

Indiana State Police
Indiana Data and Communications System

OpenFox™ Message Switching Information
Broker

Remote Agency Interface Specifications for
DMPP-2020® & DSEO-2020®

11 October 2012

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - ii

WARNING

THIS DOCUMENT, AND ANY DERIVATIVE WORK

PREPARED FROM IT, ARE HEREBY DECLARED

SENSITIVE BUT UNCLASSIFIED (SBU) MATERIAL .

SUCH DOCUMENTS

SHALL NOT

BE POSTED TO A PUBLI C WEBSITE, AND

DISCRETION SHALL BE EXERCISED IN SHARING

THE CONTENTS OF THESE DOCUMENTS WITH

INDIVIDUALS AND ENTITIES WHO ARE NOT

ENGAGED IN LAW ENFORCEMENT OR THE

ADMINISTRATION OF CRIMINAL JUSTICE.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - iii

REVISION HISTORY
Revision Date Author Reason for Revision

2009/12/01 D. M. Paxton

This Document was compiled from several source
documents, with some revisions for conciseness. In
particular, information referring to Workstation data flows,
such as those involving Omnixx devices, has been omitted.

2012/10/11 D. M. Paxton
Replaced several references to other states’ ORIs as
originators in examples with Indiana ORIs. Also corrected
several grammatical issues from the original documents.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page iv

Table of Contents

Foreword ... - 1 -

1 Introduction ... - 4 -

2 Concepts .. - 6 -
2.1 Compatibility with NCIC designs .. - 6 -
2.2 Compatibility with State Designs ... - 6 -
2.3 Full Message Delivery Confirmation .. - 6 -
2.4 Communications Protocol Independent .. - 6 -
2.5 Applicable to all Processing Platforms ... - 7 -
2.6 Programmer Friendly ... - 7 -
2.7 Support for Security Issues... - 7 -
2.8 Support for Data Encryption .. - 7 -
2.9 Features can be Configured to Meet Different Requirements - 7 -
2.10 Levels of Implementation ... - 7 -
2.11 Flow Control ... - 7 -

3 Extended Message Header .. - 8 -
3.1 Definitions .. - 8 -

4 Extended Message Header Format ... - 9 -
4.1 Header Length .. - 9 -
4.2 Function Code .. - 9 -
4.3 Validation Field ... - 10 -
4.4 Data Length .. - 10 -
4.5 Status Codes for Request Messages .. - 10 -
4.6 Status Codes for Response Messages .. - 11 -
4.7 Destination ... - 11 -
4.8 Encryption Header Length.. - 11 -
4.9 Encryption Request Type ... - 12 -
4.10 Key Identification .. - 12 -

5 Service Levels ... - 13 -

6 Implementation Notes .. - 14 -
6.1 Integer Values .. - 14 -
6.2 Destination Codes .. - 14 -
6.3 Flow Control ... - 14 -
6.4 Keep-Alive Timer .. - 14 -
6.5 Coded Messages ... - 14 -
6.6 Encryption Functions .. - 15 -
6.7 Configuration Control ... - 15 -
6.8 Precise Error and Status Reporting .. - 15 -

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page v

7 Current OpenFox™ Implementation ... - 16 -
7.1 Message Header Fields .. - 16 -
7.2 Keep-alive ... - 17 -
7.3 Message Segmentation .. - 17 -
7.4 Binary Objects .. - 17 -
7.5 Message Examples ... - 18 -
7.6 Message ACKs... - 22 -
7.7 Operator Identification .. - 22 -
7.8 Input Message Formats .. - 22 -

7.8.1 The NLETS Format ... - 23 -
7.8.2 The NCIC 2000 Format .. - 24 -

7.9 Output Message Formats ... - 25 -

8 Abbreviated Guide to OpenFox™ Remote Agency Interfaces - 26 -
8.1 DMPP-2020® Message Block .. - 26 -

8.1.1 General Description .. - 26 -
8.1.2 “Header” Area Breakdown ... - 26 -
8.1.3 Message Data .. - 27 -
8.1.4 Message Header Fields ... - 27 -
8.1.5 Message Guidelines .. - 28 -

8.2 “Keep Alive” Messages ... - 29 -
8.2.1 DMPP-2020® “Keep Alive” from Server .. - 29 -
8.2.2 Response to Keep-Alive By OpenFox™ ... - 30 -

8.3 Trusted Server Messages ... - 30 -
8.3.1 NLETS Message Example ... - 31 -
8.3.2 NCIC Message Example ... - 31 -
8.3.3 ACK Response from OpenFox™ .. - 32 -
8.3.4 NLETS Response to Remote Server ... - 33 -
8.3.5 NCIC Response to Remote Server ... - 34 -

9 Introduction ... - 37 -
9.1 Example of Problems Caused by Multiple Standards - 38 -
9.2 DSEO-2020® Objectives .. - 41 -

10 DSEO-2020® Specifications .. - 42 -
10.1 DSEO-2020® Format Specifications ... - 42 -

10.1.1 Object Types ... - 43 -
10.1.2 Text Field ... - 43 -

10.2 DSEO-2020® Processing Specifications ... - 44 -
10.3 Examples using DSEO-2020® ... - 45 -

10.3.1 Previous Example Revisited .. - 45 -
10.3.2 Example: NCIC Enter Image (EIM) Transaction - 47 -
10.3.3 Example: AM Message .. - 47 -

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page vi

Figures

Figure 1 - STAP/STOP pattern values .. - 8 -
Figure 2 - Function Code values .. - 10 -
Figure 3 - Request Status Code values .. - 10 -
Figure 4 - Response Status Code values ... - 11 -
Figure 5 - Encryption Request Type values ... - 12 -

Tables

Table 1 - Service Levels ... - 13 -
Table 2 - Message Header fields ... - 16 -
Table 3 - DSEO-2020® Format Elements ... - 42 -

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 1 -

Foreword

This document offers a brief discussion of the benefits of utilizing this protocol within Law
Enforcement systems. This protocol provides compliance with national standards while also
providing an environment that is not burdensome for regional/remote systems to implement.

The Control System Agency (CSA) within each State must deploy systems that comply with the
requirements of national agencies such as NCIC and NLETS. The list below summarizes some of
these requirements:

 Guaranteed message delivery

 Identification of users responsible for transactions

 Ability to process transactions that meet national standards

 Ability to process image data

This protocol implements all of these requirements. DMPP-2020® is an application-to-
application protocol that guarantees delivery of messages. The CSA must be able to determine
the individual operator responsible for any message that traverses through the system. The
OpenFox™ system as implemented in conjunction with the DMPP-2020® protocol and the
inclusion of the user-id field achieves this requirement. The system supports all standard NLETS
and NCIC 2000 transactions. In addition, by using DMPP-2020® with its supplemental protocol
DSEO-2020™, the system will also be able to process images. DMPP-2020® is one of the
solutions that provide the framework required to process binary data.

In addition to the national standards, the CSA has an obligation to provide a consistent
environment to regional systems, which local agencies can implement with a reasonable
amount of effort while using state-of-the-art protocols and network facilities. The DMPP-2020®
protocol as implemented in the OpenFox™ system provides such an environment.

Datamaxx Applied Technologies wrote the DMPP-2020® portion of this document, which
describes the protocol. Computer Projects of Illinois, Inc wrote the remainder of the document,
which offers further details and message format examples.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 2 -

MESSAGE HEADER PROCESSING

IN THE
LAW ENFORCEMENT ENVIRONMENT

USING THE
DATAMAXX MESSAGE PROCESSING PROTOCOL

®

DMPP-2020®

Technical Specification

Published By:

DATAMAXX APPLIED TECHNOLOGIES, INC.
3780 PEDDIE DRIVE

TALLAHASSEE, FLORIDA, 32303
(850) 575-1023

www.datamaxx.com

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 3 -

Revision Levels:

Revision 0, August 1996
Revision 1, October 1996
Revision 2, June 1997
Revision 3, September 1997 (Registered Copyright – TX 4-624-223)
Revision 4, September 1997
Revision 5, September 1998
Revision 6, July 2000

This document contains proprietary information and trade secrets, and may only be
disclosed by written permission of Datamaxx Applied Technologies, Inc.

“Datamaxx Message Processing Protocol” and “DMPP-2020” are registered trademarks of
Datamaxx Applied Technologies, Inc. Other product names used within this document are
the trademarks of their respective holders and are hereby acknowledged as such.

©1996 – 2000 DATAMAXX Applied Technologies, Inc.
All Rights Reserved

No portion of this document may be reproduced, by any means without the express
written permission of the copyright owner.

