LOMR Modeling Requirements

Breaking Down the Hydraulic Analysis

Paul Brayton Hydraulic Engineer Division of Water

Introduction

Indiana DNR LOMR Review Partners Team

Danielle Bowman – Hydraulic Engineer
Paul Brayton - Hydraulic Engineer
Aung Htut – Hydraulic Engineer
Morgan Lucas – Hydraulic Engineer

- Adam Bales Program Manager
- Deidre Hansen Project Manager

Introduction

- In 2019, FEMA opened the LOMR Review Partners Program to new partners.
- In 2022, DNR began processing LOMRs and CLOMRs as part of this program.

- We do not review:
 - LOMAs/MT-1 Requests
 - MT-2 Requests with levees, floodwalls, or multi-state cases.
 - We still must give State Concurrence!

Inventory

MT-2 Form 2

B. HYDRAULICS										
Reach to be Revised										
	Description	Cross	Section	Water-Surface	Elevation (ft.)					
			Proposed/Revised							
Downstream Limit*										
Upstream Limit*										
*Proposed/Revised elevations	must tie-into the Effe	ctive elevations within	n 0.5 foot at the down	stream and upstrear	m limits of revision.					
2. Hydraulic Method/Model	Used:									
Steady State	Unsteady State	One-Dime	ensional T	wo-Dimentional						
Pre-Submittal Review of I	Hydraulic Models*									
DHS-FEMA has developed tw	o review programs, C	HECK-2 and CHECH	K-RAS, to aid in the re	eview of HEC-2 and	HEC-RAS hydraulic					
models, respectively. We rec	ommend that you revie	w your HEC-2 and I	HEC-RAS models with	CHECK-2 and CHE	ECK-RAS.					
4. HEC-RAS File Description	n**:									
Models Submitted	Natura	al Run	Floody	vay Run	Datum					
Duplicate Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:						
Corrected Effective Model*	File Name:	Plan Name:	File Name:	Plan Name:						
Existing or Pre-Project Conditions Model	File Name:	Plan Name:	File Name: Plan Name:							
Revised or Post-Project Conditions Model	File Name:	Plan Name:	File Name:	Plan Name:						
Other - (attach description)	File Name:	Plan Name:	File Name:	Plan Name:						
* For details, refer to the corre **See instructions for informat			Digital Models	Submitted? (Require	ed)					

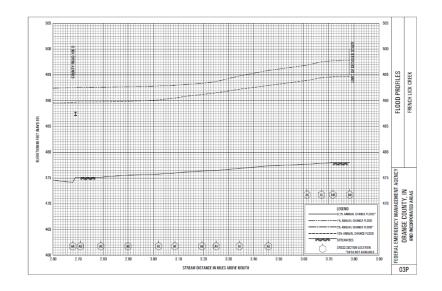
Inventory

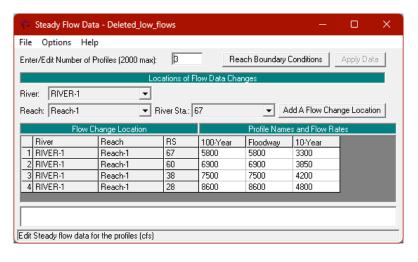
Acceptable Software

- HEC-RAS v3.1.1*
- HEC-RAS v4.1.0
- HEC-RAS v5
- HEC-RAS v6.2.1*
- Check-RAS
- RAS-Plot v3.0
- HY-8 v4.1 and newer
- Others

No Longer Accepted

- HEC-2
- ICPR
- FLOW2D
- WSP2
- Others





Inventory

Effective Recurrence Intervals

	Table 10. Summ	ary of Disc	harges		
Flooding Source And Location	Drainage Area (Square Miles)	10% Annual <u>Chance</u>	Peak Disch 2% Annual <u>Chance</u>	arge (CFS) 1% Annual <u>Chance</u>	0.2% Annual <u>Chance</u>
French Lick Creek					
1700' Downstream of SR 53	35	4,800	*	8,600	*
700' Downstream of College St	29	4,200	*	7,500	*
2700' Upstream of CR 100S	25.5	3,850	*	6,900	*
1.1 miles Upstream of CR 100S	f 20	3,300	*	5,800	*
Lick Creek					
1300' Downstream of Willowcreek Dr		4600	*	8700	*
Willowcreek Dr	22.5	4400	*	8200	*
1.2 miles Upstream of Gospel St	f 20	4200	*	7800	*
2300' Upstream of Belle Ford Rd	13	3400	*	6300	*
*Discharge was not ca	alculated				

FIS Summary of Discharges Table

FIS Flood Profile

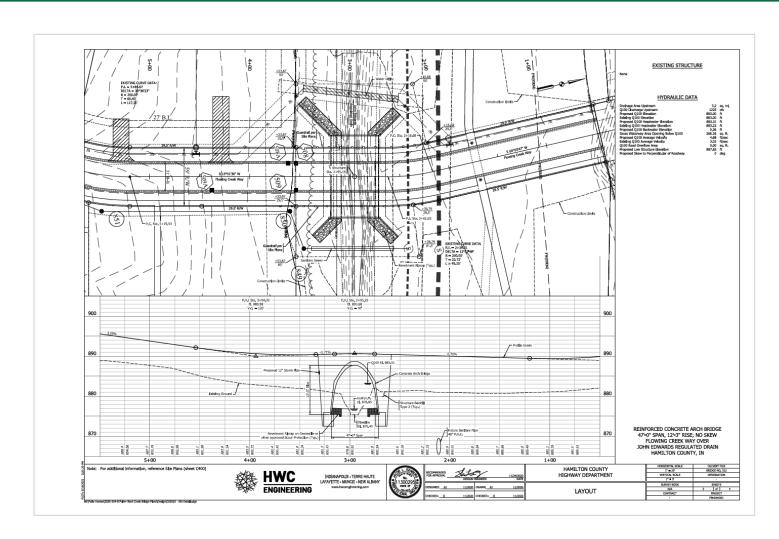
Effective Model Flow File

Inventory

Riverine Structures

- General
 - Proposed/New
 - Not in Effective Model
- Channelization
 - Reason for Analysis
 - o PLANS
 - Sediment transport
- Bridge/Culvert
 - Reason for Analysis
 - o PLANS
 - Input Parameters

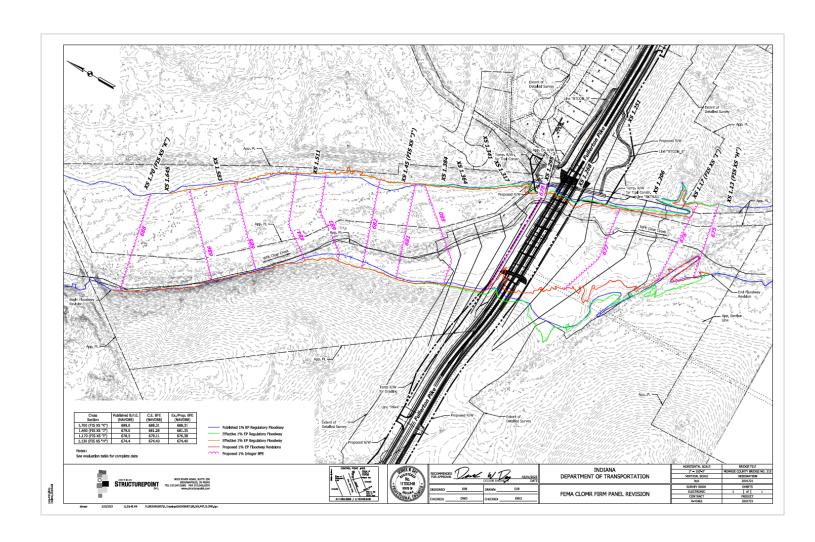
	RIVERINE STRUCTURES FORM (FORM 3) OMB Control Number: 1680-001 Expiration: 1/31/202
	PAPERWORK BURDEN DISCLOSURE NOTICE
You a accur Home (1660	c reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing citions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form are not required to respond to this collection of information unless it displays a valid OME control number. Send comments regarding the acy of the burden estimate and any suggestions for reducing this burden to information Collections Management, Department or advanced to the control number. Peaperwork Reduction Project Schmidt Security, Submission of the form is required to loaten or retain benefits under the National Flood insurance Program. Please do not sen completed survey to the above address. **PRINCEY ACT STATEMENT**
AUTI	HORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public
PRIN Natio ROU as an Natio DISC preve	39-234. CIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to nat Flood Insurance Program (NFIP): Flood Insurance Rate Maps (FIRM). THIE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974 mended. This includes using this information as necessary and authorized by the routine uses published in DHSFEMANFIPILOMA- rate of the program (NFIP): Letter of Map Amendment (LOMA) February 15, 2005, 71 FR 7890. SIMPLE INSURATE PROGRAM (PROPERTY OF THE PROPERTY OF THE PR
	: Fill out one form for each flooding source studied
	A. GENERAL
	plete the appropriate section(s) for each Structure listed below: Channelization: complete Section B Bridge/Culvert: complete Section C Dam: complete Section C Dam: complete Section E Complete Section E Complete Section E Complete Section E
	ription Of Modeled Structure
1.	Name of Structure:
	Type (check one): Channelization BridgelCulvert Levee/Floodwall Dam Location of Structure:
	Downstream Limit/Cross Section:
	Upstream Limit/Cross Section:
2.	Name of Structure:
	Type (check one): Channelization BridgelCulvert Levee/Floodwall Dam
	Location of Structure:
	Downstream Limit/Cross Section:
	Upstream Limit/Cross Section:
3.	Name of Structure:
	Type (check one): Channelization Bridge/Culvert Levee/Floodwall Dam
	Location of Structure:
	Downstream Limit/Cross Section:
	Upstream Limit/Cross Section:


