

100 North Senate Avenue Room N955 Indianapolis, Indiana 46204 PHONE: (317) 232-6779 FAX: (317) 232-5478 Eric Holcomb, Governor Joe McGuinness, Commissioner

Latest INDOT Traffic Adjustment Factors

Effective for 2016

The Indiana Department of Transportation (INDOT), through its Traffic Monitoring Section, collects, summarizes and interprets information on the traffic traveling on the state's highway system. The data is used to assess transportation needs, system performance and to develop highway planning and programming recommendations. Traffic data also plays a very important role in route planning and in the design of highway projects.

To collect this information, the Department operates two traffic monitoring systems: Annual average daily traffic is the total volume for the year divided by 365 days. Only 122 of INDOT's 8,000 Traffic Sections are equipped with Continuous Traffic counters. The remaining sections are counted as part of the short term or "Coverage Count" program. The Coverage Count Program consists of more than 23,000 count locations, approximately one-third of which are counted annually. A minimum of 48 hours of count data is collected at each count location and, the 48 hour counts are then averaged to 24 before utilizing factors developed from Continuous Traffic Counters, an estimated AADT is developed. AADT is necessary for presenting a statewide picture of traffic flow, evaluating traffic trends, computing accident rates, planning and designing highways, and other purposes.

1. A Statewide Traffic Monitoring System consisting of 117 permanent continuous count stations that collect volume, speed and vehicle classification data 24 hours per day, 365 days per year. Some of these sites also utilize weigh-in motion (WIM) technology to collect continuous truck weight data. These sites are located throughout the state to monitor overall traffic trends. Information from these counters is used to determine ANNUAL TRAFFIC GROWTH trends as well as develop AXLE, WEEKDAY and SEASONAL adjustment factors used with the state's coverage count program to determine estimates of annual average daily traffic (AADT).

2. The statewide coverage count program utilizes portable pneumatic road-tubes traffic counters and laser counters to collect 48 hour traffic counts on all State Highway System traffic sections and in rural and small urban areas and all highway performance monitoring sections (HPMS). Video data collection is also deployed. The coverage count program operates on a two-year cycle for Interstates, a three-year cycle other State Owned routes and many non-state owned urban and highly traveled rural roads, and a six-year cycle for low volume rural Federal Aid Eligible routes. One-third of all sections are collected annually, or approximately 8,000 of the 23,000 count sites. Where possible, portable classifiers are used so that approximately 65% of all coverage counts collected are classification counts. Use of video data collection expands the reach of classification counts in urban areas. Additional counts are taken within this program to support specific state projects. In addition INDOT also contracts with some Metropolitan Planning Organizations (MPOs) and Regional Planning Organizations (RPOs) to collect coverage count data within their areas as well as contracting with Consultants. We are expanding the number of MPO and RPO counting partners in the future.

FUNCTIONAL CLASSIFICATION UPDATE

In 2010, The Federal Highway Administration (FHWA) revised its Functional Classification scheme. Prior to 2010, an interstate highway would have a different functional classification depending on whether it was in an urban or rural area. The 2010 scheme removed the urban/rural designation from the functional classification in favor to tracking that attribute separately. This reduced the number of classifications from 12 to 7. This change is reflected in numbers listed in the tables along with the classification description. For example, the Urban Interstates and Rural Interstates are both followed by the Functional Class (1)

FACTOR GROUPS

The Federal Highway Administration (FHWA) has seven classifications of roadways and four classifications of urban/rural nature. INDOT groups these 28 potential combinations of classification and urban/rural nature into Factor Groups. For the Seasonal, Weekday, and Growth INDOT uses two groups for all urban roadways and three groups for all rural roadways. For the Axle Adjustment, INDOT uses three groups for all urban roadways and three groups for all rural roadways.

ADJUSTMENT FACTORS

Adjustment factors are necessary to convert an Average Daily Traffic (ADT) volume into an Annual Average Daily Traffic (AADT) estimate. Depending on the type of counter, the seasonal period of the setting, multiple factors may be necessary. These include axle, weekday and seasonal adjustment factors. For the 2/3's of the system not counted in the current year, the previously derived AADTs can be adjusted to the current year by utilizing the annual growth factors.

AXLE ADJUSTMENT FACTORS

There are times when portable classifiers cannot be set due to number of lanes or the lack of freeflow speeds. In these cases, portable traffic counters utilizing single pneumatic road-tubes stretched across a lane or roadway are used. These types of counters register two axle impacts as one vehicle so when vehicles with three or more axles cross the road-tube they will be counted as multiple vehicles. Whenever possible axle adjustment factors should be developed from vehicle classification counters set on the same route within the vicinity of the axle counter and during the same relative time period. If this is not possible then the use of these factors applied by functional classification and volume groups are deemed acceptable.

