# **GEOTECHNICAL EVALUATION**

# REDBIRD SRA ACCESS ROAD IMPROVEMENTS GREENE COUNTY, INDIANA

**Prepared for** 

HWC ENGINEERING 135 NORTH PENNSYLVANIA STREET, SUITE 2800 INDIANAPOLIS, INDIANA 46204

By

EARTH EXPLORATION, INC. 7770 WEST NEW YORK STREET INDIANAPOLIS, INDIANA 46214-2988

December 3, 2018

December 3, 2018

Mr. Paul Lincks, P.E. HWC Engineering 135 North Pennsylvania Street, Suite 2800 Indianapolis, IN 46204

Re: Geotechnical Evaluation Redbird SRA Access Road Improvements Greene County, Indiana Earth Exploration, Inc. Project No. CJ185109 HWC Project No. 2017-276-S



In accordance with your request, we have completed our geotechnical evaluation for the referenced project. This report presents the results of our subsurface exploratory and laboratory testing programs and provides geotechnical recommendations for design and construction of the proposed roadway improvements. The work for this project was authorized by HWC Engineering (HWC) via acceptance of Earth Exploration, Inc. (EEI) Proposal No. PCJ185109 dated September 25, 2018.

The opinions and recommendations provided herein are based, in part, on our interpretation of the subsurface information revealed at the exploratory locations as indicated on the attached Test Boring Location Plan (Drawing No. CJ185109.B1). Understandably, this report does not reflect variations in subsurface conditions between or beyond these locations. Therefore, variations in these conditions can be expected, and fluctuation of any groundwater level(s) will occur with time. A discussion of important limitations of a geotechnical report is attached for your information.

# **PROJECT DESCRIPTION**

We understand that representatives of the Indiana Department of Natural Resources (IDNR) are planning to make improvements to an existing gravel haul road located in the Redbird State Forest. We understand that the existing gravel road is being used to access a recreational area which is an abandoned strip mine facility. We understand that the INDOT Standard Specifications (ISS) will be utilized for the design and construction of the proposed improvements. Based on our correspondence along with a review of the preliminary plans, the improvements are anticipated to include the construction of a new 24 ft in width asphaltic concrete (HMA) roadway from County Road 350 North to the Whitetail shelter house for a total length of about 1 mi. In addition, associated HMA parking areas are proposed along the roadway. Based on the plans, earth cuts and fill are generally not anticipated to exceed about 2 ft except near the southern portion of the alignment (i.e., near Sta. 11+50 to 13+00) where fill on the order of 4 to 11 ft is planned to achieve proposed grade with maximum side slopes of 2H:1V.

Additional project information such as construction schedule was not available at the time of this report. In the event that the nature, design or location of the proposed construction changes, the conclusions and recommendations obtained in this report shall not be considered valid unless the changes are reviewed, and the conclusions are modified or confirmed in writing by Earth Exploration, Inc. (EEI).



7770 West New York Street Indianapolis, IN 46214 (317) 273 1690 (317) 273 2250 (FAX)

# FIELD EXPLORATION AND LABORATORY TESTING

The subsurface conditions for the proposed improvements were explored by performing two borings near the highest fill area (designated B-1 and B-2) to depths ranging from about 19 to 30 ft below the existing ground surface, two roadway borings (designated RB-1 and RB-2) to a depth of 5 ft, and two parking area borings (designated P-1 and P-2) to a depth of 10 ft. The number, location, and depth of the exploratory locations were selected by EEI based on our understanding of the design and construction needs for the project. The exploratory locations were marked in the field by EEI personnel using a hand-held GPS. Furthermore, ground surface elevations at the boring locations were interpolated to the nearest 1-ft based on topographic information provided on the plans. The exploratory locations and elevations should be considered accurate only to the degree implied by the methods used.

The exploratory field activities were performed by EEI on November 1 and 2, 2018 using ATV-mounted equipment and 3¼-in I.D. hollow stem augers to advance the boreholes. Relatively disturbed samples of the soil strata were obtained using Standard Penetration Test (SPT) procedures. In addition, a relatively undisturbed sample was obtained using a thin-walled tube sampler (Shelby tube) near a depth of 5 to 7 ft from an offset location at Boring P-1. After obtaining groundwater observations, each borehole was backfilled with auger cuttings and a bentonite chip plug was placed near the surface.

Following the field activities, the soil/rock samples were visually classified by an EEI engineering technician and reviewed by an EEI geotechnical engineer. After visually classifying the soil and rock, representative samples were selected for index testing. The laboratory testing program included the following:

- Natural moisture content tests;
- · Grain sized distribution;
- · Atterberg limit determinations;
- Soil pH;
- Soluble sulfate concentration; and
- Hand penetrometer readings (q<sub>p</sub>)

The results of these tests are provided on the attached boring logs and/or respective laboratory reports. Soil classifications on the boring logs are according to the Unified Soil Classification System (USCS). Further details regarding the classification system are provided in the Unified Soil Classification System/General Notes. The boring logs represent our interpretation of the individual samples, field logs, and results of the laboratory tests. The stratification lines on the boring logs represent the approximate boundary between soil types; although, the transition may actually be gradual.

# SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration, and our review of readily available aerial photographs.

FARTH EXPLORATION

| Item                     | Description                                                                                                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parcel Information       | The project site is located in the Redbird State Forest located at 15298 West County<br>Road 350 North in Lizton, Indiana.<br>See the Test Boring Location Plan (Drawing No. CJ185109.B1) in the attachments. |
| Existing<br>Improvements | The area surrounding the existing gravel roadway generally consists of heavily wooded areas.                                                                                                                  |
| Current Ground<br>Cover  | Topsoil (5 to 11 in.) and crushed stone (6 in.)                                                                                                                                                               |
| Existing Topography      | Per topographic information provided by HWC, ground surface elevations at the boring locations vary from about El. 569 to 596.                                                                                |

# SUBSURFACE CONDITIONS

### Roadway (Borings B-1, B-2, RB-1, and RB-2)

Based on our observations, the subsurface soils observed in the area of the proposed roadway generally consisted of cohesive soils (lean clay, sandy clay, and silty clay) to depths of about  $5\frac{1}{2}$  to 10 ft below the existing ground surface. Below these depths, weathered sandstone and shale was observed to the maximum depth explored in Borings B-1 and B-2. Note that the sandstone seam was observed above the shale at Boring B-1. An exception to this general profile was observed at Boring B-1, where silty sand was observed below the surficial materials.

The consistency of the cohesive soils was typically medium stiff to hard with hand penetrometer readings in the range of ½ to 4¼ tons/sq. ft (tsf), and moisture contents were on the order of about 8 to 16 percent. Atterberg limit tests performed on samples of lean clay and sandy clay indicated liquid limits (LL) in the range of 32 to 34 and plastic limits (PL) in the range of 20 to 23. The pH level (i.e., hydrogen-ion content) of the representative samples tested was determined to be in the range of 3.9 to 5, and soluble sulfate concentration in the range of 2,490 to 4,160 parts per million (ppm).

