---a reference guide to--Weights \& Measures

CONTENTS

Page
Common Kitchen Measurements 3
Linear Measure 3
Nautical Measure 3
Square or Area Measure 4
Cubic or Volume Measure 4
Liquid or Fluid Measure 5
Dry Measure 5
Measures of Weight 5
AvoirdupoisTroy (precious metals)Precious Stones
Apothecaries'
Metric Units 6
Metric Equivalents, Liquid or Fluid Measure 8
Metric Equivalents 8
Linear
Square
Cubic
Common Equivalents 9
Angles and Arcs. 10
Paper 10
How to Figure Areas 10
RectangleTriangleCircle
How to Figure Volumes 11
Cylinder
Cube
Oblong
Miscellaneous 11
Decimal Equivalents of Common Fractions 11
Converting Inches and Fractions of an Inch to Decimals of a Foot 12
Thermometers-Comparative Scales 13
Weight of Water 13
Winds, their force and official designation 13
Gasoline Mileage 13
Roman Numerals 14
Standard Measurements in Sports 14

Common Kitchen Measurements

STANDARD
EQUIVALENT
One pinch or dash
1/16 teaspoon
3 teaspoons 1 tablespoon (1/2 ounce liquid)
4 tablespoons 1/4 cup (2 ounces liquid)
$1 / 3$ cup 5 tablespoons plus 1 teaspoon
$1 / 2$ cup 8 tablespoons (4 ounces liquid)
1 gill $1 / 2$ cup (4 ounces liquid)
1 cup 16 tablespoons (8 ounces liquid)
2 cups 1 pint (16 ounces liquid)
2 pints 1 quart (32 ounces liquid)

4 quarts 1 gallon
8 quarts 1 peck
4 pecks 1 bushel

16 ounces
pound (dry measure)
1 pound of butter 2 cups
NOTE: All measurements quoted are level.
Linear Measure
STANDARD
EQUIVALENT
One pinch or dash
1 foot
4 inches $1 / 3$ foot $=1$ hand
9 inches 1 span
3 feet 1 yard
5.5 yards $\quad 16.5$ feet $=1$ rod, pole or perch
40 poles 220 yards $=1$ furlong
8 furlongs $\quad 1760$ yards $=5280$ feet $=1$ mile

3 miles 1 league
$691 / 8$ miles 1 degree

320 rods 1 mile

Nautical Measure

STANDARD
6,028 feet 6 feet
120 fathoms
1 nautical mile per hour

EQUIVALENT
1 nautical mile
1 fathom
1 cable length
1 knot of speed

Square or Area Measure

144 square inches $=1$ square foot
9 square feet = 1 square yard
30.25 square yards $=1$ square rod, pole or perch

160 square rods $=1$ acre
10 square chains $=1$ acre $=43,560 \mathrm{sq}$. ft. 640 acres = 1 Square mile = 1 "section" of U.S. Government surveyed land

> Cubic or Volume Measure
> A legal cord of wood is the amount of wood which is contained in a space of 128 cubic feet, such as a stack $4 \times 4 \times 8,2 \times 4 \times 16$, etc.

A rick of wood is usually 4 feet high, and 8 feet long. The length of the log is agreed upon by the buyer and seller.

1,728 cubic inches $=1$ cubic foot
27 cubic feet $=1$ cubic yard
1 cord of wood = 128 cubic feet
1 board foot $=144$ cubic inches $=11 / 12$ cubic foot
1 perch of stone or brick $=24.75$ cubic feet
(May vary from $\mathbf{1 6 . 5}$ to $\mathbf{2 5}$ cubic feet)
Number of board feet in log = [.25(d-4)]2L; where " d " is the diameter of a log (taken inside the bark at the small end) in inches; and L=length of log in feet. The 4 inches subtracted are an allowance for slab. Remember to square the formula before multiplying by the length.

Liquid or Fluid Measure

STANDARD
4 ounces(oz.)
2 gills 1 cup
2 cups 1 pint(pt.)
2 pints 1 quart(qt.)
4 quarts 1 gallon(gal.)
31.5 gallons 1 barrel(bbl.)

2 barrels
2 hogshead(hhd.)

Dry Measure

STANDARD

EQUIVALENT

2 pints	1 quart
8 quarts	1 peck
4 pecks	1 bushel(bu.)