WEEKDAY ADJUSTMENT FACTORS

The purpose of these factors is to normalize the variability of traffic counts that exists between counts taken during the weekday, Friday, Saturdays and/or Sundays. In developing the weekday factors we found no significant statistical difference in the Monday through Thursday trends and for this reason combine these into a weekday factor. This is further justified as counts taken for INDOT will usually span a Monday through Wednesday or a Tuesday through Thursday count period.

SEASONAL (MONTHLY) ADJUSTMENT FACTORS

Seasonal or monthly adjustment factors convert average daily traffic (ADT) to annual average daily traffic (AADT). Observed traffic volumes at a location often vary from month to month with higher summer traffic volumes and lower winter traffic volumes. To compare traffic volume data collected in different months, seasonal adjustment factors must be applied. The ADT is multiplied by the seasonal factor to obtain the AADT value. The continuous counter sites are grouped into five major factor groups (FG). Currently there are two urban factor groups and three rural factor groups which are based on grouped functional classifications.

ANNUAL GROWTH FACTORS

As not all road sections are counted each year, there are times when previous years AADTs will need to be factored in order to estimate current year values. Annual Growth Factors are used in these situations and are developed by comparisons of previous years AADTs at INDOT's 117 continuous counting telemetry sites and averaged for the five factor groups (FG).

FACTOR APPLICATION

The new factors published herein were developed from data collected during the 2016 calendar year and will be applied to all counts processed into the INDOT Traffic Count Database beginning on January 1, 2016, retroactively. These factors will continue to be applied as the current factors until new factors are developed from all of the counts collected during the 2017 calendar year. Counts uploaded to the database have the most current factors applied until the development of new factors at which time; the newly developed factors are applied. Further, when the time comes to publish annual statistics for the Highway Performance Monitoring System (HPMS) submittal, the new factors are retroactively applied to all the short term counts for the respective calendar year. This will cause AADTs viewed for counts collected prior to the development of new factors to change when development is complete and the new factors are applied.

SEASONAL ADJUSTMENT FACTORS BY FUNCTIONAL CLASSIFICATION 2012-2016*

	Urban - Inte	erstate (1)	, Princip	al Arteria	I (Freewa	iys and E	xpresswa	ays) (2)					
G		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
\geq	2016	1.213	1.067	0.977	1.011	0.996	0.934	0.943	0.969	1.001	0.992	1.008	1.058
S.	2015	1.158	1.125	1.017	0.965	0.980	0.933	0.940	0.958	0.974	0.949	0.993	1.037
-	2014	1.167	1.102	1.044	0.981	0.964	0.958	0.946	0.953	0.977	0.960	1.010	1.021
Ċ	2013	1.136	1.079	1.030	0.995	0.958	0.954	0.944	0.934	0.978	0.970	1.005	1.057
	2012	1.155	1.080	1.014	1.002	0.977	0.957	0.972	0.950	1.006	0.985	1.012	1.080
	5 YR AVG	1.166	1.091	1.016	0.991	0.975	0.947	0.949	0.953	0.987	0.971	1.006	1.051
	Urban - Oth	er Princi	pal Arteri	ials (3), M	linor Arte	rials (4),	Collector	s (5 & 6),	Locals (7)			
G		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
≥	2016	1.099	1.026	1.000	0.947	0.984	0.973	1.002	0.961	0.972	0.969	1.000	1.026
S.	2015	1.128	1.076	1.034	0.966	0.968	0.980	0.971	0.955	0.959	0.970	1.036	1.048

2	2014	1.112	1.059	1.020	0.973	0.963	0.969	0.975	0.981	0.982	0.973	1.032	1.025
Ö	2013	1.095	1.060	1.052	0.981	0.950	0.976	0.976	0.953	0.970	0.962	1.015	1.066
	2012	1.076	1.012	0.989	0.982	0.971	0.961	0.989	0.981	0.987	0.980	1.020	1.079
	5 YR AVG	1.102	1.047	1.019	0.970	0.967	0.972	0.983	0.966	0.974	0.971	1.021	1.049