Printed in the United States of America

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 4 -

1 Introduction

The purpose of this paper is to define a specification that can be implemented to provide
robust message handling in the Law Enforcement Environment.

As the transition to modern communications protocols continues, new problems and challenges
are presented to developers. This is especially true with “Open Systems”, in which there are
components from various vendors, all of which must operate in harmony.

With legacy systems, one vendor had control of processing, from the end user keyboard to the
host system and thus could control all standards, and could implement necessary functionality to
ensure that all messages were delivered reliably.

With “Open Systems” and diverse vendors, functionality tends to be implemented as a series of
layers, with information being passed up and down between layers. Complicating this is that fact
that the layers may be implemented as a series of disparate free running processes, in which data
is passed back and forth. Thus, an application may send data through several layers and processes
about which it has no knowledge. Each process or layer may acknowledge to the previous process
or layer that the data was successfully processed -- however error messages are often not
communicated to previous processes, the chain, and thus the originating application may not be
aware of an error; thus the need for “application to application” or “end to end”
acknowledgment.

Complicating the situation is that “Open Systems” are truly open, as they are designed to allow
easy interconnection. This immediately provides points of access that can be used for
unauthorized or abusive use of a system.

A further factor is that new protocols are “peer to peer” and do not provide a continuous status
monitoring (as is the case with “master slave” type protocols). This can lead to situations in which
an application can send a message to a destination that cannot process it. Since there is no
immediately available status, error indications may not be provided for several minutes (or at all)
and the sending application will not be aware of the situation.

Consider the following scenario:

1. Host prepares a message for transmission.
2. Host passes the messages to Communications sub-system.
3. Communications sub-system passes message to communications controller.
4. Sub-system sends message immediately to destination, but is not aware if any intermediate

devices (e.g. bridges or routers) are inoperative.
5. Remote communications processor receives message, acknowledges it, and places it in a

buffer.
6. Remote application crashes before reading buffer, or operator powers system off.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 5 -

In this scenario the host application would consider that the messages have been correctly
processed, when indeed it was not. Furthermore, many messages may have been sent and
buffered for a remote application that never processes them. There are also many other
potential points of failure that can leave the host in a state assuming a message was delivered,
when it actually was not delivered.

In order to eliminate these potential points of failure, a structure must be defined that can be
used universally. The approach defined herein uses a “Message Header” processing to achieve
full end to end confirmation of all messages.

The processing strategy is known as the “Datamaxx Message Processing Protocol (DMPP-
2020®)”.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 6 -

2 Concepts

In developing the message header processing, many factors were considered. These include:

 Compatibility with NCIC designs

 Compatibility with State designs

 Full message delivery confirmation

 Communications Protocol Independent

 Applicable to all processing platforms

 Programmer friendly

 Support for security issues

 Support for data encryption

 Features can be configured to meet different requirements

 Flow control is automatically provided to avoid flooding of a target system

The design that evolved involves the implementation of a special header in each message
packet. This header contains control fields that can be used to provide all functionality, as
needed. The header can also be defined as “optional” in order to allow remote systems to be
converted as available, rather than requiring a “big bang” conversion. This header will be
referred to as the “Extended Message Header” throughout this paper.

A discussion of each concept is warranted to provide background and rational for the design.

2.1 Compatibility with NCIC designs

This design leverages off the structure proposed for the NCIC 2000 system, in order to reduce
research and development time. It is not though, an exact copy of the NCIC structure.

2.2 Compatibility with State Designs

This design allows the Extended Message Header to be placed in front of existing message
formats, with no requirement to change those formats. This alleviates the requirement to
modify existing processing applications.

2.3 Full Message Delivery Confirmation

The Extended Message Header provides both positive and negative confirmation of message
delivery. For negative delivery confirmation, a reason code is provided.

2.4 Communications Protocol Independent

Although the obvious protocol that this specification can be applied to is TCP/IP, it is actually
protocol independent. It can operate on any binary transparent protocol, ranging from serial
links (e.g. mobile communications via CPDP IP packets) to mainframe protocols (e.g. LU 6.2).

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 7 -

2.5 Applicable to all Processing Platforms

This design is compatible with all processing platforms. This is achieved by careful sizing and
alignment of all data fields, in order to avoid alignment and size specification errors that are
generated by some processors.

2.6 Programmer Friendly

The design guards against assumptions made by various compilers. For example, some
compilers will automatically initialize data structures to null values, or just plain junk. This can
lead to subtle processing flaws. Thus, this specification does not allow any command, directive
or response code that is all null values, and requires that all values be verified. It is also
programming language independent. All Extended Message Header processing is symmetrical
with respect to direction (inbound and outbound).

2.7 Support for Security Issues

The Extended Message Header provides for full authentication of all connections, including
dynamic re-verification of connections at random intervals.

2.8 Support for Data Encryption

The Extended Message Header provides for full encryption of the data portion of messages.
This allows a full software solution to be implemented, independent of all communications
hardware. Dynamic key update and control is supported.

2.9 Features can be Configured to Meet Different Requirements

The features can be configured to meet the needs of a specific system. For example, the
Extended Message Header can be implemented using a few of its capabilities and then more
features can be activated as required.

2.10 Levels of Implementation

The specification can be implemented as “levels of service”, depending on what options are
selected. Thus, it can be adapted to many different needs and environments.

2.11 Flow Control

The Extended Message Header can provide a natural flow control, if desired by the
implementer.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 8 -

3 Extended Message Header

The Extended Message Header is a structure that is inserted in a cleanly delineated message
block. The general structure of the message block is as follows:

STAP 4 character start pattern

Block Length 32-bit signed integer1

Header Extended Message Header (Defined in Section 4 below)

Data Variable length data

STOP 4 character stop pattern

For consistency across platforms, all values in the header are stored in “Network Byte Order”.
This order places the most significant byte first, descending to the least significant byte reading
to the right. This is contrary to the method used on some Intel platforms (notably the 80X6
family) and thus the implementation must handle this situation as required.

3.1 Definitions

The “STAP” (Start Pattern) and “STOP” (Stop Pattern) are currently defined as hexadecimal
patterns as follows:

STAP ff,00,aa,55 (\xff\x00\xaa\x55) x‘FF00AA55’

STOP 55,aa,00,ff (\x55\xaa\x00\xff) x‘55AA00FF’
Figure 1 - STAP/STOP pattern values

The minimum block size is 28 characters, which can occur when the Extended Message Header
length is 16 and there is no data present. The maximum block size is 2,147,483,647 (231 – 1).
Thus, the value of the Block Length field must never be less than 28 or more than
2,147,483,647.

1
 The Block Length field encompasses the whole packet, including the “STAP” (Start Pattern), Block Length field

itself, Extended Message Header, data (if any present) and the “STOP” (Stop Pattern).

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 9 -

4 Extended Message Header Format

The Extended Header Message has the following required format:

Header Length 16-bit signed integer

Function Code 16-bit signed integer

Validation Field 32-bit unsigned integer

Data Length 32-bit signed integer

Status Code 16-bit signed integer

Destination 16-bit signed integer

The Extended Header Message has the following optional extension for encryption:

Length 16-bit signed integer

Request Type 16-bit signed integer

Key Id 32-bit unsigned integer

In the following charts, all numbers are expressed as decimal integers. They can be converted
to other number systems (e.g., octal or hex) as required. Note how the use of zeros is
consistently avoided.

Each field is discussed in detail, as follows:

4.1 Header Length

The length is a 16-bit integer that encompasses all the header data, including the length field. It
will be either 16 or 24, depending on whether or not an encryption control is present.

4.2 Function Code

The Function Code defines the processing path of the message. Currently defined values
include:

1 Data message with no acknowledgment, final block

2 Data message with acknowledgment, final block

3 Data message with no acknowledgment, more blocks to follow2

4 Data message with acknowledgment, more blocks to follow2

17 Positive acknowledgment to data message3

2
 Function Codes 3 and 4 are used to indicate that the message will be sent in multiple blocks with Function Codes

1 and 2 used to indicate the last block. Each block in such messages must use successive values in the validation
field.
3
 Status Code is set to “Successful receipt of data message”.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 10 -

18 Negative acknowledgment to data message4

33 Request status of system

34 Response to status request5

49 Send Coded Message 1

50 Send Coded Message 2

65 Positive response to Coded Message 1

66 Positive response to Coded Message 2
Figure 2 - Function Code values

4.3 Validation Field

This unsigned integer field defines a number that is used to create a unique identification for
each message, and will be returned on its corresponding acknowledgment. Its format is up to
the implementer. This value may be all zeros, as it is not inspected but simply returned to the
requester intact.