Measures of Weight

Avoirdupois

16 drams	437.5 grains $=1$ ounce(oz.)
16 ounces	7000 grains $=1$ pound(lib.)
100 pounds	1 central $=1$ hundredweight(c wt.)
2000 pounds	1 short ton(T.)
2240.6 pounds	1 long ton or metric ton
Also(in Great Britain)	
14 pounds	1 stone
2 stones	1 quarter
4 quarters	$112 \mathrm{lbs} .=1$ hundredweight
20 hundredweight	1 long ton
Troy (Precious Metals)	
24 grains	1 pennyweight(dwt.)
20 pennyweights	480 grains = 1 ounce
12 ounces	5760 grains $=1$ pound

Precious Stones

100 points	1 carat
Pure Gold	24 carats
Good jewelry	14 carats

Apothecaries'

20 grains 1 scruple

3 scruples	1 dram
8 drams	1 ounce
12 ounces	5,760 grains $=1$ pound

METRIC UNITS

The three main units; meter, liter, and gram, can be changed to more convenient sized units for specific purposes by means of several well known prefixes. Milli means $1 / 1000$, centi means $1 / 100$, deci means $1 / 10$, and kilo means 1000. One merely learns the main units and the value of the most commonly used prefixes. The symbols for metric units are the

Quantity	Unit	Symbol	Relationship of Units
Length	millimeter	mm	$1 \mathrm{~mm}=0.001 \mathrm{~m}$
	centimeter	cm	$1 \mathrm{~cm}=10 \mathrm{~mm}$
	decimeter	dm	$1 \mathrm{dm}=10 \mathrm{~cm}$
	meter	m	$1 \mathrm{~m}=100 \mathrm{~cm}$
	kilometer	km	$1 \mathrm{~km}=1000 \mathrm{~m}$
Area	square centimeter	cm^{2}	$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$
	square decimeter	dm^{2}	$1 \mathrm{dm}^{2}=100 \mathrm{~cm}^{2}$
	square meter	m^{2}	$1 \mathrm{~m}^{2}=100 \mathrm{dm}^{2}$
	are	a	$1 \mathrm{a}=100 \mathrm{~m}^{2}$
	hectare	ha	$1 \mathrm{ha}=100 \mathrm{a}$
	square kilometer	km^{2}	$1 \mathrm{~km}^{2}=100 \mathrm{ha}$
Volume	cubic centimeter	cm^{3}	$1 \mathrm{~cm}=0.001 \mathrm{~L}$
	milliliter	ml	$1 \mathrm{ml}=0.001 \mathrm{~L}$
	cubic decimeter	dm^{3}	$1 \mathrm{dm}^{3}=1000 \mathrm{~mL}$
	liter	L	$1 \mathrm{~L}=1000 \mathrm{~mL}$
	cubic meter	m^{3}	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$
Mass*	milligram	mg	$1 \mathrm{mg}=0.001 \mathrm{~g}$
	gram	g	$1 \mathrm{~g}=1000 \mathrm{mg}$
	kilogram	kg	$1 \mathrm{~kg}=1000 \mathrm{~g}$
	metric ton	t	$1 \mathrm{t}=1000 \mathrm{~kg}$

same for single and plural amounts and are not followed by a period. Rates are usually show by the use of a slash as in m / s.

The Metric System simply and logically coordinates the measurements of length, area, volume, and mass into one decimalized system. United States currency, with its unexcelled convenience, was the first large scale national use of a decimal system. The ratio between units of the series - dollars, dimes, cents, and mills - is ten. Additions and other numerical operations are simple. Calculations with metric units require no conversion from unit to unit, as for example between inches and feet or ounces and pounds.

In the the Metric System there is one series of units for length, one for area, one for volume or capacity, and one for mass.

* Mass is the quantity of matter; whereas weight is a force, Earth's attraction for a given mass. Generally, the term mass is meant when we use weight.

LENGTH = The common metric units of length are the millimeter (mm) for small dimensions, the centimeter (cm) for daily practical use, the meter (m) for expressing dimensions of larger objects and short distances and the kilometer (km) for longer distances. The centimeter is about four-tenths of an inch. The meter is about forty inches and the kilometer about six-tenths of a mile. When drawing to metric scale, engineering and product dimensions are in millimeters, while architectural drawings can be in millimeters or centimeters. On land surveys the unit is the meter, whereas for maps the kilometer is used.