-	Rural - Inter	state (1),	Principa	I Arterial	(Freeway	s and Ex	presswa	ys) (2)					
A C		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
8 B	2016	1.261	1.159	1.027	1.017	0.971	0.911	0.897	0.941	0.951	0.968	1.040	1.107
S	2015	1.232	1.182	1.056	1.000	0.950	0.909	0.888	0.915	0.965	0.954	0.997	1.053
	2014	1.291	1.219	1.066	1.008	0.957	0.906	0.875	0.896	0.989	0.963	1.027	1.056
Ε	2013	1.233	1.182	1.078	1.040	0.961	0.908	0.834	0.889	0.984	0.970	1.019	1.078
	2012	1.212	1.142	1.037	1.008	0.936	0.897	0.892	0.916	1.012	0.983	1.004	1.107
	5 YR AVG	1.246	1.177	1.053	1.015	0.955	0.906	0.877	0.911	0.980	0.968	1.017	1.080

⊲	Rural - Prin	cipal Arte	erials (3),	Minor Ar	terials (4)							
5		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ň	2016	1.202	1.102	1.046	0.965	0.963	0.923	0.964	0.954	0.921	0.958	1.013	1.062
S	2015	1.174	1.119	1.081	0.994	0.958	0.961	0.948	0.930	0.914	0.972	1.055	1.090
	2014	1.219	1.145	1.081	0.988	0.938	0.935	0.940	0.937	0.936	0.946	1.022	1.060
N,	2013	1.127	1.077	1.059	0.992	0.957	0.968	0.966	0.935	0.948	0.955	1.001	1.062
Ê	2012	1.153	1.070	1.023	0.985	0.949	0.928	0.940	0.943	0.975	0.989	1.018	1.124
	5 YR AVG	1.175	1.103	1.058	0.985	0.953	0.943	0.952	0.940	0.939	0.964	1.022	1.080

	Rural - Majo	or Collect	tors (5), N	linor Col	lectors (6), Locals	(7)						
Ч С У		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
X	2016	1.153	1.115	1.064	0.921	0.937	0.896	0.956	0.965	0.951	0.943	0.993	1.114
S	2015	1.138	1.103	1.058	0.965	0.915	0.943	0.961	0.951	0.950	0.963	1.022	1.043
	2014	1.150	1.121	1.077	0.952	0.923	0.954	0.955	0.979	0.958	0.981	1.045	1.074
R3	2013	1.139	1.106	1.095	0.989	0.922	0.948	0.946	0.928	0.935	0.941	1.001	1.085
	2012	1.166	1.088	1.028	0.983	0.930	0.931	0.954	0.931	0.960	0.973	1.020	1.126
	5 YR AVG	1.149	1.107	1.064	0.962	0.925	0.934	0.954	0.951	0.951	0.960	1.016	1.088

*The seasonal adjustment factors are used to expand average 24-hour volumes to estimated Annual Average Daily Traffic (AADT).

WEEKDAY FACTORS BY FUNCTIONAL CLASSIFICATION 2016*

	Urban - Interstate	(1), Princ	ipal Ar	terial (I	reewa	ays and	d Expre	essway	/s) (2)					
		Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
G	Average Weekday	0.995	0.984	1.012	1.012	1.001	0.980	1.003	1.013	0.992	1.013	0.999	0.987	0.946
Š	Monday	1.038	1.036	1.012	1.038	1.040	1.030	1.035	1.097	1.027	1.056	1.039	1.028	1.015
S	Tuesday	1.013	0.995	1.033	1.040	1.013	1.012	1.034	1.014	1.022	1.034	1.018	0.998	0.946
	Wednesday	0.987	0.987	1.019	1.019	0.989	0.975	1.005	0.997	0.982	1.007	0.990	0.950	0.924
5	Thursday	0.943	0.916	0.985	0.949	0.961	0.902	0.939	0.944	0.938	0.956	0.949	0.971	0.900
_	Friday	0.851	0.914	0.843	0.845	0.844	0.791	0.859	0.826	0.858	0.847	0.839	0.882	0.858
	Saturday	1.070	1.058	0.980	1.060	1.078	1.059	1.065	1.047	1.081	1.088	1.072	1.082	1.167
	Sunday	1.164	1.233	1.188	1.091	1.148	1.134	1.092	1.129	1.166	1.134	1.112	1.136	1.410

	Urban - Other Prin	ncipal Arte	erials (3), Min	or Arte	erials (4), Coll	ectors	(5 & 6), Loca	ıls (7)			
		Average	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
G	Average Weekday	0.952	0.933	0.971	0.966	0.969	0.961	0.943	0.953	0.954	0.965	0.957	0.938	0.918
Š	Monday	0.993	0.984	0.975	0.991	0.997	1.023	0.978	1.059	0.987	1.025	0.987	0.970	0.942
S	Tuesday	0.949	0.930	0.978	0.962	0.977	0.967	0.952	0.929	0.951	0.949	0.955	0.931	0.909
	Wednesday	0.941	0.927	0.980	0.953	0.952	0.937	0.932	0.922	0.948	0.950	0.953	0.923	0.913
	Thursday	0.926	0.892	0.949	0.957	0.950	0.917	0.911	0.900	0.931	0.936	0.933	0.928	0.909
	Friday	0.874	0.888	0.870	0.888	0.873	0.853	0.873	0.853	0.878	0.868	0.859	0.932	0.855
	Saturday	1.103	1.069	1.053	1.126	1.103	1.102	1.085	1.089	1.112	1.117	1.102	1.116	1.160
	Sunday	1.387	1.485	1.413	1.412	1.338	1.369	1.334	1.343	1.313	1.407	1.378	1.381	1.474