	B CHA	ANNELIZATION
Floor	ding Source:	MINELEZATION
	e of Structure:	
1.	Hydraulic Considerations	
	The channel was designated to carry (cfs) and	/or the year flood
	If there is the potential for a hydraulic jump at the following hydraulic jump is controlled without affecting the stability of lile to channel Outlet to channel At Drop	tical flow
	Other locations (specify):	
2.	Channel Design Plans	
	Attach the plans of the channelization certified by a register	red professional engineer, as described in the instructions.
3.	Accessory Structures	
	The channelization includes (check one): Levees [Attach Section E (Levee/Floodwall)] Transitions in cross sectional geometry Other (Describe):	rop structures
4.	Sediment Transport Considerations	
	Are the hydraulics of the channel affected by sediment tran	nsport? Yes No
		If No, then attach your explanation for why sediment transport was
		DGE/CULVERT
Floor	ding Source:	
Nam	e of Structure:	
4	This revision reflects (check one):	
1.	This revision reflects (check one):	
1.	Bridge/Culvert not modeled in the FIS	
1.	Bridge/Culvert not modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS	in the FIS
•	■ Bridge/Culvert not modeled in the FIS ■ Modified Bridge/Culvert previously modeled in the FIS ■ Revised analysis of Bridge/Culvert previously modeled	
1.	□ Bridge/Culvert not modeled in the FIS □ Modified Bridge/Culvert previously modeled in the FIS □ Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2	with special bridge routine, WSPRO, HY8):
•	Bridge/Culvert not modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analysis for the flooding source, ji	with special bridge routine, WSPRO, HY8):
•	☐ Bridge/Culvert not modeled in the FIS ☐ Modified Bridge/Culvert previously modeled in the FIS ☐ Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analysis for the flooding source, ji analyze the structures. Attach justification.	with special bridge routine, WSPRO, HY8):
2.	BridgelCulvert not modeled in the FIS Modified BridgelCulvert previously modeled in the FIS Revised analysis of BridgelCulvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analysis for the flooding source, ji analyze the structures. Attach justification. Attach plans of the structures certified by a registered profi	with special bridge routine, WSPRO, HY8):
2.	☐ Bridge/Culvert not modeled in the FIS ☐ Modified Bridge/Culvert previously modeled in the FIS ☐ Modified Bridge/Culvert previously modeled in the FIS ☐ Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analyze the structures. Attach justification. Attach plans of the structures certified by a registered profoliowing (check the information that has been provided):	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could n essional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection
2.	□ Bridge/Culvert not modeled in the FIS □ Modified Bridge/Culvert previously modeled in the FIS □ Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analysis for the flooding source, is analyze the structures. Attach justification. Attach plans of the structures certified by a registered profice following (check the information that has been provided): □ Dimensions (height, width, span, radius, length) □ Shape (culverts only) □ Material	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could n essional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection Low Chord Elevations - Upstream and Downstream
2.	BridgelCulvert not modeled in the FIS Modified BridgelCulvert previous modeled in the FIS Revised analysis of BridgelCulvert previously modeled hydraulic model used to analyze the structure (e.g., HEC-2 if different than hydraulic analysis for the flooding source, jr analyze the structures. Attach justification. Attach plans of the structures certified by a registered proficiously (check the information that has been provided): Dimensions (height, width, span, radius, length) Shape (culverts only) Material Beveling and Rounding	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could n essional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection Low Chord Elevations - Upstream and Downstream Top of Road Elevations - Upstream and Downstream
2.	Bridge/Culvert not modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analyzes the structures. Attach justification. Attach plans of the structures certified by a registered proficilioning (check the information that has been provided):	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could n essional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection Low Chord Elevations - Upstream and Downstream Top of Road Elevations - Upstream and Downstream Structure Invert Elevations - Upstream and Downstream
2.	Bridgel*Culvert not modeled in the FIS Modified Bridgel*Culvert previously modeled in the FIS Modified Bridgel*Culvert previously modeled in the FIS Revised analysis of Bridgel*Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 if different than hydraulic analyses for the flooding source, jr. analyze the structures. Attach plans of the structures certified by a registered proficioning (check the information that has been provided): Dimensions (height, width, span, radius, length) Material Material Beveiling and Roundling Wink Wall Angle Skew Angle	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could n essional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection Low Chord Elevations - Upstream and Downstream Top of Road Elevations - Upstream and Downstream
2.	Bridge/Culvert not modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS Modified Bridge/Culvert previously modeled in the FIS Revised analysis of Bridge/Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 If different than hydraulic analysis for the flooding source, is analyze the structures. Attach plans of the structures certified by a registered proficioning (check the information that has been provided): Dimensions (height, width, span, radius, length) Shape (culverts only) Material Beveiling and Rounding Wink Wall Angle Skew Angle Sediment Transport Considerations	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could nessional engineer. The plan detail and information should include the Distance between Cross Sections Erosion Protection Low Chord Elevations - Upstream and Downstream Top of Road Elevations - Upstream and Downstream Structure Invert Elevations - Upstream and Downstream Structure Invert Elevations - Upstream and Downstream Cross-Section Locations
2.	Bridgel*Culvert not modeled in the FIS Modified Bridgel*Culvert previously modeled in the FIS Modified Bridgel*Culvert previously modeled in the FIS Revised analysis of Bridgel*Culvert previously modeled Hydraulic model used to analyze the structure (e.g., HEC-2 if different than hydraulic analyses for the flooding source, jr. analyze the structures. Attach plans of the structures certified by a registered proficioning (check the information that has been provided): Dimensions (height, width, span, radius, length) Material Material Beveiling and Roundling Wink Wall Angle Skew Angle	with special bridge routine, WSPRO, HY8): ustify why the hydraulic analysis used for the flooding source could nessional engineer. The plan detail and information should include the Distance between Cross Sections Frosion Protection Low Chord Elevations - Upstream and Downstream Top of Road Elevations - Upstream and Downstream Structure Invert Elevations - Upstream and Downstream Stream Invert Elevations - Upstream and Downstream Cross-Section Locations

Inventory

Plans

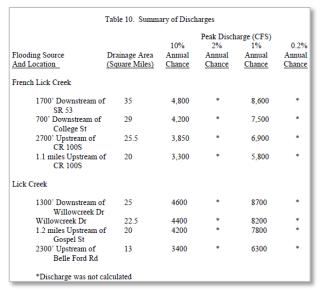
- CLOMR
 - Not Certified
- LOMR
 - Must be Certified
- Used to Verify Input Geometry
- Meet Data Capture and Elevation
 Guidance

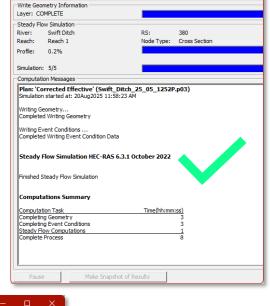


Inventory

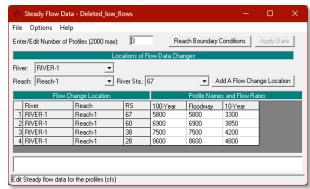
Topographic Work map

- Revised Delineation
- Effective Delineation
- Graphical Tie In of Delineations
- Topographic Contours w/ Labels
- Vertical Datum and North Arrow
- Locations and Alignment of Cross Sections
- Flow Line used in Model
- Engineer's Certification
 - Also for CLOMRs
 - For Data Submitted not Post Project Conditions





Review


Questions to ask:

- Do all the Plans Run?
- Are the Flows Placed in the Correct Place per the Software User's Manual?

