2011 Indiana Report of Infectious Diseases

All incidence rates throughout the report are per 100,000 population based on the U.S. Census Bureau’s population data as of July 1, 2010.

Data for counties reporting fewer than five disease cases are not included to protect the confidentiality of the cases.

Data for fewer than 20 reported disease cases are considered statistically unstable.

References

Websites
www.cdc.gov
The **Indiana National Electronic Disease Surveillance System** (I-NEDSS) is a web based application that promotes the collection, integration and sharing of data at federal, state and local levels. The purpose of I-NEDSS is to electronically report infectious diseases to the state and local health departments. Benefits of I-NEDSS include an increase of speed, accuracy, and accountability in our disease surveillance. This will be accomplished by having all reporting and investigation forms accessed, completed, and submitted electronically through I-NEDSS. I-NEDSS is part of a national electronic disease reporting system that not only links healthcare providers and state and local public health agencies within Indiana, but also provides data to the U.S. Centers for Disease Control and Prevention. This system is currently in use by 98% of the local health agencies in the state and nearly 130 hospitals to report infectious diseases.
Anthrax	Measles
Arboviral Encephalitis	Meningococcal Disease
Babesiosis	Mumps
Botulism	Pertussis
Brucellosis	Plague
Campylobacteriosis	Pneumococcal Disease
Cholera	Poliomyelitis
Cryptosporidiosis	Psittacosis
Cyclosporiasis	Q Fever
Dengue Fever and Dengue Hemorrhagic Fever	Rabies
Diphtheria	Rocky Mountain Spotted Fever
Ehrlichiosis	Rubella
Escherichia coli O157:H7	Salmonellosis
Giardiasis	Shigellosis
Haemophilus influenzae (invasive disease)	Smallpox
Hantavirus	Streptococcus Group A
Hepatitis A	Streptococcus Group B
Hepatitis B	Tetanus
Hepatitis C	Toxic Shock Syndrome
Hepatitis D	Trichinosis
Hepatitis E	Tularemia
Histoplasmosis	Typhoid Fever
La Crosse Encephalitis	Typhus Fever (Murine)
Legionellosis	Varicella
Leprosy	Vibriosis
Leptospirosis	West Nile Virus
Listeriosis	Yellow Fever
Lyme Disease	Yersiniosis
Malaria	
Anthrax is a bacterial disease of humans and animals caused by the bacterium Bacillus anthracis. Anthrax bacteria form spores, which are extremely stable in the environment. There are three clinical presentations of the disease: 1) Cutaneous infections, the mildest form, occur when bacterial spores become embedded in the skin. 2) The gastrointestinal form, which is extremely rare, occurs when animals ill with anthrax are consumed as food. 3) Inhalation anthrax occurs when the spores are inhaled. Both the inhalation and gastrointestinal forms have high mortality rates. The reservoir of the bacteria is soil, where the spores can remain viable for years. The spores can be found worldwide and are found naturally in some western states in the U.S. and Canada. Animals, including livestock, can acquire the bacteria from contaminated soil. However, there have been no reported cases of anthrax in Indiana livestock since before 1960.

Public Health Significance
Symptoms of anthrax can occur within 7 days of becoming infected except for symptoms of inhalation anthrax, which can take up to 62 days to appear. The symptoms are different depending on how the disease is acquired.

Cutaneous: Skin infection starts with a small sore that resembles an insect bite or blister. The sore develops into a skin ulcer with a black area in the center (eschar). Most anthrax infections are cutaneous.

Gastrointestinal: Symptoms start with nausea, vomiting, fever, and loss of appetite and progress to more severe symptoms such as vomiting blood, stomach pain, and severe diarrhea.

Inhalation: In the beginning stage of the illness, symptoms are similar to a common cold and include sore throat, mild fever, and muscle aches. As disease progresses, breathing problems, tiredness, and chest discomfort occur and become progressively severe.

Antibiotics are used to treat all three types of anthrax. However, treatment success will depend on the type of anthrax infection and how soon treatment can begin.

An anthrax vaccine has been licensed for use in humans. However the vaccine is only recommended for individuals considered to be at high risk for exposure. The vaccine is recommended for the following groups:
- Laboratory personnel working directly with the organism.
- Persons who handle potentially infected animal products, e.g., imported hides.
- Veterinarians or other animal handlers who work in high-risk areas, especially outside the U.S.
- Military personnel.

The vaccine protects against cutaneous anthrax and is believed to be effective against inhaled spores in a biowarfare situation.

Anthrax is a Category A bioterrorism agent. Anthrax spores could be released into the air and used as a weapon. As an agent of biological warfare, it is expected that a cloud of anthrax spores would be released at a strategic location to be inhaled by the individuals under attack. Spores of B. anthracis can be produced and stored in a dry form and remain viable for decades in storage or after release.
Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Anthrax cases immediately to the Indiana State Department of Health. Laboratories are also required to report positive results of Bacillus anthracis weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for anthrax.

Epidemiology and Trends
There were no reported human or animal cases of anthrax were reported in Indiana in 2011 or during the five-year reporting period 2007-2011.

You can learn more about anthrax by visiting the following Web sites:
http://emergency.cdc.gov/agent/anthrax/index.asp

*Bioterrorism Agent List:
http://www.bt.cdc.gov/agent/agentlist-category.asp
ARBOVIRAL ENCEPHALITIS

Arboviral encephalitis viruses are transmitted by blood-feeding arthropods, the most common being mosquitoes and ticks. Indiana residents are at risk for four arboviral encephalitis viruses: 1) eastern equine encephalitis (EEE), 2) St. Louis encephalitis (SLE), 3) LaCrosse encephalitis (LAC), and 4) West Nile virus (WNV), all of which are transmitted by mosquitoes. LAC encephalitis and WNV are addressed in separate sections of this report. Most cases of arboviral encephalitis occur from July through October, when arthropods are most active. In warmer climates, cases may occur during the winter months because arthropods are active for longer periods of time.

EEE is caused by a virus transmitted to humans and equines (horses) by infected mosquitoes and is maintained in a bird-mosquito cycle in fresh water swamps. In Indiana, the ecological system that supports the transmitting mosquito, Culiseta melanura, occurs only in the north central counties. Horse and human cases occur sporadically. EEE has a high mortality rate and is considered one of the most serious mosquito-borne diseases in the U.S.

Prior to the emergence of West Nile Virus, SLE was the most common mosquito-transmitted human pathogen in the U.S. The SLE virus is maintained in a bird-mosquito cycle involving Culex species of mosquito. Most SLE infections are asymptomatic; clinical infections may range in severity from mild nonspecific febrile illness to meningitis or encephalitis (neuroinvasive disease). In the United States, the annual number of reported SLE neuroinvasive disease cases reported fluctuates widely, as result of periodic epidemics. From 1964 through 2009, an average of 102 cases were reported annually, there have been as many as 2000 cases during epidemic years.

Public Health Significance
People infected with EEE often have no symptoms or mild flu-like symptoms, headache, and fever. Symptoms can become severe, affecting the central nervous system and eventually leading to seizures and coma. Symptoms appear 4-10 days after the bite from an infected mosquito. People most at risk of contracting EEE are those who live or visit areas where EEE is common and engage in outdoor recreational activities or people who work outdoors. While no vaccine or specific treatment exists for humans infected with EEE, there is a vaccine for horses.

Symptoms of SLE are similar to EEE and range in severity from headache and fever to coma, tremors, and convulsions. Symptoms appear 5-15 days after becoming infected with SLE. People most at risk of becoming infected with SLE are those who visit or reside in areas where mosquitoes carry the infection and people who work outdoors or participate in outdoor recreational activities. As with EEE, there is no human vaccine for SLE.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report arboviral disease immediately (both neuroinvasive and non-neuroinvasive cases) to the local health department or the ISDH. Laboratories are also required to report positive results of arboviral testing weekly to the ISDH. Arboviral diseases include— dengue, Eastern equine encephalitis (EEE), LaCrosse (California) encephalitis (LAC), Saint Louis encephalitis (SLE), Western equine encephalitis (WEE), West Nile virus (WNV), Powassan encephalitis, and yellow fever.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for arboviral disease.
Epidemiology and Trends
No human cases of EEE were reported in Indiana in 2011, nor were any reported during the five year reporting cycle from 2007-2011.

No human cases of SLE were reported during 2011 in Indiana. One human case was reported during the five year reporting period, 2007-2011.

You can learn more about arboviral encephalitis by visiting the following Web sites:
http://www.cdc.gov/ncidod/dvbid/arbor/index.htm
http://www.cdc.gov/EasternEquineEncephalitis/index.html
http://www.cdc.gov/ncidod/dvbid/sle/Sle_FactSheet.html
BABESIOSIS

Babesiosis is caused by hemoprotozoan parasites of the genus *Babesia*. The parasite attacks the red blood cells, causing their destruction and resulting in hemolytic anemia. Individuals with babesiosis often have enlarged livers and spleens. On the East Coast and in the Midwestern states, the disease is transmitted by the bite of deer ticks infected with the *Babesia* parasite. The deer tick, *Ixodes scapularis*, lives on deer, meadow voles, and other small rodents such as deer mice. Deer ticks also transmit Lyme disease and human granulocytic ehrlichiosis in Indiana. Co-infections of Lyme disease and *Babesia* have been identified in the New England states. Less common routes of *Babesia* infection include transfusion from an infected blood donor and from infected mother to her unborn child.

Public Health Significance

Symptoms of babesiosis usually occur 1-4 weeks after a tick, but can appear months later. Most cases have mild symptoms that begin with fatigue and body aches. More severe symptoms may resemble malaria and include headache, fever, chills, and vomiting. Treatment is available and usually includes a combination of antiparasitic medications.

Although anyone can become infected with babesiosis, elderly people, persons with weakened immune systems, and people whose spleens have been removed are more at risk.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report babesiosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Babesia species* weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for babesiosis.

Epidemiology and Trends

No cases of babesiosis were reported in Indiana in 2011, and no cases were reported during the five-year reporting period 2007-2011.

You can learn more about babesiosis by visiting the following Web site:

Botulism is caused by a nerve toxin (poison) produced by the *Clostridium botulinum* bacterium, which lives in the soil and grows best with little oxygen. These bacteria form spores, which allows survival in harsh environments. The toxin can cause muscle paralysis, which can result in death if the breathing muscles become paralyzed. Botulism is considered a medical emergency. On average, one case of botulism is reported in Indiana every two years.

Botulism is not spread from person to person. There are three types of botulism:

- **Foodborne botulism** results from eating foods, especially improperly home-canned foods that contain botulism toxin.
- **Intestinal botulism** (formerly infant botulism) results from eating certain foods, e.g., honey or natural syrups that contain spores of botulism bacteria. These spores grow in the intestines and produce toxin in babies and people with gastrointestinal disorders.
- **Wound botulism** results from wounds becoming contaminated with *Clostridium botulinum*.

Public Health Significance

Symptoms of botulism can include diarrhea, vomiting, constipation, urinary retention, double or blurred vision, drooping eyelids, difficulty speaking or swallowing, dry mouth, muscle weakness, and muscle paralysis that begins in the upper body and progresses downward (“descending paralysis”). Muscle paralysis involves both sides of the body at the same time, starting at the head and moving towards the feet. These symptoms are a result of the bacterial toxin paralyzing the muscles of the body. Botulism symptoms typically begin within 12-36 hours (range of 6 hours to 10 days) after consuming contaminated food or after a wound has become infected with the bacteria. Babies with botulism appear tired, do not eat well, are constipated, and have a weak cry and limp muscles.

If discovered early, botulism caused by contaminated food or an infected wound can be treated with an antitoxin. While the antitoxin keeps the illness from becoming worse, it does not speed recovery. Antitoxin is rarely used to treat babies with botulism. Because the antitoxin can cause severe allergic reactions in some patients, the health care provider must rule out other possibilities for the illness before giving antitoxin.

Outbreaks have occurred following the consumption of uneviscerated fish (guts left inside the fish), fermented fish, and improperly processed foods (e.g., sautéed onions, chili peppers, and canned chili).

Measures that would decrease the likelihood of transmission of botulism include:

- **Foodborne:**
 - Properly process and prepare all home-canned foods. Instructions for safe home canning are available from county extension services or from the United States Department of Agriculture (USDA).
 - Boil home-canned foods for 10 minutes before eating. The bacterial toxin is destroyed by heat.
 - Never eat foods from cans or jars that are bulging, discolored, have a bad taste or smell, or have swollen lids or caps.
 - If stored overnight, remove aluminum foil from leftover potatoes before refrigerating. Potatoes that have been baked while wrapped in aluminum foil should be kept hot until they are eaten or refrigerated.
 - Refrigerate oils that contain garlic or herbs.
• Intestinal (including infants):
 o Honey should not be fed to babies less than 12 months of age. Honey can contain spores of the bacteria, which can easily grow in infants.
• Wound care:
 o Carefully clean and disinfect all cuts and wounds.

Reporting Requirements

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for botulism.

Epidemiology and Trends
There was one reported case of botulism was reported in Indiana in 2011 and five cases were reported during the five-year reporting period 2007-2011.

You can learn more about botulism by visiting the following Web sites:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/botulism/
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070000.htm
Brucellosis is a systemic bacterial disease of animals caused by one of several Brucella species (abortus, melitensis, suis, canis) that can be transmitted to humans through one of three methods: 1) consumption of contaminated milk or meat; 2) handling of infected animal fetuses, vaginal fluid, or products of birth; or 3) inhalation of the organism in laboratories or slaughterhouses. Person-to-person transmission (from sexual activity and breast-feeding mothers) has been documented but is rare.

Public Health Significance
In humans, symptoms of brucellosis usually appear within 5-30 days after becoming infected but may take as long as six months. Symptoms may include fever, sweats (often at night), headaches, weakness, chills, and body aches. Groups at risk for brucellosis include meat inspectors, animal handlers, laboratory workers, veterinarians, and anyone who consumes unpasteurized milk and dairy products made with unpasteurized milk such as cheese. Treatment is available for brucellosis and recovery may take a few weeks to several months. Treatment requires the use of multiple antibiotics for six weeks or longer.

Since Brucella can be transmitted by inhalation, it is considered a Category B bioterrorism agent*.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report brucellosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Brucella species weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for brucellosis.

Epidemiology and Trends
Brucellosis cases in humans rarely occur in Indiana and are sporadic elsewhere in the U.S. due to the efforts of the United States Department of Agriculture and state animal health agencies to eliminate Brucella from livestock herds over the last 60-70 years. No cases of brucellosis were reported in Indiana in 2011. Six cases were reported during the five-year reporting period 2007-2011. Recent cases in the United States have been attributed to the consumption of unpasteurized milk products acquired through foreign travel.

You can learn more about brucellosis by visiting the following Web sites:
http://www.cdc.gov/brucellosis/

*Bioterrorism Agent List:
http://www.bt.cdc.gov/agent/brucellosis/
Campylobacteriosis is a contagious disease caused by *Campylobacter* bacteria, which live in the intestines of many animals, including birds, farm animals, dogs, and cats. There are over 20 types of *Campylobacter* bacteria. Campylobacteriosis is one of the most commonly reported causes of diarrheal illness in humans.

There are many ways a person can become infected with *Campylobacter*. The most common exposures are foodborne (consuming undercooked poultry, unpasteurized dairy products), waterborne (swallowing untreated water, e.g., from lakes or streams), person-to-person contact, and contact with infected animals, primarily puppies, kittens, and livestock.

Public Health Significance

Typical symptoms include diarrhea, stomach cramps, fever, nausea, and vomiting. Symptoms usually appear 2-5 days after exposure, with a range of 1-10 days. For most people, *Campylobacter* causes symptoms that usually last no longer than one week, and they recover within 5-7 days without medical treatment. Since diarrhea can cause dehydration, an infected person should drink plenty of fluids. No specific treatment is generally recommended; however, antibiotics may be used to treat persons with severe cases.

In general, campylobacteriosis can be prevented by strictly adhering to the following guidelines:

- **Practice good hygiene:**
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after contact with animals and reptiles; after swimming; before, during, and after food preparation; and after exposure to raw meat products.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contamination with raw meat products.
- **Separate raw and cooked foods:**
 - Avoid cross-contamination by keeping uncooked meat products and marinades separate from produce, ready-to-eat foods, and cooked foods.
 - Use separate equipment and utensils for handling raw foods.
 - Clean food-preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contact with raw meat products.
- **Maintain safe temperatures:**
 - Maintain proper temperatures during refrigeration (<40°F), freezing (<2°F), holding (keep food hot or at room temperature for no longer than 2 hours), and chilling (chill immediately and separate into smaller containers if needed).
 - Thoroughly cook all food items to USDA recommended safe minimum internal temperatures:
 - 145°F – steaks, roasts, and fish
 - 160°F – pork, ground beef, and egg dishes
 - 165°F – chicken breasts and whole poultry
 - If the temperature cannot be checked, cook poultry until juices run clear and the meat is no longer pink.
- **Eat safe foods:**
 - Do not eat undercooked meat, poultry, eggs, expired foods, or unpasteurized dairy products or juice.
 - Wash all produce before eating raw or cooking.
- Use treated water for washing, cooking, and drinking.
- Avoid swallowing untreated water.

- Protect others:
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care services for others and should limit direct contact with others as much as possible.
 - Persons with diarrhea and/or vomiting should not attend a daycare facility or school.
 - Do not change diapers near recreational water.
 - Do not go swimming or use hot tubs if you have diarrhea and for at least two weeks after diarrhea stops.

- Handle animals safely:
 - Wash hands after contact with farm animals, petting zoos, pets (including reptiles and amphibians), especially if they are suffering from diarrhea, and after contact with pet food/treats (including live or frozen rodents).
 - Keep pets out of food-preparation areas.
 - Do not clean pet or reptile cages in the kitchen sink or in the bathtub.

- Travel safely outside of the U.S.:
 - Drink bottled beverages and water, even when brushing teeth.
 - Do not eat uncooked fruits or vegetables unless you peel them yourself.
 - Do not eat foods or beverages from street vendors.
 - Do not consume local water or ice.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report campylobacteriosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of campylobacteriosis weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for Campylobacteriosis is 8.5 cases per 100,000 population per year. Indiana met this goal in 2007, but did not from 2008 to 2011 for the five-year period 2007-2011 (Figure 1).
Epidemiology and Trends
In 2011, 647 reported cases of campylobacteriosis were reported in Indiana, for a rate of 9.93 cases per 100,000 population (Table 1). This represents a decrease in reported cases compared to 2010 (742). Males (10.20) were more likely to be reported than females (9.67). The rate for other races (8.78) was higher than for whites (7.80), or blacks (2.29); however, 170 cases (26.3%) did not report race data.

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>647</td>
<td>9.93</td>
<td>3185</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>14</td>
<td>2.29</td>
<td>100</td>
</tr>
<tr>
<td>White</td>
<td>441</td>
<td>7.80</td>
<td>2001</td>
</tr>
<tr>
<td>Other</td>
<td>22</td>
<td>8.78</td>
<td>81</td>
</tr>
<tr>
<td>Not Reported</td>
<td>170</td>
<td>-</td>
<td>1002</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>320</td>
<td>9.67</td>
<td>1497</td>
</tr>
<tr>
<td>Male</td>
<td>327</td>
<td>10.20</td>
<td>1666</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 2 shows reported cases by year for 2007-2011.
Incidence of disease was greatest during the summer months. Figure 3 shows cases per month for 2011.

![Figure 3: Campylobacteriosis Cases by Month-Indiana, 2011](image)

As shown in Figure 4, age specific rates were greatest for infants under the age of 1 year (24.95), followed by preschoolers aged 1-4 years (20.25).

![Figure 4: Campylobacteriosis Incidence* Rates by Age Group- Indiana, 2011](image)

The incidence rates were highest among the following counties reporting five or more cases: Allen (10.9), Bartholomew (7.7), Boone (8.7), Daviess (28.1), Decatur (34.7), Delaware (4.2), Elkhart (16.6), Franklin
You can learn more about campylobacteriosis by visiting the following Web site:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/campylobacter/
Cholera is a contagious diarrheal disease caused by toxins produced by *Vibrio cholera* bacteria (O1 and O139 serogroups). Humans are the primary reservoir, although environmental reservoirs may exist in brackish water (a mixture of saltwater and fresh water) and estuaries (places where freshwater rivers and streams flow into the ocean). Shellfish found in the U.S. coastal waters may be contaminated with *V. cholerae*. Cholera is extremely rare in the U.S. and is usually related to travel to areas where cholera is common, such as Africa, Asia, and Latin America.

V. cholerae is passed in the stool, and people become infected by ingesting feces from an infected person (fecal-oral route). *V. cholerae* is typically transmitted via the ingestion of food or water contaminated (directly or indirectly) with feces or vomitus of infected persons (e.g., via sewage). Water contaminated with *V. cholerae* can thus contaminate shellfish and raw produce.

Although direct person-to-person spread is unlikely, cholera may be transmitted as long as stools test positive for the bacterium, most likely until a few days after recovery from symptoms. Shedding of bacteria may occasionally persist for several months.

Public Health Significance
Symptoms of cholera can include diarrhea, vomiting, and dehydration and usually begin within 2-3 days (range of a few hours to 5 days) after exposure. Fever is usually absent. Infection with *V. cholerae* often results in asymptomatic or mild illness involving only diarrhea.

Approximately 1 out of 20 infected people will develop more severe illness characterized by profuse watery stools, nausea, some vomiting, and leg cramps. Because of rapid loss of body fluids, dehydration and shock can occur in the most severe cases. Without rehydration therapy, death can result within hours. The case fatality rate is high and in untreated cases may exceed 50 percent; with prompt rehydration, the fatality rate is less than 1 percent.

Cholera can be treated by immediate replacement of the fluid and salts lost through diarrhea. Patients can be treated with oral rehydration solution, a prepackaged mixture of sugar and salts to be mixed with water and drunk in large amounts. This solution is used throughout the world to treat diarrhea. Severe cases also require intravenous fluid replacement. Antibiotics shorten the course and diminish the severity of the illness, but they are not as important as rehydration.

In general, cholera can be prevented by strictly adhering to the following guidelines:

- **Practice good hygiene:**
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after contact with animals and reptiles; after swimming; before, during, and after food preparation; and after exposure to raw meat products.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contamination with raw meat products.
- **Eat safe foods and drink safe water:**
 - Use treated water for washing, cooking, and drinking.
 - Wash all produce before eating raw or cooking.
 - Do not eat uncooked shellfish or fish, including ceviche.
- **Protect others:**
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
Persons with diarrhea and/or vomiting should not attend a daycare facility or school.
Do not change diapers near recreational water.
Do not go swimming or use hot tubs if you have diarrhea and for at least 2 weeks after diarrhea stops.

- Safe travel outside of the U.S.:
 - Drink bottled beverages and water, even when brushing teeth.
 - Do not consume local water or ice.
 - Do not eat uncooked fruits or vegetables unless you peel them yourself.
 - Do not eat foods or beverages from street vendors.
 - Do not bring raw produce or shellfish back into the U.S.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report cholera immediately to the local health department or the Indiana State Department of Health.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for cholera.

Epidemiology and Trends
In 2011, there were no reported cases of cholera were reported in Indiana and only one case was reported in the five year period from 2007-2011.

You can learn more about cholera by visiting the following Web sites:
http://www.cdc.gov/cholera/
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070071.htm
Cryptosporidiosis is a contagious disease caused by a one-celled parasite, *Cryptosporidium parvum*, which can live in the intestine of humans, cattle and other mammals, poultry, fish, and reptiles. Healthy people recover on their own, but cryptosporidiosis can be very serious and even cause death in people with weakened immune systems. Because the parasite is protected by an outer shell (cyst), it can survive outside the body and in the environment for long periods of time. Concentrations of chlorine used in routine water treatment do not kill *Cryptosporidium* cysts. On average, 80 cases of cryptosporidiosis are reported in Indiana each year.

