Indiana DNR Division of Forestry

State Forest Properties

1996 through 2011

Forestry Best Management Practices Monitoring Results

By: Jennifer Sobecki and Duane A. McCoy
I. Executive Summary

II. Introduction

III. Methods
 A. BMP Monitoring Objectives
 B. Monitoring Team Selection
 C. Site Selection
 D. Monitoring Process

IV. Results
 A. Overall Application and Effectiveness
 B. BMPs by Category; Application & Effectiveness
 1. Access Roads
 2. Log Landings
 3. Skid Trails
 4. Stream Crossings
 5. Riparian Management Zones
 C. Yearly BMP Monitoring Trends

V. Discussion

VI. Recommendations

VII. Conclusions

Appendix A BMP Definition Clarification – 4 Foot Rule

Appendix B Indiana Forestry BMP Monitoring Worksheet (2000)
I. Executive Summary

Forestry BMP monitoring, as an internal audit by Division of Forestry personnel of all timber harvests on State Forest Properties, began on Nov. 1, 2000. Timber harvests being monitored were sold starting July 1, 1999 when Forestry BMPs were included on the timber sale contract and enforced, even though they commonly were practiced since the 1980’s. The Statewide Forestry BMP program conducted four rounds of monitoring before this time in which state properties were monitored by monitoring teams that included DoF personnel as well as private and industry individuals interested in forestry in the state. This report includes 361 timber harvests monitored for Forestry BMPs between Nov. 1, 1996 and Dec. 31, 2011, and ranging in size from one to 248 acres.

The overall rates for forestry BMPs on state forests since 1996 are 86.5% application and 93.1% effectiveness in protecting the soil and water quality of the 361 sites monitored. In other words, 86.5% of the practices were applied as directed in the BMP guidelines, and another 12.9% were classified as minor departures as defined in the monitoring sheet (Appendix B). Major departures (94) represent only 0.59% of all practices monitored. Of the total 361 sites monitored on State properties, only one application question (0.01%) has scored a “Total Negligence.”

Figure 1: Overall state forest BMP application percentages.
Figure 2: Overall state forest BMP effectiveness percentages.
II. Introduction

Indiana has 5.1 million acres of forestland, 22% of the state’s land base, providing many benefits to Indiana residents and wildlife. The State Forest system owns only 3.07% (156,600 acres) of Indiana’s forestland. However, state forestland is important to Hoosiers who frequently use state forest properties for various forms of recreation, including hiking, biking, hunting, fishing and wildlife watching. Since state forestland is important to the public, it is imperative that timber harvesting at state forests is done in a way that reduces environmental impacts as much as possible. Although forests are known to be the best way to reduce nonpoint source pollution (NPS) to waterways, they also can be a source of pollutants. When forest soils are bared, there is opportunity for NPS pollution to occur. Forestry Best Management Practices (BMPs) are employed to protect forest soils and water quality during and after a harvest.

Forestry BMPs are a foundation for water quality protection and guidelines for protecting water quality during forest operations. The purpose of BMPs is to minimize the impact of forest activities that may affect soil and water quality. This report is a summary of the application and effectiveness of BMPs for timber harvests conducted on state forest properties from the time they officially were placed in the contracts of all state forest timber sales in July 1999 through the present. Data covers all BMP monitoring on State Forest Properties, looking at time trends and making comparisons.

From July 1999 to winter 2003, BMP monitoring on state forests was conducted with the Watershed Conservation (WC) Forester and/or the License Timber Buyer (LTB) Forester from the Special Programs Section of the Division of Forestry, the Administering Forester of the timber harvest being monitored, an Administering Forester from another property, and the Property Specialist who administered the timber harvest program. The Property Specialist stopped coordinating and participating in the monitoring of sites late in 2003. In October 2004, the Division of Forestry started to change the monitoring system to a sampling method. The transition was halted during a change in Division leadership and subsequently returned to a 100% monitoring. At present, 100% of timber harvests are monitored after completion, but the monitoring team consists of a person from the State Forest BMP monitoring staff, and the Administering Forester of the timber harvest being monitored.

BMP Monitoring is a site evaluation based on the Indiana Logging and Forestry Best Management Practices: BMP Field Guide (BMP Field Guide) and Indiana’s Forestry BMP Monitoring Worksheet. Fifty-eight BMP specifications are evaluated under five forestry operation categories: 1) forest access roads, 2) log landings, 3) skid trails, 4) stream crossings, and 5) riparian management zones. Each BMP specification is rated for application of the BMP and the effectiveness in protecting the water quality. Seven general questions are posed on the evaluation dealing with the root of the noted failures and successes, and records other land uses on the site that could affect water quality.
III. Methods

A. BMP Monitoring Objectives

The objectives of BMP monitoring are: 1) to assess the effectiveness of BMP guidelines in minimizing soil erosion and stream sedimentation; 2) to provide information on the extent of BMP implementation, past and current; 3) to identify areas to focus future program training and educational efforts to improve BMP implementation and effectiveness; 4) to identify BMP specifications that may need technical modification; and 5) to identify improvements needed in future monitoring efforts.

B. Monitoring Team Selection

For State Forest Properties, we first tried to have the WC and LTB foresters come to every BMP monitoring. However, there were many sites at which one or the other was absent for personal or professional reasons, but the monitoring continued, which kept a good balance for consistency in the monitoring and results without the monitoring falling behind. There is now a BMP Monitoring staff that includes the LTB Forester and one or two intermittent positions whose focus is BMP monitoring.

The other participants are the Administering Forester and an Administering Forester from another property, which balances the team for input in the site evaluation of monitoring process and provides good training and discussion.

From July 1999 until 2003, the coordination of monitoring dates and people was carried out by the Property Specialist who also attended the monitoring of every timber harvest. This practice was discontinued when administrative duties increased for that position and coordination of monitoring was passed to the LTB forester.

C. Site Selection

Every timber harvest conducted on state forest property is monitored if the timber was sold after July 1999, unless the harvest occurred in order to change the land use. For example, Ferdinand State Forest had a site where timber was harvested before the area was cleared for a pipeline right-of-way. This kind of land-use change makes it impossible to monitor for forestry BMPs.
D. Monitoring Process

BMP monitoring is based on the evaluation of each specific practice for application and effectiveness. Application is the installation of a practice and the condition of the practice at the time of monitoring. Effectiveness is the level of success a practice has in the prevention of pollutants entering a water body or the level of impact the pollutant is having on the water body at the time of monitoring. It is possible to apply all of the BMPs properly and get a good score in application but still have soil entering a stream, which would call for a lower score in effectiveness. The opposite may be possible as well.