HEC-RAS Finished Computations

Review

Duplicate Effective

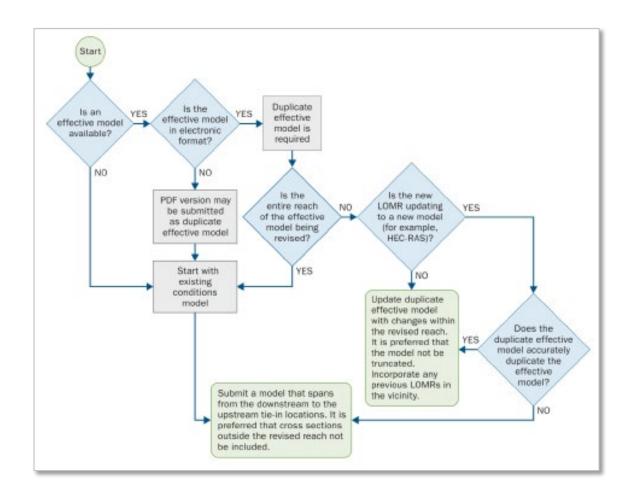
- Confirmation that Effective Data has been Imported onto Applicant's Computer.
- No Changes to the Effective Data.

Corrected Effective

- Corrects Errors in Effective Model.
- Updates Natural Conditions.
 - Not Man-Made
- Add Evaluation Cross Sections.
- Incorporates More Detailed Topography at the Time of the Effective FIRM.
- Permitted Changes not in Effective Model.

Pre-Project Conditions

- Is a Modified Corrected Effective Model.
- Man-Made Changes to the Effective Data Occurring Since the Date of the Effective Model.
 - Potential Violations
- Used to Determine True Impacts of the Project.


Post-Project

- Is a Modified Pre-Project Model.
- Must Reflect any Physical Changes to the Floodplain AND the Project.

Duplicate Effective Model

Correct Model Format

Does the Duplicate Effective Model Calibrate with the Effective Data?

COSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY		WITHOUT		
				(FEET/ SECOND)	REGULATORY (FEET, NAVD)	FLOODWAY (FEET, NAVD)	WITH FLOODWAY (FEET, NAVD)	INCREASE (FEET)
A	0.12	533	4128	2.5	489.4	483.7 2	483.8	0.1
В	0.16	667	5334	1.6	489.4	483,9 ²	484.0	0.1
c		964	8209	1.1	489.4	484.1 2	484.2	0.1
D		972	8247	1.0	489.4		484.3	0.1
E	0.43	1090	9352	0.9	489.4	484,3 ²	484.4	0.1
F	0.50	881	6313	1.4	489.4	484,4 2	484.5	0.1
G	0.62	769	6621	1.3	489.4		484.7	0.1
Н		792	4831	1.8	489.4		484.8	0.1
1			8507		489.4			0.0
j		757	5439	1.6	489.4		485.8	0.0
K								0.1
i.								0.0
M								0.0
N		1105	7359		489.4		486.9	0.1
								0.1
P								0.1
0		638	2470		489.4			0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
								0.1
AF	3.09	456	2360	2.9	493.0	493.0	493.1	0.1
	EFGGHII KLMMNO PQRSTUV VV XY ZAA ABC ADC ADC	D 0.35 E 0.43 F 0.50 G 0.62 H 0.66 I 0.72 J 0.82 K 0.91 L 0.95 M 1.04 N 1.02 O 1.31 P 1.51 Q 1.55 R 1.65 S 1.79 T 1.93 U 2.02 V 2.21 W 2.35 X 2.41 Y 2.45 AA 2.66 AB 2.71 AC 2.79 AD 2.90 AE 3.302	D 0.35 972 E 0.43 1099 F 0.50 881 G 0.62 769 H 0.66 792 I 0.72 906 J 0.82 757 K 0.91 450 N 1.04 800 N 1.04 105 O 1.31 1240 P 1.55 638 R 1.65 550 S 1.79 435 T 1.93 388 U 2.02 342 V 2.21 W 2.23 232 X 2.41 232 X 2.45 251 Z 2.58 377 AA 2.66 593 AB 2.71 628 AC 2.79 647 AD 2.90 602 AE 3.005 955	D	D	D	D 0.35 972 80247 1.0 489.4 494.2 2 612 2.9 489.5 499.4 494.3 3 F 0.80 881 6313 1.4 489.4 484.4 3 484.6 2 G 0.65 769 6621 1.3 489.4 484.6 2 484.6 2 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7	D 0,35 972 6247 1.0 499.4 494.2 494.3 494.3 F 0,35 972 6313 1.94 499.4 494.5 494.4 5 6 1.0 F 0,50 881 6313 1.4 499.4 494.4 2 494.5 6 0.62 769 6621 1.3 499.4 494.5 2 494.7 H 0,66 792 4931 1.8 499.4 494.7 494.8 1 0.66 792 4931 1.8 499.4 495.5 2 495.7 3 0.82 757 5439 1.6 499.4 495.5 2 495.7 3 0.82 757 5439 1.6 499.4 495.5 2 495.8 1 0.91 450 955 955 3620 2.4 499.4 495.6 2 495.9 1 0.95 555 3620 2.4 499.4 495.6 2 496.2 1 0.95 555 3620 2.4 499.4 495.6 2 496.2 1 0.95 555 3620 2.4 499.4 495.6 2 496.2 1 0.95

File Op	tions Sto	d. Tables	Locations	Help									
			HEC-E	AS Plan	Base Loca	itions: User	Defined	Profile: 100-	Year				Reload Dat
River	Reach	River Sta	Profile	Q Total		W.S. Elev		E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Ton Width	Froude # C
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
RIVER-1	Reach-1	67	100-Year	5800.00	478.30	498.17		498.21	0.000139	2.16	4263.86	632.87	0.1
RIVER-1	Reach-1	66	100-Year	5800.00	478.30	498.08		498.15	0.000270	2.65	3019.16	437.06	0.1
RIVER-1	Reach-1	65	100-Year	5800.00	478.20			498.06	0.000460	3.73	2100.61	274.80	0.1
RIVER-1	Reach-1	64	100-Year	5800.00	478.00	497.23		497.80	0.001374	6.67	1095.33	129.48	0.3
RIVER-1	Reach-1	63	100-Year	5800.00	477.70	496.21		496.69	0.001293	6.05	1199.45	183.90	0.3
RIVER-1	Reach-1	62	100-Year	5800.00	477.20	495.15		495.82	0.001515	6.94	963.50	101.60	0.3
RIVER-1	Reach-1	61	100-Year	5800.00	476.80	494.06		494.93	0.002130	7.88	845.82	94.76	0.3
RIVER-1	Reach-1	60	100-Year	6900.00	476.70	493.70		494.30	0.001632	6.80	1314.97	203.32	0.3
RIVER-1	Reach-1	58	100-Year	6900.00	476.30	493.34		493.54	0.000843	4.67	2381.00	483.17	0.2
RIVER-1	Reach-1	57	100-Year	6900.00	476.10	493.19		493.30	0.000575	3.52	3030.03	629.07	0.1
RIVER-1	Reach-1	56	100-Year	6900.00	475.90	493.04		493.09	0.000228	2.33	4282.13	688.78	0.1
RIVER-1	Reach-1	55	100-Year	6900.00	475.50	492.97		493.00	0.000097	1.75	5649.40	693.17	0.1
RIVER-1	Reach-1	54	100-Year	6900.00	475.50	492.94		492.96	0.000090	1.71	5685.04	666.68	0.1
RIVER-1	Reach-1	51	100-Year	6900.00	474.50	492.89		492.92	0.000097	1.76	5158.78	631.69	0.1
RIVER-1	Reach-1	50	100-Year	6900.00	475.00	492.75	487.29	492.84	0.000313	2.80	3049.53	427.05	0.1
RIVER-1	Reach-1	44	100-Year	6900.00	474.30	491.00	487.54	491.40	0.001030	5.89	1525.92	1076.53	0.0
RIVER-1	Reach-1	43	100-Year	6900.00	474.10	490.87	485.88	491.19	0.000783	5.38	1823.78	695.51	0.3
RIVER-1	Reach-1	42	100-Year	6900.00	474.10	490.61	482.93	490.97	0.000711	5.11	1637.03	367.47	0.3
RIVER-1	Reach-1	41	100-Year	6900.00	473.90	490.18	482.57	490.47	0.000560	4.59	1807.48	505.19	0.3
RIVER-1	Reach-1	38	100-Year	7500.00	473.60	489.88		490.02	0.000621	3.67	2644.72	366.83	0.1
RIVER-1	Reach-1	37	100-Year	7500.00	473.60	489.59		489.71	0.000643	3.71	2937.86	446.44	0.1
RIVER-1	Reach-1	36	100-Year	7500.00	473.20	489.20	484.44	489.29	0.000472	3.16	3417.52	1142.41	0.1
RIVER-1	Reach-1	35	100-Year	7500.00	473.10	488.65		488.81	0.000905	4.36	2765.86	1485.57	0.3
RIVER-1	Reach-1	34	100-Year	7500.00	471.20	487.79	485.01	488.20	0.002040	6.56	2149.81	1796.79	0.0
RIVER-1	Reach-1	31	100-Year	7500.00	471.00	487.44	484.02	487.66	0.001017	4.91	2736.81	1651.53	0.3
RIVER-1	Reach-1	29	100-Year	7500.00	469.70	487.19		487.20	0.000071	1.32	9267.64	3296.66	0.1
RIVER-1	Reach-1	26	100-Year	8600.00	468.70	487.12	482.14	487.14	0.000105	1.57	8606.82	2528.95	0.1
RIVER-1	Reach-1	24	100-Year	8600.00	467.60	486.98	481.72	487.02	0.000205	2.36	5680.57	1697.01	0.1
RIVER-1	Reach-1	17	100-Year	8600.00	466.00	486.57	480.93	486.74	0.000564	4.47	3856.73	2200.46	0.3
RIVER-1	Reach-1	14	100-Year	8600.00	466.50	486.14	481.85	486.26	0.000435	3.64	3376.25	2291.76	0.1
RIVER-1	Reach-1	13	100-Year	8600.00	467.90	486.09	481.07	486.13	0.000156	2.10	5731.12	2168.62	0.1
RIVER-1	Reach-1	12	100-Year	8600.00	466.90	486.05		486.06	0.000047	1.08	8744.35	996.44	0.0
RIVER-1	Reach-1	9	100-Year	8600.00	465.60	485.04		485.09	0.000460	1.79	4845.01	805.24	0.1
RIVER-1	Reach-1	8	100-Year	8600.00	465.00	484.96		484.99	0.000319	1.93	6767.34	799.42	0.1
RIVER-1	Reach-1	7	100-Year	8600.00	464.00	484.68		484.73	0.000414	2.48	6479.82	945.91	0.1
RIVER-1	Reach-1	6	100-Year	8600.00	463.20	484.59		484.61	0.000165	1.59	9411.03	1646.01	0.0
RIVER-1	Reach-1	5	100-Year	8600.00	462.50			484.53	0.000204	1.83	8384.43	1023.68	0.1
RIVER-1	Reach-1	4	100-Year	8600.00	461.90			484.46	0.000190	1.78	8341.64	1008.59	0.0
RIVER-1	Reach-1	3	100-Year	8600.00	460.90	484.27		484.33	0.000371	2.53	5676.66	790.08	0.1
RIVER-1	Reach-1	2	100-Year	8600.00	460.80	484.03		484.20	0.000834	3.93	3604.22	584.64	0.2