The relative density of the silty sand observed in Boring B-1 was medium dense with SPT N-values of 12 and 14 bpf. The weathered shale and weathered sandstone were described as soft based on the ability to scratch the samples recovered with a split-spoon sampler with a metallic object.

### Parking Areas (Borings P-1 and P-2)

The subsurface soils in the proposed parking areas consisted of cohesive soils (lean clay and sandy clay) to depths of about  $8\frac{1}{2}$  to 10 ft. Note that coal was observed in Boring P-1 at depths of  $8\frac{1}{2}$  to 10 ft below the existing ground surface. An SPT N-value of 12 blows per foot (bpf) was observed within the coal.

The consistency of the cohesive soils was typically stiff to very stiff with hand penetrometer readings in the range of 1<sup>1</sup>/<sub>4</sub> to 3<sup>3</sup>/<sub>4</sub> tsf. Note that in Boring P-1, a layer of very soft to medium stiff

FARTH FXPIORATION

lean clay was observed at a depth range of 3 to 8½ ft below the existing ground surface. Hand penetrometer readings of less than ¼ to ½ tsf were observed in this stratum. An Atterberg limit test performed on a sample sandy clay indicated an LL of 32 and PL of 23. The pH level (i.e., hydrogen-ion content) of the representative samples tested was determined to be in the range of 3.6 to 5.3, and soluble sulfate concentration in the range of 560 to 5,570 parts per million (ppm).

# **GROUNDWATER CONDITIONS**

Groundwater level observations made during, at completion of, and up to 6 hrs after the sampling process. The groundwater levels observed are noted on the boring lgos. Based on our observations, groundwater was observed at a depth of 4 ft below existing grades during drilling at Boring RB-2 and upon completion of the sampling process at Boring RB-2 and P-1 at depths of 1 to 7 ft below the existing ground surface. A review of the *Soil Survey of Greene County, Indiana* indicates that the groundwater level near the project alignment typically remains greater than 6½ ft below the surface. However, it should be recognized that groundwater levels of any kind will fluctuate due to changes in precipitation, infiltration, surface run-off, and other hydrogeological factors.

# EARTHWORK

# Subgrade and Foundation Preparation

In general, the subsurface conditions observed at the exploratory locations consisted mostly of cohesive soils exhibiting medium plasticity at shallow depths. Based upon our understanding of the improvements and information obtained from the exploratory locations, it is our opinion that the subsurface conditions are generally conducive for the support of the roadway improvements. The most critical aspect of this project, from a geotechnical perspective, will be preparation of the subgrades for support of these elements. Given the presence of soft to medium stiff cohesive soils near the area of Boring P-1, improvement of the subgrade will be required. Additional discussion and recommendations regarding these issues are provided in the following paragraphs.

We recommend that all topsoil, trees (via grubbing) and tree roots, soil containing organic matter, and wet or soft near-surface soils be removed per the ISS. Where tree removal is required, we recommend root masses be removed and any depressions be graded and compacted in accordance with the ISS so-as not to leave any soft conditions or areas where water is allowed to collect. Because otherwise stiff conditions will deteriorate when exposed to excessive moisture and repeated construction traffic, consideration should be given to the timing of the removal of these surface conditions relative to the preparation of the subgrade and sequencing of other activities. In addition, we recommend that consideration be given to access points and construction drives for moving construction equipment off the exposed subgrade, if possible, in order to avoid disturbing the subgrade.

FARTH FXPIORATION

Based on our observations of the shallow conditions at the test borings, the subgrade conditions in the area of the new roadway are anticipated to primarily consist of medium plasticity cohesive soils, as well as isolated instances of granular soil. Where granular soils are encountered at the subgrade, we recommend that they be compacted via several passes with a vibratory plate compactor. Once the subgrade is exposed, we recommend that the cohesive soils be proofrolled in accordance with the ISS. The purpose of proofrolling is to provide a first-order evaluation of how the subgrade is anticipated to react to construction traffic and gain an additional understanding of the conditions for support of the planned improvements. We recommend that the proofrolling be observed by an EEI geotechnical engineer or engineering technician.

Based on observations at our test borings, we anticipate that yielding subgrade conditions will be exposed during the proofroll observations particularly near the area of Boring P-1 due to the soft to medium stiff lean clay observed about 31/2 to 81/2 ft below the existing grade. Note that soft cohesive soils (similar to those observed in Boring P-1) are capable of exhibiting changes in volume in response to load that are detrimental to the performance of HMA pavement. We recommend an attempt be made to improve the conditions via aeriation (continuous discing and drying to reduce moisture content) and recompaction. In the event that continued difficult subgrade conditions are observed despite good faith efforts made by the contractor to correct the condition (i.e., discing and drying from recompaction), then improvement of the subgrade could be accomplished by undercutting a maximum depth of 2 ft and replacing with 6 in. of Indiana Department of Transportation (INDOT) No. 5 stone overlying geotextile Type 1B (INDOT Standard Specifications Section 918.02{c}) or equivalent and capped with 11/2 ft of compacted INDOT No. 53 aggregate to achieve a stable base. Specifically, we anticipate that up to 2 ft of undercutting may be necessary near the area of Boring P-1 (parking area between approximate Sta. 48+00 to 51+00 "A"). We recommend additional guantities of common excavation, Type 1B geotextile, No. 5 stone, and No. 53 stone be included in the contract that is equal to the area of anticipated subgrade below embankment fill or pavement within those station limits. Note that the actual extent of undercutting will be dependent on field observations from a qualified person during construction. We recommend that EEI be retained during construction to observe the actual exposed subgrade soil conditions and provide guidance regarding the appropriate treatment.

Alternatively, additional subsurface exploration consisting of hand augers and Dynamic Cone Penetrometer (DCP) testing could be performed to further delineate the soft to medium stiff soil conditions observed near the area of Boring P-1.

As stated previously, soils with pH level in the range of 3.6 to 5.3 and soluble sulfate content greater than 1,000 ppm were observed near the existing ground surface. It is our opinion that the low pH values observed are likely due to mine spoils of the nearby mine. In addition, we anticipate subgrade improvement via chemical modification of the soil to be limited and is not recommended.

FARTH FXPIORATION

## Fill Placement and Compaction

The maximum anticipated earth fill height on the project is anticipated to be about 11 ft. Standard embankment construction practices outlined in the ISS and with the ground prepared as discussed above should provide an adequate subgrade for earth fill placement.

We recommend that fill used to raise grades or backfill of undercut areas be placed in loose lifts thicknesses not exceeding 8 in. and be compacted to 95 percent of the maximum density obtained in accordance with AASHTO T 99 as specified in the ISS. Based on the anticipated earthwork requirements, we anticipate that new earth fill will be imported from off site. Verification of borrow from off site is a responsibility of the contractor. We recommend that benches be cut into any existing slopes steeper than 4H:1V before fill placement so as to key the new fill into the slope. In our opinion, benches having a minimum width of 10 ft should be cut into the slope before new fill is placed. Where 10 ft wide benches are not feasible due to shallow embankment heights and/or granular conditions, 6-ft wide benches (i.e., minimum) are recommended. Scarifying of the slope will also aide in keying the new fill into the slope.

