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EXECUTIVE SUMMARY 
 
States in the upper Midwest face a number of air quality challenges.  More than 50 counties are 
currently classified as nonattainment for the 8-hour ozone standard and 60 for the fine particle 
(PM2.5) standard (1997 versions).  A map of these nonattainment areas is provided in the figure 
below.   In addition, visibility impairment due to regional haze is a problem in the larger national 
parks and wilderness areas (i.e., Class I areas).   There are 156 Class I areas in the U.S., 
including two in northern Michigan. 
 

 
 

Figure i.  Current nonattainment counties for ozone (left) and PM2.5 (right) 
 
To support the development of State Implementation Plans (SIPs) for ozone, PM2.5, and 
regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin, technical 
analyses were conducted by the Lake Michigan Air Directors Consortium (LADCO), its member 
states, and various contractors.  The analyses include preparation of regional emissions 
inventories and meteorological data, evaluation and application of regional chemical transport 
models, and collection and analysis of ambient monitoring data.   
 
Monitoring data were analyzed to produce a conceptual understanding of the air quality 
problems.  Key findings of the analyses include: 
 
 Ozone 

• Current monitoring data (2005-2007) show about 20 sites in violation of the 8-hour 
ozone standard of 85 parts per billion (ppb).  Historical ozone data show a steady 
downward trend over the past 15 years, especially since 2001-2003, due likely to 
federal and state emission control programs. 

 
• Ozone concentrations are strongly influenced by meteorological conditions, with 

more high ozone days and higher ozone levels during summers with above normal 
temperatures. 
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• Inter- and intra-regional transport of ozone and ozone precursors affects many 
portions of the five states, and is the principal cause of nonattainment in some areas 
far from population or industrial centers.   

 
 PM2.5 

• Current monitoring data (2005-2007) show 30 sites in violation of the annual PM2.5 
standard of 15 ug/m3.  Nonattainment sites are characterized by an elevated 
regional background (about 12 – 14 ug/m3) and a significant local (urban) increment 
(about 2 – 3 ug/m3).  Historical PM2.5 data show a slight downward trend since 
deployment of the PM2.5 monitoring network in 1999. 

 
• PM2.5 concentrations are also influenced by meteorology, but the relationship is 

more complex and less well understood compared to ozone. 
 

• On an annual average basis, PM2.5 chemical composition consists mostly of sulfate, 
nitrate, and organic carbon in similar proportions. 

 
 Haze  

• Current monitoring data (2000-2004) show visibility levels in the Class I areas in 
northern Michigan are on the order of 22 – 24 deciviews.  The goal of EPA’s visibility 
program is to achieve natural conditions, which is about 12 deciviews for these 
Class I areas, by the year 2064. 

 
• Visibility impairment is dominated by sulfate and nitrate. 

 
Air quality models were applied to support the regional planning efforts. Two base years were 
used in the modeling analyses: 2002 and 2005.  Basecase modeling was conducted to evaluate 
model performance (i.e., assess the model's ability to reproduce observed concentrations).  This 
exercise was intended to build confidence in the model prior to its use in examining control 
strategies.  Model performance for ozone and PM2.5 was found to be generally acceptable. 
 
Future year strategy modeling was conducted to determine whether existing (“on the books”) 
controls would be sufficient to provide for attainment of the standards for ozone and PM2.5 and if 
not, then what additional emission reductions would be necessary for attainment.  Based on the 
modeling and other supplemental analyses, the following general conclusions can be made: 
 

• Existing controls are expected to produce significant improvement in ozone and 
PM2.5 concentrations and visibility levels. 

 
• The choice of the base year affects the future year model projections.  A key 

difference between the base years of 2002 and 2005 is meteorology.  2002 was 
more ozone conducive than 2005.  The choice of which base year to use as the 
basis for the SIP is a policy decision (i.e., how much safeguard to incorporate). 

 
• Modeling suggests that most sites are expected to meet the current 8-hour ozone 

standard by the applicable attainment date, except for sites in western Michigan 
and, possibly, in eastern Wisconsin and northeastern Ohio. 
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• Modeling suggests that most sites are expected to meet the current PM2.5 
standard by the applicable attainment date, except for sites in Detroit, Cleveland, 
and Granite City. 

 
The regional modeling for PM2.5 does not include air quality benefits expected 
from local controls.  States are conducting local-scale analyses and will use 
these results, in conjunction with the regional-scale modeling, to support their 
attainment demonstrations for PM2.5. 

 
• These findings of residual nonattainment for ozone and PM2.5 are supported by 

current (2005 – 2007) monitoring data which show significant nonattainment in 
the region (e.g., peak ozone design values on the order of 90 – 93 ppb, and peak 
PM2.5 design values on the order of 16 - 17 ug/m3).  It is unlikely that sufficient 
emission reductions will occur in the next couple of years to provide for 
attainment at all sites. 

 
• Attainment at most sites by the applicable attainment date is dependent on actual 

future year meteorology (e.g., if the weather conditions are consistent with [or 
less severe than] 2005, then attainment is likely) and actual future year 
emissions (e.g., if the emission reductions associated with the existing controls 
are achieved, then attainment is likely).  If either of these conditions is not met, 
then attainment may be less likely. 

 
• Modeling suggests that the new PM2.5 24-hour standard and the new lower 

ozone standard will not be met at several sites, even by 2018, with existing 
controls. 

 
• Visibility levels in a few Class I areas in the eastern U.S. are expected to be 

greater than (less improved than) the uniform rate of visibility improvement 
values in 2018 based on existing controls, including those in northern Michigan 
and some in the northeastern U.S.  Visibility levels in many other Class I areas in 
the eastern U.S. are expected to be less than (more improved than) the uniform 
rate of visibility improvement values in 2018.  These results, along with 
information on the costs of compliance, time necessary for compliance, energy 
and non air quality environmental impacts of compliance, and remaining useful 
life of existing sources, should be considered by the states in setting reasonable 
progress goals for regional haze. 
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Section 1.0  Introduction 

 
This Technical Support Document summarizes the final air quality analyses conducted by the 
Lake Michigan Directors Consortium (LADCO)1 and its contractors to support the development 
of State Implementation Plans (SIPs) for ozone, fine particles (PM2.5 ), and regional haze in the 
States of Illinois, Indiana, Michigan, Ohio, and Wisconsin.  The analyses include preparation of 
regional emissions inventories and meteorological modeling data for two base years (2002 and 
2005), evaluation and application of regional chemical transport models, and analysis of 
ambient monitoring data.   
 
Two aspects of the analyses should be emphasized.  First, a regional, multi-pollutant approach 
was taken in addressing ozone, PM2.5, and haze for technical reasons (e.g., commonality in 
precursors, emission sources, atmospheric processes, transport influences, and geographic 
areas of concern), and practical reasons (e.g., more efficient use of program resources).  
Furthermore, EPA has consistently encouraged multi-pollutant planning in its rule for the haze 
program (64 FR 35719), and its implementation guidance for ozone (70 FR 71663) and PM2.5 

(72 FR 20609).  Second, a weight-of-evidence approach was taken in considering the results of 
the various analyses (i.e., two sets of modeling results -- one for a 2002 base year and one for a 
2005 base year --  and ambient data analyses) in order to provide a more robust assessment of 
expected future year air quality.  
 
The report is organized in the following sections.  This Introduction provides an overview of 
regulatory requirements and background information on regional planning.  Section 2 reviews 
the ambient monitoring data and presents a conceptual model of ozone, PM2.5, and haze for the 
region.  Section 3 discusses the air quality modeling analyses, including development of the key 
model inputs (emissions inventory and meteorological data), and basecase model performance 
evaluation.  A modeled attainment demonstration for ozone and PM2.5 is presented in Section 4, 
along with relevant data analyses considered as part of the weight-of-evidence determination.  
Section 5 documents the reasonable progress assessment for regional haze, along with 
relevant data analyses considered as part of the weight-of-evidence determination.  Finally, key 
study findings are reviewed and summarized in Section 6. 
 
1.1 SIP Requirements 
For ozone, EPA promulgated designations on April 15, 2004 (69 FR 23858, April 30, 2004).  In 
the 5-state region, more than 100 counties were designated as nonattainment.2  The 
designations became effective on June 15, 2004.  SIPs for ozone were due no later than three 
years from the effective date of the nonattainment designations (i.e., by June 2007).  The 
attainment date for ozone varies as a function of nonattainment classification.  For the region, 
the attainment dates are either June 2007 (marginal nonattainment areas), June 2009 (basic 
nonattainment areas), or June 2010 (moderate nonattainment areas). 
 

                                            
1 A sub-entity of LADCO, known as the Midwest Regional Planning Organization (MRPO), is responsible 
for the regional haze activities of the multi-state organization. 
 
2  Based on more recent air quality data, many counties in Indiana, Michigan, and Ohio were 
subsequently redesignated as attainment.  As of December 31, 2007, there are 53 counties designated 
as nonattainment in the region. 
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For PM2.5, EPA promulgated designations on December 17, 2004 (70 FR 944, January 5, 2005).  
In the 5-state region, 70 counties were designated as nonattainment.3 The designations became 
effective on April 5, 2005.  SIPs for PM2.5 are due no later than three years from the effective 
date of the nonattainment designations (per section 172(b) of the Clean Air Act) (i.e., by April 
2008) and for haze no later than three years after the date on which the Administrator 
promulgated the PM2.5 designations (per the Omnibus Appropriations Act of 2004) (i.e., by 
December 2007).  The applicable attainment date for PM2.5 nonattainment areas is five years 
from the date of the nonattainment designation (i.e., by April 2010).    
         
For haze, the Clean Air Act sets “as a national goal the prevention of any future, and the 
remedying of any existing, impairment of visibility in Class I areas which impairment results from 
manmade air pollution.”  There are 156 Class I areas, including two in northern Michigan: Isle 
Royale National Park and Seney National Wildlife Refuge4.  EPA’s visibility rule (64 FR 35714, 
July 1, 1999) requires reasonable progress in achieving “natural conditions” by the year 2064.  
As noted above, the first regional haze SIP was due in December 2007 and must address the 
initial 10-year implementation period (i.e., reasonable progress by the year 2018).  SIP 
requirements (pursuant to 40 CFR 51.308(d)) include setting reasonable progress goals, 
determining baseline conditions, determining natural conditions, providing a long-term control 
strategy, providing a monitoring strategy (air quality and emissions), and establishing BART 
emissions limitations and associated compliance schedule.   
   
1.2 Organization 
LADCO was established by the States of Illinois, Indiana, Michigan, and Wisconsin in 1989. The 
four states and EPA signed a Memorandum of Agreement (MOA) that initiated the Lake 
Michigan Ozone Study (LMOS) and identified LADCO as the organization to oversee the study.  
Additional MOAs were signed by the States in 1991 (to establish the Lake Michigan Ozone 
Control Program), January 2000 (to broaden LADCO’s responsibilities), and June 2004 (to 
update LADCO’s mission and reaffirm the commitment to regional planning).  In March 2004, 
Ohio joined LADCO.  LADCO consists of a Board of Directors (i.e., the State Air Directors), a 
technical staff, and various workgroups.  The main purposes of LADCO are to provide technical 
assessments for and assistance to its member states, and to provide a forum for its member 
states to discuss regional air quality issues.   
 
MRPO is a similar entity led by the five LADCO States and involves the federally recognized 
tribes in Michigan and Wisconsin, EPA, and Federal Land Managers (i.e., National Park 
Service, U.S. Fish & Wildlife Agency, and U.S. Forest Service).  In October 2000, the States of 
Illinois, Indiana, Michigan, Ohio, and Wisconsin signed an MOA that established the MRPO.  An 
operating principles document for MRPO, which describe the roles and responsibilities of states, 
tribes, federal agencies, and stakeholders, was issued in March 2001.  MRPO has a similar 
purpose as LADCO, but is focused on visibility impairment due to regional haze in the Federal 
Class I areas located inside the borders of the five states, and the impact of emissions from the 
five states on visibility impairment due to regional haze in the Federal Class I areas located 
outside the borders of the five states.  MRPO works cooperatively with the Regional Planning 
Organizations (RPOs) representing other parts of the country.  The RPOs sponsored several 

                                            
3 USEPA subsequently adjusted the final designations, which resulted in 63 counties in the region being 
designated as nonattainment (70 FR 19844, April 15, 2005). 
 
4 Although Rainbow Lake in northern Wisconsin is also a Class I area, the visibility rule does not apply 
because the Federal Land Manager determined that visibility is not an air quality related value there. 
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joint projects and, with assistance by EPA, maintain regular contact on technical and policy 
matters. 
 
1.3 Technical Work: Overview 
To ensure the reliability and effectiveness of its planning process, LADCO has made data 
collection and analysis a priority.  More than $7M in RPO grant funds were used for special 
purpose monitoring, preparing and improving emissions inventories, and conducting air quality 
analyses5.  An overview of the technical work is provided below. 
 
Monitoring: Numerous monitoring projects were conducted to supplement on-going state and 
local air pollution monitoring.  These projects include rural monitoring (e.g., comprehensive 
sampling in the Seney National Wildlife Refuge and in Bondville, IL); urban monitoring (e.g., 
continuation of the St. Louis Supersite); aloft (aircraft) measurements; regional ammonia 
monitoring; and organic speciation sampling in Seney, Bondville, and five urban areas. 
 
Emissions: Baseyear emissions inventories were prepared for 2002 and 2005.  States provided 
point source and area source emissions data, and MOBILE6 input files and mobile source 
activity data.  LADCO and its contractors developed the emissions data for other source 
categories (e.g., select nonroad sources, ammonia, fires, and biogenics) and processed the 
data for input into an air quality model.  To support control strategy modeling, future year 
inventories were prepared.  The future years of interest include 2008 (planning year to address 
the 2009 attainment year for basic ozone nonattainment ares), 2009 (planning year to address 
the 2010 attainment year for PM2.5 and moderate ozone nonattainment areas), 2012 (planning 
to address a 2013 alternative attainment date), and 2018 (first milestone year for regional haze). 
 
Air Quality Analyses: The weight-of-evidence approach relies on data analysis and modeling.  
Air quality data analyses were used to provide both a conceptual model (i.e., a qualitative 
description of the ozone, PM2.5, and regional haze problems) and supplemental information for 
the attainment demonstration.  Given uncertainties in emissions inventories and modeling, 
especially for PM2.5, these data analyses are a necessary part of the overall technical support. 
 
Modeling includes baseyear analyses for 2002 and 2005 to evaluate model performance and 
future year strategy analyses to assess candidate control strategies.  The analyses were 
conducted in accordance with EPA’s modeling guidelines (EPA, 2007a).  The PM/haze 
modeling covers the full calendar year (2002 and 2005) for an eastern U.S. 36 km domain, while 
the ozone modeling focuses on the summer period (2002 and 2005) for a Midwest 12 km 
subdomain.  The same model (CAMx) was used for ozone, PM2.5, and regional haze. 

                                            
5 Since 1999, MRPO has received almost $10M in RPO grant funds from USEPA. 
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Section 2.0 Ambient Data Analyses 

 
An extensive network of air quality monitors in the 5-state region provides data for ozone (and 
its precursors), PM2.5 (both total mass and individual chemical species), and visibility.  These 
data are used to determine attainment/nonattainment designations, support SIP development, 
and provide air quality information to public (see, for example, www.airnow.gov). 
 
Analyses of the data were conducted to produce a conceptual model, which is a qualitative 
summary of the physical, chemical, and meteorological processes that control the formation and 
distribution of pollutants in a given region.  This section reviews the relevant data analyses and 
describes our understanding of ozone, PM2.5, and regional haze with respect to current 
conditions, data variability (spatial, temporal, and chemical), influence of meteorology (including 
transport patterns), precursor sensitivity, and source culpability. 
 
 
2.1 Ozone 
In 1979, EPA adopted an ozone standard of 0.12 ppm, averaged over a 1-hour period.  This 
standard is attained when the number of days per calendar year with maximum hourly average 
concentrations above 0.12 ppm is equal to or less than 1.0, averaged over a 3-year period, 
which generally reflects a design value (i.e., the 4th highest daily 1-hour value over a 3-year 
period) less than 0.12 ppm. 
 
In 1997, EPA tightened the ozone standard to 0.08 ppm, averaged over an 8-hour period6.  The 
standard is attained if the 3-year average of the 4th-highest daily maximum 8-hour average 
ozone concentrations (i.e., the design value) measured at each monitor within an area is less 
than 0.08 ppm (or 85 ppb).   
 
Current Conditions:  A map of the 8-hour ozone design values at each monitoring site in the 
region for the 3-year period 2005-2007 is shown in Figure 1.  The “hotter” colors represent 
higher concentrations, where yellow and orange dots represent sites with design values above 
the standard.  Currently, there are 19 sites in violation of the 8-hour ozone NAAQS in the 5-state 
region, including sites in the Lake Michigan area, Detroit, Cleveland, Cincinnati, and Columbus. 
 
Table 1 provides the 4th-highest daily 8-hour ozone values and the associated design values 
since 2001 for several high monitoring sites throughout the region. 

