Algebra I

This document provides correlations between the 2023 Indiana Academic Standards and the 2020 Indiana Academic Standards for easy reference.

The 2023 Indiana Academic Standards resulted from the standards streamlining process required by Indiana Code 20-31-3-1 (c-d) and were adopted by the Indiana State Board of Education in June 2023. Standards designated as essential (E) are shaded in gray and all standards were renumbered to avoid gaps in sequencing.

2023 Indiana Academic Standard		2020 Indiana Academic Standard	
Domain: Data Analysis and Statistics		Domain: Data Analysis and Statistics	
Number	Text	Number	Text
AI.DS. 1	Interpret statistics as a process for making inferences about a population based on a random sample from that population. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. (E)	AI.DS. 1	Understand statistics as a process for making inferences about a population based on a random sample from that population. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
AI.DS. 2	Understand that statistics and data are non-neutral and designed to serve a particular interest. Analyze the possibilities for whose interest might be served and how the representations might be misleading.	AI.DS. 2	Understand that statistics and data are non-neutral and designed to serve a particular interest. Analyze the possibilities for whose interest might be served and how the representations might be misleading.
AI.DS. 3	Use technology to find a linear function that models a relationship between two quantitative variables to make predictions and interpret the slope and y-intercept. Using technology, compute and interpret	AI.DS. 3	Use technology to find a linear function that models a relationship between two quantitative variables to make predictions, and interpret the slope and y-intercept. Using technology, compute and interpret

	the correlation coefficient. (E)		the correlation coefficient.
AI.DS.4	Summarize bivariate categorical data in two-way frequency tables. Interpret relative frequencies in the contexts of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in data.	AI.DS.5	Summarize bivariate categorical data in two-way frequency tables. Interpret relative frequencies in the contexts of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in data.
	2023 Indiana Academic Standard	AI.DS.4	Describe the differences between correlation and causation.
Domain: Number Systems, Expressions, and Functions	Domain: Number Systems and Expressions/Functions		

2023 Indiana Academic Standard Domain: Linear Equations, Inequalities, and Functions Systems of Linear Equations and Inequalities		2020 Indiana Academic Standard	
Number	Text	Nomain: Linear Equations, Inequalities, and Functions	

	equations. (E)		equations.
	Represent real-world problems using linear inequalities in two variables and solve such problems; interpret the solution set, and determine whether it is reasonable. Graph the solutions to a linear inequality in two variables as a half-plane. (E)	AI.L.6	Represent real-world problems using linear inequalities in two variables and solve such problems; interpret the solution set and determine whether it is reasonable. Graph the solutions to a linear inequality in two variables as a half-plane.
		AI.L.2	Solve compound linear inequalities in one variable, and represent and interpret the solution on a number line. Write a compound linear inequality given its number line representation.
	AI.L.5	Translate among equivalent forms of equations for linear functions, including slope-intercept, point-slope, and standard. Recognize that different forms reveal more or less information about a given situation.	

2023 Indiana Academic Standard		2020 Indiana Academic Standard	
Domain: Systems of Linear Equations and Inequalities	Domain: Systems of Linear Equations and Inequalities		
Number	Text	Number	Text

AI.SEI.1	Represent real-world problems using linear inequalities in two variables and solve such problems; interpret the solution set, and determine whether it is reasonable. Graph the solutions to a linear inequality in two variables as a half-plane. (E)	Al.L.6	Represent real-world problems using linear inequalities in two variables and solve such problems; interpret the solution set and determine whether it is reasonable. Graph the solutions to a linear inequality in two variables as a half-plane.
AI.SEI.2	Write and graph a system of two linear equations in two variables that represents a real-world problem and solve the problem graphically and algebraically with and without technology. Interpret the solution, and determine whether the solution is reasonable. (E)	AI.SEI.3	Write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.
	Represent real-world problems using a system of two linear inequalities in two variables. Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes with and without technology. Interpret the solution set, and determine whether it is reasonable.	AI.SEI.4	Represent real-world problems using a system of two linear inequalities in two variables. Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes with and without technology. Interpret the solution set and determine whether it is reasonable.
		AI.SEI.1	Understand the relationship between a solution of a system of two linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are non-integer numbers.
	Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with		

$\left.\begin{array}{|c|c|l|l|}\hline & & & \\ \hline\end{array} \begin{array}{l}\text { no solution and infinitely many solutions. Solve } \\ \text { systems of two linear equations algebraically using } \\ \text { elimination and substitution methods. }\end{array}\right]$

AI.QE.4	Represent real-world problems using quadratic equations in one or two variables and solve such problems with technology. Interpret the solution(s), and determine whether they are reasonable. (E)	AI.QE.5	Represent real-world problems using quadratic equations in one or two variables and solve such problems with technology. Interpret the solution(s) and determine whether they are reasonable.
AI.QE.5	Graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts.	AI.QE.6	Graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts.
AI.QE.6	Describe the relationships among a solution of a quadratic equation, a zero of the function, an x-intercept of the graph, and the factors of the expression. Explain that every quadratic has two complex solutions, which may or may not be real solutions.	AI.QE.7	Describe the relationships among a solution of a quadratic equation, a zero of the function, an x-intercept of the graph, and the factors of the expression. Explain that every quadratic has two complex solutions, which may or may not be real solutions.
	AI.QE.3	Use area models to develop the concept of completing the square to solve quadratic equations. Explore the relationship between completing the square and the quadratic formula.	