4.4 Data Length

This field defines the length of the actual data portion of the message. It is used for
redundancy checking. It must be zero for status and status response messages. The maximum
value is 2,147,483,619 (231 – 1 – 28).

4.5 Status Codes for Request Messages

This field contains the status code that can be included in request messages. Currently defined
values include:

01 Message may contain binary object in Unisys format6

02 Message doesn’t contain binary object

03 Message contains binary object in NCIC transaction format6

04 Message contains binary object in NCIC response format6

05 Message contains binary object in DSEO-2020™ format6

06 Message contains binary object in Unisys format6

33 Message may contain binary object in Unisys format6
Figure 3 - Request Status Code values

4
 Error is defined in the Status Code field.

5
 Status is defined in the Status Code field

6
 Any message that can contain a binary object in any of the supported formats can contain multiple binary objects

but they must all be in the same format.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 11 -

4.6 Status Codes for Response Messages

This field contains the status code that can be returned in responses. They should be used only
with responses -- never part of request messages (i.e., status codes are not “piggybacked” onto
a request.)

The code returned will depend on the type of request received, (e.g., a write request with
acknowledgment, or an explicit request for status). Currently defined values include:

01 Successful receipt of data message

17 Permanent (i.e., non recoverable) error occurred (e.g., disk failure)

18 Temporary (i.e., recoverable) error occurred (e.g., printer out of paper)

19 Logical error occurred (e.g., too many messages received too quickly, and thus a queue
containing acknowledgments filled up)

20 Message length exceeds maximum, message will be discarded

33 Queried destination is available and ready

34 Queried destination is available, but not ready (e.g., printer has buffer space, but is out of
paper)

35 Queried destination is not available and not ready

49 Invalid function code received

50 Invalid (or non-existent) destination received

51 Invalid Extended Message Header format (or length) received

52 Function not supported

65 Attempt to start encryption with no key definition

66 Invalid encryption header format (or length) received

67 Encryption not supported.
Figure 4 - Response Status Code values

4.7 Destination

This 16-bit integer defines a logical destination. This permits a packet to be addressed to
different logical units, and effectively creates a “cluster” at a location. The actual definition is
up to the implementer and the configuration. This permits logical units to be defined for
specific purposes (e.g., a destination for “Hit Confirmation” messages), and permits
implementation of message priorities. The value of “0” is invalid. The value of “-1” is
considered a broadcast to all defined destinations.

4.8 Encryption Header Length

This 16-bit integer defines the length of the optional encryption header. A length of zero is
invalid.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 12 -

4.9 Encryption Request Type

This 16-bit integer defines the encryption function requested.

Currently defined values include:

1 Start encrypting messages

2 Stop encrypting messages

17 Load encryption Key

18 Clear encryption key

33 Set key identification
Figure 5 - Encryption Request Type values

4.10 Key Identification

This 32-bit integer defines the index into the key table to locate the key to be used for
encrypting future messages.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 13 -

5 Service Levels

The DMPP-2020® specification allows for service levels. A service level defines that
functionality that has been activated for a given endpoint on a communications network.

The following service levels are defined.

Level Services Provided

Level 1 Provides the functionality for handling message header functions from 1 through
47 (as they may be defined). This functionality encompasses guaranteed delivery
of messages and full status checking, but does not include authentication or
encryption.

Level 2 Provides the functionality as described in Level 1 and adds the functionality for
system authentication (function codes 49 through 79, as they may be defined).

Level 3 Provides the functionality as described in Level 2 plus adds the encryption options
via the extensions for encryption.

Table 1 - Service Levels

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 14 -

6 Implementation Notes

The following notes are presented to give an insight into how the Extended Message Header
may be applied to various functions.

6.1 Integer Values

In this specification all integers are positive signed values, unless otherwise noted.

6.2 Destination Codes

The destination field does not have to replace existing header structures. It is meant to
augment them. This technique permits many logical units to be addressed by a single Host
address (e.g., a single TCP/IP address). This eliminates large control tables, and their associated
maintenance (e.g., holes in firewalls). The application may still process existing headers (e.g.,
those used on a Bi-Sync 2780 line).

6.3 Flow Control

By use of the “Write with Acknowledge” function, flow control may be achieved. The
application can be structured to allow any number of messages to be outstanding at any time,
subject only to the limits of the receiver. If the limit is set to “1”, automatic flow control is
achieved.

6.4 Keep-Alive Timer

This implementation provides full keep-alive support at the application level. A keep-alive
probe is a packet with a Request Status Function code and no data length. If an appropriate
Response to Status Request is returned, then the connection is intact. Note that this can also
be used to temporarily suspend traffic by responding with a Status 34 (temporarily unavailable).

6.5 Coded Messages

Coded messages are used to authenticate connections. Their use is specific, as follows:

A Session requesting a connection provides a predictive string of data (e.g., a logical name) and
encodes it in such a way that the receiver can decode it. This can be done by using a known
element (e.g., System Name, Date, circuit number, telephone number, etc.) and encoding it
using a Huffman coding, or other encoding process. It sends it as a Coded Message 1 Function
to the receiver.

The receiving session encodes a similar string (that is why it must be predictive) and compares
it to the received string. If a match is found, a Response Code of 65 is sent, with no data. If no
match, the receiver is silent (Why tell the crook how he failed).

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 15 -

Either side of the session may send a Coded Message 2 request at any time. The Coded
Message 2 has a random data string as its data portion. The receiver adds another predictive
string of data to the coded data, re-encodes it, and returns it as a response code 66 to the
sender.

The Coded Message 2 sender analyzes the response. If valid, processing continues (there is no
response). If invalid, the connection is terminated, due to suspected invasion of the system.

The exchange of Coded Message 2 functions may occur at any time, thus creating a “keep-
alive”, as well as continually re-authenticating connections.

The encoded data in the Coded Message 2 may also be used as the encryption key, by inserting
the optional encryption header.

6.6 Encryption Functions

The encryption functions are implemented implicitly. The presence of the optional encryption
header defines an encryption function. If a Write Data function is performed with the
encryption header, and the header defines a key load, then the data portion of the message is
assumed to be the new key. This is consistent with the concept of loading the Coded Message
2 data as the key.

The encryption header will only require that the Key Identification field be present for the “Set
Key Identification” function. It will be ignored for other functions. The length field must always
be correct, though.

The “Set Key Identification” is for systems that do not want to exchange actual keys as data, but
prefer to keep a table loaded at a site. In that case, the key id is the index into the table.

Note that this does not speak to the encryption algorithm actually used. The algorithm strategy
must be defined by the implementer.

6.7 Configuration Control

The features listed may be made configurable. For example, some systems may not support
encryption, while others may allow many messages to be queued before acknowledgment.
Other systems may require coded messages. These should all be implemented via service
levels, not by specific option enabling techniques.

6.8 Precise Error and Status Reporting

The response codes permit isolation of errors clearly and cleanly. For example, there are codes
for both “Invalid Function” and “Unsupported Function”. This permits an interface to query a
peer interface to determine what level of functionality is supported.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 16 -

7 Current OpenFox™ Implementation

This section of the specifications is meant to provide practical examples for the implementation
of the DMPP-2020® protocol in the OpenFox™ environment. The following section will
document the specific technique which OpenFox™ uses to provide reliable, binary object
capable communications. The OpenFox™ system embraces the widely accepted standards of
communication put forth in the NCIC and NLETS TCP/IP specifications and therefore
implements DMPP-2020® in a manner complying with these national standards. The OpenFox™
system currently implements DMPP-2020® service level 1. The system uses the application
level acknowledgments to reliably deliver messages, as well as the status checking function to
implement an idle line timer. The OpenFox™ system requires the segmentation of large
messages and an indication of which, if any, message segments contain image data. The
OpenFox™ system will require client data messages to present images in the DSEO-2020™
format. The OpenFox™ system does not use the authentication or encryption functions
specified in service levels 2 and 3 at this time.

7.1 Message Header Fields

There are six fields in the extended message header, which are all used by OpenFox™. The
fields, and the appropriate values, appear below.

Header Length This field is always set to 16 (x‘0010’).

Function The functions supported are: (hex)

0001 Data Message, no ACK, Final Block

0002 Data Message, ACK requested, Final Block

0003 Data Message, no ACK, More to Follow

0004 Data Message, ACK requested, More to Follow

0011 Positive ACK to data message

0012 Negative ACK to data message

0021 Request system status

0022 Status response

Validation The contents of this field are returned by OpenFox™.