People become infected with *Cryptosporidium* by ingesting feces from an infected animal or person (fecal-oral route). Risk factors associated with cryptosporidiosis include:

- Eating food, most commonly produce, contaminated with stool from infected animals or contaminated water.
- Swallowing contaminated water from lakes, rivers, streams, swimming pools, or hot tubs.
- Swallowing treated but unfiltered drinking or recreational water.
- Having contact with an infected person’s stool:
 - Not washing hands after contact with stool from a contaminated surface or diaper/linen and ingesting the bacteria.
 - Engaging in sexual activity that involves contact with stool.

The most common sources of *Cryptosporidium* outbreaks are contaminated drinking water, recreational water parks, pools, lakes, and contaminated beverages.

Public Health Significance

Symptoms of cryptosporidiosis can include watery diarrhea, stomach cramps, upset stomach, slight fever, weight loss, and vomiting (more common in children). Symptoms usually begin seven days (range of 1-12 days) after a person becomes infected. In healthy people, symptoms usually last about two weeks or less. However, it is common for symptoms to fade and then return. This relapse of illness can continue for up to 30 days.

Some people with cryptosporidiosis may not have any symptoms, but they can still pass the disease to others. After infection, people can shed *Cryptosporidium* in their stool for months. People with weakened immune systems may not be able to clear the infection. This may lead to prolonged disease and even death. Being infected with *Cryptosporidium* and recovering from the infection does not provide any immunity against reinfection.

Antiparasitic drugs are available for treatment. Over-the-counter medications that can ease the symptoms. Since diarrhea can cause dehydration, an infected person should drink plenty of fluids.

In general, cryptosporidiosis can be prevented by strictly adhering to the following guidelines:

- Practice good hygiene:
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after contact with animals and reptiles; after swimming; before, during, and after food preparation; and after exposure to raw meat products.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contamination with raw meat products.
Separate raw and cooked foods:
 o Avoid cross-contamination by keeping uncooked meat products and marinades separate from produce, ready-to-eat foods, and cooked foods.
 o Use separate equipment and utensils to handle raw foods.

Eat safe foods and drink safe water:
 o Do not consume unpasteurized dairy products or juices.
 o Wash all produce before cooking or eating raw.
 o Use treated chlorinated water for washing, cooking, and drinking.
 o Avoid swallowing recreational water.
 o Test your well if:
 ▪ Members of your family or others who use the same water are becoming ill,
 ▪ The well is located at the bottom of a hill or it is considered shallow, or
 ▪ The well is located in a rural area where animals graze.

Protect others:
 o Persons with diarrhea and/or vomiting should not prepare food or provide health care services for others and should limit direct contact with others as much as possible.
 o Persons with diarrhea and/or vomiting should not attend a daycare facility or school.
 o Do not change diapers near recreational water.
 o Do not go swimming or use hot tubs if you have diarrhea and for at least two weeks after diarrhea stops.

Handle animals safely:
 o Wash hands after contact with livestock, petting zoos, pets (including reptiles and amphibians), especially if they are suffering from diarrhea, and after contact with pet food/treats (including live or frozen rodents).
 o Keep pets out of food-preparation areas.
 o Have pets checked for parasites by your veterinarian, especially if they have diarrhea.
 o Do not clean pet or reptile cages in the kitchen sink or in the bathtub.
 o Reptiles should not be allowed to roam the house.
 o Reptiles should not be kept in daycare facilities or classrooms.
 o Children less than five years of age, pregnant women, and persons with weakened immune systems should not handle reptiles.

Travel safely outside of the U.S.:
 o Drink bottled beverages and water, even when brushing teeth.
 o Do not eat uncooked fruits or vegetables unless you peel them yourself.
 o Do not eat foods or beverages from street vendors.
 o Do not consume local water or ice.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3 http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Cryptosporidiosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of cryptosporidiosis weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for cryptosporidiosis.
Epidemiology and Trends

In 2011, 80 cases of cryptosporidiosis were reported in Indiana, for a rate of 1.23 cases per 100,000 population (Table 1). Females (1.48) were more likely to be reported than males (0.97). The rate for other races (0.80) was higher than that for whites (0.74) and blacks (0.66); however, 32 cases (40.0%) did not report race data. The case definition changed in 2011 to classify the detection of Cryptosporidium antigen by immunodiagnostic methods as a probable case.

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>80</td>
<td>1.23</td>
<td>995</td>
</tr>
<tr>
<td>Black</td>
<td>4</td>
<td>.66</td>
<td>45</td>
</tr>
<tr>
<td>White</td>
<td>42</td>
<td>.74</td>
<td>668</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>0.80</td>
<td>19</td>
</tr>
<tr>
<td>Not Reported</td>
<td>32</td>
<td>-</td>
<td>263</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>49</td>
<td>1.48</td>
<td>582</td>
</tr>
<tr>
<td>Male</td>
<td>31</td>
<td>.97</td>
<td>407</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 shows the number of reported cases each year for 2007-2011.
Disease incidence was greatest in January, April, and October (Figure 2).

As shown in Figure 3, age specific rates were greatest for adults over 80 years of age (3.73), infants under the age of 1 year (2.38), preschoolers aged 1-4 years (1.74), and children aged 5-9 years (1.36).
The incidence rates were highest among the following counties reporting five or more cases: Allen (2.2), Johnson (7.1), Lake (1.0), Marion (0.5), Porter (4.8), and St. Joseph (2.3). Figure 4 shows counties reporting five or more cases of cryptosporidiosis in 2011.

There was 1 outbreak of cryptosporidiosis reported in Indiana in 2011. This was a multistate outbreak affecting 20 firefighters from both Michigan and Indiana who responded to a barn fire in Michigan during early June 2011. For more information about this cryptosporidiosis outbreak, visit http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6109a2.htm.

You can learn more about cryptosporidiosis by visiting the following Web sites:
http://www.cdc.gov/crypto/
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070753.htm
Cyclosporiasis is a parasitic infection caused by the single-celled parasite *Cyclospora cayetanensis*. The disease is commonly found in developing countries, although in recent years, the infection rate has increased in the United States. The parasite can survive outside the body for extended periods, and chlorine concentrations used in routine water treatment are ineffective in killing the *Cyclospora* cysts.

People become infected with *Cyclospora* by ingesting the parasite through contaminated food or water. The infection is often linked to fresh produce imported from regions where the parasite is prevalent. Cyclosporiasis is a common cause of "traveler's diarrhea." Infections are usually acquired outside the U.S., and individuals are at risk while traveling to affected areas.

Public Health Significance

Symptoms of cyclosporiasis include watery diarrhea (possibly explosive), loss of appetite, increased gas, stomach cramps, nausea, vomiting, fatigue, and weight loss. Symptoms usually begin one week after exposure and can persist for several days to months. Failure to treat with anti-parasitics can result in prolonged symptoms or relapses. There is no immunity against reinfection.

A health care provider can prescribe medication to treat cyclosporiasis. In general, cyclosporiasis can be prevented by adhering to proper hygiene and food safety guidelines. Public health guidelines include:

- **Practice good hygiene:**
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after swimming; before, during, and after food preparation.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation.

- **Separate raw and cooked foods:**
 - Avoid cross-contamination by separating produce, ready-to-eat foods, and cooked foods.
 - Use separate equipment and utensils to handle raw foods.

- **Eat safe foods and drink safe water:**
 - Do not consume unpasteurized dairy products or juices.
 - Wash all produce before cooking or eating raw.
 - Use treated water for washing, cooking, and drinking.
 - Avoid swallowing untreated water.

In summary, cyclosporiasis is a serious infection that can be prevented by following proper food handling practices and maintaining good personal hygiene. Regular access to treated water and proper sanitation can significantly reduce the risk of infection.
• The well is in a rural area where animals graze.

• Protect others:
 o Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
 o Persons with diarrhea and/or vomiting should not attend a daycare facility or school.
 o Do not change diapers near recreational water.
 o Do not go swimming or use hot tubs if you have diarrhea and for at least 2 weeks after diarrhea stops.

• Travel safely outside of the U.S.:
 o Drink bottled beverages and water, even when brushing teeth.
 o Do not eat uncooked fruits or vegetables unless you peel them yourself.
 o Do not eat foods or beverages from street vendors.
 o Do not consume local water or ice.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report cyclosporiasis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of cyclosporiasis weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for cyclosporiasis.

Epidemiology and Trends
No cases of cyclosporiasis were reported in Indiana in 2011, and only five cases were during the five-year reporting period 2007 - 2011.

You can learn more about cyclosporiasis by visiting the following Web sites:
http://www.cdc.gov/parasites/cyclosporiasis/index.html

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm122216.htm
DENGUE FEVER AND DENGUE HEMORRHAGIC FEVER (DHF)

Dengue fever and dengue hemorrhagic fever (DHF), two of the most important mosquito-borne viral
diseases of humans, occur in most tropical areas of the world. The disease is caused by one of four virus
serotypes (DEN-1 through DEN-4) of the genus Flavivirus. The primary vector, the Aedes aegypti
mosquito, is rarely seen in Indiana. However, another competent vector, Aedes albopictus, is present in
several of Indiana’s counties, most predominantly in the southern part of the state. DHF is a more severe
form of dengue and can be fatal if not properly treated.

Public Health Significance
Symptoms of dengue occur 3-14 days after the infective bite. Symptoms include fever, headache, muscle
aches, nausea and vomiting, and rash. Symptoms of DHF are similar to dengue but manifest into
hemorrhagic symptoms, bleeding nose or gums, and possibly internal bleeding. There is no vaccine or
specific antiviral medication for dengue. Dengue viruses may be introduced into areas by travelers who
become infected while visiting tropical areas where dengue is endemic.

While dengue has not been transmitted in Indiana, recent cases have been acquired locally in Florida and
Texas. In September 2009, an outbreak occurred in Key West, Florida that affected over 65 individuals
by the end of 2010; this represents the first outbreak acquired in the continental United States outside of
Texas since 1945. Since 1980, seven localized outbreaks have occurred along the Texas-Mexico border.
Dengue is the leading cause of acute febrile illness in US travelers returning from the Caribbean, South
America, and Asia.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410
report arboviral disease, including Dengue fever and Dengue hemorrhagic fever immediately to the local
health department or the ISDH. Laboratories are also required to report positive results of Dengue virus
weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for dengue or dengue hemorrhagic fever.

Epidemiology and Trends
In 2011, 3 cases of dengue were reported in residents of Indiana. For the five-year period 2007-2011, 21
cases of dengue were reported in Indiana. All cases were acquired during foreign travel to tropical and
subtropical areas. One case of dengue hemorrhagic fever was reported during the five-year reporting
period 2007-2011.

You can learn more about dengue and dengue hemorrhagic fever by visiting the following
Web sites:
http://www.cdc.gov/dengue/
http://wwwn.cdc.gov/travel/yellowBookCh4-denguefever.aspx
Diphtheria is caused by the bacterium *Corynebacterium diphtheriae*. Diphtheria may occur in any mucous membrane and is classified based on the site of the infection. Anterior nasal, pharyngeal, tonsillar, and laryngeal are all respiratory forms of the disease, while cutaneous (skin) infections also may occur. Humans are the reservoir of the organism. The more severe respiratory forms are caused by toxin-producing strains, while the cutaneous form may be caused by either toxin- or non-toxin producing strains. Cutaneous diphtheria is not reportable.

The respiratory form of diphtheria is characterized by the formation of a membrane in the throat and/or on the tonsils which can obstruct the respiratory tract and interfere with respiratory function. Medical treatment is dependent on the administration of diphtheria antitoxin, available only from the Centers for Disease Control and Prevention (CDC). Antibiotics are used along with antitoxin to treat diphtheria.

Public Health Significance
Symptoms of diphtheria include sore throat, fever, and enlarged lymph nodes located in the neck. Symptoms usually begin 2-5 days after infection but may take as long as 10 days to appear. Most complications, including death, can be attributed to the toxin being absorbed into organs and tissues of the body. Myocarditis and neuritis are the most frequent complications from the infection. The overall case-fatality rate is 5-10 percent.

The typical series of vaccinations (for children 7 years old and younger) is 5 doses given at 2, 4, 6, and 15-18 months of age, and 4-6 years of age. Unvaccinated adults and children 7 years of age and older require three vaccinations. Both adults and children should receive boosters (Td vaccine) every 10 years following completion of the primary series. It is recommended that one dose of Td be replaced with Tdap vaccine to protect against pertussis. Prior to routine vaccination, as many as 200,000 cases of diphtheria, responsible for as many as 15,000 deaths, occurred each year in the United States.

Due to global travel, exposure to diphtheria is still possible. Diphtheria is still endemic in parts of Africa, South America, the South Pacific, Middle East, Eastern Europe, and Haiti. Although rare in the U.S. due to vaccination, diphtheria can infect unimmunized or partially immunized travelers visiting endemic countries.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report diphtheria immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Corynebacterium diphtheriae* weekly to ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for diphtheria. No cases of diphtheria have been reported in the United States since 2003.

Epidemiology and Trends
No cases of diphtheria have been reported in Indiana since 1996.

You can learn more about diphtheria by visiting the following Web site:
EHRlichiosis

Ehrlichiosis is a tick-borne disease that has been recognized in the U.S. since the mid-1980s. There are at least three species of Ehrlichia that can cause human illness; Ehrlichia chaffeensis, Ehrlichia ewingii, and a third species provisionally called Ehrlichia muris-like (EML). Human monocytic ehrlichiosis (HME) is caused by the bacterium Ehrlichia chaffeensis and is transmitted to humans by the lone star tick, Amblyomma americanum. The disease occurs mostly in the southeastern and south central parts of the U.S. Human granulocytic anaplasmosis (HGA) or Anaplasmosis (previously known as human granulocytic ehrlichiosis (HGE)), is caused by the bacterium Anaplasma phagocytophilum and is transmitted to humans by the deer tick, Ixodes scapularis. Anaplasmosis is currently classified with ehrlichiosis for reporting purposes.

Public Health Significance
Symptoms of ehrlichiosis are similar to Rocky Mountain spotted fever and include sudden high fever, muscle aches, headache, and tiredness. Some individuals may experience a rash but this is not a common feature in all cases. Symptoms can range from mild to serious and usually appear 3-16 days after a tick bite. If patients are not treated promptly and appropriately some individuals may die. People at highest risk of getting ehrlichiosis are those who spend time outdoors in tick-infested areas from April until October when ticks are most active.

There is no vaccine for ehrlichiosis, but the disease can be treated with antibiotics.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report ehrlichiosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Ehrlichia chaffeensis, Ehrlichia phagocytophila, and Anaplasma phagocytophilum weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for ehrlichiosis.

Epidemiology and Trends
Five confirmed case of ehrlichiosis was reported in 2011 in Indiana. From 2007-2011, 13 cases of ehrlichiosis were reported in Indiana.

You can learn more about ehrlichiosis by visiting the following Web site:
http://www.cdc.gov/ehrlichiosis/.
Escherichia coli is a bacterium that lives in the intestines of most healthy warm-blooded animals, including humans. There are hundreds of strains of E. coli, and most are harmless. However, several types of E. coli, such as O157 and other shiga toxin-producing strains, can cause severe and contagious illness in humans. Shiga toxins are potent toxins that damage body cells and tissues. The most severe clinical manifestation of Shiga toxin-producing E. coli (STEC) infection is hemolytic uremic syndrome (HUS).

People become infected with STEC by ingesting feces from an infected animal or person (fecal-oral route). There are many ways to become infected with STEC:

- Eating contaminated foods:
 - Undercooked beef products, particularly ground beef.
 - Unpasteurized milk and fruit juices, including apple cider.
 - Unwashed raw fruits, vegetables, or herbs that have been contaminated by feces, raw meats, fertilizers, or untreated water.
 - Untreated water, e.g., from lakes or streams.
- Having direct contact with the stool of infected cattle, livestock, and animals at petting zoos
- Having contact with an infected person’s stool:
 - Not washing hands after contact with stool from a contaminated surface or diaper/linen and ingesting the bacteria.
 - Engaging in sexual activity that involves contact with stool.

The most common sources of STEC outbreaks are inadequately cooked hamburgers, contaminated produce (such as melons, lettuce, spinach, coleslaw, apple cider, and alfalfa sprouts), and unpasteurized milk. Persons who work in certain occupations, such as food handlers, daycare providers, and health care providers, have a greater risk of transmitting infection to others.

Public Health Significance
Symptoms of STEC infection include diarrhea (bloody or non-bloody), abdominal cramps, and little to no fever. Symptoms usually begin 3-4 days (range of 2-10 days) after exposure and last for approximately 5-10 days. Some people may have only mild diarrhea or no symptoms at all. The bacteria can be passed in the stool for up to three weeks after symptoms have stopped. Most people recover from infection without medical treatment.

Approximately 8 percent of people infected with STEC (O157 and other Shiga toxin-producing strains) develop a condition called hemolytic uremic syndrome (HUS). This condition is very serious and can lead to kidney failure and death. Children less than 5 years of age and the elderly are more likely to develop HUS. Serious infections that affect the kidneys will require hospitalization and extensive medical care. The use of antibiotics or over-the-counter antidiarrheal agents is not recommended, as the use of these can lead to greater likelihood of developing HUS.

In general, STEC infection can be prevented by strictly adhering to the following guidelines:

- Practice good hygiene:
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after contact with animals; after swimming; before, during, and after food preparation; and after exposure to raw meat products.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contamination with raw meat products.
Separate raw and cooked foods:
 - Avoid cross-contamination by keeping uncooked meat products separate from produce, ready-to-eat foods, and cooked foods.
 - Use separate equipment and utensils for handling raw foods, especially for marinades or barbecue sauce.
 - Clean food-preparation work surfaces and utensils with soap and water before, during, and after food preparation, especially after contact with raw meat products.

Maintain safe food temperatures:
 - Ensure proper temperatures are maintained during refrigeration (<40°F), freezing (<2°F), holding (keep food hot or at room temperature for no longer than 2 hours), and chilling (chill immediately and separate into smaller containers if needed).
 - Thoroughly cook all food items to USDA-recommended safe minimum internal temperatures:
 - 145°F – steaks and roasts
 - 160°F – pork and ground beef (should not be eaten pink)

Eat safe foods:
 - Do not eat undercooked meat.
 - Do not eat foods past the expiration date.
 - Do not eat unpasteurized dairy products and fruit juices, including apple cider; it is illegal to sell unpasteurized dairy products in Indiana.
 - Wash all produce before eating raw or cooking.
 - Use treated water for washing, cooking, and drinking.

Handle animals safely:
 - Wash hands after contact with livestock, petting zoos, and pets, especially if they are suffering from diarrhea.

Protect others:
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
 - Persons with diarrhea and/or vomiting should not attend a daycare facility or school.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3 [http://www.in.gov/isdh/files/comm_dis_rule(1).pdf], hospitals and healthcare providers must report Escherichia coli O157:H7; shiga toxin-producing; or sorbitol negative E. coli isolates immediately to the Indiana State Department of Health. Laboratories are also required to report positive results of Escherichia coli O157:H7; shiga toxin-producing; or sorbitol negative E. coli isolates weekly to the ISDH. In addition, laboratories are required to submit isolates of E. coli O157, shiga-toxin producing, or sorbitol negative E. coli to the ISDH Laboratory for further confirmation and subtyping.

Healthy People 2020 Goal
The Healthy People 2020 Goal for shiga toxin-producing Escherichia coli 0157 is 0.6 cases per 100,000 population per year. Indiana has not met this goal from 2007 to 2011 (Figure 1). Nationally, STEC cases decreased in 2004. The decrease is likely due to the USDA’s Food Safety and Inspection Service implementing new safety recommendations to combat E. coli 0157 in ground beef. Since 2004, several national outbreaks of STEC have occurred which validate the need for continuous education on effective control measures and enhanced food safety systems.
In 2011, 85 cases of Shiga toxin-producing *E. coli* infection were reported in Indiana, for a rate of 1.30 cases per 100,000 population (Table 1). Females (1.51) were more likely to be reported than males (1.09). The rate for whites was higher (0.99) than that for other races (0.80) or blacks (0.16); however, 26 cases (30.6%) did not report race data.

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007-2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>85</td>
<td>1.30</td>
<td>443</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1</td>
<td>0.16</td>
<td>13</td>
</tr>
<tr>
<td>White</td>
<td>56</td>
<td>0.99</td>
<td>295</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>0.80</td>
<td>6</td>
</tr>
<tr>
<td>Not Reported</td>
<td>26</td>
<td>-</td>
<td>128</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50</td>
<td>1.51</td>
<td>249</td>
</tr>
<tr>
<td>Male</td>
<td>35</td>
<td>1.09</td>
<td>193</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010
Figure 2 shows the number of reported cases per year for 2007-2011.

![Figure 2: Escherichia coli Cases Per Year Indiana, 2007-2011

Incidence of disease was greatest during the summer months. Figure 3 shows the number of cases per month in Indiana for 2011.

![Figure 3: Escherichia coli Cases by Month Indiana, 2011

Month]
As shown in Figure 4, age-specific rates were highest among preschoolers aged 1-4 years (5.21), followed by children less than one year of age (2.38) and children aged 5-9 years (2.04).

Although 40 counties reported cases of Shiga toxin-producing *E. coli*, only Marion County (1.1) had five or more cases.

One case of HUS was reported in 2011.

You can learn more about *Escherichia coli* by visiting the following Web sites:

http://www.cdc.gov/ecoli/

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071284.htm

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071240.htm

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071267.htm

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071298.htm
Giardiasis is a contagious disease caused by a one-celled parasite, *Giardia lamblia*, which is found in the intestines of many animals. During the past two decades, *Giardia* infection has become recognized as one of the most common causes of waterborne disease (found in both drinking and recreational water) in the United States. Because the parasite is protected by an outer shell (cyst), it can survive outside the body and in the environment for long periods of time. Concentrations of chlorine used in routine water treatment do not kill *Giardia* cysts. From 1997-2000, an average of 665 cases of giardiasis was reported in Indiana every year.

Giardia is passed in the stool, and people become infected by ingesting feces from an infected animal or person (fecal-oral route).

There are several ways to become infected with *Giardia*:

- Having contact with an infected person’s stool:
 - Not washing hands after contact with stool from a contaminated surface or diaper/linen and ingesting the bacteria.
 - Having sex that involves contact with stool.
- Swallowing untreated water from lakes or streams.
- Swallowing treated but unfiltered drinking or recreational water.
- Direct contact with the stool of infected cattle, livestock, and animals from petting zoos.

Giardiasis is more common in children than adults. Large community outbreaks have occurred from drinking treated but unfiltered water. Smaller outbreaks have resulted from contaminated food, person-to-person transmission in day care facilities, and contaminated recreational waters.

Public Health Significance

Symptoms of giardiasis can include diarrhea, gas, greasy stools that tend to float, bloating, stomach cramps, nausea, and constipation. Symptoms usually begin within 7-10 days (range of 3-25 days) after exposure and last 2-6 weeks. These symptoms may lead to weight loss and dehydration, but some persons infected may have no symptoms. Infected people may carry *Giardia* in their bodies for weeks or months without symptoms and unknowingly infect others.

While medications are available to treat giardiasis, they are not needed if the person does not have diarrhea. Over-the-counter drugs may relieve symptoms but will not get rid of the parasite.

In general, giardiasis can be prevented by strictly adhering to the following guidelines:

- Practice good hygiene:
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after swimming; before, during, and after food preparation.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation.
- Separate raw and cooked foods:
 - Avoid cross-contamination by separating produce, ready-to-eat foods, and cooked foods.
 - Use separate equipment and utensils for handling raw foods.
- Eat safe foods and drink safe water (contaminated foods may look and smell normal):
 - Do not consume unpasteurized dairy products or juices.
 - Wash all produce before eating raw or cooking.
 - Use treated water for washing, cooking, and drinking.
 - Avoid swallowing untreated water.
 - Test your well if:
- Members of your family or others who use the same water are becoming ill,
- The well is located at the bottom of a hill or it is considered shallow, or
- The well is located in a rural area where animals graze.