As previously discussed, sideslopes as steep as 2H:1V are anticipated for the new embankment fill. We have selected the section at Sta. 11+50 for the stability analysis representing the highest fill section. An analysis was performed using GeoStudio's SLOPE/W software considering drained (i.e., long-term) conditions using the Spencer method of calculation. Soil and rock conditions were represented based on Borings B-1 and B-2. A traffic surcharge of 250 psf was assumed in the analysis. Provided the embankment fill is placed as recommend herein, the factor of safety against global stability of embankments with sideslopes as steep as 2H:1V is estimated to be about 1.4. However, there is a risk of surficial slope failures of embankments with sideslopes as steep as 2H:1V. As such, periodic maintenance of the surficial conditions along the embankment may be required. Furthermore, the performance of these slopes will be directly dependent on the subgrade preparation and quality of compaction achieved in the embankments. To minimize sloughing and erosion, it is important to provide adequate compaction and erosion and sloughing protection at the face of the embankment.

### PAVEMENT CONSIDERATIONS

Based on or observations at the exploratory locations, the pavement subgrade is anticipated to consist of cohesive soils having medium plasticity. Based on the soils observed in the test borings and our experience with similar soils, we recommend that the information in Table 1 be considered for pavement design.

| TABLE 1: PAVEMENT DESIGN PARAMETERS          |                 |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|-----------------|--|--|--|--|--|--|--|--|--|
| Resilient Modulus (Mr) for Improved Subgrade | 7,000 psi       |  |  |  |  |  |  |  |  |  |
| Resilient Modulus (Mr) for Natural Subgrade  | 3,000 psi       |  |  |  |  |  |  |  |  |  |
| Design Soil Type                             | Lean/Silty Clay |  |  |  |  |  |  |  |  |  |
| Depth to Water                               | 4 ft            |  |  |  |  |  |  |  |  |  |
| Recommended Subgrade Treatment               | Type IC         |  |  |  |  |  |  |  |  |  |

FARTH EXPLORATION

December 3, 2018 Page 8

It should be noted that difficulty achieving compaction in implementing a Type IC subgrade treatment should be anticipated near the area of Boring P-1. As a result, additional subgrade stabilization in addition to the subgrade treatment may be necessary depending on the site conditions at the time of construction. We recommend including additional quantities for undercut and replacement with No. 5 and No. 53 stone in conjunction with a Type IB geogrid to address these areas.

# **CONCUDING REMARKS**

We appreciate the opportunity to provide our services to you on this project. Feel free to contact our office if you have any questions or need further assistance with the project.

Sincerely,

# EARTH EXPLORATION, INC.

Tanner Hill, E.I. Staff Engineer

Gurkan Ozgurel, P.E. Geotechnical Department Manager

### Attachments -

Important Information About This Geotechnical Engineering Report Test Boring Location Plan (Drawing No. CJ185109.B1) Unified Soil Classification System/General Notes Log of Test Boring (6) Grain Size Distribution Curve (4) Global Stability Model





# Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

### While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative – interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

# Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled*. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated*.

#### **Read this Report in Full**

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

# You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
  other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

### This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

### Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

### This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

#### **This Report Could Be Misinterpreted**

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

#### **Give Constructors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only*. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

#### Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

### **Geoenvironmental Concerns Are Not Covered**

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.* 

# Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration.* Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists.* 



Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent



| B-2<br>B-2<br>CR 350N                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TATCHLINE STA. 33+00 "A"                                                                                                                                      | Base Line Rd<br>Base Line Rd<br>PROJECT<br>LOCATION<br>E Morroe St E County Road 50 S<br>CR 350N<br>St St B<br>St St B<br>CR 350N<br>W State Road 54 |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEGEND                                       | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEST BORING LOCATI                                                                                                                                            | ON PLAN                                                                                                                                              |
| B-1  Test Boring Location<br>and Designation | <ol> <li>Base map developed from an electronic file provided<br/>by HWC Engineering on November 8, 2018.</li> <li>Vicinity map generated using imagery from bing.com/maps.</li> <li>Borings were located in the field by Earth Exploration, Inc.</li> <li>Ground surface elevation at the test boring locations were<br/>interpolated to the nearest 1 ft based on topographic<br/>information provided on the previously mentioned plan.</li> <li>Boring locations are approximate.</li> </ol> | PROJECT: Redbird SRA Access Roa<br>Improvements<br>LOCATION: Greene County, Indiana<br>CLIENT: HWC Engineering<br>EEI PROJ. NO.: CJ185109<br>SCALE: 1" = 200' | Ad PROJECT ENG:<br>TJH<br>APPROVED BY:<br>GO<br>DRAWN BY:<br>JBF<br>DATE:<br>11/19/18<br>DRAWING NO.:<br>CJ185109.B1                                 |