Data Length This field represents the data length as an unsigned 32-bit number.7

Status The OpenFox™ uses this field as documented in the DMPP-2020® spec.

Destination The value is always set to hex 0001 on outgoing messages, and ignored on
inbound messages.

Table 2 - Message Header fields

7
 No single block may be larger than 65,535.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 17 -

7.2 Keep-alive

The OpenFox™ uses the status request/response function to act as an idle line timer.
OpenFox™ will terminate a connection that has had no activity for 60 seconds. To prevent an
idle connection from terminating, clients are expected to issue a system status request message
before 60 seconds of idle time. CPI recommends sending this request every 45 seconds if no
other traffic has been sent during that time. The OpenFox™ will respond with a “system
available” status response and reset the idle timer for the connection.

7.3 Message Segmentation

To maximize resource efficiency at the central site and to manage a large number of client
connections the OpenFox™ system requires that messages larger than 65,535 bytes be
segmented. The term segment and block are used interchangeably. If a DSEO-2020™ object is
present in a message, it must be completely contained within a single message segment.
Please note that a single message segment may contain multiple DSEO-2020™ objects (so long
as their combined size is under the 65,535-byte limit). A message may be broken into any
number of segments, and each segment need not attain the 65,535-byte maximum. If the
function code for a data message requests an ACK, and is not the final block, the next block
should not be sent until the ACK for the prior block is received. Likewise, after sending a final
block requesting an ACK, the next message should not be started until the ACK is received. If no
ACK is received for a data block within 60 seconds the connection should be closed and a new
connection attempted. Any partially completed message (some blocks sent and ACK’ed but not
all) should be resent in its entirety upon successful establishment of the new connection.

7.4 Binary Objects

As documented above, OpenFox™ requires that all inbound and outbound objects be wrapped
in DSEO-2020™ format. An object when present must be completely contained with a single
segment. The status field in the DMPP-2020® header should reflect the content of the block.
The two status codes used are:

01 Message segment contains no object data

05 Message segment contains at least one DSEO-2020™ formatted image

Please note that in the DMPP-2020® specification status code 01 states “Message may contain
binary object in Unisys format.” Since OpenFox™ does not support Unisys formatted objects
this code is used to indicate no object is present. OpenFox™ will only scan segments for DSEO-
2020™ objects if they have the status code set to “05”. OpenFox™ will insure that all segments
bound for the peer have the status code set correctly, so the peer need not scan for DSEO-
2020™ objects if the segment status code is set to “01”.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 18 -

7.5 Message Examples

The following are example messages taken from a live system TCP/IP trace. First, we’ll look at a
status request message. The OpenFox™ received the following message from a client device:

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 0000001c 00100021 31363138 |...U.......!1618|
00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

FF00AA55 Start Pattern

0000001C Message length (total length of this data message)

0010 Extended Header length (always 16 - hex 10)

0021 Function - Request system status

31363138 Validation Code - this will be returned (see response below)

00000000 Data Length - this is zero for status messages

0021 Status Code - ignored

0001 Destination - ignored

55AA00FF Stop Pattern

This message caused OpenFox™ to reset the idle timer for this connection, and respond with
the following message:

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 0000001c 00100022 31363138 |...U......."1618|
00000010 00000000 00210001 55aa00ff |.....!..U... |

The message breakdown is:

FF00AA55 Start Pattern

0000001C Message length (total length of this data message)

0010 Extended Header length

0022 Function - Status Response

31363138 Validation Code - echoed from the status request

00000000 Data Length - this is zero for status messages

0021 Status Code - Available and ready

0001 Destination - always set to 1

55AA00FF Stop Pattern

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 19 -

The next examples are a data message received from the client, and the ACK returned by the
OpenFox™. First, the following message is received by OpenFox™ (from a client device):

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 00000053 00100002 32313230 |...U...S....2120|
00000010 00000037 00210001 464f5859 2e52512e |...7.!..FOXY.RQ.|
00000020 2a484152 52592e49 4e495350 30303339 |*HARRY.INISP0039|
00000030 2e53442e 4c49432f 33413236 3739362e |.SD.LIC/3A26796.|
00000040 4c49592f 31393939 2e4c4954 2f504355 |LIY/1999.LIT/PCU|
00000050 aa00ff |... |

The message breakdown is:

FF00AA55 Start Pattern

00000053 Message Length

0010 Extended Header length

0002 Function - Data message, ACK requested, final block.

32313230 Validation Code

00000037 Data length - length of the actual message data (from FOXY to LIT/PC).

0021 Status Code - ignored

0001 Destination - ignored

464F thru
5043

Message Data (text)

55AA00FF Stop Pattern

The OpenFox™ responds with:

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 0000001c 00100011 32313230 |...U........2120|
00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

FF00AA55 Start Pattern

0000001C Message Length

0010 Extended Header length

0011 Function - Positive ACK

32313230 Validation Code - echoed from the input message

00000000 Data length - zero

0001 Status Code (meaningless)

0001 Destination (always 1)

55AA00FF Stop Pattern

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 20 -

The next two examples are a message generated by OpenFox™ and sent to a client, as well as
the client’s response. First, the following message was sent by OpenFox™ to a client device:

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 000000b4 00100002 00000001 |...U............|
00000010 00000098 00010001 464f5859 2e2a4841 |........FOXY.*HA|
00000020 5252592e 4e434943 20202020 20202031 |RRY.NCIC 1|
00000030 33363731 2031373a 33353a32 32204d52 |3671 17:35:22 MR|
00000040 49203039 30313831 0d0a464f 58592020 |I 090181..FOXY |
00000050 20202020 20303030 30392031 373a3335 | 00009 17:35|
00000060 3a323220 30362f31 362f3230 30300d0a |:22 06/16/2000..|
00000070 0d0a314c 3031464f 58592c4d 52494430 |..1L01FOXY,MRID0|
00000080 39303138 300d0a49 4e495350 30303339 |90180..INISP0039|
00000090 0d0a4e4f 20524543 4f524420 4c49432f |..NO RECORD LIC/|
000000A0 33413236 37393620 4c49532f 53440d0a |3A26796 LIS/SD..|
000000B0 55aa00ff |U... |

The message breakdown is:

FF00AA55 Start Pattern

000000B4 Message Length

0010 Extended Header length

0002 Function - Data message, ACK requested, final block

00000001 Validation Code - should be returned in the client’s ACK

00000098 Data Length - from FOXY to ‘CR’’LF’

0001 Status Code (meaningless)

0001 Destination (always 1)

464F thru
0D0A

Message Data

55AA00FF Stop Pattern

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 21 -

The client responded with the following acknowledgment:

Offset Hex Data ASCII Equivalent
-------- ----------------------------------- ------------------
00000000 ff00aa55 0000001c 00100011 00000001 |...U............|
00000010 00000000 00010001 55aa00ff |........U... |

The message breakdown is:

FF00AA55 Start Pattern

0000001C Message Length

0010 Extended Header length

0011 Function - Positive ACK

00000001 Validation Code - returned from the OpenFox™ output

00000000 Data Length - zero

0001 Status Code - ignored

0001 Destination - ignored

55AA00FF Stop Pattern

The examples represent the normal operation of a line. The two systems exchange data
messages, and during idle periods, the first example of status request/response is conducted.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 22 -

7.6 Message ACKs

One final consideration that is not covered in the examples is that data messages may be sent
with a function code of “0001 - data message, no ACK, final block.” If the OpenFox™ sets this
value in the function field, it is not expecting an ACK to the message, and one should not be
sent to OpenFox™. Likewise, if a client device sets this value in the function field, OpenFox™
will honor it and not send an ACK. CPI recommends the use of the message ACKs for all
standard user transactions.

7.7 Operator Identification

In order to comply with the CJIS Security Policy published by the FBI, the OpenFox™ system
supports the identification of device operators. This feature is implemented through the use of
the message header from the remote system.

The system will validate the User ID and report a security violation if the User ID has not been
configured or the user-id is not associated with the incoming station.

7.8 Input Message Formats

Messages from the trusted server workstation to the OpenFox™ system will be constructed
depending on the destination. For this particular type of service the OpenFox™ system will be
configured to support a communications interface called the “server” and either one or all
nodes behind the interface called “TDAC” (Trusted Destination Address Code).

The header associated with input from these devices will be as follows:

TDAC.Reference.UserID.

