxidation-red	luction	
	Science Hydrocarbon, carbohydrate, amino acid, nucleic acid, DNA, ATP, lipid, fatty acid, ingestion,		atty acid, ingestion,
Vocabulary	rearrangement, stable, open sy	stem.	
Students Are Expected to			
Know			
Science	Endothermic reaction exother	nic reaction, aerobic respiration, oxidat	ion reduction
Vocabulary		lycolysis, citric acid cycle, electron trans	
, Students Are			•
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenomena for		
Phenomena		e covered in a thick layer of protective s	
	-	's silk is several times as strong as any c	other known spider silk,
	making it about as dura		ho mololo foother lite
		eleases a pheromone that is sensed by t	me male s teather-like
		excited fluttering behavior. release a boiling, noxious, pungent spra	w that can repai
	 The bombardier beetle potential predators. 	Telease a bolling, noxious, pungent spire	ay mat can reper
This Perform	ance Expectation and associated	Evidence Statements support the follow	wing Task Demands.
		Task Demands	

1.	Describe, identify, or select evidence supporting or contradicting a claim that sugar molecules containing organic elements (e.g., carbon, hydrogen, and oxygen) that are ingested by an organism are broken down and rearranged via chemical reactions to form proteins, lipids, and nucleic acids.
2.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.
3.	Express or complete a description of the flow of energy and/or matter within and between living systems. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause and effect chains.*
4.	Articulate, describe, or select the relationships, interactions, reactions and/or processes to be explained. This may entail sorting relevant from irrelevant information or features of the reactants and products.*
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in the amount and types of organic molecules ingested and the amount and type of products formed within a living system.

THE STATE OF TOTAL	INDIANA DEPARTMENT of EDUCATION
	EDUCATION

1816	1		
Performance			
Expectation			
	molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting		
in a net transfer of energy.			
Dimensions	Developing and Using Models • Use a model based on evidence to illustrate the relationships between systems or between components of a system.	 LS1.C: Organization for Matter and Energy Flow in Organisms As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature despite ongoing energy transfer to the surrounding environment. 	Energy and Matter • Energy cannot be created or destroyed—it only moves between one place and another, between objects and/or fields, or between systems.
Clarifications	Clarification Statemer	ht	
and Content		n the conceptual understanding of the inputs and output	uts of the process of
Limits	cellular respira		ats of the process of
Linnes			
	Content Limits		
	 Content Limits Students aren't expected to identify the steps or specific processes involved in cellular respiration. Assessment does not include mechanisms of cellular respiration (enzymatic activity, oxidation, molecular gradients, etc.). <u>Students do not need to know:</u> enzymes, ATP synthase, metabolism, biochemical pathways, redox reactions, molecular transport. 		
	redox reaction	is, molecular transport.	
Science ATP, chemical bonds, energy transfer, glycolysis, enzymes, mitochondria, cytosol, cytoplasm,			acal autoplacm
Vocabulary	nitrogen, adenine, pho		usul, cytopiasm,
Students Are	introgen, adennie, pric	sphate, amino aciu.	
Expected to			
Know			
Science	Biochemical fatty acid	ls, oxidizing agent, electron acceptor, biosynthesis, loc	omotion
Vocabulary		ron transport chain, chemiosmosis, pyruvate, pentose	
Students Are		and transport chain, chemiosinosis, pyruvate, pentose	•
Not Expected			
to Know			
		Phenomena	
Context/	Some example phenor		
Phenomena		is grown in a bowl of sugar water. As it grows, the amo	ount of sugar in the
	water decreas		
		ony in a petri dish is continually provided with sugar w	ater. Over the course of
		e bacteria grow larger. When sugar water is no longer	
shrink and some disappear.			
		tired and weak before eating lunch. After eating some	e fruit, the person feel
	more energetic and awake.		

	 An athlete completing difficult training feels that her muscles recover and repair faster when she eats more food in a day, compared to when she ate less food in a day.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Assemble or complete an illustration or flow chart that is capable of representing the transformation of food plus oxygen into energy and/or new compounds. This <i>does not</i> include labeling an existing diagram.
2.	Using the developed model, identify and describe the relationships between the reactants of the transformation and the products of the transformation.*
3.	Using the developed model, show that matter and energy are only rearranged during cellular respiration, but never created or destroyed.
4.	Make predictions about how additions/substitutions/removals of certain components can maintain/destroy the balance of the food plus oxygen \rightarrow energy/new compounds reaction.*
5.	Given models or diagrams of cellular respiration, identify the components and the mechanism in each scenario OR identify the properties of the components that allow cellular respiration to occur.
6.	Identify missing components, relationships, or other limitations of the model.
7.	Describe, select, or identify the relationships among components of a model that describe or explain cellular respiration.

Performance	HS-LS2-1		
	appectation Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.		
Expectation			
Dimensions	Using Mathematical	LS2.A: Interdependent Relationships in	Scale, Proportion, and
Dimensions	and Computational	Ecosystems	Quantity
	Thinking	• Ecosystems have carrying capacities, which are	• The significance of a
	• Use mathematical	limits to the numbers of organisms and	phenomenon is
	and/or	populations they can support. These limits	dependent on the
	computational	result from such factors as the availability of	scale, proportion,
	representations of	living and nonliving resources and from	and quantity
	phenomena or	challenges such as predation, competition and	involved.
	design solutions to	disease. Organisms would have the capacity to	
	support explanations	produce populations of greater size were it not	
		for the fact that environments and resources	
		are finite. This fundamental tension affects the	
		abundance (number of individuals) of species in	
		any given ecosystem.	
Clarifications	Clarification Statements	l	1
and Content		, Juantitative analysis and comparison of the relations	hips among
Limits		factors, including boundaries, resources, climate, an	
		thematical comparisons could include graphs, charts	•
	population chan	ges gathered from simulations or historical data sets	S.
	Examples of ma	thematical representations include finding the avera	ge, determining trends,
	and using graphic comparisons of multiple sets of data.		
	Content Limits		
	Assessment does not include deriving mathematical equations to make comparisons.		
	<u>Students do not need to know:</u> Calculus/advanced mathematics (e.g., exponential growth and decay)		
	decay).		
Science	Predation, interdepende	ent, disturbance, equilibrium of ecosystems, fluctuat	ion. stable. biotic.
Vocabulary		ogenic, overexploitation, urbanization, population, e	
, Students Are	•	, rebounding, limiting resources, logistic, competition	
Expected to	population control.		
Know			
Science		, survivorship curve (J or S), reproductive table, sem	
Vocabulary		raphic transition, resource partitioning, Shannon div	• • • • •
Students Are		tion (K-selection), density independent selection (r s	selection), intrinsic
Not Expected	factors.		
to Know		Phenomena	
Context/	Some example phenome		
Phenomena	 On Ngorogoro Crater in Tanzania in 1963, a scientist sees that there are much fewer lions 		
	than there were on previous visits.		
	 On St. Matthew Island, reindeer were introduced in 1944, but today no reindeer can be 		
	found on the island.		
	 In Washington State, more harbor seals are present today than in the past. 		
	 In Alaska, you can see many more brown bears in Lake Clark National Park than in Denali 		
	National Park.		
This Perf	ormance Expectation and	associated Evidence Statements support the following	ng Task Demands.

	Task Demands
1.	Make calculations using given data to calculate or estimate factors affecting the carrying capacity of an ecosystem.*
2.	Illustrate, graph, or identify relevant features or data that can be used to calculate or estimate factors affecting the carrying capacity of ecosystems of different scales.*
3.	Calculate or estimate properties of or relationships between factors affecting the carrying capacity of an ecosystem based on data from one or more sources.
4.	Compile, from given information, the data needed for a particular inference about factors affecting the carrying capacity of an ecosystem. This can include sorting out the relevant data from the given information and representing the data through graphs, charts, and/or histograms.
5.	Use quantitative or abstract reasoning to make a claim about the factors that affect the carrying capacity of an ecosystem.