                                            
6 On March 12, 2008, USEPA further tightened the 8-hour ozone standard to increase public health 
protection and prevent environmental damage from ground-level ozone.  USEPA set the primary (health) 
standard and secondary (welfare) standard at the same level:  0.075 ppm (75 ppb), averaged over an 8-
hour period. 
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Figure 1.  8-hour ozone design values (2005-2007) 
 

 



Key Sites
'01 '02 '03 '04 '05 '06 '07 '01-'03 '02-'04 '03-'05 '04-'06 '05-'07

Lake Michigan Area
Chiwaukee 99 116 88 78 93 79 85 101 94 86 83 85
Racine 92 111 82 69 95 71 77 95 87 82 78 81
Milwaukee-Bayside 93 99 92 73 93 73 83 94 88 86 79 83
Harrington Beach 102 93 99 72 94 72 84 98 88 88 79 83
Manitowoc 97 83 92 74 95 78 85 90 83 87 82 86
Sheboygan 102 105 93 78 97 83 88 100 92 89 86 89
Kewaunee 90 92 97 73 88 76 85 93 87 86 79 83
Door County 95 95 93 78 101 79 92 94 88 90 86 90
Hammond 90 101 81 67 87 75 77 90 83 78 76 79
Whiting 64 88 81 88 77 85
Michigan City 90 107 82 70 84 75 73 93 86 78 76 77
Ogden Dunes 85 101 77 69 90 70 84 87 82 78 76 81
Holland 92 105 96 79 94 91 94 97 93 89 88 93
Jenison 86 93 91 69 86 83 88 90 84 82 79 85
Muskegon 95 96 94 70 90 90 86 95 86 84 83 88

Indianapolis Area
Noblesville 88 101 101 75 87 77 84 96 92 87 79 82
Fortville 89 101 92 72 80 75 81 94 88 81 75 78
Fort B. Harrison 87 100 91 73 80 76 83 92 88 81 76 79

Detroit Area
New Haven 95 95 102 81 88 78 93 97 92 90 82 86
Warren 94 92 101 71 89 78 91 95 88 87 79 86
Port Huron 84 100 87 74 88 78 89 90 87 83 80 85

Cleveland Area
Ashtabula (Conneaut) 97 103 99 81 93 86 92 99 94 91 86 90
Notre Dame (Geauga) 99 115 97 75 88 70 68 103 95 86 77 75
Eastlake (Lake) 89 104 92 79 97 83 74 95 91 89 86 84
Akron (Summit) 98 103 89 77 89 77 91 96 89 85 81 85

Cincinnati Area
Wilmington (Clinton) 93 99 96 78 83 81 82 96 91 85 80 82
Sycamore (Hamilton) 88 100 93 76 89 81 90 93 89 86 82 86
Hamilton (Butler) 83 100 94 75 86 79 91 92 89 85 80 85
Middleton (Butler) 87 98 83 76 88 76 91 89 85 82 80 85
Lebanon (Warren) 85 98 95 81 92 86 88 92 91 89 86 88

 

Columbus Area
London (Madison) 84 97 90 75 81 76 83 90 87 82 77 80
New Albany (Franklin) 90 103 94 78 92 82 87 95 91 88 84 87
Franklin (Franklin) 83 99 84 73 86 79 79 88 85 81 79 81

Ohio Other Areas
Marietta (Washington) 85 95 80 77 88 81 86 86 84 81 82 85

St. Louis Area
W. Alton (MO) 85 99 91 77 89 91 89 91 89 85 85 89
Orchard (MO) 88 98 90 76 92 92 83 92 88 86 86 89
Sunset Hills (MO) 88 98 88 70 89 80 89 91 85 82 79 86
Arnold (MO) 86 93 82 70 92 79 87 87 81 81 80 86
Margaretta (MO) 80 98 90 72 91 76 91 89 86 84 79 86
Maryland Heights (MO) 88 84 94 88

4th High 8-hour Value Design Values
Table 1. Ozone Data for Select Sites in 5-State Region
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Meteorology and Transport:  Most pollutants exhibit some dependence on meteorological 
factors, especially wind direction, because that governs which sources are upwind and thus 
most influential on a given sample.  Ozone is even more dependent, since its production is 
driven by high temperatures and sunlight, as well as precursor concentrations (see, for 
example, Figure 2).   

 
Figure 2.  Number of hot days and 8-hour “exceedance” days in 5-state region 

  
Qualitatively, ozone episodes in the region are associated with hot weather, clear skies 
(sometimes hazy), low wind speeds, high solar radiation, and southerly to southwesterly winds.  
These conditions are often a result of a slow-moving high pressure system to the east of the 
region.  The relative importance of various meteorological factors is discussed later in this 
section. 
 
Transport of ozone (and its precursors) is a significant factor and occurs on several spatial 
scales.  Regionally, over a multi-day period, somewhat stagnant summertime conditions can 
lead to the build-up in ozone and ozone precursor concentrations over a large spatial area.  This 
pollutant air mass can be advected long distances, resulting in elevated ozone levels in 
locations far downwind.  An example of such an episode is shown in Figure 3.   
 

 
Figure 3.  Example of elevated regional ozone concentrations (June 23 – 25, 2005) 

 
Note: hotter colors represent higher concentrations, with orange representing concentrations above the 8-
hour standard 
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Locally, emissions from urban areas add to the regional background leading to ozone 
concentration hot spots downwind.  Depending on the synoptic wind patterns (and local land-
lake breezes), different downwind areas are affected (see, for example, Figure 4). 
 

      
Figure 4.  Examples of recent high ozone days in the Lake Michigan area 

 
Note: hotter colors represent higher concentrations, with orange representing concentrations above the 8-
hour standard 

 
Aloft (aircraft) measurements in the Lake Michigan area also provide evidence of elevated 
regional background concentrations and “plumes” from urban areas.  For one example summer 
day (August 20, 2003 – see Figure 5), the incoming background ozone levels were on the order 
of 80 – 100 ppb and the downwind ozone levels over Lake Michigan were on the order of 100 - 
150 ppb (STI, 2004). 
 

 
Figure 5.  Aircraft ozone measurements over Lake Michigan (left) and along upwind boundary 
(right) – August 20, 2003 (Note: aircraft measurements reflect instantaneous values) 
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As discussed in Section 4, residual nonattainment is projected in at least one area in the 5-state 
region –i.e., western Michigan.  To understand the source regions likely impacting high ozone 
concentrations in western Michigan and estimate the impact of these source regions, two simple 
transport-related analyses were performed. 
 
First, back trajectories were constructed using the HYSPLIT model for high ozone days (8-hour 
peak > 80 ppb) during the period 2002-2006 in western Michigan to characterize general 
transport patterns.  Composite trajectory plots for all high ozone days based on data from three 
sites (Cass County, Holland, and Muskegon) are provided in Figure 6.  The plots point back to 
areas located to the south-southwest (especially, northeastern Illinois and northwestern Indiana) 
as being upwind on these high ozone days. 
       

 
Figure 6  Back trajectory analysis showing upwind areas associated with high ozone 
concentrations 
 
 
Second, to assess the impact from Chicago/NW Indiana, Blanchard (2005a) compared ozone 
concentrations upwind (Braidwood, IL), within Chicago (ten sites in the City), and downwind 
(Holland and Muskegon) for days in 1999 – 2002 with southwesterly winds - i.e., transport 
towards western Michigan.  Figure 7 shows the distribution of daily peak 8-hour ozone 
concentrations by day-of-week, with a line connecting the mean values.  The difference 
between day-of-week mean values at downwind and upwind sites indicates that Chicago/NW 
Indiana contributes about 10-15 ppb to downwind ozone levels. 
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Figure 7.  Mean day-of-week peak 8-hour ozone concentrations at sites upwind, within, and 
downwind of Chicago, 1999 – 2002 (southwesterly wind days) 
 
 
Based on this information, the following key findings related to transport can be made: 
 

• Ozone transport is a problem affecting many portions of the eastern U.S.  The Lake 
Michigan area (and other areas in the LADCO region) both receive high levels of 
incoming (transported) ozone and ozone precursors from upwind source areas on many 
hot summer days, and contribute to the high levels of ozone and ozone precursors 
affecting downwind receptor areas. 

 
• The presence of a large body of water (i.e., Lake Michigan) influences for the formation 

and transport of ozone in the Lake Michigan area.  Depending on large-scale synoptic 
winds and local-scale lake breezes, different parts of the area experience high ozone 
concentrations.  For example, under southerly flow, high ozone can occur in eastern 
Wisconsin, and under southwesterly flow, high ozone can occur in western Michigan.   

 
• Downwind shoreline areas around Lake Michigan are affected by both regional transport 

of ozone and subregional transport from major cities in the Lake Michigan area.  
Counties along the western shore of Michigan (from Benton Harbor to Traverse City, and 
even as far north as the Upper Peninsula) are impacted by high levels of incoming 
(transported) ozone. 
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Data Variability:  Since 1980, considerable progress has been made to meet the previous 1-
hour ozone standard.  Figure 8 shows the decline in both the 1-hour and 8-hour design values 
for the 5-state LADCO region over the last 25 years.   
  

 
Figure 8  Ozone design value trends in 5-State region 

 
The trend is more dramatic for the higher ozone sites in the 5-state region (see Figure 9).  This 
plot shows a pronounced downward trend in the design value since the 2001-2003 period, due, 
in part, to the very low 4th high values in 2004. 

     
Figure 9.  Trend in ozone design values and 4th high values for higher ozone sites in region 

 
The improvement in ozone concentrations is also seen in the decrease in the number of sites 
measuring nonattainment over the past 15 years in the Lake Michigan area (see Figure 10).
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Figure 10. Ozone design value maps for 1995-1997, 2000-2002, and 2005-2007 
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Given the effect of meteorology on ambient ozone levels, year-to-year variations in meteorology 
can make it difficult to assess trends in ozone air quality.  Two approaches were considered to 
adjust ozone trends for meteorological influences: an air quality-meteorology statistical model 
developed by EPA (i.e., Cox method), and statistical grouping of meteorological variables 
performed by LADCO (i.e., Classification and Regression Trees, or CART). 
 
Cox Method:  This method uses a statistical model to ‘remove’ the annual effect of meteorology 
on ozone (Cox and Chu, 1993).  A regression model was fit to the 1997-2007 data to relate daily 
peak 8-hour ozone concentrations to six daily meteorological variables plus seasonal and 
annual factors (Kenski, 2008a).  Meteorological variables included were daily maximum 
temperature, mid-day average relative humidity, morning and afternoon wind speed and wind 
direction.  The model is then used to predict 4th high ozone values.  By holding the 
meteorological effects constant, the long term trend can be examined independently of 
meteorology.  Presumably, any trend reflects changes in emissions of ozone precursors.   
 
Figure 11a shows the meteorologically-adjusted 4th high ozone concentrations for several 
monitors near major urban areas in the region.  The plots indicate a general downward trend 
since the late 1990s for most cities, indicating that recent emission reductions have had a 
positive effect in improving ozone air quality.   
 
A similar model was run to examine meteorologically adjusted trends in seasonal average 
ozone.  This model incorporates more meteorological variables, including rain and long-distance 
transport (direction and distance).  Model development was documented in Camalier et al., 
2007.  The seasonal average trends are shown in Figure 11b.  Trends determined by seasonal 
model for the same set of sites examined above are consistent with those developed by the 4th 
high model. 
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  Indianapolis, IN 

Figure 11a.  Trends in meteorologically 
adjusted 4th high 8-hour ozone 
concentrations for seven Midwestern sites 
(1997 – 2007) 
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Figure 11b.  Trends in seasonal 8-hour ozone 
concentrations for seven Midwestern sites 
(1997 – 2007) 
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CART:  Classification and Regression Tree (CART) analysis is another statistical technique 
which partitions data sets into similar groups (Breiman et al., 1984).  CART analysis was 
performed using data for the period 1995-2007 for 22 selected ozone monitors with current 8-
hour design values close to or above the standard (Kenski, 2008b).  The CART model searches 
through 60 meteorological variables to determine which are most efficient in predicting ozone.  
Although the exact selection of predictive variables changes from site to site, the most common 
predictors were temperature, wind direction, and relative humidity.  Only occasionally were 
upper air variables, transport time or distance, lake breeze, or other variables significant.  (Note, 
the ozone and meteorological data for the CART analysis are the same as used in the EPA/Cox 
analysis.) 
 
For each monitor, regression trees were developed that classify each summer day (May-
September) by its meteorological conditions.  Similar days are assigned to nodes, which are 
equivalent to branches of the regression tree.  Ozone time series for the higher concentration 
nodes are plotted for select sites in Figure 12.  By grouping days with similar meteorology, the 
influence of meteorological variability on the trend in ozone concentrations is partially removed; 
the remaining trend is presumed to be due to trends in precursor emissions or other non-
meteorological influences.  Trends over the 13-year period at most sites were found to be 
declining, with the exception of Detroit which showed fairly flat trends.  Comparison of the 
average of the high concentration node values for 2001-2003 v. 2005-2007 showed an 
improvement of about 5 ppb across all sites (even Detroit). 
 
The effect of meteorology was further examined by using an ozone conduciveness index 
(Kenski, 2008b).  This metric reflects the variability from the 13-year average in the number of 
days in the higher ozone concentration nodes (see Figure 13).  Examination of these plots 
indicates: 
 

• 2002 and 2005 were both above normal, with 2002 tending to be more severe; and 
 
• 2001-2003 and 2005-2007 were both above normal, with no clear pattern in which 

period was more severe (i.e., ozone conduciveness values were similar at most sites, 
2001-2003 values were higher at a few sites, and 2005-2007 values were higher at a 
few sites). 

 
Given the similarity in ozone conduciveness between 2001-2003 and 2005-2007, the 
improvement in ozone levels noted above is presumed to be due to non-meteorological factors 
(i.e., emission reductions). 
 
In conclusion, all three statistical approaches (CART and the two nonlinear regression models) 
show a similar result; ozone in the urban areas of the LADCO region has declined during the 
1997-2007 period, even when meteorological variability is accounted for.  The decreases are 
present whether seasonal average ozone, peak values (annual 4th highs), or a subset of high 
days with similar meteorology are considered.  The consistency in results across models is a 
good indication that these trends reflect impacts of emission control programs. 
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  Indianapolis, IN 

 

Figure 12.  Trends for higher ozone CART 
groups (average ozone > 65 ppb) for seven 
Midwestern sites (1995 – 2007) 
 
Note: line represents linear best fit 
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Figure 13.  Ozone conduciveness index (and 
number of high ozone days) for seven 
Midwestern site (1995 – 2007) 
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Precursor Sensitivity: Ozone is formed from the reactions of hydrocarbons and nitrogen oxides 
under meteorological conditions that are conducive to such reactions (i.e., warm temperatures 
and strong sunlight).  In areas with high VOC/NOx ratios, typical of rural environments (with low 
NOx), ozone tends to be more responsive to reductions in NOx.  Conversely, in areas with low 
VOC/NOx ratios, typical of urban environments (with high NOx), ozone tends to be more 
responsive to VOC reductions.   
 
An analysis of VOC and NOx-limitation was conducted with the ozone MAPPER program, which 
is based on the Smog Production (SP) algorithm (Blanchard, et al., 2004a).  The “Extent of 
Reaction” parameter in the SP algorithm provides an indication of VOC and NOx sensitivity: 
 
  Extent Range   Precursor Sensitivity 
 
  < 0.6         VOC-sensitive 
  0.6 – 0.8        Transitional 
  > 0.8         NOx-sensitive 
 
A map of the Extent of Reaction values for high ozone days is provided in Figure 14.  As can be 
seen, ozone is usually VOC-limited in cities and NOx-limited in rural areas.  (Data from aircraft 
measurements suggest that ozone is usually NOx-limited over Lake Michigan and away from 
urban centers on days when ozone in the urban centers is VOC-limited.)   The highest ozone 
days were found to be NOx-limited.  This analysis suggests that a NOx reduction strategy would 
be effective in reducing ozone levels.  Examination of day-of-week concentrations, however, 
raises some question about the effectiveness of NOx reductions. 
 

 
Figure 14.  Mean afternoon extent of reaction (1998 – 2002) 
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Blanchard (2004a and 2005a) examined weekend-weekday differences in ozone and NOx in the 
Midwest.  All urban areas in these two studies exhibited substantially lower (40-60%) weekend 
concentrations of NOx compared to weekday concentrations.  Despite lower weekend NOx 
concentrations, weekend ozone concentrations were not lower; in fact, most urban sites had 
higher concentrations of ozone, although the increase was generally not statistically significant 
(see Figure 15). This small but counterproductive change in local ozone concentrations 
suggests that local urban-scale NOx reductions alone may not be very effective.  
 

 
Figure 15. Weekday/weekend differences in 8-hour ozone – number of sites with weekend 

increase (positive values) v. number of sites with weekend decreases (negative values) 
 
Two additional analyses, however, demonstrate the positive effect of NOx emission reductions 
on downwind ozone concentrations.  First, Blanchard (2005a) looked at the effect of changes in 
precursor emissions in Chicago on downwind ozone levels in western Michigan.  For the 
transport days of interest (i.e., southwesterly flow during the summers of 1999 – 2002), mean 
NOx concentrations in Chicago are about 50% lower and mean ozone concentrations at the 
(downwind) western Michigan sites are about 1.5 – 5.2 ppb (3 – 8 %) lower on Sunday 
compared to Wednesday.  This degree of change in downwind ozone levels suggests a 
positive, albeit non-linear response to urban area emission reductions. 
 
Second, Environ (2007a) examined the effect of differences in day-of-week emissions in 
southeastern Michigan on downwind ozone levels.  This modeling study found that weekend 
changes in ozone precursor emissions cause both increases and decreases in Southeast 
Michigan ozone, depending upon location and time: 
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• Weekend increases in 8-hour maximum ozone occur in and immediately downwind of 

the Detroit urban area (i.e., in VOC-sensitive areas). 
• Weekend decreases in 8-hour maximum ozone occur outside and downwind of the 

Detroit urban area (i.e., in NOx-sensitive areas). 
• At the location of the peak 8-hour ozone downwind of Detroit, ozone was lower on 

weekends than weekdays. 
• Ozone benefits (reductions) due to weekend emission changes in Southeast Michigan 

can be transported downwind for hundreds of miles. 
• Southeast Michigan benefits from lower ozone transported into the region on Saturday 

through Monday because of weekend emission changes in upwind areas. 
 
In summary, these analyses suggest that urban VOC reductions and regional (urban and rural) 
NOx reductions will be effective in lowering ozone concentrations.  Local NOx reductions can 
lead to local ozone increases (i.e., NOx disbenefits), but this effect does not appear to pose a 
problem with respect to attainment of the standard.  It should also be noted that urban VOC and 
regional NOx reductions are likely to have multi-pollutant benefits (e.g., both lower ozone and 
PM2.5 impacts). 
 
 
2.2  PM2.5 
In 1997, EPA adopted the PM2.5 standards of 15 ug/m3 (annual average) and 65 ug/m3 (24-hour 
average).  The annual standard is attained if the 3-year average of the annual average PM2.5 
concentration is less than or equal to the level of the standard.   The daily standard is attained if 
the 98th percentile of 24-hour PM2.5 concentrations in a year, averaged over three years, is less 
than or equal to the level of the standard. 
 