- Protect others:
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
 - Persons with diarrhea and/or vomiting should not attend a day care facility or school.
 - Persons with diarrhea and/or vomiting shall be excluded from employment involving food handling (Indiana Retail Food Establishment Sanitation Requirements, 410 IAC 7-24-122).
 - Do not change diapers near recreational water.
 - Do not go swimming or use hot tubs if you have diarrhea and for at least 2 weeks after diarrhea stops.

- Handle animals safely:
 - Wash hands after contact with livestock, petting zoos, pets, especially if they are suffering from diarrhea.
 - Have pets checked for parasites by a veterinarian, especially if they have diarrhea.

- Safe travel outside of the United States:
 - Drink bottled beverages and water, even when brushing teeth.
 - Do not eat uncooked fruits or vegetables unless you peel them yourself.
 - Do not eat foods or beverages from street vendors.
 - Do not consume local water or ice.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf hospitals and healthcare providers must report giardiasis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Giardiasis weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for giardiasis.

Epidemiology and Trends

In 2011, 324 cases of giardiasis were reported in Indiana, for a rate of 4.97 cases per 100,000 population (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2006 - 2010 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>324</td>
<td>4.97</td>
<td>1047</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>36</td>
<td>5.90</td>
<td>88</td>
</tr>
<tr>
<td>White</td>
<td>130</td>
<td>2.30</td>
<td>442</td>
</tr>
<tr>
<td>Other</td>
<td>64</td>
<td>25.55</td>
<td>154</td>
</tr>
<tr>
<td>Not Reported</td>
<td>18</td>
<td>-</td>
<td>363</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>151</td>
<td>4.56</td>
<td>473</td>
</tr>
<tr>
<td>Male</td>
<td>172</td>
<td>5.36</td>
<td>566</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>

Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 20010
Males (5.36) were more likely to be reported than females (4.56). The rate for other races (25.55) was higher than that for blacks (5.90) or whites (2.30); however, 94 cases (29.0%) did not report race data. Giardiasis was newly reportable in 2009.

Table 1: Giardiasis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>324</td>
<td>4.97</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>36</td>
<td>5.90</td>
</tr>
<tr>
<td>White</td>
<td>130</td>
<td>2.30</td>
</tr>
<tr>
<td>Other</td>
<td>64</td>
<td>25.55</td>
</tr>
<tr>
<td>Not Reported</td>
<td>94</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>151</td>
<td>4.56</td>
</tr>
<tr>
<td>Male</td>
<td>172</td>
<td>5.36</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1: Giardiasis Cases by Year
Indiana, 2007-2011
Disease incidence was greatest during the summer months (Figure 2).

As shown in Figure 3, age specific rates were greatest for preschoolers aged 1-4 (17.36), children aged 5-9 (7.94), children less than one year of age (7.13), and adolescents aged 10-19 years (4.99).
The incidence rates were highest among the following counties reporting five or more cases: Allen (14.8), Delaware (5.1), Elkhart (9.0), Hamilton (4.6), Hendricks (4.7), Johnson (5.6), Lake (2.6), Marion (7.5), Porter (6.0), St. Joseph (1.1), Steuben (17.6), Tippecanoe (2.9), Vanderburgh (2.8), Vigo (4.6), and Wayne (8.7). Figure 4 shows counties reporting five or more cases of giardiasis in 2011.

You can learn more about giardiasis by visiting the following Web sites:
http://www.cdc.gov/parasites/giardia/index.html
HAEMOPHILUS INFLUENZAE, INVASIVE

Invasive *Haemophilus influenzae* (*H. influenzae*) is a disease caused by a bacterium of the same name. It can be typeable (encapsulated) or nontypeable (non-encapsulated). The encapsulated form has been classified into serotypes A through F. Humans are the natural host, with up to 80 percent of healthy individuals colonized with the nontypeable form.

Public Health Significance

H. influenzae can cause a number of invasive infections, including bacteremia/sepsis, meningitis, pneumonia, epiglottitis, arthritis, and cellulitis. Symptoms of *H. influenzae* usually begin suddenly and can include fever, vomiting, lethargy, and meningeal irritation with bulging fontanelle (soft spot) in infants or stiff neck and back in older children. As the infection progresses, stupor or coma can occur.

Infections caused by the bacterium are commonly treated with antibiotics. Susceptibility tests can assist in the selection of appropriate treatment. Prevention of infection through immunization is the most effective way to reduce transmission of *H. influenzae* serotype b (Hib), which prior to routine immunization, accounted for 95% of all cases of invasive *H. influenzae*. All cases of invasive *H. influenzae* disease, regardless of age or serotype, are reportable in Indiana. Indiana requires laboratories to submit *H. influenzae* isolates for serotype analysis.

Before the widespread use of vaccines, Hib was the leading cause of bacterial meningitis in children. Since the introduction of the conjugate Hib vaccine in 1990, the incidence of Hib disease in children has decreased dramatically in both the U.S. and Indiana. Since vaccine is available to protect only against Hib, serotyping all *H. influenzae* isolates from patients (especially from children less than 5 years of age) with invasive disease is necessary to monitor the effectiveness of the vaccination program and national progress towards Hib elimination. Serotype information also is needed to measure the sensitivity of the surveillance system and to detect the emergence of invasive disease caused by types of *H. influenzae* other than type b.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report invasive *Haemophilus influenzae* immediately to the local health department or the ISDH. Laboratories are also required to report positive results of invasive *Haemophilus influenzae* weekly to the ISDH. In addition, laboratories are required to submit isolates of invasive *Haemophilus influenzae* to the ISDH Laboratory within 5 days of isolation for further confirmation and subtyping.

Healthy People 2020 Goal

The Healthy People 2020 Goal for Hib disease is 0.27 cases of *H. influenzae* type b disease per 100,000 children under 5 years of age. In 2011, one case of *Haemophilus influenzae* type b disease occurred in Indiana in a child less than 5 years of age for whom isolates were submitted for testing. Indiana met the Healthy People 2020 goal, with 0.23 cases of Hib per 100,000 children in Indiana.

Epidemiology and Trends

Indiana had 117 reported cases of invasive *H. influenzae* (all serotypes) disease in 2011. Females (2.05 per 100,000) (Table 1) were more likely than males (1.53 per 100,000) to acquire *H. influenzae*. The rate of illness for whites (1.70 per 100,000) was higher than that for blacks (1.64 per 100,000).
Table 1: *Haemophilus influenzae* Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>117</td>
<td>1.80</td>
<td>484</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>10</td>
<td>1.64</td>
<td>37</td>
</tr>
<tr>
<td>White</td>
<td>96</td>
<td>1.70</td>
<td>391</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>Not Reported</td>
<td>11</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>68</td>
<td>2.05</td>
<td>260</td>
</tr>
<tr>
<td>Male</td>
<td>49</td>
<td>1.53</td>
<td>224</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 shows reported cases of *H. influenzae* for the five-year period 2007-2011.
H. influenzae occurred throughout the year in 2011, with the highest number of cases occurring in December, March, and May (Figure 2).

![Figure 2: *Haemophilus influenzae* Cases by Month Indiana, 2011](image)

Age-specific rates were greatest for adults ages 80 years and older (13.7), followed by infants less than 1 year (7.1) and adults ages 70 to 79 (6.2). Figure 3 shows *H. influenzae* incidence by age group.

![Figure 3: *Haemophilus influenzae* Incidence Rates by Age Group-Indiana, 2011](image)
Although 53 counties reported cases of *H. influenzae*, only seven counties had 5 or more cases. The highest incidence rate among counties reporting 5 or more cases was in Vanderburgh County (3.3) as shown in Figure 4.

Of the 117 cases reported in 2010, 108 (92.3%) were serotyped. Table 2 provides a breakdown of *H. influenzae* cases by serotype.

Table 2: Percent of Reported *Haemophilus influenzae* Cases by Serotype, 2011

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0.9%</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>2.6%</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>11</td>
<td>9.4%</td>
</tr>
<tr>
<td>f</td>
<td>15</td>
<td>12.8%</td>
</tr>
<tr>
<td>Nontypeable</td>
<td>78</td>
<td>66.7%</td>
</tr>
<tr>
<td>Not Tested/Unknown</td>
<td>9</td>
<td>7.7%</td>
</tr>
<tr>
<td>Total</td>
<td>117</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

You can learn more about *H. influenzae* by visiting the following Web site: http://www.cdc.gov/hi-disease/clinicians.html
HANTAVIRUS

Hantavirus pulmonary syndrome (HPS) is an acute respiratory disease caused by the Sin Nombre virus. Deer mice are the most common carriers of the virus. Rodents shed the virus in their urine, droppings, and saliva. The main route of transmission for humans is breathing air contaminated with the virus. The disease was first described as a clinical syndrome, and the causative agent was identified as the Sin Nombre virus in the Four Corners area (Utah, New Mexico, Colorado, Arizona) in 1993. Most cases have been reported from states west of the Mississippi River. However, 12 states east of the Mississippi have reported cases, including Indiana. Since 1993, two hantavirus cases have been reported in Indiana, resulting in one death.

Public Health Significance

The initial symptoms of hantavirus include fever, tiredness, headache, and fatigue. As the disease progresses, symptoms may include shortness of breath and coughing due to lungs filling with fluid (pneumonia). Symptoms occur 1-6 weeks after exposure to the virus. There is no vaccine for hantavirus.

People most at risk for becoming infected with hantavirus include those who visit or reside in closed spaces where infected rodents live, including campers and hikers and those who work or play outdoors. In addition, housecleaning activities such as sweeping or vacuuming can release contaminated particles into the air.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report hantavirus pulmonary syndrome (HPS) immediately to the local health department or the ISDH. Laboratories are also required to report positive results of hantavirus weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for hantavirus.

Epidemiology and Trends

No hantavirus cases were reported in Indiana in 2011 or during the five-year reporting period 2007-2011.

You can learn more about hantavirus by visiting the following Web site:

Hepatitis A is an inflammation of the liver caused by the hepatitis A virus (HAV). HAV is not normally found in animals. People become infected with HAV by coming in contact with the stool of an infected person (fecal-oral route). For this reason, the virus is easily spread in areas where there are poor sanitary conditions or where good personal hygiene is not practiced. Persons are at risk for hepatitis A infection if they have:

- Exposure to contaminated food or water, such as:
 - Consuming untreated water.
 - Consuming food prepared by an infected person.
 - Consuming raw produce or raw shellfish (e.g., oysters).
 - Traveling to countries where hepatitis A is common and where there is limited clean water or proper sewage disposal.
- Exposure to the stool or blood of an infected person who is a(n):
 - Household member or sexual partner (men who have sex with men are at higher risk).
 - Child or staff member of a daycare center (including centers for the disabled).
 - Resident or staff member of a health care center.
 - Injection drug user.

Public Health Significance
An acute hepatitis A case is characterized by positive test for immunoglobulin M (IgM) antibody to hepatitis A virus, and an acute illness with a) discrete onset of symptoms (enteric symptoms e.g., nausea, vomiting, diarrhea) and b) jaundice or elevated serum aminotransferase levels. Symptoms of hepatitis A usually occur suddenly and include diarrhea, nausea, vomiting, tiredness, stomach pain, fever, dark urine, pale or clay-colored stool, loss of appetite, and sometimes jaundice. People are most contagious from about two weeks before symptoms begin until two weeks after. Some people, especially children, may have no symptoms but can still spread the virus to others.

Symptoms usually begin 28-30 days (range of 15-50 days) after exposure and usually last less than two months. Sometimes a person can recover and become ill again (relapse) for as long as 12 months. However, people will eventually recover, and there is no long-term carrier state with hepatitis A infection. Death from hepatitis A is rare, 0.1-0.3 percent, and is more common in adults over 50.

There is no specific treatment for hepatitis A other than treating symptoms. People who have had hepatitis A develop lifelong immunity and cannot get hepatitis A again.

Hepatitis A can be prevented by a two-dose vaccination series. Candidates for vaccination include persons at increased risk for hepatitis A infection or its consequences including:

- Persons with chronic liver disease or clotting factor disorders
- Men who have sex with men
-Injecting drug users
- Persons traveling to or working in countries where hepatitis A infection is endemic
- Persons who work with hepatitis A virus in a research setting
- Children who live in communities with consistently elevated rates of infection

Post-exposure prophylaxis with hepatitis A vaccine or hepatitis A immune globulin is effective if received within two weeks of exposure. Indications for prophylaxis may include: people who consumed
food or beverages contaminated with HAV, household or sexual contacts of someone infected with HAV, children and staff members in the same daycare room as an infected case, and residents and staff members in a health care center who have direct contact with someone infected.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report hepatitis A infection immediately to the Indiana State Department of Health. Laboratories are also required to report positive results of disease weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for hepatitis A is 0.3 cases per 100,000 population per year. Indiana met this goal in 2009 and 2010, but did not meet in 2007, 2008, and 2011 for the five-year reporting period 2007-2010 (Figure 1).
Epidemiology and Trends
In 2011, 24 cases of hepatitis A were reported in Indiana for a rate of 0.37 cases per 100,000 population (Table 1). Males (0.37) and females (0.36) were evenly dispersed. The rate for other races (1.20) was higher than that for whites (0.18) or blacks (0.49); however, 8 cases (33.3%) did not report race data.

Table 1: Hepatitis A Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2006 - 2010 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>24</td>
<td>0.37</td>
<td>102</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>3</td>
<td>0.49</td>
<td>6</td>
</tr>
<tr>
<td>White</td>
<td>10</td>
<td>0.18</td>
<td>61</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1.20</td>
<td>10</td>
</tr>
<tr>
<td>Not Reported</td>
<td>8</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
<td>0.36</td>
<td>58</td>
</tr>
<tr>
<td>Male</td>
<td>12</td>
<td>0.37</td>
<td>44</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 2 shows the number of reported cases per year for 2007-2011.
Incidence of disease was greatest in January and December (Figure 3).

Figure 3: Hepatitis A Cases by Month
Indiana, 2011

Figure 4 shows age-specific rates were greatest for children aged 1-4 (0.87), adults aged 80 years and older (0.83), adults aged 30-39 (0.49), adults 60-69 (0.47), and adolescents 10-19 years (0.43).

Figure 4: Hepatitis A Incidence* Rates by Age Group- Indiana, 2011
In 2011, 13 Indiana counties reported cases of hepatitis A, but Marion County (1.0) reported 5 or more cases.

You can learn more about hepatitis A by visiting the following Web sites:
http://www.cdc.gov/hepatitis/index.htm

http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071294.htm
Hepatitis B is a disease caused by infection with the hepatitis B virus (HBV). This serious viral disease of the liver is transmitted through parenteral or mucosal exposure to blood or body fluids of an infected person; such as through sexual or household contact with an infected person, injection drug use (IDU), perinatal transmission from mother to infant, and nosocomial exposure. Hepatitis B can be either acute or chronic. Acute hepatitis B virus infection is a short-term illness that occurs within the first 6 months after someone is exposed to HBV. An acute hepatitis B illness can range in severity from a very mild illness with few or no symptoms to a serious condition requiring hospitalization, which is characterized by multiple symptoms such as nausea, anorexia, fever, malaise, headache, myalgia, right upper quadrant abdominal pain, dark urine, skin rash and jaundice.

Approximately 50% of adults with an acute infection are asymptomatic. The incubation period of HBV ranges from 6 weeks to 6 months, with an average of 120 days. The time variation is related to the amount of virus transmitted, the mode of transmission, and host factors. All persons who are hepatitis B surface antigen (HBsAg) positive are potentially infectious. Most adult acute hepatitis B infections results in complete recovery and immunity from future infection.

An acute infection can – but does not always – lead to a chronic, or lifelong infection. Many individuals with chronic hepatitis B do not have symptoms and do not know they are infected. However, they are still capable of spreading the virus and infecting others. A chronic infection of HBV is also associated with an increased risk for chronic liver disease, cirrhosis, liver failure, and liver cancer.

Public Health Significance

The Centers for Disease Control and Prevention (CDC) requires states to provide surveillance and reporting of acute hepatitis B cases within their states. Clinical and laboratory definitions must be met to classify a case of hepatitis B. In 2011, the CDC changed the case definition used to classify cases for both chronic and acute hepatitis B. The 2011 acute hepatitis B definition includes: an acute illness with discrete onset of symptoms (eg. nausea, anorexia, fever, malaise, or abdominal pain) and jaundice or elevated serum aminotransferase levels. The most significant change to the 2011 case definition includes the addition of the quantifiable level of >200 IU/L for the measurement of serum aminotransferase levels. Laboratory criteria for confirmation of acute HBV includes: positive IgM antibody to hepatitis B core antigen (anti-HBc) or hepatitis B surface antigen (HBsAg) positive and a negative IgM to hepatitis A (if performed). The case classification status for confirmed cases also underwent a change in the 2011 case definition with the addition of the qualifier, “…and is not known to have chronic hepatitis B”. The 2011 case classification states: a case that meets the clinical case definition is laboratory confirmed and is not known to have chronic hepatitis B.
Risk for hepatitis B infection varies with occupation, lifestyle, or environment where there is contact with blood from infected persons. Populations at high risk for hepatitis B infection include: immigrants from areas with endemic rates, institutionalized developmentally disabled individuals, IDU, men who have sex with men (MSM), hemodialysis patients, and household contacts of infected persons. Populations at intermediate risk include: prisoners, health care workers, staff for developmentally disabled individuals, and heterosexuals with multiple partners.

Safe and effective vaccines have been available for hepatitis B since 1981. After three intramuscular doses of hepatitis B vaccine, more than 90% of healthy adults and more than 95% of infants, children, and adolescents will develop adequate immunity. The dosage of vaccine varies with the age of the recipient and type of vaccine.

Since 1991, a comprehensive strategy for the elimination of HBV transmission in the United States has included: universal vaccination of infants beginning at birth; routine screening of all pregnant women for hepatitis B infection and immunoprophylaxis to infants born to infected women or women of unknown status; routine vaccination of previously unvaccinated children and adolescents; and the vaccination of high risk adults. Hepatitis B vaccination programs addressing each of these priorities will ultimately eliminate domestic hepatitis B transmission.

Control measures used to prevent exposures to blood and body fluids, another mechanism for the transmission of hepatitis B, include use of universal precautions and disinfection of contaminated equipment. Contacts that have been exposed to blood and body fluids should be immunized, and when appropriate, given hepatitis B immune globulin (HBIG).

Reporting Requirements

As detailed in the Communicable Disease Reporting Rule, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, the Indiana State Department of Health (ISDH) requires hospitals, healthcare providers and laboratories to provide prompt reporting of positive hepatitis B serologic results to the local health department or the ISDH. Hospitals and healthcare providers must report their findings within 72 hours. Laboratory reporting enables identification of asymptomatic persons infected with the virus, as well as those displaying symptoms. ISDH uses standardized case definitions to classify the appropriate diagnosis for each individual.
Healthy People 2020 Goal

The Healthy People 2020 objectives for hepatitis B are to reduce both new and chronic infections in a variety of populations. The first goal addressing hepatitis B infections is to reduce new infections in adults aged 19 and older to 1.5 cases per 100,000. The reduction of new infections in the high-risk population group of injection drug users to 215 cases is the next Health People 2020 goal. The goal to reduce new hepatitis B infections among the high-risk population group of men who have sex with men (MSM) to 45 cases is the final goal of Healthy People 2020. Indiana met these goals during the five-year reporting period 2007-2011. Figure 1 shows incidence rates per 100,000 population per age group and the Healthy People 2020 Goal. MSM and IDU rates can be found in Table 2.

Epidemiology and Trends

In 2011, 70 confirmed cases of acute hepatitis B disease were reported in Indiana (Table 1). No cases resulted in death.

The data presented in this report does not include the burden of disease caused by chronic infection with HBV, which is a substantial public health problem.
Table 1: Hepatitis B Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007-2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>70</td>
<td>1.07</td>
<td>351</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>3</td>
<td>0.49</td>
<td>52</td>
</tr>
<tr>
<td>White</td>
<td>57</td>
<td>1.01</td>
<td>239</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.00</td>
<td>11</td>
</tr>
<tr>
<td>Not Reported</td>
<td>10</td>
<td>-</td>
<td>49</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>31</td>
<td>0.94</td>
<td>129</td>
</tr>
<tr>
<td>Male</td>
<td>39</td>
<td>1.22</td>
<td>221</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 2 shows reported cases of acute hepatitis B for the five-year period 2007-2011. Eighty cases in 2006 remains the highest number of annual acute hepatitis B reports. In 2011 there was a slight decline in the number of reported cases of acute hepatitis B as compared to 2010 (75). Positive hepatitis B serology results are being reported, assigned and investigated earlier in the disease process, as compared to previous years, due to the widespread use of electronic reporting.
Acute hepatitis B cases occurred during each month in 2011 without specific seasonality (Figure 3).

The number of reported cases of hepatitis B varied with age. Figure 4 shows acute hepatitis B incidence rates by age group per 100,000 population. In Indiana, as well as nationally, higher rates of hepatitis B disease continue among adults, particularly males 30-39 years of age, and persons with identified risk factors (ie. IDU, MSM, and persons with multiple sex partners). This data emphasizes the need to vaccinate adults, but especially those who are at higher risk for acquiring hepatitis B infection.
Table 2 highlights the identified risk factors in 2011 for the reported acute hepatitis B cases in Indiana. Completeness of the reporting of risk factor information varies. Individuals with multiple sex partners, contact with a known hepatitis B case, tattooing, IDU, and self-identified MSM continue to be among the most common risk factors identified in Indiana. No healthcare associated transmission was associated to reported cases.

Table 2. Hepatitis B Risk Factors – Indiana, 2011

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Number of Cases (Percent of Cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Sex Partners</td>
<td>19 (27.14%)</td>
</tr>
<tr>
<td>Application of a Tattoo</td>
<td>9 (12.86%)</td>
</tr>
<tr>
<td>Injection Drug Use</td>
<td>14 (20.00%)</td>
</tr>
<tr>
<td>Homosexual/Bisexual</td>
<td>8 (11.43%)</td>
</tr>
<tr>
<td>Medical Employment</td>
<td>13 (18.57%)</td>
</tr>
<tr>
<td>History of Dental Work</td>
<td>10 (14.29%)</td>
</tr>
<tr>
<td>History of Surgery</td>
<td>2 (2.86%)</td>
</tr>
<tr>
<td>Contact of a Case</td>
<td>6 (8.57%)</td>
</tr>
</tbody>
</table>

In 2011, twenty-two Indiana counties reported at least one case of acute hepatitis B. The incidence rates, per 100,000 population, were highest among the following counties reporting five or more cases: Scott (37.5), Henry (14.2), Jackson (11.6), Wayne (7.3), Marion (1.5), and Lake (1.2). Figure 5 shows acute hepatitis B incidence rates by county per 100,000 population.
Individuals with chronic hepatitis B infection may be asymptomatic and unaware of their infection for many years before developing clinical evidence of illness. Serologic testing identifies infected persons, allowing for treatment and the identification and vaccination of their contacts. These actions contribute significantly to the prevention of secondary infections. The CDC recommends HBsAg testing to identify chronic hepatitis B infection for all foreign-born persons from countries or regions with an HBV prevalence of 2.0% or greater. In 2011 the testing and reporting of the hepatitis B status of refugees residing in Indiana continued, especially in Marion and Allen counties where refugee centers are located.

Indiana law requires the reporting of perinatal HBV infection. In 2011, no perinatal cases were reported. The goal of the ISDH perinatal hepatitis B program is to ensure appropriate prophylactic treatment of infants born to HBV infected mothers.

