INDOT BRIDGE DESIGN CONFERENCE Drilled Shaft

Mir A. Zaheer, P.E., Manager, Geotechnical Consultant Design Group, INDOT Derek Merida, VP/Bridge Operations, Milestone Contractors **February 21, 2023**

When contractors like to use Drilled Shafts

Cofferdams – To eliminate the requirement of cofferdams that is

Spread footer with multiple rows of piling

Foundation seal is required

Quality rock is reachable – 20' to 50' deep – but could be deeper

Drilled shaft in place of single row of piling?

Typically only if a cofferdam is required

And cored holes in rock are required for the piling

SR 26 Jay Co Original

SR 26 Jay Co Original

SR 26 Jay Co Drilled Shaft Option

Pler 2 Elevation

US 40 Hendricks Co Single Row Piling

US 40 Hendricks Co Drilled Shaft Option

Other Uses for Drilled Shafts

Spread footer on rock that requires cofferdam or shoring

Location requires limited vibration

Yellowwood Rd Brown Co Original

Yellowwood Rd Brown Co Drilled Shaft Option

Yellowwood Rd Brown Co Original Pier 2

Yellowwood Rd Brown Co Original Pier 3

Yellowwood Rd Brown Co Drilled Shaft Piers

Yellowwood Rd Brown Co

Yellowwood Rd Brown Co

Yellowwood Rd Brown Co

Williams Covered Bridge

Huron-Williams Rd over E. Fork White River

Huron-Williams Rd over E. Fork White River

INDOT BRIDGE DESIGN CONFERENCE Drilled Shaft

Mir A. Zaheer, P.E., Manager, Geotechnical Consultant Design Group, INDOT Derek Merida, VP/Bridge Operations, Milestone LLP February 21, 2023

Few Cost Reduction Incentive (CRI) Projects

Contract No.	Plan Contract Cost (\$)	CRI Cost (\$)	Total Cost Savings (\$)	Redesign Fees (\$)	Net Savings (\$)	
R-33239	1,155,659.76	965,578.54	190,081.22	61,500.00	128,581.22	
R-41542	1,895,370.70	1,631,528.57	263,842.13	112,350.00	151,492.13	
B-39294	1,512,251.77	1,044,081.70	468,170.07	76,000.00	392,170.07	
B-39818	N/A	N/A	132,000.00	47,000.00	85,000.00	
B-40568	962,477.43	824,085.64	138,391.79	40,000.00	98,391.79	

Foundation Selection Criteria

- Cost: Material, Labor, Inspection and Time
- Structural Loading Requirements: Compression, Uplift, deformations, cyclic and redundancy
- Design, Construction & Inspection: Standard practice and familiarity; Codes
- Noise, Vibration, clearance
- Rock, Karst, Boulders
- Contaminated Sites
- Availability: Materials, equipment, skilled contractors

Drilled Shaft Advantages

• Economics

- Minimizes Pile Cap dimensions
- May eliminate Cofferdams
- Integral shaft-column design minimizing costs
- Easy installation through boulders and cobble without deflections

- Use of fewer shafts than piles
- Eliminates vibration and noise issues
- Overcomes deeper scour depths

Drilled Shaft Disadvantages

- Requires construction expertise
- Quality is sensitive to construction procedures
- Requires specialty contractors, cleanout tools, rotators, oscillators, etc.
- Requires specialty inspection and acceptance:
 - integrity and performance testing, concrete samples, volume plots, NDT testing
- Care needed when artesian pressures exist
- Not recommended for contaminated sites
- Fewer foundation support elements, hence, less redundancy
- Requires specialty tests to prove capacity Osterberg Load Test
- Requires comparatively high deflections to mobilize shaft resistance

Driven Pile Advantages

- Economics
- Common HP and Pipe piles readily available
- Uses contractor's crane and forces
- No specialty contractor needed
- Good bid prices generally
- Pile groups provide design redundancy
- Easy to add additional piles if needed during construction redesign

Driven Pile Advantages

- Pile lengths relatively easy to extend with welding and splicing
- Inspection is relatively easy
 - Dynamic Formulae
 - It is a tested pile
 - Pipe piles can be visually inspected
 - PDA/CAPWAP can aid in assessing pile damage
- Soil is not removed unless open ended, No spoils, No caving, heave, or loss of support
- Loads are light enough to perform Static Load Tests to failure

NextLevel

Driven Pile Advantages:

- Standard Specifications straightforward
- Greater familiarity since driven piles are regularly installed
- Less complicated than wet/casing drilled shafts
- Greater speed since readily available prefabricated elements

, NextLevel

- Work area is neat and clean as no soil spoils
- Practical when artesian pressures exists

Driven Pile Disadvantages

- Noise and vibration limitations may limit the foundation choice
- Impact hammers may cause distress to nearby older structures and utilities
- Displacement piles may cause heave
- Cannot penetrate Rock
- Cobbles and Boulders may cause damage, misalignment and create drivability issues
- Thicker walls and larger diameter pile may be costly

Driven Pile Disadvantages

- Closed ended large diameter piles difficult to drive
- Sometimes difficulty in meeting uplift and fixity requirements
- Penetrating hard material without damage may require predrilling or pre-boring, reducing pile economy
- Greater lateral loads may require many piles or battered piles

NextLevel

• Difficult to install in low headroom conditions

Generalized Comparison

Driven Piles

- Smaller element
- Lower Capacity
- Lower cost
- More elements used
- Highly redundant
- Simple field inspection

Drilled Shafts

- Bigger elements
- Higher capacity
- Higher cost
- Fewer elements used
- Little to no redundancy
- More complex field inspection