AREA $=$ Small areas are usually measured in square centimeters $\left(\mathrm{cm}^{2}\right)$ In building and construction the square meter $\left(\mathrm{m}^{2}\right)$ is used and is about 20 percent larger than a square yard. The hectare(ha) is used for land surveys and is about 2.5 acres.
VOLUME $=$ For volume the most convenient unit is the cubic decimeter $\left(\mathrm{dm}^{3}\right)$ which is commonly referred to as the liter(L). The liter is slightly larger than the U.S. liquid quart but smaller than the U.S. dry quart and the British Imperial quart. The preferred unit for dispensing drugs and for scientific work is the cubic centimeter (cm^{3}) or milliliter(ml) as it is also called. For measuring amounts of concrete and excavations the cubic meter $\left(\mathrm{m}^{3}\right)$ is used.

MASS $=$ In pharmaceutical and scientific work the gram (g) is the most convenient unit. There are slightly less than 30 grams in one avoirdupois ounce. For most other uses the kilogram(kg) is convenient and is approximately 2.2 pounds. The metric ton(t), 100 kg , is used for farm commodities, minerals, and large shipments. It is convenient that a liter of pure water at standard temperature and pressure has a mass of one kilogram (discrepancy less than one part in 10,000). This relationship makes it easy to
determine the mass of any known volume of water, or of any other liquid if its specific gravity is known.

TEMPERATURE $=$ All countries using the Metric System of weights and measure also use the Celsius (${ }^{\circ} \mathrm{C}$) scale (formerly called centigrade) for ordinary measurement of temperature. On the Celsius scale pure water at standard atmospheric pressure freezes at 0° and boils at 100°. Normal human body temperature is 37°, while a comfortable room temperature is about 22°. The preferred temperature scale for engineering and physics is the Kelvin (K) which has the same units as the Celsius and where the freezing point of pure water is 273.15 K.

METRIC EQUIVALENTS, LIQUID OR FLUID MEASURE

1 centiliter(cl) 6102 cu . in. $=.338 \mathrm{oz}$.
1 deciliter(dl) (10 cl) 6.102 cu . in. $=.845$ gill.

1 liter (1) 10 (dl) $.908 \mathrm{qt} .=1.0567 \mathrm{qt}$.
1 dekaliter(dal) $9.08 \mathrm{gt} .=2.64 \mathrm{gal}$.

Linear

1 millimeter (mm)	0394 in.
1 centimeter (cm)	3937 in .
1 decimeter (dm)	3.937 in .
1 meter	$39.37 \mathrm{in} .=1.1$ yard
1 decameter	$393.7 \mathrm{in} .=10 \mathrm{yd}$.2.8 ft .
1 hectometer	$328 \mathrm{ft}$.1 in .
1 kilometer	$3,280 \mathrm{ft}$. 1 in .

Square

1 square millimeter .00155 sq. inches
1 square centimeter .155 sq. inches
1 square meter 10.764 sq . ft. or 1.196 sq . yd.

1 square kilometer 3861 sq. mile
1 are 100 sq. meters $=119.6$ sq. yard $=$ basic unit in measuring land
Metric Weights
1 milligram 0.0015 grain
1000 milligrams 1 gram(0.035 oz.)
1000 grams1 kilogram(2.205)
1000 kilograms 1 metric ton
Cubic
1 cubic millimeter .000061 cubic inches
1 cubic centimeter0610 cubic inches
1 cubic meter35.314 cubic feet $=1.3079$ cubic yards
COMMON EQUIVALENTS (approximate)
1 bushel 2150 cubic inches $=11 / 4$ cubic feet1 gallon231 cubic inches
1 cubic foot 7.5 gallons
1 cubic foot of water 62.5 pounds
1 gallon of water $81 / 3$ pounds
1 cubic foot of ice 57.5 pounds
1 barrel flour 196 pounds
1 ton hay 500 cubic feet
1 ton hard coal 35 cubic feet
1 ton soft coal 42 cubic feet

60 second (")	1 minute(')
60 minutes	1 degree $\left({ }^{\circ}\right)$
90 degrees	1 right angle
360 degrees of an arc (circle)	1 circumference
360 degrees of an angle	1 complete rotation

Paper

24 sheets	1 quire
20 quires	1 ream
500 sheets	1 ream
10 reams	1 bale
$* 20$ quires $=480$ sheets. This is a short ream. When bought by the ream, 500 sheets are	
obtained.	

How to Figure Areas

Rectangle

The area of a rectangle equals the product of the numbers which measure the length and the width. Area $=\mathrm{L} \times \mathrm{W}$.