In 2006, EPA revised the PM2.5 standards to 15 ug/m3 (annual average) and 35 ug/m3 (24-hour 
average).   

 
Current Conditions: Maps of annual and 24-hour PM2.5 design values for the 3-year period 
2005-2007 are shown in Figure 16.  The “hotter” colors represent higher concentrations, where 
red dots represent sites with design values above the annual standard.  Currently, there are 30 
sites in violation of the annual PM2.5 standard. 
 
Table 2 provides the annual PM2.5 concentrations and associated design values since 2003 for 
several high monitoring sites throughout the region. 
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Figure 16.  PM2.5 design values - annual average (top) and 24-hour average (bottom) (2005-2007) 



2005 BY 2002 BY

Key Site County Site ID '03 '04 '05 '06 '07 '03 - '05 '04 - '06 '05 - '07
Average 
w/ 2007

Average

Chicago - Washington HS Cook 170310022 15.6 14.2 16.9 13.2 15.7 15.6 14.8 15.3 15.2 15.9
Chicago - Mayfair Cook 170310052 15.9 15.3 17.0 14.5 15.5 16.1 15.6 15.7 15.8 17.1
Chicago - Springfield Cook 170310057 15.6 13.8 16.7 13.5 15.1 15.4 14.7 15.1 15.0 15.6
Chicago - Lawndale Cook 170310076 14.8 14.2 16.6 13.5 14.3 15.2 14.8 14.8 14.9 15.6
Blue Island Cook 170312001 14.9 14.1 16.4 13.2 14.3 15.1 14.6 14.6 14.8 15.6
Summit Cook 170313301 15.6 14.2 16.9 13.8 14.8 15.6 15.0 15.2 15.2 16.0
Cicero Cook 170316005 16.8 15.2 16.3 14.3 14.8 16.1 15.3 15.1 15.5 16.4
Granite City Madison 171191007 17.5 15.4 18.2 16.3 15.1 17.0 16.6 16.5 16.7 17.3
E. St. Louis St. Clair 171630010 14.9 14.7 17.1 14.5 15.6 15.6 15.4 15.7 15.6 16.2

Jeffersonville Clark 180190005 15.8 15.1 18.5 15.0 16.5 16.5 16.2 16.7 16.4 17.2
Jasper Dubois 180372001 15.7 14.4 16.9 13.5 14.4 15.7 14.9 14.9 15.2 15.5
Gary Lake 180890031 16.8 13.3 14.5 16.8 15.1 14.9 15.6
Indy - Washington Park Marion 180970078 15.5 14.3 16.4 14.1 15.8 15.4 14.9 15.4 15.3 16.2
Indy - W 18th Street Marion 180970081 16.2 15.0 17.9 14.2 16.1 16.4 15.7 16.1 16.0
Indy - Michigan Street Marion 180970083 16.3 15.0 17.5 14.1 15.9 16.3 15.5 15.8 15.9 16.6

Allen Park Wayne 261630001 15.2 14.2 15.9 13.2 12.8 15.1 14.4 14.0 14.5 15.8
Southwest HS Wayne 261630015 16.6 15.4 17.2 14.7 14.5 16.4 15.8 15.5 15.9 17.3
Linwood Wayne 261630016 15.8 13.7 16.0 13.0 13.9 15.2 14.2 14.3 14.6 15.5
Dearborn Wayne 261630033 19.2 16.8 18.6 16.1 16.9 18.2 17.2 17.2 17.5 19.3
Wyandotte Wayne 261630036 16.3 13.7 16.4 12.9 13.4 15.5 14.3 14.2 14.7 16.6

Middleton Butler 390170003 17.2 14.1 19.0 14.1 15.4 16.8 15.7 16.2 16.2 16.5
Fairfield Butler 390170016 15.8 14.7 17.9 14.0 14.9 16.1 15.5 15.6 15.8 15.9
Cleveland-28th Street Cuyahoga 390350027 15.4 15.6 17.3 13.0 14.5 16.1 15.3 14.9 15.4 16.5
Cleveland-St. Tikhon Cuyahoga 390350038 17.6 17.5 19.2 14.9 16.2 18.1 17.2 16.8 17.4 18.4
Cleveland-Broadway Cuyahoga 390350045 16.4 15.3 19.3 14.0 15.3 17.0 16.2 16.2 16.5 16.7
Cleveland-E14 & Orange Cuyahoga 390350060 17.2 16.4 19.4 15.0 15.9 17.7 16.9 16.8 17.1 17.6
Newburg Hts - Harvard Ave Cuyahoga 390350065 15.6 15.2 18.6 13.1 15.8 16.5 15.6 15.8 16.0 16.2
Columbus - Fairgrounds Franklin 390490024 16.4 15.0 16.4 13.6 14.6 15.9 15.0 14.9 15.3 16.5
Columbus - Ann Street Franklin 390490025 15.3 14.6 16.4 13.6 14.7 15.4 14.9 14.9 15.1 16.0
Columbus - Maple Canyon Franklin 390490081 14.9 13.6 14.6 12.9 13.1 14.4 13.7 13.5 13.9 16.0
Cincinnati - Seymour Hamilton 390610014 17.0 15.9 19.8 15.5 16.5 17.6 17.1 17.3 17.3 17.7
Cincinnati - Taft Ave Hamilton 390610040 15.5 14.6 17.5 13.6 15.1 15.9 15.2 15.4 15.5 15.7
Cincinnati - 8th Ave Hamilton 390610042 16.7 16.0 19.1 14.9 15.9 17.3 16.7 16.6 16.9 17.3
Sharonville Hamilton 390610043 15.7 14.9 16.9 14.5 14.8 15.8 15.4 15.4 15.6 16.0
Norwood Hamilton 390617001 16.0 15.3 18.4 14.4 15.1 16.6 16.0 15.9 16.2 16.3
St. Bernard Hamilton 390618001 17.3 16.4 20.0 15.9 16.1 17.9 17.4 17.3 17.6 17.3
Steubenville Jefferson 390810016 17.7 15.9 16.4 13.8 16.2 16.7 15.4 15.5 15.8 17.7
Mingo Junction Jefferson 390811001 17.3 16.2 18.1 14.6 15.6 17.2 16.3 16.1 16.5 17.5
Ironton Lawrence 390870010 14.3 13.7 17.0 14.4 15.0 15.0 15.0 15.4 15.2 15.7
Dayton Montgomery 391130032 15.9 14.5 17.4 13.6 15.6 15.9 15.2 15.5 15.5 15.9
New Boston Scioto 391450013 14.7 13.0 16.2 14.3 14.0 14.6 14.5 14.8 14.7 17.1
Canton - Dueber Stark 391510017 16.8 15.6 17.8 14.6 15.9 16.7 16.0 16.1 16.3 17.3
Canton - Market Stark 391510020 15.0 14.1 16.6 11.9 14.4 15.2 14.2 14.3 14.6 15.7
Akron - Brittain Summit 391530017 15.4 15.0 16.4 13.5 14.4 15.6 15.0 14.8 15.1 16.4
Akron - W. Exchange Summit 391530023 14.2 13.9 15.7 12.8 13.7 14.6 14.1 14.1 14.3 15.6

Annual Average Conc. Design Values

Table 2. PM2.5 Data for Select Sites in 5-State Region
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When EPA initially set the 24-hour standard at 65 µg/m3, it also adopted the following 
concentration ranges for its Air Quality Index (AQI) scale: 
 
  Good     < 15 ug/m3 
  Moderate    15-40 µg/m3  
  Unhealthy for Sensitive Groups (USG) 40-65 µg/m3 
  Unhealthy    65-150 µg/m3 
 

Figure 17 shows the frequency of these AQI categories for major metropolitan areas in the 
region.  Daily average concentrations are often in the moderate range and occasionally in the 
USG range.  Moderate and USG levels can occur any time of the year.   

 
Figure 17. Percent of days in AQI categories for PM2.5 (2002-2004) 

  
Data Variability: PM2.5 concentrations vary spatially, temporally, and chemically in the region.  
This variability is discussed further below. 
 
On an annual basis, PM2.5 exhibits a distinct and consistent spatial pattern.  As seen in Figure 
16, across the Midwest, annual concentrations follow a gradient from low values (5-6 µg/m3) in 
northern and western areas (Minnesota and northern Wisconsin) to high values (17-18 µg/m3) in 
Ohio and along the Ohio River.  In addition, concentrations in urban areas are higher than in 
upwind rural areas, indicating that local urban sources add a significant increment of 2-3 µg/m3 
to the regional background of 12 - 14 µg/m3 (see Figure 18).   
 

 
Figure 18. Regional (lighter shading) v. local components (darker shading) of annual average PM2.5 
concentrations 
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Because monitoring for PM2.5 only began in earnest in 1999, after promulgation of the PM2.5 
standard, limited data are available to assess trends.  Time series based on federal reference 
method (FRM) PM2.5-mass data show a downward trend in each state (see Figure 19)7. 
 

 

 
 

Figure 19. PM2.5 trends in annual average (top) and daily concentrations (bottom) 

                                            
7 Despite the general downward trend since 1999, all states experienced an increase during 2005.  
Further analyses are underway to understand this increase (e.g., examination of meteorological and 
emissions effects). 
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A statistical analysis of PM2.5 trends was performed using the nonparametric Theil test for slope 
(Hollander and Wolfe, 1973).  Trends were generally consistent around the region, for both PM 
mass and for the individual components of mass.  Figure 20 shows trends for PM2.5 based on 
FRM data at sites with six or more years of data since 1999.  The size and direction of each 
arrow shows the size and direction of the trend for each site; solid arrows show statistically 
significant trends and open arrows show trends that are not significant.  Region-wide decreases 
are widespread and consistent; all sites had decreasing concentration trends (13 of the 38 were 
statistically significant).  The average decrease for this set of sites is -0.24 ug/m3/year.   
 

 
 

Figure 20.  Annual  trends in PM2.5 mass (1999 – 2006) 
 
 
Seasonal trends show mostly similar patterns (Figure 21).  Trends were downward at most sites 
and seasons, with overall seasonal averages varying between -0.15 to -0.56 ug/m3/year.   The 
strongest and most significant decreases took place during the winter quarter (January - March).  
No statistically significant increasing trends were observed. 
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Figure 21.  Seasonal trends in PM2.5 mass (1999 – 2006) 

 
PM2.5 shows a slight variation from weekday to weekend, as seen in Figure 22.  Although most 
cities have slightly lower concentrations on the weekend, the difference is usually less than 1 
µg/m3.  There is a more pronounced weekday/weekend difference at monitoring sites that are 
strongly source-influenced.  Rural monitors tend to show less of a weekday/weekend pattern 
than urban monitors. 

 
Figure 22  Day-of-week variability in PM2.5 (2002-2004) 
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In the Midwest, PM2.5 is made up of mostly ammonium sulfate, ammonium nitrate, and organic 
carbon in approximately equal proportions on an annual average basis.  Elemental carbon and 
crustal matter (also referred to as soil) contribute less than 5% each.   

 
Figure 23.  Spatial map of PM2.5 chemical composition in the Midwest (2002-2003) 

 
The three major components vary spatially (Figure 23), including notable urban and rural 
differences (Figure 24).  The components also vary seasonally (Figure 25).  These patterns 
account for much of the annual variability in PM2.5 mass noted above. 

 

  
Figure 24.  Average regional (lighter shading) v. local (darker shading) of PM2.5 chemical species
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Figure 25  Seasonal and spatial variability in PM2.5 components 
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Ammonium sulfate peaks in the summer and is highest in the southern and eastern parts of the 
Midwest, closest to the Ohio River Valley.  Sulfate is primarily a regional pollutant; 
concentrations are similar in rural and urban areas and highly correlated over large distances.  It 
is formed when sulfuric acid (an oxidation product of sulfur dioxide) and ammonia react in the 
atmosphere, especially in cloud droplets.  Coal combustion is the primary source of sulfur 
dioxide; ammonia is emitted primarily from animal husbandry operations and fertilizer use. 
 
Ammonium nitrate has almost the opposite spatial and seasonal pattern, with the highest 
concentrations occurring in the winter and in the northern parts of the region.  Nitrate seems to 
have both regional and local sources, because urban concentrations are higher than rural 
upwind concentrations.  Ammonium nitrate forms when nitric acid reacts with ammonia, a 
process that is enhanced when temperatures are low and humidity is high.  Nitric acid is a 
product of the oxidation of nitric oxide, a pollutant that is emitted by combustion processes. 
 
Organic carbon is more consistent from season to season and city to city, although 
concentrations are generally slightly higher in the summer.  Like nitrate, organic carbon has 
both regional and local components.  Particulate organic carbon can be emitted directly from 
cars and other fuel combustion sources or formed in a secondary process as volatile organic 
gases react and condense.  In rural areas, summer organic carbon has significant contributions 
from biogenic sources. 
 
Precursor Sensitivity:  Data from the Midwest ammonia monitoring network were analyzed with 
thermodynamic equilibrium models to assess the effect of changes in precursor gas 
concentrations on PM2.5 concentrations (Blanchard, 2005b).  These analyses indicate that 
particle formation responds in varying degrees to reductions in sulfate, nitric acid, and ammonia.  
Based on Figure 26, which shows PM2.5 concentrations as a function of sulfate, nitric acid 
(HNO3), and ammonia (NH3), several key findings should be noted:  
 

• PM2.5 mass is sensitive to reductions in sulfate at all times of the year and all parts of the 
region.  Even though sulfate reductions cause more ammonia to be available to form 
ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase 
is generally offset by the sulfate reductions, such that PM2.5 mass decreases. 

 
• PM2.5 mass is also sensitive to reductions in nitric acid and ammonia.  The greatest PM2.5 

decrease in response to nitric acid reductions occurs during the winter, when nitrate is a 
significant fraction of PM2.5. 

 
• Under conditions with lower sulfate levels (i.e., proxy of future year conditions), PM2.5 is 

more sensitive to reductions in nitric acid compared to reductions in ammonia. 
 

• Ammonia becomes more limiting as one moves from west to east across the region. 
 
Examination of weekend/weekday difference in PM-nitrate and NOx concentrations in the 
Midwest demonstrate that reductions in local (urban) NOx lead to reductions, albeit non-
proportional reductions, in PM-nitrate (Blanchard, 2004b).  This result is consistent with 
analyses of continuous PM-nitrate from several US cities, including St. Louis (Millstein, et al, 
2007).   
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Figure 26.  Predicted mean PM fine mass concentrations at Bondville, IL (top) and Detroit (Allen Park), MI 
(bottom) as functions of changes in sulfate, nitric acid (HNO3), and ammonia (NH3) 
 
Note: starting at the baseline values (represented by the red star), either moving downward (reductions in nitric 
acid) or moving leftward (reductions in sulfate or ammonia) results in lower PM2.5 values
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Meteorology: PM2.5 concentrations are not as strongly influenced by meteorology as ozone, but 
the two pollutants share some similar meteorological dependencies.  In the summer, conditions 
that are conducive to ozone (hot temperatures, stagnant air masses, and low wind speeds due 
to stationary high pressure systems) also frequently give rise to high PM2.5.  In the case of PM, 
the reason is two-fold: (1) stagnation and limited mixing under these conditions cause PM2.5 to 
build up, usually over several days, and (2) these conditions generally promote higher 
conversion of important precursors (SO2 to SO4) and higher emissions of some precursors, 
especially biogenic carbon.  Wind direction is another strong determinant of PM2.5; air 
transported from polluted source regions has higher concentrations. 
 
Unlike ozone, PM2.5 has occasional winter episodes.  Conditions are similar to those for summer 
episodes, in that stationary high pressure and (seasonally) warm temperatures are usually 
factors.  Winter episodes are also fueled by high humidity and low mixing heights.   
 
PM2.5 chemical species show noticeable transport influences.  Trajectory analyses have 
demonstrated that high PM-sulfate is associated with air masses that traveled through the 
sulfate-rich Ohio River Valley (Poirot, et al, 2002 and Kenski, 2004).  Likewise, high PM-nitrate 
is associated with air masses that traveled through the ammonia-rich Midwest.   Figure 27 
shows results from an ensemble trajectory analysis of 17 rural eastern IMPROVE sites.    
 

 
Figure 27.  Sulfate and nitrate source regions based on ensemble trajectory analysis 

 
When these results are considered together with analyses of precursor sensitivity (e.g., Figure 
26), one possible conclusion is that ammonia control in the Midwest could be effective at 
reducing nitrate concentrations.  The thermodynamic equilibrium modeling shows that ammonia 
reductions would reduce PM concentrations in the Midwest, but that nitric acid reductions are 
more effective when the probable reductions in future sulfate levels are considered.   
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Source Culpability:  Three source apportionment studies were performed using speciated PM2.5 
monitoring data and statistical analysis methods (Hopke, 2005, STI, 2006, and STI, 2008).  
Figure 28 summarizes the source contributions from these studies.  The studies show that a 
large portion of PM2.5 mass consists of secondary, regional impacts, which cannot be attributed 
to individual facilities or sources (e.g., secondary sulfate, secondary nitrate, and secondary 
organic aerosols).  Nevertheless, wind analyses (e.g., Figure 27) provide information on likely 
source regions.  Regional- or national-scale control programs may be the most effective way to 
deal with these impacts.  EPA's CAIR, for example, will provide for substantial reductions in 
SO2 emissions over the eastern half of the U.S., which will reduce sulfate (and PM2.5) 
concentrations and improve visibility levels. 
 
The studies also show that a smaller, yet significant portion of PM2.5 mass is due to emissions 
from nearby (local) sources.  Local (urban) excesses occur in many urban areas for organic and 
elemental carbon, crustal matter, and, in some cases, sulfate.  The statistical analysis methods 
help to identify local sources and quantify their impact.  This information is valuable to states 
wishing to develop control programs to address local impacts.  A combination of 
national/regional-scale and local-scale emission reductions may be necessary to provide for 
attainment. 
 