Correct Model Format

Corrected Effective Model

- Is the study reach long enough to properly tie in at the limit of the revision area?
- Can the missed calibration from the Duplicate Effective Model be fixed?
- Only contain natural changes?
- Are the evaluation cross sections added?

Does it:

- Match the BFE AND delineation.
- Correct the errors that are present.
- Represent the natural floodplain and the real flood risks.
- Use the needed cross sections to properly evaluate the hydraulics without energy or flow errors.

FEMA Region 5 State-Specific Considerations for Indiana allow for the incorporation of <u>properly permitted RIK</u> bridges and culverts, the most efficient hydraulic structure, to be incorporated in the base model. Even CIF crossings with 0.14-foot surcharge still need a C/LOMR. The absence of FEMA "permitting" is considered man-made and a potential violation.

Correct Model Format

Pre-Project Conditions Include Man-Made Changes

- Fill
- Excavation
- Any Construction

Post-Project Conditions Include Man-Made Changes

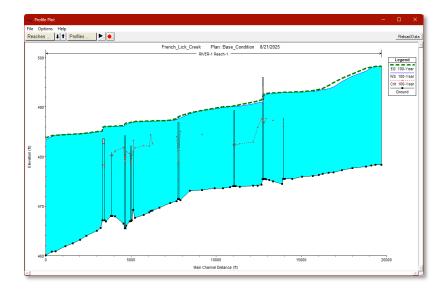
- Changes made by the project
- Any changes from the Effective Conditions
- This will become the new Effective Model

Separate Floodway Analysis is Allowed

- Match the Post-Project Exactly
 - No Exceptions

Starting Water Surface Boundary Condition

Known Water Surface

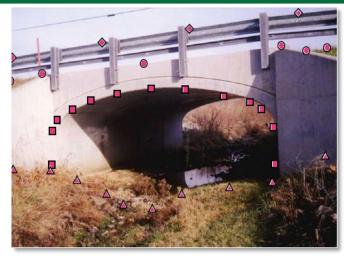

- Effective Cross Section
 - Lettered
 - Unlettered
- Middle or End of Stream

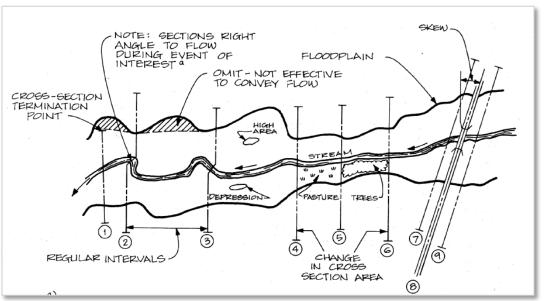
Energy Grade Slope

- Whole Stream Study
- Includes Mouth of Stream
- HEC-RAS needs time to Stabilize

CROSS SECTION	JRCE		FLOODWAY		1-PERCENT-AN	INUAL-CHANCE FL	OOD WATER SURFAC	E ELEVATION
	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET/ SECOND)	REGULATORY (FEET, NAVD)	FLOODWAY (FEET, NAVD)	WITH FLOODWAY (FEET, NAVD)	INCREASE (FEET)
FRENCH LICK CREEK								
A	0.12	533	4128	2.5	489.4	483.7 2	483.8	0.1
В	0.16	667	5334	1.6	489.4	483.9 ²	484.0	0.1
c	0.27	964	8209	1.1	489.4	484.1 2	484.2	0.1
D	0.35	972	8247	1.0	489.4	484.2 2	484.3	0.1
E	0.43	1090	9352	0.9	409.4	484.3 ²	404.4	0.1
F	0.50	881	6313	1.4	489.4	484.4 2	484.5	0.1
G	0.62	769	6621	1.3	489.4	404.6 2	484.7	0.1
H	0.66	792	4831	1.8	489.4	484.7 2	484.8	0.1
1	0.72	906	8507	1.0	489.4	485.7 2	485.7	0.0
j	0.82	757	5439	1.6	489.4	485.8 ²	485.8	0.0
K	0.91	450	3223	2.7	489.4	485.8 ²	485.9	0.1
L	0.95	555	3620	2.4	489.4	486.2 2	486.2	0.0
M	1.04	800	5341	1.7	489.4	486.6 2	486.6	0.0
N	1.20	1105	7359	1.4	489.4	486.8 ²	486.9	0.1
0	1.31	1240	8589	1.1	489.4	486,8 ²	486.9	0.1
P	1.51	705	2964	3.1	489.4	487.1 2	487.2	0.1
Q	1.55	638	2470	3.8	489.4	407.4 2	487.5	0.1
8	1.65	550	3241	2.6	489.4	488.3 2	488.4	0.1
s	1.79	435	3277	2,3	489,4	488,9 2	489.0	0.1
Ť	1.93	388	2836	2,6	489.4	489.2 2	489.3	0.1
Ü	2.02	342	2612	2.9	489,5	489,5	489.6	0.1
V	2.21	221	1787	3.9	489.9	489.9	490.0	0.1
w	2.35	232	1623	4.3	490.3	490.3	490.4	0.1
×	2.41	232	1663	4.2	490,5	490.5	490.6	0.1
Y	2,45	251	1619	4.5	490.7	490.7	490.8	0.1
z	2,58	377	2994	2.3	492.4	492.4	492.5	0.1
88	2.68	593	5101	1.4	492.6	492.6	492.7	0.1
	2.71	628	5625	1.2	492.6	492.6	492.7	0.1
AB	2.79	647	5567	1.2	492.7	492.7	492.8	0.1
AB AC		602	4138	1.7	492.7	492.7	492.8	0.1
	2.90							
AC	2.90 3.02	595	2995	2.3	492.8	492.8	492.9	0.1