Where:

TDAC Is the State-assigned name of the device from which the message is
originating

Reference Is a 10 character alphanumeric field, useful by the originator for local routing

UserID The State-assigned user ID field

Message input from these devices will follow the NLETS Format and the NCIC 2000 Format as
described below.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 23 -

7.8.1 The NLETS Format

These messages include all of the valid NLETS MKEs, as well as any State-specific MKEs for
which the processing rules are identical to those of NLETS. They will follow the NLETS standard
message format except that the TXT statement will be optional. The input message must
contain a list of the destinations in order for the system to route the messages.

Following is a description of the NLETS format:

[header.]MKE.ORI.Destinations.Control-Field.TXT(optional) and text.

Where:

MKE The MKE field is a valid NLETS message key must be configured in the system, if
not an error message will be returned to the input station indicating “invalid
MKE”. In addition, the incoming session will be checked to see if it has the
authority to execute the message key. If not an error message will be generated
back to originating station indicating ‘not authorized to use MKE’.

ORI The ORI must be the valid ORI assigned to the input station. If the ORI is not
valid or if it is not assigned to the originator an error will be returned.

DEST The destination field is variable in length; it must be composed of a valid two
character State code or a valid destination depending on the message type.
Multiple destinations may be specified, in which case they must be separated
with a comma. The entire field must always be terminated with a period.

CTL-FLD The control field is an optional field. If present the first character must be an
asterisk and must be followed by exactly 10 additional characters. If present
the field must be terminated with a period, if not present nothing must be sent.

TXT This is an optional lit and is not required.

TEXT This is the actual text of the message; it is normally composed of Message Field
Code descriptors and their associated data. Each field except the last must be
terminated with a period.

Examples:

[header.]RQ.IN0000000.IL.*1234567890.LIC/ABC123.LIY/2000.LIT/PC

Where:

RQ Message key – Vehicle Registration Query

IN0000000 The ORI

IL The destination State

*1234567890 The optional control field

Text The text of the message comprises the remainder of the message

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 24 -

7.8.2 The NCIC 2000 Format

These messages will include all of the valid NCIC and IDACS Hot File MKEs. They will be routed
to the proper destination even though a destination field is not provided. As is the case with
NLET formatted messages, these messages can also generate transactions to other data bases
depending on the specific MKE configuration. All valid IDACS Hot Files database and NCIC 2000
transactions will follow this format. The format of the messages is described below:

[header.]MKE.ORI.text

Where:

MKE The MKE field must be a valid NCIC message key, if not an error message will be
returned to the input station indicating “invalid MKE”. In addition, the incoming
session will be checked to see if it has the authority to execute the message key. If not
an error message will be generated back to originating station indicating ‘not
authorized to use MKE’.

ORI The ORI must be the valid ORI assigned to the input station. If the ORI is not valid or if
it is not assigned to the originator an error will be returned.

Text The text portion of the message keys will comply with NCIC standards.

Example:

[header.]QV.IN0000000.LIC/ABC123.LIS/IN

Where:

QV The NCIC message key - Query Vehicle

IN0000000 The ORI assigned to the input station

Text The remainder of the message is text: LIC/ABC123.LIS/IN

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 25 -

7.9 Output Message Formats

This section will describe output message formats to any stations utilizing the DMPP-2020®
protocol.

The processing header will be used by the receiving system to perform processing related to
grouping and displaying the messages. The format of the processing header is as follows:

TDAC.Reference.Source.MKE.Date/time.

Where:

TDAC Is the name of the device to which the message is addressed

Reference Is a 10 character alphanumeric field as entered with the original request, it will
contain the constant UNKNOWN for responses for which the value is not known or
the constant UNSOL if the message is an administrative message.

 Source This field will consist of the OpenFox™ mnemonic associated with the source of
the message.

MKE This is the response MKE, wherever possible this will be the same as the
request message key, AM for administrative messages, SM for notifications, ER
for error notices.

Date/Time This will be the date and time that the message is being output by the switch, it
will have the format YYYYMMDDHHMMSSxx

Where:

YYYY The 4 character numeric year

MM Two character numeric month

DD Two character numeric day

HH Two character numeric hour (military format)

MM Two character numeric minute

xx Two character numeric field representing hundredth of a second

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 26 -

8 Abbreviated Guide to OpenFox™ Remote Agency Interfaces

8.1 DMPP-2020® Message Block

8.1.1 General Description

The DMPP-2020® message block is comprised of the following five (5) areas:

STAP 4 character start pattern

Block Length Overall message length of entire message block as a 32-bit signed integer

Header Extended Message Header, comprised of six (6) elements as described in Section 8.1.2 below

Data Variable text comprising the data “payload” of the transaction

STOP 4 character stop pattern

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 <binary block length> <see below> <message data> 55AA00FF

8.1.2 “Header” Area Breakdown

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

16-bit signed integer
VALUE = 16 (x0010)

16-bit signed integer
VALUE (hex) = 0001,
0002, 0003, 0004,
0011, 0012, 0021,
0022

32-bit unsigned
integer (content
returned by
OpenFox™)

32-bit signed integer8 16-bit signed integer 16-bit signed integer
VALUE = 0001 on
Outgoing Msgs &
Ignored on inbound
Msgs

8
 The BLOCK LENGTH must be greater than DATA LENGTH by the amount equal to the length of the DMPP-2020® envelope which is 28 bytes total.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 27 -

8.1.3 Message Data

The message data area will immediately following the “Header” fields and will precede the STOP pattern. For acknowledgements
and “Keep Alive” messages the data length is zero so no data is present.

Message Data

8.1.4 Message Header Fields

There are six fields in the message header, which are all used by OpenFox™. The fields, and the appropriate values, appear below.

Header Length This field is always set to 16 (x‘0010’).

Function The functions supported are: (hex)
0001 Data Message, no ACK, Final Block

0002 Data Message, ACK requested, Final Block

0003 Data Message, no ACK, More to Follow

0004 Data Message, ACK requested, More to Follow

0011 Positive ACK to data message

0012 Negative ACK to data message

0021 Request system status

0022 Status response

Validation The contents of this field are returned by OpenFox™.

Data Length This field represents the data length as an unsigned 32-bit number.9

Status The OpenFox™ uses this field as documented in the DMPP-2020® spec.

Destination The value is always set to hex 0001 on outgoing messages, and ignored on inbound messages.

9
 No single block may be larger than 32,767.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 28 -

8.1.5 Message Guidelines

1. The end point must initiate the connection, using a “connect” with the IP address and Port number provided by OpenFox™.
2. Either end may break the connection at any time. The end point should wait a short period (e.g. 30 seconds) when attempting to

re-connect, or if initial connect fails before re-issuing the “connect”.
3. The end point should wait for the DMPP “ACK” from a message before sending the next one.
4. The End point should not consider a sent message delivered until the DMPP “ACK” is received from OpenFox™.
5. The end point should store a received message safely before sending the DMPP “ACK” to OpenFox™. Store time should not

exceed 1 second from receipt of message to sending of the “ACK”.
6. Be careful to observe “Network Byte Order” rules for the integer fields in the DMPP Message Header.
7. Be careful to initialize all header fields correctly.
8. Note that the “keep alive” time is based from last activity -- it is NOT a periodic clock time.
9. Scanning for the end pattern is not enough to ensure block integrity, as that pattern can appear legally in images. The length

field MUST also be used.
10. Be advised that the end pattern can be broken across received data blocks. Data must be read as a character stream.
11. Note that the length field for the entire DMPP message block includes itself and the start and stop patterns
12. General received packet process:

a. Search for “Start” Pattern
b. Calculate Length from Next 4 Characters
c. Length Includes the “Start and “End” Patterns (12 Characters Overhead)
d. Accumulate Until All Length Exhausted
e. Verify “End Pattern”
f. Process header and then data (if any)

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 29 -

8.2 “Keep Alive” Messages

The OpenFox™ uses the status request/response function to act as an idle line timer. OpenFox™ will terminate a connection that
has had no activity for 60 seconds which allows for a single “missed” keep alive message.