Triangle

The area of a triangle is equal to half the product of its base and height. Area $=1 / 2 \mathrm{~b} \times \mathrm{h}$.

Circle

The area of a circle is found by multiplying the square of its radius by pi (3.1416). Area $=$ piR 2

The circumference of a circle is approximately $31 / 7$ or 3.1416 times as large as its diameter. $C=(p i) d$.

How to Figure Volumes

Cylinder

The volume of a cylinder is found by multiplying the area of its base by its height, or $V=(p i) r^{2} x h$

Cube

The volume of a cube is found by multiplying the length by width by height or $V=E^{3}$.

Oblong

The volume of an oblong is found by multiplying the length by width by height, or ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)

Miscellaneous

Speed per second acquired by falling body: $v=32 t$, in which t is the time in seconds.

Distance in feet traveled by falling body: $d=16 t$, in which t is the time in seconds.

Miscellaneous Continued

Cost per hour of operation of electrical device: $\mathrm{C}=\mathrm{Wtc} / 1000$, in which \mathbf{W} is the number of watts, t is the time in hours and c is the cost per kilowatt-hour.

Conversion of matter into energy (Einstein's Theorem) : $E=\mathrm{mc}^{2}$ in which E is the energy in ergs, m is the mass of the matter in grams, and c is the speed of light in centimeters per second ($c^{2}=9 \times 10^{20}$).

Decimal Equivalents of Common Fractions

$1 / 2 .=5000$	$1 / 32=.0313$	$3 / 11=.2727$	$6 / 11=.5455$
$1 / 3=.3333$	$1 / 64=.0156$	$4 / 5=.8000$	$7 / 8=.8750$
$1 / 4=.2500$	$2 / 3=.6667$	$4 / 7=.5714$	$7 / 9=.7778$
$1 / 5=.2000$	$2 / 5=.4000$	$4 / 9=.4444$	$7 / 10=.7000$
$1 / 6=.1667$	$2 / 7=.2857$	$4 / 11=.3636$	$7 / 11=.6364$
$1 / 7=.1429$	$2 / 9=.2222$	$5 / 6=.8333$	$7 / 12=.5833$
$1 / 8=.1250$	$2 / 11=.1818$	$5 / 7=.7143$	$8 / 9=.8889$
$1 / 9=.1111$	$3 / 4=.7500$	$5 / 8=.6250$	$8 / 11=.7273$
$1 / 10=.1000$	$3 / 5=.6000$	$5 / 9=.5556$	$9 / 10=.9000$
$1 / 11=.0909$	$3 / 7=.4286$	$5 / 11=.4545$	$9 / 11=.8182$
$1 / 12=.0833$	$3 / 8=.3750$	$5 / 12=.4167$	$10 / 11=.9091$
$1 / 16=.0625$	$3 / 10=.3000$	$6 / 7=.8571$	$11 / 12=.9167$

Converting Inches and Fractions of an Inch to Decimals of a Foot

Inches	1	2	3	4	5	6	7	8	9

Feet 0833 . 1667 . 25 . 333 . 4167 . 5
$\begin{array}{cccccccccc}\text { Inches } & 10 & 11 & 1 / 8 & 1 / 4 & 3 / 8 & 1 / 2 & 5 / 8 & 3 / 4 & 7 / 8 \\ \text { Feet } & 833 & 9167 & 0104 & 0208 & 0313 & 0417 & 0521 & 0525 & 0729\end{array}$

Thermometers - Comparative Scales

To convert Fahrenheit to Centigrade, subtract 32 degrees and multiply by 5/9; to convert Centigrade to Fahrenheit, multiply by 9/5 and add 32 degrees.

Important Temperatures:
$100^{\circ} \mathrm{C} / 212^{\circ} \mathrm{F}$ is the temperature at which water boils at sea level.
$75^{\circ} \mathrm{C} / 167^{\circ} \mathrm{F}$ is the temperature at which alcohol boils.
$52.8^{\circ} \mathrm{C} / 127^{\circ} \mathrm{F}$ is the temperature at which tallow melts
$36.7^{\circ} \mathrm{C} / 98^{\circ} \mathrm{F}$ is the temperature of body heat
$15.5^{\circ} \mathrm{C} / 60^{\circ} \mathrm{F}$ is temperate
$0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$ is the temperature at which water freezes

