Monitoring Pulse Oximetry

Table of Contents:

Section I EMT-Basic Monitoring Pulse Oximetry

Training Objectives
Declaration Presentation

Appendices

Appendix A: Estimated Program Hours Appendix B: Protocols and Procedures

Appendix C: Techniques for Monitoring Pulse Oximetry

Appendix D: Pre-Course Written Evaluation and Pre-Course Written Evaluation Key Appendix E: Post-Course Written Evaluation and Post-Course Written Evaluation Key

Appendix F: Pulse Oximetry Monitoring Practical Skill Evaluation

Appendix G: Pulse Oximetry Course Evaluation

You can access all the appendices at:

http://www.ksbems.org/Curricula.htm

OBJECTIVES LEGEND:

C=Cognitive P=Psychomotor A=Application

1=Knowledge

2=Application

3=Problem Solving Level

LESSON TERMINAL INSTRUCTIONAL OBJECTIVE:

At the completion of this lesson, the EMT-Basic student will be able to utilize the information provided by pulse oximetry monitoring to enhance patient assessment skills and provide optimal interventions in the care of patients.

COGNITIVE OBJECTIVES:

Upon completion of this module, the EMT-Basic will be able to:

- 1. Review and understand the applicable regulation relative to monitoring pulse oximetry. (C-2)
- 2. Review the signs and symptoms of respiratory compromise. (C-1)
- 3. Review and understand the importance of adequate tissue perfusion. (C-2)
- 4. Describe how oxygen is carried by the blood. (C-3)
- 5. Define hypoxemia and describe the clinical signs and symptoms. (C-2)
- 6. Describe the technology of the pulse oximeter. (C-2)
- 7. Define normal parameters of oxygen saturation. (C-1)
- 8. Describe the relationship between oxygen saturation and partial pressure oxygen. (C-3)
- 9. Describe the significance of the information provided by pulse oximetry. (C-3)
- 10. Describe monitoring pulse oximetry during patient assessment. (C-3)
- 11. Describe the use of pulse oximetry with pediatrics. (C-3)
- 12. Describe patient conditions that may affect pulse oximetry accuracy. (C-3)
- 13. Describe patient environments that may affect pulse oximetry accuracy. (C-3)
- 14. Describe the evaluation and documentation of pulse oximetry monitoring. (C-3)

AFFECTIVE OBJECTIVES:

Upon completion of this module, the EMT-Basic will be able to:

- 15. Recognize and value of pulse oximetry monitoring as an adjunct in the assessment of the prehospital patient. (A-2)
- 16. Demonstrate appreciation for additional information in developing accurate field impressions of the pre-hospital patient. (A-2)
- 17. Understand the limitations of pulse oximetry monitoring and the importance of clinical assessment. (A-3)

PSYCHOMOTOR OBJECTIVES:

Upon completion of this module, the EMT-Basic will be able to:

- 18. Demonstrate a comprehensive patient assessment utilizing pulse oximetry. (P-2)
- 19. Demonstrate appropriate interventions for patients given simulated conditions and injuries along with pulse oximetry readings. (P-3)
- 20. Trouble-shoot problems that may occur when monitoring pulse oximetry. (P-3)
- 21. Demonstrate proper documentation of pulse oximetry monitoring. (P-3)

PRESENTATION:

I. Introduction:

A. Pulse oximetry has become the standard method for non-invasive monitoring of peripheral arterial oxygen saturation in most health-care areas. Recent technological developments have produced pulse oximeters without many of the problems that initially limited their use in the pre-hospital arena. Pulse oximetry now offers the pre-hospital care provider with an exceptional resource to monitor patients in the field.

- 1. signs and symptoms of respiratory compromise
 - a. dyspnea
 - b. accessory muscle use
 - c. inability to speak in full sentences
 - d. adventitious breath sounds
 - e. irregular breathing pattern
 - f. abdominal breathing only
 - g. increased or decreased breathing rate
 - h. shallow breathing
 - i. flared nostrils or pursed lips
 - j. upright or tripod position
 - k. unusual anatomy (barrel chest)
- 2. hypoxemia
 - a. decreased oxygen in arterial blood
 - (1) results in decreased cellular oxygenation
 - (2) anaerobic metabolism
 - (3) loss of cellular energy production
- 3. hypoxemia etiology
 - a. inadequate external respiration
 - b. inadequate oxygen transportation
 - c. inadequate internal respiration
- 4. external respiration
 - a. exchange of gases between alveoli and pulmonary capillaries
 - b. oxygen must be available to diffuse across alveolar and capillary membranes at the pulmonary level
- 5. inadequate external respiration
 - a. decreased oxygen available in the environment
 - (1) smoke inhalation
 - (2) toxic gas inhalation
 - (3) high altitudes
 - (4) enclosures without outside ventilation
 - b. inadequate mechanical ventilation
 - (1) pain