Monitoring on state forest properties follows the same format as all other forestry BMP monitoring in Indiana except that the team of monitors is made up of professionals with similar backgrounds. On any monitoring day, the team meets at the forest office and goes to the field to conduct the BMP monitoring on a harvest that is completed and closed. The team walks each part of the harvest area, covering all access roads, inspecting log landings, skid trails, riparian management zones, and stream crossings as suggested in the Indiana BMP Monitoring Protocol, and commenting on successes and departures from the BMP guidelines. Also, the person from the BMP Monitoring staff walks all intermittent or larger streams in or adjacent to the timber harvest area.
Once on the site, the state forest monitoring team walks the area and its adjacent and interior intermittent or larger streams carrying maps of the site, the BMP monitoring form and the BMP Field Guide. This allows each team member to evaluate the BMPs on the site. Once team members have walked most of the area, they come together to discuss each question on the BMP monitoring form until they reach consensus on both scores for each question.

On state forest properties, the definition of intermittent streams is focused on streams that are four feet wide at the bed of the stream or marked as mapped intermittent streams on U.S. Geological Survey quadrangle maps. This is done to more easily determine what streams need to be monitored for stream crossings and what streams need to have large woody debris caused by the harvest removed. A better history and definition for streams that qualified as four feet is in Appendix A.

IV. Results

A. Overall application and effectiveness

The BMP monitoring form includes 58 specifications that are evaluated on each site. To date, 361 state forest sites have been monitored. Therefore, when scores of 0 (questions not applicable) are removed from the dataset there are 15,880 questions answered in regard to BMP application and effectiveness of BMPs on State Forests. Overall BMP application on State Forest land is 86.5% with a 93.1% effectiveness rate. In other words, BMPs that were needed were implemented correctly 86.5% of the time and were effective at protecting water quality from NPS 93.1% of the time.

When looking at application, 86.5% of the 15,880 questions were answered with a “1,” which means the practice met the BMP guideline when it was needed. If an answer had a “0” in application, it meant the practice was not needed on the site and was not included in counting the percentage of application. A score of “2” or higher indicated departures from the BMP guidelines to some degree and occurred on 12.9% of all application scores that were tallied.

When looking at effectiveness, 93.1% of the 15,880 questions were answered with a “1,” which meant there was adequate protection of the water resource by the BMP guidelines. If an answer had a “0” in application, it meant the practice was not needed to protect water quality on the site and was not included in counting the percentage of effectiveness. A score of “2” or higher indicated a visible impact to water quality to some degree and occurred on 6.9% of all effectiveness scores that were tallied.

More detailed definitions can be found on the Forestry BMP Monitoring Worksheet (Appendix B).

B. BMPs by Category; Application & Effectiveness
1. Access Roads

Access road BMPs were applied correctly 94.9% of the time. All access road BMP specifications employed had a 98.3% effectiveness rate.

Table 1: Application and effectiveness of BMP specifications for access roads.

<table>
<thead>
<tr>
<th>Access Roads</th>
<th>% Application</th>
<th>% Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1. Uses existing routes where appropriate</td>
<td>99.7</td>
<td>99.7</td>
</tr>
<tr>
<td>A2. Adequate buffer strip next to watercourses and sensitive areas</td>
<td>94.4</td>
<td>98.7</td>
</tr>
<tr>
<td>A3. Avoids unstable gullies, seeps, very poorly drained areas</td>
<td>93.7</td>
<td>98.8</td>
</tr>
<tr>
<td>A4. Road grades are within standards</td>
<td>97.3</td>
<td>100.0</td>
</tr>
<tr>
<td>A5. Amount of roads minimized</td>
<td>99.7</td>
<td>100.0</td>
</tr>
<tr>
<td>A6. Stream crossings minimized</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>A7. Road excavation minimized</td>
<td>98.5</td>
<td>99.7</td>
</tr>
<tr>
<td>A8. Excavated and fill materials placed properly</td>
<td>98.8</td>
<td>99.1</td>
</tr>
<tr>
<td>A9. Roads constructed to drain well</td>
<td>83.7</td>
<td>96.7</td>
</tr>
<tr>
<td>A10. Appropriate road stabilization, drainage and diversions installed</td>
<td>81.8</td>
<td>94.2</td>
</tr>
<tr>
<td>A11. Water diversions functioning properly</td>
<td>89.2</td>
<td>96.3</td>
</tr>
<tr>
<td>A12. Runoff diverted onto stable forest floor areas</td>
<td>88.3</td>
<td>92.3</td>
</tr>
<tr>
<td>A13. Public road drainage system maintained</td>
<td>99.1</td>
<td>99.7</td>
</tr>
<tr>
<td>A14. Public road’s drainage maintained</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>A15. Traffic barriers installed</td>
<td>96.3</td>
<td>99.4</td>
</tr>
<tr>
<td>Overall Access Road</td>
<td>94.6</td>
<td>98.3</td>
</tr>
</tbody>
</table>

The only specification needing greater attention in application is the installation of drainage diversions and road stabilization. Although this area had an 81.8% application rate, there was a 94.2% effectiveness rate, indicating virtually no visible impact to water quality due to these departures. Many of the access roads are permanent fire trails or other roads that are used and maintained to varying degrees. Thus some are more structurally stable while others have had the diversions worn down by use over long periods. An effectiveness problem seems to occur in old access roads where the main goal was to get water off of the road and put it into the streams in order to get the water away as soon as possible. The Division of Forestry has been working to correct these problems over the long term.

2. Log Landings

Log landing BMPs were applied correctly 89.8% of the time. All log landing BMP specifications employed were 97.3% effective at protecting the water resources of the site.

Table 2: Application and effectiveness of the BMP specifications for log landings.