You can learn more about hepatitis B by visiting the following Web sites and links:

CDC Viral Hepatitis Home Page: http://www.cdc.gov/hepatitis/ChooseB.htm

Hepatitis B Foundation: http://www.hepb.org

Hepatitis Foundation International: www.hepfi.org
HEPATITIS C

Hepatitis C is an infectious blood-borne disease caused by the hepatitis C virus (HCV). The virus infects the liver, causing inflammation. Infections may range from mild illness lasting several weeks to serious, lifelong illness. Hepatitis C is the leading chronic blood-borne disease in the United States. The number of reported cases is determined by the number of positive hepatitis C tests reported for the first time during a given year. Cases are defined as either acute or chronic and are classified using case definitions published by the CDC. Acute cases were reportable in 2011, but data is collected and reported on chronic cases as well in order to assess risk factors when feasible. Reporting positive test results for hepatitis C virus was not required in Indiana until October, 2000. Investigation of chronic hepatitis C cases infection contributes to the reduction in the spread of disease by increasing the percentage of persons aware they have a hepatitis C infection and educating infected individuals. Case definitions for both acute and chronic are available on the CDC website, through their National Notifiable Diseases Surveillance System (NNDSS) page:

http://wwwn.cdc.gov/nndss/

Public Health Significance
Clinically defined cases of acute hepatitis C do not occur as often as chronic hepatitis C, but an increase of acute cases was seen in 2011. Between 15 to 20 percent of these acute cases will spontaneously clear the virus and are no longer considered infected. The remaining infected individuals may be asymptomatic for years or even decades, becoming chronic cases. Symptoms that may be present during infection include abdominal pain, fatigue, fever, joint pain, jaundice, loss of appetite, dark urine, light stool, nausea, and/or vomiting. Populations most at risk include injection drug users and recipients of blood transfusions and organ transplants prior to 1992.

Twenty percent of cases will develop serious liver damage from hepatitis C, and 25 percent of those will need a liver transplant, develop liver cancer, or die. Antibodies can be found in 7 out of 10 persons when symptoms begin and in 9 out of 10 people within three months after symptoms begin. There is no vaccine for hepatitis C. Treatment for hepatitis C is available. New treatments with higher success rates than those seen in previous years are being developed. However these treatments often carry adverse side effects and their duration of use should be discussed thoroughly with a health care provider.

Indiana Partnership Efforts
In early 2011 the ISDH noticed an increase in the number of acute hepatitis C cases for young adults under the age of 30, living in the central eastern portion of the state. The common risk factor was the use of intravenous drugs and possible sharing of needles. As a result, ISDH formed a partnership with Aspire Indiana, a multi-county organization that provides recovery services for behavioral health. Aspire has the ability to conduct surveillance in correctional facilities, drug treatment centers and other locations. At this time, specific data and control measures have been completed using a modified version of the ISDH case investigation form for these individuals. Collaboration with Aspire has extended beyond the central Indiana east region and into other portions of the state.

Additionally, the ISDH has gone on to partner with other behavioral health organizations that provide testing and consultation with the goal of effective management strategies for the disease. These organizations include: Corizon, the Aliveness Project of Northwest Indiana, and Positive Link.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/com_m_dis_rule(1).pdf, hospitals and healthcare providers must report hepatitis C within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Hepatitis C weekly to the ISDH. Laboratory reporting enables identification of asymptomatic persons infected with the virus as well as those displaying symptoms. The ISDH uses standardized case definitions to classify the appropriate diagnosis for each individual.

As part of CDC’s National Notifiable Disease Surveillance System (NNDSS), viral hepatitis case-reports are received electronically from state health departments via CDC’s National Electronic Telecommunications System for Surveillance (NETSS). Although surveillance infrastructure is in place for reporting of acute infection, reports of chronic hepatitis B and C, which account for the greatest burden of disease, are not submitted by all states. Surveillance capacity to monitor both acute and chronic viral hepatitis is limited at the state and local levels, resulting in underreporting and incomplete variable quality data that is insufficient for understanding the magnitude of viral hepatitis. Data in this report should be interpreted with the consideration that reported cases of acute or chronic viral hepatitis represent only those relatively few infected persons who were detected, diagnosed, met a stringent case definition, and eventually reported to CDC in 2011. Because most acute and chronic infections are not reported, this Summary is mainly useful in detecting major trends in viral hepatitis C (as well as HAV and HBV). To see this statistical summary, go to: http://www.cdc.gov/hepatitis/Statistics/2011Surveillance/index.htm

Epidemiology and Trends

In 2011, 87 cases of acute hepatitis C infection were reported for an incidence rate of 1.56 cases per 100,000 population. The incidence rate for acute hepatitis C infection among males was 0.76 cases per 100,000 males while the rate among females was 0.82 per 100,000 females.

For chronic hepatitis C infection 5,503 cases were reported for a prevalence rate of 98.44 cases per 100,000 population (Table 1); however prevalence may be higher because reporting of chronic cases is not required. Males had a prevalence rate of 98.83 per 100,000 males and females had a prevalence rate of 97.68 per 100,000 females (Table 1). In 2011, race was not reported for 40% of hepatitis C cases.
Table 1: Hepatitis C Cases by Race and Sex, Indiana 2011

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th></th>
<th>Chronic</th>
<th></th>
<th>2007-2011 Total Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Rate*</td>
<td>Cases</td>
<td>Rate*</td>
<td>Total Cases</td>
</tr>
<tr>
<td>Indiana</td>
<td>87</td>
<td>1.30</td>
<td>5,640</td>
<td>86.54</td>
<td>17,740</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>2</td>
<td>0.33</td>
<td>515</td>
<td>84.34</td>
<td>1,829</td>
</tr>
<tr>
<td>White</td>
<td>71</td>
<td>1.26</td>
<td>3,112</td>
<td>55.02</td>
<td>8,879</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1.20</td>
<td>100</td>
<td>39.92</td>
<td>320</td>
</tr>
<tr>
<td>Unknown</td>
<td>9</td>
<td>-</td>
<td>1,913</td>
<td>-</td>
<td>6,702</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>44</td>
<td>1.33</td>
<td>1,952</td>
<td>58.97</td>
<td>6,052</td>
</tr>
<tr>
<td>Male</td>
<td>41</td>
<td>1.28</td>
<td>3,609</td>
<td>112.54</td>
<td>11,204</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>79</td>
<td>-</td>
<td>484</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on the U.S. Census Bureau’s population data as of July 1, 2010
**Nearly 40% of cases did not have a race reported. Rates not calculated.

Table 2 highlights the risk factors identified in 2011 for acute hepatitis C cases in Indiana. Completeness of reporting risk factor information varies.

Table 2. Acute Hepatitis C Reported Risk Factors – Indiana, 2011

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Number of Cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used street drugs but did not inject.</td>
<td>61 (70.1%)</td>
</tr>
<tr>
<td>Injected drugs not prescribed by doctor</td>
<td>63 (72.4%)</td>
</tr>
<tr>
<td>Injection drug and street drug use</td>
<td>54 (62.07%)</td>
</tr>
<tr>
<td>Contact of a person with confirmed or suspected hepatitis C infection</td>
<td>48 (55.2%)</td>
</tr>
<tr>
<td>Reported sexual contact with a confirmed or suspect hepatitis C infection</td>
<td>13 (14.9%)</td>
</tr>
</tbody>
</table>
Figure 2 shows the number of total reported cases of hepatitis C infection for the five-year period 2007-2011.

Figure 3 shows age-specific incidence rates for all cases of hepatitis C infection. Rates were highest among adults age 50-59 (208.3) followed by the 40-49 (163.1) year age group.
Table 3 shows the number of newly reported cases of hepatitis C infection within the Indiana Department of Corrections (IDOC). 2009 was the first year that these cases have been differentiated from the general public. IDOC cases were not separated out in previous years because the data point was not captured prior to the use of INEDSS. The larger number of cases seen for Hendricks and Parke counties is due to varying factors, mostly the locations of Regional Diagnostic Centers for male and female offenders within the Indiana Department of Corrections (IDOC) facilities are in those two locations. Offenders are tested for bloodborne diseases, such as hepatitis C, at these facilities, but likely reside in other Indiana counties.

Table 3: Newly Reported Cases of Hepatitis C Infection in the IDOC - Indiana, 2011

<table>
<thead>
<tr>
<th>County of Facility</th>
<th>Cases*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>5</td>
</tr>
<tr>
<td>Cass</td>
<td>7</td>
</tr>
<tr>
<td>Clark</td>
<td>**</td>
</tr>
<tr>
<td>Hendricks</td>
<td>755</td>
</tr>
<tr>
<td>Henry</td>
<td>16</td>
</tr>
<tr>
<td>Jefferson</td>
<td>**</td>
</tr>
<tr>
<td>Johnson</td>
<td>**</td>
</tr>
<tr>
<td>LaPorte</td>
<td>43</td>
</tr>
<tr>
<td>Madison</td>
<td>18</td>
</tr>
<tr>
<td>Marion</td>
<td>28</td>
</tr>
<tr>
<td>Miami</td>
<td>35</td>
</tr>
<tr>
<td>Noble</td>
<td>**</td>
</tr>
<tr>
<td>Parke</td>
<td>237</td>
</tr>
<tr>
<td>Perry</td>
<td>7</td>
</tr>
<tr>
<td>Putnam</td>
<td>13</td>
</tr>
<tr>
<td>St. Joseph</td>
<td>**</td>
</tr>
<tr>
<td>Wabash</td>
<td>**</td>
</tr>
<tr>
<td>Total</td>
<td>1264</td>
</tr>
</tbody>
</table>

*These cases will no longer be included in the state map displaying county rates.

**Actual cases in DOC counties totaling less than 5 will not be listed in an effort to protect patient confidentiality.

In 2011, at least one case of hepatitis C infection was reported in each of the 92 counties. Figure 4 is a state map displaying the prevalence of hepatitis C infections by county for individuals, excluding the IDOC.

Treatment Technologies

In 2011, the U.S. Food and Drug Administration (FDA) approved two new drugs for the treatment of the HCV. Boceprevir will be used for patients who still have some liver function and have not had success in the past with treatment. Boceprevir is used in combination with previously used treatment drugs, peginterferon alfa and ribvirin.

The second drug, telaprevir was approved for use one week after boceprevir. It is approved for the treatment of chronic hepatitis C, and also in combination with peginterferon alfa and ribvirin.

These two new drugs are the first approved for HCV in 20 years.
You can learn more about hepatitis C by visiting the following Web sites:

http://www.cdc.gov/hepatitis/ChooseC.htm
HEPATITIS D

Hepatitis D, also known as delta hepatitis, is a liver disease caused by the hepatitis D virus (HDV). HDV is a defective virus that requires the helper function of the hepatitis B virus (HBV) to replicate. People may become infected with HDV at the same time they acquire HBV (co-infection), or people may acquire the virus after infection with HBV (superinfection). The modes of transmission are similar to those for HBV. HDV is transmitted by percutaneous exposure or sexually through contact with infected blood. Most cases are acquired by exposure to contaminated needles. Symptoms of HDV infection resemble those of HBV infection and usually occur 2-8 weeks after exposure.

Public Health Significance

Superinfection with HDV is usually more severe than HBV infection alone, and more likely to result in severe disease. Since HDV is transmitted by similar methods as HBV (e.g., exposure to infected blood and contaminated needles), those most at risk of becoming infected with HDV are chronic HBV carriers and those who have not been immunized against HBV.

Although there is a vaccine for HBV, there is no vaccine for HDV. Since HDV is dependent on HBV infection, preventing HBV infections will prevent HDV infections. There is currently no treatment for HDV.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report hepatitis D within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of hepatitis D weekly to the ISDH. Laboratory reporting enables identification of asymptomatic persons infected with the virus as well as those displaying symptoms. The ISDH uses standardized case definitions to classify the appropriate diagnosis for each individual.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for hepatitis D.

Epidemiology and Trends

In 2011, hepatitis D was not nationally notifiable to the CDC. However, as noted above the Communicable Disease Reporting Rule for Physicians, Hospitals, and Laboratories (410 IAC 1-2.3) in Indiana does require the reporting of this disease to the ISDH. One case was reported of hepatitis D in
Indiana in 2011. One additional hepatitis D case was reported during the 5-year reporting period 2007-2011.

You can learn more about hepatitis D by visiting the following Web sites:

HEPATITIS E

Hepatitis E is an inflammation of the liver caused by the hepatitis E virus (HEV). HEV rarely causes long-term liver damage or death but can cause very serious infection in pregnant women, especially during the last three months of pregnancy. Hepatitis E is rare in the U.S. and is almost always related to travel to a country where hepatitis E is common, such as Mexico, Africa, the Middle East, India, and China.

People become infected with HEV by coming in contact with the stool of an infected person (fecal-oral route). Most outbreaks have been associated with contaminated drinking water. For this reason, the virus is easily spread in areas where there are poor sanitary conditions or where good personal hygiene is not practiced.

Public Health Significance

Symptoms of hepatitis E include diarrhea, nausea, vomiting, tiredness, stomach pain, fever, dark urine, pale/clay-colored stool, loss of appetite, and jaundice. Symptoms usually occur suddenly. Some people, especially children, may have no symptoms but can still spread the virus to others. Symptoms usually begin 26-42 days (range of 15-64 days) after exposure. Death from hepatitis E is rare, but mortality may be as high as 20 percent among pregnant women in their third trimester. Premature deliveries due to infection have a 33 percent infant mortality rate. People are most contagious from about two weeks before symptoms begin until two weeks after symptoms begin.

There is no cure for hepatitis E. However, people infected with the virus develop lifelong immunity. Unlike hepatitis A, there is no vaccine or immune globulin (IG) to prevent infection.

Persons are at risk for hepatitis E infection if they have:

- Exposure to contaminated food or water:
 - Consuming untreated water.
 - Consuming food prepared by an infected person.
 - Consuming raw produce or raw shellfish (e.g., oysters).
 - Traveling to countries where hepatitis E is common and where there is little clean water or proper sewage disposal.

- Exposure to the stool or blood of an infected person who is a:
 - Household member or sexual partner (men who have sex with men are at higher risk).
 - Child or staff member of a daycare center (including centers for the disabled).
 - Resident or staff member of a health care center.

Casual contact, as in the usual workplace or school setting, does not spread HEV. However, most cases of hepatitis E have an unknown exposure due to the length of time from exposure to the time symptoms begin (range of 15-64 days).

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report hepatitis E immediately local health department or the ISDH. Laboratories are also required to report positive results of hepatitis E weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for hepatitis E.

Epidemiology and Trends
Three cases of hepatitis E were reported in Indiana in 2011 and eleven cases were reported during the five-year period 2007-2011.

You can learn more about hepatitis E by visiting the following Web sites:
http://www.cdc.gov/hepatitis/index.htm
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm071311.htm
Histoplasmosis is caused by *Histoplasma capsulatum*, a saprophytic soil fungus. The primary route of transmission is inhalation of infectious spores made airborne by the disturbance of contaminated soil. The presence of *Histoplasma capsulatum* has been associated with soil enriched with bird feces, especially from blackbirds, starlings, chickens, and pigeons. Birds are not carriers of histoplasmosis, but accumulation of bird feces provide the organic enrichment needed for *Histoplasma* growth. Bat guano may also contain the organism. Some studies have indicated that different clay minerals in soil may influence growth and activity of bacteria and fungi. Histoplasmosis was confirmed in 42 counties in Indiana during 2011, which is a 10 county decrease from 2009. The counties with the highest rates of infection were Hamilton (4.0), Madison (3.8) and Porter (3.7) Counties respectively. Histoplasmosis is endemic in Indiana and CDC reports between 50% and 80% of people who live in areas where *Histoplasma capsulatum* is common in the environment will show evidence of having been exposed to the fungus at some point in their lifetime. In these areas, 10% to 25% of HIV-infected people will develop disseminated histoplasmosis.

Public Health Significance
Approximately 90 percent of *Histoplasma capsulatum* infections are asymptomatic. Clinically recognized histoplasmosis can be characterized into one of three forms: 1) acute, pulmonary histoplasmosis; 2) disseminated histoplasmosis; and 3) chronic, cavitary histoplasmosis. Symptoms of histoplasmosis cases are flu-like with nonproductive cough, chest pains, and difficult breathing (acute, pulmonary histoplasmosis). More severe disease may result in fever, night sweats, weight loss, and bloody sputum. Severe cases may result in *Histoplasma* organisms being disseminated to many body organs (disseminated histoplasmosis). Symptoms occur within 3-17 days after exposure to the fungus. Antifungal medication is available for histoplasmosis, although mild infections usually resolve without medication.

People most at risk for developing histoplasmosis include poultry workers, farmers, landscapers and gardeners, and those who have contact with bats or bat caves.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report histoplasmosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of histoplasmosis weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for histoplasmosis.
Epidemiology and Trends
In 2011, 128 confirmed cases of histoplasmosis were reported in Indiana for an incidence rate of 2.27 cases per 100,000 population (Table 1). Males (2.84) were more likely to be reported with histoplasmosis infection than females (1.69).

Table 1: Histoplasmosis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>148</td>
<td>2.27</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>15</td>
<td>2.46</td>
</tr>
<tr>
<td>White</td>
<td>84</td>
<td>1.49</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>2.40</td>
</tr>
<tr>
<td>Not Reported</td>
<td>43</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>56</td>
<td>1.69</td>
</tr>
<tr>
<td>Male</td>
<td>91</td>
<td>2.84</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 illustrates the number of cases by year for 2007-2011.
Histoplasmosis occurred throughout the year in 2011, with the largest number of cases occurring in the fall and winter months (Figure 2).

Figure 2: Histoplasmosis Cases by Month Indiana, 2011

Figure 3 shows the distribution of cases by age group. Age-specific rates were greatest among adults aged 40-49 years of age (3.4).

Figure 3: Histoplasmosis Incidence Rates by Age Group- Indiana, 2011
In 2011, 48 counties reported at least one case of histoplasmosis in Indiana. This is a 6 county increase from 2010. Incidence rates were highest among the following counties reporting 5 or more cases: Allen (2.0), Hamilton (2.1), Howard (6.0), LaGrange (50.8), Lake (4.3), Madison (3.8), Marion (2.9), Monroe (3.6), (Figure 4).
There was a documented outbreak of histoplasmosis in LaGrange County in 2011. The outbreak occurred during a search and rescue exercise that took place during a controlled burn of an old home.

You can learn more about histoplasmosis by visiting the following Web site:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/histoplasmosis/
La Crosse encephalitis is a mosquito-borne viral infection found primarily in the eastern United States where hardwood forests exist. The disease is maintained in nature in a cycle between the tree-hole mosquito, *Aedes triseriatus*, and small woodland mammals such as squirrels and chipmunks. Although La Crosse virus is endemic in Indiana, the disease is relatively rare because humans are not an essential component of the viral life cycle.

Public Health Significance

Symptoms of La Crosse encephalitis include headache, fever, nausea, vomiting, drowsiness, and disorientation. Severe cases may result in seizures or coma. Symptoms appear 5-15 days after a bite from an infected mosquito. Cases are rarely fatal but may result in learning disabilities in recovered individuals. For every symptomatic case, there are approximately 1,500 asymptomatic cases. Clinically recognized infections occur mainly in children under 16 years of age. No specific treatment exists for La Crosse encephalitis. People most at risk for developing La Crosse encephalitis include children younger than 16 years of age, those residing in or near woodlands where tree-hole mosquitoes reside, and those involved in outdoor water activities.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, hospitals and healthcare providers must report arboviral disease including, La Crosse (California) encephalitis immediately to the local health department or the ISDH. Laboratories are also required to report positive results of California serogroup (CAL), which includes LaCrosse, viruses weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for La Crosse encephalitis.

Epidemiology and Trends

In 2011, three cases of La Crosse encephalitis were reported in Indiana. During the five-year period 2007-2010, five cases of La Crosse encephalitis were reported in Indiana.

You can learn more about La Crosse encephalitis by visiting the following Web site:

http://www.cdc.gov/lac/
LEGIONELLOSIS

Legionellosis is a respiratory infection caused by Legionella bacteria, most commonly Legionella pneumophila. These bacteria are transmitted by contaminated water aerosols, which are then inhaled. Legionella can be found in any type of water system, in the environment in creeks, and ponds, and potting soil. The bacteria are prevalent in warm stagnant water, such as found in most plumbing systems, hot water tanks, water in cooling towers, and evaporative condensers.

Public Health Significance
Legionnaires’ disease is a severe infection, most commonly characterized by pneumonia. Other symptoms include high fever, cough, chills, muscle aches, and headache. Symptoms usually begin about 2-14 days after exposure. Chest X-rays are needed to confirm the presence of pneumonia, and other tests can be performed on sputum (phlegm), as well as blood and urine to find evidence of the bacteria in the body.

People most at risk of getting sick from the bacteria are:
- older people (usually 65 years of age or older)
- smokers
- people with chronic lung disease (like emphysema)
- people with weakened immune systems from diseases like cancer, diabetes, or kidney failure
- people who take drugs that suppress (weaken) the immune system (such as organ transplants or chemotherapy)

A milder infection caused by the same type of Legionella bacteria is Pontiac Fever. The symptoms of Pontiac Fever usually last for 2 to 5 days and may also include fever, headaches, and muscle aches; however, there is no pneumonia. Symptoms resolve on their own without treatment and without causing further problems. Neither infection is transmissible person-to-person. Pontiac Fever and Legionnaires’ disease may both be called “legionellosis.”

Outbreaks occur when two or more people become ill in the same place at about the same time, such as hospitalized patients. Hospitals or large buildings have complex water systems, and many people in hospitals already have illnesses that increase their risk for Legionella infection. Other outbreaks have been linked to aerosol sources in the community, cruise ships, and hotels, with the most likely sources being whirlpool spas, cooling towers (air-conditioning units from large buildings), and water used for drinking and bathing.

Legionnaires’ disease can be treated with antibiotics. Supportive therapy may be needed to aid breathing function. There is no vaccine for legionellosis.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report legionellosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Legionellosis weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for legionellosis.
Surveillance Case Definitions
Legionellosis cases must meet clinical definition and one of the following laboratory requirements:

Confirmed:
- Culture: isolation of any *Legionella* organism from respiratory secretions, lung tissue, pleural fluid, or other normally sterile fluid.
- Urinary antigen: detection of specific *Legionella pneumophila* serogroup 1 antigen in urine using validated reagents. This is the fastest way to confirm the diagnosis.
- Seroconversion: fourfold or greater rise in specific serum antibody titer to *Legionella pneumophila* using validated reagents. This is not recommended due to the time required to obtain both acute and convalescent sera.

Epidemiology and Trends
In 2011, 56 confirmed cases of legionellosis were reported in Indiana (Table 1), for a case rate of 1.09 per 100,000. In 2011, blacks (1.31) were at higher risk for legionellosis than whites (0.81). Additionally, males (1.43) were at higher risk than females (0.76).

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>71</td>
<td>1.09</td>
<td>322</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>8</td>
<td>1.31</td>
<td>45</td>
</tr>
<tr>
<td>White</td>
<td>46</td>
<td>0.81</td>
<td>210</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>Not Reported</td>
<td>17</td>
<td>-</td>
<td>66</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>25</td>
<td>0.76</td>
<td>115</td>
</tr>
<tr>
<td>Male</td>
<td>46</td>
<td>1.43</td>
<td>207</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010
Figure 1 shows the number of cases by year for 2007-2011.

Incidence of legionellosis usually climbs in the summer. Figure 2 indicates an increase of incidence in the summer and fall of 2011.
Cases of legionellosis disease tend to occur more frequently in adults 60-69 years old (2.3), followed by those 80 and over (2.1) and the 70-79 and 50-59 year age groups (1.7) respectively, seen in Figure 3.

Of the 30 counties reporting cases in 2011, incidence rates were highest among the following counties reporting 5 or more cases: Lake (1.8) and Marion (1.6) and St. Joseph (1.9) (Figure 4).