8.2.1 DMPP-2020® “Keep Alive” from Server

(30 seconds from last activity)

Input Stream (Hex): FF00AA550000001C0010002131363138000000000021000155AA00FF

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 Hex = 0000 001C <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0021 Hex = 3136 3138 Hex = 0000 0000 HEX = 0021 Hex = 0001

Message Data

(no data)

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 30 -

8.2.2 Response to Keep-Alive By OpenFox™

Output Stream (Hex): FF00AA550000001C0010002231363138000000000021000155AA00FF

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 Hex 0000 001C <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0022 Hex = 3136 3138 Hex = 0000 0000 Hex = 0021 Hex = 0001

Message Data

(no data)

8.3 Trusted Server Messages

Input from remote servers will be preceded by three “control” type fields. The fields are “TDAC” (Terminal Device Address Code),
“REFERENCE”, and “USER-ID”. The “TDAC” field identifies the device from which the message came. That is the device behind the
remote interface. “Reference” is the field similar to the NLETS or NCIC control field and will be returned to the remote server in any
response. This field many times is used for remote server routing purposes. The “User-ID” field identifies the user behind the
remote server that is operating the remote workstation or device. All fields are required.

TDAC Maximum 11 alpha-numeric characters

REFERENCE Maximum 10 alpha-numeric characters

USER-ID Maximum 30 alpha-numeric characters

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 31 -

8.3.1 NLETS Message Example

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 Hex = 0000 006A <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0002 Hex = 3231 3230 Hex = 0000 004E Hex = 0001 VALUE = 0001

Message Data

SHFSYS001.CAR054MDD.GTOODY.RQ.IN0930901.IL.TXT{0D0A}NAM/RECORD,TEST.DOB/19430504

8.3.2 NCIC Message Example

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 Hex = 0000 0060 <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0002 Hex = 3231 3230 Hex = 0000 0044 Hex = 0001 VALUE = 0001

Message Data

SHFSYS001.CAR054MDD.GTOODY.QW.IN0930901.NAM/RECORD,TEST.DOB/19430504

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 32 -

8.3.3 ACK Response from OpenFox™

Output Stream (hex): FF00AA550000001C0010001132313230000000000001000155AA00FF

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 hex = 0000 001C <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0011 Hex = 3231 3230 Hex = 0000 0000 Hex = 0001 Hex = 0001

Message Data

(no data)

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 33 -

8.3.4 NLETS Response to Remote Server

Messages output to Remote Servers by OpenFox™ using DMPP-2020® will be preceded by the “TDAC” and “REFERENCE” fields,
terminated by periods. For unsolicited messages, the reference field will be blank.

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 VALUE (hex) = 0000 0050 <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0002 Hex = 3231 3230 Hex = 0000 0034 Hex = 0001 VALUE = 0001

Message Data
10SHFSYS001.CAR054MDD11.RR.ILLIC0000{0D0A}
05:35 01/08/2004 03911{0D0A}
05:35 01/08/2004 01326 IN0930901{0D0A}
*MRI3718976{0D0A}
TXT{0D0A}
010804 0632{0D0A}
{0D0A}
 LIC/TEST1234 INVALID{0D0A}
LIC/TEST1234.LIT/PC{0D0A}
MRI 3718979 IN: NLI1 1971 AT 08JAN2004 07:33:43{0D0A}
OUT: SPHQ00P6 3 AT 08JAN2004 07:33:44{0D0A}

10

 The fields, TDAC and REFERENCE shown above are variable length, terminated by a period.
11

 For responses to queries, the REFERENCE field will contain the data submitted in that field in the original inquiry.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 34 -

8.3.5 NCIC Response to Remote Server

Messages output to Remote Servers by OpenFox™ using DMPP-2020® will be preceded by the “TDAC” and “REFERENCE” fields,
terminated by periods. For unsolicited messages, the reference field will be blank.

STAP
(4 bytes)

block length
(4 bytes)

Header
(16 bytes)

[Message] Data
(variable

STOP
(4 bytes)

FF00AA55 VALUE (hex) = 0000 00C6 <see below> <message data> 55AA00FF

Header Length
(2 bytes)

Function
(2 bytes)

Validation Field
(4 bytes)

Data Length
(4 bytes)

Status Code
(2 bytes)

Destination
(2 bytes)

Hex = 0010 Hex = 0002 Hex = 3231 3230 Hex = 0000 00AA Hex = 0001 VALUE = 0001

Message Data

SHFSYS001.CAR054MDD.1L0100OS,MRI3719096{0D0A}
IN0930901{0D0A}
NO RECORD LIC/TEST1234 LIS/IN{0D0A}
{0D0A}
MRI 3719097 IN: NCIC 7890 AT 08JAN2004 07:35:06{0D0A}
OUT: SPHQ00P6 4 AT 08JAN2004 07:35:06{0D0A}

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 35 -

Object Processing

in the
Law Enforcement Environment

Using the
Datamaxx Standard Embedded Object

 ®

DSEO-2020
®

Technical Specification

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 36 -

Published by:

Datamaxx Applied Technologies, Inc.
3780 Peddie Drive
Tallahassee, Florida, 32303
(850) 575-1023
www.datamaxx.com

Revision Levels:

Revision 0, October 1999

Revision 1, September 2000
 Section 2.3.1: corrected error in example

You may copy and/or transmit this Datamaxx document only in its original form and in its
entirety, including this notice.

You may not: (a) modify this document; (b) sell, charge for, or obtain any financial benefit from
the copying or transmittal of this document or any copy; (c) remove any Datamaxx branding, or
(d) remove any copyright, trademark, or other proprietary notices from this document.

This document is provided to you “AS IS” and Datamaxx Applied Technologies, Inc. provides no
warranty as to the results you may obtain from using it.

Datamaxx™, the Datamaxx logo, Datamaxx Message Processing Protocol®, DMPP-2020®,
Datamaxx Standard Embedded Object®, DSEO-2020® and Datamaxx Applied Technologies, Inc.
Leading Law Enforcement Technology® are trademarks of Datamaxx Applied Technologies, Inc.
Any other product names used within this document are the trademarks of their respective
holders.

Copyright © 2001 Datamaxx Applied Technologies, Inc. All rights reserved.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 37 -

9 Introduction

The purpose of this document is to define a standard that can be implemented to support the
exchange of non-text objects such as mug shots, pictures of stolen property and fingerprints in
the Law Enforcement environment. Historically, Law Enforcement message switching has been
based on standards and formats defined by the Federal Bureau of Investigation’s National
Crime Information Center (NCIC) and the National Law Enforcement Telecommunications
System (NLETS). Until recently, these systems were text based and could not process messages
containing such embedded non-text objects since it was possible, and quite likely, that they
would contain control characters that would interfere with the bi-synch line protocol. The user
terminals in most states had similar problems with line protocols such as 8A1/8S1, Uniscope,
3270, poll-select, and others. In addition, few if any of the terminals were able to display
images. Most Control Terminal Agency (CTA) switches were not designed to process messages
containing embedded non-text objects and would probably reject any if received. One of the
main reasons for this is there was no standard for including non-text objects in Law
Enforcement messages.

With NCIC 2000, the NLETS upgrade and the widespread use of network protocols such as
TCP/IP and LU 6.2, some of these barriers have been removed. NCIC and NLETS now have
standards for including non-text objects in messages exchanged with CTAs. Moreover, since
TCP/IP and LU 6.2 are “data transparent”, they can transport any data since they are not
susceptible to interference from binary data in the payload. Unfortunately, these standards,
while adequate for interfacing with NCIC and NLETS individually, do not provide a
comprehensive approach for CTAs to use within their own system – that is, in-state traffic
between the CTA switch and its end users. This is due to the following issues:

a) The NCIC and NLETS standards for embedding photographs and fingerprints in messages
are based on completely different approaches and, in the opinion of Datamaxx, the
NLETS standard is much too complex for in-state use.

b) The NCIC standard does not include a provision for removing images from messages
copied or sent to devices that cannot process them.

c) CTAs may want to allow objects other than those supported by NCIC and NLETS to be
supported within their own state.

d) CTAs in different states will likely need to contend with additional standards for
exchanging driver’s license photos with their Department of Motor Vehicles (DMV), mug
shots, and fingerprints with their Computerized Criminal History (CCH) systems and so
on. As other data sources adopt still other standards, all client devices (workstations,
MDCs, CAD systems, remote hosts and so on) would need to be updated to recognize
the new formats. It is quite likely that not recognizing and properly processing a
message containing a non-text object will cause fatal problems for an application.

e) CTAs need a standard that allows their users to exchange messages such as in-state AMs
that contain these objects.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 38 -

The remainder of Section 1 provides an example of the problems these issues could cause and
the objectives of the Datamaxx Standard Embedded Object (DSEO-2020®) as a solution.

Section 2 contains specifications for the DSEO-2020® object. It also revisits the example
provided in Section 1 and shows how DSEO-2020® eliminates the problems.