Performance	HS-LS2-2		
Expectation	Use mathematical representations to support and revise explanations, based on evidence about		
	factors affecting biodiversity and populations in ecosystems of different scales.		
Dimensions	Using Mathematical	LS2.A: Interdependent Relationships in	Scale, Proportion, and
	and Computational	Ecosystems	Quantity
	Thinking	• Ecosystems have carrying capacities, which are	 Using the concept of
	 Use mathematical 	limits to the numbers of organisms and	orders of magnitude
	representations of	populations they can support. These limits	allows one to
	phenomena or	results from factors such as the availability of	understand how a
	design solutions to	living and nonliving resources and from such	model at one scale
	support and revise	challenges such as predation, competition, and	relates to a model at
	explanations.	disease. Organisms would have the capacity to	another scale.
		produce populations of greater size were it not	
		for the fact that environments and resources	
		are finite. This fundamental tension affects the	
		abundance (number of individuals) of species	
		in any given ecosystem.	
		LS2.C: Ecosystem Dynamics, Functioning, and	
		Resilience	
		 A complex set of interactions within an 	
		ecosystem can keep its numbers and types of	
		organisms relatively constant over long periods	
		of time under stable conditions. If a modest	
		biological or physical disturbance to an	
		ecosystem occurs, it may return to its more or	
		less original status (i.e., the ecosystem is	
		resilient) as opposed to becoming a very	
		different ecosystem. Extreme fluctuations in	
		conditions or the size of any population,	
		however, can challenge the functioning of	
		ecosystems in terms of resources and habitat	
		availability.	
Clarifications	Clarification Statements		
and Content	 Examples of mat 	thematical representations include finding the aver	age, determining trends,
Limits	-	c comparisons of multiple sets of data.	
	Content Limits		
		nited to provided data.	
		<u>: need to know</u> : Calculus/advanced mathematics (e.g., exponential growth
	and decay)		
Science	Carrying capacity, anthro	ppogenic changes, overexploitation, extinction, dem	ographic, population
Vocabulary		habitat fragmentation, sustainable, abiotic factor, b	• • • • •
, Students Are		e, fragile ecosystem, biodiversity index, zero popula	
Expected to	· · ·	emigration, limiting factor	<i>o , ,,</i>
Know	, , , , , ,		
Science	Water regime, direct driv	ver, eutrophication, species evenness, range of tole	rance, realized niche,
Vocabulary	-	pecialist, edge habitat, endemic species, logistic gro	
Students Are		k-recapture method, territoriality, demography, coh	· ·
Not Expected		istory, semelparity, iteroparity, K-selection, r-select	•
to Know			

Phenomena					
Context/ Phenomena	 Some example phenomena for HS-LS2-2: <u>After brown tree snakes were accidentally introduced to Guam in the 1950s, 11 native bird species went extinct.</u> When European settlers decreased the wolf population for safety, deer populations thrived and overconsumed native plant species. California's Central Valley can support fewer waterfowl in the winter during drought. <u>The cones of Lodgepole pines do not release their seeds until a fire melts the resin that keeps them sealed.</u> 				
This Perfo	prmance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands				
	 Make simple calculations using given data to calculate or estimate factors affecting biodiversity and populations in ecosystems. 				
 Illustrate, graph, or identify relevant features or data that can be used to calculate or estimate factors affecting biodiversity and populations in ecosystems of different scales. 					
 Calculate or estimate properties of or relationships between factors affecting biodiversity and populations in ecosystems based on data from one or more sources. 					
 Compile, from given information, the data needed for a particular inference about factors affecting biodiversity and populations in ecosystems. This can include sorting out the relevant data from given information. 					
	 Construct an explanation regarding the relationship between biodiversity and populations in ecosystems of different scales using the given, calculated, or compiled information. 				
	 Revise or evaluate a given explanation of the relationship between biodiversity and populations in ecosystems of different scales based on the given, calculated, or compiled information. 				

Performance	ormance HS-LS2-3			
Expectation	Construct and revise an explanation based on eviden	ce for the cycling of matter	and flow of energy	
	in aerobic and anaerobic conditions.	I	I	
Dimensions	 Constructing Explanations and Designing Solutions Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, and peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	 LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for the processes. 	Energy and Matter • Energy drives the cycling of matter within and between systems.	
Clarifications	Clarification Statements			
and Content Limits	 Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments. Emphasis is on conceptual understanding that the supply of energy and matter restricts a system's operation; for example, without inputs of energy (sunlight) and matter (carbon dioxide and water), a plant cannot grow. 			
	 Content Limits Assessment does not include the specific chemical processes of either aerobic or and respiration. Students do not need to know: lactic acid vs. alcoholic fermentation, chemical equat photosynthesis, cellular respiration, or fermentation. 			
Science	Organic compound synthesis, net transfer, biomass, carbon cycle, solar energy			
Vocabulary Students Are Expected to Know				
Science	Lactic acid fermentation, alcoholic fermentation, glycolysis, Kreb's cycle, electron transport chain.			
Vocabulary Students Are Not Expected to Know				
	Phenomena			
Context/	Some example phenomena for HS-LS2-3:			
Phenomena	 After running for a long period of time, huma sensation, and breathing rate increases. Bread baked with yeast looks and tastes diffe A plant that is watered too much will have so to grow. Cyanobacteria differ from other bacteria in th and also lack flagella. 	rently than bread that is ba ft, brown patches on their l	ked without yeast. eaves and will fail	
This Perfo	ormance Expectation and associated Evidence Stateme	nts support the following Ta	ask Demands.	
	Task Demands			
 Describe 	e, identify, or select evidence supporting or contradictir	ng a claim about the role of energy in an ecosystem.	photosynthesis and	

2.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses.
3.	Express or complete a description of the flow of energy and/or matter between organisms. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.*
4.	Articulate, describe, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features of the reactants and products.*
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in environmental conditions on the flow of matter and energy between organisms.

Performance	n Use mathematical representations to support claims for the cycling of matter and flow of energy			
Expectation				
	among organisms in ar	ecosystem.		
Dimensions	Using Mathematical	LS2.B: Cycles of Matter and Energy Transfer in	Energy and Matter	
	and Computational	Ecosystems	• Energy cannot be	
	Thinking	• Plants or algae from the lowest level of the food	created or	
	Use mathematical	web. At each link upward in a food web, only a	destroyed; it only	
	representations of	small fraction of the matter consumed at the	moves between	
	phenomena, or	lower level is transferred upward, to produce	one place and	
	design solutions to	growth and release energy in cellular respiration	another place,	
	support claims.	at the higher level. Given this inefficiency, there	between objects	
		are generally fewer organisms at higher levels of a	and/or fields, or	
		food web. Some matter reacts to release energy	between systems.	
		for life functions, some matter is stored in newly		
		made structures and much is discarded. The		
		chemical elements that make up the molecules of		
		organisms pass through food webs and into and		
		out of the atmosphere and soil, and they are		
		combined and recombined in different ways. At		
		each link in an ecosystem, matter and energy are		
		conserved.		
Clarifications	Clarification Statemen			
and Content		using a mathematical model of stored energy in bioma		
Limits	transfer of energy from one trophic level to another, and that matter and energy are			
	conserved as matter cycles and energy flows through ecosystems.			
	• Emphasis is on atoms and molecules—such as carbon, oxygen, hydrogen, and nitrogen—			
	being conserved as they move through an ecosystem.			
	Constant Limite			
	Content Limits			
	Assessment is limited to proportional reasoning to describe the cycling of matter and flow of			
	energy.			
	 <u>Students do not need to know</u>: the specific biochemical mechanisms or thermodynamics of cellular respiration to produce ATP or of photosynthesis to convert sunlight energy into 			
	glucose.			
	BIACOSE.			
Science	Interdependent, nutrie	nt, hydrocarbon, transfer system, equilibrium of ecosy	stems, decomposer.	
Vocabulary	•	nergy, predator-prey relationship, trophic level	,	
Students Are	, ,	- C// F		
Expected to				
Know				
Science	Detritivore, denitrificat	ion, thermodynamics, nitrogen fixation, biogeochemic	al cycle, anaerobic	
Vocabulary	process.			
Students Are				
Not Expected				
to Know				
	T	Phenomena		
Context/	Some example phenon			
Phenomena		ectare rainforest of San Lorenzo, Panama, there are 312	2 arthropods for every	
	mammal, including humans.			
	• In Silver Springs, Florida, the biomass of plants is 809 g/m ² , while the biomass of large fish is			
	5 g/m².			

