Henry David Thoreau’s vision of a lake as “Earth’s Eye”:
Balance of Production and Respiration in a Changing Lake Michigan Watershed: Linking Historic Data to Real-time Observations

Bopi Biddanda, Scott Kendall, Angie Defore, Anthony Wienke, Tom Holcomb, Leon Gereaux

Annis Water Resources Institute
Grand Valley State University, MI
Traditional (a) and Modern (b) Views of the Role of Inland Lakes in the C Cycle

Freshwater ecosystems are major sites of C processing!
Aquatic microorganisms link terrestrial organic matter and nutrients to aquatic productivity (Biddanda and Cotner, Ecosystems 2002).

Rivers link Land-derived C & Nutrients to the Lake via Aquatic Microbes!
Trends from 2002-2008
- Muskegon lake outward

Average R and GPP (2002-2008)

- GPP
- R

$R^2 = 0.95$
$R^2 = 0.94$
Methods

• Respiration (R) and Production (P) were measured by tracking changes in dissolved oxygen concentrations in BOD bottle incubations under in situ conditions over a daily cycle.
• R = Dark bottles
• NPP = Light Bottles
• GPP = R + NPP
Plankton Metabolism: Land to Lake Gradient in Lake Michigan

Decreasing Gross Primary Production Along the Land to Lake Gradient
Decreasing Plankton Respiration Along the Land to Lake Gradient
Plankton Metabolism: Land to Lake Gradient in Lake Michigan

Average R and GPP (2002-2008), Lake Michigan Transect

River: GPP > R (C sink)

Lake: GPP < R (C source)

Production drops much faster than R along the Land to Lake Gradient!
Muskegon Lake AOC: Seasonal Study of Production and Respiration

• AOC by USEPA
 – environmental impairments
 • Direct discharge of industrial and municipal waste
 – Nutrient enrichment and discharge of organic chemicals
Seasonal GPP and R Data for Muskegon Lake (2009-10)

Net Productivity
spring-summer

Autotrophy spring-summer

Heterotrophy fall-winter
Why study Production and Respiration?

“Production and respiration are two sides of the same metabolic coin – the yin an yang of the biosphere”

Need for Real-time Observatories...
EPA-GLRI
Muskegon Lake Observatory Objectives

1. Establish a continuous time-series monitoring system to measure biological, chemical and physical characteristics.
2. Link data to regional/global observatory networks
3. Enable research, training, education and outreach
Observatory Components

- Surface Buoy w/ Wind, Temp., Pressure, Precipitation, Humidity Sensors
- Subsurface Buoy w/ Sensors
 - CTD, Turbidity
 - PAR, Chlorophyll
 - pH, Phycocyanin
 - DO, Nitrates
 - CDOM
- Temp Nodes (6)
- Acoustic Doppler Current Profiler
Parameters being measured

Biological Parameters
- Chlorophyll (algae)*
- Phycocyanin (cyanobacteria)*

Key nutrients:
- Nitrate
- Colored dissolved organic matter (CDOM)
- Phosphates ?....

Other Parameters
- Dissolved oxygen*
- PAR (light)
- Turbidity
- pH
- Conductivity
- Temperature*
- Depth
- Hydrodynamics (e.g., current speed/direction)

WetLabs
Cycle P Analyzer
See talk by Tom Holcomb today in Session – Toxins and Monitoring
2011: Temperature in Muskegon Lake

Warmer surface waters overlying cooler bottom waters July-Sept.
2011: Chllorophyll a and Phycocyanin

Increasing algal and cyanobacterial biomass with August peak
2011: Dissolved Oxygen

Development, persistence and decay of summer bottom water Hypoxia
Presence of lake-wide summer Hypoxia in bottom waters
Observations

• Findings from Discrete/Seasonal Measurements
 • Microbial respiration is a major fate of primary production in Lake Michigan and Muskegon Lake.
 • There are clear spring-summer net autotrophy and fall-winter net heterotrophy trends.

• Findings from Continuous Lake Observatories:
 • Muskegon Lake: Spring through fall, surface warms, biomass builds up and bottom water hypoxia appears and disappears.
 • Nearshore Lake Michigan...NOAA-GLERL?
 • Cross-Lake Processes...UWM-GLWI?
 • Continuous Lake Observing Systems are essential for Understanding Dynamic Ecosystem Change
Questions?

Muskegon Lake Sentinel: www.gvsu.edu/wri/buoy/

Acknowledgements:
AWRI, GVSU
EPA-GLRI
NOAA-GLERL
GLOS
Nexsens Technologies
Fondriest Environmental
A lake is the landscape’s most beautiful and expressive feature. It is earth’s eye: looking into which the beholder measures the depth of his own nature.”

Henry David Thoreau, WALDEN, 1854