Datamaxx and Computer Projects, Inc. (CPI), our partner in Law Enforcement solutions, both
support this standard in our products and advocate its use for all in-state communications. We
recommend CTAs adopt it wherever possible as their standard for exchanging all embedded
objects, including images, mug shots, driver’s license photos and fingerprints, between the
message switch and workstations, remote hosts and in-state databases, in both directions.
Datamaxx will also support similar standards that CTAs have adopted as long as they
adequately address the objectives described in Section 1.2

9.1 Example of Problems Caused by Multiple Standards

This section illustrates the problems associated with using multiple standards for embedding
non-text objects in messages exchanged between a message switch and its clients. It shows
using the NCIC standard along with a standard currently used in one state for retrieving
operator license photos. The latter standard will be referred to as “AS” (another standard). In
both cases, the image is exchanged in JPG format.

The NCIC standard for identifying images in a response is well documented in the NCIC 2000
Message Book. In summary, images are identified by a line beginning with “IMR/”. This is
followed immediately by: 1 byte IMT, 47 byte upper top text (UTT), 47 byte upper bottom text
(UBT), 47 byte lower top text (LTT), 5 byte ASCII encoded decimal image size indicator and a JPG
image. For example (note that the second line feed after the ORI is not shown to simplify the
example):

1L01TESTX

AS1234567

MKE/IMAGE

IMR/MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

Images embedded using the AS standard are identified by: the presence of the pattern “IMR/”
anywhere in the message followed by a 4 byte ASCII encoded decimal image length indicator
and a JPG image of that length. For example:

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RACE:W

HGT: 511 WGT:195

IMR/4567<4567 byte JPG image>

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 39 -

States typically deliver responses from NCIC and other databases to the originator of the
request after adding a delivery header that identifies, among other information, the device that
sent the response, such as NCIC or DMV. In this example, the NCIC and DMV responses,
respectively, would be sent to ORI AS1234567 as follows:

MSG 24680 NCIC AS1234567 11:00:01 11/01/1999

1L01TESTX

AS1234567

MKE/IMAGE

IMR/MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

and

MSG 24681 DMV AS1234567 11:00:02 11/01/1999

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RACE:W

HGT: 511 WGT:195

IMR/4567<4567 byte JPG image>

ORI AS1234567 would need to scan the message for images based on the source device
identified in the delivery header. This would be adequate for the device receiving the response
directly (through the switch) from NCIC or DMV. The problems arise if this message is
forwarded to another workstation. For example, in many states, a response can be forwarded
to another device by prefixing it with an AM header. If both of these messages were forwarded
in this manner to ORI AS7654321, they would be received as follows:

MSG 13570 AS1234567 AS7654321 11:00:03 11/01/1999

MSG 24680 NCIC AS1234567 11:00:01 11/01/1999

1L01TESTX

AS1234567

MKE/IMAGE

IMR/MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

and

MSG 13571 AS1234567 AS7654321 11:00:04 11/01/1999

MSG 24681 DMV AS1234567 11:00:02 11/01/1999

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RACE:W

HGT: 511 WGT:195

IMR/4567<4567 byte JPG image>

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 40 -

Here is where the problem arises: based on the delivery header, ORI AS7654321 only knows
that the message was received from ORI AS1234567. How does it know which set of rules to
use to scan for images? What if it used the DMV rules but the response was from NCIC? The
message does contain “IMR/” but the images are embedded according to the NCIC standard.
The different applications in the client devices such as workstations, CAD systems, and remote
hosts would each react to this situation differently and there is no guarantee it would not be
fatal.

This is but a single example of using the NCIC standard along with a state-unique standard.
Even with these two standards, there are many other cases to consider such as how the switch
distinguishes between inputs using the NCIC EIM approach as opposed to a forwarded NCIC or
DMV response. The complexities will grow exponentially with each additional standard. In
addition, each device will need to be designed to deal with these complexities individually.

The Section 2 of this document specifies the Datamaxx Standard Embedded Object (DSEO-
2020®) and revisits this example to show how DSEO-2020® avoids these problems.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 41 -

9.2 DSEO-2020® Objectives

The overall objective of the Datamaxx Standard Embedded Object (DSEO-2020®) is to provide a
robust approach for exchanging messages containing embedded non-text objects in a typical
Control Terminal Agency (CTA) environment. The approach needs to address the issues
described in the Introduction to this standard and avoid the problems illustrated in Section 1.1.
Specifically, the approach must meet the following objectives:

a) NCIC 2000 and NLETS Upgrade Compatibility. The approach must be compatible with
NCIC 2000 and the NLETS upgrade. Compatibility, however, does not imply that the
standard must include objects embedded in native NCIC 2000 and NLETS formats. The
only requirement is that it allows messages to be exchanged with these interfaces
according to their standards, even if it requires reformatting between their standards
and a CTA’s standards.

b) Standard Object Compatibility. The approach must be compatible with standard non-
text objects such as Microsoft Word (DOC), Visio drawing (VSD), bitmap (BMP), etc. files.

c) Extensible. The approach must be easily extended to include new types of objects and
the impact of adding them to client applications must be minimal.

d) Unlimited Number of Objects in a Message. The approach must allow any number of
objects to be embedded in a single message, limited only by the maximum size of the
message.

e) Processing Platform Independent. The approach must able to be implemented in any
processing environment and in any suitable programming language and not depend on
specific data representations of the platform.

f) Communication Protocol. The approach must be independent of any the
communication protocol. The only requirement on the communications protocol is that
it be data transparent – not susceptible to interference from any possible character or
sequence of characters within the data payload.

g) Unlimited forwarding of Messages. The approach must allow messages with
embedded objects to be forwarded any number of times.

h) Simple. The approach must be as simple as possible while meeting these objectives.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 42 -

10 DSEO-2020® Specifications

The following sections define the format and processing specifications for the DSEO-2020®
object.

10.1 DSEO-2020® Format Specifications

The following table shows how Datamaxx Standard Embedded Objects (DSEO-2020®) are
structured. Any number of DSEO-2020® objects may be embedded in a message.

[START][OBJECT LENGTH][OBJECT TYPE][DATA LENGTH][DATA][TEXT
LENGTH][TEXT][STOP]

Field Length Contents

START 4
Start pattern

Always “<DLE>dbo” (hex representation: 0x1064626F)

OBJECT
LENGTH

4
Length of object from START to STOP, inclusive

4 byte unsigned integer in Network Byte Order

OBJECT TYPE 4

Type of object contained in the DATA field – see detailed
explanation below

4 alphanumeric characters; blank-fill fourth character if necessary

DATA
LENGTH

4
Length of DATA field

4 byte unsigned integer in Network Byte Order
DATA Variable Variable length field containing the embedded object

TEXT
LENGTH

4

Length of TEXT field

Must be zero if text is not included

4 byte unsigned integer in Network Byte Order

TEXT Variable
Optional, variable length field containing the text associated with
the embedded object

STOP 4
Stop pattern

Always “obd<DLE>“ (hex representation: 0x6F626410)
Table 3 - DSEO-2020® Format Elements

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 43 -

10.1.1 Object Types

The DATA field can contain standard or non-standard objects. Standard objects are files that
are typically associated with applications running in the Microsoft environment such as
Microsoft Word (DOC), Visio drawing (VSD), bitmap (BMP), etc. files. For standard objects, the
OBJECT TYPE field contains the extension associated with the file. For example, for Microsoft
Word files the OBJECT TYPE is “DOC” and for a BMP file the OBJECT TYPE is “BMP”.

Non-standard objects can be defined to fit any need as long as there is agreement among the
interfacing parties. At a minimum, the following non-standard types should be supported for
NCIC and NLETS messages. See the NCIC-2000 Message Book for detailed specifications of NCIC
message formats and the NLETS User’s Guide for specifications of NLETS message formats.

 “IMG”: non-fingerprint images sent to NCIC. The DATA field for this OBJECT TYPE includes
the 1-character image type designator, 5-character image size indicator and the JPG image
data. It contains exactly the same data as will follow “IMG/” in an EIM transaction for
entering a non-fingerprint image.

 “FIM”: fingerprint data sent to NCIC. The DATA field for this OBJECT TYPE includes the “F”,
“M”, and “V” indicators and associated byte counts, and image data. It contains exactly the
same data as will follow “FIM/” in an EIM transaction for entering a fingerprint image.