<table>
<thead>
<tr>
<th>Log Landings</th>
<th>% Application</th>
<th>% Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1. Suitable number and size of landings</td>
<td>92.5</td>
<td>98.3</td>
</tr>
<tr>
<td>Y2. Landings located outside RMZ</td>
<td>94.9</td>
<td>98.9</td>
</tr>
<tr>
<td>Y3. Landings located on stable areas</td>
<td>94.4</td>
<td>98.9</td>
</tr>
</tbody>
</table>
Y4. Excavation of site minimized 93.0 99.2
Y5. Landings avoid concentrating or collecting runoff 76.0 94.4
Y6. Landing’s runoff enters stable area 79.0 91.0
Y7. Proper water diversions in working order 87.0 95.9
Y8. Landing smoothed and soil stabilized 89.1 97.8
Y9. Landings free of fuel and lubricant spills and litter 92.7 98.6
Y10. Landing location suitable for equipment fueling and maintenance 99.7 100.0

Correct drainage of landings was the main problem area in this category, with an application rate of only 76%. However, the effectiveness rate was 94.4%. Therefore, even though some of the landings concentrated or collected runoff, resources of the sites were protected. There are also some departures, 79% in runoff entering stable area. However, this is adequate in protecting forest soil and water resources with an effectiveness rate of 91%.

3. Skid Trails

Skid trail BMPs were correctly applied 76.8% of the time. All of the skid trail BMP specifications employed were 89.5% effective at protecting the water resources of the sites.

Table 3: Application and effectiveness of BMP specifications for skid trails.

<table>
<thead>
<tr>
<th>Skid Trails</th>
<th>% Application</th>
<th>% Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. Uses existing routes were appropriate</td>
<td>98.3</td>
<td>99.1</td>
</tr>
<tr>
<td>S2. Adequate buffer strip next to water courses and sensitive areas</td>
<td>69.9</td>
<td>84.9</td>
</tr>
<tr>
<td>S3. Avoids steep and long straight grades (>20% for >200’)</td>
<td>74.5</td>
<td>96.0</td>
</tr>
<tr>
<td>S4. Avoids unstable gullies, seeps, poorly drained areas</td>
<td>77.9</td>
<td>90.8</td>
</tr>
<tr>
<td>S5. Amount of skid trails minimized</td>
<td>80.7</td>
<td>94.4</td>
</tr>
<tr>
<td>S6. Trail excavation minimized</td>
<td>87.1</td>
<td>96.9</td>
</tr>
<tr>
<td>S7. Appropriate drainage and diversions installed</td>
<td>45.2</td>
<td>80.1</td>
</tr>
<tr>
<td>S8. Water diversions in working order</td>
<td>81.0</td>
<td>90.4</td>
</tr>
<tr>
<td>S9. Runoff diverted onto stable forest floor areas</td>
<td>66.9</td>
<td>74.2</td>
</tr>
<tr>
<td>S10. Streams not used as skid trails (except for crossings)</td>
<td>87.5</td>
<td>88.4</td>
</tr>
<tr>
<td>Overall Skid Trail</td>
<td>76.8</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Skid trails often are in rough areas with limited options for diversion installation, and often there is debate as to whether or not diversions are necessary, thus the 45.2% application rate. Despite low application in this specification, the effectiveness rate is 80.1%. Runoff diverted onto the stable forest floor areas has a 66.9% application rate and a 74.2% effectiveness rate, with 62 out of 91 departures having indirect and temporary impacts, 18 having indirect and prolonged impacts, 10 having direct and temporary impacts, and one having direct and prolonged impact. Of the 356 sites having diversions on skid trails, 285 had no negative effect on water quality. Of the 71 sites with diversions that had effectiveness departures, 49 were indirect and temporary, 18 were indirect and prolonged, three were direct and temporary, and one was determined to have direct and prolonged impact.
4. Stream Crossings

Stream crossing BMPs were applied correctly 78.9% of the time. All stream crossing BMP specifications employed were 81.3% effective at protecting the water resources of the sites.

Table 4: Application and effectiveness of BMP specifications for stream crossings.

<table>
<thead>
<tr>
<th>Stream Crossing</th>
<th>% Application</th>
<th>% Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1. Number of crossings minimized</td>
<td>87.4</td>
<td>90.5</td>
</tr>
<tr>
<td>X2. Crossings minimize disturbance to the natural bed and banks</td>
<td>74.4</td>
<td>77.7</td>
</tr>
<tr>
<td>X3. Streambank approaches properly designed and stabilized</td>
<td>66.9</td>
<td>71.1</td>
</tr>
<tr>
<td>X4. Water runoff diverted from road prior to crossing</td>
<td>59.7</td>
<td>63.0</td>
</tr>
<tr>
<td>X5. Crossing as close to 90 degrees as practicable</td>
<td>86.8</td>
<td>91.7</td>
</tr>
<tr>
<td>X6. Crossing does not unduly restrict water flow</td>
<td>83.5</td>
<td>85.1</td>
</tr>
<tr>
<td>X7. Soil has not been used as fill in the stream (except culverts)</td>
<td>84.0</td>
<td>84.0</td>
</tr>
<tr>
<td>X8. Ford constructed of non erosive materials</td>
<td>94.0</td>
<td>93.0</td>
</tr>
<tr>
<td>X9. Fords have stable banks and streambeds</td>
<td>64.6</td>
<td>63.6</td>
</tr>
<tr>
<td>X10. Culverts are properly sized and installed</td>
<td>58.8</td>
<td>64.7</td>
</tr>
<tr>
<td>X11. Culverts clear of significant flow obstructions</td>
<td>76.5</td>
<td>82.4</td>
</tr>
<tr>
<td>X12. Temporary structures properly anchored</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>X13. Temporary structures and resulting obstructions removed</td>
<td>85.7</td>
<td>85.7</td>
</tr>
<tr>
<td>Stream Crossing</td>
<td>78.9</td>
<td>81.3</td>
</tr>
</tbody>
</table>

Stream crossings always deal directly with water bodies. Whether there are departures or not, there can be some impact to the water quality. If there is an impact, it will almost always be direct. The likely impacts of stream crossings are why managers will often avoid using them if possible. The avoidance of stream crossings by sale administrators and loggers is reflected in the statistic for stream crossings – only 121 sites (33.5%) out of 361 sites monitored that had at least one stream crossing. Sixty sites had only one crossing, 21 had two crossings, 15 had three crossings, five had four crossings, four had five crossings, three had six crossings, one had seven crossings, one had 10 crossings, and one had 13 crossings for a total of 235 crossings on state properties over a 15-year period. There were eight sites at which the number of crossings and corresponding widths were not recorded.

Unmapped intermittent stream crossings numbered at 100 (46% of crossings). In other words, they were classified as intermittent streams on the ground according to the “4-Foot Rule,” but the USGS quadrangle maps did not map them as intermittent streams. There were 128 crossings on intermittent streams identified on the USGS maps. There were seven crossings on perennial streams.