Weight of Water

1 cubic inch	.0360 pound
12 cubic inches	.433 pound
1 cubic foot	62.3 pounds
1.8 cubic feet	112.0 pounds
35.96 cubic feet	2240.0 pounds
1 imperial gallon	10.0 pounds
11.2 imperial gallons	112.0 pounds
224 imperial gallons	2240.0 pounds
1 U.S. gallon	8.33 pounds
13.45 U.S. gallon	112.0 pounds
269.0 U.S. gallon	2240.0 pounds

Winds, their Force and Official Designation

Designation Miles Per Hour
Calm Less than 1
Very Light 1 to 3
Light 4 to 7
Gentle 8 to 12
Moderate 13 to 18
Fresh 19 to 24
Strong 25 to 38
Gale 39 to 54
Whole Gale 55 to 72
Hurricane Above 72

Gasoline Mileage

Start with a full tank. Note mileage reading. After driving at least 150 miles, fill tank. Note mileage reading. Note number of gallons added. Miles traveled (second reading less "start" reading) divided by gallons added equals miles per gallon. Example: Mileage at end of trip=10,459; Mileage at start $=10,225$; Miles traveled 234; Gallons added $=13$; 234 Miles traveled / 13 gallons added $=18$ miles per gallon.

Roman Numerals

Letter			Value
I	1	LX	60
II	2	LXX	70
III	3	LXXX	80
IV	4	XC	90
V	5	C	100
VI	6	D	500
VII	7	M	1000
VIII	8	$\mathrm{~V}^{*}$	5000
IX	9	X *	10,000
X	10	$\mathrm{~L}^{*}$	50,000
XX	20	C^{*}	100,000
XXX	30	D^{*}	500,000
XL	40	M^{*}	$1,000,000$

*These Roman numerals require horizontal lines over the letter
A letter repeated one or twice repeats its value that many times. One or more letters placed after another letter of greater value increases the greater value by the amount of the smaller. A letter placed before another letter of greater value decreases the greater value by the amount of the smaller value.

Standard Measurements in Sports

Baseball

Home plate to pitcher's box - 60 feet 6 inches
Plate to second base - 127 feet 3 / 8 inches.
Distance from base to base (home plate included) - 90 feet
Batter's box - 6 feet by 4 feet.
Weight of ball - Not less than 5 ounces nor more than 5.25 ounces
Bat - must be round, not over 2.75 inches in diameter at the thickest part, nor more than 42 inches in length, and of hardwood in one piece or laminated.

Football

Length of field - 120 yards*
Width of field - $531 / 3$ yards (160 feet).
Height of goal posts - 20 feet.
Height of crossbar - 10 feet.
Width of goal posts - 18 feet 6 inches, inside to inside, not more than 19 feet 2 inches, outside to outside.
*Includes 10 yards of end zone on either side.

Tennis

Size of court - Rectangle 78 feet long and 27 feet wide (singles); 78 feet long and 36 feet wide (doubles).
Service line - 21 feet from the net.
Height of the net -3 feet in the center, gradually rising to reach 3 -foot 6 -inch Posts at each side of court.

Basketball

Playing court - 94 feet long by 50 feet wide (maximum dimensions);
74 feet long by 42 feet wide (minimum dimensions).
Baskets - Rings 18 inches in inside diameter, with white cord nets, 15 to 18 inches in length. Each ring is made of metal and is not more than $5 / 8$ of an inch in diameter
Height of basket ring - 10 feet.
Free-throw line - 15 feet from the face of the backboard

Baseball (Little League)

Home plate to pitcher's box - 46 feet
Plate to second base - 84 feet 10 inches
Distance from base to base(home plate included) - 60 feet
Batter's box - 5 feet 6 inches by 3 feet
Weight of ball - Not less than 5 oz. nor more than 5.25 ounces
Bat - must be round. Not more than 33 inches in length, and made of wood. Not more than 2.25 inches in diameter at thickest part, and not less than $1-1 / 16$ inches in diameter at its smallest part. Bats may be taped for a distance not exceeding 16 inches from the smallest end.

Horseshoe Court

Length between pegs - 40 feet
Boxes -6 feet by 6 feet
Length - Over-all 50 feet

Mens' Volley Ball

Length - 60 feet
Width - 30 feet
Height of net from ground - 8 feet (7.5 feet for girls)
Bottom of net from ground -5 feet

Single Handball Court

Length - 34 feet
Width - 20 feet
Service line - 16 feet from front wall