16	EDUCATION
	 A herd of grazing caribou in the Seward Peninsula of Alaska are seen eating the leaves of birch trees in July. In December, they are seen eating tree lichen. A pine tree growing in a forest remains in one location throughout its lifetime. A fox in the same forest moves around every day of its life.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Calculate or estimate changes or differences in matter and energy between trophic levels of an ecosystem. **
2.	Illustrate, graph, or identify a mathematical model describing changes in stored energy through trophic levels of an ecosystem.**
3.	Compile and interpret data from given information to establish the relationship between organisms at different trophic levels.*

4. Use quantitative or abstract reasoning to make a claim about the cycling of matter and flow of energy through the trophic levels of an ecosystem. This may include sorting relevant from irrelevant information.*

5. Identify and describe the components of a mathematical representation of an ecosystem that could include relative quantities related to organisms, matter, energy, and the food web of that ecosystem.

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TDs 1 and 2 may be used for stand-alones in combination with TD3 and TD4.

Performance	HS-LS2-5		
Expectation			
		here, atmosphere, hydrosphere, and geosphere	
Dimensions	 Developing and Using Models Develop a model based on evidence to illustrate the relationships between systems or components of a system. 	 LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. PS3.D: Energy in Chemical Processes The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary) 	Systems and System Models Models (e.g., physical, mathematical, or computer models) can be used to simulate systems and interactions—including energy, matter, and information flows— within and between systems at different scales.
Clarifications	Clarification Statements	<u> </u>	
and Content Limits	 Examples of models could include simulations and mathematical models. Content Limits Assessment does not include the specific chemical steps of photosynthesis and respiration. 		
Science Vocabulary Students Are Expected to Know	Recycle, consumer, transform, organism, convert, decomposer, producer, hydrocarbon, microbes, ATP		
Science Vocabulary Students Are Not Expected to Know	Endothermic reaction, e	xothermic reaction, free energy, hydrolysis, oxid	dation.
		Phenomena	
Context/	Some example phenome	ena for HS-LS2-5:	
Phenomena	 A piece of coal p electrical power Several acres of Two mice die in 	grazing in a field wear balloon-like backpack dev preserving a fossil leaf imprint is burned within t plant. Smoke generated from the fire escapes of trees are cut down and burned, generating clou the woods in November, one in Massachusetts ecomposes much more quickly than the Massac	he furnace of a coal-fired out of a smoke stack uds of smoke. and one in Florida. The
This Perfo	rmance Expectation and a	ssociated Evidence Statements support the follo	owing Task Demands.
		Task Demands	
photosy process	nthesis and cellular respir	on or flow chart that is capable of representing ation cycle carbon by various chemical, physical pheres (biosphere, atmosphere, hydrosphere, ge m.	, geological, and biological

7816	
2.	Using the developed model, identify and describe the relationships between the processes of photosynthesis and cellular respiration, and the coordinated functions of transferring carbon among two or more spheres (biosphere, atmosphere, hydrosphere, geosphere).
3.	Using the developed model, show that photosynthesis and cellular respiration are important parts of the overall carbon cycle that transfers carbon through two or more spheres (biosphere, atmosphere, hydrosphere, geosphere).
4.	Make predictions about, or generate explanations for, how substitutions of certain components in the model can interrupt or change the relationships between, or functions of, those components, thus effecting the cycling of carbon through the various spheres (biosphere, atmosphere, hydrosphere, geosphere).
5.	Given models or diagrams* of the processes of photosynthesis and cellular respiration, identify the components and the mechanisms in each process that cycle carbon OR identify the properties of the components that allow those functions to occur.
6.	Identify missing components, relationships, or other limitations of the model.
7.	Modify/augment/add to the model to change or add steps that can alter the cycling of carbon through the various spheres (biosphere, atmosphere, hydrosphere, and/or geosphere).

*Labeled diagrams by themselves are not usually sufficient to serve as models.

Performance	HS-LS2-6			
Expectation	Evaluate the claims, evi	idence, and reasoning that the complex interactions in e	cosystems maintain	
	relatively consistent numbers and types of organisms in stable conditions, but changing			
	conditions may result in a new ecosystem.			
Dimensions	 Engaging in Argument from Evidence Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. 	 LS2.C: Ecosystem Dynamics, Functioning, and Resilience A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. 	Stability and Change • Much of science deals with constructing explanations of how things change and how they remain stable.	
Clarifications	Clarification Statement	l ts		
Limits	 Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood, and extreme changes, such as volcanic eruption or sea-level rise. To show full comprehension of the PE, the student must demonstrate an understanding that in a stable ecosystem, the average activity by the nutrients, decomposers, producers, primary consumers, secondary consumers, and tertiary consumers remains relatively consistent. When each of these levels has high levels of diversity, the ecosystem is stable because the group as a whole is better able to respond to pressures. However, even a healthy, diverse ecosystem is subject to extreme changes when faced with enough pressure. Content Limits Assessment does not include Hardy-Weinberg equilibrium calculations. 		nanges, such as an understanding that, ers, producers, nains relatively cosystem is stable owever, even a vith enough pressure.	
Science	Biosphere, biodiversity	. carbon cycle, water cycle, nitrogen cycle, fluctuation, c	onsistent. stable.	
Vocabulary Students Are Expected to Know	Biosphere, biodiversity, carbon cycle, water cycle, nitrogen cycle, fluctuation, consistent, stable, equilibrium, species, emergence, extinction, niche, native, non-native, invasive, overgrazing, human impact, succession, primary succession, secondary succession.			
Science Vocabulary Students Are Not Expected to Know	Genetic drift, founder effect, Hardy-Weinberg, intermediate disturbance hypothesis, species-area curve.			
		Phenomena		
Context/ Phenomena	 introduction of Biodiversity of non-sustainable After a fire, the 	s of rabbits and deer in the Florida Everglades significan the Burmese python. an area of the Amazon rainforest is affected differently i e lumber farms. biodiversity of a forest immediately decreases but ever mouse populations are observed the year after a flood b	n sustainable and itually increases.	

	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
	Task Demands			
1.	maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions			
2.	may result in a new ecosystem. Identify and/or explain the claims, evidence, and reasoning supporting the explanation that complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.			
3.	Identify and/or describe additional relevant evidence not provided that would support or clarify the explanation of the complex interactions in ecosystems, factors that affect biodiversity, relationships between species and the environment, and changes in numbers of species and organisms in a stable or changing ecosystem.			
4.	Evaluate the strengths and weaknesses of a claim to explain the relationship of biodiversity and the environment in an ecosystem based on the evidence or data provided.*			
5.	Analyze and/or interpret evidence and its ability to support the explanation of the resiliency of an ecosystem in response to different levels of change.*			
	when faced with modest disturbances, but it may experience extreme changes or fluctuations in biodiversity when faced with extreme disturbances.*			
*denote	s those task demands which are deemed appropriate for use in stand-alone item development			

Performance	HS-LS2-7			
Expectation	Design, evaluate, and refine a solution for reducing the impacts of human activities on the			
	environment and biodiversity.			
Dimensions	Constructing	LS2.C: Ecosystem Dynamics, Functioning, and	Stability and	
	Explanations and	Resilience	Change	
	Designing Solutions	 Moreover, anthropogenic changes (induced by 	 Much of science 	
	 Design, evaluate, 	human activity) in the environment—including	deals with	
	and refine a	habitat destruction, pollution, introduction of	constructing	
	solution to a	invasive species, overexploitation, and climate	explanations of	
	complex real-world	change—can disrupt an ecosystem and threaten the	how things change	
	problem, based on scientific	survival of some species.	and how they remain stable.	
	knowledge,	LS4.D: Biodiversity and Humans	remain stable.	
	student-generated	Biodiversity is increased by the formation of new		
	sources of	species (speciation) and decreased by the loss of		
	evidence,	species (speciation) and decreased by the loss of species (extinction). <i>(secondary)</i>		
	prioritized criteria,	species (extinction): (secondary)		
	and trade-off	ETS1.B: Developing Possible Solutions		
	considerations.	 When evaluating solutions, it is important to take 		
		into account a range of constraints including cost,		
		safety, reliability, and aesthetics, and to consider		
		social, cultural, and environmental impacts.		
		(secondary)		
Clarifications	Clarification Statemer			
and Content	•	uman activities can include urbanization, building dams, a	and dissemination of	
Limits	invasive specie	25.		
	Contout Lineite			
	Content Limits	and not include physical equations describing machanics	of colutions or	
		pes not include physical equations describing mechanics engineered structures.	of solutions of	
		ot need to know: quantitative statistical analysis, specific	conditions required	
		cifics of constructing the solution.	conditions required	
Science	Carrying capacity, com	petition, urbanization, conversation biology, endangered	d species, threatened	
Vocabulary		ecies, overharvesting, extinction, greenhouse effect, carl	-	
Students Are				
Expected to				
Know				
Science		ics, Hardy-Weinberg equilibrium, Lotka-Volterra equatio		
Vocabulary		pulation regulation, extinction vortex, minimum viable p	•	
Students Are		ze, movement corridor, biodiversity hot spot, zoned rese	rve, critical load,	
Not Expected	biological magnificatio	n, assisted migration, sustainable development.		
to Know		Phenomena		
Context/	Some example of pher			
Phenomena		cities through urbanization has destroyed wildlife habita	ts across the planet	
		rom driving cars has made the air unsafe to breathe in ma	•	
		_		
	 Dams have led to flooding of large areas of land, destroying animal habitats. Fishing has drastically changed marine ecosystems, removing certain predators or certain 			
	 Prising has drastically changed marine ecosystems, removing certain predators of certain prey. 			
	F. ~1.			