You can learn more about legionellosis by visiting the following Web sites
http://www.cdc.gov/legionella/patient_facts.htm
LEPROSY (HANSEN'S DISEASE)

Leprosy, or Hansen’s Disease, is a chronic disease caused by the bacterium *Mycobacterium leprae*, which affects the skin, mucous membranes, and peripheral nerves. The World Health Organization (WHO) classifies the disease based upon the presence of bacteria and the appearance of cells in skin biopsy. Cases with less than five lesions are typically considered paucibacillary and cases with more than five skin lesions are multibacillary. This classification system is used in the determination of the appropriate duration and type of antibiotic drug therapy used in treatment. Symptoms of leprosy include hypopigmented or reddish skin lesions that may appear as plaques or nodules that are not painful, as well as loss of sensation in the extremities and nose from peripheral nerve involvement and nasal congestion. Symptoms of the disease do not typically appear for several years after contact with an infected person. The mode of transmission is uncertain, but the bacteria are thought to be spread through the contact with nasal mucosa of infected persons. It is estimated that 95% of the world’s population is naturally immune to the bacteria, as leprosy is not a highly transmissible disease.

Public Health Significance

Persons at greatest risk for the disease include household contacts of a case. Most cases in the United States occur in immigrants and refugees who acquired the disease in their native country. Leprosy is more common in temperate, tropical, and subtropical climates. A genetic study at the National Hansen’s Disease Program reports that armadillos may be a source of infection in the southern United States. The Program states that the risk of transmission from animals to humans is low, but animals should be handled with proper precautions.

Early diagnosis and treatment of the disease is critical in curing the disease and in preventing permanent damage to the skin and nerves. A multi-drug regimen taken over an extended period is used to treat the disease, and it is recommended that direct observation therapy be utilized to ensure compliance with the medication regimen. While prophylaxis of close contacts is not recommended, current household contacts should be examined immediately by a health care provider and then annually for five years following the last contact with the infectious patient. The average incubation period for the disease is about three years.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report leprosy or hansen’s disease within 72 hours to the local health department or the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for leprosy.

Epidemiology and Trends

One case of leprosy was reported in Indiana during 2011. Three cases were reported during the five year reporting period 2007 – 2011. Nationally, 82 cases were reported in 2011. Approximately 75% of those cases were reported from California, Florida, Hawaii and Texas (61 cases).

You can learn more about leprosy by visiting the following Web sites:

- http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5953a1.htm
Leptospirosis is a bacterial disease of animals and humans caused by *Leptospira* bacteria, most commonly *Leptospira interrogans*. The primary reservoir of the bacteria is rodents. However, infected domestic animals such as cattle, sheep, goats, pigs, dogs, and cats can pose an additional threat to humans. Humans generally become infected by direct contact with infected animals or from exposure to water contaminated with urine from infected animals.

Public Health Significance
Symptoms of leptospirosis may appear abruptly and include fever, chills, severe headache, body aches, and vomiting. If leptospirosis is left untreated, kidney damage, liver failure, and respiratory distress can occur. Symptoms occur 2-28 days after exposure to the bacteria. Antibiotics are used to treat the infection.

Leptospirosis can be an occupational disease risk for individuals who work with animals or who have exposure to contaminated soil or water. Groups at increased risk include farmers, veterinarians, coal miners, meat handlers, and sewer workers. At least one large leptospirosis outbreak in the U.S. has been linked to the recreational use of a lake.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report leptospirosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Leptospira species* weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for leptospirosis.

Epidemiology and Trends
No cases of leptospirosis were reported in Indiana in 2011. One case of leptospirosis was reported during the five year reporting period, 2007-2011.

You can learn more about leptospirosis by visiting the following Web site:
LISTERIOSIS

Listeriosis is a contagious disease caused by *Listeria monocytogenes* bacteria. These bacteria are found in soil, untreated water, and the intestines of some animals. These animals are not sick but can pass the bacteria into the soil through manure. Most often, people get listeriosis by eating food contaminated with *Listeria* bacteria. *Listeria* is killed by pasteurization and cooking. However, in certain ready-to-eat foods, such as luncheon meats, contamination may occur after cooking but before packaging. Raw produce may become contaminated by contact with soil or manure. Unlike other bacteria found in food, *Listeria* can multiply in food even while refrigerated. Foods at high risk for listeriosis include: raw vegetables, uncooked meats and seafood, ready-to-eat meats, soft cheeses, and unpasteurized dairy products. The only way listeriosis can be spread from person to person is from mother to baby during pregnancy. It cannot be spread by other person-to-person contact.

Outbreaks of listeriosis have been attributed to unpasteurized dairy products, soft cheeses, raw vegetables, and ready-to-eat meats.

Public Health Significance
Symptoms of listeriosis include fever, headache, muscle aches, nausea, vomiting, abdominal cramps, and diarrhea. Symptoms usually begin 21 days (range of 3-70 days) after exposure. Duration of symptoms depends on the health of the infected person; symptoms can last several days or several weeks. Healthy people usually do not have any symptoms, while others may have a mild illness. Pregnant women are about 20 times more likely than other healthy adults to get listeriosis. About one-third of listeriosis cases occur during pregnancy. If infection occurs when a woman is pregnant, antibiotics given promptly can often prevent infection of her baby. Otherwise, infected pregnant women may experience only a mild, flu-like illness; however, infections during pregnancy can lead to miscarriage or stillbirth, premature delivery, or infection of the newborn. Illness can be very serious in pregnant women, newborns, elderly persons, and persons with weakened immune systems. Antibiotics are available to treat the infection in all persons, regardless of age.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report listeriosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of listeriosis weekly to the ISDH. In addition, listeriosis, laboratories are required to submit Listeria isolates received to the ISDH Laboratory for further confirmation and subtyping.

Healthy People 2020 Goal
The Healthy People 2020 Goal for listeriosis is 0.2 cases per 100,000 population. During the five-year reporting period, Indiana met the Healthy People 2020 goal in 2008, 2009, and 2011 (Figure 1). The cause for the elevated rate of cases in 2007 and 2010 is unknown.
Epidemiology and Trends
In 2011, eleven cases of listeriosis were reported in Indiana, for a rate of 0.17 cases per 100,000 population (Table 1).

Table 1: Listeriosis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>11</td>
<td>0.17</td>
<td>64</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>White</td>
<td>11</td>
<td>0.19</td>
<td>45</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>Not Reported</td>
<td>0</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>0.15</td>
<td>30</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>0.19</td>
<td>34</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010
Figure 2 shows reported listeriosis cases by year for 2007-2011.

Incidence of disease was highest in September (Figure 3).
As shown in Figure 4, age specific rates were greatest for infants less than one year of age (2.38), followed by adults 60-69 (0.78), adults 70-79 (0.57) and adults aged 80 years and older (0.41).

Eleven counties reported having at least one listeriosis case in 2011 and no county reported 5 or more cases.

One outbreak of listeriosis was reported in Indiana in 2011. This was a multistate outbreak affecting 147 people from 28 states. Indiana had 3 reported cases included in this outbreak. The outbreak was linked to whole cantaloupes from Jensen Farms, Colorado. For more information about this listeriosis outbreak, visit http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html.

You can learn more about listeriosis by visiting the following Web sites:
http://www.cdc.gov/listeria/index.html
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070064.htm
LYME DISEASE

Lyme disease is caused by the bacterium *Borrelia burgdorferi* and is the most commonly diagnosed tick-borne disease in Indiana. It is transmitted by the black legged tick (*Ixodes scapularis*). Small wild rodents serve as the reservoir species. Transmission can occur after the tick has been attached and feeding for approximately 36 hours.

Public Health Significance
Symptoms of Lyme disease appear 3-30 days after exposure to the infected tick but generally occur 7-14 days after exposure. Symptoms often include a “bullseye” skin rash known as erythema migrans. In some cases, more severe symptoms of joint pain and arthritis can last from months to years. Lyme disease can be successfully treated with antibiotics, especially if treatment is started early. Untreated infections of *Borrelia burgdorferi* can lead to various health problems including arthritis, neurologic disease, meningitis, loss of muscle tone (Bell’s palsy) and/or dermatological (skin) conditions.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Lyme disease within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Borelli burgdorferi* weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for Lyme disease.

Epidemiology and Trends
In 2011, 80 cases of Lyme disease were reported in Indiana, for a rate of less than 1 case per 100,000 population. For the five-year reporting period from 2007-2011, 301 cases of Lyme disease were reported. You can learn more about Lyme disease by visiting the following Web site:
MALARIA

Malaria is a serious, sometimes fatal, blood disease caused by one of four *Plasmodium* parasite species (*falciparum, vivax, ovale, malariae*) and transmitted by the bite of an infected female *Anopheles* mosquito. In the U.S., cases of malaria are normally acquired by international travel to malaria risk areas. Malaria risk in specific countries is dependent on various factors that can change rapidly and from year to year, such as local weather conditions, mosquito vector density, and prevalence of infection, which can markedly affect local malaria transmission patterns. In general, malaria transmission occurs in large areas of Central and South America, the island of Hispaniola (the Dominican Republic and Haiti), Africa, Asia (including South Asia, Southeast Asia, and the Middle East), Eastern Europe, and the South Pacific.

Public Health Significance

Malaria symptoms are similar to influenza and may include chills, headache, muscle aches, and tiredness. The indicative symptoms of malaria are cyclic fevers and chills. Symptoms develop 7-30 days after the infective bite. Antimalarial drugs taken for prophylaxis can delay malaria symptoms. Delays between exposure and development of symptoms can result in misdiagnosis or delayed diagnosis because of reduced clinical suspicion by the health care provider.

Prior to traveling to malaria risk areas, travelers should always see a health care provider to obtain anti-malarial medications to prevent malaria infection. The type of anti-malarial medication will vary depending on travel destination due to resistance to anti-malarial medication in many parts of the world. No vaccine is currently available.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report malaria within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Plasmodium species* weekly to the ISDH.

Healthy People 2020 Goal

The Healthy People 2020 Goal for malaria is to reduce the number of cases reported in the United States. Malaria is one of three diseases that accounts for a large proportion of illness and disability for international travelers. In 2008 1,298 new cases of malaria were reported in the US. The 2020 target goal is to reduce the number of confirmed new cases of malaria reported to the CDC by local health departments to 999.

Epidemiology and Trends

In 2011, 15 cases of malaria were reported in Indiana. A total of 71 cases of malaria were reported during the five-year reporting period 2007-2011. All were acquired outside of the United States. Malaria cases were reported in Indiana following international travel or re-location from Sub-Saharan Africa, tropical (northern) South America, Central America, the Caribbean (Haiti and Dominican Republic), and parts of South and Southeast Asia.

You can learn more about malaria by visiting the following Web sites:

Measles is a highly contagious viral illness transmitted through the air when an infected person coughs or sneezes. It also may spread through contact with nose or throat drainage of an infected person or articles contaminated by an infected person.

Public Health Significance
Symptoms of measles usually begin to appear 10-12 days after exposure to the virus. Symptoms of measles begin with tiredness, fever, cough, coryza (runny nose), and conjunctivitis. A maculopapular rash begins 3-4 days later, typically beginning on the hairline of the forehead and gradually proceeding downward over the entire body. The rash lasts a minimum of 3 days, but on average lasts 4-7 days. Persons with measles usually appear to be very ill at least 2 days before to 2 days after rash onset. Though historically considered a mild childhood disease, it can lead to serious complications. Measles infection may cause ear infections, pneumonia, encephalitis, vision damage, and even death. Fever may last 2-4 days and can peak as high as 103-105°F.

Measles virus is communicable prior to the appearance of the classical rash, thus following infection control guidelines and exclusion rules are important when exposed to an infected person. People with measles are considered to be infectious from 4 days before through 4 days after rash onset. The infectious period ranges from 7-21 days (average of 10-14 days) following exposure. Measles virus can persist for up to 2 hours in the environment.

No medications are currently available to treat measles. Vaccination is the most effective measure to prevent measles. Measles can spread quickly in unimmunized populations. Two doses of measles, mumps, and rubella (MMR) vaccine typically prevent infection. Children receive the first dose of MMR at 12 months of age and the second dose of MMR at 4-6 years of age following the routine schedule. All adults should receive at least one dose of MMR vaccine, but two doses at least 28 days apart, are recommended for health care workers, international travelers, and adults enrolled in secondary education.

Prior to routine measles vaccination, more than 500,000 measles cases and 500 associated deaths were reported annually in the United States. The actual number of measles cases per year was estimated to be 3-4 million. Measles incidence in the United States decreased more than 98% following the vaccine’s licensure in 1963, but outbreaks still occur when the measles virus is introduced to unimmunized pockets of the population. According to the World Health Organization, it is estimated that in 2011, 158,000 measles deaths occurred globally.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report measles immediately to the local health department or the ISDH. Laboratories are also required to report positive results of measles weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for measles fewer than 30 cases of US-acquired measles cases per year nationwide (0.0095 cases per 100,000 population). Indiana did not meet this goal in 2011 since the rate of measles in the state was 0.22 cases per 100,000 population. Achieving and maintaining high levels of vaccination coverage in Indiana is an effective way to accomplish this goal. The risk of importation of measles virus through international travel remains, thus prevention through vaccination is necessary until the virus is globally eradicated.
Epidemiology and Trends

Fourteen cases of measles were reported in 2011 in Indiana due to an outbreak. This was the largest outbreak of measles in Indiana since 2005. The index case was unvaccinated and had recently travelled to a measles-endemic country. Of the 14 cases, 13 were unvaccinated and part of the same extended family. The nonfamily member was a child with proof of receiving 1 dose of MMR vaccine. Eleven of the 14 cases were female, and all of the cases were younger than 30 years old. No other cases of measles were reported in Indiana during the five-year period 2007-2011. **Figure 1** shows reported cases of measles for the five-year period 2007-2011.

![Figure 1: Measles Cases by year](image)

During 2011, a total of 222 measles cases nationwide were reported to CDC, compared with a median of 60 (range: 37–140) cases reported annually during 2001–2010.

You can learn more about measles by visiting the following Web sites:

- http://www.cdc.gov/vaccines/vpd-vac/measles/default.htm
MENINGOCOCCAL DISEASE

Meningococcal disease is a life-threatening illness which occurs when Neisseria meningitidis bacteria invade a site in the body that is normally sterile, such as the blood or fluid surrounding the brain and spinal cord. The bacteria are transmitted from person-to-person through direct contact with nose and throat secretions of an infected person. The definition of a confirmed case of N. meningitidis is the isolation of the organism from a sterile body site or from purpuric lesions. It is estimated that at least 10% of U.S. residents may be colonized with the bacteria in the nasopharynx but have no symptoms of infection. Invasive disease is most commonly manifested as meningitis, bacteremia, meningococcemia (meningococcal sepsis), or septic arthritis, although the disease can also cause pneumonia in older adults. Meningococcal infections often begin with a sudden onset of fever, headache, stiff neck, rash, photophobia, nausea, and vomiting. Prompt antibiotic therapy can reduce the risk of long-term effects and improve survival, although case fatality rates range from 10-14%. Meningococcemia is the most severe form of the infection and is fatal in up to 40% of cases. Only cases of invasive disease are reportable in Indiana.

Public Health Significance
Certain segments of the population are at increased risk for the disease due to risk factors within the host or in the environment. These groups include:

- College freshmen living in dormitories
- Persons working in or attending child-care facilities
- Microbiologists
- U.S. military recruits
- Persons who travel to or reside in countries where N. meningitidis is epidemic, especially if there will be prolonged contact with the local population
- Persons who have certain immune system disorders
- Persons who do not have a functional spleen

Routine vaccination for children 11-18 years of age is recommended by the American Council on Immunization Practices (ACIP) and became a requirement for high school and college freshmen attendance in Indiana during the 2010–2011 school year. Vaccination is also recommended for other at-risk populations, and education on the importance of receiving the vaccine is a primary strategy for reducing incidence of the disease. Revaccination for individuals who remain at high risk is recommended. In April 2011, the Food and Drug Administration approved the use of the quadrivalent meningococcal vaccine for children in the 9 through 23 months age group that are at high risk for disease, http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6040a4.htm?s_cid=mm6040a4_e%0d%0a. Booster guidance was published in January for persons aged 2 through 10 years, these updates are available at http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6030a3.htm?s_cid=mm6030a3_e%0d%0a. Three vaccines are currently available to protect against meningococcal disease, with the vaccine Menveo licensed in 2010. All vaccines protect against four of the five encapsulated serogroups of the bacteria which cause invasive disease (A, C, Y, W-135). No vaccine is available in the United States to protect against serogroup B or serogroup Z disease.

Increased hospital, provider, and laboratory awareness of the condition may improve clinical outcomes. Immediate recognition and treatment of suspected cases is crucial. Suspected cases should be treated prior to lab confirmation. Health care providers and local health departments must immediately report suspected and confirmed cases to ensure proper control measures can be implemented to prevent
secondary cases. The Indiana State Department of Health should be immediately involved with each case investigation. Individuals with direct exposure to the respiratory droplets of a case are at greater risk for contracting the disease within the few days following symptom onset. Antibiotic prophylaxis is recommended for all high-risk close contacts and should be administered as soon as possible. Due to effective prophylaxis, secondary cases and outbreaks of meningococcal disease are rare, and as a result almost all cases in the U.S. are sporadic.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report meningococcal disease immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Neisseria meningitidis* weekly to the ISDH. In addition, laboratories are required to submit isolates received to the ISDH Laboratory for further evaluation.

Healthy People 2020 Goal
The Healthy People 2020 Goal for meningococcal disease is an incidence of 0.3 cases per 100,000 population per year. Indiana did not meet the Healthy People 2020 Goal for 2011 (see Figure 1).

Figure 1: Meningococcal Invasive Disease Rates by Year- Indiana, 2007-2011
Epidemiology and Trends
In 2011, 25 confirmed and probable cases of invasive meningococcal disease (Table 1) were reported, including three reported deaths (16%) in Indiana.

<table>
<thead>
<tr>
<th>Table 1: Meningococcal Cases Rate by Race and Sex, Indiana, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Indiana</td>
</tr>
<tr>
<td>Race</td>
</tr>
<tr>
<td>Black</td>
</tr>
<tr>
<td>White</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Not Reported</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Nationally cases of meningococcal disease increased from the previous year, from 739 cases in 2010 to 759 cases in 2011. While national cases increased for the previous year, Indiana saw a decline in cases for the second year in a row. **Figure 2** displays the number of confirmed cases by year for the previous 5 years.
There is some seasonality to meningococcal disease. Case rates in the U.S. are highest during the late winter and early spring. Figure 3 demonstrates this trend with the number of cases by month. In 2011, the highest number of cases occurred in April 2011.

![Figure 3: Meningococcal Invasive Disease Cases by Month - Indiana, 2011](image)

The highest incidence of meningococcal disease occurs in infants, young adults and the elderly. During 2011, incidence rates were the highest among adults over the age of 80 (2.1), followed by infants <1 (1.2) and children 1–4 years of age (0.9). Figure 4 shows meningococcal incidence rates for all age groups in the state of Indiana.

![Figure 4: Meningococcal Invasive Disease Incidence Rates by Age Group - Indiana, 2011](image)
Fourteen counties reported confirmed cases during 2011. None of the counties reported 5 or more cases.

In the U.S., *Neisseria meningitidis* serogroups B, C, and Y are most frequently associated with invasive disease. The Indiana Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, requires laboratories to submit isolates from invasive sites to the ISDH Laboratory for confirmation, serogrouping followed by susceptibility testing and molecular typing at the CDC Meningitis Laboratory. Polymerase chain reaction testing (PCR) can be also performed on specimens of suspected cases to provide serogrouping results at the CDC.

In 2011, serogroup B accounted for 48 % (12/25) of all cases compared to 32 % (8/25) for serogroup Y and 12 % (3/25) for serogroup C. Serogroup B had the highest proportion of cases from 2007 – 2011 (37.5%). Table 2 gives the total numbers for Indiana serogroups for the past five years. Figure 5 displays the total percentage of serogroup results available from 2007 to 2011.

Table 2: 5 year totals (2007 -2011) for Indiana *Neisseria meningitidis* serogroups:

<table>
<thead>
<tr>
<th>Serogroup</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>(40.6%)</td>
<td>8 (28.6%)</td>
<td>16 (47.1%)</td>
<td>8 (24.2%)</td>
<td>12 (48%)</td>
</tr>
<tr>
<td>C</td>
<td>8 (25%)</td>
<td>6 (21.4%)</td>
<td>4 (11.8%)</td>
<td>10 (30.3%)</td>
<td>3 (12%)</td>
<td>31</td>
</tr>
<tr>
<td>Y</td>
<td>10</td>
<td>(31.2%)</td>
<td>11 (39.3%)</td>
<td>11 (32.3%)</td>
<td>13 (39.4%)</td>
<td>8 (32%)</td>
</tr>
<tr>
<td>W135</td>
<td>-</td>
<td>1 (3.6%)</td>
<td>1 (2.9%)</td>
<td>2 (6.1%)</td>
<td>1 (4%)</td>
<td>5</td>
</tr>
<tr>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nonviable</td>
<td>-</td>
<td>1 (3.6%)</td>
<td>2 (5.9%)</td>
<td>-</td>
<td>1 (4%)</td>
<td>4</td>
</tr>
<tr>
<td>Unknown</td>
<td>1(3.1%)</td>
<td>1 (3.6%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 5: Meningococcal Invasive Disease Serogroups Indiana, 2007-2011
You can learn more information on Meningococcal disease, by visiting the following Web sites:

http://www.in.gov/isdh/22121.htm
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5407a1.htm
http://www.cdc.gov/abcs/reports-findings/pubs-neiss-meng.html
http://www.cdc.gov/osels/ph_surveillance/nndss/casedef/meningococcalcurrent.htm
Mumps is an acute viral illness transmitted through airborne transmission or direct contact with infected droplet nuclei or saliva.

Public Health Significance
Mumps illness causes parotitis in approximately 30-40 percent of infected individuals. Swelling of the parotid glands can be unilateral or bilateral when it is present. Other common symptoms of mumps include muscle pain, loss of appetite, malaise, headache, and low-grade fever. Up to 20 percent of mumps infections may be asymptomatic. Although mumps may present as a mild disease, it may also lead to severe complications. More severe complications that have been documented include hearing loss, encephalitis, pancreatitis, sterility, permanent sequelae, and death.

The most effective means of preventing mumps virus is vaccination. Children should receive one dose of measles, mumps, rubella (MMR) vaccine at 12 months of age and a second dose at 4-6 years of age according to the routine immunization schedule. All adults should have at least one dose of MMR vaccine; healthcare workers, international travelers, and students enrolled in secondary education should receive two doses of MMR vaccine at least 28 days apart.

It is difficult to distinguish mumps from other forms of parotitis. Therefore, appropriate laboratory testing is strongly recommended for all sporadically reported cases. Appropriate testing includes a serum specimen and a viral specimen (buccal, throat, or nasopharyngeal swab) collected as early as possible following onset of parotitis. Although Indiana has a relatively low incidence of mumps cases, health care providers should consider mumps diagnosis and testing when parotitis of two days or longer has occurred.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report mumps within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of mumps weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for mumps is fewer than 500 cases of US-acquired mumps per year nationwide (0.16 per 100,000 population). Indiana met the Healthy People 2020 Goal in 2011 with a rate of mumps of 0.05 per 100,000 population. Achieving and maintaining high levels of vaccination coverage is an effective way to accomplish this goal. International travel poses a risk of imported cases exposing travelers as well as residents; therefore, prevention through vaccination is necessary until the virus is globally eradicated.

Epidemiology and Trends
In 2011, three cases of mumps were reported in Indiana. Fourteen cases were reported during the 5-year period 2007-2011.
Figure 1 shows reported cases by year for 2007-2011. The three reported cases in 2011 were comparable to case reports in recent years.

In 2011, the cases were reported in October and November. The source of the virus was unknown for all three cases.