The carbon sources are not easily identified in complex urban environments.  LADCO’s Urban 
Organics Study (STI, 2006) identified four major sources of organic carbon: mobile sources, 
burning, industrial sources, and secondary organic aerosols.  Additional sampling and analysis 
is underway in Cleveland and Detroit to provide further information on sources of organic 
carbon. 
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Figure 28.  Major Source Contributions in the Midwest based on Hopke, 2005 (upper left), STI, 2006 (upper right), and STI, 2008 (lower left) 

(Note: the labeling of similar source types varies between studies – e.g., organic carbon/mobile sources are named gasoline and diesel by 
Hopke, mobile by STI 2006, and OM and diesel by STI 2008)
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2.3  Haze 
Section 169A of the Clean Air Act sets as a national goal “the prevention of any future, and the 
remedying of any existing, impairment of visibility in mandatory Class I Federal areas which 
impairment results from manmade air pollution”.  To implement this provision, in 1999, EPA 
adopted regulations to address regional haze visibility impairment (USEPA, 1999).  EPA’s rule 
requires states to “make reasonable progress toward meeting the national goal”.  Specifically, 
states must establish reasonable progress goals, which provide for improved visibility on the 
most impaired (20% worst) days sufficient to achieve natural conditions by the year 2064, and 
for no degradation on the least impaired (20% best) days. 
 
The primary cause of impaired visibility in the Class I areas is pollution by fine particles that 
scatter light.  The degree of impairment, which is expressed in terms of visual range, light 
extinction (1/Mm), or deciviews (dv), depends not just on the total PM2.5 mass concentration, but 
also on the chemical composition of the particles and meteorological conditions. 
 
Current Conditions:  A map of the average light extinction values for the most impaired (20% 
worst) visibility days for the 5-year baseline period (2000-2004) is shown in Figure 29.   
 
 

 
 

Figure 29.  Baseline Visibility Levels for 20% Worst Days (2000 – 2004), units: Mm-1 
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Initially, the baseline (2000 – 2004) visibility condition values were derived using the average for 
the 20% worst and 20% best days for each year, as reported on the VIEWS website: 
http://vista.cira.colostate.edu/views/Web/IMPROVE/SummaryData.aspx .  These values were 
calculated using the original IMPROVE equation for reconstructed light extinction. 
 
Three changes were made to the baseline calculations to produce a new set of values.  First, 
the reconstructed light extinction equation was revised by the IMPROVE Steering Committee in 
2005.  The new IMPROVE equation was used to calculate updated baseline values.  
 
Second, due to sampler problems, the 2002-2004 data for Boundary Waters were invalid for 
certain chemical species.  (Note, sulfate and nitrate data were valid.)  A “substituted” data set 
was developed by using values from Voyageurs for the invalid species. 
 
Third, LADCO identified a number of days during 2000-2004 where data capture at the Class I 
monitors was incomplete (Kenski, 2007b).  The missing data cause these days to be excluded 
from the baseline calculations.  However, the light extinction due to the remaining measured 
species is significant (i.e., above the 80th percentile).  It makes sense to include these days in 
the baseline calculations, because they are largely dominated by anthropogenic sources.  (Only 
one of these days is driven by high organic carbon, which might indicate non-anthropogenic 
aerosol from wildfires.)  As seen in Table 3, inclusion of these days in the baseline calculation 
results in a small, but measurable, effect on the baseline values (i.e., values increase from 0.2 
to 0.8 dv). 
 
 

Table 3.  Average of 20% worst days, with and without missing data days 
 

 Average Worst Day 
DV, per RHR 

Average Worst Day DV, 
with Missing Data Days 

Difference 

BOWA 19.59 19.86 0.27 
ISLE 20.74 21.59 0.85 
SENE 24.16 24.38 0.22 
VOYA 19.27 19.48 0.21 

 

 
A summary of the initial and updated baseline values for the Class I areas in northern Michigan 
and northern Minnesota are presented in Table 4.  The updated baseline values reflect the most 
current, complete understanding of visibility impairing effects and, as such, will be used for SIP 
planning purposes. 
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Table 4. Summary of visibility metrics (deciviews) for northern Class I areas 

 
Old IMPROVE Equation (Cite: VIEWS, November 2005)    
  20% Worst Days    

  2000 2001 2002 2003 2004 
Baseline 

Value 
2018 

URI Value 
Natural 

Conditions 
Voyageurs  18.50 18.00 19.00 19.20 17.60 18.46 16.74 11.09 
BWCA  19.85 19.99 19.68 19.73 17.65 19.38 17.47 11.21 
Isle Royale  20.00 22.00 20.80 19.50 19.10 20.28 18.17 11.22 
Seney  22.60 24.90 24.00 23.80 22.60 23.58 20.73 11.37 
          
  20% Best Days    

  2000 2001 2002  2003 2004 
Baseline 

Value  
Natural 

Conditions 
Voyageurs  6.30 6.20 6.70 7.00 5.40 6.32  3.41 
BWCA  5.90 6.52 6.93 6.67 5.61 6.33  3.53 
Isle Royale  5.70 6.40 6.40 6.30 5.30 6.02  3.54 
Seney  5.80 6.10 7.30 7.50 5.80 6.50  3.69 
          
          

New IMPROVE Equation (Cite: VIEWS, March 2006)    
  20% Worst Days    

  2000 2001 2002 2003 2004 
Baseline 

Value 
2018 

URI Value 
Natural 

Conditions 
Voyageurs  19.55 18.57 20.14 20.25 18.87 19.48 17.74 12.05 
BWCA  20.20 20.04 20.76 20.13 18.18 19.86 17.94 11.61 
Isle Royale  20.53 23.07 21.97 22.35 20.02 21.59 19.43 12.36 
Seney  22.94 25.91 25.38 24.48 23.15 24.37 21.64 12.65 
          
  20% Best Days    

  2000 2001 2002 2003 2004 
Baseline 

Value  
Natural 

Conditions 
Voyageurs  7.01 7.12 7.53 7.68 6.37 7.14  4.26 
BWCA  6.00 6.92 7.00 6.45 5.77 6.43  3.42 
Isle Royale  6.49 7.16 7.07 6.99 6.12 6.77  3.72 
Seney  6.50 6.78 7.82 8.01 6.58 7.14  3.73 
          
Notes: (1) BWCA values for 2002 - 2004 reflect "substituted" data. 
            (2) New IMPROVE equation values include Kenski, 2007 adjustment for missing days 
 
             URI = uniform rate of improvement 
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As noted above, the goal of the visibility program is to achieve natural conditions.  Initially, the 
natural conditions values for each Class I area were taken directly from EPA guidance (EPA, 
2003).  These values were calculated using the original IMPROVE equation.  This equation was 
revised by the IMPROVE Steering Committee in 2005, and the new IMPROVE equation was 
used to calculate updated natural conditions values.  The updated values are reported on the 
VIEWS website. 
 
A summary of the initial and updated natural conditions values are presented in Table 4.  The 
updated natural conditions values (based on the new IMPROVE equation) will be used for SIP 
planning purposes. 
 
Data Variability: For the four northern Class I areas, the most important PM2.5 chemical species 
are ammonium sulfate, ammonium nitrate, and organic carbon.  The contribution of these 
species on the 20% best and 20% worst visibility days (based on 2000 – 2004 data) is provided 
in Figure 30.  For the 20% worst visibility days, the contributions are: sulfate = 35-55%, nitrate = 
25-30%, and organic carbon = 12-22%.  Although the chemical composition is similar, sulfate 
increases in importance from west to east and concentrations are highest at Seney (the 
easternmost site).   It should also be noted that sulfate and nitrate contribute more to light 
extinction than to PM2.5 mass because of their hygroscopic properties. 
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Figure 30. Chemical composition of light extinction for 20% best visibility days (left) and 20% 
worst visibility days (right) in terms of Mm-1 

 
 
Analysis of PM2.5 mass and chemical species for rural IMPROVE (and IMPROVE-protocol) sites 
in the eastern U.S. showed a high degree of correlation between PM2.5-mass, sulfate, and 
nitrate levels (see Figure 31).  The Class I sites in northern Michigan and northern Minnesota, in 
particular, are highly correlated for PM2.5 mass, sulfates, and organic carbon mass (AER, 2004). 
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Figure 31. Correlations among IMPROVE (and IMPROVE-protocol) monitoring sites in Eastern U.S. 
 
 

Long-term trends at Boundary Waters (the only regional site with a sufficient data record) show 
significant decreases in total PM2.5 (-0.005 ug/year) and SO4 (-0.04 ug/year) and an increase in 
NO3 (+0.01 ug/year).  These PM2.5 and SO4 trends are generally consistent with long-term 
trends at other IMPROVE sites in the eastern U.S., which have shown widespread decreases in 
SO4 and PM2.5 (DeBell, et al, 2006).  Detecting changes in nitrate has been hampered by 
uncertainties in the IMPROVE data for particular years and, thus, this estimate should be 
considered tentative.  
 
Haze in the Midwest Class I areas has no strong seasonal pattern.  Poor visibility days occur 
throughout the year, as indicated in Figure 32.  (Note, in contrast, other parts of the country, 
such as Shenandoah National Park in Virginia, show a strong tendency for the worst air quality 
days to occur in the summer months.)  This figure and Figure 33 (which presents the monthly 
average light extinction values based on all sampling days) also show that sulfate and organic 
carbon concentrations are higher in the summer, and nitrate concentrations are higher in the 
winter, suggesting the importance of different sources and meteorological conditions at different 
times of the year. 
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Figure 32. Daily light extinction values for 20% worst days at Boundary Waters (2000 – 2004) 
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Figure 33. Monthly average light extinction values for northern Class I areas 
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Precursor Sensitivity: Results from two analyses using thermodynamic equilibrium models 
provide information on the effect of changes in precursor concentrations on PM2.5 
concentrations (and, in turn, visibility levels) in the northern Class I areas.  First, a preliminary 
analysis using data collected at Seney indicated that PM2.5 there is most sensitive to reductions 
in sulfate, but is also sensitive to reductions in nitric acid (Blanchard 2004b).  
 
Second, an analysis was performed using data from the Midwest ammonia monitoring network 
for a site in Minnesota -- Great River Bluffs, which is the closest ammonia monitoring site to the 
northern Class I areas (Blanchard, 2005b).  Figure 34 shows PM2.5 concentrations as a function 
of sulfate, nitric acid (HNO3), and ammonia (NH3).  Reductions in sulfate (i.e., movement to the 
left of baseline value [represented by the red star]), as well as reductions in nitric acid (i.e., 
movement downward) and NH3 (i.e., movement to the left), result in lower PM2.5 concentrations.  
Thus, reductions in sulfate, nitric acid, and ammonia will lower PM2.5 concentrations and 
improve visibility in the northern Class I areas. 
 

 
Figure 34.  Predicted PM2.5 mass concentrations at Great River Bluffs, MN as functions of changes 
in sulfate, nitric acid, and ammonia 

 
 
Meteorology and Transport:  The role of meteorology in haze is complex.  Wind speed and wind 
direction govern the movement of air masses from polluted areas to the cleaner wilderness 
areas.  As noted above, increasing humidity increases the efficiency with which sulfate and 
nitrate aerosols scatter light.  Temperature and humidity together govern whether ammonium 
nitrate can form from its precursor gases, nitric acid and ammonia.  Temperature and sunlight 
also play an indirect role in emissions of biogenic organic species that condense to form 
particulate organic matter; emissions increase in the summer daylight hours.    
 
Trajectory analyses were performed to understand transport patterns for the 20% worst and 
20% best visibility days.  The composite results for the four northern Class I areas are provided 
in Figure 35.  The orange areas are where the air is most likely to come from, and the green 
areas are where the air is least likely to come from.  As can be seen, bad air days are generally 
associated with transport from regions located to the south, and good air days with transport 
from Canada.   
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Figure 35. Composite back trajectories for light extinction- 20% best visibility days (left) and 
20% worst visibility days (right) (2000 – 2005) 

 
 

Source Culpability:  Air quality data analyses (including the trajectory analyses above) and 
dispersion modeling were used to provide information on source region and source sector 
contributions to regional haze in the northern Class I areas (see MRPO, 2008).  Based on this 
information, the most important contributing states are Michigan, Minnesota, and Wisconsin, as 
well as Missouri, North Dakota, Iowa, Indiana and Illinois (see, for example, Figure 35 above).  
The most important contributing pollutants and source sectors are SO2 emissions from 
electrical generating units (EGUs) and certain non-EGUs, which lead to sulfate formation, and 
NOx emissions from a variety of source types (e.g., motor vehicles), which lead to nitrate 
formation.  Ammonia emissions from livestock waste and fertilizer applications are also 
important, especially for nitrate formation. 
 
A source apportionment study was performed using monitoring data from Boundary Waters and 
statistical analysis methods (DRI, 2005).  The study shows that a large portion of PM2.5 mass 
consists of secondary, regional impacts, which cannot be attributed to individual facilities or 
sources (e.g., secondary sulfate, secondary nitrate, and secondary organic aerosols).  Industrial 
sources contribute about 3-4% and mobile sources about 4-7% to PM2.5 mass.   
 
A special study was performed in Seney to identify sources of organic carbon (Sheesley, et al, 
2004).  As seen in Figure 36, the highest PM2.5 concentrations occurred during the summer, 
with organic carbon being the dominant species.  The higher summer organic carbon 
concentrations were attributed mostly to secondary organic aerosols of biogenic origin because 
of the lack of primary emission markers, and concentrations of know biogenic-related species 
(e.g., pinonic acid – see Figure 36) were also high during the summer. 
 
 



 

 44

 

  
 

  
Figure 36. Monthly concentrations of PM2.5 species (top), and secondary and biogenic-related 
organic carbon species in Seney (bottom) 
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Although the Seney study showed that biomass burning was a relatively small contributor to 
organic carbon on an annual average basis, episodic impacts area apparent (see, for example, 
high organic carbon days in Figure 32).  To assess further whether burning is a significant 
contributor to visibility impairment in the northern Class I areas, the PM2.5 chemical speciation 
data were examined for days with high organic carbon and elemental carbon concentrations, 
which are indicative of biomass burning impacts.  Only a handful of such days were identified: 

 
Table 5.  Days with high OC and EC concentrations in northern Class I areas 

 
Site 2000 2001 2002 2003 2004 

Voyageurs    ---    --- Jun 1 Aug 25 Jul 17 
   Jun 28   
   Jul 19   
Boundary Waters    ---    --- Jun 28 Aug 25 Jul 17 
   Jul 19   
Isle Royale    ---    --- Jun 1 Aug 25    --- 
   Jun 28   
Seney    ---    --- Jun  28    ---    --- 

 
  
Back trajectories on these days point mostly to wildfires in Canada.  Elimination of these high 
organic carbon concentration days has a small effect in lowering the baseline visibility levels in 
the northern Class I areas (i.e., Minnesota Class I areas change by about 0.3 deciviews and 
Michigan Class I areas change by less than 0.2 deciviews).  This suggests that fire activity, 
although significant on a few days, is on average a relatively small contributor to visibility 
impairment in the northern Class I areas. 
 
In summary, these analyses that organic carbon in the northern Class I is largely uncontrollable. 
 



   

 46

 
Section 3.0 Air Quality Modeling 

 
Air quality models are relied on by federal and state regulatory agencies to support their 
planning efforts.  Used properly, models can assist policy makers in deciding which control 
programs are most effective in improving air quality, and meeting specific goals and objectives.  
For example, models can be used to conduct “what if” analyses, which provide information for 
policy makers on the effectiveness of candidate control programs. 
 
The modeling analyses were conducted in accordance with EPA’s modeling guidelines (EPA, 
2007a).  Further details of the modeling are provided in two protocol documents: LADCO, 2007a 
and LADCO, 2007b.  
 
This section reviews the development and evaluation of the modeling system used for the multi-
pollutant analyses.  Application of the modeling system (i.e., attainment demonstration for ozone 
and PM2.5, and reasonable progress assessment for haze) is covered in the following sections. 
 
 
3.1 Selection of Base Year 
Two base years were used in the modeling analyses: 2002 and 2005.  EPA’s modeling 
guidance recommends using 2002 as the baseline inventory year, but also allows for use of an 
alternative baseline inventory year, especially a more recent year.  Initially, LADCO conducted 
modeling with a 2002 base year (i.e., Base K/Round 4 modeling, which was completed in 2006).  
A decision was subsequently made to conduct modeling with a 2005 base year (i.e., Base 
M/Round 5, which was completed in 2007).  As discussed in the previous section, 2002 and 
2005 both had above normal ozone conducive conditions, although 2002 was more severe 
compared to 2005.  Examination of multiple base years provides for a more complete technical 
assessment.  Both sets of model runs are discussed in this document.  
 
 
3.2 Future Years of Interest 
To address the multiple attainment requirements for ozone and PM2.5, and reasonable progress 
goals for regional haze, several future years are of interest: 
 

2008 Planning year for ozone basic nonattainment areas (attainment date 2009)8 
2009 Planning year for ozone moderate nonattainment areas and PM2.5 nonattainment 

areas (attainment date 2010) 
2012  Planning year for ozone moderate nonattainment areas and PM2.5 nonattainment 

 areas, with 3-year extension (attainment date 2013) 
2018 First milestone year for regional haze planning 

                                            
8 According to USEPA’s ozone implementation rule (USEPA, 2005), emission reductions needed for 
attainment must be implemented by the beginning of the ozone season immediately preceding the area’s 
attainment date.  The PM2.5 implementation rule contains similar provisions – i.e., emission reductions 
should be in place by the beginning of the year preceding the attainment date (USEPA, 2007c).  The logic 
for requiring emissions reductions by the year (or season) immediately preceding the attainment year 
follows from language in the Clean Air Act, and the ability for an area to receive up to two 1-year 
extensions.  Therefore, emissions in the year preceding the attainment year should be at a level that is 
consistent with attainment. It also follows that the year preceding the attainment year should be modeled 
for attainment planning purposes. 
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Detailed emissions inventories were developed for 2009 and 2018.  To support modeling for 
other future years, less rigorous emissions processing was conducted (e.g., 2012 emissions 
were estimated for several source sectors by interpolating between 2009 and 2018 emissions). 
 