File Op	tions Sto	l. Tables	Locations	Help									
			HEC	RAS Flan:	Base Loca	ations: User	Defined	Profile: 100	Year .				Reload Da
River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chril		Top Width	Froude # 0
				(cfs)	(P)	(P)	(8)	(ft)	[R/R]	(ft/s)	(sq ft)	(ft)	
RIVER-1	Reach-1	67	100-Year	5800.00	478.30			498.21		2.16		632.87	0.
RIVER-1	Reach-1	66	100-Year	5800.00	478.30			498.15		2.65	3019.16	437.06	0.1
RIVER-1	Reach-1	65	100-Year	5800.00	478.20				0.000460	3.73		274.80	
RIVER-1	Reach-1	64	100-Year	5800.00	478.00			497.80		6.67	1095.33	129.48	
RIVER-1	Reach-1	63	100-Year	5800.00	477.70			496.69		6.05	1199.45	183.90	
RIVER-1	Reach-1	62	100-Year	5800.00	477.20			495.82	0.001515	6.94	963.50	101.60	
RIVER-1	Reach-1	61	100-Year	5800.00	476.80	494.06		494.93	0.002130	7.88	845.82	94.76	0.3
RIVER-1	Reach-1	60	100-Year	6900.00	476.70				0.001632	6.80	1314.97	203.32	
RIVER-1	Reach-1	58	100-Year	6900.00	476.30			493.54		4.67	2381.00	483.17	
RIVER-1	Reach-1	57	100-Year	6900.00	476.10			493.30		3.52	3030.03	629.07	0.
RIVER-1	Reach-1	56	100-Year	6900.00	475.90	493.04		493.09	0.000228	2.33	4282.13	688.78	0.7
RIVER-1	Reach-1	55	100-Year	6900.00	475.50			493.00	0.000097	1.75	5649.40	693.17	
RIVER-1	Reach-1	54	100-Year	6900.00	475.50			492.96	0.000090	1.71	5685.04	666.68	0.
RIVER-1	Reach-1	51	100-Year	6900.00	474.50	492.89		492.92	0.000097	1.76	5158.78	631.69	0.
RIVER-1	Reach-1	50	100-Year	6900.00	475.00	492.75	487.29	492.84	0.000313	2.80	3049.53	427.05	0.7
RIVER-1	Reach-1	44	100-Year	6900.00	474.30	491.00	487.54	491.40	0.001030	5.89	1525.92	1076.53	0.
RIVER-1	Reach-1	43	100-Year	6900.00	474.10	490.87	485.88	491.19	0.000783	5.38	1823.78	695.51	0.3
RIVER-1	Reach-1	42	100-Year	6900.00	474.10	490.61	482.93	490.97	0.000711	5.11	1637.03	367.47	0.
RIVER-1	Reach-1	41	100-Year	6900.00	473.90	490.18	482.57	490.47	0.000560	4.59	1807.48	505.19	0.3
RIVER-1	Reach-1	38	100-Year	7500.00	473.60	489.88		490.02	0.000621	3.67	2644.72	366.83	0.1
RIVER-1	Reach-1	37	100-Year	7500.00	473.60	489.59		489.71	0.000643	3.71	2937.86	446.44	0.1
BIVER-1	Reach-1	36	100-Year	7500.00	473.20		484.44	489.29		3.16	3417.52	1142.41	0.1
RIVER-1	Reach-1	35	100-Year	7500.00	473.10	488.65		488.81	0.000905	4.36	2765.86	1485.57	0.3
BIVER-1	Beach-1	34	100-Year	7500.00	471.20		485.01	488.20		6.56	2149.81	1796.79	
RIVER-1	Reach-1	31	100-Year	7500.00	471.00		484 02	487.66		4.91	2736.81	1651.53	
BIVER-1	Beach-1	29	100-Year	7500.00	469.70			487.20		1.32	9267.64	3296.66	
RIVER-1	Reach-1	26	100-Year	8600.00	468.70		482.14	487.14		1.57	8606.82	2528.95	
BIVER-1	Beach-1	24	100 Year	8600.00	467.60		481.72	487.02		2.36	5680.57	1697.01	0
RIVER-1	Reach-1	17	100-Year	8600.00	466.00		480.93	486.74	0.000564	4.47	3856.73	2200.46	
BIVER-1	Beach-1	14	100 Year	8600.00	466.50		481.85	486.26		3.64		2291.76	
RIVER-1	Reach-1	13	100-Year	8600.00	467.90		481.07		0.000156	2.10			
BIVER-1	Beach-1	12	100-Year	8600.00	466.90		401.02		0.000047	1.08	8744.35	996.44	0.
RIVER-1	Reach-1	9	100-Year	8600.00	465.60				0.000460	1.79	4845.01	805.24	0.
RIVER-1	Beach-1	8	100-Year	8600.00	465.00			484.99		1.93	6767.34	799.42	
RIVER-1	Reach-1	7	100-Year	8600.00	464.00			484.73		2.48	6479.82		0.
BIVER-1	Beach-1	6	100-Year	8600.00	463.20			484.61		1.59	9411.03	1646.01	0.
RIVER-1	Reach-1	5	100-Year	8600.00	462.50				0.000165	1.83	8384.43	1023.68	
BIVER-1	Beach-1	4	100-Year	8600.00	461.90			484.46		1.78	8341.64	1008.59	
RIVER-1	Reach-1	3	100-Year	8600.00	460.90				0.000130	2.53	5676.66	790.08	
RIVER-1	Reach-1	2	100-Year	8600.00	460.80			484.20		3.93	3604.22	584.64	0.
DIATE-1	I neach-l	6	TOO-Teal	0000.00	400.80	484.03		464.20	0.000834	3.93	3004.22	384.64	- 0.





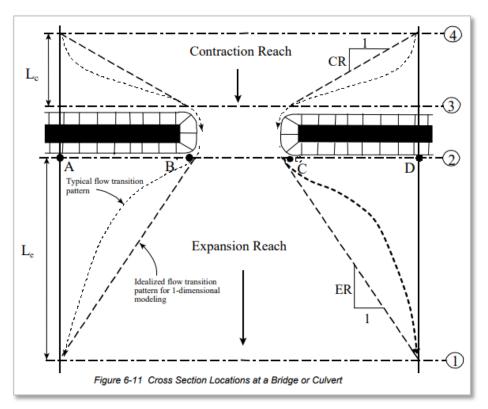
Review

Cross Sections

- NAVD88 Vertical Datum is Preferred
- Verify the source of the topography
 - LiDAR
 - Survey
 - Follow the Data Capture Technical Guidelines
- The Cross Sections
 - Best Practice Placement
 - Skew
 - Spacing
 - Matching the Topo Workmap
 - o Span the extent of the water surface

Profile Baseline - River Stationing

- For most streams this is the distance, measured in feet or miles, above the mouth of the stream or above its confluence (SID #278)
 - Distances in 1D models must be referenced to the Profile Baseline
 - Follows all bends and curves of the stream
 - For streets, use the center of the street when measuring distances.
- Stream distances reported in the Floodway Data Tables, Flood Profiles and FIRM database must be measured along the Profile Baseline. (SID #280)
 - Should be consistent across all documents
 - Must match within 1/20th of an inch on the Flood Profile or 5% on the FIRM when compared to the Hydraulic Model. (SID #273 and 335)



Geometry

Bridge

- Geometry must match submitted plans
- Source and method documented
 - As-built plans
 - State Department of Transportation
 - Field Survey Data
 - ☐ PS or PE
 - LiDAR data
 - Proposed plans
- High/Low flow modeling method explained
- Contraction and expansion coefficients
- Overtopping/weir flow
 - Ineffective limits
- FEMA recommends FHWA published Hydraulic Design Series

HEC-RAS User Manual

Review

Geometry

Channelization

- Must match plans
- Lined or natural
- Government agreement to maintain channel
- Split flow justified and documented properly
- Manning's n
- Ineffective/blocked flow

	Markey day of	Base n value			
Bed material	Median size of bed material (in millimeters)	Straight uniform channel ¹	Smooth channel ²		
	Sand channels				
Sand ³	0.2	0.012	_		
	.3	.017	-		
	.4	.020	_		
	.5	.022	-		
	.6	.023	_		
	.8	.025	_		
	1.0	.026	_		
Stable o	hannels and flo	od plains			
Concrete	-	0.012-0.018	0.011		
Rock cut		-	.025		
Firm soil	-	0.025-0.032	.020		
Coarse sand	1-2	0.026-0.035	_		
Fine gravel	_	-	.024		
Gravel		0.028-0.035	_		
Coarse gravel		-	.026		
Cobble		0.030-0.050	-		
Boulder	>256	0.040-0.070	-		

Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, USGS Water Supply Paper 2339

Errors

Critical Depth Flow Errors

• Is it justified?

Location: River: RS: 18713.14 Profile: 50YR-FIS Downstream

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

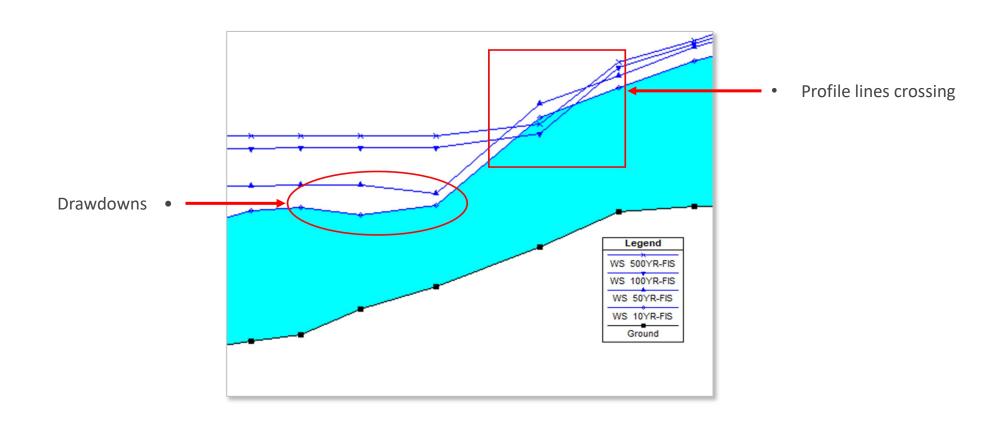
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections.