- (a) rib fractures
- (b) pleurisy
- (2) traumatic injuries
 - (a) tension pneumothorax
 - (b) hemothorax
 - (c) open pneumothorax
 - (d) flail chest
 - (e) crushing neck and chest injuries
- c. other conditions
 - (1) upper airway obstruction
 - (2) lower airway obstruction
- d. hypoventilation
 - (1) muscle paralysis
 - (a) spinal injuries
 - (b) paralytic drugs
 - (2) drug overdose
 - (3) brain stem injuries
- 6. inadequate oxygen diffusion
 - a. pulmonary edema
 - (1) fluid between alveoli and capillaries
 - (2) inhibits adequate diffusion of oxygen
 - b. pneumonia
 - (1) consolidation reduces surface area of respiratory membranes
 - (2) reduces the ventilation-perfusion ratio
 - c. COPD
 - (1) air trapping in alveoli
 - (2) loss of surface area of respiratory membranes
 - d. pulmonary emboli
 - (1) areas of lung is ventilated but hypoperfused
 - (2) loss of functional respiratory membranes
- 7. oxygen transport
 - a. most of the oxygen is saturated on hemoglobin
 - b. adequate number of RBCs with adequate hemoglobin
 - c. sufficient circulation to transport oxygen
- 8. inadequate oxygen transport
 - a. anemia
 - (1) reduces red blood cells
 - (2) inadequate hemoglobin
 - b. poisoning carbon monoxide prevents oxygen saturation
 - c. shock low pressure results in inadequate oxygen transport
- 9. internal respiration
 - a. exchange of gases from the systemic capillaries to the tissue cells
 - b. oxygen must be able to off-load at cellular level
- 10. inadequate Internal Respiration
 - a. shock massive vasoconstriction or micro-emboli prevent oxygen from reaching cells
 - b. cellular environment is not conducive to off-loading oxygen
 - (1) acid base balance
 - (2) lower than normal temperatures
 - c. poisoning CO will reduce the oxygen available at the cellular level
- 11. signs and symptoms of hypoxemia

- a. restlessness
- b. altered or deteriorating mental status
- c. increased pulse rate
- d. increased or decreased respiratory rate
- e. cyanosis (late sign)

B. pathophysiology

- 1. oxygen transportation
 - a. diffusion-gases moving from higher concentrations to lower concentrations
 - b. oxygen content of blood
 - (1) bound to hemoglobin
 - (2) dissolved in plasma
 - c. approximately 97% of total O2 is bound to hemoglobin
 - d. O2 saturation
 - (1) % of hemoglobin saturated
 - (2) normal SpO2 is 95 98%
 - (3) less than 95% suspect cellular perfusion compromise
 - (a) provide appropriate airway and supplemental oxygen
 - (b) monitor carefully for further changes
 - (4) SpO2 less than 90%, suspect severe cellular perfusion compromise
 - (a) positive pressure ventilations
 - (b) high flow oxygen administration
 - e. oxygen in the blood
 - (1) SpO2 bound to hemoglobin
 - (2) PaO2 dissolved in plasma
- 2. oxygen saturation and partial pressure of oxygen
 - a. normal PaO2 is 80 100 mm Hg
 - (1) 80 100 mm Hg corresponds to 95 100% SpO2
 - (2) 60 mm Hg corresponds to 90% SpO2
 - (3) 40 mm Hg corresponds to 75% SpO2

C. Technology

- 1. Light-Emitting Diodes (LEDs) produce red and infrared light
- 2. LEDs and detector on opposite side of sensor
- 3. require physiological pulsatile activity at sensor site
 - a. measures saturation of hemoglobin during pulsation
 - b. requires a pulse or a pulse wave to measure saturation
- 4. oxygenated blood and deoxygenated blood absorb different sources of light
 - a. oxyhemoglobin absorbs more infrared light
 - b. reduced hemoglobin, deoxyhemoglobin, absorbs more red light
 - c. pulse oximetry reveals arterial saturation by measuring this difference
- 5. SpO2 is very close to SaO2 determined by laboratory tests.
- D. patient assessment
 - 1. perform the Scene Size-up and Initial Assessment
 - a. apply oxygen when appropriate
 - (1) general impression of respiratory inadequacy
 - (2) altered mental status
 - (3) airway, breathing, circulation compromise