3.3 Modeling System 
The air quality analyses were conducted with the CAMx model, with emissions and meteorology 
generated using EMS (and CONCEPT) and MM5, respectively.  The selection of CAMx as the 
primary model is based on several factors: performance, operator considerations (e.g., ease of 
application and resource requirements), technical support and documentation, model 
extensions (e.g., 2-way nested grids, process analysis, source apportionment, and plume-in-
grid), and model science.  CAMx model set-up for Base M and Base K is summarized below: 
 
  Base M (2005)     Base K (2002) 
 • CAMx v4.50     * CAMx 4.30 
 • CB05 gas phase chemistry   * CB-IV with updated gas-phase chemistry 
 • SOA chemistry updates   * No SOA chemistry updates 
 • AERMOD dry deposition scheme  * Wesley-based dry deposition 
 • ISORROPIA inorganic chemistry  • ISORROPIA inorganic chemistry 
 • SOAP organic chemistry   • SOAP organic chemistry 
 • RADM aqueous phase chemistry  • RADM aqueous phase chemistry 
 • PPM horizontal transport   • PPM horizontal transport 
 
 
3.4 Domain/Grid Resolution 
The National RPO grid projection was used for this modeling.  A subset of the RPO domain was 
used for the LADCO modeling.  For PM2.5 and haze, the large eastern U.S. grid at 36 km (see 
box on right side of Figure 36) was used.  A PM2.5 sensitivity run was also performed for this 
domain at 12 km.  For ozone, the smaller grid at 12 km (see shaded portion of the box on the 
right side of Figure 37) was used for most model runs.  An ozone sensitivity run was also 
performed with a 4km sub-grid over the Lake Michigan area and Detroit/Cleveland. 
   
The vertical resolution in the air quality model consists of 16 layers extending up to 15 km, with 
higher resolution in the boundary layer.  
 

 

 
 
 
 
 
 
 
 
 

 
Figure 37. Modeling grids – RPO domain (left) and LADCO modeling domain (right) 

 

12 km 

36 km 
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3.5 Model Inputs: Meteorology 
Meteorological inputs were derived using the Fifth-Generation NCAR/Penn State Meteorological 
Model (MM5) – version 3.6.3 for the years 2001–2003, and version 3.7 for the year 2005.  The 
MM5 modeling domains are consistent with the National RPO grid projections (see Figure 38).   

 
Figure 38.  MM5 modeling domain for 2001-2003 (left) and 2005 (right) 

 
The annual 2002 36 km MM5 simulation was completed by Iowa  DNR. The 36/12 km 2-way 
nested simulation for the summers of 2001, 2002, and 2003 were conducted jointly by Illinois 
EPA and LADCO. The 36 km non-summer portion of the annual 2003 simulation was conducted 
by Wisconsin DNR.  The annual 2005 36/12 km (and summer season 4 km) MM5 modeling was 
completed by Alpine Geophysics.  Wisconsin DNR also completed 36/12 km MM5 runs for the 
summer season of 2005. 
 
Model performance was assessed quantitatively with the METSTAT tool from Environ. The 
metrics used to quantify model performance include mean observation, mean prediction, bias, 
gross error, root mean square error, and index of agreement.  Model performance metrics were 
calculated for several sub-regions of the modeling domain (Figure 39) and represent hourly 
spatial averages of multiple monitor locations.  Additional analysis of rainfall is done on a 
monthly basis. 
 

 
Figure 39. Sub-domains used for model performance for 2001-2003 (left) and 2005 (right) 

 
A summary of the performance evaluation results for the meteorological modeling is provided 
below. Further details are provided in two summary reports (LADCO, 2005 and LADCO, 2007c). 
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Temperature: The biggest issue with the performance in the upper Midwest is the existence of a 
cool diurnal temperature bias in the winter and warm temperature bias over night during the 
summer (see Figure 40). These features are common to other annual MM5 simulations for the 
central United States and do not appear to adversely affect model performance.  
 

 
Figure 40. Daily temperature bias for 2002 (left) and 2005 (right) with hotter colors 
(yellow/orange/red) representing overestimates and cooler colors (blues) representing 
underestimates 
 
Note: months are represented from left to right (January to December) and days are represented 
from top to bottom (1 to 30(31) – i.e., upper left hand corner is January 1 and lower right hand 
corner is December 31 
 
Wind Fields: The wind fields are generally good.  Wind speed bias is less than 0.5 m/sec and 
wind speed error is consistently between 1.0 and 1.5 m/sec.  Wind direction error is generally 
within 15-30 degrees. 
 
Mixing Ratio: The mixing ratio (a measure of humidity) is over-predicted in the late spring and 
summer months, and mixing ratio error is highest during this period.  There is little bias and 
error during the cooler months when there is less moisture in the air. 
 
Rainfall: The modeled and observed rainfall totals show good agreement spatially and in 
terms of magnitude in the winter, fall, and early spring months.  There are, however, large over-
predictions of rainfall in the late spring and summer months (see Figure 41). These over-
predictions are seen spatially and in magnitude over the entire domain, particularly in the 
Southeast United States, and are likely due to excessive convective rainfall being predicted in 
MM5.  This over-prediction of rainfall in MM5 does not necessarily translate into over-prediction 
of wet deposition in the photochemical model (Baker and Scheff, 2006).  CAMx does not 
explicitly use the convective and non-convective rainfall output by MM5, but estimates wet 
scavenging by hydrometers using cloud, ice, snow, and rain water mixing ratios output by MM5.  
Nevertheless, this could have an effect on model performance for PM2.5, as discussed in 
Section 3.7, and may warrant further attention. 
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Figure 41. Comparison of observed  (left column) and modeled (right column) monthly rainfall for 
July 2002 (top) and July 2005 (bottom) 
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3.6 Model Inputs: Emissions 
Emission inventories were prepared for two base years: 2002 (Base K) and 2005 (Base M), and 
several future years: 2008, 2009, 2012, and 2018.  Further details of the emission inventories 
are provided in two summary reports (LADCO, 2006a and LADCO, 2008a) and the following 
pages of the LADCO web site: 
 
http://www.ladco.org/tech/emis/basek/BaseK_Reports.htm 
http://www.ladco.org/tech/emis/r5/round5_reports.htm 
 
For on-road, nonroad, ammonia, and biogenic sources, emissions were estimated by models.  
For the other sectors (point sources, area sources, and MAR [commercial marine, aircraft, and 
railroads]), emissions were prepared using data supplied by the LADCO States and other 
RPOs. 
 
 
Base Year Emissions: State and source sector emission summaries for 2002 (Base K) and 
2005 (Base M) are compared in Figure 42.  Additional detail is provided in Table 6.  
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Figure 42. Base K and Base M emissions for 5-state LADCO region by state (top) and source 
sector (bottom), units: tons per summer weekday 
 
 
A summary of the base year emissions by sector for the LADCO States is provided below. 
 
On-road Sources: For 2002, EMS was run by LADCO using VMT and MOBILE6 inputs supplied 
by the LADCO States.  EMS was run to generate 36 days (weekday, Saturday, Sunday for each 
month) at 36 km, and 9 days (weekday, Saturday, Sunday for June – August) at 12 km. 



 VOC Base M BaseK Base M BaseK BaseK Base M NOx Base M BaseK Base M BaseK BaseK Base M SOX Base M BaseK Base M BaseK BaseK Base M PM2.5 Base M BaseK Base M BaseK BaseK Base M

July 2002 2005 2009 2009 2012 2018 2018 2002 2005 2009 2009 2012 2018 2018 2002 2005 2009 2009 2012 2018 2018 2002 2005 2009 2009 2012 2018 2018

Nonroad

IL 224 321 164 257 149 130 213 324 333 263 275 224 154 155 31 33 5 5 0.6 0.4 0.4 30 24 14

IN 125 195 94 160 95 95 128 178 191 142 158 141 141 89 17 19 3 3 3 0.3 0.2 17 13 7

MI 348 414 307 350 276 222 271 205 239 159 197 133 93 112 19 22 3 3 0.5 0.3 0.3 22 18 11

OH 222 356 161 294 145 126 238 253 304 195 246 162 109 135 23 29 4 5 0.5 0.3 0.4 27 22 13

WI 214 238 194 203 175 140 157 145 157 114 129 97 69 77 13 15 2 2 0.3 0.2 0.2 14 12 7

5-State Total 1133 1524 920 1264 840 713 1007 1105 1224 873 1005 757 566 568 103 118 17 18 4.9 1.5 1.5 110 89 52

U.S. Total 8463 9815 5442 8448  5244 6581 6041 9060 6057 8120  5832 5100 505 654 117 153  104 13 573 750 475

MAR

IL 10 11 10 10 10 10 6 277 246 201 228 195 186 165 0 22 0 19 0 0 17 7 6 4

IN 5 5 5 5 5 5 3 123 93 89 87 87 84 65 0.2 8 0.2 7 0.2 0.2 6 2 2 2

MI 7 7 7 7 7 8 7 114 87 112 82 111 110 65 0.6 21 0.7 14 0.7 0.8 8 3 3 2

OH 8 7 8 7 8 8 5 177 134 128 126 126 122 94 0.4 14 0.3 12 0.3 0.3 10 4 4 2

WI 4 4 4 4 4 4 3 79 58 59 54 59 57 41 12.7 8 9.5 6 9.5 8.7 5 2 2 1

5-State Total 34 34 34 33 34 35 24 770 618 589 577 578 559 430 13.9 73 10.7 58 10.7 10 46 18 17 11

U.S. Total 307 317 321 157 329 346 334 4968 4515 4002 1813 3964 3919 3812 620 512 509 122 509 503 290 147 57 165

OtherArea

IL 679 675 688 594 700 738 582 62 48 68 48 70 73 49 11 11 12 16 12 13 16 40 64 69

IN 354 391 365 358 373 398 384 62 56 65 58 67 69 59 158 32 150 32 151 153 32 2 2 2

MI 518 652 516 562 520 541 549 49 49 52 50 53 54 51 71 29 68 29 68 68 28 111 114 120

OH 546 604 550 506 558 593 487 50 93 59 108 60 62 108 22 6 34 15 35 35 14 19 35 34

WI 458 315 467 290 474 506 293 32 37 34 37 34 35 37 9 17 9 13 10 10 13 11 12 12

5-State Total 2555 2637 2586 2310 2625 2776 2295 255 283 278 301 284 293 304 271 95 273 105 276 279 103 183 227 237

U.S. Total 17876 21093 18638 18683  20512 24300 3856 4899 4100 4220  4418 5357 2075 2947 2062 2559  2189 2709 2735 2621 2570

On-Road

IL 446 341 314 268 260 197 151 890 748 578 528 474 300 201 9 4 3 13 10 6

IN 405 282 237 235 193 150 138 703 541 425 402 313 187 173 11 3 2 9 7 2

MI 522 351 335 269 303 217 163 926 722 680 501 619 385 204 14 4 3 12 9 3

OH 574 680 365 424 340 238 242 1035 934 609 693 512 270 274 18 4 4 16 12 4

WI 238 175 144 119 117 88 68 481 457 303 322 226 118 138 9 2 2 8 6 2

5-State Total 2185 1829 1395 1315 1213 890 762 4035 3402 2595 2446 2144 1260 990 61 17 14 58 44 17

U.S. Total 14263 7825 23499 13170

EGU

IL 9 7 8 6 8 9 7 712 305 227 275 244 231 224 1310 1158 944 958 789 810 869 13 34 77

IN 6 6 6 6 7 6 6 830 393 406 370 424 283 255 2499 2614 1267 1033 1263 1048 1036 16 73 74

MI 12 6 11 4 11 12 4 448 393 218 242 219 247 243 1103 1251 1022 667 1031 1058 725 15 25 29

OH 5 4 6 5 7 7 6 1139 408 330 280 322 271 285 3131 3405 1463 1326 994 701 983 28 94 80

WI 3 5 3 2 4 4 3 293 213 146 165 139 147 177 602 545 512 460 492 500 435 0 22 25

5-State Total 35 28 34 23 37 38 26 3422 1712 1327 1332 1348 1179 1184 8645 8973 5208 4444 4569 4117 4048 72 248 285

U.S. Total 214 140 195 124 197 215 138 14371 10316 7746 7274 7721 7007 6095 31839 34545 20163 16903 17629 14727 14133 685 1131 1571

Non-EGU

IL 313 221 286 218 305 350 258 356 330 334 218 338 343 235 373 423 251 335 257 249 346 16 17 19

IN 150 130 160 137 170 199 167 238 179 212 175 216 225 178 292 218 270 216 274 290 180 35 36 44

MI 123 116 115 119 122 139 140 216 240 208 242 214 229 271 162 158 166 148 171 185 163 20 21 25

OH 77 84 75 87 79 90 104 177 175 157 166 160 167 178 240 289 231 288 210 216 293 27 28 33

WI 88 84 97 87 104 120 106 98 97 91 93 92 94 81 163 156 154 152 155 156 85 0 0.1 0.1

5-State Total 751 635 733 648 780 898 775 1085 1021 1002 894 1020 1058 943 1230 1244 1072 1139 1067 1096 1067 98 102 121

U.S. Total 4087 3877 4409  4700 5378 6446 6730 6129  6435 6952 5759 5630 6093 6340 6970  1444 1777

IL 1681 1576 1470 1353 1432 1434 1217 2621 2010 1671 1572 1545 1287 1029 1725 1656 1212 1337 1059 1072 1251 119 155 189

IN 1045 1009 867 901 843 853 826 2134 1453 1339 1250 1248 989 819 2966 2902 1690 1294 1691 1492 1256 81 133 131

MI 1530 1546 1291 1311 1239 1139 1134 1958 1730 1429 1314 1349 1118 946 1356 1495 1260 865 1271 1312 927 183 190 190

OH 1432 1735 1165 1323 1137 1062 1082 2831 2048 1478 1619 1342 1001 1074 3416 3761 1732 1650 1240 953 1304 121 195 166

WI 1005 821 909 705 878 862 630 1128 1019 747 800 647 520 551 800 750 687 635 667 675 540 35 54 47

5-State Total 6693 6687 5702 5593 5529 5350 4889 10672 8260 6664 6555 6131 4915 4419 10263 10564 6581 5781 5928 5504 5280 539 727 723
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For 2005, CONCEPT was run by a contractor (Environ) using transportation data (e.g., VMT 
and vehicle speeds) supplied by the state and local planning agencies in the LADCO States and 
Minnesota for 24 networks.  These data were first processed with T3 (Travel Demand Modeling 
[TDM] Transformation Tool) to provide input files for CONCEPT to calculate link-specific, hourly 
emission estimates (Environ, 2007d).  CONCEPT was run with meteorological data for a July 
and January weekday, Saturday, and Sunday (July 15 – 17 and January 16 – 18).   A spatial 
plot of emissions is provided in Figure 43. 

 
VOC Emissions         NOx Emissions 

 
 

Figure 43. Motor vehicle emissions for VOC (left) and NOx (right) for a July weekday (2005) 
 

Off-road Sources: For 2002 and 2005, NMIM and NMIM2005, respectively, were run by 
Wisconsin DNR.  Additional off-road sectors (i.e., commercial marine, aircraft, and railroads 
[MAR]) were handled separately.  Local data for agricultural equipment, construction equipment, 
commercial marine, recreational marine, and railroads were prepared by contractors (Environ, 
2004, and E.H. Pechan, 2004).  For Base M, updated local data for railroads and commercial 
marine were prepared by a contractor (Environ, 2007b, 2007c).  Table 7 compares the Base M 
2005 and Base K 2002 emissions.  Compared to 2002, the new 2005 emissions reflect 
substantially lower commercial marine emissions and lower locomotive NOx emissions. 
 

Table 7. Locomotive and commercial marine emissions for the five LADCO States (2002 v. 2005) 
 

 Railroads (TPY)  Commercial Marine (TPY) 

 2002 2005  2002 2005 

VOC 7,890 7,625  1,562 828 

CO 20,121 20,017  8,823 6,727 

NOx 182,226 145,132  64,441 42,336 

PM 5,049 4,845  3,113 1,413 

SO2 12,274 12,173  25,929 8,637 

NH3 86 85  ---- ---- 

 
 

Area Sources: For 2002 and 2005, EMS was run by LADCO using data supplied by the LADCO 
States to produce weekday, Saturday, and Sunday emissions for each month.  For 2005, 
special attention was given to two source categories: industrial adhesive and sealant solvents 
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(which were dropped from the inventory to avoid double-counting) and outdoor wood boilers 
(which were added to the inventory). 
 
Point Sources: For 2002 and 2005, EMS was run by LADCO using data supplied by the LADCO 
States to produce weekday, Saturday, and Sunday emissions for each month.  For EGUs, the 
annual and summer season emissions were temporalized for modeling purposes using profiles 
prepared by Scott Edick (Michigan DEQ) based on CEM data.                                                                                                                                                                                        
                                                                                                                                                                                                                                  
Biogenics:  For Base M, a contractor (Alpine) provided an updated version of the 
CONCEPT/MEGAN biogenics model.  Compared to the previous (EMS/BIOME) emissions, 
there is more regional isoprene using MEGAN compared to the BIOME estimates used for Base 
K (see Figure 44). Also, with the secondary organic aerosol updates to the CAMx air quality 
model, Base M includes emissions for monoterpenes and sesquiterpenes, which are pre-
cursors of secondary PM2.5 organic carbon mass. 
 

 
 Figure 44. Isoprene emissions for Base M (left) v. Base K (right) 

 
Ammonia: For Base M, the CMU-based 2002 (Base K) ammonia emissions were projected to 
2005 using growth factors from the Round 4 emissions modeling.  These emissions were then 
adjusted by applying temporal factors by month based on the process-based ammonia 
emissions model (Zhang, et al, 2005, and Mansell, et al, 2005).  A plot of average daily 
emissions by state and month is provided in Figure 45.  A spatial plot of emissions is provided in 
Figure 46, which shows high emissions densities in the central U.S. 
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Figure 45. Average daily ammonia emissions for Midwest States by month (2005) x 
(units: average daily emissions – tons per day) 
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Figure 46. Ammonia emissions for a July weekday (2005) – 12 km modeling domain 

 
Canadian Emissions: For Base M, Scott Edick (Michigan DEQ) processed the 2005 Canadian 
National Pollutant Release Inventory, Version 1.0 (NPRI).  Specifically, a subset of the NPRI 
data (emissions and stack parameters) relevant to the air quality modeling were reformatted.  
The resulting emissions represent a significant improvement in the base year emissions.  
 