 “IMR”: images included in responses from NCIC. The DATA field for this OBJECT TYPE
includes the 1-character image type designator (IMT); 47 character upper top text (UTT),
upper bottom text (UBT) and lower top text (LTT) fields; 5-character image size indicator
and the JPG image data. It contains exactly the same data as will follow “IMR/” in a
response from NCIC that includes an image.

 “NRAP”: Standardized NLETS RAP sheets. The specification for this OBJECT TYPE will be
defined once NLETS finalizes its definition of standardized RAP sheets.

10.1.2 Text Field

The TEXT field can be used to associate text with a DSEO-2020® object. For example, when a
state’s DMV provides an operator’s license photo, it would be useful to include the operator’s
name or other identifying information within the object such that the information is always
associated with it.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 44 -

10.2 DSEO-2020® Processing Specifications

Any system (client or server) that uses Datamaxx Standard Embedded Objects (DSEO-2020®)
should process all inputs that could contain the object in the manner described below which
addresses how to detect the object and verify its integrity.

1) Scan the message for the START pattern.

2) If the START pattern is detected, determine OBJECT LENGTH from the next 4 bytes.

3) Read the number of bytes specified by OBJECT LENGTH less 8 (the remaining number of
bytes in the object after START and OBJECT LENGTH).

4) Perform the following integrity checks. If any fail, it should be assumed that the detected
pattern does not indicate the beginning of a DSEO-2020® object and scanning should
resume with the bytes immediately following the detected pattern.

a) The last 4 bytes should contain the STOP pattern.

b) OBJECT LENGTH, DATA LENGTH, and TEXT LENGTH should all be positive integers.

c) The following should be true:

DATA LENGTH + TEXT LENGTH = OBJECT LENGTH – 24

d) OBJECT TYPE should contain alphanumeric or blank spaces only.

5) Process the object per the specific requirements of the application and continue with Step 1
to search for additional objects until no more are found.

Further processing of the object depends on the specific application and could include such
actions as displaying the object, storing the object in a file, removing the object if the intended
destination does not support images, converting the object to another form of representation,
etc. For example, if a message switch receives an NCIC enter image (EIM) transaction from a
workstation, the IMG field should contain a JPG image formatted as a DSEO-2020® object with
TYPE=“IMG” and TEXT LENGTH=0. In order to comply with NCIC standards, the switch would
reformat the IMG field to NCIC standards before sending it to NCIC.

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 45 -

10.3 Examples using DSEO-2020®

The following examples illustrate use of the Datamaxx Standard Embedded Object (DSEO-
2020®) for embedding objects in messages exchanged between a message switch and its clients.
In the examples, characters shown in bold are hexadecimal equivalents of their respective byte
values (two hexadecimal characters define a single byte).

10.3.1 Previous Example Revisited

This example revisits the situation described in Section 1.1 illustrating the problems associated
with using multiple standards for embedding non-text objects in messages exchanged between
a message switch and its clients. It shows the same responses from NCIC and DMV that are
delivered to a device in the DSEO-2020® format and the subsequent forwarding of them to
another device.

The NCIC response is still formatted to NCIC standards:

1L01TESTX

AS1234567

MKE/IMAGE

IMR/MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

The DMV response is still formatted to the hypothetical AS standard:

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RAC: W

HGT: 511 WGT: 195

IMR/4567<4567 byte JPG image>

Both responses are delivered to the destination with delivery headers. However, the images
and related text have been reformatted per the DSEO-2020® standard. For the NCIC response,
the image and all related information (IMT, UTT, UBT, and LTT) are encapsulated into an “IMR”
object.

The NCIC response would be sent to ORI AS1234567 as follows:

MSG 24680 NCIC AS1234567 11:00:01 11/01/1999

1L01TESTX

AS1234567

MKE/IMAGE

IMR/1064626F00000A10IMR 000009F8

MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 46 -

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

000000006F626410

The DMV response would be sent to ORI AS1234567 as follows:

MSG 24681 DMV AS1234567 11:00:02 11/01/1999

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RAC: W

HGT: 511 WGT: 195

IMR/1064626F000011EFJPG 000011D7

<4567 byte JPG image>000000006F626410

ORI AS1234567 would scan the message for embedded objects based on the DSEO-2020®
standard, not the source device. It would scan every message for the start pattern 1064626F.
When detected, the presence and integrity of a DSEO-2020® object could be confirmed by the
rules described in Section 2.2. By using DSEO-2020®, the client software has benefited since it
only needs to be able to process a single type of embedded object instead of two. The real
benefit is realized when the messages are forwarded to another device. If both of these
messages were forwarded to ORI AS7654321, they would be received as follows:

MSG 13570 AS1234567 AS7654321 11:00:03 11/01/1999

MSG 24680 NCIC AS1234567 11:00:01 11/01/1999

1L01TESTX

AS1234567

MKE/IMAGE

IMR/1064626F00000A10IMR 000009F8

MNAM:R0BERTS, RICARD0 DOB:19710202

RAC:W HGT:511 WGT:195 DOI:19990329

NIC:W150005877 IMN:I125000155

02410<2410 byte JPG image>

000000006F626410

and

MSG 13571 AS1234567 AS7654321 11:00:04 11/01/1999

MSG 24681 DMV AS1234567 11:00:02 11/01/1999

DR.ASDMV0000.AS1234567.TXT

NAM: R0BERTS, RICARD0

DOB: 19710202 RAC: W

HGT: 511 WGT: 195

IMR/1064626F000011EFJPG 000011D7

<4567 byte JPG image>000000006F626410

When they are received by the second device (AS7654321), they can be processed in exactly
the same way they were processed by the first device (ORI AS1234567) since processing is
based on the DSEO-2020® standard instead of the original source. There is no confusion or

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 47 -

need to know the original source. Moreover, the message could be forwarded any number of
times without a problem.

The remaining examples illustrate how DSEO-2020® would be used in other situations.

10.3.2 Example: NCIC Enter Image (EIM) Transaction

Workstation AS1234567 sends the switch an NCIC enter image (EIM) transaction from a
workstation containing an NCIC IMG image embedded as a DSEO-2020® object. The IMG field
contains the IMT indicator, image length, and a 4500-byte JPG mugs hot.

The message as sent by AS1234567:

EIM.AS1234567.NIC/W987654321.IMT/M.DOI/19991015.

IMG/1064626F000011B2IMG 0000119AM04500<JPG mug shot

>000000006F626410

The EIM transaction as it should be sent to NCIC with the DSEO-2020® object reformatted to
NCIC standards.

1B01987654321012345.EIM.AS1234567.NIC/W987654321.

IMT/M.DOI/19991015.IMG/M04500<JPG mug shot>

10.3.3 Example: AM Message

Workstation AS1234567 sends workstations AS7654321 and AS7654322 an AM message via the
switch. The message contains a 4K byte JPG photo and 8K byte BMP drawing, both embedded
as DSEO-2020® objects with information entered in both TEXT fields. AS7654321 can receive
messages containing embedded objects but AS7654322 cannot.

The message as sent by AS1234567:

AM.NB1234567.NB2468024.NB1357913.TXT

BE ON LOOKOUT FOR SUSPECT … PER FOLLOWING PHOTO

1064626F00000FC4JPG 00000FA0

<4000 byte JPG mug hot>0000000C

ROBERT SMITH6F626410FOLLOWING SMT ON RIGHT FOREARM

1064626F00001F65BMP 00001F40

<8000 byte BMP drawing >0000000D

RIGHT FOREARM6F626410

The message as it should be sent to AS7654321 containing DSEO-2020® objects:

MSG 13570 AS1234567 AS7654321 11:00:03 11/01/1999

AM.NB1234567.NB2468024.NB1357913.TXT

BE ON LOOKOUT FOR SUSPECT … PER FOLLOWING PHOTO

1064626F00000FC4JPG 00000FA0

<4000 byte JPG mug hot>0000000C

Remote Agency Interface Specifications for DMPP-2020® & DSEO-2020®

Page - 48 -

ROBERT SMITH6F626410

FOLLOWING SMT ON RIGHT FOREARM

1064626F00001F65BMP 00001F40

<8000 byte BMP drawing >0000000D

RIGHT FOREARM6F626410

The message as it should be sent to AS7654322 with the JPG photo and BMP drawing replaced
by text noting their removal:

MSG 13570 AS1234567 AS7654322 11:00:03 11/01/1999

AM.NB1234567.NB2468024.NB1357913.TXT

BE ON LOOKOUT FOR SUSPECT … PER FOLLOWING PHOTO

*** IMAGE REMOVED ***

FOLLOWING SMT ON RIGHT FOREARM

*** IMAGE REMOVED ***