-	This Performance Expectation and associated Evidence Statements support the following Task Demands.				
	Task Demands				
1.	Articulate, describe, illustrate, or select the relationships, interactions, and/or processes to be explained. This may entail sorting relevant from irrelevant information or features.				
2.	Express or complete a causal chain explaining how human activity impacts the environment. This may include indicating directions of causality in an incomplete model such as a flow chart or diagram, or completing cause-and-effect chains.				
3.	Identify evidence supporting the inference of causation that is expressed in a causal chain.				
4.	Use an explanation to predict the environmental outcome, given a change in the design of human technology.				
5.	Describe, identify, and/or select information needed to support an explanation.				
6.	Identify or describe relevant aspects of the problem that given design solutions for reducing the impacts of human activities on the environment and biodiversity, if implemented, will resolve or improve.				
7.	Using given information about the effects of human activities on the environment and biodiversity, select or identify criteria against which the solution should be judged.				
8.	Using given information about the effects of human activities on the environment and biodiversity, select or identify constraints that the solution must meet.				
9.	Evaluate the criteria and constraints, along with trade-offs, for a proposed or given solution to resolve or improve the impact of human activities on the environment and biodiversity.				
10.	Using given data, propose a potential solution to resolve or improve the impact of human activities on the environment and biodiversity.				
11.	Using a simulator, test a proposed solution to resolve or improve the impact of human activities on the environment and biodiversity and evaluate the outcomes.				
12.	Evaluate and/or revise a solution to resolve or improve the impact of human activities on the environment and biodiversity and evaluate the outcomes				

Performance HS-LS2-8				
Expectation	Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.			
Dimensions	 Engaging in Argument from Evidence Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. 	 LS2.D: Social Interactions and Group Behavior Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	
Clarifications and Content Limits	nd Content • Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying			
Science Vocabulary Students Are Expected to Know	Behavioral ecology, cooperative behavior, altruism, environmental stimuli, circadian clock, communication, foraging, optimal foraging model, energy costs and benefits, competition, predator mutual protection, packs			
Science Vocabulary Students Are Not Expected to Know	Fixed action pattern, pheromones, innate behavior, learning, imprinting, spatial learning, social learning, associative learning, problem solving, cognition, game theory, agonistic behavior, mating behavior, mating systems, parental care, mate choice, male competition for mates, reciprocal altruism, shoaling			
		Phenomena		
Context/ Phenomena				
This Perf	ormance Expectation and assoc	iated Evidence Statements support the Task Demands	following Task Demands.	
		escribe, or construct a claim regarding chances of surviving and reproducing.	how specific group behavior(s)	

7816	
2.	Sort inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification.
3.	Identify patterns of information/evidence in the data that support correlative/causative inferences about the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.*
4.	Construct an argument using scientific reasoning, drawing on credible evidence to explain the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.
5.	Identify additional evidence that would help clarify, support, or contradict a claim or causal argument regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.
6.	Identify, summarize, or organize given data or other information to support or refute a claim regarding the effect of specific group behaviors on an individual's and species' chances to survive and reproduce.**

*denotes those task demands which are deemed appropriate for use in stand-alone item development **TD6 – summarize is the emphasis here. Avoid identify and organize.

Performance	HS-LS3-1			
Expectation	Ask questions to clarify relationships about the role of DNA and chromosomes in coding the			
	instructions for characteristic traits passed from parents to offspring.			
Dimensions	Asking Questions	LS1.A: Structure and Function	Cause and Effect	
	 and Defining Problems Ask questions that arise from examining models or a theory to clarify relationships. 	 All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary) LS3.A: Inheritance of Traits Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species' characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. 	• Empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects.	
Clarifications	Clarification Stateme	nts:		
and Content		the study of inheritance is restricted to Mendelian genet	ics including	
Limits		odominance, incomplete dominance, and sex-linked trai	-	
Linnes		pression of traits on the organism level and should not t		
	production.			
	Content Limits:			
	 Assessment d 	loes not include the phases of meiosis or the biochemica	l mechanism of	
	 Assessment does not include the phases of melosis of the biochemical mechanism of specific steps in the process. Assessment does not include mutations or species-level genetic variation including Hardy- 			
	Weinberg equ	·		
Science	Genome, zygote, fert	ilization, dominant, recessive, codominance, incomplete	dominance, sex-	
Vocabulary	linked, allele, sequen	cing, pedigree, parent generation, F1, F2, haploid, diploid	d, replication.	
Students Are				
Expected to				
Know				
Science	Epigenetics, interpha	ise, prophase, metaphase, anaphase, telophase, cytokine	esis, epistasis.	
Vocabulary				
Students Are				
Not Expected				
to Know		Dhanamana		
Context/	Some example phone	Phenomena pmena for HS LS2 1:		
Context/ Phenomena	Some example pheno		uction but only about	
FILEHUIIIEIId		ing shows that all people have the gene for lactase produces can digest milk.	uction, but only about	
		-	aven toes on each	
	 Polydactyl tabby cat Jake holds the world record for most toes, with seven toes on each 			
	 paw. <i>E. coli</i> bacteria are healthful in mammalian intestines but makes mammals sick when 			
	ingested.			
	-	a are used to produce human insulin.		

1	This Performance Expectation and associated Evidence Statements support the following Task Demands.			
	Task Demands			
1.	Identify or construct an empirically testable question based on the phenomenon that could lead to design of an experiment or model to define the relationships between the role of DNA and/or chromosomes in the inheritance of traits.*			
2.	Assemble or complete, from a collection of potential model components, an illustration, or pedigree that is capable of representing the role of genetic material in coding the instructions for inheritance.*			
3.	Construct a question that arises from examining a model or theory to clarify the connections between DNA/chromosomes and inheritance of traits.*			
4.	Make predictions about the pattern of inheritance based on a model derived from the empirically testable question. Predictions can be made by manipulating model components, completing illustrations, or selecting from lists with distractors.			
5.	Assemble or complete a flow chart describing the cause and effect relationships between genetic material and the characteristic traits passed from parents to offspring.			