You can learn more about mumps by visiting the following Web site:
http://www.cdc.gov/vaccines/vpd-vac/mumps/default.htm
Pertussis (whooping cough) is an acute respiratory disease caused by the toxin-producing bacterium *Bordetella pertussis*. Transmission most commonly occurs through contact with respiratory droplets or airborne droplets of respiratory secretions. Pertussis is highly communicable with a secondary household attack rate of 80% among susceptible persons.

Public Health Significance

The illness is characterized by the onset of coryza (runny nose), sneezing, low-grade fever, and a mild cough. The cough usually becomes more severe during the second week of illness as the patient experiences bursts, or paroxysms, of numerous, rapid coughs. During these attacks, the patient may become cyanotic and inspiratory “whoop” sound may be heard. Vomiting and exhaustion commonly follow such an episode. Following this paroxysmal phase, which may last 1-10 weeks, a convalescent stage occurs where the coughing spells become less severe and less frequent.

Prior to routine vaccination, more than 200,000 cases of pertussis were reported in the United States each year. Pertussis incidence has decreased more than 80% since the prevaccine era. However, pertussis incidence, unlike other vaccine-preventable diseases, has increased in recent years. Infants are at increased risk for severe complications, including pneumonia, seizures, encephalopathy, and death. The vaccines currently available that provide protection from pertussis are DTaP and Tdap. The DTaP vaccine is licensed to be administered at 2, 4, 6, and 15-18 months of age with an additional dose administered between 4 and 6 years of age. The DTaP vaccine should not be administered to persons over 7 years of age. Two Tdap vaccines are currently available for adolescents and adults from ages 10 and older. It is recommended that adults who have not received Tdap should receive a single dose of Tdap to protect against pertussis and reduce likelihood of transmission. A single dose of Tdap may be given instead of Td (tetanus and diphtheria) vaccine. In addition, pregnant women should receive a dose during every pregnancy (preferably between 27-36 weeks gestation). The introduction of the Tdap vaccine may help to reduce the rate of pertussis in adult and adolescent populations, which tend to be responsible for infecting most infants.

While antibiotics are used to reduce the transmission of pertussis, they often have little impact on reducing the intensity of the coughing symptoms.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report pertussis immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Bordetella pertussis* weekly to the ISDH.

Healthy People 2020 Goal

The Healthy People 2020 Goals for pertussis are fewer than 2,500 cases of pertussis nationwide in children under 1 years of age (63.38 cases per 100,000 population) and fewer than 2,000 cases in adolescents aged 11-18 years (5.89 cases per 100,000 population). Indiana did not meet those goals for children under 1 years of age (73.66 cases per 100,000 population) or adolescents aged 11-18 years (7.49 cases per 100,000 population) in 2011.

Epidemiology and Trends

Indiana had 367 reported cases of pertussis in 2011, for a rate of 5.63 cases per 100,000 population (Table 1). Females (5.98) had a slightly higher incidence rate than males (5.27). The rate for whites (5.82) was higher than for blacks (0.98) and for other races (5.19).
Pertussis incidence, unlike other vaccine-preventable diseases, has increased overall since the 1980s. Pertussis incidence is cyclic, with increases and decreases every 3-5 years. Figure 1 illustrates this cycle.

Table 1: Pertussis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>367</td>
<td>5.63</td>
<td>1842</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>6</td>
<td>0.98</td>
<td>59</td>
</tr>
<tr>
<td>White</td>
<td>329</td>
<td>5.82</td>
<td>1596</td>
</tr>
<tr>
<td>Other</td>
<td>13</td>
<td>5.19</td>
<td>62</td>
</tr>
<tr>
<td>Not Reported</td>
<td>19</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>198</td>
<td>5.98</td>
<td>993</td>
</tr>
<tr>
<td>Male</td>
<td>169</td>
<td>5.27</td>
<td>849</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1: Pertussis Cases by Year
Indiana, 1992-2011
In 2011, disease incidence was highest during October, followed by November and December, but pertussis can occur anytime during the year (Figure 2).

![Figure 2: Pertussis Case by Month Indiana, 2011](image)

Pertussis is the most frequently reported vaccine-preventable disease among children under 5 years of age. In 2011, 34.1% of all cases occurred in children less than 5 years of age. Incidence rates were highest for infants less than 1 year of age (73.7), followed by children ages 5-9 years (18.4) and children ages 1-4 years (18.2). School aged-children, 5-18 years of age, accounted for 43.1% of cases in 2011. The proportion of pertussis cases reported in school-age children in 2011 is related to community-wide pertussis outbreaks and ongoing transmission within schools and households as well as self-limited school outbreaks. Figure 3 shows incidence rates for all age groups.

![Figure 3: Pertussis Incidence Rates by Age Groups Indiana, 2011](image)

In 2011, 42 counties reported at least one case, and 18 counties reported 5 or more cases of pertussis. The incidence rates were highest among the following counties reporting five or more cases (Figure 4): Hamilton (48.4), LaGrange (48.2), and Boone (20.9).
In 2011, 18 of the 367 (4.9%) reported cases in Indiana were hospitalized, and 44 of the 367 cases (12.0%) visited the emergency department. In 2011, 11 of the 58 cases (19.0%) in infants less than 1 year of age were hospitalized. The average length of stay for hospitalized infants was 3.5 days. Infants less than 1 year of age are at greatest risk for severe disease as evidenced by the proportion of cases hospitalized. No deaths were reported in Indiana in 2011 due to pertussis.

Unvaccinated children are at highest risk for severe disease, but appropriately immunized children may also develop illness. Table 2 reflects the vaccination history at time of illness for selected age groups.

Table 2: Vaccination History of Selected Age Groups and Number (Percent), Indiana, 2011

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Total Cases</th>
<th>Unknown</th>
<th>0 doses</th>
<th>1-2 doses</th>
<th>3+ doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-11 Months</td>
<td>25</td>
<td>0 (0%)</td>
<td>6 (24.0%)</td>
<td>7 (28.0%)</td>
<td>12 (48.0%)</td>
</tr>
<tr>
<td>1-4 Years</td>
<td>67</td>
<td>1 (1.5%)</td>
<td>12 (17.9%)</td>
<td>2 (3.0%)</td>
<td>52 (77.6%)</td>
</tr>
<tr>
<td>5-9 Years</td>
<td>81</td>
<td>1 (1.2%)</td>
<td>3 (3.7%)</td>
<td>0 (0%)</td>
<td>77 (95.1%)</td>
</tr>
<tr>
<td>Total (6 mo-9 yrs)</td>
<td>173</td>
<td>2 (1.2%)</td>
<td>21 (12.1%)</td>
<td>9 (5.2%)</td>
<td>141 (81.5%)</td>
</tr>
</tbody>
</table>

Laboratory confirmation was obtained through culture and/or Polymerase chain reaction (PCR) for 207 (56.4%) of the reported pertussis cases. Since other illness have similar symptoms, it is important for physicians to test potential cases. PCR and culture are the preferred testing methods. However, physicians should not wait for test results before treating a suspected case of pertussis.

You can learn more about pertussis by visiting the following Web site:
http://www.cdc.gov/vaccines/vpd-vac/pertussis/default.htm
Plague is caused by the bacteria, *Yersinia pestis*. Bacteria are present in the fleas of wild rodents (ground squirrels, prairie dogs, and other burrowing rodents) of the western U.S., where 10-15 cases of human plague occur annually. Plague does not occur naturally in Indiana.

Plague is transmitted by an infected flea bite, direct contact with a sick or dead animal, or from respiratory droplets from a sick animal. Three forms of the disease can occur: 1) bubonic plague, an infection of lymph nodes; 2) septicemic plague, a systemic bloodstream infection; or 3) pneumonic plague, an infection of the lungs. If not treated rapidly, bubonic or pneumonic plague can develop into septicemic plague. Mortality rates can be as high as 100% for both pneumonic and septicemic plague. Early treatment with appropriate antibiotics prevents the high mortality associated with plague.

Public Health Significance

Each form of plague has different symptoms. The incubation period is 2-5 days after exposure to bacteria. Bubonic plague symptoms appear suddenly and include swollen lymph nodes (called “buboes”), high fever, chills, malaise, muscle pain, and headache. The bacteria can invade the bloodstream if not treated. Septicemic plague is a more severe form of plague and results when infection spreads directly to the bloodstream. Symptoms include nausea, vomiting, diarrhea, abdominal pain, and organ failure. Death may result before symptoms occur. Pneumonic plague is the most dangerous and the least common. Symptoms appear suddenly and include severe cough, bloody sputum, and difficulty breathing. Populations at increased risk for infection include veterinarians, pet owners, hunters, and campers or hikers in areas with outbreaks of animal plague. Most cases of the plague occur in the southwestern U.S.

Plague is classified as a Category A potential bioterrorism agent* because of its ability to be transmitted via aerosolization as a weapon and secondarily by respiratory droplets from infected individuals. Plague was used as a weapon of mass destruction during WWII.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report plague immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Yersinia species*, including *pestis*, weekly to the ISDH.

Epidemiology and Trends

No cases of plague have been reported in Indiana to date.

You can learn more about plague by visiting the following Web sites:

*Bioterrorism Agent List:

Pneumococcal disease is caused by the bacterium *Streptococcus pneumoniae* and causes significant illness and death in the U.S. The major clinical syndromes of pneumococcal disease include pneumonia and otitis media; however, more serious life-threatening illnesses such as bacteremia and meningitis can occur when the bacteria invade a site in the body where bacteria are not normally found. Pneumococcal bacteria, of which there are over 90 serotypes, are found in the nose and throat of healthy people and are rarely spread through contact with respiratory droplets of an infected person. Only cases of invasive disease are reportable in Indiana.

Public Health Significance

Symptoms of pneumococcal pneumonia generally include an abrupt onset of fever, chills or rigors, pleuritic chest pain, productive cough, rusty sputum, difficulty breathing, rapid heart rate, and fatigue. The treatment for pneumococcal disease is the administration of appropriate antibiotics. Treatment for invasive pneumococcal infections is based on empiric therapy followed by the specific susceptibility of the strain acquired. Strains have been identified that are not susceptible to penicillin, cefotaxime, ceftriaxone, and other antimicrobial agents. In some areas the rates of resistance are as high as 30%.

Since the licensure of a 7-valent pneumococcal conjugate vaccine for children under 5 years of age in 2000, Indiana has seen a decrease in cases in this age group. However, a high rate of invasive pneumococcal disease still occurs among young children, especially those younger than 2 years of age, and the most common serotypes are not included in the 7-valent vaccine. The current pneumococcal conjugate vaccine for administration to children less than 5 years of age is a 13-valent pneumococcal conjugate vaccine (PCV13), which was licensed in 2010. The vaccine contains capsular polysaccharides from 13 *S. pneumoniae* serotypes which are known to cause the majority of bacteremia, meningitis, and otitis media associated with invasive pneumococcal infections. The 23-valent polysaccharide vaccine (PPSV23) is licensed for routine use in adults age 65 and older and may be used in other individuals with certain risk factors.

Pneumococcal disease is not easily spread from person to person; therefore, the control measures for contacts of a known case of invasive pneumococcal disease are minimal under most circumstances. On rare occasions, outbreaks have occurred in settings where close contact is common, such as daycare centers and correctional facilities. Proper hygiene habits when coughing, sneezing, and hand washing will help prevent the spread of infection.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report invasive pneumococcal disease within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive cultures of *Streptococcus pneumoniae* disease weekly to the ISDH. In addition, laboratories are required to submit isolates of *Streptococcus pneumoniae* in children less than 5 years of age to the ISDH Laboratory within 5 days of isolation for further confirmation and subtyping.

Healthy People 2020 Goal

The Healthy People 2020 lists several goals for pneumococcal disease. The Healthy People 2020 goal is 12 cases per 100,000 population for children under age 5 years and 31 cases per 100,000 population for adults aged 65 years and older. Indiana met the Healthy People 2020 Goal for children less than 5 years of age in 2011 with an incidence rate of 9.21 cases per 100,000 population. Indiana did not meet the Healthy People 2020 Goal for adults aged 65 years and older; the incidence rate for this population was 42.44
cases per 100,000 population in 2011. Two additional Healthy People 2020 goals examine the rate of penicillin resistant invasive *Streptococcus pneumoniae*. The Healthy People 2020 goal for penicillin resistant invasive pneumococcal disease is 3 cases per 100,000 population for children under age 5 years and 2 cases of penicillin resistant cases per 100,000 population for adults aged 65 years and older. Indiana met the goal with 0.93 cases per 100,000 children under age 5 years with penicillin resistant pneumococcal disease in 2011. Indiana also met the goal with 1.05 cases per 100,000 adults aged 65 years and older with penicillin resistant pneumococcal disease in 2011.

Epidemiology and Trends

In 2011, 819 cases of pneumococcal disease were reported in Indiana for a case rate of 12.57 per 100,000 population, a slight increase from 2010. In 2011, the incidence rate among the black population (12.94) was higher than that of the white population (10.91). The rates of disease in females (12.63) were higher than males (12.50) in 2011.

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>819</td>
<td>12.57</td>
<td>4055</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>79</td>
<td>12.94</td>
<td>408</td>
</tr>
<tr>
<td>White</td>
<td>617</td>
<td>10.91</td>
<td>2880</td>
</tr>
<tr>
<td>Other</td>
<td>14</td>
<td>5.59</td>
<td>47</td>
</tr>
<tr>
<td>Not Reported</td>
<td>109</td>
<td>-</td>
<td>720</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>418</td>
<td>12.63</td>
<td>2059</td>
</tr>
<tr>
<td>Male</td>
<td>401</td>
<td>12.50</td>
<td>1989</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>

Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010
Figure 1 shows the number of reported cases per year for 2007-2011.

Disease incidence was greatest during the spring and winter months (Figure 2).

Figure 2: Pneumococcal Disease Cases by Month Indiana, 2011
Incidence of invasive pneumococcal disease varies considerably with age. In 2011, the incidence rate for adults aged 80 years and older was 62.7 per 100,000 population, followed by adults aged 70-79 years (41.5), and adults aged 60-69 years (23.9) (Figure 3).

![Figure 3: Pneumococcal Disease Incidence Rates by Age Group - Indiana, 2011](image)

In 2011, 82 counties reported at least one case, and 42 counties reported 5 or more cases of invasive pneumococcal disease (Figure 4). The incidence rates were highest among the following counties reporting five or more cases: Fulton (47.9), Pulaski (37.4), and Vermillion (37.0).
Of all reported invasive pneumococcal cases, 4.9% occurred in individuals less than five years of age in 2011 (40 cases). The Indiana Communicable Disease Reporting Rule for Physicians, Hospitals and
Laboratories, 410 IAC 1-2.3, requires laboratories to submit isolates from invasive sites for all cases under the age of 5 years for serotyping. Of the 40 cases under the age of 5 years, from 36 cases viable isolates were sent to the Indiana State Department of Health for serotyping. Of these 36 isolates, 35 isolates were successfully serotyped. Predominant serotypes were 19A (40%), 19F (8.6%), and 3 (8.6%). All three of these serotypes are included in the 13-valent conjugate vaccine. However, only serotype 19F was included in the 7-valent conjugate vaccine (Figure 5).

You can learn more about pneumococcal infections by visiting the following Web site:
http://www.cdc.gov/vaccines/vpd-vac/pneumo/default.htm
Poliomyelitis (polio) is a viral disease that infects the intestinal tract. Cases can be asymptomatic, experience mild gastrointestinal infection, meningitis, or in the most severe cases, exhibit acute flaccid paralysis. Death may result if respiratory muscles are affected. While transmission of wild poliovirus has been interrupted in most of the world, cases of polio still occur in Afghanistan, India, Nigeria, Tajikistan and Pakistan. Further spread of the illness into other unvaccinated groups is possible due to international travel.

Poliovirus is mainly transmitted by fecal-oral and respiratory routes. The virus enters the environment through feces and throat secretions of infected people and then is passed to others, especially in environments where hygiene is poor.

Public Health Significance
Approximately 95 percent of polio infections are asymptomatic, resulting in the ability to spread undetected unless confirmed by laboratory analysis. Once it is introduced into largely unvaccinated populations, polio spreads easily.

Poliomyelitis reporting serves to: 1) detect importation of wild poliovirus into the U.S. and 2) detect the presence of vaccine-derived poliovirus in the U.S. Due to the severity of this potentially paralytic disease, timely reporting of suspected cases is extremely important, especially among unvaccinated groups. Disease reporting by clinicians is often delayed because it is only after other differential diagnoses are ruled out that the diagnosis of poliomyelitis is considered. Efforts should be made to promote physicians’ awareness of the importance of prompt reporting of suspected cases to the state and local health departments, as well as the need to obtain stool and serum specimens early in the course of the disease.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report poliomyelitis (polio) immediately to the local health department or the ISDH. Laboratories are also required to report positive results of poliomyelitis (polio) weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for polio is to eliminate all US-acquired paralytic polio from persons of all ages. Indiana has met this goal since the late 1950s.

Epidemiology and Trends
Polio incidence fell rapidly following the introduction of the inactivated polio vaccine (IPV) in 1955 and the live polio vaccine (OPV) in the 1960s. Due to successful vaccination efforts, the world is almost polio free today. The last indigenous case of wild poliovirus in the U.S. occurred in 1979. The Americas were declared polio free in 1994. Polio is still endemic in Afghanistan, Nigeria, and Pakistan, and has re-established transmission in Angola, Chad, and Democratic Republic of the Congo.

You can learn more about polio by visiting the following Web sites:
http://www.who.int/topics/poliomyelitis/en/
Psittacosis, often called parrot fever, is caused by the bacteria *Chlamydophila psittaci* (formerly *Chlamydia psittaci*). Humans acquire the disease through inhalation of dried secretions from infected birds. Wild and domestic birds are the natural reservoirs of this agent and are most often involved in transmission to humans. Cattle, sheep, goats, and cats can also become infected with a mammalian strain and develop severe debilitating disease. Large outbreaks of psittacosis in humans have been associated with infected feces and respiratory excretions from domestic poultry flocks.

Public Health Significance
Human symptoms of psittacosis include fever, nonproductive cough, headache, and malaise. More severe illness may result in heart inflammation, hepatitis, and encephalopathy. The incubation period is 5-19 days with symptoms persisting for 7-10 days. Bird symptoms include ruffled appearance, diarrhea, and poor appetite. Some birds may be asymptomatic. Groups most at risk for contracting psittacosis are bird owners, pet shop employees, and veterinarians. It may also occur in farmers and slaughterhouse workers who process turkeys. Psittacosis can be diagnosed with serum antibody tests and treated with antibiotics.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report psittacosis within 72 hours to the local health department or the ISDH Laboratories are also required to report positive results of *Chlamydia psittaci* weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for psittacosis.

Epidemiology and Trends
There were no reported cases of psittacosis were reported in Indiana during the five-year period 2007-2011.

You can learn more about psittacosis by visiting the following Web site: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/psittacosis_t.htm
Q FEVER

Q fever is caused by the bacterium *Coxiella burnetii* and is a zoonotic disease affecting several species of animals, including humans. Ticks are the primary reservoir and maintain disease cycles in rodents, other mammals, and birds. Cattle, sheep, and goats can carry the infection without signs or symptoms and shed high levels of bacteria when birthing. Birth products (placenta and fluids) are often highly contaminated. The bacteria are highly resistant to natural degradation and can persist in the environment for weeks to months. Q fever may result from infection by a single organism, and the low infectious dose enhances transmission efficiency.

Human infections generally occur through inhalation of aerosols from contaminated barnyard dust, handling of birthing products from shedding animals, or drinking unpasteurized milk. Humans may have an asymptomatic, acute, mild, or severe disease that can be highly fatal or result in chronic infection that can cause significant morbidity if untreated.

Public Health Significance

Symptoms of Q fever usually appear 2-3 weeks after exposure and can include high fever, severe headache, muscle aches, chills, nausea and vomiting, and a non-productive cough. Fifty percent of those infected may not have any symptoms. Antibiotics are available for the treatment of Q fever. Treatment is most effective when initiated within the first three days of illness. People most at risk of becoming infected with Q fever are veterinarians, meat processing plant workers, livestock handlers, and dairy farmers. While there is a vaccine for Q fever, it is not available in the U.S.

Q fever is classified as a Category B potential bioterrorism agent* because of its ability to cause infection with a low number of organisms, resistance to environmental degradation, and the ability to cause infection via aerosolization.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Q fever immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Coxiella burnetti* weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for Q fever.

Epidemiology and Trends

In 2011, one cases of Q fever was reported and confirmed in Indiana. This was the only confirmed case during the five year reporting period from 2007-2011.

You can learn more about Q fever by visiting the following Web sites:

http://www.cdc.gov/qfever/index.html

*Bioterrorism Agent List:

Clinical rabies is caused by a virus from the genus *Lyssavirus*. Within the *Lyssavirus* genus, a number of other viruses have been identified that infect mammalian hosts (animal and human) causing fatal encephalitis. Rabies virus is the lyssavirus associated with rabies in bats and terrestrial mammals around the world. Other lyssaviruses have been identified in bats in Europe, Africa, Asia, and Australia. Rabies is transmitted from animal to animal through transfer of virus-contaminated saliva by bites or mucous-membrane exposures. In the U.S., rabies virus subtypes have become associated with the mammalian species in which the subtype is generally found. In Indiana, the North Central Skunk virus and numerous bat subtypes of rabies virus have been identified. In 2011, 1017 animals of various species were tested for rabies in Indiana. Thirty-three (0.032% of all animals tested) were found to be positive for rabies; all positive animals found were bats.

In 2011, 49 states and Puerto Rico reported 6,031 cases of animal rabies and six human cases to the Centers for Disease Control and Prevention (Hawaii is the only state that is considered rabies free). The total number of reported cases decreased by 1.9 percent from those reported in 2010 (6,153 animal cases and two human cases).

Public Health Significance

In humans, early symptoms of rabies infection are non-specific but may be similar to influenza (the flu) and may include headache, fever, and malaise. As the disease rapidly progresses, symptoms include anxiety, confusion, hallucinations, excessive salivation, and difficulty swallowing. The virus infects the central nervous system resulting in death, often within days of symptom onset. Symptoms usually occur one to three months after exposure.

Rabies postexposure prophylaxis is available in the form of immunoglobulin and vaccination. Treatment has not been shown to be effective if given after the development of clinical signs; the vaccine must be given before clinical signs develop.

Although anyone can be at risk for rabies, people who work with rabies virus in research laboratories and vaccine production facilities are at the highest risk. Other groups at risk include veterinarians, animal control and wildlife officers, rehabilitation specialists, and bat handlers.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule1.pdf, hospitals and healthcare providers must report rabies immediately to the local health department or the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for rabies.

Epidemiology and Trends

Rabies is a rare disease of humans in the United States; no human cases were reported in Indiana in 2011. In the five-year reporting period from 2007-2011, one human case of rabies were reported in Indiana.

Since 1990, bats have been the predominant species testing positive for rabies at the Indiana State Department of Health Laboratory (the only Indiana laboratory that performs rabies testing). Bats continued that trend in 2011, being the only animal species found positive that year: 33 bats tested positive (Table 1). A horse diagnosed with rabies in 2002 was infected with a bat strain of rabies virus, and the most recent human rabies cases in 2006 and 2009 were also infected with a bat strain of the virus.
Table 1. Rabies Cases by Animal Species, Indiana, 2011

<table>
<thead>
<tr>
<th>Species</th>
<th>2011</th>
<th>2007 – 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>33</td>
<td>122</td>
</tr>
<tr>
<td>Bat</td>
<td>33</td>
<td>122</td>
</tr>
<tr>
<td>Skunk</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horse</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

You can learn more about rabies by visiting the following Web sites:
http://www.cdc.gov/ncidod/dvrd/rabies/
http://www.in.gov/isdh/20518.htm
http://avmajournals.avma.org/doi/pdf/10.2460/javma.239.5.609
ROCKY MOUNTAIN SPOTTED FEVER

Rocky Mountain spotted fever (RMSF) is caused by the bacterium Rickettsia rickettsii. RMSF is transmitted in Indiana by the dog tick (Dermacentor variabilis), which lives in wooded areas and tall, grassy fields.