Stream crossings on state forest properties have been different because of the “4-Foot Rule” adopted as an automatic intermittent stream starting July 1, 1999 when BMPs officially were put in timber sale contracts. On other forest ownership types, the definition of an intermittent was defined in the BMP Field Guide and how the monitoring crew
interpreted what it saw on the site. As of July 1, 2010, the “Four-Foot Rule” gave way to consistency with the other properties as far as stream crossings were concerned. So, between July 1, 1999 and July 1, 2010, there may have been crossings counted on State Forest Properties that may not have been counted as crossings at any other time. Now all the ownerships are consistent in this matter.

5. Riparian Management Zones

Riparian management zone (RMZ) BMPs were applied correctly 83.8% of the time. All of the RMZ BMP specifications employed were 88.6% effective at protecting the water resources of the sites.

Table 5: Application and effectiveness of BMP specifications for Riparian Management Zones.

<table>
<thead>
<tr>
<th>Riparian Management Zones</th>
<th>% Application</th>
<th>% Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z2. Perennial & large intermittent streams clear of obstructing debris</td>
<td>67.0</td>
<td>69.3</td>
</tr>
<tr>
<td>Z3. Tree tops and cutoffs placed back from water course to prevent movement into streams during floods</td>
<td>89.3</td>
<td>93.7</td>
</tr>
<tr>
<td>Z4. RMZ free of excavated material & debris (other than above)</td>
<td>93.7</td>
<td>96.7</td>
</tr>
<tr>
<td>Z5. Less than 10% bare mineral soil exposed within RMZ (not including crossings)</td>
<td>98.2</td>
<td>99.4</td>
</tr>
<tr>
<td>Z6. Adequate tree stocking in primary RMZ next to perennial streams</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>Z7. RMZ free of roads and landings (except crossing)</td>
<td>70.0</td>
<td>92.5</td>
</tr>
<tr>
<td>Z8. Water diverted from roads before entering RMZ</td>
<td>87.0</td>
<td>91.7</td>
</tr>
<tr>
<td>Z9. Water diverted onto stable areas of the forest floor</td>
<td>88.5</td>
<td>92.5</td>
</tr>
<tr>
<td>Z10. Road and trail surfaces stabilized as needed within RMZ</td>
<td>92.0</td>
<td>92.8</td>
</tr>
<tr>
<td>Z11. Ephemeral channels free of excavated material</td>
<td>69.0</td>
<td>69.2</td>
</tr>
<tr>
<td>Riparian Management Zones</td>
<td>83.8</td>
<td>88.6</td>
</tr>
</tbody>
</table>

Out of 361 sites, 330 had a water body of some type that had a RMZ. In specification Z2, “streams clear of obstructing debris,” the application rate was 67% and the effectiveness rate was 69.3%. Of the 94 sites that had a departure in effectiveness for Z2, two were indirect and temporary, 18 direct and temporary, and 74 direct and prolonged. The nature of the debris would be prolonged unless it could be removed or mitigated in some way. Mitigation by removing debris is the standard recommendation. Roads and landings in the RMZ scored lower in application with a 70% but had 92.5% effectiveness. This suggests that although there were some roads or landings in the RMZ water quality of the sites was protected. In Z11 (“ephemeral channels free of excavated material”), there were 106 departures in application, 98 of which were minor and eight were major. There were 105 departures in effectiveness for Z11 specification; 57 with an indirect and temporary impact on soil and water quality, 46 indirect and temporary, and two direct and temporary impacts.

C. Yearly BMP Monitoring Trends

All monitoring rounds on state forest properties from 1996 to present were broken down to determine the overall application and effectiveness rates. Arranging the data in this manner
can be helpful in determining the presence of any possible trends. In Figure 4, it is apparent application and effectiveness rates are lower for all years following 1999. These lower numbers can be attributed to 1) the change in the “4-Foot Rule” at the beginning of the 2000 monitoring year, and 2) that internal BMP monitoring of state forest harvests was started that year.

Table 6: Overall application and effectiveness of all BMP monitoring rounds.

<table>
<thead>
<tr>
<th>Year</th>
<th>% Application rate</th>
<th>Effectiveness rate</th>
<th># sites (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>93.0</td>
<td>96.2</td>
<td>12.0</td>
</tr>
<tr>
<td>1997</td>
<td>93.5</td>
<td>95.8</td>
<td>7.0</td>
</tr>
<tr>
<td>1999</td>
<td>96.2</td>
<td>99.2</td>
<td>3.0</td>
</tr>
<tr>
<td>2000</td>
<td>87.1</td>
<td>94.6</td>
<td>15.0</td>
</tr>
<tr>
<td>2001</td>
<td>87.9</td>
<td>89.2</td>
<td>19.0</td>
</tr>
<tr>
<td>2002</td>
<td>89.6</td>
<td>94.6</td>
<td>25.0</td>
</tr>
<tr>
<td>2003</td>
<td>83.6</td>
<td>91.7</td>
<td>15.0</td>
</tr>
<tr>
<td>2004</td>
<td>83.5</td>
<td>92.2</td>
<td>21.0</td>
</tr>
<tr>
<td>2005</td>
<td>89.8</td>
<td>95.6</td>
<td>22.0</td>
</tr>
<tr>
<td>2006</td>
<td>92.6</td>
<td>96.0</td>
<td>25.0</td>
</tr>
<tr>
<td>2007</td>
<td>89.3</td>
<td>95.7</td>
<td>26.0</td>
</tr>
<tr>
<td>2008</td>
<td>84.0</td>
<td>92.9</td>
<td>47.0</td>
</tr>
<tr>
<td>2009</td>
<td>82.9</td>
<td>90.6</td>
<td>48.0</td>
</tr>
<tr>
<td>2010</td>
<td>84.2</td>
<td>91.4</td>
<td>24.0</td>
</tr>
<tr>
<td>2011</td>
<td>84.8</td>
<td>91.3</td>
<td>52.0</td>
</tr>
<tr>
<td>Overall</td>
<td>87</td>
<td>93.6</td>
<td>361</td>
</tr>
</tbody>
</table>
D. Overall Site Ratings

On the final page of the monitoring form, there is an opportunity for each site monitor to rank his or her overall subjective impression of the site’s BMP application and effectiveness (Appendix B). Sites can be rated from 1 to 4.

The application rating scale is: 1=above average, 2=average, 3=poor, 4=total negligence. The effectiveness rating scale is: 1= no visible impact, 2=slight, 3=moderate, 4=severe. Table 6 shows the average ratings for all the sites monitored on the state forests. The overall site rating is an average of the application and effectiveness ratings. On average the monitors found BMPs to be applied between average and above average. They also found effectiveness of sites, on average, to have between no visible impact and slight impact.