# UNIFIED SOIL CLASSIFICATION SYSTEM / GENERAL NOTES

| FINE-G             | RAINED SC                              | DILS                         | COAR              | SE-GRA                                               | INED SOILS                                                                     | RELATIV      | 'E PROPOF                                                                                                            | RTIONS                      | ORGANIC CONTENT BY                         |            |                     |  |
|--------------------|----------------------------------------|------------------------------|-------------------|------------------------------------------------------|--------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|------------|---------------------|--|
| CONSISTEN          | UNCC<br>CY <u>STREN</u>                | NFINED<br>IGTH (tsf)         | RE<br><u>DI</u>   | LATIVE<br>ENSITY                                     | N-VALUE*<br>( <u>Blows/ft)</u>                                                 | <u>TERM</u>  | DEFINING RA                                                                                                          | ANGE BY<br><u>IGHT</u>      | SOIL                                       |            |                     |  |
| Very Soft          | <                                      | 0.25                         | Ve                | ry Loose                                             | 0 - 4                                                                          | Trace        | 0 - 5                                                                                                                | _                           | DESCRIPTION                                |            | <u>LOI</u>          |  |
| Soft               | 0.2                                    | 5 - 0.5                      | Mad               | Loose                                                | 4 - 10                                                                         | Little       | 5 - 12                                                                                                               | <u>2</u>                    | Trace Organic Matte                        | er (       | 0 - 5%              |  |
| Stiff              | 0.5                                    | - 1.0<br>- 2.0               | ivied             | UM Dense                                             | 10 - 30                                                                        | Some         | 12 - 3                                                                                                               | 5<br>0                      | Little Organic Matter                      |            | ) - 12%<br>2 - 35%  |  |
| Verv Stiff         | 2.0                                    | - 4 0                        | Ve                | v Dense                                              | 50+                                                                            |              | 55-5                                                                                                                 | 0                           | Sedimentary Peat                           | 3          | 2 - 33 %<br>5 - 50% |  |
| Hard               | Hard >4.0                              |                              |                   |                                                      | 001                                                                            |              |                                                                                                                      |                             | Fibrous and Woody                          | Peat       | 50%±                |  |
|                    |                                        |                              |                   |                                                      |                                                                                |              | 00                                                                                                                   |                             |                                            |            | =                   |  |
| UNIFIED            |                                        | SIFICATI                     |                   |                                                      |                                                                                | -            | GR                                                                                                                   | AIN SIZE                    | TERMINOLOGY                                |            |                     |  |
|                    |                                        | 10                           | 51                |                                                      | JESCRIPTIONS                                                                   |              | ACTION                                                                                                               | PARTICL                     | E SIZE                                     | USSI       | ANDARD<br>EVE SIZE  |  |
|                    |                                        | CLEAN                        | GW                | WELL GRADED<br>MIXTURES,                             | GRAVELS, GRAVEL-SAND<br>LITTLE OR NO FINES                                     | Boulders     |                                                                                                                      | Larger that                 | n 12-in                                    | l arger    | than 12-in          |  |
|                    | GRAVELLY                               | GRAVEL                       |                   | POORI Y GRADE                                        | GRAVELS GRAVEL-SAND                                                            | Cobbles      |                                                                                                                      | 3 to 12-in                  |                                            | Larger     | 3 to 12-in          |  |
|                    | SOILS                                  | Little of no lin             | les GP            | MIXTURES,                                            | LITTLE OR NO FINES                                                             | Gravel       | Coarse                                                                                                               | 3/4 to 3-in                 |                                            |            | 3/4 to 3-in         |  |
| COARSE-            | More than 50% of                       | GRAVELS                      | s GM              | SILTY GRAVE                                          | LS, GRAVEL-SAND-SILT                                                           |              | Fine                                                                                                                 | 4 75 mm tr                  | 3/4-in                                     | #          | 4 to 3/4-in         |  |
| GRAINED            | retained on No. 4                      | WITH FINE                    | ES                |                                                      | MIATURES                                                                       | Sand         | Coarse                                                                                                               | 2.00 to 4.7                 | 5 mm                                       |            | #10 to #4           |  |
| SUILS              | sieve                                  | Appreciable<br>amount of fin | e GC              | CLAYEY GRAVE                                         | ELS, GRAVEL-SAND-CLAY<br>MIXTURES                                              |              | Med                                                                                                                  | 0.425 to 2.                 | 00 mm                                      |            | #40 to #10          |  |
| Mana 46 an 500/ af |                                        |                              | 0.04              | WELL GRADED S                                        | SANDS GRAVELLY SANDS                                                           | -1           | Fine                                                                                                                 | 0.075 to 0.                 | 425 mm                                     | #          | 200 to #40          |  |
| material coarser   |                                        | CLEAN SAN                    |                   | LITTL                                                | E OR NO FINES                                                                  | Silt         |                                                                                                                      | 0.005 to 0.                 | 075 mm                                     | Smaller    | than #200           |  |
| than No. 200 sieve | SAND AND                               | Little or no fin             | <sup>nes</sup> SP | POORLY GRA                                           | DED SANDS, GRAVELLY                                                            | Clav         |                                                                                                                      | Smaller that                | an 0.005 mm                                | Smaller    | than #200           |  |
|                    | More than 50% of                       |                              | _                 | SANDS, L                                             | ITTLE OR NO FINES                                                              |              |                                                                                                                      |                             |                                            |            |                     |  |
|                    | coarse fraction<br>passing No. 4 sieve | SANDS WI<br>FINES            | TH SM             | SILTY SANDS                                          | 5, SAND-SILT MIXTURES                                                          | Plasticity c | haracteristics dif                                                                                                   | ferentiate betw             | ween silt and clay.                        |            |                     |  |
|                    |                                        | Appreciable amount of fin    | e<br>les SC       | CLAYEY SANDS                                         | S, SAND-CLAY MIXTURES                                                          |              |                                                                                                                      | PLASTIC                     | TTY CHART                                  |            |                     |  |
|                    |                                        |                              | ML                | INORGANIC SILT<br>ROCK FLOUR, SIL<br>OR CLAYEY SILTS | 'S AND VERY FINE SANDS,<br>LTY OR CLAYEY FINE SAND<br>S WITH SLIGHT PLASTICITY |              | 60 For classific                                                                                                     | ation of fine-grai          | ned soils and                              |            |                     |  |
| FINE-              | SILTS AND<br>CLAYS                     | LIQUID LIMI                  | IT CL             | INORGANIC CL<br>PLASTICITY, G                        | AYS OF LOW TO MEDIUM<br>RAVELLY CLAYS SANDY                                    | -  <br>   P  | 50 - Soils.<br>Equation of "                                                                                         | A" line                     |                                            |            |                     |  |
| GRAINED            |                                        |                              | OL                | ORGANIC SIL                                          | TS AND ORGANIC SILTY                                                           |              | 40 - Horizontal at<br>then PI=0.73                                                                                   | PI=4 to LL=25.5,<br>(LL-20) | U LINE                                     | ALÌ        | INE                 |  |
| More than 50% of   |                                        |                              | мн                | INORGANIC S<br>DIATOMACEOL                           | SILTS, MICACEOUS OR<br>JS FINE SANDY OR SILTY                                  |              | 30 - Vertical at LL<br>then PI=0.9 (                                                                                 | =16 to PI=7,<br>LL-8)       |                                            |            |                     |  |
| No. 200 sieve      | SILTS AND                              | LIQUID LIM                   |                   | INORGANIC CLA                                        | S, ELASTIC SILT                                                                |              | 20 -                                                                                                                 | CL or                       | OL MH or C                                 | он         |                     |  |
|                    | CLAYS                                  | 50                           | ОН                | ORGANIC CLA                                          | YS OF MEDIUM TO HIGH                                                           |              | 10 -                                                                                                                 |                             |                                            |            |                     |  |
|                    |                                        | 011.0                        |                   | PLASTICI                                             | TY, ORGANIC SILTS                                                              |              | 0 4 <u>CL-M</u>                                                                                                      |                             |                                            |            |                     |  |
| HIGH               |                                        | UILS                         | PI                | ORG                                                  | ANIC CONTENT                                                                   |              | U 1U                                                                                                                 | 20 30                       |                                            | 90         | 90 100              |  |
| NOT                | E: DUAL SYMBOLS                        | S USED FOR B                 | ORDERLIN          | IE CLASSIFICA                                        | ATIONS                                                                         |              |                                                                                                                      |                             |                                            |            |                     |  |
|                    | EXPLORA                                | TORY SA                      | MPLIN             | IG ABBR                                              | EVIATIONS                                                                      |              |                                                                                                                      | BORATOF                     | RY TEST ABBRE                              | VIATIC     | NS                  |  |
|                    | ger Sample                             |                              |                   |                                                      | hoto-lonization [                                                              | )etector     |                                                                                                                      | qp - Ha                     | nd Penetrometer Rea                        | ding, tsf  | 4h 4af              |  |
| BF - Ba            | ckfilled Upon C                        | Completion                   |                   | PMT - Bo                                             | orehole Pressure                                                               | emeter Test  |                                                                                                                      | qu - Un<br>W - Mo           | contined Compressive                       | Streng     | in, isi             |  |
| BS - Ba            | g Sample                               |                              | PT - 3-           | in. O.D. Piston S                                    | Sample                                                                         |              | LL - Lig                                                                                                             | uid Limit, %                |                                            |            |                     |  |
| C - Ca             | ising: Size 2½-i                       | in., NW; 4-in                | n., HW            | PTS - Pe                                             | eat Sample                                                                     |              |                                                                                                                      | PL - Pla                    | astic Limit, %                             |            |                     |  |
| COA - Cle          | ean-Out Auger                          | In a                         |                   | RB - R                                               | ock Bit                                                                        |              |                                                                                                                      | PI - Pla                    | sticity Index, %                           |            |                     |  |
|                    | nunuous Samp<br>aar Wator              | bier                         |                   |                                                      |                                                                                |              |                                                                                                                      | SL - Sh                     | rinkage Limit, %                           |            |                     |  |
|                    | iven Casing                            |                              |                   | ROD - R                                              | ock Quality Desi                                                               | anation      |                                                                                                                      |                             | ss on Ignition, %                          |            |                     |  |
| DM - Dr            | illing Mud                             |                              |                   | RS - R                                               | ock Sounding                                                                   | 3.10001      |                                                                                                                      | nu -Dny<br>nH -Hv           | y onit weight, poi<br>drogen-lon Concentra | tion       |                     |  |
| FA - Flight Auger  |                                        |                              |                   | S - So                                               | oil Sounding                                                                   |              |                                                                                                                      | P <sub>200</sub> - Pe       | rcent Passing a No. 20                     | 00 Sieve   | 3                   |  |
| FT - Fis           | sh Tail                                |                              |                   | SS - 2-                                              | in. O.D. Split-Sp                                                              | oon Sample   | ple                                                                                                                  |                             |                                            |            |                     |  |
| HA - Ha            | Ind Auger                              | ~~                           |                   | ST - Thin-Walled Tube Sam                            |                                                                                |              | required to effect two successive 6" penetrations of the 2"                                                          |                             |                                            | f the 2" C | ).D. split-spoo     |  |
|                    | Water Encours                          | er<br>itered                 |                   | VS - V8<br>WPT - W                                   | ane Snear Test<br>/ater Pressure T                                             | aet          | sampler. The sampler is driven with a 140 lb weight fallin<br>seated to a depth of 6" before commencing the standard |                             |                                            |            |                     |  |
|                    | , valgi Liibuuli                       |                              |                   | vvi i – VV                                           | ULCI I I COOULE 1                                                              |              | 1.1                                                                                                                  |                             |                                            |            | ,                   |  |