A spatial plot of point source SO2 and NOx emissions is provided in Figure 47.  Additional plots 
and emission reports are available on the LADCO website 
(http://www.ladco.org/tech/emis/basem/canada/index.htm).  
 

 
Figure 47. Canadian point source emissions for SO2 (left) and NOx (right) 
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Fires: For Base K, a contractor (EC/R, 2004) developed a 2001, 2002, and 2003 fire emissions 
inventory for eight Midwest States (five LADCO states plus Iowa, Minnesota, and Missouri), 
including emissions from wild fires, prescribed fires, and agricultural burns.  Projected emissions 
were also developed for 2010 and 2018 assuming “no smoke management” and “optimal smoke 
management” scenarios.  An early model sensitivity run showed very little difference in modeled 
PM2.5 concentrations.  Consequently, the fire emissions were not included in subsequent 
modeling runs (i.e., they were not in the Base K or Base M modeling inventories). 
 
Future Year Emissions: Complete emission inventories were developed for several future years:  
Base K – 2009, 2012, and 2018, and Base M – 2009 and 2018.  In addition, 2008 (Base K and 
Base M) and 2012 (Base M) proxy inventories were estimated based on the 2009 and 2018 
data.  (Note, the EGU emissions for the Base M 2012 inventory were based on EPA’s IPM3.0 
modeling.) 
 
Source sector emission summaries for the base years and future years are shown in Figure 48.  
Additional detail is provided in Table 6.  
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Figure 48. Base year and future year emissions for 5-State LADCO Region (TPD, July weekday) 

 
 
For on-road, and nonroad, the future year emissions were estimated by models (i.e., 
EMS/CONCEPT and NMIM, respectively).  One adjustment was made to the 2009 and 2018 
motor vehicle emission files prepared by Environ with CONCEPT.  To reflect newer 
transportation modeling conducted by CATS for the Chicago area, emissions were increased by 
9% in 2009 and 2018.  The 2005 base year and adjusted 2009 and 2018 motor vehicle 
emissions are provided in Table 8.
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Table 8.  Motor Vehicle Emissions Produced by CONCEPT Modeling (July weekday – tons per day) 
 

Year State Sum of CO Sum of TOG Sum of NOx Sum of PM2.5 Sum of SO2 Sum of NH3 Sum of VMT 

2005 IL 3,684.3 341.5 748.2 12.9 9.6 35.9 344,087,819.6 

 IN 3,384.9 282.0 541.1 8.9 11.1 25.7 245,537,231.9 

 MI 4,210.3 351.9 722.0 12.4 13.9 35.3 340,834,025.9 

 MN 2,569.1 218.7 380.5 6.3 7.6 17.7 170,024,599.7 

 OH 6,113.4 679.8 933.6 16.2 18.8 36.5 360,521,068.6 

 WI 2,206.0 175.1 457.5 7.8 9.2 19.7 189,123,964.3 

 Total  22,168.0 2,049.0 3,782.9 64.5 70.2 170.8 1,650,128,709.9 

         

2009 IL 2,824.4 268.0 527.8 10.1 4.2 38.9 372,132,591.1 

 IN 2,839.5 234.9 401.9 6.7 2.8 26.1 249,817,026.3 

 MI 3,172.0 269.2 500.9 9.2 4.0 37.1 356,347,010.5 

 MN 2,256.8 206.3 307.5 5.1 2.3 21.5 204,443,017.8 

 OH 4,619.2 423.7 693.5 11.8 4.7 39.5 387,428,127.2 

 WI 1,673.4 119.4 322.1 5.7 2.3 20.6 197,729,964.9 

 Total  17,385.3 1,521.5 2,753.6 48.7 20.3 183.6 1,767,897,737.8 

         

2018 IL 2,084.7 151.5 200.7 6.3 3.7 43.1 413,887,887.3 

 IN 2,217.3 138.4 173.0 4.4 2.6 30.2 288,042,232.1 

 MI 2,434.3 163.5 204.1 5.9 3.6 40.5 388,128,431.8 

 MN 1,799.6 123.1 137.1 3.6 2.2 24.9 237,022,213.7 

 OH 3,361.5 242.5 274.1 6.8 4.0 43.1 421,694,093.4 

 WI 1,255.5 68.4 138.5 3.9 2.0 22.2 218,277,167.5 

 Total  13,152.9 887.5 1,127.5 30.8 18.1 203.9 1,967,052,025.8 



   

 58

For EGUs, future year emissions were based on IPM2.1.9 modeling completed by the RPOs in 
July 2005 Base K and IPM3.0 completed by EPA in February 2007 for Base M.  Several CAIR 
scenarios were assumed: 
 
 Base K  

1a: IPM2.1.9, with full trading and banking 
1b: IPM2.1.9, with restricted trading (compliance with state-specific emission budgets) and full trading 
1d: IPM2.1.9, with restricted trading (compliance with state-specific emission budgets) 

 
 Base M 

5a: EPA’s IPM3.0 was assumed as the future year base for EGUs. 
5b: EPA’s IPM3.0, with several “will do” adjustments identified by the States.   These adjustments should 
reflect a legally binding commitment (e.g., signed contract, consent decree, or operating permit).  
5c: EPA’s IPM3.0, with several “may do” adjustments identified by the States.  These adjustments reflect 
less rigorous criteria, but should still be some type of public reality (e.g., BART determination or press 
announcement). 

 
For other sectors (area, MAR, and non-EGU point sources), the future year emissions for the 
LADCO States were derived by applying growth and control factors to the base year inventory.  
These factors were developed by a contractor (E.H. Pechan, 2005 and E.H. Pechan, 2007).   
For the non-LADCO States, future year emission files were based on data from other RPOs. 
 
Growth factors were based initially on EGAS (version 5.0), and were subsequently modified (for 
select, priority categories) by examining emissions activity data.  Due to a lack of information on 
future year conditions, the biogenic VOC and NOx emissions, and all Canadian emissions were 
assumed to remain the constant between the base year and future years. 
 
A “base” control scenario was prepared for each future year based on the following “on the 
books” controls: 
 
  On-Highway Mobile Sources 

• Federal Motor Vehicle Emission Control Program, low-sulfur gasoline and ultra-low sulfur diesel fuel 
• Inspection - maintenance programs, including IL’s vehicle emissions tests (NE IL), IN’s vehicle 

emissions testing program (NW IN), OH’s E-check program (NE OH), and WI’s vehicle inspection 
program (SE WI) – note: a special emissions modeling run was done for the Cincinnati/Dayton area to 
reflect the removal of the state’s E-check program and inclusion of low RVP gasoline 

• Reformulated gasoline, including in Chicago-Gary,-Lake County, IL,IN; and Milwaukee, Racine, WI 
 
Off-Highway Mobile Sources 
• Federal control programs incorporated into NONROAD model (e.g., nonroad diesel rule), plus the 

evaporative Large Spark Ignition and Recreational Vehicle standards 
• Heavy-duty diesel (2007) engine standard/Low sulfur fuel 
• Federal railroad/locomotive standards 
• Federal commercial marine vessel engine standards 
 
Area Sources (Base M only) 
• Consumer solvents 
• AIM coatings 
• Aerosol coatings 
• Portable fuel containers 
 
Power Plants 
• Title IV (Phases I and II) 
• NOx SIP Call 
• Clean Air Interstate Rule 
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Other Point Sources 
• VOC 2-, 4-, 7-, and 10-year MACT standards 
• Combustion turbine MACT 

 
Other controls included in the modeling include: consent decrees (refineries, ethanol plants, and 
ALCOA)9, NOx RACT in Illinois and Ohio10, and BART for a few non-EGU sources in Indiana 
and Wisconsin. 
 
For Base K, several additional control scenarios were considered: 
 
 Scenario 2 – “base” controls plus additional controls recommended in LADCO White 
 Papers for stationary and mobile sources 
  
 Scenario 3 – Scenario 2 plus additional White Papers for stationary and mobile sources 
 
 Scenario 4 – “base” controls plus additional candidate control measures under 
 discussion by State Commissioners 
 
 Scenario 5 – “base” controls plus additional candidate control measures identified by the 
 LADCO Project Team 
 
 
3.7 Basecase Modeling Results 
The purpose of the basecase modeling is to evaluate model performance (i.e., assess the 
model's ability to reproduce the observed concentrations).  The model performance evaluation 
focused on the magnitude, spatial pattern, and temporal of modeled and measured 
concentrations.  This exercise was intended to assess whether, and to what degree, confidence 
in the model is warranted (and to assess whether model improvements are necessary). 
 
Model performance was assessed by comparing modeled and monitored concentrations.  
Graphical (e.g., side-by-side spatial plots, time series plots, and scatter plots) and statistical 
analyses were conducted.  No rigid acceptance/rejection criteria were used for this study.  
Instead, the statistical guidelines recommended by EPA and other modeling studies (e.g., 
modeling by the other RPOs) were used to assess the reasonableness of the results.  The 
model performance results presented here describe how well the model replicates observed 
ozone and PM2.5 concentrations after a series of iterative improvements to model inputs. 
 
Ozone: Spatial plots are provided for high ozone periods in June 2002 and June 2005 (see 
Figures 49a and 49b).  The plots show that the model is doing a reasonable job of reproducing 
the magnitude, day-to-day variation, and spatial pattern of ozone concentrations.  There is a 
tendency, however, to underestimate the magnitude of regional ozone levels.  This is more 
apparent with the 2002 modeling; the regional concentrations in the 2005 modeling agree better 
with observations due to model and inventory improvements. 

 

                                            
9 E.H. Pechan’s original control file included control factors for three sources in Wayne County, MI.  
These control factors were not applied in the regional-scale modeling to avoid double-counting with the 
State’s local-scale analysis for PM2.5   
 
10 NOx RACT in Wisconsin is included in the 2005 basecase (and EGU “will do” scenario).  NOx RACT in 
Indiana was not included in the modeling inventory. 
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Figure 49a. Modeled (top) v. monitored (bottom) 8-hour ozone concentrations: June 20 – 25, 2002 
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Figure 49b Modeled (top) v. monitored (bottom) 8-hour ozone concentrations: June 23– 28 2005
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Standard model performance statistics were generated for the entire 12 km domain, and by day 
and by monitoring site.  The domain-wide mean normalized bias for the 2005 base year is 
similar to that for the 2002 base year and is generally within 30% (see Figure 50).    

 
Figure 50.  Mean bias for summer 2005 (Base M) and summer 2002 (Base K) 

 
 
 
Station-average metrics (over the entire summer) are shown in Figure 51.  The bias results 
further demonstrate the model’s tendency to underestimate absolute ozone concentrations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51.  Mean bias (left) and gross error (right) for summer 2005 
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A limited 4 km ozone analysis was performed by LADCO to address the effect of grid spacing.  
For this modeling, 4 km grids were placed over Lake Michigan and the Detroit-Cleveland area 
(see Figure 52).  Model inputs included 4 km emissions developed by LADCO (consistent with 
Base K/Round 4) and the 4 km meteorology developed by Alpine Geophysics.   
 

 

 

 

 
Figure 52.  4 km grids for Lake Michigan region and Detroit-Cleveland region 

 
Hourly time series plots were prepared for several monitors (see Figure 53).  The results are 
similar at 12 km and 4 km, with some site-by-site and day-by-day differences. 

 

 

 
 

Figure 53. Ozone time series plots for 12 km and 4 km modeling (June 17-29, 2002) 
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An additional diagnostic analysis was performed to assess the response of the modeling system 
to changes in emissions (Baker and Kenski, 2007).  Specifically, the 2002-to-2005 change in 
observed ozone concentrations was compared to the change in modeled ozone concentrations 
based on the 95th percentile(and above) concentration values for each monitor.  This analysis 
was also done with the inclusion of model performance criteria which eliminated poorly 
performing days (i.e., error > 35%).  The results show good agreement in the modeled and 
monitored ozone concentration changes (e.g., ozone improves by about 9-10 ppb between 
2002 and 2005 according to the model and the measurements) – see Figure 54.  This provides 
further support for using the model to develop ozone control strategies. 
 

 
Figure 54.  Comparison of change in predicted and observed ozone concentrations (2002 v. 2005)  
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PM2.5: Time series plots of the monthly average mean bias and annual fractional bias for Base 
M and Base K are shown in Figure 55.  As can be seen, Base M model performance for most 
species is fair (i.e., close to “no bias” throughout most of the year), with two main exceptions.  
First, the Base M and Base K results for organic carbon are poor, suggesting the need for more 
work on primary organic carbon emissions.  Second, the Base M results for sulfate, while 
acceptable (i.e., bias values are within 35%), are not as good as the Base K results (e.g., 
noticeable underprediction during the summer months).  
 

 
 

Figure 55. PM2.5 Model performance - monthly average mean bias and annual fractional bias for 
Base M (left column) and Base K (right column) 

Base K Base M 
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Two analyses were undertaken to understand sulfate model performance for 2005: 
 

• Assess Meteorological Influences: The MM5 model performance evaluation showed that 
rainfall is over-predicted by MM5 over most of the domain during the summer months 
(LADCO, 2007c).  Because CAMx does not explicitly use the rainfall output by MM5, this 
may or may not result in over-prediction sulfate wet deposition (and under-prediction of 
sulfate concentrations).  A sensitivity run was performed with no wet deposition for July, 
August, and September.  The resulting model performance (see green line in Figure 56) 
showed a noticeable difference from the basecase (i.e., higher sulfate concentrations), 
and suggests that further evaluation of MM5 precipitation fields may be warranted. 

 
• Assess Emissions Influences: The major contributor to sulfate concentrations in the 

region is SO2 emitted from EGUs.  The basecase modeling inventory for EGUs is based 
on annual emissions, which were allocated to a typical weekday, Saturday, and Sunday 
by month using CEM-based temporal profiles.  A sensitivity run was performed using 
day-specific emissions.  The resulting model performance (see purple line in Figure 56) 
showed little difference from the basecase. 

 
Figure 56. Monthly sulfate bias for Base M (MRPO EGU) v. two sensitivity analyses (Note: positive 
values indicate over-prediction, negative values indicate under-prediction) 

 
To assess the effect of the wet deposition issue on future year modeled values, another 
sensitivity run was conducted with no wet deposition in Quarters 2-3 for the base year 
(2005) and 2018.  The resulting future year values were only slightly different from the 
current base strategy run.  In general, the future year values (without wet deposition) 
were a little higher (+0.15 ug/m3 or less) in the Ohio Valley and a little lower (-.10 ug/m3 
of less) in the Great Lakes region.  This sensitivity run provides a bound for sulfate wet 
deposition issue in terms of the attainment test, given that having no wet deposition is 
unrealistic.  The results suggest that even with an improved wet deposition treatment, 
the Base M strategy results are not expected to change very much. 
 

Time series plots of daily sulfate, nitrate, elemental carbon, and organic carbon concentrations 
for three Midwestern locations are presented in Figures 57 (2002) and 58 (2005).  These results 
are consistent with the model performance statistics (i.e., good agreement for sulfates and 
nitrates and poor agreement [large underprediction] for organic carbon).
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Figure 57. Time series of sulfate, nitrate, and organic carbon at three Midwest sites for 2005 
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Figure 58. Time series of sulfate, nitrate, and organic carbon at three Midwest sites for 2005 
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In summary, model performance for ozone and PM2.5 is generally acceptable and can be 
characterized as follows: 
 
 Ozone 

• Good agreement between modeled and monitored concentration for higher 
concentration levels (> 60 ppb) – i.e., bias within 30% 

 
• Regional modeled concentrations appear to be underestimated in the 2002 base 

year, but show better agreement (with monitored data) in the 2005 base year due to 
model and inventory improvements. 

 
• Day-to-day and hour-to-hour variation in and spatial patterns of modeled 

concentrations are consistent with monitored data 
 

• Model accurately simulates the change in monitored ozone concentrations due to 
reductions in precursor emissions. 

 
 PM2.5 

• Good agreement in the magnitude of fine particle mass, but some species are 
overestimated and some are underestimated (during periods of the year when it is 
important) 

• Sulfates: good agreement in the 2002 base year, but underestimated in 
the summer in the 2005 base year due probably to meteorological factors 

• Nitrates: slightly overestimated in the winter in the 2002 base year, but 
good agreement in the 2005 base year as a result of model and inventory 
improvements 

• Organic Carbon: grossly underestimated in the 2002 and 2005 base 
years due likely to missing primary organic carbon emissions and, 
possibly, other factors (e.g., grid resolution and model chemistry). 

 
• Temporal variation and spatial patterns of modeled concentrations are consistent 

with monitored data 
 
Several observations should be noted on the implications of these model performance findings 
on the attainment modeling presented in the following section.  First, it has been demonstrated 
that model performance overall is acceptable and, thus, the model can be used for air quality 
planning purposes.  Second, consistent with EPA guidance, the model is used in a relative 
sense to project future year values.  EPA suggests that this approach “should reduce some of 
the uncertainty attendant with using absolute model predictions alone” (EPA, 2007a).  
Furthermore, the attainment modeling is supplemented by additional information to provide a 
weight of evidence determination.  
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Section 4.0  Attainment Demonstration for Ozone and PM2./5 

 
Air quality modeling and other information were used to determine whether existing (“on the 
books”) controls would be sufficient to provide for attainment of the NAAQS for ozone and PM2.5 
and if not, then what additional emission reductions would be necessary for attainment.  
Traditionally, attainment demonstrations involved a “bright line” test in which a single modeled 
value was compared to the ambient standard.  To provide a more robust assessment of 
expected future year air quality, EPA’s modeling guidelines call for consideration of 
supplemental information.  This section summarizes the results of the primary (guideline) 
modeling analysis and a weight of evidence determination based on the modeling results and 
other supplemental analyses. 
 