	EDUCATION	ATION			
Performa	nce HS-LS3-2	HS-LS3-2			
Expectation	on Make and defend a	Make and defend a claim based on evidence that inheritable genetic variations may result from: (1)			
	new genetic combin	ations through meiosis, (2) viable errors occurring during repl	ication, and/or (3)		
	mutations caused by	y environmental factors.			
Dimensions	ons Engaging in	LS3.B: Variation of Traits	Cause and Effect		
	Argument from	• In sexual reproduction, chromosomes can sometimes	 Empirical 		
	Evidence	swap sections during the process of meiosis (cell	evidence is		
	Make and	division), thereby creating new genetic combinations and	required to		
	defend a claim	thus more genetic variation. Although DNA replication is	differentiate		
	based on	tightly regulated and remarkably accurate, errors do	between cause		
	evidence about	occur and result in mutations, which are also a source of	and correlation,		
	the natural world	genetic variation. Environmental factors can also cause	and to make		
	that reflects	mutations in genes, and viable mutations are inherited.	claims about		
	scientific	• Environmental factors also affect expression of traits,	specific causes		
	knowledge and	and, hence, they affect the probability of occurrences of	and effects.		
	student-	traits in a population. Thus, the variation and distribution			
	generated	of traits observed depends on both genetic and			
	knowledge.	environmental factors.			
Clarificati	ions Clarification Statem	ents			
and Conte	ent • Emphasis is	on using data to support arguments for the way variation occ	urs.		
Limits	Inheritable	 Inheritable traits should be traits that can be passed down through more than one 			
	generation.	generation.			
	Inheritable	 Inheritable traits for this PE do not include dominant/recessive traits. 			
	 Examples of 	• Examples of evidence for new genetic combinations and viable errors can include:			
	o kary				
	0 DNA	• DNA sequence comparison.			
		Content Limits			
		Assessment does not include assessing meiosis or the biochemical mechanism of specific			
		steps in the process.			
	<u>Students do</u>	 <u>Students do not need to know</u>: bioinformatics, specific genetic disorders. 			
Science		nzyme, protein synthesis, chromosome, egg, egg cell, sperm, s			
Vocabula	· · · ·	recombination, sex cell, sex chromosome, sex-linked trait, me			
Students	0,1	ession, base pairs, genome, UV radiation, triplet codon, insert	ion, deletion,		
Expected	to frameshift, substitut	tion, somatic, epigenetic.			
Know					
Science		icleotide polymorphisms (SNPs), conjugation, DNA polymeras			
Vocabula		ocation, missense, nonsense, nongenic region, tautomerism, o	depurination,		
Students	, , , , , , , , , , , , , , , , , , , ,	deamination, slipped-strand mispairing, Sheik disorder, prion, epidemiology.			
Not Exped					
to Know					
		Phenomena			
Context/	Some example pher	iomena for HS-LS3-2:			
Phenome		cide residue, frogs have extra, non-functioning, limbs.			
		ns have feathers that lay flat against their bodies. In one fami	ly of chickens 50%		
		have feathers that curl away from their bodies.	y of chickens, JU/0		
		e mutation accounts for the blue color of irises in over 99.5%	of neonle with blue		
	eyes.	e matation accounts for the blue color of mises in over 33.3/0			
	Cy63.				

1816	EDUCATION
	 One sunflower growing in a field has a wide, flat stem and an unusual number of leaves. The next year, several sunflowers in the field share these traits.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Based on the provided data, make or construct a claim regarding inheritable genetic variations that may result from: 1) new genetic combinations through meiosis, 2) viable errors occurring during replication, and/or 3) mutations caused by environmental factors. This <i>does not</i> include selecting a claim from a list.
2.	Sort inferences about inheritable genetic variation into those that are supported by the data, contradicted by the data, or none of these—or some similar classification.
3.	Identify patterns of information/evidence in the data that support correlative/causative inferences about inheritable genetic variation.
4.	Construct an argument using scientific reasoning that draws on credible evidence to explain how inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. (Hand scored CR)
5.	Identify additional evidence that would help clarify, support, or contradict a claim or causal argument.
6.	Identify, describe, and/or construct alternate explanations or claims, and cite the data needed to distinguish among them.
7.	Predict outcomes of genetic variations, given the cause-and-effect relationships of inheritance.

Expectation Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. Scale, Proportion and Quantity Dimensions Analyzing and interpreting Data or probability (including and probability of traits in a population. Thus, the variation and distribution of traits in a population. Thus, the variation and problems, using dustrobusion and problems, using dustrobusion and problems, using dustrobusion of traits. Scale, Proportion and Content is no the second environmental factors. Clarifications Clarification Statements Improbability of traits as it relates to genetic and environmental factors in the expression of traits. Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p ² + 2pq + q ² = 1 or p + q = 1). Students do not need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Yocabulary Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norr of reaction, multifactorial, Barr Body, genetic varage have a relatively high number of 0's, while Asian people have a relatively high number of 0's. Henomena Sc	Performance	HS-LS3-3				
Dimensions Analyzing and interpreting Data • Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and determining function fits to data, slope, intercept, and orcirelation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. IS3.8 Variation of Traits environmental factors also and problems, using digital tools when feasible. Sciele, Proposition and orcirelation coefficient for linear population. Thus, the variation and the scient field and environmental factors. Clarifications and Content Limits Clarification Statements • Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits. • Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). Students do not need to know; pleiotropy, meiosis, specific names of genetic disorders. Science Yocabulary Students are know Science Ore situe is the most common blood type. Not all ethnic groups have the same mix of these brood type. Hispan and prediction pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. O Positive is the most common blood type. Not all ethnic groups have the same mix of these	Expectation					
 Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear platient, the variation and correlation coefficient for linear platient. The variation and distribution of traits in a population. Thus, the variation and stribution of traits and predict the effect of a correlation coefficient for linear platient. Thus, and the variation and distribution of traits and predict the effect of a context of the variation of traits and predict the effect of a correlation coefficient for some traits and predict the effect of a correlation coefficient for some traits and predict the effect of a context of the variation of traits and the variation of traits as it relates to genetic and environmental factors. Clarifications statements Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits. Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). Students and not need to know: pleiotropy, melosis, specific names of genetic disorders. Science Vocabulary Students and the stroper to main and stroper to main and traits, grametic, retributed to fail, apply and precation, Figure and for HS-1S3-3: Destribe daminant, recessive, homo with differed marker and prediction, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Most humans were born with five fingers on each						
and Content Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits. Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits • Assessment is limited to basic statistical and graphical analysis. • Assessment does not include Hardy-Weinberg calculations (p ² + 2pq + q ² = 1 or p + q = 1). • Students do not need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F, generation, F, generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Vocabulary Students are Not Expected to Know Phenomena Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know: Phenomena Some example phenomena for HS-LS3-3: • O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. • Hydrangea flowers of the same geneti	Dimensions	 Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus, the variation and distribution of traits observed depends on both genetic and environmental growth vs. exponential growth). Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). 				
Limits genetic and environmental factors in the expression of traits. Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p ² + 2pq + q ² = 1 or p + q = 1). Students do net need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Vocabulary Students are Expected to Know Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Mot Expected to Know Context/ Phenomena Some example phenomena for H5-L53-3: O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of 0's, while Asian people have a relatively high number of 0's, while Asian people have a relatively high number of 0's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. Task Demands I. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	Clarifications	Clarification Statements				
Sensitivity and precaution should be used around the use of both lethal recessive and dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p ² + 2pq + q ² = 1 or p + q = 1). Students do not need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F1 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of 0's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are p	and Content	• Emphasis is on the use of mathematics to describe the probability of traits as it relates to				
dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis). Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). Students do not need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F1 generation, F2 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Know Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Some example phenomena for HS-LS3-3: Context/ Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having	Limits					
Content Limits Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). Students do not need to know: pleiotropy, meiosis, specific names of genetic disorders. Science Yocabulary Students are Expected to Know Center, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Crience Yocabulary Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Context/ Phenomena Context/ Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. Task Demands Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). <u>Students do not need to know:</u> pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F1 generation, F2 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.* 		dominant human traits (i.e., Huntington's, achondroplasia, Tay-Sachs, cystic fibrosis).				
 Assessment is limited to basic statistical and graphical analysis. Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). <u>Students do not need to know</u>: pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F1 generation, F2 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Know Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Some example phenomena for HS-LS3-3: O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. 		Contant Limits				
 Assessment does not include Hardy-Weinberg calculations (p² + 2pq + q² = 1 or p + q = 1). <u>Students do not need to know</u>: pleiotropy, meiosis, specific names of genetic disorders. Science Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, P generation, F₁ generation, F₂ generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Yocabulary Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Some example phenomena for HS-LS3-3: O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of S's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. 						
 <u>Students do not need to know:</u> pleiotropy, meiosis, specific names of genetic disorders. <u>Science</u> <u>Gene, allele, dominant, recessive, homozygous, heterozygous, phenotype, genotype, P generation, F₁ generation, F₂ generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis.</u> <u>Science</u> <u>Science</u> <u>Science</u> <u>Students are</u> <u>Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele.</u> <u>Students are</u> <u>Some example phenomena for HS-LS3-3:</u> <u>O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's.</u> <u>Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil.</u> <u>Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait.</u> <u>When a red rose is crossed with a white rose, all pink roses are produced.</u> 						
Vocabulary Students are Expected to Know F1 generation, F2 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
Vocabulary Students are Expected to Know F1 generation, F2 generation, complete dominance, incomplete dominance, codominance, pedigree, carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
Students are carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis. Expected to Know Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Nor Expected to Know Context/ Phenomena Some example phenomena for HS-LS3-3: • O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. • Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. • Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. • When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*		F_1 generation, F_2 generation, complete dominance, incomplete dominance, codominance, pedigree,				
Expected to Know Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
Know Externosis, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Phenomena Context/ Phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait trevery or magnitude in a population, due to both genetic and environmental factors.*		carrier, fertilization, sex linked traits, gamete, Mendelian genetics, zygote, haploid, diploid, epistasis.				
Science Test-cross, monohybrid, dihybrid, law of independent assortment, law of segregation, pleiotropy, norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele. Students are Not Expected to Know Context/ Phenomena Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	-					
Students are Not Expected to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. • Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. • Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. • When a red rose is crossed with a white rose, all pink roses are produced. This Pertormance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait freuency or magnitude in a population, due to both genetic and environmental factors.*						
Not Expected to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	Vocabulary	norm of reaction, multifactorial, Barr Body, genetic recombination, latent allele.				
to Know Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
Phenomena Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. • Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. • Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. • When a red rose is crossed with a white rose, all pink roses are produced. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	·					
Context/ Some example phenomena for HS-LS3-3: Phenomena O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	ιο κποψ	Dhenomena				
Phenomena • O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. • Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. • Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. • When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*	Context/					
 blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*		 O Positive is the most common blood type. Not all ethnic groups have the same mix of these blood types. Hispanic people, for example, have a relatively high number of O's, while Asian people have a relatively high number of B's. Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having 				
 Hydrangea flowers of the same genetic variety range in color from blue-violet to pink, with the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 the shade and intensity of color depending on the acidity and aluminum content of the soil. Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 Most humans were born with five fingers on each hand, yet the polydactyl trait (having more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 more than five fingers on each hand) is the dominant trait. When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 When a red rose is crossed with a white rose, all pink roses are produced. This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.* 						
This Performance Expectation and associated Evidence Statements support the following Task Demands. Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
Task Demands 1. Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
 Describe data or patterns/relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population, due to both genetic and environmental factors.* 	This Perfo	ormance Expectation and associated Evidence Statements support the following Task Demands.				
trait frequency or magnitude in a population, due to both genetic and environmental factors.*						
2 Make prodictions about the trait frequency or distribution in a perulation due to the process (abconce or						
addition/removal of both genetic and environmental factors.*		edictions about the trait frequency or distribution in a population due to the presence/absence or /removal of both genetic and environmental factors *				