	Rural - Interstate (1), Princi	pal Art	erial (F	reewa	ys and	Expre	ssway	s) (2)					
		Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
A K	Average Weekday	1.009	0.973	1.009	1.009	1.023	1.001	1.02	1.036	1.014	1.035	1.032	1.003	0.954
NG.	Monday	1.052	1.023	1.029	1.015	1.076	1.048	1.047	1.110	1.052	1.052	1.078	1.064	1.028
S	Tuesday	1.032	0.994	1.029	1.038	1.043	1.041	1.051	1.045	1.046	1.069	1.052	1.034	0.946
	Wednesday	1.003	0.977	1.028	1.022	1.013	0.991	1.026	1.025	1.009	1.042	1.030	0.946	0.923
5	Thursday	0.949	0.897	0.948	0.960	0.961	0.925	0.955	0.965	0.949	0.978	0.968	0.966	0.920
Ĕ	Friday	0.844	0.850	0.818	0.834	0.837	0.801	0.859	0.832	0.849	0.832	0.831	0.902	0.878
	Saturday	1.062	1.084	1.040	1.078	1.073	1.048	1.048	1.019	1.041	1.052	1.053	1.040	1.163
	Sunday	1.103	1.277	1.178	1.068	1.068	1.092	1.026	1.035	1.021	1.091	1.035	1.051	1.292

	Rural - Principal A	rterials (3), Min	or Arte	rials (4	ł)								
		Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
A R	Average Weekday	0.980	0.940	0.977	0.987	0.996	0.980	0.988	0.970	0.987	1.023	0.993	0.963	0.952
SWG.	Monday	1.014	0.979	0.983	1.002	1.030	1.037	1.015	1.020	1.009	1.068	1.026	0.990	1.007
	Tuesday	0.981	0.966	0.997	0.981	0.997	0.992	0.995	0.957	1.009	1.017	0.970	0.945	0.949
	Wednesday	0.969	0.937	0.966	0.986	0.996	0.958	0.987	0.946	0.977	1.006	0.999	0.939	0.932
R	Thursday	0.954	0.877	0.960	0.979	0.960	0.934	0.956	0.956	0.951	1.000	0.975	0.979	0.921
Œ	Friday	0.851	0.824	0.842	0.876	0.853	0.829	0.853	0.848	0.852	0.849	0.840	0.890	0.858
	Saturday	1.047	1.063	1.007	1.055	1.094	1.021	1.035	1.054	1.074	1.006	0.991	1.049	1.120
	Sunday	1.274	1.400	1.332	1.175	1.231	1.207	1.198	1.324	1.214	1.194	1.295	1.272	1.451

	Rural - Major Collecto	ors (5), Min	or Colle	ectors (6	6), Local	s (7)								
_		Average	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
A K	Average Weekday	0.970	0.953	0.968	0.961	0.982	0.975	0.975	0.987	0.958	0.998	0.980	0.960	0.941
MG	Monday	1.013	0.993	0.984	1.000	1.020	1.031	1.014	1.070	0.989	1.070	1.008	0.995	0.986
S	Tuesday	0.968	0.960	0.981	0.946	0.974	0.990	0.991	0.983	0.955	0.981	0.974	0.938	0.945
	Wednesday	0.957	0.952	0.966	0.925	0.982	0.953	0.950	0.968	0.956	0.986	0.973	0.950	0.921
R3	Thursday	0.940	0.905	0.940	0.971	0.951	0.926	0.943	0.927	0.930	0.955	0.966	0.955	0.911
Œ	Friday	0.882	0.894	0.877	0.894	0.879	0.853	0.882	0.858	0.884	0.895	0.883	0.915	0.865
	Saturday	1.047	1.093	1.018	1.041	1.073	1.019	1.032	1.042	1.076	0.999	1.006	1.014	1.149
	Sunday	1.274	1.491	1.312	1.270	1.133	1.167	1.199	1.246	1.261	1.221	1.259	1.301	1.431

*Weekday factors are used to normalize the variability of traffic counts that exists between counts taken on the Weekdays, Friday, Saturday and/or Sunday.

