Grade 5 Mathematics

This document provides correlations between the 2023 Indiana Academic Standards and the 2020 Indiana Academic Standards for easy reference.

The 2023 Indiana Academic Standards resulted from the standards streamlining process required by Indiana Code 20-31-3-1(c-d) and were adopted by the Indiana State Board of Education in June 2023. Standards designated as essential (E) are shaded in gray and all standards were renumbered to avoid gaps in sequencing.

2023 Indiana Academic Standard		2020 Indiana Academic Standard	
Domain: Number Sense		Domain: Number Sense	
Number	Text	Number	Text
5.NS. 1	Use a number line to compare and order fractions, mixed numbers, and decimals to thousandths. Write the results using > , $=$, and < symbols. (E)	5.NS. 1	Use a number line to compare and order fractions, mixed numbers, and decimals to thousandths. Write the results using >, $=$, and < symbols.
5.NS. 2	Explain different interpretations of fractions, including as parts of a whole, parts of a set, and division of whole numbers by whole numbers.	5.NS. 2	Explain different interpretations of fractions, including: as parts of a whole, parts of a set, and division of whole numbers by whole numbers.
5.NS. 3	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10 .	5.NS. 4	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10 .
5.NS. 4	Model percents as parts of 100 using pictures or diagrams and identify the equivalent fraction.	5.NS. 6	Understand, interpret, and model percents as part of a hundred (e.g., by using pictures, diagrams, and other visual models).

$\left.\begin{array}{|c|c|l|l|}\hline & & & \\ \hline\end{array} \begin{array}{l}\text { Recognize the relationship that in a multi-digit } \\ \text { number, a digit in one place represents 10 times as } \\ \text { much as it represents in the place to its right, and } \\ \text { inversely, a digit in one place represents } 1 / 10 \text { of } \\ \text { what it represents in the place to its left. }\end{array}\right]$

	Solve real-world problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable. (E)	5.AT.2	Solve real-world problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable.
5.CA.5	Use visual fraction models to multiply a fraction by a fraction or a whole number. (E)	5.C.5	Use visual fraction models and numbers to multiply a fraction by a fraction or a whole number.
5.CA.6	Use visual fraction models and numbers to divide a fraction by a fraction or a whole number. (E)	5.C.7	Use visual fraction models and numbers to divide a unit fraction by a non-zero whole number and to divide a whole number by a unit fraction.
5.CA.7	Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem). (E)	5.AT.3	Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem).
5.CA.8	Solve real-world problems involving division of fractions and mixed numbers (e.g., by using visual fraction models and equations to represent the problem). (E)	5.AT.4	Solve real-world problems involving division of unit fractions by non-zero whole numbers, and division of whole numbers by unit fractions (e.g., by using visual fraction models and equations to represent
the problem).			

	Solve real-world problems involving addition, subtraction, multiplication, and division with decimals to hundredths including problems that involve money in decimal notation (e.g., by using equations, models or drawings, and strategies based on place value or properties of operations to represent the problem). (E)	5.AT.5	Solve real-world problems involving addition, subtraction, multiplication, and division with decimals to hundredths, including problems that involve money in decimal notation (e.g., by using equations, models or drawings and strategies based on place value or properties of operations to represent the problem).
5.CA.11	Represent real-world problems and equations by graphing ordered pairs in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	5.AT.7	Represent real-world problems and equations by graphing ordered pairs in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
	5.C.1	Multiply multi-digit whole numbers fluently using a standard algorithmic approach.	
	5.C.3	Compare the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	
	5.C.6	Explain why multiplying a positive number by a fraction greater than one results in a product greater than the given number. Explain why multiplying a positive number by a fraction less than 1 results in a product smaller than the given number. Relate the principle of fraction equivalence, a/b = (n xa)/(n x b), to the effect of multiplying a/b by one.	
	5.C.9	Evaluate expressions with parentheses or brackets involving whole numbers using the commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property.	

2023 Indiana Academic Standard		2020 Indiana Academic Standard	
Domain: Measurement		Domain: Measurement	
Number	Text	Number	Text
5.M. 1	Convert among different-sized standard measurement units within a given measurement system and use these conversions in solving multi-step, real-world problems.	5.M. 1	Convert among different-sized standard measurement units within a given measurement system, and use these conversions in solving multi-step real-world problems.
5.M. 2	Find the area of a rectangle with fractional side lengths by modeling with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	5.M. 2	Find the area of a rectangle with fractional side lengths by modeling with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
5.M. 3	Develop and use formulas for the area of triangles, parallelograms, and trapezoids. Solve real-world and other mathematical problems that involve perimeter and area of triangles, parallelograms, and trapezoids, using appropriate units for measures. (E)	5.M. 3	Develop and use formulas for the area of triangles, parallelograms and trapezoids. Solve real-world and other mathematical problems that involve perimeter and area of triangles, parallelograms and trapezoids, using appropriate units for measures.
5.M. 4	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base. (E)	5.M. 4	Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base.

5.M. 5	Apply the formulas $V=l \times w \times h$ and $V=B \times h$ for right rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths to solve real-world problems and other mathematical problems. (E)	5.M. 5	Apply the formulas $V=I \times w \times h$ and $V=B \times h$ for right rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths to solve real-world problems and other mathematical problems.
		5.M. 6	Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems and other mathematical problems.
	2023 Indiana Academic Standard	2020 Indiana Academic Standard	
	Domain: Data Analysis	Domain: Data Analysis	
Number	Text	Number	Text
5.DA. 1	Formulate questions that can be addressed with categorical and numerical data and make predictions about the data. Collect, organize, and graph data from observations, surveys, and experiments using line plots with fractional intervals, histograms, or other graphical representations that appropriately represent the data set. (E)	5.DS. 1	Formulate questions that can be addressed with data and make predictions about the data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, bar graphs, and line graphs. Recognize the differences in representing categorical and numerical data.
5.DA. 2	Calculate measures of central tendency (mean, median, and mode) to describe a data set. Analyze data sets to determine which measure of central tendency appropriately describes the distribution of data. (E)	5.DS. 2	Understand and use measures of center (mean and median) and frequency (mode), to describe a data set.