| Eari<br>Expl               | H<br>ORATIC                 |                      | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                                                 |                    |                |                       | Boring No.B-1Elevation596DatumNAVD 88EEI Proj. No.CJ185109Sheet1of11 |                         |        |            |           |            |
|----------------------------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|----------------|-----------------------|----------------------------------------------------------------------|-------------------------|--------|------------|-----------|------------|
| Project No.<br>Struct. No. | 2017                        | ′-276-S<br>          | Station<br>Offset                                                                                                                                                                                        | 11+50<br>7 ft Rt. "A                            | W<br><b>N''</b> Te | eather<br>emp. | Clea<br>70°           | ar<br>F                                                              | Driller<br>Inspecto     | or     | В.         | N.<br>    |            |
| SA                         | MPLE                        |                      | DESCRI                                                                                                                                                                                                   | PTION/CLA                                       | SSIFICAT           | ION            | S                     | SOIL PROPE                                                           |                         |        | E٤         | 5         |            |
| No. y Rec<br>8 %           | N<br>Value                  | Depth<br>ft Elev     |                                                                                                                                                                                                          | and REMA                                        | RKS                |                | q <sub>p</sub><br>tsf | q <sub>u</sub><br>tsf                                                | γ <sub>d</sub><br>pcf   | W<br>% | LL<br>%    | PL<br>%   | PI<br>%    |
|                            |                             | - 595-               |                                                                                                                                                                                                          | CRUSHED STONE                                   |                    |                |                       |                                                                      |                         |        |            |           |            |
| SS-1 90                    | 14                          |                      | SM, SILTY                                                                                                                                                                                                | SAND, little gra                                | _                  |                |                       |                                                                      |                         |        |            |           |            |
| SS-2 90                    | 12                          |                      | dense, bro                                                                                                                                                                                               | wn, with cobble                                 | S                  | -              |                       |                                                                      |                         |        |            |           |            |
| SS-3 90                    | 14                          |                      | CL, LEAN                                                                                                                                                                                                 | CLAY with SAN                                   | D, trace grave     | el, stiff      | 1½                    |                                                                      |                         | 11.8   |            |           |            |
| SS-4 90                    | 13                          | <br><br><br>         | to very stiff<br>82 percent                                                                                                                                                                              | f, gray, with cob                               | bles, SS-4 : P     | 200 =          | 21⁄2                  |                                                                      |                         | 12.4   | 32         | 20        | 12         |
| SS-5 90                    | 14                          | - +<br>585-<br><br>  | WEATHER                                                                                                                                                                                                  | ED SANDSTON                                     | E, soft, gray      |                |                       |                                                                      |                         |        |            |           |            |
| SS-6 90                    | 11                          | <br><br><br>15 -     |                                                                                                                                                                                                          |                                                 |                    |                |                       |                                                                      |                         |        |            |           |            |
| SS-7 90                    | 14                          |                      |                                                                                                                                                                                                          |                                                 |                    | _              |                       |                                                                      |                         |        |            |           |            |
| SS-8 90                    | 10                          |                      |                                                                                                                                                                                                          |                                                 |                    | _              |                       |                                                                      |                         |        |            |           |            |
|                            |                             |                      | WEATHER                                                                                                                                                                                                  | ED SHALE, soft                                  | t, gray            | -              |                       |                                                                      |                         |        |            |           |            |
| SS-9 90                    | 10                          |                      |                                                                                                                                                                                                          |                                                 |                    | _              |                       |                                                                      |                         |        |            |           |            |
|                            |                             |                      |                                                                                                                                                                                                          |                                                 |                    |                |                       |                                                                      |                         |        |            |           |            |
|                            | 10                          |                      |                                                                                                                                                                                                          |                                                 |                    | -              |                       |                                                                      |                         |        |            |           |            |
| 55-10 90                   | 10                          | -30 -                |                                                                                                                                                                                                          |                                                 |                    |                |                       |                                                                      |                         |        |            |           |            |
|                            |                             |                      |                                                                                                                                                                                                          | Επα οτ Βοτιπς                                   | <b>3</b> ατ 30 π   |                |                       |                                                                      |                         |        |            |           |            |
|                            | WAT                         | ER LE                | VEL OBSE                                                                                                                                                                                                 | RVATIONS                                        |                    |                | GEN                   | IERA                                                                 |                         | ES     |            | 1         |            |
| Depthft                    | -                           | ∑ Whi<br>Drillii     | le ⊻ U<br>ng Com                                                                                                                                                                                         | Ipon ⊻<br>npletion Ā                            | fter Drilling      | Start 1        | 1/1/18<br>/lethod     | End<br>3¼"                                                           | 11/1/18<br>' I.D. HSA   | Rig .! | CMI<br>ATV | E 75<br>/ | <b>6</b> 0 |
| To Wat                     | er<br>e-in                  | NW                   | <u> </u>                                                                                                                                                                                                 | <u>NW</u>                                       | BF                 | Remarks        | Back                  | filled wit                                                           | th auger of the surface | utting | js a       | nd        | a          |
| The stratificat            | ion lines rep<br>may be gra | oresent the<br>dual. | approximate bound                                                                                                                                                                                        | pproximate boundary between soil/rock types and |                    |                |                       |                                                                      |                         |        | •••••      | •••••     |            |