 
4.1 Future Year Modeling Results 
The purpose of the future year modeling is to assess the effectiveness of existing and possible 
additional control programs.  The model was used in a relative sense to project future year 
values, which are then compared to the standard to determine attainment/nonattainment.  
Specifically, the modeling test consists of the following steps: 
 

(1) Calculate base year design values: For ozone and PM2.5, the base year design 
values were derived by averaging the three 3-year periods centered on the 
emissions base year: 

 
 2002 base year: 2000-2002, 2001-2003, and 2002-2004 
 2005 base year: 2003-2005, 2004-2006, and 2005-200711 

 
(2) Estimate the expected change in air quality: For each grid cell, a relative 

reduction factor (RRF) is calculated by taking the ratio of the future year and 
baseline modeling results.   

 
(3) Calculate future year values: For each grid cell (with a monitor), the RRFs are 

multiplied by the base year design values to project the future year values 
 

(4) Assess attainment: Future year values are compared to the NAAQS to assess 
attainment or nonattainment. 

 
A comparison of the 2002 and 2005 base year design values for ozone and PM2.5 is provided in 
Figure 59.  In general, the figure shows that the 2005 base year design values are much lower 
than the 2002 base year design values, especially for ozone.

                                            
11 A handful of source-oriented PM2.5 monitors in Illinois and Indiana were excluded from the annual 
attainment test, because these monitors are not to be used to judging attainment of the annual standard. 
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Figure 59.  2002 v. 2005 base year design values for ozone (top) and PM2.5 (bottom) 

  2002                    2005 

Statistical Summary 
# Sites > NAAQS  93          9 
Peak Value   99.0 ppb         90.0 ppb 
Ave Exceedance Amount   7 ppb              2 ppb 

  2002                   2005 

Statistical Summary 
# Sites > NAAQS  58         41 
Peak Value   19.3 ug/m3         17.7 ug/m3 

Ave Exceedance Amount  1.2 ug/m3             0.9 ug/m3 



 

 72 

Ozone results are provided for those grid cells with ozone  monitors.  The RRF calculation 
considers all nearby grid cells (i.e., 3x3 for 12 km modeling) and a threshold of 85 ppb.  (If there 
were less than 10 days above this value, then the threshold was lowered until either there were 
10 days or the threshold reached 70 ppb.)  PM2.5 results are provided for those grid cells with 
FRM (PM2.5-mass) monitors.  Spatial mapping was performed to extrapolate PM2.5-speciation 
data from STN and IMPROVE sites to FRM sites.  RRF values for PM2.5 were derived as a 
function of quarter and chemical species. 
 
Additional, hot-spot modeling will be performed by the states for certain PM2.5 nonattainment 
areas (e.g., Detroit, Cleveland, and Granite City) to address primary emissions from local point 
sources which may not be adequately accounted for by the regional grid modeling.  This 
modeling will consist of Gaussian dispersion modeling (e.g., AERMOD) performed in 
accordance with EPA’s modeling guidance (see Section 5.3 of the April 2007 guidance 
document).  Further analyses will need to be undertaken to determine how to best combine the 
regional modeling and the hot-spot modeling.  This could mean some adjustment to the model 
results presented in this document to reflect better the regional component.  
 
The ozone and PM2.5 modeling results are provided in Appendix I for select monitors (high 
concentration sites) in the 5-state region for the following future years of interest: 2008 (ozone 
only), 2009, 2012, and 2018.  (Note, RRF values for ozone, and for PM2.5 by season and 
chemical species are also included in Appendix I for key monitoring sites.)  A summary of the 
modeling results is provided in Table 9 (ozone) and Table 10 (PM2.5), and spatial maps of the 
Base M future year concentrations are provided in Figures 60-62. 
 



Key Sites 2018
Round 5 Round 4 Round 5 Round 4 Round 5 Round 4 Round 5

Lake Michigan Area
Chiwaukee 550590019 82.0 93.0 82.3 92.0 80.9 90.3 76.2
Racine 551010017 77.6 85.9 77.5 84.9 76.1 82.9 71.2
Milwaukee-Bayside 550190085 79.6 85.4 79.8 84.9 78.0 82.3 72.7
Harrington Beach 550890009 80.0 86.7 80.1 85.4 78.3 82.9 72.5
Manitowoc 550710007 81.3 80.3 80.8 78.9 78.6 76.3 72.5
Sheboygan 551170006 84.4 90.0 84.0 88.9 81.8 86.4 75.4
Kewaunee 550610002 78.9 82.5 78.1 81.0 75.9 79.1 69.9
Door County 550290004 84.8 83.6 83.9 81.8 81.5 79.3 74.7
Hammond 180892008 75.4 86.9 75.4 86.6 74.6 86.3 71.6
Whiting 180890030 77.0 77.0 76.2 73.1
Michigan City 180910005 74.2 87.4 73.9 86.5 72.5 85.4 68.1
Ogden Dunes 181270020 75.7 82.3 75.6 82.8 74.5 82.0 70.8
Holland 260050003 85.6 84.9 85.3 83.4 82.8 81.0 76.1
Jenison 261390005 77.9 78.7 77.1 77.6 74.5 75.5 68.7
Muskegon 261210039 80.8 82.7 80.5 81.5 78.0 79.4 71.9

Indianapolis Area
Noblesville 189571001 78.0 85.2 78.1 83.7 75.6 82.0 68.7
Fortville 180590003 73.9 85.1 73.9 83.8 71.4 82.1 65.1
Fort B. Harrison 180970050 74.8 84.8 75.1 83.7 73.2 82.4 69.1

Detroit Area
New Haven 260990009 82.7 86.3 81.4 85.3 80.2 83.5 76.1
Warren 260991003 82.5 84.3 81.3 83.3 80.7 81.9 77.6
Port Huron 261470005 79.0 80.5 77.5 79.1 75.5 77.0 70.9

Cleveland Area
Ashtabula 390071001 84.9 84.7 83.4 82.7 81.0 80.2 75.1
Geauga 390550004 75.7 90.3 74.7 88.8 72.7 86.2 67.3
Eastlake 390850003 82.8 84.2 81.9 82.8 80.5 80.6 76.2
Akron 391530020 79.3 83.0 78.1 81.4 75.6 78.5 68.7

Cincinnati Area
Wilmington 390271002 77.8 84.8 77.5 83.5 74.9 81.1 68.3
Sycamore 390610006 81.7 85.4 81.9 84.7 80.3 82.9 74.6
Lebanon 391650007 83.6 80.1 83.0 79.0 80.7 77.0 74.2

Columbus Area
London 390970007 75.4 79.9 75.0 78.4 72.6 76.5 66.3
New Albany 390490029 82.4 84.1 81.8 82.6 79.6 80.2 73.0
Franklin 290490028 77.0 77.7 75.9 76.5 74.1 74.7 69.0

St. Louis Area
W. Alton (MO) 291831002 82.4 86.1 81.0 85.2 78.6 84.0 74.9
Orchard (MO) 291831004 83.3 83.3 82.0 82.2 80.0 80.4 76.2
Sunset Hills (MO) 291890004 79.5 82.8 78.7 81.9 77.1 80.6 73.9
Arnold (MO) 290990012 78.7 78.4 77.2 77.4 75.6 75.8 72.0
Margaretta (MO) 295100086 79.8 84.0 79.3 83.4 77.9 82.5 74.4
Maryland Heights (MO) 291890014 84.5 83.4 81.7 78.1

2009 20122008

Table 9.  Summary of Ozone Modeling Results



County Site ID Site Round 5 Round4 Round 5 Round4 Round 5 Round4
Cook 170310022 Chicago - Washington HS 14.1 14.8 14.0 14.6 13.9 14.4
Cook 170310052 Chicago - Mayfair 14.4 15.8 14.2 15.5 13.9 15.0
Cook 170310057 Chicago - Springfield 13.9 14.5 13.8 14.3 13.7 14.1
Cook 170310076 Chicago - Lawndale 13.8 14.5 13.7 14.3 13.6 14.1
Cook 170312001 Blue Island 13.7 14.5 13.6 14.3 13.4 14.1
Cook 170313301 Summit 14.2 14.8 14.0 14.6 13.9 14.4
Cook 170316005 Cicero 14.4 15.3 14.3 15.1 14.2 14.9
Madison 171191007 Granite City 15.1 16.0 14.9 15.8 14.3 15.5
St. Clair 171630010 E. St. Louis 14.1 14.9 13.9 14.7 13.4 14.5

Clark 180190005 Jeffersonville 13.8 15.5 13.7 15.0 13.4 14.4
Dubois 180372001 Jasper 12.4 13.8 12.2 13.5 11.8 13.0
Lake 180890031 Gary 13.0 12.8 12.4
Marion 180970078 Indy-Washington Park 12.8 14.5 12.6 14.2 12.0 13.7
Marion 180970083 Indy- Michigan Street 13.4 14.8 13.1 14.9 12.6 14.0

Wayne 261630001 Allen Park 13.0 14.5 12.8 14.1 12.4 13.3
Wayne 261630015 Southwest HS 14.2 15.8 13.9 15.3 13.5 14.4
Wayne 261630016 Linwood 13.1 14.1 12.8 13.7 12.5 13.0
Wayne 261630033 Dearborn 15.8 17.7 15.5 17.1 15.1 16.1
Wayne 261630036 Wyandotte 13.1 15.1 12.8 14.7 12.5 13.9

Butler 390170003 Middleton 13.5 14.2 13.2 13.7 12.8 13.1
Butler 390170016 Fairfield 13.1 13.5 12.9 12.9 12.5 12.2
Cuyahoga 390350027 Cleveland-28th Street 13.5 14.4 13.2 13.8 12.7 12.9
Cuyahoga 390350038 Cleveland-St. Tikhon 15.2 16.1 14.8 15.4 14.3 14.4
Cuyahoga 390350045 Cleveland-Broadway 14.4 14.6 14.0 14.0 13.5 13.1
Cuyahoga 390350060 Cleveland-GT Craig 15.0 15.3 14.6 14.7 14.1 13.7
Cuyahoga 390350065 Newburg Hts - Harvard Ave 14.0 14.1 13.6 13.5 13.1 12.6
Franklin 390490024 Columbus - Fairgrounds 12.9 14.6 12.6 14.0 12.0 13.0
Franklin 390490025 Columbus - Ann Street 12.7 14.1 12.4 13.5 11.9 12.5
Franklin 390490081 Columbus - Maple Canyon 11.7 14.0 11.4 13.4 10.9 12.5
Hamilton 390610014 Cincinnati - Seymour 14.5 15.5 14.3 14.8 13.8 14.0
Hamilton 390610040 Cincinnati - Taft Ave 12.8 13.6 12.6 13.0 12.2 12.3
Hamilton 390610042 Cincinnati - 8th Ave 14.0 14.6 13.8 14.0 13.4 13.2
Hamilton 390610043 Sharonville 12.9 13.6 12.7 13.0 12.3 12.2
Hamilton 390617001 Norwood 13.4 14.2 13.2 13.6 12.8 12.8
Hamilton 390618001 St. Bernard 14.7 15.2 14.4 14.6 14.0 13.8
Jefferson 390810016 Steubenville 12.8 16.3 12.5 15.9 12.7 16.2
Jefferson 390811001 Mingo Junction 13.5 15.5 13.2 15.0 13.4 15.3
Lawrence 390870010 Ironton 12.8 14.2 12.5 13.7 12.3 13.2
Montgomery 391130032 Dayton 13.2 13.7 12.9 13.2 12.4 12.3
Scioto 391450013 New Boston 12.1 15.4 11.9 14.8 11.6 14.2
Stark 391510017 Canton - Dueber 14.0 15.0 13.6 14.3 13.3 13.6
Stark 391510020 Canton - Market 12.6 13.6 12.3 13.0 11.9 12.2
Summit 391530017 Akron - Brittain 13.0 14.4 12.7 13.6 12.3 12.9
Summit 391530023 Akron - W. Exchange 12.3 13.6 12.0 13.0 11.5 12.2

2009 2012 2018

Table 10.  Summary of PM2.5 Modeling Results
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Figure 60.  Observed base year and projected future year design values for ozone – Base M 
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Figure 61.  Observed base year and projected future year design values for PM2.5 (annual average)–Base M 
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Figure 62.  Observed base year and projected future year design values for PM2.5 (24-hr average)-Base M 
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The number of monitors with design values above the standard are as follows: 
 

Table 11.  Number of sites above standard 
         Ozone (8 hour: 85 ppb) 

State 2002 2005  2009  2012  2018 
 BaseK Base M  BaseK Base M  BaseK Base M  BaseK Base M 
  IL 3 0  0 0  0 0  0 0 
  IN 22 0  0 0  0 0  0 0 
  MI 15 3  1 1  0 0  0 0 
  OH 40 4  1 0  1 0  0 0 
  WI 13 2  4 0  3 0  1 0 
            
Total 93 9  6 1  4 0  1 0 
            
            

PM2.5 (Annual: 15 ug/m3) 
State 2002 2005  2009  2012  2018 
 BaseK Base M  BaseK Base M  BaseK Base M  BaseK Base M 
  IL 11 7  3 1  3 0  2 0 
  IN 10 6  1 0  1 0  0 0 
  MI 6 2  3 1  2 1  0 0 
  OH 31 26  7 1  4 0  1 1 
  WI 0 0  0 0  0 0  2 0 
            
Total 58 41  14 3  10 1  5 1 

 
 
The modeling results above reflect the “base” controls identified in Section 3.6, with EGU 
emissions based on IPM modeling (i.e., Round 4 – IPM2.1.9, and Round 5 – IPM3.0).  In 
addition, two sets of alternative future year EGU emissions were examined in Round 5.  First, 
alternative control assumptions were provided for several facilities by the states (i.e., “will do” 
and “may do” scenarios).  In general, these scenarios produced a small change in future year 
ozone and PM2.5 concentrations (i.e., about 0.1 ug/m3 for PM2.5 and 0.1-0.2 ppb for ozone).  
Second, EPA suggested adjustments to the 2010 IPM emissions to reflect 2009 conditions.  The 
revised (2009) SO2 emissions represent a 5-6% increase in domainwide SO2 emissions.  The 
increased SO2 emissions result in slightly greater annual average PM2.5 concentrations (on the 
order of 0.1 – 0.2 ug/m3), but do not produce any new residual nonattainment areas. 
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The limited 4 km ozone modeling (based on Base K) performed by LADCO included a future 
year analysis for 2009.  The figure below shows the 2009 values with 12 km and 4 km grid 
spacing for the LADCO modeling and similar modeling conducted by a stakeholder group 
(Midwest Ozone Group). 
 

70

75

80

85

90

95

Coo
k

La
ke

La
Po

rte
Po

rter

Alle
ga

n

Mus
ke

go
n

Ke
no

sh
a

Milw
au

ke
e

Ozau
kee

Rac
ine

Sh
eb

oy
ga

n

MOG-12km MOG-4km LADCO-12km LADCO-4km
 

70

75

80

85

90

95

New Haven Warren Geauga Eastlake Portage Akron

MOG-12km MOG-4km LADCO-12km LADCO-4km  
Figure 63. Future year (2009) values for Lake Michigan area (top) and Detroit-Cleveland region 
(bottom) 
 
 
These results show that the 12 km and 4 km values are similar, with the most notable changes 
in northwestern Indiana and northeastern Illinois (e.g., 4 km values are as much as 4 ppb lower 
than 12 km values).   The differences in the southern part of the Lake Michigan area are 
plausible, given the tight emissions gradient there (i.e., finer grid resolution appears to provide 
more appropriate representation).  
 
In light of these findings, 12 km grid spacing can continue to be used for ozone modeling, but 
the Base K/Round 4 results for northwestern Indiana/northeastern Illinois should be viewed with 
caution (i.e., probably 1 – 4 ppb too high). 

 
A 12 km PM2.5 modeling run will be conducted to assess the effect of grid resolution on annual 
average PM2.5 concentrations.   
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In summary, the ozone modeling provides the following information for the nonattainment areas 
in the region (see Table 12): 

 
Table 12.  Ozone Nonattainment Areas in the LADCO Region (as of December 31, 2007) 

 Area Name Category 
 Number of 
Counties  

Attainment 
Deadline 

Detroit-Ann Arbor, MI Marginal 8 2007 

Chicago-Gary-Lake County, IL-IN Moderate 10 2010 

Cleveland-Akron-Lorain, OH Moderate 8 2010 

Milwaukee-Racine, WI Moderate 6 2010 

Sheboygan, WI Moderate 1 2010 

St Louis, MO-IL Moderate 4 2010 

Allegan Co, MI Subpart 1 1 2009 

Cincinnati-Hamilton, OH-KY-IN Subpart 1 6 2009 

Columbus, OH Subpart 1 6 2009 

Door Co, WI Subpart 1 1 2009 

Kewaunee Co, WI Subpart 1 1 2009 

Manitowoc Co, WI Subpart 1 1 2009 

  53  
 
Marginal Areas (2007 attainment date): No modeling was conducted for the 2006 SIP planning 
year.  Rather, 2005 – 2007 air quality data are available to determine attainment. 
 
Basic (Subpart 1) Areas (2009 attainment date): The modeling results for the 2008 SIP planning 
year show: 

• Base K: all areas in attainment, except Cincinnati and Indianapolis 
• Base M: all areas in attainment, except Holland (Allegan County)  

 
Moderate Areas (2010 attainment date): The modeling results for the 2009 SIP planning year 
show: 

• Base K: all areas still in nonattainment 
• Base M: all areas in attainment 

 
The PM2.5 modeling results show: 

• Base K: all areas in attainment, except for Chicago, Cincinnati, Cleveland, Detroit, 
Granite City (IL), Louisville, Portsmouth (OH), and Steubenville 

• Base M: all areas in attainment, except for Cleveland, Detroit, and Granite City (IL) 
 
With respect to the new lower 8-hour ozone standard, the modeling about 30 sites in 2012 and 
5 sites in 2018 with design values greater than 75 ppb.  With respect to the new lower 24-hour 
PM2.5 standard, the modeling shows 13 sites in 2012 and 10 in 2018 with design values greater 
than 35 ug/m3. 
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4.2 Supplemental Analyses 
EPA’s modeling guidelines recommend that attainment demonstrations consist of a primary 
(guideline) modeling analysis and supplemental analyses.  Three basic types of supplemental 
analyses are recommended: 
 

• additional modeling 
• analyses of trends in ambient air quality and emissions, and 
• observational models and diagnostic analyses 
 

Furthermore, according to EPA’s guidelines, if the future year modeled values are “close” to the 
standard (i.e., 82 – 87 ppb for ozone and 14.5 – 15.5 ug/m3 for PM2.5), then the results of the 
primary modeling should be reviewed along with the supplemental information in a “weight of 
evidence” assessment of whether each area is likely to achieve timely attainment.   
 