Table 7. The average site ratings for application, effectiveness and the overall site rating.
V. Discussion

The overall BMP application rate was 86.5% at the time of this report. BMPs on state forest properties were also found to be 93.1% effective at protecting water quality. Time trends show that as BMP monitoring became internal to the Division of Forestry, the application rate declined, not because application of BMPs on state properties dropped but because the standard of BMPs on state forest properties was being raised. The effectiveness scores have remained consistent over the years; evidence that BMPs always were practiced.

Also, the implementation of the “4-Foot Rule” tightened the restriction of tops in the stream on state properties, which is always a 4 or 5 in effectiveness but is often mitigated by being cleaned out soon after the monitoring, unless there is another reason the Administrating Forester has for keeping the top in the stream, such as stream restoration or wildlife habitat. A spreadsheet of sites with departures requiring mitigation is maintained. When mitigation takes place it is noted in the spreadsheet.

In looking at the application rate, the 1s (meets requirement) were at 86.5%; the 2s (minor departure) accounted for 12.9%; the 3s (major departures) accounted for 0.59%. The one application score out of 15,880 with a score of 4 (total negligence) was the result of vandals cutting hydraulic lines and throwing a 5-gallon gas can into a wildlife pond at Martin State Forest.

In effectiveness, 1s (adequate protection) accounted for 93.1% of a total of 15,880 scores; 2.8% were 2s (indirect and temporary impacts), 0.95% were 3s (indirect and prolonged), 1.9% were 4s (direct and temporary), and 1.3% were 5s (direct and prolonged).

The high application and effectiveness scores show there are many sound practices taking place on state forest timber harvest sites to maintain the integrity of the soil and water resources. When there are problems in either application or effectiveness, they are mostly minor and short term.

BMPs in access roads and log landings had little to no effect on water quality. Roads and landings are established with the knowledge these are areas where the concentration and amount of repeated traffic will be highest. During site planning and layout, managers will put roads and landings on the most stable areas outside RMZs (94.4% and 94.9% application, respectively). Sometimes site landform and characteristics force the roads to cross streams or be in a RMZ or force landings to be within a RMZ, in which case, managers are more thoughtful and careful about how the harvest and closeout are carried out (98.7% and 98.9% effectiveness, respectively). The results of the monitoring show the above inferences to be true by having all effectiveness scores in both categories above 95%.
For skid trails, 76.8% of the application scores were 1, but effectiveness scores of 1 account for 89.5%, showing a difficulty in implementing some practices within the guidelines but affecting water quality to some degree only 10.5% of the time. Skid trails can have a spectrum of disturbance levels depending on how often equipment drives over a particular point on the ground. For instance, the main trail just off the landing would have a higher disturbance level because all harvested logs have to be moved to the landing, while an area traveled over only twice – once to access trees and the other pulling the logs out – has a much lower level of disturbance. Also, skid trails go to areas that other equipment cannot access, so it may cross drainages, travel down or across hill slopes, or go into areas that are wet most of the time. Therefore, most of the application and effectiveness issues of a site are from skid trails. Also, most closeout practices are put in place with limited space as landforms, and adjacent vegetation will often limit the equipment’s ability to place structures where they would be most effective. This causes minor departures in application (22% of skid trail application scores are minor departures) with little to no effect on water quality.

Stream crossings are difficult to use without having some impact to water quality. The stream crossings cross some sort of water body, so any impact would be direct in effectiveness causing a 4 or 5 as an effectiveness score if anything goes wrong. Consequently, the Division of Forestry tries to avoid crossing streams if possible and still be able to access the site. Of 361 sites, only 33.5% (121 sites) had stream crossings. At those 121 sites, there were 235 crossings; 128 on mapped intermittent streams, 100 on unmapped intermittent streams, and seven on perennial streams. In stream crossing applications, 78.9% of the practices were implemented within guidelines and had an 81.3% effectiveness score. As mentioned, stream crossings have a direct effect according to the definitions in effectiveness scoring. There is only one score (0.1%) of 2 and no scores of 3 in effectiveness, but 11.7% of the effectiveness scores had a 4 (direct and temporary impacts) and 6.9% had a score of 5 (direct and prolonged impacts). There was an average of 1.9 crossings for the 121 sites that had a crossing.

RMZs are much like stream crossings in that they are in close proximity to water bodies. If there is a problem, it often leads to direct impacts to water quality, so managers often try to avoid placing high impact infrastructure like access roads or landings in RMZs unless they already exist. There were 330 sites with at least one RMZ; 199 had no roads or landings. Eleven sites had no information on roads or landings in the RMZ. Of 330 sites with at least one RMZ, 224 (70%) had no skid trails or landings in the RMZ. There were 96 sites with skid trails and or landings in the RMZ; 72 had no impact to water quality, four had an indirect and temporary effect, one had an indirect and prolonged effect, 16 had a direct but temporary effect, and three had a direct and prolonged effect.

VI. Recommendations

- Concentrate on areas where problems are more common, such as skid trails, RMZs, and stream crossings.
- Continue to emphasize importance of diverting water before it concentrates on roads, landings, skid trails and enters streams and RMZs.

- Continue providing BMP educational information and programs for loggers and resource professionals that work on state properties. If there is an area of concern on state properties, focus training on that area.

VII. Conclusions

The Indiana Forestry BMP Guidelines are scrutinized and enforced on state forest properties more than any other general landowner category in the state of Indiana. When the internal inspections began, the application scores actually dropped due to the standards on the state forest properties being raised by factors such as the “4-Foot Rule.” However, effectiveness in protecting water quality, which is the main goal of Indiana’s Forestry BMPs, has always been high and continues at the time of this report.

Our state forest system has diverse uses. It is the responsibility of the Division of Forestry to ensure forest resources are protected. Forestry BMPs are the means used to safeguard harvest sites by eliminating or reducing soil erosion on disturbed ground. Minimal soil erosion allows for quick recovery of the site because the topsoil is still in place to allow for natural succession to take place. Limited sedimentation to the surface waters of the forest protects or restores water quality.
Appendix A

BMP Definition Clarification – 4-Foot Rule

Background

The BMP Field Guide states, “Remove felled tops and logging debris from the channels of perennial and large intermittent streams.” On the BMP Monitor Sheet (expanded) the definition of the streams was further defined as “…wider than 6’…” The purpose was to identify a specified width for monitoring purposes rather than leaving a vague descriptive term (e.g. large intermittent). It should be realized that BMPs are guidelines. In some instances even a 6-foot width may not be “large” while in other situations more narrow streams may be large from a hydrological standpoint. Foresters therefore are expected to interpret the local hydrology and make on-site determinations when applying BMPs. This is clearly true for this BMP standard.