Organize and/or arrange (e.g., using illustrations and/or labels) data, or summarize data to provide evidence for an explanation of the relationship between a trait's occurrence in a population and genetic and environmental factors.
 Analyze, evaluate, estimate, calculate, and/or construct an equation for the statistical mean and/or the standard deviation, to describe the change in the distribution of a trait in a population over time, due to genetic and environmental factors.*
 Identify statistical anomalies or outliers for a trait or a population that are outside the expected range (norm reaction), which may or may not be quickly removed due to genetic and environmental factors.

- · · ·	HS-LS4-1				
Expectation	xpectation Communicate scientific information that common ancestry and biological evolution are support				
by multiple lines of empirical evidence.					
Dimensions	Obtaining, Evaluating, and Communicating Information • Communicate scientific information (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and	 LS4.A: Evidence of Common Ancestry and Diversity Genetic information, like the fossil record, provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. 		
Clarifications and Content Limits	 common ancestry and Examples of evidence and order of appearan Content Limits Students do not need 	could include similarities in DNA sequences, ar ace of structures in embryological development to know: specific genetic mutations, specific ge or (maximum parsimony), formation of ortholo	natomical structures, t. enetic disorders, specific		
Science Vocabulary Students are Expected to Know	evolution, fossil record, gene f	parative anatomy, DNA sequencing, electropho low, genetic drift, mutation, natural selection, escent with modification, homologous structur	nucleotides,		
	4				
Science Vocabulary Students are Not Expected to Know	evolution, analogous, endemic	ogenetic tree, taxonomy, cladistics, vestigial sti c, phylocode, sister taxa, basal taxon, polytomy rphyletic, polyphyletic, maximum parsimony, c gene transfer.	, homoplasy, molecular		
Vocabulary Students are Not Expected to Know	evolution, analogous, endemic systematics, monophyletic, pa paralogous genes, horizontal g	c, phylocode, sister taxa, basal taxon, polytomy rphyletic, polyphyletic, maximum parsimony, c gene transfer. Phenomena	, homoplasy, molecular		
Vocabulary Students are Not Expected	 evolution, analogous, endemic systematics, monophyletic, pa paralogous genes, horizontal g Some example phenomena for Red pandas look a bit about whether red par might include pictures structures. Hermit crabs live in shi hermit crabs either as Crawfish look just like Fossil records of an ex 	c, phylocode, sister taxa, basal taxon, polytomy rphyletic, polyphyletic, maximum parsimony, c gene transfer. Phenomena	ent: Provide evidence Stimulus material and homologous vidence classifying ster or the crawfish? bone in its middle ear.		
Vocabulary Students are Not Expected to Know Context/ Phenomena	 evolution, analogous, endemic systematics, monophyletic, pa paralogous genes, horizontal g Some example phenomena for Red pandas look a bit l about whether red pan might include pictures structures. Hermit crabs live in shi hermit crabs either as Crawfish look just like Fossil records of an ex This structure is also for 	c, phylocode, sister taxa, basal taxon, polytomy rphyletic, polyphyletic, maximum parsimony, c gene transfer. Phenomena r HS-LS4-1: like bears and a bit like raccoons. Task Stateme ndas are better classified as raccoons or bears. , DNA information, embryological information, ells, like oysters, but look like crabs. Provide ev mollusks (like oysters) or arachnids (like crabs) lobster, but smaller. Which came first, the lobs tinct hooved animal show a thickened knob of	n, homoplasy, molecular porthologous genes, ent: Provide evidence Stimulus material and homologous vidence classifying ster or the crawfish? bone in its middle ear. nderwater.		

7816	
1.	Analyze and interpret scientific evidence from multiple scientific/technical sources including text, diagrams, charts, symbols, mathematical representations that support common ancestry among organisms and/or biological evolution.*
2.	Evaluate the validity/relevance/reliability of scientific evidence about biological evolution.
3.	Identify relationships or patterns in scientific evidence at macroscopic and/or microscopic scales.*
4.	Describe the specific evidence needed to support an explanation about how organisms share a common ancestor.
5.	Synthesize an explanation that incorporates the scientific evidence from multiple sources.

7816 E	DUCATION					
Performanc	e HS-LS4-2					
Expectation	Construct an explanation based on evidence that the process of evolution primarily results from four					
	factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of					
	individuals in a species due	individuals in a species due to mutation and sexual reproduction, (3) competition for limited				
	resources, and (4) the prolif	resources, and (4) the proliferation of those organisms that are better able to survive and reproduce				
	in the environment.					
Dimensions	Constructing Explanations	LS4.B: Natural Selection	Cause and Effect			
	and Designing Solutions	• Natural selection occurs only if there is both 1)	Empirical			
	Construct an explanation	variation in the genetic information between	evidence is			
	based on valid and	organisms in a population and 2) variation in the	required to			
	reliable evidence	expression of that genetic information—that is,	differentiate			
	obtained from a variety	trait variation—that leads to differences in	between cause			
	of sources (including	performance among individuals.	and correlation			
	students' own		and to make			
	investigations, models,	LS4.C: Adaptation	claims about			
	theories, simulations,	• Evolution is a consequence of the interaction of	specific causes			
	and peer review) and the	four factors: 1) the potential for a species to	and effects.			
	assumption that theories	increase in number, 2) the genetic variation of				
	and laws that describe	individuals in a species due to mutation and				
	the natural world	sexual reproduction, 3) competition for an				
	operate today as they	environment's limited supply of the resources				
	did in the past and will	that individuals need in order to survive and				
	continue to do so in the	reproduce, and 4) the ensuing proliferation of				
	future.	those organisms that are better able to survive				
		and reproduce in that environment.				
Clarificatior	c Clarification Statements	Clarification Statements				
and Conten		a ovidence to explain the influence each of the four fa	ctors has an tha			
Limits	P	• Emphasis is on using evidence to explain the influence each of the four factors has on the number of organisms, behaviors, morphology, or physiology in terms of ability to compete				
Linnes		number of organisms, behaviors, morphology, or physiology in terms of ability to compete				
	 for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs 					
	 Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning. 					
	and proportional reasoning.					
	Content Limits					
	• Assessment does not include other mechanisms of evolution, such as genetic drift, gene					
	flow through migration, and co-evolution.					
	Students do not need to know: Hardy-Weinberg equation.					
Science	Beneficial change, detrimental change, distribution, emergence, gene frequency, biotic, abiotic,					
Vocabulary	U	iferation, bottleneck effect, island effect, geographic i				
Students Ar	effect, recombination.					
Expected to						
Know						
Science	Hardy-Weinberg equilibriun	n, biotechnology, relative fitness, directional selection	, disruptive			
Vocabulary		on, heterozygote advantage, frequency-dependent sel	•			
, Students Ar	barriers, postzygotic barriers.					
Not Expecte	,1 ,0					
to Know						
		Phenomena				
Context/	Some example phenomena					
Phenomena		ed to Australia in the 1930s have evolved to be bigge	r, more active, and			
	have longer legs.					

