The Maquoketa Group Aquifer System is generally capable of meeting the needs of domestic users in this county. Reported depths ranging from 25 to over 350 feet may influence the hydraulic properties of bedrock aquifers. Hydraulic properties of bedrock aquifers are highly variable within a given area. The Maquoketa Group consists of an upper and lower member, each of which may vary in thickness and lithology. The upper member is composed of sandstone, siltstone, and shale, while the lower member is composed of sandstone and conglomerate. The Maquoketa Group is underlain by the Woodford Group, which is composed of sandstone and shale.

The Woodford Group Aquifer System is capable of providing significant yields, with yields commonly ranging from 8 to 26 gpm. Static water levels ranging from 2 to 6 feet above the ground surface. The Woodford Group is underlain by the Mississippian sandstone aquifer, which is composed of sandstone and shale. The Mississippian sandstone aquifer is underlain by the Chicago Sandstone, which is composed of sandstone and shale. The Chicago Sandstone is underlain by the Borden Sandstone, which is composed of sandstone and shale.

The Borden Sandstone Aquifer System is capable of providing significant yields, with yields commonly ranging from 8 to 26 gpm. Static water levels ranging from 2 to 6 feet above the ground surface. The Borden Sandstone is underlain by the Chicago Sandstone, which is composed of sandstone and shale. The Chicago Sandstone is underlain by the Overburden, which is composed of glacial till, loess, and other materials. The Overburden is underlain by the bedrock.

The bedrock is composed of sandstone, siltstone, and shale. The hydraulic conductivity of the bedrock is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock may be affected by the presence of fractures, joints, and other geological features.

The bedrock is underlain by the bedrock aquifer, which is composed of sandstone and shale. The hydraulic conductivity of the bedrock aquifer is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock aquifer may be affected by the presence of fractures, joints, and other geological features.

The bedrock aquifer is underlain by the bedrock aquifer, which is composed of sandstone and shale. The hydraulic conductivity of the bedrock aquifer is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock aquifer may be affected by the presence of fractures, joints, and other geological features.

The bedrock is underlain by the bedrock aquifer, which is composed of sandstone and shale. The hydraulic conductivity of the bedrock aquifer is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock aquifer may be affected by the presence of fractures, joints, and other geological features.

The bedrock is underlain by the bedrock aquifer, which is composed of sandstone and shale. The hydraulic conductivity of the bedrock aquifer is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock aquifer may be affected by the presence of fractures, joints, and other geological features.

The bedrock is underlain by the bedrock aquifer, which is composed of sandstone and shale. The hydraulic conductivity of the bedrock aquifer is highly variable, with values ranging from 1 to 1000 feet per day. Groundwater flowing through the bedrock aquifer may be affected by the presence of fractures, joints, and other geological features.