Source: Indiana Department of Transportation Division of Engineering and Asset Management Office of Asset Planning

AXLE ADJUSTMENT FACTORS BY FUNCTIONAL CLASSIFICATION 2012-2016*

I Dall -	Inters	tate (1)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2016	0.774	0.727	0.794	0.812	0.83	0.855	0.867	0.843	0.843	0.817	0.846	0.854
2015	0.789	0.758	0.797	0.819	0.827	0.826	0.813	0.796	0.79	0.798	0.799	0.772
2014	0.874	0.862	0.852	0.866	0.866	0.863	0.868	0.850	0.839	0.841	0.850	0.857
2013	0.833	0.844	0.843	0.831	0.836	0.846	0.846	0.841	0.809	0.829	0.842	0.840
2012	0.847	0.828	0.844	0.846	0.849	0.844	0.854	0.854	0.852	0.844	0.859	0.866
2 2 2 2	016 015 014 013	Jan 016 0.774 015 0.789 014 0.874 013 0.833	Jan Feb 016 0.774 0.727 015 0.789 0.758 014 0.874 0.862 013 0.833 0.844	Jan Feb Mar 016 0.774 0.727 0.794 015 0.789 0.758 0.797 014 0.874 0.862 0.852 013 0.833 0.844 0.843	Jan Feb Mar Apr 016 0.774 0.727 0.794 0.812 015 0.789 0.758 0.797 0.819 014 0.874 0.862 0.852 0.866 013 0.833 0.844 0.843 0.831	Jan Feb Mar Apr May 016 0.774 0.727 0.794 0.812 0.83 015 0.789 0.758 0.797 0.819 0.827 014 0.874 0.862 0.852 0.866 0.866 013 0.833 0.844 0.843 0.831 0.836	Jan Feb Mar Apr May Jun 016 0.774 0.727 0.794 0.812 0.83 0.855 015 0.789 0.758 0.797 0.819 0.827 0.826 014 0.874 0.862 0.852 0.866 0.866 0.863 013 0.833 0.844 0.843 0.831 0.836 0.846	Jan Feb Mar Apr May Jun Jul 016 0.774 0.727 0.794 0.812 0.83 0.855 0.867 015 0.789 0.758 0.797 0.819 0.827 0.826 0.813 014 0.874 0.862 0.852 0.866 0.866 0.863 0.868 013 0.833 0.844 0.843 0.831 0.836 0.846 0.846	Jan Feb Mar Apr May Jun Jul Aug 016 0.774 0.727 0.794 0.812 0.83 0.855 0.867 0.843 015 0.789 0.758 0.797 0.819 0.827 0.826 0.813 0.796 014 0.874 0.862 0.852 0.866 0.866 0.863 0.868 0.850 013 0.833 0.844 0.843 0.831 0.836 0.846 0.846 0.841	Jan Feb Mar Apr May Jun Jul Aug Sep 016 0.774 0.727 0.794 0.812 0.83 0.855 0.867 0.843 0.843 015 0.789 0.758 0.797 0.819 0.827 0.826 0.813 0.796 0.79 014 0.874 0.862 0.852 0.866 0.866 0.863 0.868 0.850 0.839 013 0.833 0.844 0.843 0.831 0.836 0.846 0.841 0.809	Jan Feb Mar Apr May Jun Jul Aug Sep Oct 016 0.774 0.727 0.794 0.812 0.83 0.855 0.867 0.843 0.843 0.817 015 0.789 0.758 0.797 0.819 0.827 0.826 0.813 0.796 0.79 0.798 014 0.874 0.862 0.852 0.866 0.863 0.868 0.850 0.839 0.841 013 0.833 0.844 0.843 0.831 0.836 0.846 0.841 0.809 0.829	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 016 0.774 0.727 0.794 0.812 0.83 0.855 0.867 0.843 0.843 0.817 0.846 015 0.789 0.758 0.797 0.819 0.827 0.826 0.813 0.796 0.79 0.798 0.799 014 0.874 0.862 0.852 0.866 0.866 0.863 0.868 0.850 0.839 0.841 0.850 013 0.833 0.844 0.833 0.831 0.836 0.846 0.841 0.809 0.829 0.842