Varning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

Legend
WS 500yr
Crit 500yr
WS 100yr
WS 100yr
WS 50yr
Crit 100yr
Crit 10yr
Crit 10yr
Ground


- cHECk-RAS errors
- HEC-RAS errors

Errors

Review

Floodway Run

- Equal encroachments
- Acceptable surcharge
 - o 0.00' to 0.14'
 - No negative values

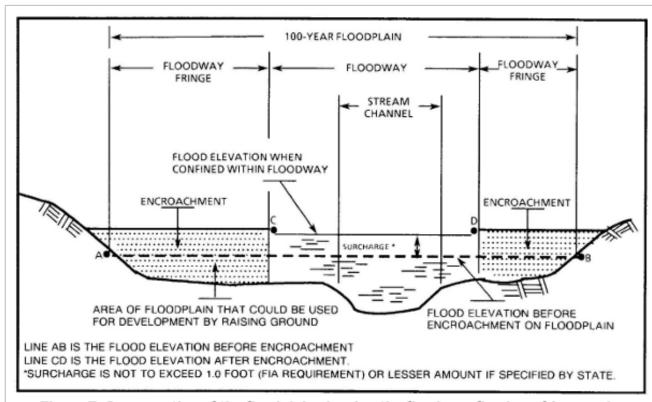
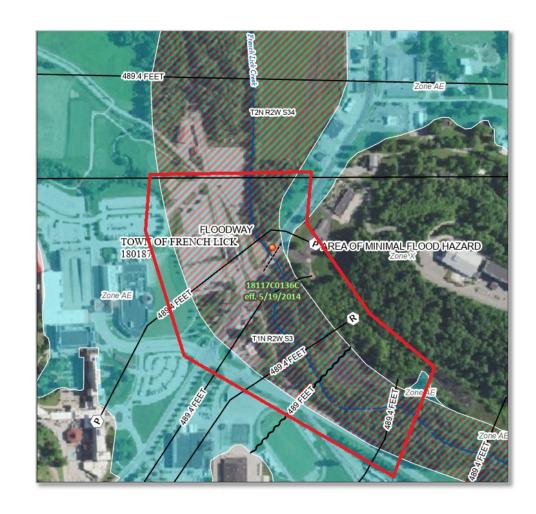


Figure 7. Cross section of the floodplain showing the floodway, floodway fringe and surcharge. The model assumes that the entire floodplain outside of the floodway is filled or otherwise obstructed.

BFE Tie-in

Project Area Limits:

- The Corrected Effective BFE when compared to the Effective BFE
 - +/- 0.1 feet
- The same difference in BFE when the Post-Project BFE is compared to the Effective BFE.
- Project Area may not be the same as mapping revision area.



BFE Tie-in

Revision Area Limits:

- The Corrected Effective BFE when compared to the Effective BFE.
- Must agree with other contiguous studies
 +/- 0.5 feet from Pre-Project to Post-Project
 - Provides for mapping tie in.

XS	R/S	FIS	DE	Δ	CE	Δ	EX	Δ	PR	Δ
M	1.04	489.4	489.4	0.0	489.9	0.5	489.9	0.5	489.9	0.5
Ν	1.20	489.4	489.3	-0.1	489.8	0.4	489.8	0.4	489.4	0.4
0	1.31	489.4	489.4	0.0	489.5	0.1	489.5	0.1	489.5	0.1
Р	1.51	489.4	489.5	0.1	489.6	0.2	489.6	0.2	489.6	0.2
	1.53	IN-56								
Q	1.55	489.4	489.4	0.0	489.5	0.1	489.5	0.1	489.6	0.2
R	1.65	489.4	498.3	-0.1	489.5	0.1	489.5	0.1	489.6	0.2
S	1.79	489.4	489.4	0.0	489.5	0.1	489.5	0.1	489.5	0.1
Τ	1.93	489.4	489.4	0.0	489.9	0.5	489.9	0.5	489.9	0.5

Model Comparison

CE/DE vs. Existing

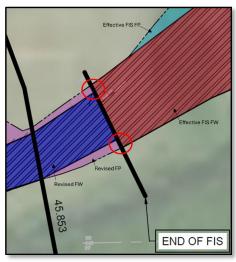
Potential Violations?

Existing vs Revised/Proposed/Post-Project/As-built

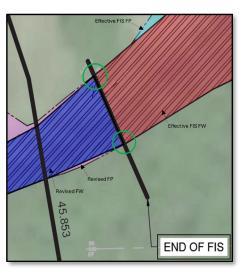
- Evaluate true project impacts
- CLOMR: if increases, then 44 CFR 65.12 compliance required

Effective vs Revised/Proposed/Post-Project/As-built

- No-rise?
- If increases, adverse impacts notifications required



Adjacent Checks

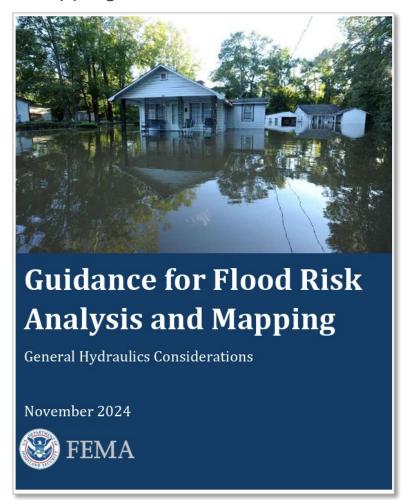

Mapping

Boundary Tie-in

• Floodplain and Floodway widths at the upstream and downstream ends of the studies reach must match those shown on the effective FIRM (Doc no. 52)

Bad Tie In

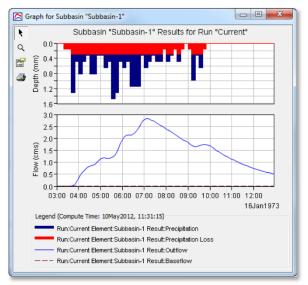
Good Tie In

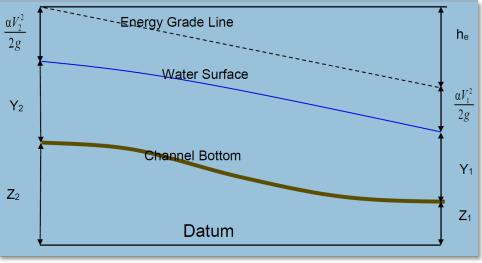

- Top-width discrepancies from model to mapping have a tolerance of 5% (SID #335)
- Revised/Post-Project/As-built model match workmaps for distance between cross sections, structures, water surface elevations, top-widths, and surcharges.

WATER FEMA General Hydraulic Considerations

Guidance for Flood Risk Analysis and Mapping

- Contains the standards and methods to be applied by Mapping Partners in the performance, analysis, and presentation of results for riverine flooding analyses.
- Objectives of a Hydraulic Studies:
 - Identify areas subject to flooding and define the flood-frequency relation at those areas
 - Depict data and analyses results to support flood insurance decisions and floodplain management
 - Document data and analyses to enable results to be checked, reproduced, and updated.
 - Maintain consistency and continuity within national inventory of FIRMs and FIS reports

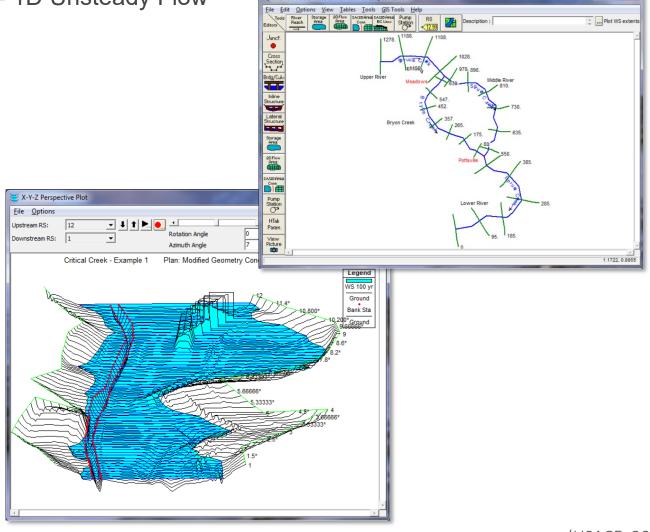




FEMA General Hydraulic Considerations

Procedures - 1D Steady Flow

- Computes the energy of the water passing through a cross section as equal to the energy of the water passing through the cross section immediately downstream plus the energy lost to friction and turbulence in the reach between cross sections.
- Requires the following:
 - Cross Section Geometry (including hydraulic structures)
 - Loss Coefficients
 - Water Surface Elevation at the most Downstream Cross Section
 - Peak Flow Discharge
- Applicable to streams with well-defined open channels with gradually varied flows