DEPARTMENT of EDUCATION		INDIANA	
EDUCATION	DIANA	DEPARTMENT of	
	/	EDUCATION	

1816	
	 In the late 1990s, a resurgence of bedbug outbreaks began. Bedbugs are now much harder to kill with thick, waxy exoskeletons, faster metabolism, and mutations to block certain insecticides. Skinks living in cooler regions give live birth, while those living in warm coastal areas lay eggs. A butterfly parasite found on the Samoan Islands destroyed the male embryos of blue moon butterflies, decreasing the male population to only 1%. After a year, males had rebounded to 40% of the population.
	This Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Describe the cause-and-effect relationship between: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment, and change in species over time. This may include indicating directions of causality in a model or completing cause-and-effect chains.
2.	a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment in causing the phenomenon. The evidence may be evidence generated by the students in the simulation or selected from provided data.
5.	environmental conditions on the population.
4.	Use evidence to construct an explanation of the changes in species over time as a result of (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.*(SEP/DCI/CCC)
5.	Identify and justify additional pieces of evidence that would help distinguish between competing hypotheses for the changes in species over time.

Performance	HS-LS4-3			
Expectation	Apply concepts of statistics and probability to support explanations that organisms with an			
	advantageous heritable trait tend to increase in proportion to organisms lacking this trait.			
Dimensions	Analyzing and			
	Interpreting Data	 Different 		
	 Apply concepts 	in the genetic information between organisms in a	patterns may	
	of statistics and	population and (2) variation in the expression of that	be observed at	
	probability	genetic information—that is, trait variation —that leads	each of the	
	(including	to differences in performance among individuals.	scales at which	
	determining	• The traits that positively affect survival are more likely to	a system is	
	function fits to	be reproduced, and thus are more common in the	studied and can	
	data, slope,	population.	provide	
	intercept, and		evidence for	
	correlation	LS4.C: Adaptation	causality in	
	coefficient for	 Natural selection leads to adaptation that is, to a 	explanations of	
	linear fits) to	population dominated by organisms that are	phenomena.	
	scientific and	anatomically, behaviorally, and physiologically well		
	engineering	suited to survive and reproduce in a specific		
	questions and	environment. The differential survival and reproduction		
	problems, using	of organisms in a population that have an advantageous		
	digital tools	heritable trait lead to an increase in the proportion of		
	when feasible.	individuals in future generations that have the trait and		
		to a decrease in the proportion of individuals that do		
		not.		
		 Adaptation also means that the distribution of traits in a menulation and the second traits and the second s		
		population can change when conditions change.		
Clarifications	Clarification Statem	onts		
and Content			these shifts as	
Limits	 Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations. 			
	evidence to support explanations.			
	Content Limits			
		is limited to basic statistical and graphical analysis. Assessmer	nt does not include	
		ncy calculations.		
	 <u>Students do not need to know</u>: sexual selection, kin selection, artificial selection, freq dependent selection. 		ection, frequency-	
Science	Fitness, gene, allele,	directional selection, diversifying (disruptional selection), stal	oilizing selection,	
Vocabulary	standard deviation,	vestigial structure.		
Students are				
Expected to				
Know				
Science		oidy, intragenomic conflict, sexual dimorphism, balanced poly	morphism,	
Vocabulary	apostatic selection.			
Students are				
Not Expected				
to Know				
	· - · ·	Phenomena		
Context/	Example phenomena			
Phenomena		rogs (Hyla versicolor) are abundant in the wetlands of Florida		
		yla cinerea) are observed. In the wooded areas of New York, o	only Gray	
	Treefrogs ar	e observed.		

	 In the Amazon rainforest, a kapok trees (<i>Ceiba pentandra</i>) measures 200 feet in height, approximately 30 feet above the rest of the canopy. A school of mummichog fish (<i>Fundulus heteroclitus</i>) is found in the 6°C waters of the Chesapeake Bay. These fish are normally found in warmer climates, like the 21°C waters of Kings Bay, Georgia. A population of the fish <i>Poecilia mexicana</i> lives in the murky hydrogen-sulfide (H2S)-rich waters in southern Mexico that would kill the same species of fish living in clear freshwater only 10 km away.
	his Performance Expectation and associated Evidence Statements support the following Task Demands.
	Task Demands
1.	Describe or identify patterns or relationships in given data that support (or refute) an explanation for the change in trait frequency or magnitude in a population due to natural selection/selection pressure(s).*
2.	Make predictions about the trait frequency or distribution in a population due to the presence/absence or addition/removal of selection pressure(s) in the environment (including Hardy-Weinberg-based predictions about changes in allele/trait frequency/magnitude NOT based on calculations).*
3.	Organize and/or arrange (e.g., using illustrations and/or labels) data, or summarize data to provide evidence for an explanation of the effect of selection on a population.
4.	Analyze, evaluate, estimate, calculate, and/or construct an equation to describe the change in the distributio of a trait in a population over time due to selection pressure(s).
5.	Identify statistical anomalies or outliers for a trait or a population that are outside the expected range (for example, Joe DiMaggio's hitting streak, tossing 10 consecutive heads on a fair coin, etc.) which may or may not be quickly removed due to selection pressure.
6.	Use statistical analysis to calculate changes in traits in a population over time to provide evidence for an explanation of the relationship between a trait's occurrence and its prevalence in the population at different points in time.
7.	Identify explanations for a change in a traits frequency and/or distribution in a population over time that car

Evportation	HS-LS4-4			
Expectation	Construct an explanation based on evidence for how natural selection leads to adaptation of populations.			
Dimensions	 Constructing Explanations and Designing Solutions Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. 	 LS4.C: Adaptation Natural selection leads to adaptation; that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. The differential survival and reproduction of organisms in a population that has an advantageous, heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. 	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	
Clarifications and Content Limits	 Clarification Statement Emphasis is on using data to provide evidence for how specific biotic and abiotic differences is ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light geographic barriers, or evolution of other organisms) contribute to a change in gene frequen over time, leading to adaptation of populations. Content Limits Assessment does not include the Hardy-Weinberg equation. 			
Science Vocabulary Students Are Expected to Know	Beneficial change, detrimental change, distribution, emergence, gene frequency, gene, biotic, abiotic advantageous, diverge, proliferation, sexual reproduction, bottleneck effect, island effect, geographic isolation, gene flow, genetic drift, founder effect.			
Science Vocabulary Students Are Not Expected to Know		chnology, relative fitness, directional selection rozygote advantage, frequency-dependent s		
		Phenomena		
Context/ Phenomena	 the season. A new antibiotic is discover treated by the antibiotic no A small population of Italiar neighboring island. After se populated the island, and the search of th		es that were previously atroduced to a thrived and heavily	
Phenomena	 Following a four-year droug the season. A new antibiotic is discover treated by the antibiotic no A small population of Italiar neighboring island. After se populated the island, and th Following climatic changes, spring. 	S4-4: ght in California, field mustard plants are fou ed. Within ten years, many bacterial disease longer respond to treatment (e.g., MRSA). n wall lizards that feed mainly on insects is ir veral decades, the lizards are found to have heir diet is now mostly vegetation.	es that were previously ntroduced to a thrived and heavily ggs earlier in the	

1.	Organize or summarize the given data or evidence of population characteristics, environmental characteristics, and/or the relationships between them.
2.	Generate or construct graphs or tables of data to highlight patterns within the given data.
3.	Describe the cause and effect relationship between natural selection and adaptation using evidence. This may include assembling descriptions from illustrations or lists of options and distractors, or indicating directions of causality in a model or completing cause and effect chains.
4.	Describe, identify, or select evidence supporting or contradicting a claim about the role of adaptation in causing the phenomenon. The evidence may be generated by the students in a simulation.
5.	Given an appropriate explanation for a phenomenon, predict the effects of subsequent changes in environmental conditions on the population.
6.	Use evidence to construct an explanation of the adaptation of a species through natural selection. Evidence can be described, identified, or selected/assembled from lists with distractors. Explanations can be written, assembled by manipulating the components of a flow chart or model, or assembled from lists of options that include distractors. Options and distractors should not be single words or short phrases; rather, they should be complete thoughts that, when correctly emplaced within a sentence or paragraph, work to provide evidence of a coherent train of thought.*
7.	Identify and justify additional pieces of evidence that would help distinguish among competing hypotheses.