	Urban	- Freew	ays and	d Expre	essway	s (2) Pri	ncipal	Arterial	s (3)				
_		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
⋖	2016	0.963	0.968	0.968	0.958	0.967	0.966	0.969	0.967	0.969	0.968	0.97	0.937
<u>N</u>	2015	0.94	0.939	0.928	0.925	0.963	0.955	0.961	0.952	0.93	0.935	0.959	0.957
	2014	0.951	0.952	0.940	0.932	0.935	0.934	0.932	0.932	0.928	0.933	0.931	0.940
	2013	0.953	0.956	0.956	0.953	0.954	0.956	0.955	0.954	0.954	0.951	0.955	0.965
	2012	0.943	0.943	0.954	0.941	0.944	0.943	0.947	0.936	0.936	0.935	0.939	0.943

	Urban	- Minor	Arteria	ls (4), C	Collecto	rs (5 &	6), Loc	als (7)					
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
ح	2016	0.936	0.937	0.935	0.9265	0.935	0.936	0.94	0.936	0.934	0.929	0.935	0.935
່ງງ	2015	0.935	0.931	0.931	0.926	0.927	0.93	0.929	0.928	0.925	0.93	0.936	0.936
_ ر	2014	0.923	0.931	0.937	0.932	0.936	0.937	0.935	0.937	0.929	0.926	0.933	0.936
	2013	0.927	0.929	0.93	0.931	0.931	0.929	0.931	0.927	0.924	0.915	0.932	0.936
	2012	0.965	0.964	0.969	0.969	0.969	0.969	0.973	0.968	0.965	0.964	0.965	0.971

٩	Rural -	Interst	ate (1),	Princip	al Arter	rial (Fre	eways	and Ex	pressw	ays) (2)			
GA		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Š	2016	0.702	0.704	0.702	0.738	0.744	0.758	0.774	0.745	0.748	0.741	0.748	0.748
Ś,	2015	0.688	0.664	0.688	0.688	0.712	0.695	0.742	0.731	0.719	0.712	0.716	0.689
'	2014	0.680	0.686	0.701	0.707	0.721	0.725	0.736	0.730	0.705	0.708	0.717	0.715
£	2013	0.702	0.707	0.728	0.708	0.731	0.741	0.753	0.742	0.728	0.716	0.733	0.730
	2012	0.674	0.687	0.714	0.724	0.739	0.739	0.770	0.756	0.723	0.724	0.748	0.740

۷	Rural -	Other	Principa	al Arter	ials (3),	Minor	Arterial	s (4)					
G		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Š	2016	0.94	0.944	0.925	0.921	0.931	0.925	0.927	0.936	0.906	0.902	0.923	0.913
S,	2015	0.915	0.884	0.915	0.912	0.928	0.93	0.882	0.855	0.883	0.881	0.882	0.913
N	2014	0.876	0.883	0.886	0.884	0.889	0.902	0.894	0.899	0.889	0.879	0.890	0.898
R2	2013	0.894	0.897	0.902	0.893	0.890	0.903	0.900	0.894	0.897	0.887	0.895	0.901
	2012	0.877	0.889	0.898	0.883	0.886	0.883	0.892	0.885	0.901	0.897	0.892	0.892

A	Rural -	Major	Collecto	ors (5),	Minor (Collecto	ors (6), I	Locals	(7)				
G		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Š	2016	0.946	0.937	0.943	0.973	0.956	0.967	0.938	0.932	0.935	0.912	0.928	0.928
ίΩ,	2015	0.904	0.923	0.932	0.938	0.953	0.964	0.93	0.937	0.96	0.933	0.926	0.925
ຕ່	2014	0.965	0.941	0.945	0.916	0.927	0.929	0.932	0.923	0.917	0.909	0.912	0.911
Ĕ	2013	0.947	0.946	0.96	0.958	0.959	0.956	0.944	0.944	0.938	0.927	0.939	0.959
	2012	0.923	0.923	0.920	0.927	0.927	0.927	0.925	0.926	0.922	0.927	0.921	0.940

*Axle Adjustment Factors are applied to counts taken with portable counters utilizing a single pneumatic road tube. This type of counter registers two axle impacts as one vehicle. The axle factor is used to account for vehicle types having more than two axles, typically trucks with three or more axles.

Source: Indiana Department of Transportation Division of Asset Planning Office of Engineering and Asset Management