|                           | ARTH<br>YPLOR                                                                    | 24.17(C)   | W kz                       | FL | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                                                       |                                                                                                                                                                      |                        |                       | Boring No. B-2<br>Elevation 589<br>Datum NAVD 88<br>EEI Proj. No. CJ185109<br>Sheet 1 of 1 |                                  |                       |        |         |         |         |  |
|---------------------------|----------------------------------------------------------------------------------|------------|----------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--------|---------|---------|---------|--|
| Project I<br>Struct. N    | No.<br>No.                                                                       | 2017-<br>- | 276-S<br>                  |    | Station<br>Offset                                                                                                                                                                                        | 11<br>33 ft                                           | 1+35<br>Lt. "A"                                                                                                                                                      | We<br>Te               | eather <u></u><br>mp. | Clea<br>70°                                                                                | Clear Driller<br>70° F Inspector |                       |        |         |         |         |  |
|                           | SAMF                                                                             | PLE        | 1                          |    | DESCRII                                                                                                                                                                                                  | PTION/C                                               | LASSI                                                                                                                                                                | FICATI                 | ON                    | S                                                                                          | OIL P                            | ROPE                  | RTI    | ES      | 5       |         |  |
| No. y<br>P<br>e           | Rec<br>% \                                                                       | N<br>/alue | Depth<br>ft Elev           | ,  |                                                                                                                                                                                                          | and RE                                                | MARKS                                                                                                                                                                | 5                      |                       | q <sub>p</sub><br>tsf                                                                      | q <sub>u</sub><br>tsf            | γ <sub>d</sub><br>pcf | W<br>% | LL<br>% | PL<br>% | PI<br>% |  |
| SS-1                      | 90                                                                               | 7          |                            |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      | modium                 |                       | 21⁄2                                                                                       |                                  |                       | 13.5   |         |         |         |  |
| SS-2                      | 90                                                                               | 8          | - 585-                     |    | to very stif                                                                                                                                                                                             | f, brown, St                                          | S-2 : P <sub>200</sub> =                                                                                                                                             | , medium<br>= 60 perce | ent                   | 1/2                                                                                        |                                  |                       | 15.7   | 34      | 23      | 11      |  |
| SS-3                      | 90                                                                               | 9          |                            |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      |                        |                       |                                                                                            |                                  |                       |        |         |         |         |  |
| SS-4                      | 90                                                                               | 8          | - 580-<br>- 580-<br>- 10 - |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      |                        |                       |                                                                                            |                                  |                       |        |         |         |         |  |
| SS-5                      | 90                                                                               | 25         |                            |    | WEATHER<br>sandstone                                                                                                                                                                                     | COD SHALE                                             | <b>HALE</b> , soft, gray, with<br>les near 6 ft                                                                                                                      | /, with                |                       |                                                                                            |                                  |                       |        |         |         |         |  |
| SS-6                      | 90                                                                               | 21         | - 575-<br>-<br>-15 -       |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      |                        |                       |                                                                                            |                                  |                       |        |         |         |         |  |
| SS-7                      | 90                                                                               | 100        |                            |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      |                        |                       |                                                                                            |                                  |                       |        |         |         |         |  |
| SS-8                      | 95                                                                               | 50/.3      | - 570-                     |    |                                                                                                                                                                                                          |                                                       |                                                                                                                                                                      |                        |                       |                                                                                            |                                  |                       |        |         |         |         |  |
|                           |                                                                                  |            |                            |    |                                                                                                                                                                                                          | End of Bo                                             | oring at 19                                                                                                                                                          | .3 ft                  |                       |                                                                                            |                                  |                       |        |         |         |         |  |
|                           | V                                                                                | VATE       | ER LE                      |    | L OBSE                                                                                                                                                                                                   | RVATIO                                                | NS                                                                                                                                                                   |                        |                       | GEN                                                                                        | IERA                             | L NOT                 | ES     |         |         |         |  |
| To V<br>To V<br>The strat | Depth     ∑     Whil       ft     Drillir       To Water     NW       To Cave-in |            |                            |    |                                                                                                                                                                                                          | Jpon<br>npletion<br><b>NW</b><br>14½<br>ary between s | Start 11/2/18 End 11/2/18 Rig CME 750<br>Drilling Method 31/4" I.D. HSA ATV<br>Remarks Backfilled with auger cuttings and a<br>bentonite chip plug near the surface. |                        |                       |                                                                                            |                                  |                       |        | i0<br>a |         |         |  |