FEMA General Hydraulic Considerations

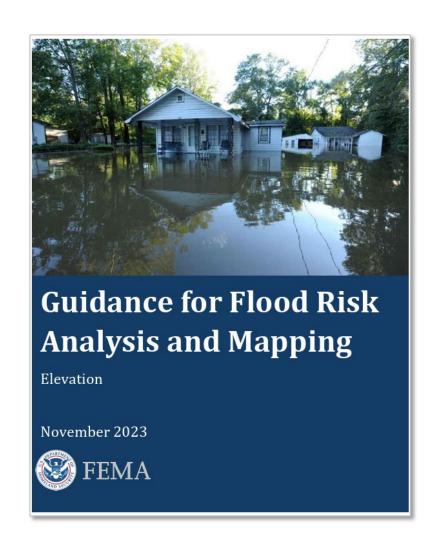
Procedures - 1D Unsteady Flow

- Computes using steady flow analysis methods for the range of discharges the structure is likely to experience
- Includes the following:
 - Unsteady State Channel Routing Models, which utilize inflow hydrographs produced by separate hydrologic analysis
 - Hydrodynamic Models, which include rainfallrunoff modeling component to simulate both watershed hydrographs and channel routing
- Applicable to larger rivers where open channel flow is the predominant source of flooding
- Unlike Steady State Models, these compute storage along with conveyance within the floodplain

FEMA General Hydraulic Considerations

Procedures - Calibration of Hydraulic Models

- Historic Flood Data
- Document the Calibration Process
 - o Dates, Data, Location of measurements
 - Parameters revised and rationale for revising
 - Calibration model input and output data
- Calibration Parameter Adjustments must be inline with measurable conditions.
- Aerial photos can be helpful to compare reasonableness of the simulation

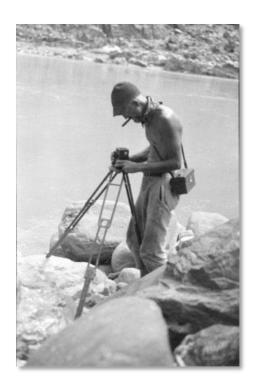


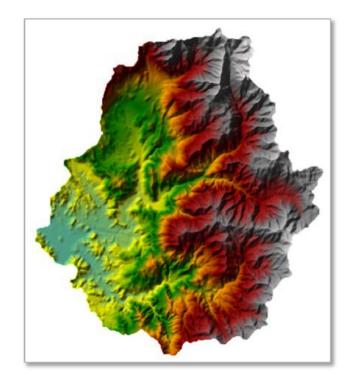
FEMA General Hydraulic Considerations

Data Requirements

Elevation - Guidance Document #47

Provides basic information on elevation data terminology, data formats used in Risk MAP program, references for accuracy and other lidar topics, as well as guides for procurement of either leveraged or newly acquired elevation data

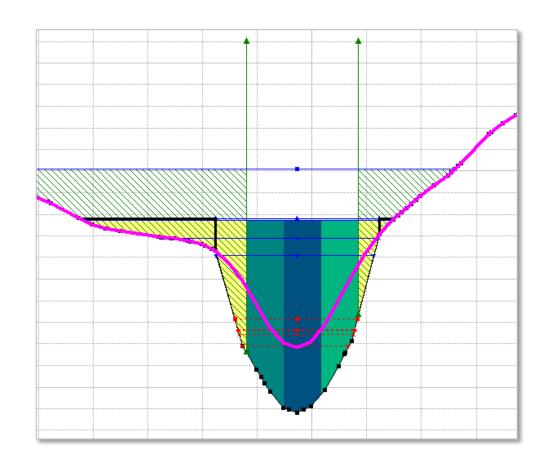



FEMA General Hydraulic Considerations

Data Requirements

Topography

- Factors for Suitability of Topographic Data
 - o 4ft or less Contours intervals in Steep Terrain
 - 2ft or less Contours intervals in Flat Terrain
 - Currency of Data: Whether significant changes have occurred since data was developed

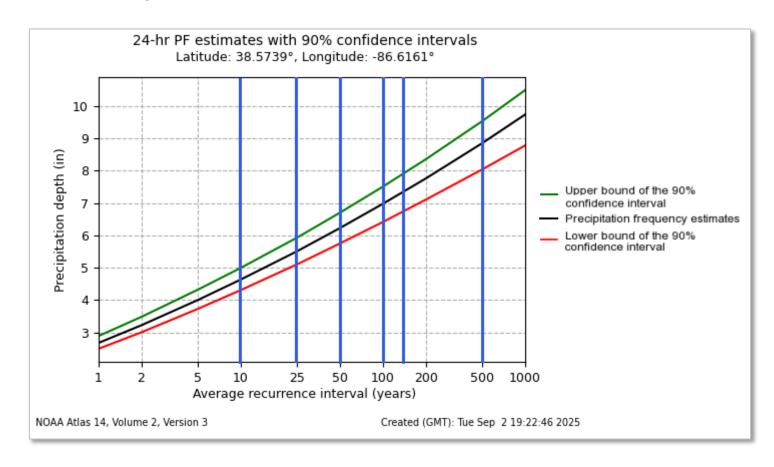


FEMA General Hydraulic Considerations

Data Requirements

Bathymetry

- Channel data is typically used to support an enhanced level of study.
- The Mapping Partner should consider the following:
 - Currency of Data
 - Density of Cross Sections
- Sometimes requiring interpolation to be used in between surveyed areas.
- Information necessary to adequately represent hydraulic structures, cross sections, or bathymetry should be determined by the engineer:
 - Requirements may differ between locations along the same reach depending on characteristics and availability of existing information



FEMA General Hydraulic Considerations

Hydrology

- In order to perform hydraulic analysis,
 hydrologic or flow data must be available for
 each of the five flood frequency events and
 the 1-percent plus flood event. (New
 Studies)
- Significant changes to the hydrology of the watershed can be cause for the peak flow not reflecting existing conditions

Data Requirements

FEMA General Hydraulic Considerations

Model Development

Narrative detailing the process and considerations made while building the models

- Deviations from recommended values of inputs
- Calibration data and use
- Highlights of major changes to the effective data

FEMA Hydraulics: 1D Analysis

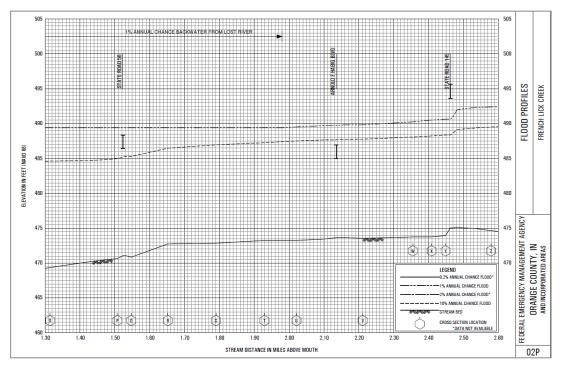
Guidance for Flood Risk Analysis and Mapping

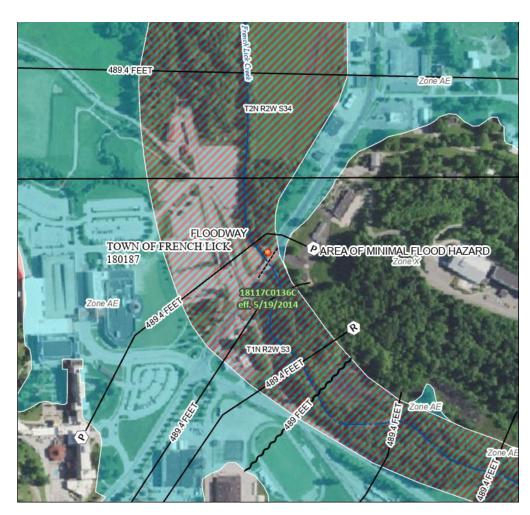
- Hydraulic analysis is most performed using a one-dimensional,
 steady flow, step backwater model for subcritical flow.
- Following to Guidance for Flood Risk Analysis and Mapping Hydraulics published in November 2016.