Essentials For Successful Drilled Shaft Design & Construction

- Understand drilled shaft use
- Understand Geotech investigations and site characterization
- Understand design and specifications
- Educate constructors and designers about common issues so that good foundation construction practices are followed

Achieve quality assurance

Available Resources

 λ

US Department of Nanaportatio Federal Highwa

APRIL 2002

OFFICE OF BRIDGE TECHNOLOGY 400 SEVENTH STREET, SW WASHINGTON, DC 20590

GEOTECHNICAL ENGINEERING CIRCULAR NO. 5

EVALUATION OF SOIL AND ROCK PROPERTIES

Structural Foundations Earth Retaining Systems

HHL

bund Modification Techniques

vo. 5 • Georeenvie Soil and Rock Instabilities

Available Resources

U.S. Department of Transportation Federal Highway Administration

Publication No. FHWA-NHI-10-016 FHWA GEC 010 May 2010

NHI Course No. 132014

Drilled Shafts: Construction Procedures and LRFD Design Methods

Developed following:

AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007, with 2008 and 2009 Interims.

NCHRP SYNTHESIS 360 NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Rock-Socketed Shafts for Highway Structure Foundations

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Available Resources

Effective for Lettings with the 2022 INDOT Standard Specifications

| RSP Home | Division 100 | Division 200 | Division 300 | Division 400 |

| Division 500 | Division 600 | Division 700 | Division 800 | Division 900 |

*Revision Date = Date the Recurring Special Provision was Added or Revised (mm/dd/yy) **Letting Date = Effective for use on lettings on or after this date (mm/dd/yy) - Be sure to select the RSP or RPD for the correct letting date you need

Division	700 -	Structures
----------	-------	------------

722-B-318	Bridge Deck Overlays	06/16/22	12/01/22
724-B-086	Approved Expansion Joint SS Devices	03/21/06	09/01/13
<u>724-B-147d</u>	Alternate SS Joint Part	01/22/01	01/22/01
725-R-741	Cured-In-Place Pipe Liner, CIPP	09/16/21	03/01/22
725-R-746	Slip Lining of Existing Pipe	10/21/21	03/01/22
728-B-203	Drilled Shaft Foundations	04/25/21	09/01/21
731-R-743	Mechanically Stabilized Earth Retaining Walls	12/17/21	06/01/22
734-R-567	Limiting Movement Criteria For Permanent Earth Retention System For Cut-Wall Application (edit.)	08/20/09	09/01/13
<u>738-B-297</u>	Polymeric Concrete Bridge Deck Overlay	03/17/22	09/01/22
738-B-297	Polymeric Concrete Bridge Deck Overlay	12/16/22	03/01/23

https://www.in.gov/dot/div/contracts/standards/rsp/sep21/sep21.htm

FHWA GEC 10

- LRFD design Chapter 10
- Design process Chapter 11
- Lateral loading design Chapter 12
- Axial loading Design Chapter 13
- Shaft group design Chapter 14
- Extreme event design Chapter 15
- Structural design Chapter 16
- Specifications Chapter 18
- Quality Assurance Chapters 19 & 20

Why is Geotechnical Investigation Required?

- Determine site geology and groundwater conditions
- Determine appropriate soil and rock strength parameters
- Prepare geotechnical design report
- Perform engineering analyses for design
- Establish appropriate construction methods
- Prepare specifications
- Recommend load testing and QA program
- Make reliable cost estimates

NextLeve

Role of the Geotechnical Team

- Communicate site conditions and design recommendations to the design and construction teams
- Recommend alternate foundation elements within the geotechnical recommendations:
 - drilled shaft if cofferdam and rock is shallow, if difficult soils are present, and if scour depths are deep
- Aid in preparation of bid documents
- Aid in planning construction
- Help minimize change orders
- Provide technical support during design and construction

NextLevel

Recap Foundation Selection Considerations

- Time, risk, reliability
- Design Needs: axial, lateral, moment, extreme event
- Material, labor, construction cost
- Site access, causeway, congested site
- Impact on pile/shaft cap and structural design
- Noise, vibration, spoils, pollution
- Adaptability, ability to change or retrofit
- Sensitivity to construction procedures, site conditions
- Specifications, regulations
- Construction, inspection, acceptance/assurance expertise
- Weather, groundwater, and other impacts

NextLeve

Keys to a successful drilled shaft project

- Minimize construction issues through early recognition of geotechnical problems during design stage and designing accordingly
- Perform adequate subsurface investigation in advance of final design
- Perform Osterberg load test or APPLE Load test at the start of construction or at design stage
- Perform Integrity testing CSL, PIT/IRS & TIP during construction
- Select appropriate methods and materials for excavation support (dry, casing, slurry, combined)
- Check appropriate drilling equipment and tools for excavation Quality control plan
- Match field inspection (quality assurance) procedures with construction procedures

Conclusion

- Drilled shaft has excellent strength in flexure and high axial resistance
- The completed drilled shaft must be a competent structural element that provides sufficient structural strength in compression, tension and flexure to transfer the loads from the structure
- Carefully planned construction methods in conjunction with careful field observation and oversight are critical to a successful drilled shaft
- Non-destructive test methods such as CSL, IRS and TIP are essential for shafts build under wet/slurry methods
- Cost effective design decisions Good economics and engineering -Good communication between construction, geotech & design

Osterberg Load Test SR 57

Construction observation

Construction Issues

Thermal Integrity Profiling

Centering the Reinforcing Steel

Drilled Shaft I-465 Near I-74 on west side of Indy

Soil Elevations

Cross-Hole Sonic Log

Thermal Integrity Profile