At the start of BMP monitoring on State Forests, it was decided to try to adhere to a tighter standard for streams on State Forests; hence the 4-foot standard for large intermittent streams. This would serve both as a demonstration of commitment to water quality and as a demonstration and test of a tighter standard.

Variable stream width cropped up as a problem early in this process, requiring clarification of stream width. Streams would widen out over four feet then narrow to less than four feet. This created a burden of trying to find the last point upstream that a stream was four feet wide. To solve this, it was decided that to meet the 4-Foot Rule, a stream had to be consistently four-feet wide or wider. This solved some concerns, but there are other concerns, such as what debris needs to be removed and where a stream is consistently four-feet wide or wider.

Below is the latest attempt to clarify the 4-Four-Rule. This covers the definition of the stream and what debris is to be removed.

Removing Logging Debris from Streams – 4-Foot Rule

To meet the BMP Field Guide guidelines for riparian zones that states “Remove felled tops and logging debris from the channels of perennial and large intermittent streams,” the BMP Monitor Sheet has Item Z2 “Perennial & large intermittent streams clear of obstructing debris.” On state forests, all streams that are to meet this standard will have a clearly defined bed with a width that equals or exceeds four feet.

The bed is that portion of the stream that is the lowest level where water commonly flows at typical (not storm) levels. This generally will be at the base of the banks and will usually consist of aggregate or exposed alluvium. The bed generally will be free of any significant vegetation because of the regular scouring and water flows. An area with a strong, well-rooted vegetative component with a relatively stable soil surface will not be considered
streambed. In streams where the channel is strewn with large rocks, the bed will be the area of smaller gravel at the base of the large rocks.

The stream will be considered four feet or wider until the bed, moving upstream, reaches the first point where the stream bed width drops below four feet for a lineal distance of 10 feet or more. Any portion of the drainage system up stream of this point will not be subject to the debris removal guidelines for large intermittent streams, and debris left in these portions of the drainage will not be considered a departure during monitoring.

Downstream of the identified four-foot-wide point, all logging debris, except as noted below, that will come in contact with the water when the stream is “bank full” and impede or divert stream flow must be removed from the stream channel. Unattached, individual pieces of debris less than two inches in diameter or less than four feet in length ordinarily will not impede flow and does not need to be removed. Debris that bridges the stream channel from top of bank to top of bank, does not impede flow, and is unlikely to fall into the stream channel within one year is not required to be removed. Debris less than two inches in diameter obstructing less than 20% of the stream channel does not need to be removed.

Debris removal is to be accomplished in a manner that minimizes disturbance to the stream banks. The recommended method of removal is to pull the material free of the channel using a cable skidder or other equipment that is kept back from the stream edges. Another option is to cut debris into smaller pieces that can be removed from the channel or would no longer impede flow. Equipment should not be used in the stream channel to push the material out of the channel. Careful marking of the trees to be harvested, use of directional felling, and clearly explaining the BMP requirements during the pre-harvest conference will minimize the amount of debris that must be removed from stream channels.

The point where the stream channel reaches the four-foot width threshold should be clearly delineated in harvest areas. While upstream of this point will not be considered subject to debris removal from streams, care should be taken to avoid excessive, intentional deposition of debris in all naturally occurring drainage features regardless of size. Excessive piling (beyond felling) of debris in any drainage that severely impedes flow may be considered a departure.
Appendix B

FORESTRY BMP MONITORING WORKSHEET

(2000)

<table>
<thead>
<tr>
<th>DATE INSPECTED:</th>
<th>TEAM:</th>
<th>OWNER:</th>
<th>PHONE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COUNTY: __________________ Site #: __________ ACRES HARVESTED: __________________

CIVIL TWP: __________________ USGS QUAD: __________________

SEC: ______ TWP: ______ RANGE: ______

MAJOR WATERSHED: __________________

DATE OF ACTIVITY: __________________

HARVEST EQUIPMENT USED: Dozer: __ Skidder: __ Horses: __ Other: __

SITE CONDITIONS

<table>
<thead>
<tr>
<th>TERRAIN: BOTTOMLAND %</th>
<th>RIDGES %</th>
<th>SIDE SLOPES %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SLOPE STEEPNESS: (2-6%) (6-12%) (12-20%) (20+%)

LAKES PRESENT: name: __________________ shore length: ______________

PERENNIAL STREAMS PRESENT: name: __________________ width: __________ length: __________

SINKHOLES PRESENT: Yes____ No____ FLOWING SPRINGS PRESENT: Yes____ No____

OPEN WATER WETLANDS PRESENT: Yes____ No____

FOR OFFICE USE – DO NOT COMPLETE

OPERATOR/FORESTER: (leave blank) __________________________

APPLICATION

0--The Practice Not Needed or Applied on Site
1--Operation Meets Requirement of Bmp
2--Minor Departure from Bmp
3--Major Departure from Bmp
4--Gross Neglect of Bmp

EFFECTIVENESS

1--Adequate Protection of Water Resources.
2--Indirect and Temporary Impacts on Water Resources.
3--Indirect and Prolonged Impacts on Water Resources.
4--Direct and Temporary Impacts on Water Resources.
5--Direct and Prolonged Impacts on Water Resources.

APPLICATION DEFINITIONS (BY EXAMPLE)

MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams.

MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams.

GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts.

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.

INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.

DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.

TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.

PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

It is possible to have a departure from BMPs and still have adequate protection.
<table>
<thead>
<tr>
<th>ACCESS ROADS</th>
<th>APPLICATION (0-4)</th>
<th>EFFECTIVENESS (1-5)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There is no access road present
(If true, do not answer questions below)

A1. Uses existing routes where appropriate
A2. Adequate buffer strip next to watercourses and sensitive areas
A3. Avoids unstable gullies, seeps, very poorly drained areas
A4. Road grades are within standards
A5. Amount of roads minimized
A6. Stream crossings minimized
A7. Road excavation minimized
A8. Excavated and fill materials placed appropriately
A9. Roads constructed to drain well
A10. Appropriate road stabilization, drainage & diversions installed

X=applied
water bars_____ dips/rolls_____ outslopes_____ berms cut_____ culverts_____ geotextile____ rock____ seed____ mulch_____

A11. Water diversions are in working order (____% working)

Failure due to: installation, damage, location, timing, weather, other

A12. Runoff diverted onto stable forest floor areas
A13. Mud kept off public roadways
A14. Public road drainage system maintained
A15. Appropriate traffic barriers installed

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0--The Practice Not Applicable</td>
<td>1--Adequate Protection of Water Resources.</td>
</tr>
<tr>
<td>1--Operation Meets Requirement of Bmp</td>
<td>2--Indirect and Temporary Impacts on Water Resources</td>
</tr>
<tr>
<td>2--Minor Departure from Bmp</td>
<td>3--Indirect and Prolonged Impacts on Water Resources.</td>
</tr>
<tr>
<td>3--Major Departure from Bmp</td>
<td>4--Direct and Temporary Impacts on Water Resources.</td>
</tr>
<tr>
<td>4--Gross Neglect of Bmp</td>
<td>5--Direct and Prolonged Impacts on Water Resources.</td>
</tr>
</tbody>
</table>

APPLICATION DEFINITIONS (BY EXAMPLE)

MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams
MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams
GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.
INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.
DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.
TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.
PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

*It is possible to have a departure from BMPS and still have adequate protection.
<table>
<thead>
<tr>
<th>LOG LANDINGS</th>
<th>APPLICATION (0-4)</th>
<th>EFFECTIVENESS (1-5)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y1. Suitable number and size of landings
Y2. Landings located outside RMZ
Y3. Landings located on stable areas
Y4. Excavation of site minimized
Y5. Landings avoid concentrating or collecting runoff
Y6. Landing's runoff enters stable area
Y7. Proper water diversions in working order
Y8. Landing smoothed and soil stabilized
Y9. Landings free of fuel and lubricant spills and litter
Y10. Landing location suitable for equipment fueling and maintenance

Number of log landings __________ Size: (acres) ______________.

APPLICATION DEFINITIONS (BY EXAMPLE)

0--The Practice Not Applicable
1--Operation Meets Requirement of Bmp
2--Minor Departure from Bmp
3--Major Departure from Bmp
4--Gross Neglect of Bmp

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

1--Adequate Protection of Water Resources.
2--Indirect and Temporary Impacts on Water Resources.
3--Indirect and Prolonged Impacts on Water Resources.
4--Direct and Temporary Impacts on Water Resources.
5--Direct and Prolonged Impacts on Water Resources.

APPLICATION DEFINITIONS (BY EXAMPLE)

MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams
MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams
GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.
INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.
DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.
TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.
PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

*It is possible to have a departure from BMP’s and still have adequate protection.
<table>
<thead>
<tr>
<th>SKID TRAILS</th>
<th>APPLICATION (0-4)</th>
<th>EFFECTIVENESS (1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS

S1. Uses existing routes where appropriate

S2. Adequate buffer strip next to watercourses & sensitive areas

S3. Avoids steep and long straight grades (>20% for >200')

S4. Avoids unstable gullies, seeps, poorly drained areas

S5. Amount of skid trails minimized

S6. Trail excavation minimized

S7. Appropriate drainage and diversions installed

X= applied water bars____ outslopes____ dips/rolls____ berms cut____ culverts____ seed____ mulch____ rock____ other____

S8. Water diversions in working order (____% working)

Failure due to: installation, damage, location, timing, weather, other

S9. Runoff diverted onto stable forest floor areas

S10. Streams not used as skid trails (except crossings)

Types of streams involved and length of disturbance: perennial______, mapped intermittent________.

Unmapped intermittent______, ephemeral__________.

APPLICATION DEFINITIONS (BY EXAMPLE)

MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams

MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams

GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.

INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.

DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.

TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.

PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

*It is possible to have a departure from BMPs and still have adequate protection.
<table>
<thead>
<tr>
<th>STREAM CROSSINGS</th>
<th>APPLICATION (0-4)</th>
<th>EFFECTIVENESS (1-5)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1. Number of crossings minimized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2. Crossings minimize disturbance to the natural bed & banks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3. Streambank approaches properly designed and stabilized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4. Water runoff diverted from road prior to crossing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5. Crossing as close to 90 degree angle as practicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6. Crossing does not unduly restrict water flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7. Soil has not been used as fill in the stream (except culverts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8. Ford constructed of non erosive materials that will not degrade water quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9. Fords have stable banks and streambed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X10. Culverts are properly sized and installed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X11. Culverts clear of significant flow obstructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X12. Temporary structures properly anchored</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X13. Temporary structures and resulting obstructions removed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of perennial crossings ____________ widths ________.
Number of intermittent crossings ____________ widths ________ Number of unmapped intermittents widths ________.

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0--The Practice Not Needed or Applied on Site</td>
<td>1--Adequate Protection of Water Resources.</td>
</tr>
<tr>
<td>1--Operation Meets Requirement of Bmp</td>
<td>2--Indirect and Temporary Impacts on Water Resources.</td>
</tr>
<tr>
<td>2--Minor Departure from Bmp</td>
<td>3--Indirect and Prolonged Impacts on Water Resources.</td>
</tr>
<tr>
<td>3--Major Departure from Bmp</td>
<td>4--Direct and Temporary Impacts on Water Resources.</td>
</tr>
<tr>
<td>4--Gross Neglect of Bmp</td>
<td>5--Direct and Prolonged Impacts on Water Resources.</td>
</tr>
</tbody>
</table>

APPLICATION DEFINITIONS (BY EXAMPLE)
MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams
MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams
GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)
ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.
INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.
DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.
TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.
PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

*It is possible to have a departure from BMPs and still have adequate protection.
RIPARIAN MANAGEMENT ZONES

<table>
<thead>
<tr>
<th>APPLICATION (0-4)</th>
<th>EFFECTIVENESS (1-5)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1. RMZ present on this site include: _____ lakes, _____ rivers, _____ perennial streams, _____ intermittent streams, _____ sinkhole openings (specify), _____ open water wetlands, _____ unmapped intermittent streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z2. Perennial & large intermittent streams clear of obstructing logging debris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z3. Logging debris placed back from watercourse to prevent movement into streams during floods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z4. RMZ free of piled slash, debris and fill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z5. Less than 10% bare mineral soil scattered within RMZ - not including crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z6. Adequate tree stocking in primary RMZ next to perennial streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z7. RMZ free of roads and landings (except crossings)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were roads pre-existing? ________</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z8. Water diverted from roads before entering RMZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z9. Water diverted onto stable areas of the forest floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z10. Road and trail surfaces stabilized as needed within RMZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z11. Ephemeral channels free of excavated material</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATION DEFINITIONS (BY EXAMPLE)

MINOR DEPARTURE: Practice not clearly needed; attempted practice but poorly applied; small potential for soil to reach streams

MAJOR DEPARTURE: Practice clearly needed; common departures from practice; large potential for soil to reach streams

GROSS NEGLECT: No attempt at application; total disregard for water quality; large and direct impacts

EFFECTIVENESS DEFINITIONS (BY EXAMPLE)

ADEQUATE: Small amount of material eroded; material does not reach drainages, streams, lakes or sinkhole openings.