ANNUAL GROWTH FACTORS BY FUNCTIONAL CLASSIFICATION 2006 - 2016*

			Urban - I	nterstate (1)	, Principal A	Arterial (Fre	eways and l	znresswav	s) (2)		
			orban n		, i illoipai i	-	FROM		5) (=)		
	YEAR TO	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	2006	-	0.962	0.982	0.964	0.960	0.946	0.937	0.949	0.928	0.889
(5	2007	1.040	-	1.021	1.002	0.998	0.984	0.975	0.987	0.965	0.923
U1_SWG	2008 2009	1.018 1.038	0.979 0.998	1.019	0.981	0.977	0.963 0.981	0.954 0.973	0.966	0.945	0.904
S.	2003	1.038	1.002	1.013	1.004	-	0.985	0.976	0.988	0.963	0.922
- '	2010	1.057	1.017	1.038	1.019	1.015	-	0.991	1.003	0.982	0.939
	2012	1.067	1.026	1.048	1.028	1.024	1.009	-	1.012	0.990	0.948
	2013	1.054	1.013	1.035	1.016	1.012	0.997	0.988	-	0.978	0.936
	2014	1.077	1.036	1.058	1.038	1.034	1.019	1.010	1.022	-	0.957
	2015	1.125	1.083	1.106	1.085	1.081	1.065	1.055	1.068	1.045	-
	2016	1.128	1.086	1.109	1.088	1.084	1.068	1.058	1.071	1.048	1.003
		Urt	oan - Other I	Principal Ar	terials (3), N	linor Arteria	als (4). Colle	ctors (5 &6)	Locals (7)		
							FROM		, ()		
	YEAR TO	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	2006	-	1.013	1.046	1.050	1.042	1.024	1.025	1.040	1.029	0.985
(5	2007	0.987	-	1.032	1.036	1.029	1.011	1.012	1.026	1.016	0.972
SWG	2008	0.956	0.969	-	1.004	0.997	0.979	0.980	0.994	0.984	0.943
S	2009	0.953	0.965 0.972	0.996	-	0.993	0.975	0.976	0.990	0.981	0.938
	2010	0.959		1.003	1.007	- 1 010	0.982	0.983	0.997	0.987	0.945
U2	2011 2012	0.977 0.976	0.989 0.988	1.021 1.020	1.025 1.024	1.018 1.017	0.999	1.001	1.015	1.005 1.004	0.962 0.961
	2012	0.970	0.988	1.020	1.024	1.003	0.995	0.986	-	0.990	0.901
	2014	0.971	0.984	1.016	1.020	1.013	0.995	0.996	1.010	-	0.978
	2015	1.015	1.029	1.061	1.066	1.058	1.040	1.041	1.055	1.022	-
	2016	1.018	1.032	1.064	1.069	1.061	1.043	1.044	1.058	1.025	1.003
					, Principal A						
			nurai - II		, Principal A		FROM	xpressways	5) (2)		
	YEAR TO	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	2006	-	0.992	1.009	1.018	1.022	1.020	1.000	1.001	0.989	0.947
◄	2007	1.008	-	1.017	1.027	1.031	1.029	1.008	1.009	0.997	0.954
SWGA	2008	0.991	0.983	-	1.009	1.013	1.011	0.991	0.992	0.980	0.938
\geq	2009	0.982	0.974	0.991	-	1.004	1.002	0.982	0.983	0.972	0.930
ഗ	2010	0.978	0.970	0.987	0.996	-	0.998	0.978	0.979	0.968	0.927
E.	2011 2012	0.980	0.972	0.989	0.998	1.002	-	0.980	0.981	0.970	0.929
ш.	2012	1.000 0.999	0.992	1.009	1.018 1.017	1.022	1.020	- 0.999	1.001	0.989	0.947 0.945
	2013	1.011	1.003	1.008	1.029	1.021	1.019	1.011	1.012	0.900	0.945
	2014	1.056	1.048	1.066	1.025	1.033	1.077	1.056	1.058	1.041	-
	2016	1.07	1.062	1.08	1.089	1.093	1.091	1.07	1.072	1.055	1.013
	_0.0										
		1		Rural - Othe	er Principal			eriais (4)			
	YEAR TO	2006	2007	2008	2009	2010	FROM 2011	2012	2013	2014	2015
	2006	-	1.000	1.052	1.057	1.060	1.059	1.052	1.019	1.005	0.962
∢	2007	1.000	-	1.052	1.057	1.060	1.059	1.052	1.019	1.005	0.962
G	2008	0.951	0.951	-	1.005	1.008	1.007	1.000	0.969	0.956	0.915
SWG	2009	0.946	0.946	0.995	-	1.003	1.002	0.995	0.964	0.951	0.910
	2010	0.943	0.943	0.992	0.997	-	0.999	0.992	0.961	0.948	0.907
R2	2011	0.944	0.944	0.993	0.998	1.001	-	0.993	0.962	0.949	0.908
Ē	2012	0.951	0.951	1.000	1.005	1.008	1.007	- 1 022	0.969	0.956	0.914
	2013 2014	0.981 0.995	0.981 0.995	1.032 1.046	1.037 1.052	1.040 1.055	1.039 1.054	1.032 1.046	- 1.014	0.986	0.943
	2014	1.040	1.040	1.046	1.052	1.1055	1.1054	1.046	1.014	1.019	0.301
	2015	1.040	1.040	1.112	1.118	1.102	1.120	1.113	1.000	1.013	1.017
	2010									1.000	
			Rı	irai - Major (Collectors (ollectors (6),	Locals (7)			
	YEAR TO	2006	2007	2008	2009	2010	FROM 2011	2012	2013	2014	2015
	2006	-	0.993	1.062	1.054	1.058	1.054	1.054	1.046	1.036	0.991
٩	2007	1.007	-	1.070	1.061	1.065	1.061	1.061	1.054	1.043	0.998
G	2008	0.942	0.935	-	0.992	0.996	0.992	0.992	0.985	0.975	0.934
R3_SWGA	2009	0.949	0.942	1.008	-	1.004	1.000	1.000	0.993	0.983	0.941
S	2010	0.945	0.939	1.004	0.996	-	0.996	0.996	0.989	0.979	0.937
(m)	2011	0.949	0.942	1.008	1.000	1.004	-	1.000	0.993	0.983	0.941
Ĕ	2012	0.949	0.942	1.008	1.000	1.004	1.000	-	0.993	0.983	0.941
	2013	0.956	0.949	1.015	1.007	1.011	1.007	1.007	-	0.990	0.948
	2014	0.965	0.959	1.025	1.017	1.021	1.017	1.017	1.010	-	0.994
	2015	1.009	1.002	1.071	1.063	1.067	1.063	1.063	1.055	1.006	1 005
	2016	1.014	1.007	1.076	1.068	1.072	1.068	1.068	1.060	1.011	1.005