|                | Earth<br>Exploration &                                                                                                    |            |            |                                                                                                                                                                                                                                                    |     | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                                                         |                           |                           |                                               | Bo<br>Ele<br>Da<br>EE                    | Boring No.P-1Elevation578DatumNAVD 88EEI Proj. No.CJ185109Sheet1of1 |                                             |                |                    |                   |         |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|---------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|----------------|--------------------|-------------------|---------|--|
| Proje<br>Struc | ect<br>ct. I                                                                                                              | No.<br>No. | 2017       | '-276-S<br>                                                                                                                                                                                                                                        |     | Station<br>Offset                                                                                                                                                                                        | <del>ا</del><br>55 f                                    | 50+24<br>t Rt. "A"        | We<br>Tei                 | eather<br>mp.                                 | Clea<br>70°                              | ar<br>F                                                             | Driller<br>Inspecte                         | or             | В.                 | N.<br>            |         |  |
|                |                                                                                                                           | SA         | MPLE       |                                                                                                                                                                                                                                                    |     | DESCRI                                                                                                                                                                                                   | PTION/                                                  | CLASSI                    | ICATI                     | ON                                            | S                                        | OIL P                                                               | ROPE                                        | RTI            | ES                 | \$                |         |  |
| No.            | Т<br>У<br>е                                                                                                               | Rec<br>%   | N<br>Value | Depth<br>ft Elev                                                                                                                                                                                                                                   | v   |                                                                                                                                                                                                          | and RE                                                  | EMARKS                    | 5                         |                                               | q <sub>p</sub><br>tsf                    | q <sub>u</sub><br>tsf                                               | γ <sub>a</sub><br>pcf                       | W<br>%         | LL<br>%            | PL<br>%           | PI<br>% |  |
| SS-1           | X                                                                                                                         | 90         | 8          | -<br>-<br>-<br>-<br>-<br>-<br>575                                                                                                                                                                                                                  |     | <b>CL</b> , <b>SAND</b><br>SS-1 : pH<br>sulfate = 5                                                                                                                                                      | <b>Y CLAY</b> , tr<br>= 5.3, P <sub>200</sub><br>60 ppm | ace gravel,<br>= 61 perce | stiff, brov<br>nt, solubl | wn,<br>le                                     | 1½                                       |                                                                     |                                             | 25.0           | 32                 | 23                | 9       |  |
| SS-2           | X                                                                                                                         | 90         | 7          |                                                                                                                                                                                                                                                    |     |                                                                                                                                                                                                          |                                                         | -                         | 1⁄2                       |                                               |                                          | 35.3                                                                |                                             |                |                    |                   |         |  |
| SS-3           | X                                                                                                                         | 90         | 1          |                                                                                                                                                                                                                                                    |     | CL, LEAN<br>soft to med                                                                                                                                                                                  | <b>CLAY</b> , little<br>dium stiff, l                   | <1⁄4                      |                           |                                               | 32.7                                     |                                                                     |                                             |                |                    |                   |         |  |
| SS-4           | X                                                                                                                         | 90         | 12         |                                                                                                                                                                                                                                                    |     | COAL, sof                                                                                                                                                                                                | t, black                                                |                           |                           |                                               |                                          |                                                                     |                                             |                |                    |                   |         |  |
|                |                                                                                                                           |            |            | COAL, soft, black<br>End of Boring at 10 ft<br>Shelby tube pushed at offset location from 5 tr<br>7 ft., W= 27.8, LL = 43, PL = 26. Pl = 17, dry<br>unit weight = 87.6 pcf, P <sub>200</sub> = 90 percent, Q <sub>p</sub> =<br><1⁄4, CL, Lean clay |     |                                                                                                                                                                                                          |                                                         |                           |                           | m 5 to<br>dry<br>Q <sub>p</sub> =             |                                          |                                                                     |                                             |                |                    |                   |         |  |
|                |                                                                                                                           |            | WAT        | ERL                                                                                                                                                                                                                                                | EVE | L OBSE                                                                                                                                                                                                   | RVATIC                                                  | DNS                       |                           |                                               | GEN                                      | IERAI                                                               |                                             | ES             |                    |                   |         |  |
| The            | Depth     ☑     While      ft     Drillin       To Water     NW       To Cave-in   The stratification lines represent the |            |            |                                                                                                                                                                                                                                                    |     |                                                                                                                                                                                                          | Upon<br>Inpletion<br>7<br>7<br>lary between             | ¥_<br>After Dr<br>BF      | rilling                   | Start 1<br>Drilling N<br>Remarks<br>bentonite | I1/2/18<br>Method<br>s Back<br>e chip pl | End 1<br>3¼"<br>filled wit<br>ug near t                             | 1/2/18<br>I.D. HSA<br>h auger o<br>he surfa | Rig<br>cutting | CMI<br>ATV<br>gs a | ∃ 75<br>,<br>nd a | 0<br>3  |  |

|                                                                                                                                                                                                                                 | EARTH<br>EXPLORATION & |            |            |                    |                   | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                  |                                               |                                         |                                          | Bo<br>Ele<br>Da<br>EE                       | Boring No.P-2Elevation570DatumNAVD 88EEI Proj. No.CJ185109Sheet1of |                       |              |         |         |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-----------------------|--------------|---------|---------|---------|
| Proje<br>Strue                                                                                                                                                                                                                  | ect<br>ct.             | No.<br>No. | 2017       | -276-S<br>         |                   | Station<br>Offset                                                                                                                                                                                        | 61<br>41 ft      | +42<br>Rt. "A"                                | We<br>Te                                | eather<br>mp.                            | Clea<br>70°                                 | ar<br>F                                                            | Driller<br>Inspecto   | or           | В.      | N.<br>  |         |
|                                                                                                                                                                                                                                 |                        | SA         | MPLE       |                    |                   | DESCRIF                                                                                                                                                                                                  | PTION/C          | LASSI                                         | ICATI                                   | ON                                       | S                                           | OIL PI                                                             | ROPE                  | RTI          | ES      | \$      |         |
| No.                                                                                                                                                                                                                             | T<br>y<br>pe           | Rec<br>%   | N<br>Value | Depth<br>ft Elev   |                   |                                                                                                                                                                                                          | and REI          | MARKS                                         |                                         |                                          | q <sub>p</sub><br>tsf                       | q <sub>u</sub><br>tsf                                              | γ <sub>a</sub><br>pcf | W<br>%       | LL<br>% | PL<br>% | PI<br>% |
|                                                                                                                                                                                                                                 | $\mathbb{V}$           | 00         | 10         |                    |                   | TOPSOIL                                                                                                                                                                                                  |                  |                                               |                                         |                                          |                                             |                                                                    |                       | 10.0         |         |         |         |
| 55-1                                                                                                                                                                                                                            | Δ                      | 90         | 10         |                    |                   |                                                                                                                                                                                                          | _                |                                               |                                         |                                          |                                             |                                                                    |                       | 19.3         |         |         |         |
| SS-2                                                                                                                                                                                                                            | X                      | 90         | 8          | + -<br><br>+5 565- |                   | CL, LEAN                                                                                                                                                                                                 | CLAY, little     | sand, little                                  | gravel,                                 | stiff                                    | 3¾                                          |                                                                    |                       | 20.3         |         |         |         |
| 55.3                                                                                                                                                                                                                            | V                      | 90         | 6          |                    |                   | to very stiff, brown, with coal near 1 ft, SS-1 :<br>pH = 3.6, soluble sulfate = 5,570 ppm                                                                                                               |                  |                                               |                                         |                                          |                                             |                                                                    |                       | 24.7         |         |         |         |
|                                                                                                                                                                                                                                 | Λ                      | 30         | 0          |                    |                   |                                                                                                                                                                                                          |                  |                                               |                                         | _                                        | 174                                         |                                                                    |                       | 24.7         |         |         |         |
| SS-4                                                                                                                                                                                                                            | X                      | 90         | 6          |                    |                   |                                                                                                                                                                                                          |                  |                                               |                                         |                                          | 2                                           |                                                                    |                       | 18.1         |         |         |         |
|                                                                                                                                                                                                                                 |                        |            |            |                    |                   |                                                                                                                                                                                                          | End of B         | oring at 10                                   | ) ft                                    |                                          |                                             |                                                                    |                       |              |         |         |         |
|                                                                                                                                                                                                                                 |                        |            | WAT        | ER LE              | EVEL OBSERVATIONS |                                                                                                                                                                                                          |                  |                                               |                                         |                                          | GEN                                         | IERAI                                                              | - NOT                 | ES           |         |         |         |
| Depth     ♥     While     ♥     Upon     ♥       ft     Drilling     Completion     Afr       To Water     NW     NW       To Cave-in     7       The stratification lines represent the approximate boundary between soil/rock |                        |            |            |                    |                   | ∑       6       h           After Di           MM           61½           bil/rock types                                                                                                                 | r<br>illing<br>/ | Start 1<br>Drilling N<br>Remarks<br>bentonite | 1/2/18<br>Method<br>S Back<br>S chip pl | End 1<br>3¼"<br>filled witl<br>ug near t | 1/2/18<br>I.D. HSA<br>h auger c<br>he surfa | Rig<br>cutting                                                     | CMI<br>ATV<br>JS a    | = 75<br>nd a | 0<br>a  |         |         |