- b. initiate pulse oximetry immediately prior to or concurrently with oxygen administration.
- 2. perform a Rapid Trauma Assessment or Focused History and Physical
- 3. assess a full set of Vital Signs
 - a. inadequate blood pressure will not support tissue oxygenation, regardless of oxygen saturation
 - b. tachycardia is a sign of hypoxia
 - c. pale or cyanotic skin, and diaphoresis indicate hypoxia/hypoxemia
- 4. detailed assessment
- 5. ongoing assessment continuous monitoring of pulse oximetry
 - a. monitor current oxygenation status and response to oxygen therapy
 - b. monitor response to nebulized treatments
 - c. monitor patient following intubation
 - d. decreased circulating oxygen in the blood may occur rapidly without clinical signs and symptoms
- 6. pulse oximetry is not intended to replace a complete initial and detailed assessment an useful adjunct in assessing patients and monitoring patient treatment procedures.
- E. use of pulse oximetry in pediatrics
 - 1. use appropriate sized sensor adult sensors may be used on arms or foot
 - 2. active movement may cause erroneous readings pulse rate on oximeter must coincide with palpated pulse rate
 - 3. poor perfusion will cause erroneous readings
 - a. treat according to clinical status
 - b. pulse oximetry is useless in cardiac arrest
- F. conditions that may affect the accuracy of pulse oximetry
 - 1. patient conditions
 - a. carboxyhemoglobin
 - (1) carbon monoxide has 200-250 greater affinity for the hemoglobin molecule than oxygen and binds to same sites
 - (2) carboxyhemoglobin can not be distinguished from oxyhemoglobin
 - (3) smoke inhalation, heavy cigarette smoking, accidental or intentional CO poisoning
 - b. anemia
 - (1) low quantity of erythrocytes or hemoglobin
 - (a) normal values are 11 18 g/dl
 - (b) values as low as 5 g/dl may register SpO2 100%
 - c. hypovolemia / hypotension
 - (1) adequate oxygen saturation but reduced oxygen carrying capacity
 - (2) vasoconstriction or reduction in cardiac output may result in loss of detectable pulsatile waveform at the sensor site
 - (3) patients in shock or receiving vasoconstrictors may not have adequate perfusion to be detected by oximetry.
 - (4) always administer oxygen to patients with poor perfusion
 - d. hypothermia
 - (1) severe peripheral vasoconstriction may prevent oximetry detection
 - (2) shivering may result in erroneous oximetry reading
 - (3) treat the patient according to hypothermic protocols
 - 2. patient environments
 - a. ambient light

- (1) any external light exposure to the vascular bed where sampling is occurring may result in erroneous reading
- (2) most sensors are designed to prevent light from passing through shell
- (3) shield the sensor from bright lights
- b. motion
 - (1) new technology filters out motion artifact
 - (2) pulse rate must coincide with palpated pulse rate
- 3. other problems with pulse oximetry
 - a. fingernail polish and pressed on nails
 - (1) most commonly used nail polished does not affect oximetry readings
 - (2) remove fingernail polish that contains metallic flakes
 - (3) place oximeter sensor on ear if you suspect erroneous readings
 - b. skin pigmentation
 - (1) apply sensor to fingertip in darkly pigmented patients
- G. interpreting oximetry readings
 - 1. assess and treat the patient not the oximetry
 - a. use oximetry as an adjunct to patient assessment
 - b. never withhold oxygen if the patient has signs or symptoms of hypoxia or hypoxemia irregardless of oximetry readings
 - 2. pulse oximetry measures oxygenation not ventilation does not indicate the removal of carbon dioxide from blood
- H. documentation of pulse oximetry monitoring
 - 1. pulse oximetry is usually documented as SpO2
 - 2. document the oximetry reading as frequently as other vital signs
 - a. when pulse oximetry is initiated prior to supplemental oxygen, indicate the reading as "room air"
 - b. when oxygen administration is changed, document the evaluation of pulse oximetry
 - c. when treatments provided may affect respiration or ventilation, document pulse oximetry
 - (1) spinal immobilization
 - (2) shock positioning

Bledsoe, B. et al. (2003). *Essentials of Paramedic Care*. Upper Saddle River, New Jersey: Prentice Hall.

Halstead, D. Progress in Pulse Oximetry - a Powerful Tool for EMS Providers. JEMS,2001: 55-66.

Henry, M., Stapleton, E. (1997). EMT Prehospital Care (2nd ed.). Philadelphia: W.B.Saunders.

Limmer, D. et al. (2001) *Emergency Care* (9th ed.). Upper Saddle River, New Jersey: Prentice Hall.

Porter, R. et al: The Fifth Vital Sign. Emergency, 199l 22(3): 127-130.

Sanders, M., (2001). Paramedic textbook (rev. 2nd ed.). St. Louis: Mosby.

Shade, B. et al. (2002). EMT Intermediate Textbook (2nd ed.). St. Louis: Mosby.

Cason, D., Pons, P. (1997) Paramedic Field Care: a Complete Approach. St. Louis: Mosby.