*Factors in this table are used to adjust previous year AADTs to a more current year for similarly classed roads (e.g. to adjust a 2006 urban interstate AADT to a 2010 equivalent, you would multiply the 2006 AADT by 1.042).

TRANSITION FROM OLD TO NEW FUNCTIONAL CLASSIFICATION AND FACTOR GROUPS

Old Functional Class Code	2010 Functional Class Code	2010 Funcional Class Description	Rural Code	Factor Group - Seasonal, Weekday, and Growth	Factor Group - Axle
01	1	Interstates	0	R1_SWGA	R1_SWGA
Not Applicable	2	Principal Arterial (Freeways and Expressways)	0	R1_SWGA	R1_SWGA
02	3	Other Principal Arterials	0	R2_SWGA	R2_SWGA
06	4	Minor Arterials	0	R2_SWGA	R2_SWGA
07	5	Major Collectors	0	R3_SWGA	R3_SWGA
08	6	Minor Collectors	0	R3_SWGA	R3_SWGA
09	7	Locals	0	R3_SWGA	R3_SWGA
11	1	Interstates	1	U1_SWG	U1_A
12	2	Principal Arterial (Freeways and Expressways)	1	U1_SWG	U2_A
14	3	Other Principal Arterials	1	U2_SWG	U2_A
16	4	Minor Arterials	1	U2_SWG	U3_A
17	5	Major Collectors	1	U2_SWG	U3_A
Not Applicable	6	Minor Collectors	1	U2_SWG	U3_A
19	7	Locals	1	U2_SWG	U3_A
11	1	Interstates	2	U1_SWG	U1_A
12	2	Principal Arterial (Freeways and Expressways)	2	U1_SWG	U2_A
14	3	Other Principal Arterials	2	U2_SWG	U2_A
16	4	Minor Arterials	2	U2_SWG	U3_A
17	5	Major Collectors	2	U2_SWG	U3_A
Not Applicable	6	Minor Collectors	2	U2_SWG	U3_A
19	7	Locals	2	U2_SWG	U3_A
01	1	Interstates	3	R1_SWGA	R1_SWGA
Not Applicable	2	Principal Arterial (Freeways and Expressways)	3	R1_SWGA	R1_SWGA
02	3	Other Principal Arterials	3	R2_SWGA	R2_SWGA
06	4	Minor Arterials	3	R2_SWGA	R2_SWGA
07	5	Major Collectors	3	R3_SWGA	R3_SWGA
08	6	Minor Collectors	3	R3_SWGA	R3_SWGA
09	7	Locals	3	R3_SWGA	R3_SWGA

Factor Initial
S = Seasonal Adjustment
W = Weekday Adjustment
G = Annual Growth
A = Axle Adjustment

Rural Code
0 = Outside Urban Area Boundary, Outside Corporation Boundary
1 = Inside Urban Area Boundary, Inside Corporation Boundary
2 = Inside Urban Area Boundary, Outside Corporation Boundary
3 = Outside Urban Area Boundary, Inside Corporation Boundary