EDUCAT	1		
Performance	HS-LS4-5		
Expectation		upporting claims that changes in environmental conc	
		of individuals of some species, (2) the emergence of	f new species over time,
	and (3) the extinction of		
Dimensions	Engaging in Argument from Evidence • Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments.	 LS4.C: Adaptation Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes extinction—of some species. Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost. 	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
Clarifications and Content Limits	 Clarification Statements Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species. 		
<u>Ceienee</u>		need to know: Hardy Weinberg Equation.	
Science Vocabulary Students Are Expected to Know	Beneficial change, detrimental change, distribution, emergence, gene frequency, biotic, abiotic, advantageous, diverge, mutation, proliferation, bottleneck effect, island effect, geographic isolation, founder effect, recombination, microevolution, gene flow, speciation, hybrid		
Science Vocabulary Students Are Not Expected	Biotechnology, relative fitness, directional selection, disruptive selection, stabilizing selection, heterozygote advantage, frequency dependent selection, prezygotic barriers, postzygotic barriers, average heterozygosity, cline, sexual selection, sexual dimorphism, intrasexual selection, intersexual selection, neutral variation, balancing selection		
to Know		-1	
a		Phenomena	
Context/ Phenomena	 thrives there (re The population of 1800s to fewer t In 1681 the dod (result 3). 	the Hudson River wiped out many fish species, but t sults 1 and 3). of Greater Prairie Chickens in Illinois decreased from han 50 birds in 1993 (result 3). o bird went extinct due to hunting and introduction nge-Spotted Filefish went extinct in response to war	millions of birds in the of invasive species
This Perfe	ormance Expectation and	associated Evidence Statements support the followin Task Demands	ng Task Demands.
environ	ment on the (1) increases	ify, describe, or construct a claim regarding the effect in the number of individuals of some species, (2) the	_
species	over time, and (3) the exti	neuon of other species.	

Sort inferences about the effect of changes to the environment on (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species into those that are supported by the data, contradicted by the data, outliers in the data, or neither, or some similar classification.*
Identify patterns of information/evidence in the data that support correlative/causative inferences about the
effect of changes to the environment on the (1) increases in the number of individuals of some species, (2)
the emergence of new species over time, and (3) the extinction of other species.*
Construct an argument and/or explanation using scientific reasoning drawing on credible evidence to explain
the effect of changes to the environment on the (1) increases in the number of individuals of some species,
(2) the emergence of new species over time, and (3) the extinction of other species.
Identify additional evidence that would help clarify, support, or contradict a claim or causal argument
regarding the effect of changes to the environment on the (1) increases in the number of individuals of some
species, (2) the emergence of new species over time, and (3) the extinction of other species.
Identify, summarize, or organize given data or other information to support or refute a claim regarding the
effect of changes to the environment on (1) increases in the number of individuals of some species, (2) the
emergence of new species over time, and (3) the extinction of other species.*

Performance	HS-LS4-6			
Expectation	Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on			
	biodiversity.			
Dimensions	Using	LS4.C: Adaptation	Cause and Effect	
	Mathematics and	• Changes in the physical environment, whether naturally	 Empirical 	
	Computational	occurring or human induced, have thus contributed to the	evidence is	
	Thinking	expansion of some species, the emergence of new distinct	required to	
	• Create or revise	species as populations diverge under different conditions,	differentiate	
	a simulation of	and the decline—and sometimes the extinction—of some	between cause	
	a phenomenon,	species.	and correlation	
	designed		and make claims	
	device, process,	LS4.D: Biodiversity and Humans	about specific	
	or system.	• Humans depend on the living world for the resources and	causes and	
		other benefits provided by biodiversity. But human	effects.	
		activity is also having adverse impacts on biodiversity		
		through overpopulation, overexploitation, habitat		
		destruction, pollution, introduction of invasive species,		
		and climate change. Thus, sustaining biodiversity so that		
		ecosystem functioning and productivity are maintained is		
		essential to supporting and enhancing life on Earth.		
		Sustaining biodiversity also aids humanity by preserving		
		landscapes of recreational or inspirational value.		
		ETS1.B: Developing Possible Solutions		
		 When evaluating solutions, it is important to take into 		
		account a range of constraints, including cost, safety,		
		reliability, and aesthetics, and to consider social, cultural,		
		and environmental impacts (secondary).		
		Both physical models and computers can be used in		
		various ways to aid in the engineering design process.		
		Computers are useful for a variety of purposes, such as		
		running simulations to test different ways of solving a		
		problem or to see which one is most efficient or		
		, economical, and in making a persuasive presentation to a		
		client about how a given design will meet his or her		
		needs (secondary).		
Clarifications	Clarification Staten	aonts		
and Content			atened or	
Limits	 Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species. 			
	 The simulation should model the effect of human activity and provide quantitative information about the effect of solutions on threatened or endangered species or to genetic 			
	variation within a species.			
	Content Limits			
	• <u>Students do not need to know</u> : Calculus/advanced mathematics (e.g., exponential growth and			
	decay)			
Science	Anthropogenic, effi	cient, overexploitation, urbanization, acidification, deforestatio	on, concentration,	
Vocabulary	radiation, greenhouse gas, surface runoff, civilization, consumption, mass wasting, urban			
Students Are	development, per-capita, degradation, pollutant, best practice, cost-benefit, extract, regulation			
Expected to				
Know				

Science	Oligotrophic and eutrophic lakes/eutrophication, littoral zone, exponential population growth,			
Vocabulary	logistic population growth, ecological footprint, ecosystem services, extinction vortex, minimum			
Students Are	viable population, effective population size, critical load.			
Not Expected				
to Know				
	Phenomena			
Context/	Some example phenomena for HS-LS4-6:			
Phenomena	 The habitat of the Florida Panther is only 5% of its former range, causing the species to become endangered. 			
	• The café marron plant is critically endangered due to massive habitat destruction on the Island of Rodrigues in the Indian Ocean, as a result of deforestation for agricultural use.			
	• The population of Atlantic Bluefin Tuna has declined by more than 80% since 1970 due to overfishing.			
	• In the past 120 years, about eighty percent of suitable orangutan habitat in Indonesia has			
	been lost from expansion of oil palm plantations. At the same time, the estimated number of			
	orangutans on Borneo, an island in Indonesia, has declined from about 230,000 to about 54,000.			
This Perf	ormance Expectation and associated Evidence Statements support the following Task Demands.			
	Task Demands			
1. Use data on biodi	a to calculate or estimate the effect of a solution on mitigating the adverse impacts of human activity versity.			
	e, graph, or identify features or data that can be used to determine how effective a solution is for ng the adverse impacts of human activity on biodiversity.			
	e or infer the properties or relationships that lead to mitigation of the adverse impacts of human on biodiversity, based on data.			
	the data needed for an inference about the impacts of human activity on biodiversity. This can include out the relevant data from the given information.			
5. Using giv	ven information, select or identify the criteria against which the solution should be judged.			
6. Using a store to the so	simulator, test a proposed solution and evaluate the outcomes; may include proposing modifications olution.*			
	within DE the student would use a simulator. Therefore, this tool, demond would always be used			

*In order to satisfy this PE, the student <u>must</u> use a simulator. Therefore, this task demand must always be used.