Guidance for Flood Risk Analysis and Mapping

Hydraulics: One-Dimensional Analysis

November 2016

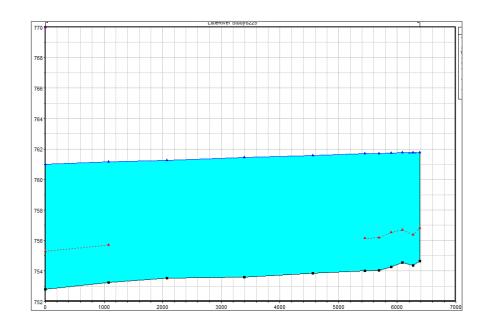


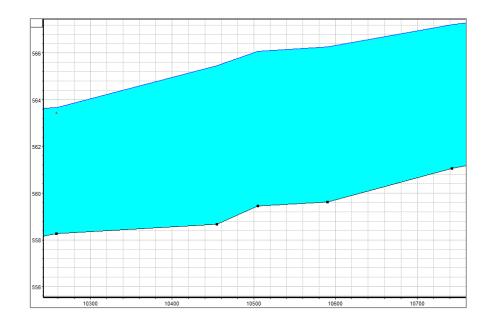


FEMA Hydraulics: 1D Analysis

Profile Baseline

 Horizontal distance along the Flood Profile as represented on the FIRM and shown in the Floodway Data Table can be the distance between cross sections or nodes in a onedimensional model.

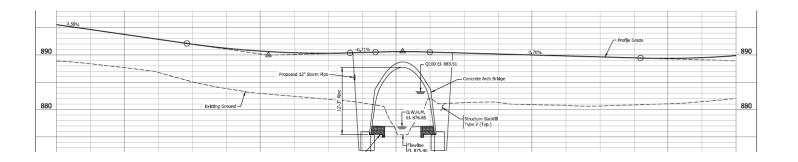


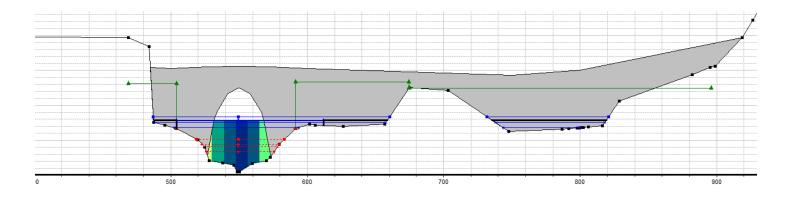


FEMA Hydraulics: 1D Analysis

Cross Sections

- Must be placed perpendicular to flood flow and extend beyond the most extreme event modeled.
- Must be spaced related to the geometry and hydraulic roughness of the reach between adjacent cross sections varies gradually to be as Linear.
- General slope of the flow path between adjacent cross sections should be approximately constant.
- Cross sections of underwater/above water portions should be surveyed by Conventional surveying techniques.





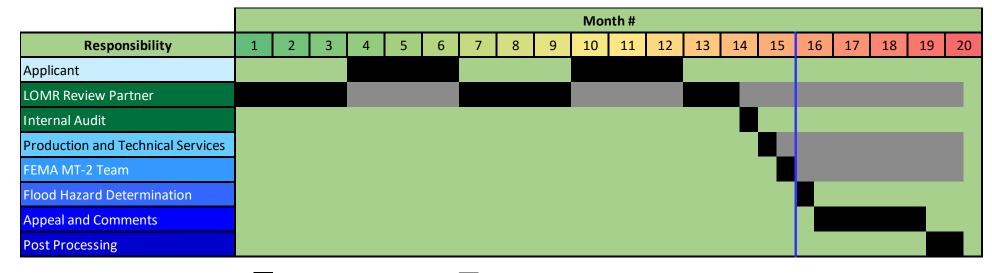
FEMA Hydraulics: 1D Analysis

Hydraulic Structures

- Dimensions of hydraulic structures (flood gates/diversion channels) crossing the stream should be surveyed in the field where a BFE to be published/ estimated appropriate dimensions with using direct measurement or from as-built plans.
- Bridge Skews are the most common hydraulic structure crossing a stream and may significantly affect water-surface profiles (FEWA Hydraulic Design Series No.1, HSD1, 1978 & HEC-18, 2001).
- Noted that bridge scouring may result in significant changes in cross sections.

Regulatory Requirements

- Same model as the effective
 - o Except HEC-2
 - Appropriate Justification
- 44 CFR 65.5(a)(8)
 - Zone AE must have all of the effective return intervals
- 44 CFR 65.5 Changes Based on Fill (No-Rise)
 - o Potential Violation.
- 44 CFR 65.6(a)(9)
 - Zone A to Zone AE only needs 1% recurrence interval
- 44 CFR 65.6 Change in BFE
- 44 CFR 65.7 Change in Floodway
- 44 CFR 65.8 Proposed Projects
- 44 CFR 65.10 Levee Projects
- 44 CFR 65.12 LOMC due to Proposed Encroachments


Does it Matter?

- 44 CFR 67.5
 - o Right of appeal
- 44 CFR 67.6
 - Basis: modeling or input parameter errors.
- Repeatable
 - The next engineer must use your data.
- Reduce Processing Time

QUESTIONS?

Conclusion

HOMEWORK

References

- 1. FEMA. (2023, December 13). MT-2 Application Forms and Instructions. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_rm-mt-2-forms-instructions.pdf
- 2. FEMA. (2025, August 18). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_rm-mt-2 requests guidance nov 2023.pdf
- 3. FEMA. (2025, July). Hydraulic Numerical Models Meeting the Minimum Requirement of National Flood Insurance Program. Retrieved from FEMA: https://www.fema.gov/flood-maps/products-tools/numerical-models/hydraulic#national
- 4. FEMA. (2024, December 5). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_guidance_general_hydraulics_considerations_nov2024.pdf
- 5. FEMA. (2014, May 19). FEMA Flood Map Service Center. Retrieved from FEMA: https://msc.fema.gov/portal/downloadProduct?productTypeID=FINAL_PRODUCT&productSubTypeID=FIS_REPORT&productID=18117CV000A
- 6. FEMA. (2024, November 18). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_guidance_elevation_nov_2024_0.pdf
- 7. FEMA. (2025, June). State-Specific Preferences. Guidance for Flood Risk Analysis and Mapping: State-Specific Preferences. Washington, D.C.: U.S. Government Printing Office.
- 8. FEMA. (2020, December 1). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_contiguous-community-matching-guidance.pdf
- 9. USACE. (1993, October 15). Engineer Manuals. Retrieved from USACE Publications: https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1416.pdf
- 10. Indiana Natural Resource Commission. (2014, June). General Guidelines for the Hydrologic-Hydraulic Assessment. Retrieved from Indiana Department of Natural Resources: https://www.in.gov/dnr/water/files/wa-GGHHA-chapter-5.pdf
- 11. FEMA. (2020, December 1). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_archived-bfe-mapping-guidance.pdf
- 12. FEMA. (2021, November). Guidance for FEMA's Risk Mapping, Assessment and Planning. Retrieved from FEMA: https://www.fema.gov/sites/default/files/documents/fema_guidance_data_capture%25E2%2580%2593workflow_details_nov2024.pdf
- 13. FEMA. (2023, December 13). FEMA Policy Standards for Flood Analysis and Mapping Policy (Rev. 14). Retrieved from: https://www.fema.gov/sites/default/files/documents/fema_rm-flood-risk-analysis-mapping-policy-rev14.pdf
- 14. USGS. (1989). Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains. Retrieved from USGS: https://pubs.usgs.gov/wsp/2339/report.pdf
- 15. Bradley, J. N. (1978, March 1). Hydraulics of Bridge Waterways, Hydraulic Design Series (HDS) No. 1. Retrieved from National Transportation Library: https://rosap.ntl.bts.gov/view/dot/75187/dot 75187 DS1.pdf
- 16. USACE. (1995, September). Hydrologic Engineering Center. Retrieved from Institute for Water Resources: https://iwrlibrary.sec.usace.army.mil/resource?title=Flow%20Transitions%20in%20Bridge%20Backwater%20Analysis&documentId=e07d7c22-9737-4892-9a99-feaaf2dfc10b
- 17. USACE. (2016, February). Hydrologic Engineering Center. Retrieved from Institute for Water Resources Library: https://iwrlibrary.sec.usace.army.mil/resource?title=HEC-RAS%20River%20Analysis%20System%20User%27s%20Manual&documentId=8686025d-dac5-41a9-f388-a2dc94abe6e4
- 18. USACE. (2016, February). Hydrologic Engineering Center. Retrieved from Institute for Water Resources Library: <a href="https://iwrlibrary.sec.usace.army.mil/resource?title=HEC-RAS%20River%20Analysis%20System%20Hydraulic%20Reference%20Manual&documentId=c3941546-35b0-4257-ec8b-a6a23a4ede11
- 19. Knipe, D. (2003, February). State Engineering Resources. Retrieved from Indiana Department of Natural Resources: https://www.in.gov/dnr/water/surface-water/indiana-floodplain mapping/state-engineering-resources/#Notes on Critical Depth Messages