Public Health Significance
RMSF occurs 5-10 days after a bite from an infected tick. Symptoms of RMSF include high fever, severe headache, nausea, vomiting, muscle and joint pain, and lack of appetite, followed by a rash. Early treatment with antibiotics ensures recovery.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report RMSF within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Rickettsia species weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for RMSF.

Epidemiology and Trends
In 2011, three cases of RMSF were reported and confirmed in Indiana. During the five-year period 2007-2011, 17 cases of RMSF were reported and confirmed in Indiana. While the disease is most common in the spring and summer months when ticks are active, RMSF can occur anytime during the year. RMSF can occur in all areas of Indiana, but most cases occur in the southern portion of the state. Cases are reported by county of residence and may not always reflect the site of tick exposure.

You can learn more about Rocky Mountain spotted fever by visiting the following Web site: http://www.cdc.gov/ticks/diseases/rocky_mountain_spotted_fever/
Rubella, also known as German Measles, is an infectious viral disease caused by the rubella virus. Rubella is spread from person to person via airborne transmission or droplets shed from respiratory secretions of infected persons.

Public Health Significance
Symptoms of rubella include rash, low-grade fever, malaise, lymphadenopathy, and upper respiratory symptoms. Symptoms of rubella typically appear 12-23 days after exposure, and as many as 50 percent of infections may be subclinical or inapparent. In children and adults, rubella generally is a mild illness.

Congenital rubella syndrome (CRS), however, can lead to severe, long-term outcomes. CRS can occur when a woman becomes infected with rubella during pregnancy. CRS can affect virtually all organ systems, with severity and long term sequelae largely dependent on the time of gestation at which infection occurs. Fetal death, spontaneous abortion, premature delivery, deafness, eye defects, cardiac defects, and neurologic abnormalities can occur. Prevention of CRS is the primary objective of rubella vaccination programs.

At least one dose of rubella-containing vaccine is recommended for all children 12 months of age or older. The first dose of measles-mumps-rubella (MMR) vaccine is administered after 12 months of age, while a second dose is routinely administered at 4 to 6 years of age. Children and adults who have not received two doses of MMR vaccine should receive two doses at least 28 days apart.

Prior to routine vaccination, the United States experienced the greatest number of rubella cases in 1969 with 57,686 cases reported (58 cases per 100,000 population). The largest annual total of reported cases of CRS occurred in 1970 with 67 cases.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report rubella immediately to the local health department or the ISDH. Laboratories are also required to report positive results of rubella weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for congenital rubella syndrome is to eliminate all cases of CRS from children less than one year of age. Indiana met this goal during the five-year reporting period 2007-2011. The Healthy People 2020 for rubella is 10 US-acquired cases per year. Indiana met this goal during the five-year reporting period 2007-2011, as no cases were reported in Indiana in this time period.

Epidemiology and Trends
No cases of rubella were reported in Indiana in 2011 or during the five-year reporting period 2007-2011. The last case of rubella in Indiana occurred in 1999.

You can learn more about rubella by visiting the following Web site:
http://www.cdc.gov/vaccines/vpd-vac/rubella/default.htm
Salmonellosis is a contagious disease caused by *Salmonella* bacteria, which are found in the intestines of many healthy animals, including poultry, farm animals (cattle, pigs, chicks, and ducklings), domestic animals (dogs, cats, and birds), wild birds, reptiles, and amphibians. There are thousands of types of *Salmonella* bacteria, most of which can infect humans. People become infected with *Salmonella* by ingesting feces from an infected animal or person (fecal-oral route).

The most common sources of *Salmonella* outbreaks are raw or undercooked eggs and poultry, unpasteurized dairy products, untreated water, and contaminated raw fruits, vegetables, or herbs. Pet food and treats have also been implicated in outbreaks. Persons who work in certain occupations, such as food handlers, daycare providers, and health care providers, have a greater risk of transmitting infection to others.

Public Health Significance:
Symptoms of *Salmonella* can include diarrhea, stomach cramps, fever, nausea, or vomiting. Symptoms usually begin 12-36 hours (range of 6-72 hours) after exposure and last 4-7 days. Infected people may carry *Salmonella* in their bodies for weeks or months without symptoms and unknowingly infect others. Rarely, *Salmonella* can enter the bloodstream and infect organs such as the heart, lungs, and bones. Death from salmonellosis is rare. Children less than 5 years of age, the elderly, and people with weakened immune systems are at the greatest risk for severe complications. Most people recover within 5-7 days without medical treatment, but antibiotics are available if indicated. Since diarrhea can cause dehydration, an infected person should drink plenty of fluids. There is no vaccine for salmonellosis.

In general, salmonellosis can be prevented by strictly adhering to the following guidelines:

- **Practice good hygiene:**
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after contact with animals, amphibians, and reptiles; after swimming; before, during, and after food preparation; and after exposure to raw meat products.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation, especially after contamination with raw meat products.

- **Separate raw and cooked foods:**
 - Avoid cross-contamination by keeping uncooked meat products separate from produce, ready-to-eat foods, and cooked foods.
 - Use separate equipment and utensils for handling raw foods.
 - Clean food-preparation work surfaces and utensils with soap and water before, during, and after food preparation, especially after contact with raw meat products.

- **Maintain safe food temperatures:**
 - Ensure proper temperatures are maintained during refrigeration (<40°F), freezing (<2°F), holding (keep food hot or at room temperature for no longer than 2 hours), and chilling (chill immediately and separate into smaller containers if needed).
 - Thoroughly cook all food items to USDA recommended safe minimum internal temperatures:
 - 145°F – steaks, roasts, and fish
 - 160°F – pork, ground beef, and egg dishes
 - 165°F – chicken breasts and whole poultry
- Eat safe foods and drink safe water:
 - Do not eat undercooked meat, poultry, or eggs.
 - Do not eat foods past the expiration date.
 - Do not eat unpasteurized dairy products; it is illegal to sell unpasteurized dairy products in Indiana.
 - Wash all produce before eating raw or cooking.
 - Use treated water for washing, cooking, and drinking.

- Handle animals safely:
 - Wash hands after contact with livestock, petting zoos, pets (including reptiles and amphibians), especially if they are suffering from diarrhea, and after contact with pet food/treats (including live or frozen rodents).
 - Keep pets out of food-preparation areas.
 - Do not clean pet or reptile cages in the kitchen sink or in the bathtub.
 - Reptiles should not be allowed to roam the house.
 - Reptiles should not be kept in daycare facilities or classrooms.
 - Children less than 5 years of age, pregnant women, and persons with weakened immune systems should not handle reptiles.

- Protect others:
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
 - Persons with diarrhea and/or vomiting should not attend a daycare facility or school.

Reporting Requirements According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report salmonellosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of salmonellosis weekly to the ISDH. In addition, for *Salmonella* isolated from stool, urine, blood, or other sterile sites, laboratories are required to submit isolates received to the ISDH Laboratory for further confirmation and subtyping.
Healthy People 2020 Goal
The Healthy People 2020 Goal for salmonellosis is 11.4 cases per 100,000 population per year. Indiana met this goal from 2007 to 2009 and in 2011, but did not meet this goal in 2010 during the five-year reporting period 2007-2011 (Figure 1).

Epidemiology and Trends
In 2011, 622 cases of salmonellosis were reported in Indiana, for a rate of 9.54 cases per 100,000 population (Table 1). Females (10.66) were more likely to be reported with salmonellosis than males (8.39). Other races (7.58) were more likely to be reported than whites (7.02) or blacks (3.44); however, 185 cases (29.7%) did not report race data.

Table 1: Salmonellosis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>622</td>
<td>9.54</td>
<td>3260</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>21</td>
<td>3.44</td>
<td>161</td>
</tr>
<tr>
<td>White</td>
<td>397</td>
<td>7.02</td>
<td>1969</td>
</tr>
<tr>
<td>Other</td>
<td>19</td>
<td>7.58</td>
<td>88</td>
</tr>
<tr>
<td>Not Reported</td>
<td>185</td>
<td>-</td>
<td>1040</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>353</td>
<td>10.66</td>
<td>1801</td>
</tr>
<tr>
<td>Male</td>
<td>269</td>
<td>8.39</td>
<td>1448</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010
Figure 2 shows the number of reported cases for 2007-2011.

The incidence was greatest during the summer months (Figure 3).
Figure 4 shows age-specific rates were greatest among infants less than 1 year of age (45.15), followed by preschoolers aged 1-4 years (16.78), and adults aged 70-79 (11.65).

There are over 2,500 different *Salmonella* serotypes that differ in somatic and flagellar antigens. Table 2 shows the top three *Salmonella* serotypes in Indiana for 2011. This is among a total of 237 isolates that were identified.

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteritidis</td>
<td>43</td>
<td>18.1%</td>
</tr>
<tr>
<td>Typhimurium</td>
<td>26</td>
<td>11.0%</td>
</tr>
<tr>
<td>Newport</td>
<td>8</td>
<td>3.38%</td>
</tr>
</tbody>
</table>

Figure 5 shows the incidence rates were highest among the following counties reporting five or more cases: Allen (9.5), Bartholomew (9.0), Boone (12.2), Cass (12.9), Clark (10.8), Clay (22.3), Delaware (6.8), Dubois (19.0), Elkhart (4.5), Gibson (17.9), Grant (11.5), Greene (42.6), Hamilton (6.4), Hancock (8.5), Harrison (15.3), Hendricks (10.1), Henry (10.1), Howard (12.1), Jackson (11.6), Jasper (32.9), Jennings (17.7), Johnson (13.4), LaPorte (8.1), Lake (11.1), Madison (6.9), Marion (7.1), Monroe (5.7), Porter (8.5), Posey (23.3), Ripley (24.3), St. Joseph (4.5), Starke (21.6), Steuben (32.3), Sullivan (28.1), Tippecanoe (10.9), Vanderburgh (7.8), Vigo (21.3), Warrick (11.6), Washington (17.8), and Wayne (27.7). Figure 5 shows Indiana counties reporting five or more cases.

You can learn more about salmonellosis by visiting the following Web sites:
http://www.cdc.gov/salmonella/
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm069966.htm
SHIGELLOSIS

Shigellosis is a contagious diarrheal illness caused by *Shigella* bacteria. There are four species of *Shigella* bacteria: *sonnei*, *flexneri*, *boydii*, and *dysenteriae*. *Shigella sonnei* is the most common species identified in the US and Indiana; other species are most often associated with travel to endemic countries. *Shigella* bacteria are found mainly in humans, and the infection is very easily passed from person to person. Shigellosis is very serious in babies, the elderly, and people with weakened immune systems.

People become infected with *Shigella* by having contact with stool from an infected person (fecal-oral route). Infection may be transmitted in several ways:

- Consuming food or beverages prepared by an infected person.
- Hand-to-mouth exposure to the stool or vomit of an infected person, such as:
 - Handling or cleaning up stool or vomit.
 - Touching a contaminated surface or object.
 - Having close contact with an ill household member.
 - Engaging in sexual activity that involves contact with stool.

Public Health Significance

Symptoms of shigellosis include diarrhea, sudden stomach pain, cramps, fever, and vomiting. Symptoms usually begin 24-72 hours (range of 12 hours to 5 days) after exposure and last about 4-7 days. Some people may have no symptoms but can still spread the infection to others. Antibiotics are usually used to treat shigellosis. However, some strains of *Shigella* bacteria are resistant to certain antibiotics.

Persons who work in certain occupations, such as food handlers, daycare providers, and health care providers, have a greater risk of transmitting infection to others. *Shigella* bacteria are not naturally found in foods of animal origin.

In general, shigellosis can be prevented by strictly adhering to the following guidelines:

- **Practice good hygiene:**
 - Thoroughly wash hands with soap and water after using the restroom; after assisting someone with diarrhea and/or vomiting; after swimming; and before, during, and after food preparation.
 - Clean food preparation work surfaces, equipment, and utensils with soap and water before, during, and after food preparation.
- **Eat safe foods and drink safe water:**
 - Wash all produce before eating raw or cooking.
 - Use treated water for washing, cooking, and drinking.
- **Protect others:**
 - Persons with diarrhea and/or vomiting should not prepare food or provide health care for others and should limit direct contact with others as much as possible.
 - Persons with diarrhea and/or vomiting should not attend a daycare facility or school.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report shigellosis immediately to the local health department or the ISDH. Laboratories are also required to report positive results of Shigellosis weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for shigellosis.
Epidemiology and Trends
In 2011, 87 cases of shigellosis were reported in Indiana, for a case rate of 1.33 cases per 100,000 population (Table 1). Males (1.31) were less likely to be reported than females (1.36). The rate of illness among other races (3.59) was higher than the rate for blacks (2.29) and whites (0.81); however, 18 cases (20.7%) did not report race data.

Table 1: Shigellosis Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th>Cases</th>
<th>Rate*</th>
<th>2006 - 2010 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>87</td>
<td>1.33</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>14</td>
<td>2.29</td>
</tr>
<tr>
<td>White</td>
<td>46</td>
<td>0.81</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>3.59</td>
</tr>
<tr>
<td>Not Reported</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45</td>
<td>1.36</td>
</tr>
<tr>
<td>Male</td>
<td>42</td>
<td>1.31</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 20010

Figure 1 shows the number of reported cases per year for 2007-2011.
The incidence of shigellosis was highest during spring and late summer months (Figure 2).

As shown in Figure 3, age-specific rates were highest among preschoolers ages 1-4 years (5.21), followed by children ages 5-9 years (3.86), and infants less than one year old (1.19).
The incidence rate was highest in Allen (5.3), Clark (4.5), Hamilton (1.8), Lake (1.8), and Marion (1.2) among counties reporting five or more cases. Figure 4 shows Indiana counties reporting five or more cases.

You can learn more about shigellosis by visiting the following Web sites:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/shigellosis/
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070563.htm
SMALLPOX

Smallpox is an acute infectious disease caused by the variola virus, which infects the oropharyngeal or respiratory mucosa. The virus localizes in the blood vessels of the dermis and oral and pharyngeal mucosa, resulting in the characteristic maculopapular rash, which evolves into vesicles, then pustules. The fatality rate for smallpox is about 30 percent.

Public Health Significance
Past use of smallpox in bioweapons programs and recent political instability in some areas of the world have led political and scientific leaders to consider the possibility that smallpox virus could be utilized as a Category A biological weapon.* Therefore, extensive national and state plans have been adopted in the event that variola virus is released. In 2003, a national effort was made to vaccinate a corps of medical responders to provide care for initial cases in the event of a smallpox virus release. Routine vaccination of the public was discontinued in 1972 after smallpox was declared eradicated in the United States.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report suspect cases of smallpox immediately to the local health department or the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for smallpox.

Epidemiology and Trends
In Indiana, no reported cases of smallpox have been reported in over 60 years. The last case of smallpox worldwide was identified in 1977 and the last case of smallpox in the U.S. was reported in 1949. Smallpox disease was declared to be eradicated worldwide in 1980.

You can learn more about smallpox by visiting the following Web sites:
http://www.bt.cdc.gov/agent/smallpox/disease/

*Bioterrorism Agent List:
http://www.bt.cdc.gov/agent/agentlist-category.asp#a
Group A streptococcal (GAS) disease is caused by the bacterium *Streptococcus pyogenes* and is manifested as many types of illness including strep throat, scarlet fever, wound infections, and impetigo. More serious and life-threatening illnesses such as streptococcal bacteremia/sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis can occur when the bacteria invade a site in the body where bacteria are not normally found, such as the blood or muscle tissue. Necrotizing fasciitis ("the flesh-eating disease") is a rapidly progressive infection which destroys muscle, fat and skin tissue. Streptococcal toxic shock syndrome (STSS) causes septic shock, resulting in a rapid drop in blood pressure and multi-organ failure. The bacteria are transmitted through direct contact with nose and throat secretions of persons who are infected or by touching infected hands. Spread may also occur by contact with infected wounds or sores on the skin, such as when a person has chickenpox lesions. Antibiotics are used to treat GAS disease. Only cases of invasive disease are reportable in Indiana.

Public Health Significance

Symptoms of GAS disease vary depending on the type of the illness. Bacteria spread more easily in crowded settings, such as dormitories, barracks, child-care centers or correctional facilities.

Persons at greatest risk for the disease include:

- Children with chickenpox
- People with suppressed immune systems
- Burn victims
- Elderly people with cellulitis, blood vessel disease or cancer
- People taking steroid treatments or chemotherapy
- Intravenous drug users

The risk of GAS infection can be reduced by good personal hygiene. Proper hand cleaning is one of the best ways to prevent GAS infections. All wounds should be kept clean and watched for signs of redness, swelling, drainage and pain at the site. A person with signs of an infected wound, especially if fever is present, should seek medical attention immediately. Health care providers may recommend that people who are exposed to someone with invasive disease or those who are identified as carriers in outbreak situations take antibiotics to prevent the spread of infection.

Provisional data from the Centers for Disease Control and Prevention (CDC) Active Bacterial Core Surveillance (ABC) Program, estimate national rates of group A streptococcus invasive disease at 4.3 cases per 100,000 population, http://www.cdc.gov/abcs/reports-findings/survreports/gas11.html.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report streptococcus group A within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of streptococcus group A weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for invasive group A streptococcus infections.

Epidemiology and Trends

In 2011, 210 cases of invasive GAS disease were reported in Indiana for a rate of 2.50 cases per 100,000 persons (Table 1). Incidence rates for males (3.24) and females (3.20) were similar. Whites (2.56) had lower rates than blacks (3.77), although low case numbers among minorities make rates comparisons
problematic from year to year. Of these cases, 3.8% (08/210) had manifestations of streptococcal toxic shock syndrome (STSS). Prior to 2007, confirmed cases of STSS were not included in the annual report; however, these most severe cases of GAS have been incorporated in the data and are included in the five-year reporting totals.

Table 1: Group A Streptococcus Case Rate by Race and Sex, Indiana, 2011

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>210</td>
<td>2.50</td>
<td>786</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>23</td>
<td>2.54</td>
<td>87</td>
</tr>
<tr>
<td>White</td>
<td>102</td>
<td>1.87</td>
<td>593</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>Not Reported</td>
<td>37</td>
<td>-</td>
<td>157</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>106</td>
<td>2.19</td>
<td>413</td>
</tr>
<tr>
<td>Male</td>
<td>104</td>
<td>2.76</td>
<td>435</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 shows reported cases by year for the five-year reporting period 2007-2011. Reported cases were highest in 2011 (210 cases). Electronic reporting through Indiana National Electronic Disease Surveillance System (INEDSS) was fully operational in 2009.

*Case numbers include Group A Streptococcus and Streptococcal Toxic Shock Syndrome (STSS)
In 2011, incidence of invasive GAS peaked in the late winter and early spring as shown in Figure 2.

Very young infants and older adults are more likely to suffer from a compromised immune system or have underlying chronic medical conditions such as diabetes or cancer that predisposes them to GAS disease. As shown in Figure 3, age-specific incidence rates were greatest for adults over the age of 80 (10.8) followed by adults 70-79 years of age (10.2).
Group A streptococcal was reported in 56 counties. Incidence rates were highest among the following counties reporting 5 or more cases during the year: Pulaski (37.4), Shelby (11.3), Boone (8.7) La Porte (7.2) and Howard (6.0) (Figure 4).

You can learn more about group A streptococcus disease by visiting the following Web site: http://www.cdc.gov/ncidod/dbmd/diseaseinfo/groupastreptococcal_g.htm
Group B streptococcal (GBS) disease is caused by the bacteria *Streptococcus agalactiae* and is manifested as many types of illness, including urinary tract infections. More serious and life-threatening illness including meningitis, bacteremia, sepsis or joint infections, can occur when the bacteria invade a site in the body that is sterile, such as the blood, cerebrospinal fluid or joint fluid. Cases most often occur in young infants and adults with chronic medical conditions. Symptoms of GBS for the newborn include sudden fever, difficulty feeding, fussiness and fatigue. Approximately 10%-30% of women carry GBS in their rectum or vagina but show no signs of illness. Newborns (< 7 days of age) acquire the bacteria from their mother just before or during birth, but the transmission of GBS in adults and infants one week or older is not clearly understood. Antibiotics are used to treat GBS disease. Only cases of invasive disease are reportable in Indiana.

Public Health Significance
Cases occurring in infants less than 0 to 6 days of age are considered “early-onset” disease; cases occurring in infants 7 – 89 days old are considered “late-onset” disease.

Persons at greatest risk for the disease include:

- Infants born to mothers who are GBS carriers
- Adults with chronic medical conditions including cancer, liver failure, and diabetes

In 2010, the American College of Obstetricians and Gynecologists (ACOG) and the American Academy of Pediatrics (AAP) issued revised guidelines for the prevention of early-onset GBS disease. These guidelines include universal screening (consisting of a urogenital swab) of all women at 35 – 37 weeks gestation for group B colonization and the administration of intrapartum antibiotics to women identified as carriers. Although case rates have decreased due to appropriate screening and therapy, GBS is still the most common cause of life-threatening infections in newborns.

Following standard infection control practices, especially for patients in hospitals and healthcare facilities, will reduce the risk of patients or residents acquiring GBS disease.

According to the Centers for Disease Control and Prevention (CDC) Active Bacterial Core Surveillance (ABC) Emerging Infections Programs Network for GBS in 2010, provisional findings estimate the disease rates at approximately 8.0 cases per 100,000 persons. This estimate includes all invasive cases of GBS. Live-birth data is used in the calculations of early-onset and late-onset disease. National estimates of early-onset disease were 0.25 cases per 1,000 live-births; estimates of late-onset disease were 0.26 cases per 1,000 live-births.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report streptococcus group B within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of streptococcus group B weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for early-onset (infants 0 to 6 days of age) group B streptococcus disease is 0.25 cases per 1,000 live-births per year. Indiana met that goal for 2011 with a rate of 0.14 cases of early-onset disease per 1,000 live-births (2010 Indiana state natality data). This finding should be interpreted with caution as 2010 natality data was used in the calculation.
Epidemiology and Trends

In 2011, 343 cases of GBS were reported in Indiana, for a rate of 5.26 cases per 100,000 persons (Table 1). Rates of disease in blacks (6.39) were greater than that of whites (4.23). The rates of males (5.68) exceeded the rate in females (4.86). Twenty-eight of the 343 cases occurred in newborns less than 3 months of age, with 12 cases of early-onset disease.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>343</td>
<td>5.26</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>39</td>
<td>6.39</td>
</tr>
<tr>
<td>White</td>
<td>239</td>
<td>4.23</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>1.60</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>161</td>
<td>4.86</td>
</tr>
<tr>
<td>Male</td>
<td>182</td>
<td>5.68</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 shows reported cases by year for 2007 – 2011. Cases have steadily increased over the last four years; this could be due to electronic reporting. The Indiana National Electronic Disease Surveillance System (INEDSS) was fully functional in 2009.

GBS infections can occur anytime during the year as displayed in Figure 2.
Rates of disease in 2011 were highest among at-risk groups and blacks. Age specific rates were highest for infants less than 1 year of age (36.8) followed by older adults aged at least 80 years (27.8) and adults 70-79 years (18.5) as demonstrated in Figure 3.
Seventeen counties reported 5 or more cases during the year. Incidence rates were highest among the following counties reporting 5 or more cases: Huntington (16.1), Vanderburgh (10.5), Tippecanoe (9.2), Starke (8.6), Delaware (8.5) and Vigo (8.3) (Figure 4).

You can learn more about group B Streptococcus by visiting the following Web sites:
http://www.in.gov/isdh/25426.htm
http://www.cdc.gov/groupbstrep/index.html
Tetanus is an acute, often fatal disease caused by a toxin produced by the bacterium *Clostridium tetani*. It is characterized by generalized rigidity and convulsive spasms of skeletal muscles. The muscle contractions usually involve the jaw (lockjaw) and neck and then become generalized. Tetanus bacteria are found in the environment, primarily soil. Tetanus is not contagious from person to person; transmission is primarily through contaminated wounds.