INDIRECT IMPACT: Erosion and delivery of material to drainages (including ephemerals) but not to intermittent or perennial streams, lakes or sinkhole openings.

DIRECT IMPACT: Erosion and subsequent delivery of sediment to intermittent or perennial streams, lakes or sinkhole openings.

TEMPORARY IMPACT: Impacts lasting one year or less; no more than one runoff season; small amount of material involved.

PROLONGED IMPACT: Impacts lasting more than one year; large amount of material involved.

It is possible to have a departure from BMPS and still have adequate protection.
SUPPLEMENTAL QUESTIONS AND SUMMARY

1) WHAT WENT RIGHT ON THIS SITE? (SUMMARIZE HIGHLIGHTS)

2) WHAT WENT WRONG ON THIS SITE? (SUMMARIZE PROBLEMS)

3) HAVE OTHER ACTIVITIES OCCURRED ON THIS SITE THAT POTENTIALLY IMPACT WATER QUALITY? (E.G. ATV use, vehicle traffic, grazing, etc.)
 If so, please explain.

4) WERE TRAFFIC BARRIERS IN PLACE TO PREVENT TRESPASS DAMAGE? ____________
 WHAT KIND OF TRESPASS DAMAGE WAS OBSERVED?

5) ARE THERE MITIGATING ACTIVITIES THAT SHOULD TAKE PLACE ON THIS SITE OR IS CORRECTIVE ACTION ALREADY BEING TAKEN.

6) -HAS THE SALE ADMINISTRATOR RECEIVED BMP TRAINING? Yes____ No____ Unknown____.
 - HAS THE OPERATOR (LOGGER) RECEIVED ANY BMP TRAINING? Yes___ No__ Unknown__.
 - WAS THE SALE ADMINISTERED BY A FORESTER? Yes___ No__ Unknown__.
 - IS THE LANDOWNER AWARE OF BMPs? Yes___ No__ Unknown__.

7) GIVE THIS SITE AN OVERALL RATING OF 1-8 COMBINING APPLICATION OF BMPs WITH IMPACT TO WATER QUALITY.

 RATE THIS SITE FROM 1-4 FOR THE OVERALL APPLICATION OF BMPs _______
 1=above average 2=average 3=poor 4=total negligence

 RATE THIS SITE FROM 1-4 FOR ITS OVERALL IMPACT TO WATER QUALITY _______
 1= no visible impact 2=slight 3=moderate 4=severe

 SITE RATING _______/2=_______

Note: These numbers do no necessarily need to directly reflect the worksheet ratings for application or effectiveness
Field Guide Cross Reference

On this page is each question in the monitoring sheet and the corresponding pages on the subject in the BMP Field Guide.

ACCESS Roads == Section II, pages 8-16
- **A1** == pages 4, 8, 10
- **A2** == pages 8, 9, 12, Section V page 32, 33, Table 4 page 34, 35
- **A3** == page 8
- **A4** == page 8
- **A5** == page 10
- **A6** == page 8 and Section IV page 24 – 30
- **A7** == pages 8, 10
- **A8** == pages 10, 12, 24, 29
- **A9** == pages 8, 10, Table 1 page 11, 12
- **A10** = pages 8, 10 Table 1 page 11, 12, 14, 15, Table 2 page 21, 22

X=Applied == (waterbars, pages 21-22), (dips/rolls, pages 21-22), (outslopes, Glossary), (berms cut, Glossary),
(culverts, pages 27-28), (geotextile, Glossary), (rock, page 10), (seed, Appendix A), (mulch, Appendix A).
- **A11** = pages 14, 15, Table 1 page 11, 18, Table 2 page 21
- **A12** = page 10
- **A13** = pages 13, 14
- **A14** = page 14

LOG LANDINGS == Section IV, pages 36-40
- **Y1** == pages 36, 39
- **Y2** == Table 4 page 34, 36
- **Y3** == page 36
- **Y4** == page 38
- **Y5** == pages 36, 38-40
- **Y6** == pages 38-40
- **Y7** == pages 38-40
- **Y8** == pages 38-40
- **Y9** == pages 39, 40
- **Y10** = page 39

SKID TRAILS == Section III, pages 18-22
- **S1** == pages 4, 18
- **S2** == pages 18, 20, Section V pages 32-35
- **S3** == page 18
- **S4** == page 18
- **S5** == page 18
- **S6** == page 18
- **S7** == Table 1 page 11, pages 18-20, Table 2 page 21, 22, 27, 28

X=Applied == (waterbars, pages 21-22), (dips/rolls, pages 21-22), (outslopes, Glossary), (berms cut, Glossary),
(culverts, pages 27-28), (geotextile, Glossary), (rock, page 10), (seed, Appendix A), (mulch, Appendix A).
- **S8** == Table 1 page 11, pages 14, 15, 20 Table 2 page 21
- **S9** == page 20
- **S10** = pages 18-20, Section IV pages 24-30

Types of Streams == page 24, Glossary, and Section V pages 32-35

STREAM CROSSINGS == Section IV, pages 24-30
- **X1** == page 24
- **X2** == page 24
- **X3** == pages 24, 25
- **X4** == pages 24, 25
- **X5** == page 24
- **X6** == pages 24-26, 28
- **X7** == pages 24, 29
- **X8** == pages 24, 29
- **X9** == pages 24, 25, 29
- **X10** = pages 25, 27, Table 3 page 28
- **X11** = pages 24, 27, 28
- **X12** = pages 25, 26
- **X13** = pages 25-29

RIPARIAN MANAGEMENT ZONES == Section V, pages 32-35
- **Z1** == pages 32, 34, Glossary
- **Z2** == page 33
- **Z3** == pages 32-34
- **Z4** == pages 32-34