| Earth<br>Explo                  | 74<br>ORATION &                                              | LOG O<br>Project Redbird S<br>Location<br>Client<br>7770 West New Yorl<br>317-273- | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                                      |                                                              |                                             |                                                         | Boring No.RB-1Elevation569DatumNAVD 88EEI Proj. No.CJ185109Sheet1of1 |                    |                   |         |  |  |
|---------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|--------------------|-------------------|---------|--|--|
| Project No.<br>Struct. No.      | 2017-276-S<br>                                               | Station<br>Offset                                                                  | 23+26<br>20 ft Rt. "A"                                                                                                                                                                                   | Weather<br>Temp.                     | r Clea<br>70°                                                | ar<br>F                                     | Driller<br>Inspecto                                     | or                                                                   | В.                 | N.<br>            |         |  |  |
| SA                              | MPLE                                                         | DESCRIPTIO                                                                         | N/CLASSIF                                                                                                                                                                                                | ICATION                              | S                                                            | OIL P                                       | ROPE                                                    | RTI                                                                  | ES                 | \$                |         |  |  |
| No. y Rec                       | N Depth<br>Value ft Ele                                      | v and                                                                              | REMARKS                                                                                                                                                                                                  |                                      | q <sub>p</sub><br>tsf                                        | q <sub>u</sub><br>tsf                       | γ <sub>d</sub><br>pcf                                   | W<br>%                                                               | LL<br>%            | PL<br>%           | PI<br>% |  |  |
|                                 |                                                              |                                                                                    |                                                                                                                                                                                                          |                                      |                                                              |                                             |                                                         |                                                                      |                    |                   |         |  |  |
| SS-1 90                         | 24                                                           | CL-ML, SILTY CL<br>stiff to hard, brow                                             | <b>CL-ML</b> , <b>SILTY CLAY</b> , some sand, little grave stiff to hard, brown, SS-1 : pH = 5.0, soluble                                                                                                |                                      |                                                              |                                             |                                                         | 11.9                                                                 |                    |                   |         |  |  |
| SS-2 90                         | 14 56                                                        | sulfate = 4,160 pp                                                                 | sulfate = 4,160 ppm                                                                                                                                                                                      |                                      |                                                              |                                             |                                                         | 11.8                                                                 |                    |                   |         |  |  |
|                                 | 5                                                            | End                                                                                | d of Boring at 5                                                                                                                                                                                         | ft                                   |                                                              |                                             |                                                         |                                                                      |                    |                   |         |  |  |
| Depth<br>ft<br>To Wat<br>To Cav | WATER L<br>∑ W<br>Dri<br>erN<br>e-in<br>on lines represent t | EVEL OBSERVAT<br>hile                                                              | TIONS<br>After Dri<br>BF<br><br>een soil/rock types                                                                                                                                                      | Illing Start<br>Drilli<br>Rem<br>and | GEN<br>t 11/2/18<br>ng Method<br>narks Back<br>onite chip pl | IERA<br>End<br>3¼"<br>filled wit<br>ug near | L NOT<br>11/2/18<br>I.D. HSA<br>h auger c<br>the surfac | ES<br>Rig (<br>/                                                     | CME<br>ATV<br>35 a | = 75<br>,<br>nd a | i0      |  |  |

| Earth<br>Explora                                                 |                                                                      | LOG OF TEST BORING Project Redbird SRA Access Road Improvements Location Greene Co., IN Client HWC Engineering 7770 West New York Street - Indianapolis, Indiana 46214 317-273-1690 / 317-273-2250 (Fax) |                                                                      |                  |                                                    |                                     | Boring No. <b>RB-2</b><br>Elevation 569<br>Datum <b>NAVD 88</b><br>EEI Proj. No. <b>CJ185109</b><br>Sheet 1 of 1 |                                                            |           |                     |         |         |
|------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|----------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------|---------------------|---------|---------|
| Project No.<br>Struct. No.                                       | 2017-276-S<br>                                                       | Station<br>Offset                                                                                                                                                                                        | 37+68<br>10 ft Rt. "A"                                               | We<br>Ter        | eather<br>mp.                                      | Clear<br>70° F                      |                                                                                                                  | Driller<br>Inspecto                                        | or        | B.I                 | N.<br>- |         |
| SAMPL                                                            | E                                                                    | DESCRIP                                                                                                                                                                                                  | TION/CLAS                                                            | SIFICATI         | ON                                                 | SC                                  | IL PI                                                                                                            | ROPE                                                       | RTI       | ES                  | ;       |         |
| No. V Rec N                                                      | lue ft Elev                                                          | â                                                                                                                                                                                                        | and REMAR                                                            | KS               |                                                    | q <sub>p</sub><br>tsf               | q <sub>u</sub><br>tsf                                                                                            | $\gamma_{d}$<br>pcf                                        | W<br>%    | LL<br>%             | PL<br>% | PI<br>% |
|                                                                  | ¥                                                                    | TOPSOIL                                                                                                                                                                                                  |                                                                      |                  |                                                    |                                     |                                                                                                                  |                                                            |           |                     |         |         |
| SS-1 90 2                                                        |                                                                      | CL-ML, SIL<br>very stiff, gr                                                                                                                                                                             | <b>FY CLAY</b> , some s<br>ay, SS-1 : pH = 3                         | avel,<br>sulfate | 3                                                  |                                     |                                                                                                                  | 8.4                                                        |           | _                   |         |         |
| SS-2 90 30                                                       | 0 565                                                                | = 2,490 ppn                                                                                                                                                                                              | 1                                                                    |                  | 2¾                                                 |                                     |                                                                                                                  | 12.6                                                       |           |                     |         |         |
|                                                                  |                                                                      |                                                                                                                                                                                                          | End of Boring                                                        | at 5 ft          |                                                    |                                     |                                                                                                                  |                                                            |           |                     |         |         |
| Depth<br>ft<br>To Water<br>To Cave-in<br>The stratification line | ATER LEV<br>∑ While<br>Drilling<br>4<br>srepresent the approximation | / <mark>EL OBSER</mark>                                                                                                                                                                                  | XVATIONS<br>pon ¥<br>pletion Afte<br>1<br>3<br>y between soil/rock t | r Drilling<br>BF | Start 11/<br>Drilling Me<br>Remarks<br>bentonite c | GENI<br>2/18<br>Backfil<br>hip plug | ERAL<br>End 1<br>3¼"<br>Iled with<br>g near t                                                                    | <u>NOT</u><br>1/2/18<br>I.D. HSA<br>n auger c<br>he surfac | ES<br>Rig | CME<br>ATV<br>Js al | = 75    |         |



Addendum No. 1 12-7-18











Name: Embankment Fill Unit Weight: 125 pcf Cohesion': 0 psf Phi': 30 ° Name: Silty Sand Unit Weight: 120 pcf Cohesion': 0 psf Phi': 32 ° Name: Lean Clay Unit Weight: 120 pcf Cohesion': 0 psf Phi': 31 ° Name: Weathered Shale Unit Weight: 135 pcf Cohesion': 0 psf Phi': 26 °