Public Health Significance
The initial symptoms of tetanus are lockjaw and facial spasms, followed by neck stiffness, difficulty swallowing, stiff abdominal muscles, fever, and elevated blood pressure. Symptoms appear 3-21 days after infection. Antibiotics are available for the treatment of tetanus.

The typical series of vaccinations for tetanus (for children 7 years old and younger) is 5 doses given at 2, 4, 6, and 15-18 months, and 4-6 years of age. Unvaccinated adults and children 7 years of age and older require three vaccinations. Both adults and children should receive boosters (Td vaccine) every 10 years following completion of the primary series. It is recommended at one dose of Td be replaced with Tdap vaccine to protect against pertussis. Prior to routine vaccination, 500-600 cases of tetanus were reported in the United States each year. In the US, an all-time low of 18 cases (0.01 cases per 100,000 population) were reported in 2009. In recent years, the case-fatality rate has decreased from 30 percent to approximately 10 percent.

Achieving high immunization rates for adults as well as infants and children will help to eliminate tetanus. Although the illness is rare in the U.S., it is still common in some countries.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report tetanus within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Clostridium tetani* weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for tetanus.

Epidemiology and Trends
No cases of tetanus were reported in Indiana in 2011. During the five-year period 2007-2011, two cases of tetanus were reported in Indiana (both in 2009). Almost all cases of tetanus reported nationally occur in persons who have either never been vaccinated or have not had a booster in the 10 years preceding the illness.

You can learn more about tetanus by visiting the following Web site:
http://www.cdc.gov/vaccines/vpd-vac/tetanus/default.htm
TOXIC SHOCK SYNDROME

Toxic shock syndrome (TSS) is caused by *Staphylococcal aureus* bacteria and occurs when the bacteria invade a sterile site in the body and produce a toxin. Symptoms of TSS include sudden onset of high fever, vomiting, profuse, watery diarrhea, and muscle pain followed by hypotension, and in severe cases, shock. A sun-burn like rash that peels may be present during the acute phase of illness. TSS is not spread from person to person; however, staphylococcal bacteria colonize the nasopharynx and skin of healthy people. The bacteria are spread through contact with respiratory secretions of an infected person carrying a pathogenic strain or through contact with drainage from an infected wound. Antibiotics are available for the treatment of TSS.

Public Health Significance

TSS most often occurs in women of child-bearing age and is associated with the use of vaginal tampons, barrier contraceptive devices, or infection following childbirth or abortion. Although rare, anyone can develop TSS in the course of a *Staphylococcus aureus* infection. The risk of menstrual TSS can be reduced by avoiding the use of highly absorbent vaginal tampons or using tampons intermittently. Drainage of wounds or removal of wound packing may also decrease the risk of infection.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report toxic shock syndrome within 72 hours to the local health department or the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for toxic shock syndrome.

Epidemiology and Trends

Two cases of toxic shock syndrome were reported in Indiana in 2011. Both cases were white females and in the 10-19 year age range. Ten cases were reported during the five-year period 2007-2011 (Figure 1).

![Figure 1: Toxic Shock Syndrome by Year Indiana, 2007-2011](image)

You can learn more about toxic shock syndrome by visiting the following Web site:
http://www.in.gov/isdh/25423.htm
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/groupastreptococcal_g.htm
Trichinosis (also known as Trichinellosis) is caused by parasites from the genus *Trichinella*. There are several species in this genus, but the one with the most historical association with human illness is *T. spiralis*, which is widely disseminated and has been reported in up to 150 animal species. Human infections have been traditionally related to consumption of undercooked pork products containing the cysts of infective larvae. The parasite can also be acquired from consuming raw or undercooked wild game meat such as bear. The parasite larva matures in the small intestine, releasing larvae that penetrate the intestinal wall and migrate to muscle tissue where they encyst. Trichinellosis is not spread from person to person.

Public Health Significance

Symptoms of trichinosis in humans are nausea, vomiting, fatigue, fever, and abdominal discomfort. Symptoms of muscle infection include headache, fever, chills, cough, eye swelling, aching joints, muscle pain, and itchy skin. Antiparasitic medication can be used to treat the infection in the early stages; however once the parasite has invaded the muscles, treatment is limited to supportive care. Modern swine farming practices have reduced the presence of this parasite in pork, and with education on proper cooking and/or freezing of pork; the incidence of trichinosis has been greatly reduced.

Prevention can be accomplished by cooking meat products to a safe internal temperature. All poultry products should be cooked to an internal temperature of 165 degrees Fahrenheit. Ground meats (excluding poultry) should be cooked to an internal temperature of 160 degrees Fahrenheit, while whole cuts of meats (excluding poultry) may be cooked to an internal temperature of 145 degrees Fahrenheit. Freezing pork products, less than six inches thick, at 5 degrees Fahrenheit for 20 days will also kill the *Trichinella* parasite that infects swine. Freezing of wild game meats, unlike freezing pork products, may not always kill the parasites associated with those animals because some worm species are freeze-resistant. Salting, drying, smoking, and/or microwaving are not reliable methods of destroying infective cysts. Cooking of garbage fed to swine, as well as preventing swine from consuming rat carcasses, are important practices in reducing the infection in swine.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for trichinosis.

Epidemiology and Trends

One case of trichinosis was reported in Indiana in 2011. This was the only case of trichinosis reported during the five-year period 2007-2011.

You can learn more about trichinosis by visiting the following Web site:

http://www.cdc.gov/parasites/trichinellosis/index.html
TULAREMIA

Tularemia is caused by the bacterium *Francisella tularensis* and can be transmitted by ticks, biting flies, handling tissues of infected animals, contaminated water, soil, and vegetation, and by inhalation of aerosols. The normal reservoirs include a variety of small mammals such as rabbits, hares, squirrels, voles, mice, and rats. Although rare, tularemia is highly infectious, and as few as 10 organisms are thought to cause infection.

Public Health Significance

Tularemia can infect the skin, mucous membranes, gastrointestinal tract, lungs, or disseminate throughout the body. It is not transmissible from person to person. Symptoms of tularemia may include sudden fever, chills, headache, joint pain, diarrhea, and dry cough. Most people experience symptoms of tularemia within 2-10 days of exposure to the bacteria. Treatment with antibiotics is available for tularemia. No vaccine is currently available in the U.S.

Tularemia most often occurs in the rural western and south-central states. Although anyone can develop tularemia, people most at risk include hunters, wildlife management personnel, landscapers, and veterinarians. Tick season (usually April–October) and hunting season are peak times for exposure. The best way to prevent tularemia infection is to wear rubber gloves when handling or skinning rodents, avoid ingesting uncooked wild game and untreated water sources, wear long-sleeved clothing, and use insect repellent when outdoors.

The tularemia bacterium is classified as a Category A potential bioterrorism agent,* since it is easily aerosolized and highly infective.

Reporting Requirements

According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report tularemia immediately to the local health department or the ISDH. Laboratories are also required to report positive results of *Francisella tularensis* weekly to the ISDH.

Healthy People 2020 Goal

There is no Healthy People 2020 Goal for tularemia.

Epidemiology and Trends

No cases of tularemia were reported in Indiana in 2011, and only four cases were reported during the five-year reporting period 2007-2011.

You can learn more about tularemia by visiting the following Web sites:

*Bioterrorism Agent List:

http://www.bt.cdc.gov/agent/agentlist-category.asp#a
TYPHOID FEVER

Typhoid fever is a life-threatening, highly contagious disease caused by Salmonella Typhi bacteria, which are found in the stool of infected persons. Unlike other Salmonella bacteria, S. Typhi is not found in animals. Typhoid fever is extremely rare in the U.S. and is almost always related to travel to an area where typhoid fever is common, such as Asia, Africa, and Latin America.

People become infected with S. Typhi by ingesting feces from an infected person (fecal-oral route), usually because of poor hand hygiene after using the restroom. Transmission can occur through person-to-person contact, handling food, and touching items such as soiled diapers or linens and then touching your mouth. Water can also be contaminated with S. Typhi by raw sewage and, thus, can contaminate raw produce.

Public Health Significance
Symptoms of typhoid fever include fever, chills, weakness, headache, abdominal pain, loss of appetite, nausea, vomiting, diarrhea or constipation, and flat, rose-colored rash. Symptoms usually begin within 8-14 days (range of 3-60 days) after exposure. The illness can be mild with a low-grade fever or severe with multiple complications. Persons given antibiotics usually begin to feel better within 2-3 days. Infected people may carry S. Typhi in their bodies for weeks or months without symptoms and unknowingly infect others.

Antibiotics are available to treat the illness. Most people who take medication recover completely. A vaccine is available for typhoid fever and is recommended for people traveling to endemic areas.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Typhoid fever (cases and carriers) immediately to the local health department or the ISDH. Laboratories are also required to report positive results of Typhoid fever weekly to the ISDH. In addition, for Typhoid fever, laboratories are required to submit isolates received to the ISDH Laboratory for further confirmation and subtyping.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for typhoid fever.

Epidemiology and Trends
In 2011, four cases of typhoid fever were reported in Indiana and ten reported cases during the five-year period 2007-2011. All cases of typhoid fever reported in Indiana for 2011 were associated with travel to endemic areas.

There were no outbreaks associated with typhoid fever in 2011.

You can learn more about typhoid fever by visiting the following Web sites:
http://www.cdc.gov/nczved/divisions/dfbmd/diseases/typhoid_fever/
www.cdc.gov/vaccines/vpd-vac/typhoid/default.htm
The term typhus fever refers to three different bacterial diseases: epidemic, scrub, and murine typhus. Epidemic typhus fever is caused by *Rickettsia prowazekii* bacteria and is transmitted human to human by the human body louse, *Pediculus humanus corporis*. Scrub typhus, which occurs in Southeast Asia, is caused by *Rickettsia tsutsugamushi* and is transmitted to humans by certain mites that also serve as the reservoir. Murine typhus (also called “endemic typhus”) occurs in Indiana and is caused by *Rickettsia typhi*.

Traditionally, murine typhus has been transmitted from the natural reservoir, rats, by the rat flea. Fleas from other animals such as opossums and cats may also be involved in the transmission of typhus. Prior to eliminating and controlling rats in the U.S., murine typhus was frequently reported. Now, fewer than 100 typhus cases are reported per year in the U.S.

Public Health Significance
Symptoms of murine typhus include headache, muscle pain, high fever, rash, and dry cough and usually last 2-3 weeks. People at greatest risk for murine typhus include those exposed to infected rat fleas and feces, or exposure to other infected animals such as cats, opossum, raccoons, and skunks. No vaccine is available in the U.S. Murine typhus can be successfully treated with antibiotics.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report typhus within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of *Rickettsia species* weekly to the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for typhus.

Epidemiology and Trends
There was one reported case of typhus in Indiana in 2011. Two cases were reported during the five-year period 2007-2011.

You can learn more about typhus by visiting the following Web sites:
http://wwwn.cdc.gov/travel/yellowBookCh4-Rickettsial.aspx
Primary varicella infection (also known as chickenpox) is caused by the varicella-zoster virus, a member of the herpesvirus family. The virus is transmitted from person-to-person through direct contact, droplet, or airborne spread of respiratory secretions or through contact with the fluid from vesicular lesions. Varicella is commonly considered a childhood illness; however, anyone who does not have a history of varicella or even those who have received two valid doses of the vaccine can become infected. Varicella is typically a mild infection, but it can cause serious complications including pneumonia, encephalitis, viral meningitis, bacterial skin infections, and even death in immune-suppressed individuals.

Public Health Significance
The varicella rash first appears as flat, red lesions, which become itchy, raised and blister-like (vesicles). The lesions are most evident on the trunk and present in several stages of development over several days. Other symptoms of varicella, including fever, abdominal pain, sore throat, and headache, may even occur before rash onset. Onset of symptoms usually occurs 10-21 days after initial exposure. Hospitalizations and deaths due to varicella still occur in Indiana.

Vaccines are available to protect individuals from acquiring varicella. Some children and adults who receive one or even two doses of the vaccine may have a mild case of “break-through” varicella disease. Some individuals as well as health care providers, view varicella as a mild childhood illness and choose not to vaccinate; thus the incidence of varicella infections has reached a plateau and outbreaks remain common in schools and other residential facilities.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report varicella within 72 hours to the local health department or the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for varicella is fewer than 100,000 cases nationally for persons less than 18 years of age. This translates to a rate of 135.3 per 100,000 population. Indiana met this goal in 2011, with 264 cases of varicella in children under the age of 18 in Indiana. The rate of varicella in Indiana children reported under the age of 18 years was 16.5 per 100,000 population.

Epidemiology and Trends
In 2011, 290 cases of varicella (not hospitalized) were reported in Indiana for a rate of 4.45 cases per 100,000 population (Table 1). The rate of varicella disease was higher in whites (4.16) than in blacks (1.64). A higher rate was observed in females (4.50) than in males (4.37).

In addition to the 290 cases that did not result in hospitalization or death, 7 cases were hospitalized with no reported deaths. The rate of hospitalizations was 0.11 per 100,000 populations (Table 1). The rate of varicella hospitalizations for females (0.15) was higher than that of females (0.06). All of the hospitalized cases in 2011 were white.
Table 1. Varicella Cases by Race and Sex, Indiana 2011

<table>
<thead>
<tr>
<th></th>
<th>Hospitalized cases</th>
<th>Varicella (not hospitalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Rate*</td>
</tr>
<tr>
<td>Indiana</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>White</td>
<td>7</td>
<td>0.12</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Not Reported</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>0.15</td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010

Figure 1 shows reported hospitalized cases by year from 2007-2011.

![Figure 1: Varicella Hospitalizations by Year Indiana, 2007-2011](image)
As Figure 2 shows, age-specific hospitalization rates were greatest for adults 80 years and older (0.83) followed by those aged 2-29 (0.23).

![Figure 2: Varicella Hospitalization Rates by Age Group Indiana, 2011](image)

Incidence of varicella (not hospitalized) varies considerably with age. In 2011, the incidence rate for children 5-9 years old as well as children under the age of 1 year were both 23.8 per 100,000 population. No cases of chickenpox were reported in adults over the age of 60 years. (Figure 3).

![Figure 3: Varicella Incidence Rates by Age Group- Indiana, 2011](image)
Figure 4 shows reported non hospitalized varicella cases by year from 2007-2011. Individual cases of varicella were not reportable until December 2008.

![Figure 4: Varicella Reported Cases by Year - Indiana, 2007-2011](image)

The total number of cases (not hospitalized) was highest in December (46 cases) and lowest in July (8 cases). The number then increased in after the 2011-2012 school year began (Figure 5).

![Figure 5: Varicella Reported Cases* by Month Indiana, 2011](image)

*Case numbers do not include hospitalizations (7 cases).
In 2011, 46 counties reported at least one case, and 17 counties reported 5 or more cases varicella. (Figure 6). Incidence rates were highest among the following counties reporting 5 or more cases during the year: Benton (56.5), Noble (31.5), and Steuben (23.5).

You can learn more about varicella by visiting the following Web site: http://www.cdc.gov/vaccines/vpd-vac/varicella/default.htm
Vibriosis is an illness caused by a variety of *Vibrio* bacteria, the most common being *Vibrio parahaemolyticus*. The bacteria normally live in warm seawater and cause disease in those who eat contaminated seafood or have an open wound exposed to seawater. The bacteria are more common in warmer months; thus, fish and shellfish are more likely to be contaminated in the summer.

Public Health Significance
Ingestion of *Vibrio parahaemolyticus* can cause vomiting, diarrhea, fever, and abdominal cramps. The illness is usually mild or moderate and runs its course in 2-3 days. In severe cases, hospitalization may be required. Symptoms usually occur 12-24 hours after eating contaminated food. Most cases of vibriosis are self-limited; however, antibiotics are available for severe cases. Although anyone can become infected with the bacterium, people who eat seafood, especially fish and shellfish, are at greatest risk for infection. Wound infections can be severe if the person is immunocompromised or has a liver disease. *Vibrio vulnificus* infections can result in bloodstream infections, characterized by fever, chills, decreased blood pressure, and blistering skin lesions; high mortality rates are associated with *V. vulnificus* infections.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf, hospitals and healthcare providers must report Vibriosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of Vibriosis weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for vibriosis is 0.2 cases per 100,000 population per year. Indiana met this goal in 2011 (0.03).

Epidemiology and Trends
In 2011, two cases of vibriosis were reported in Indiana and 19 cases were reported during the five-year period 2007-2011.

You can learn more about vibriosis by visiting the following Web site:
West Nile virus (WNV) infection was first identified in Indiana in 2001, when WNV was confirmed in seven counties (47 birds and 1 horse). In 2011, Indiana was one of 43 states to report human WNV cases. Nationally in 2011, 712 human cases were reported, with 43 deaths. Indiana had 11 reported cases with one death. Most infections are contracted through the bite of an infected mosquito.

Public Health Significance
Symptoms of WNV include fever, headache, body aches, and skin rash. Although rare, WNV can enter the brain and cause inflammation either of the brain or the tissue that surrounds the brain. Most people infected with WNV usually have very mild or no symptoms. Symptoms of WNV usually appear 3-14 days after exposure. There is no specific treatment or vaccine for WNV in humans.

In addition to passive human surveillance, the Indiana State Department of Health conducts active mosquito surveillance. Throughout the mosquito breeding season (normally May through October), mosquitoes are trapped, collected, separated by species, and tested for arboviruses including WNV.

According to the Centers for Disease Control and Prevention, the easiest and best way to avoid WNV is to prevent mosquito bites by adhering to the following practices:

- Use insect repellent.
- Wear long sleeves and long pants when mosquitoes are most active, usually at dusk and dawn, or consider staying indoors during these hours.
- Keep window and door screens free from tears and in good working condition.
- Eliminate mosquito-breeding sites by emptying standing water from flower pots, buckets, and barrels. Change the water in birdbaths and other containers at least weekly. Drill holes in tire swings so water drains out. Keep children's wading pools empty and upright when not in use.

WNV is endemic in Indiana, and virus activity will continue to occur during the mosquito-breeding season in future years. The extent of activity will depend on the weather, presence of mosquito and bird populations for virus amplification, equine vaccination rates, and human activities to prevent transmission.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, hospitals and healthcare providers must report arboviral disease including West Nile virus immediately to the local health department or the ISDH.

Healthy People 2020 Goal
There is no Healthy People 2020 Goal for WNV.
Epidemiology and Trends
In 2011, Indiana reported 11 cases of WNV with one death. In the five-year reporting period from 2007-2011, 56 human cases of WNV, including four deaths, were reported (Table 1).

<table>
<thead>
<tr>
<th>Cases</th>
<th>Neuro-invasive Disease</th>
<th>Non Neuro-invasive Disease</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2010</td>
<td>13</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2009</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>24</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Five-year total</td>
<td>56</td>
<td>32</td>
<td>24</td>
</tr>
</tbody>
</table>

In 2011, mosquito samples were submitted from all 92 Indiana counties; a total of 125,556 mosquitoes divided into 2100 pools were tested for West Nile Virus. In 2011, 191 pools tested positive and were collected from 34 different counties (Table 2).

<table>
<thead>
<tr>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Mosquitoes Collected</td>
</tr>
<tr>
<td>Number of Pools Tested</td>
</tr>
<tr>
<td>WNV Positive Pools</td>
</tr>
<tr>
<td>Number of Counties with WNV Positive Mosquitoes</td>
</tr>
</tbody>
</table>

You can learn more about West Nile virus by visiting the following Web site:
http://www.cdc.gov/ncidod/dvbid/westnile/index.htm
YELLOW FEVER

Yellow fever is a viral disease transmitted to humans by infected mosquitoes. The disease occurs in tropical and subtropical areas including West and Central Africa and in parts of South America. Yellow fever is a very rare cause of illness in U.S. travelers to endemic areas.

Public Health Significance
Symptoms of yellow fever may include influenza-like symptoms such as fever, headache, and vomiting to more severe symptoms such as shock, liver and kidney failure, and bleeding. Symptoms usually appear 3-6 days after becoming infected.

Yellow fever can be prevented by vaccination, and people traveling to countries where yellow fever infection occurs should be vaccinated. The vaccine for yellow fever is only administered in designated vaccination centers – and a list of designated Indiana travel clinics may be found at http://www.in.gov/isdh/17199.htm Many countries have regulations and vaccine requirements that must be met before travelers are allowed to enter.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, http://www.in.gov/isdh/files/comm_dis_rule(1).pdf hospitals and healthcare providers must report Yellow fever within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of yellow fever virus weekly to the ISDH.

Healthy People 2010 Goal
There is no Healthy People 2020 Goal for yellow fever.

Epidemiology and Trends
No cases of yellow fever were reported in Indiana during the five-year period 2006-2010.

You can learn more about yellow fever by visiting the following Web site:
http://www.cdc.gov/yellowfever/
YERSINIOSIS

Yersiniosis is a disease caused by *Yersinia enterocolitica* bacteria, which live in livestock and domestic animals and can be found in untreated water. The bacteria are also found in unpasteurized milk and raw or undercooked meat. People can also become infected with *Yersinia* by consuming water and raw produce contaminated with animal or human feces (fecal-oral route). Infection can also occur after contact with symptomatic, infected animals through person-to-person contact, handling food to be eaten by others, and touching items such as soiled diapers or linens and then touching the mouth. Infected persons can shed the bacteria in their stool for several months if untreated. Children are infected more often than adults.

Public Health Significance
Symptoms of yersiniosis include fever, abdominal pain, diarrhea, and vomiting. Symptoms usually begin 3-7 days (up to 10 days) after exposure and last 1-3 weeks. In older children and adults, pain in the lower right side and fever can be the main symptoms and may be confused with appendicitis. Some people may also have a sore throat. Most people recover within 5-7 days without medical treatment. A doctor may prescribe antibiotics for people with severe infection.

Reporting Requirements
According to the Communicable Disease Reporting Rule for Physicians, Hospitals and Laboratories, 410 IAC 1-2.3, hospitals and healthcare providers must report yersiniosis within 72 hours to the local health department or the ISDH. Laboratories are also required to report positive results of yersiniosis weekly to the ISDH.

Healthy People 2020 Goal
The Healthy People 2020 Goal for yersiniosis is 0.3 cases per 100,000 population per year. Indiana met this goal in 2011 (0.17).

Epidemiology and Trends
In 2011, 11 cases of yersiniosis were reported in Indiana, for a rate of 0.17 cases per 100,000 population (Table 1).

<table>
<thead>
<tr>
<th>Race</th>
<th>Cases</th>
<th>Rate*</th>
<th>2007 - 2011 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiana</td>
<td>11</td>
<td>0.17</td>
<td>55</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1</td>
<td>0.16</td>
<td>8</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>0.07</td>
<td>24</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>0.40</td>
<td>4</td>
</tr>
<tr>
<td>Not Reported</td>
<td>5</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>0.18</td>
<td>30</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>0.16</td>
<td>25</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*Rate per 100,000 population based on U.S. Census Bureau’s population data as of July 1, 2010.
Figure 1 shows reported cases by year for 2007-2011.

Although yersiniosis has a winter seasonal pattern, incidence of disease can occur at any time (Figure 2).
Figure 3 shows age-specific rates were greatest for infants less than 1 year of age (1.19) and children ages 1-4 (1.16), followed by those over 80 years old (0.41).

Nine Indiana counties reported yersiniosis cases in 2011. No county reported more than five cases.

No outbreaks of yersiniosis were reported in Indiana in 2011.

You can learn more about yersiniosis by visiting the following Web sites:
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/yersinia_g.htm
http://www.fda.gov/Food/FoodSafety/FoodborneIllness/FoodborneIllnessFoodbornePathogensNaturalToxins/BadBugBook/ucm070040.htm