A WOE determination for ozone and PM2.5 is provided in the following sections.  Special 
attention is given to the following areas with future year modeled values that exceed or are 
“close” to the ambient standard (see Appendix I): 
 
           Ozone        PM2.5 
   Lake Michigan area   Chicago, IL 
   Cleveland, OH    Cleveland, OH 
   Cincinnati, OH    Cincinnati, OH 
        Granite City, IL 
        Detroit, MI  
 
4.3 Weight-of-Evidence Determination for Ozone 
The WOE determination for ozone consists of the primary modeling and other supplemental 
analyses (some of which were discussed in Section 2).  A summary of this information is 
provided below. 
 
Primary (Guideline) Modeling: The guideline modeling is presented in Section 4.1.  Key findings 
from this modeling include: 
 

• Base M regional modeling shows attainment by 2008 and 2009 at all sites, except 
Holland (MI), and attainment at all sites by 2012. 

 
• Base K modeling results reflect generally higher future year values, and show more 

sites in nonattainment compared to the Base M modeling.  The difference in the two 
modeling analyses is due mostly to lower base year design values in Base M. 

 
• Base K and Base M modeling analyses are considered “SIP quality”, so the 

attainment demonstration for ozone should reflect a weight-of-evidence approach, 
with consideration of monitoring based information. 

 
• Base M modeling also shows that the proposed lower 8-hour standard will not be 

met at many sites, even by 2018, with existing controls. 
 
Additional Modeling: Four additional modeling analyses were considered: (1) re-examination of 
the primary modeling to estimate attainment probabilities, (2) remodeling with different 
assumptions, (3) an unmonitored area analysis, and (4) EPA’s latest regional ozone modeling.  
Each of these analyses is described below. 
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First, the primary modeling results (which were initially processed using EPA’s attainment test) 
were re-examined to estimate the probability of attaining the ozone standard (Lopez, 2007, and 
LADCO, 2008b).  Seven estimates of future year ozone concentrations were calculated based 
on model-based RRFs and appropriate monitor-based concentrations for each year between 
2001 and 2007.  RRF values for 2001, 2003, 2004, 2006, and 2007 were derived based on the 
2002 and 2005 modeling results.  Monitor-based concentrations reflect 4th high values, design 
values, or average of three design values centered on the year in question.  The probability of 
attainment was determined as the percentage of these seven estimates below the standard.  
The results indicate that sites in the Lake Michigan area (Chiwaukee, Sheboygan, Holland, 
Muskegon), Cleveland (Ashtabula), and St. Louis (W Alton) have a fairly low probability of 
attainment by 2009 (i.e., about 50% or less). 
 
Second, the primary modeling analysis was redone with different types of assumptions for 
calculating base year design values (i.e., using the 3-year period centered on base year, and 
using the highest 3-year period that includes the base year), and for calculating RRFs (i.e., 
using all days with base year modeled value > 70 ppb, and using all days with base year 
modeled value > 85 ppb, with at least 10 days and “acceptable” model performance).  The 
results for several high concentration sites are presented in Tables 13a and 13b for 2009.  The 
different modeling assumptions produce eight estimates of future year ozone concentrations.  
The highest estimates are associated with base year design values representing the 3-year 
average for 2001-2003, and the lowest estimates are associated with base year design values 
representing the 3-year average 2004-2006.  The different RRF approaches produce little 
change in future year ozone concentrations.  This suggests that future year concentration 
estimates are most sensitive to the choice of the base year and the methodology used to derive 
the base year design values. 
 
Third, EPA’s modeling guidelines recommend that an “unmonitored area analysis” be included 
as a supplemental analysis, particularly in nonattainment areas where the monitoring network 
just meets or minimally exceeds the size of the network required to report data to EPA’s Air 
Quality System.  The purpose of this analysis is to identify areas where future year values are 
predicted to be greater than the NAAQS.   
 
Based on examination of the spatial plots in Figures 49a and 49b, the most notable areas of 
high modeled ozone concentrations are over the Great Lakes.  Over-water monitoring, however, 
is not required by EPA12.  A cursory analysis of unmonitored areas for ozone was performed by 
LADCO using an earlier version of the 2002 base year modeling (i.e, Base I) (Baker, 2005).  
Base year and future year “observed” values were derived for unmonitored grid cells using the 
absolute modeled concentrations (in all grid cells) and the observed values (in monitored grid 
cells).  A spatial map of the estimated 2009 values is provided in Figure 64.  As can be seen, 
there are very few (over land) grid cells where additional monitors may be desirable.  This 
indicates that the current modeling analysis, which focuses on monitored locations, is 
addressing areas of high ozone throughout the region.    
  

                                            
12 Air quality measurements over Lake Michigan were collected by LADCO previously to understand 
ozone transport in the area (see, for example, Figure 5).  Due to cut-backs in USEPA funding, however, 
these measurements were discontinued in 2003. 
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Table 13a. Primary and Additional Ozone Modeling Results – Lake Michigan and Cleveland Areas (2009) 
2009 Modeling Results  Lake Michigan Area  Cleveland Area 

  Chiwaukee Harr.Beach Sheboygan DoorCounty Holland Hammond MichiganCity  Ashtabula Geauga Eastlake 
  550590019 550890009 551170006 550290004 260050003 180892008 180910005  390071001 390550004 390850003 

Attainment Test 
(based on EPA guidance-2002 baseyear)             
Base Year Design Value 
(average of three 3-year periods) 

 98.3 93.0 97.0 91.0 94.0 88.3 90.3  95.7 99.0 92.7 

RRF (all days > 85 ppb, or at least 10 days)  0.935 0.918 0.916 0.899 0.888 0.980 0.958  0.865 0.897 0.894 

Future Year Design Value  91.9 85.4 88.9 81.8 83.5 86.5 86.5  82.8 88.8 82.9 

             

Attainment Test 
(based on EPA guidance-2005 baseyear) 

            

Base Year Design Value 
(average of three 3-year periods) 

 84.7 83.3 88.0 88.7 90.0 77.7 77.0  89.0 79.3 86.3 

RRF (all days > 85 ppb, or at least 10 days)  0.972 0.961 0.955 0.946 0.948 0.971 0.960  0.937 0.942 0.949 

Future Year Design Value  82.3 80.1 84.0 83.9 85.3 75.4 73.9  83.4 74.7 81.9 

             

Weight of Evidence 
(alternative approaches-2002baseyear) 

            

Alt 1 - Base Year Des. Value 
(3-year period centered on 2002) 

 101.0 98.0 100.0 94.0 97.0 90.0 93.0  99.0 103.0 95.0 

Alt 2 - Base Year Des. Value 
(Highest 3-year period including 2002 ) 

 101.0 98.0 100.0 94.0 97.0 92.0 93.0  99.0 103 95.0 

             

RRF (all days > 85 ppb, or at least 10 days)  0.935 0.918 0.916 0.899 0.888 0.980 0.958  0.865 0.897 0.894 

Alt 1 - Future Year Projected Value  94.4 90.0 91.6 84.5 86.1 88.2 89.1  85.6 92.4 84.9 

Alt 2 - Future Year Projected Value  94.4 90.0 91.6 84.5 86.1 90.2 89.1  85.6 92.4 84.9 

Alt 1 - RRF (all days > 70 ppb)  0.933 0.918 0.912 0.907 0.893 0.969 0.947  0.876 0.907 0.900 

Alt 1 - Future Year Projected Value  94.2 90.0 91.2 85.3 86.6 87.2 88.1  86.7 93.4 85.5 

Alt 2 - Future Year Projected Value  94.2 90.0 91.2 85.3 86.6 89.1 88.1  86.7 93.4 85.5 

Alt 2 - RRF (all days > 85 ppb, or at least 10 
days; with acceptable model performance) 

 0.945 0.904 0.910 0.904 0.887 0.976 0.964  0.866 0.896 0.894 

Alt 1 - Future Year Projected Value  95.4 88.6 91.0 85.0 86.0 87.8 89.7  85.7 92.3 84.9 

Alt 2 - Future Year Projected Value  95.4 88.6 91.0 85.0 86.0 89.8 89.7  85.7 92.3 84.9 

             

Weight of Evidence 
(alternative approaches-2005baseyear) 

            

Alt 1 - Base Year Des. Value 
(3-year period centered on 2005) 

 83.0 79.0 86.0 86.0 88.0 76.0 76.0  86.0 77.0 86.0 

Alt 2 - Base Year Des. Value 
(Highest 3-year period including 2005) 

 86.0 88.0 89.0 90.0 93.0 79.0 78.0  91.0 86.0 89.0 

Alt 1 - Future Year Projected Value  80.7 75.9 82.1 81.4 83.4 73.8 73.0  80.6 72.5 81.6 

Alt 2 - Future Year Projected Value  83.6 84.6 85.0 85.1 88.2 76.7 74.9  85.3 81.0 84.5 
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Table 13b. Primary and Additional Ozone Modeling Results – Cincinnati, Columbus, St. Louis, Indianapolis, and Detroit (2009) 
2009 Modeling Results  Cincinnati Area  Columbus  St. Louis Area  Indianapolis Area  Detroit Area 

  Wilmington Lebanon Sycamore  NewAlbany  W. Alton OrchardFarm  Noblesville Fortville  New Haven 
  390271002 39165007 390610006  390490029  291831002 291831004  180571001 18059003  260990009 

Attainment Test 
(based on EPA guidance-2002 baseyear)               
Base Year Design Value 
(average of three 3-year periods) 

 94.3 90.7 90.7  94.0  90.0 90.0  93.7 91.3  92.3 

RRF (all days > 85 ppb, or at least 10 days)  0.885 0.908 0.938  0.888  0.947 0.914  0.894 0.918  0.924 

Future Year Design Value  83.5 82.4 85.1  83.5  85.2 82.3  83.8 83.8  85.3 

               

Attainment Test 
(based on EPA guidance-2005 baseyear) 

              

Base Year Design Value 
(average of three 3-year periods) 

 82.3 87.7 84.3  86.3  86.3 87.0  83.3 78.7  86.0 

RRF (all days > 85 ppb, or at least 10 days)  0.941 0.947 0.967  0.947  0.938 0.942  0.945 0.947  0.947 

Future Year Design Value  77.4 83.1 81.5  81.7  80.9 82.0  78.7 74.5  81.4 

               

Weight of Evidence 
(alternative approaches-2002baseyear) 

              

Alt 1 - Base Year Des. Value 
(3-year period centered on 2002) 

 96.0 92.0 93.0  95.0  91.0 92.0  96.0 94.0  97.0 

Alt 2 - Base Year Des. Value 
(Highest 3-year period including 2002 ) 

 96.0 92.0 93.0  96.0  91.0 92.0  96.0 94.0  97.0 

               

RRF (all days > 85 ppb, or at least 10 days)  0.885 0.908 0.938  0.888  0.947 0.914  0.894 0.918  0.924 

Alt 1 - Future Year Projected Value  85.0 83.5 87.2  84.4  86.2 84.1  85.8 86.3  89.6 

Alt 2 - Future Year Projected Value  85.0 83.5 87.2  85.2  86.2 84.1  85.8 86.3  89.6 

Alt 1 - RRF (all days > 70 ppb)  0.885 0.914 0.940  0.901  0.945 0.911  0.912 0.907  0.918 

Alt 1 - Future Year Projected Value  85.0 84.1 87.4  85.6  86.0 83.8  87.6 85.3  89.0 

Alt 2 - Future Year Projected Value  85.0 84.1 87.4  86.5  86.0 83.8  87.6 85.3  89.0 

Alt 2 - RRF (all days > 85 ppb, or at least 10 days; 
with acceptable model performance) 

 0.880 0.911 0.940  0.886  0.951 0.913  0.894 0.916  0.935 

Alt 1 - Future Year Projected Value  84.5 83.8 87.4  84.2  86.5 84.0  85.8 86.1  90.7 

Alt 2 - Future Year Projected Value  84.5 83.8 87.4  85.1  86.5 84.0  85.8 86.1  90.7 

               

Weight of Evidence 
(alternative approaches-2005baseyear) 

              

Alt 1 - Base Year Des. Value 
(3-year period centered on 2005) 

 80.0 86.0 81.0  84.0  85.0 86.0  80.0 76.0  82.0 

Alt 2 - Base Year Des. Value 
(Highest 3-year period including 2005) 

 85.0 89.0 86.0  88.0  89.0 89.0  87.0 81.0  90.0 

Alt 1 - Future Year Projected Value  75.3 81.4 78.3  79.5  79.7 81.0  75.6 72.0  77.7 

Alt 2 - Future Year Projected Value  80.0 84.3 83.2  83.3  83.5 83.8  82.2 76.7  85.2 
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Figure 64. Estimated Future Year Values (unmonitored grid cells) 

 
Finally, EPA’s latest regional ozone modeling was considered as corroborative information.  
This modeling was performed as part of the June 2007 proposal to revise the ozone standard 
(EPA, 2007b).   EPA applied the CMAQ model with 2001 meteorology to first estimate ozone 
levels in 2020 based on the current standard and national rules in effect or proposed (i.e., the 
baseline), and then to evaluate strategies for attaining a more stringent (70 ppb) primary 
standard.  Baseline (2020) ozone levels were predicted to be below the current standard in 481 
of the 491 counties with ozone monitors.  Of the 10 counties predicted to be above the 
standard, there is one county in the LADCO region (i.e., Kenosha County, WI at 86 ppb).  This 
result is consistent with LADCO’s Base K modeling for 2018 (i.e., Kenosha County, WI at 86.7 
ppb), which is not surprising given that EPA’s modeling and LADCO’s Base K modeling have a 
similar base year (2001 v. 2002). 
 
Analysis of Trends: EPA’s modeling guidelines note that while air quality models are generally 
the most appropriate tools for assessing the expected impacts of a change in emissions, it may 
also be possible to extrapolate future trends based on measured historical trends of air quality 
and emissions.  To do so, USEPA’s guidance suggests that ambient trends should first be 
normalized to account for year-to-year variations in meteorological conditions (EPA, 2002).  
Meterologically-adjusted 4th high 8-hour ozone concentrations were derived using the air quality 
– meteorological regression model developed by EPA (i.e., Cox method – see Section 2.1).  
 
The historical trend in these met-adjusted ozone concentrations were extrapolated to estimate 
future year ozone concentrations based on historical and projected trends in precursor 
emissions.  Both VOC and NOx emissions affect ozone concentrations.  Given that observation-
based methods show that urban areas in the region are generally VOC-limited and rural areas 
in the region are NOx-limited (see Section 2.1), urban VOC emissions and regional NOx 
emissions are considered important.  The trends in urban VOC and regional NOx emissions 
were calculated to produce appropriate weighting factors.   
 
The resulting 2009 and 2012 ozone values are provided in Figure 65, along with the primary 
and alternative modeling ozone values for key sites in the Lake Michigan, Cleveland, and 
Cincinnati areas.  The results reflect a fairly wide scatter, but, on balance, the supplemental 
information is supportive of the primary modeling results (i.e., sites in the Lake Michigan area 
and Cleveland are expected to be close to the standard). 
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Figure 65.  Estimates of Future Year Ozone Concentrations – Lake Michigan Area (Sheboygan and Holland), Cincinnati (Sycamore), and 
Cleveland (Ashtabula) 
 
Note: Primary (guideline) modeling values (Base K and Base M results) are represented by large red diamonds, additional modeling 
values by small black circles, and trends-based values by small pink squares
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Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., 
MAPPER) is presented in Section 3.  The key findings from this modeling are that most urban 
areas are VOC-limited and rural areas are NOx-limited. 
 
The primary diagnostic analysis is source apportionment modeling with CAMx to provide more 
quantitative information on source region (and source sector) impacts (Baker, 2007a).  
Specifically, the model estimated the impact of 18 geographic source regions (which are 
identified in Figure 66) and 6 source sectors (EGU point, non-EGU point, on-road, off-road, 
area, and biogenic sources) at ozone monitoring sites in the region. 

      
Figure 66. Source regions (left) and key monitoring sites (right) for ozone modeling analysis 

 
Modeling results for 2009 (Base M) and 2012 (Base K) are provided in Appendix II for several 
key monitoring sites.  For each monitoring site, there are two graphs: one showing sector-level 
contributions, and one showing source region and sector-level contributions in terms of 
percentages.  (Note, in the sector-level graph, the contributions from NOx emissions are shown 
in blue, and from VOC emissions in green.) 
 
The sector-level results (see, for example, Figure 67) show that on-road and nonroad NOx 
emissions generally have the largest contributions at the key monitor locations (> 15% each).  
EGU and non-EGU NOx emissions are also important contributors (> 10% each).  The source 
group contributions vary by receptor location due to emissions inventory differences.   
 

 
Figure 67.  Source-sector results for Holland (left) and Ashtabula (right) monitors – 2009 (Base M) 
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The source region results (see, for example, Figure 68) show that while nearby areas generally 
have the highest impacts (e.g., the northeastern IL/northwestern IN/southeastern WI 
nonattainment area contributes 25-35% to high sites in the Lake Michigan area, and Cleveland 
nonattainment counties contribute 20-25% to high sites in northeastern Ohio), there is an even 
larger regional impact (i.e., contribution from other states). 
 

 
Figure 68.  Source-region results for Holland (left) and Ashtabula (right) monitors – 2009 (Base M) 

 
Summary: Air quality modeling and other supplemental analyses were performed to estimate 
future year ozone concentrations.  Based on this information, the following general conclusions 
can be made: 
 

• Existing (“on the books”) controls are expected to produce significant 
improvement in ozone air quality. 

 
• The choice of the base year affects the future year model projections.  A key 

difference between the base years of 2002 and 2005 is meteorology.  As noted 
above, 2002 was more ozone conducive than 2005.  The choice of which base 
year to use as the basis for the SIP is a policy decision (i.e., how much safeguard 
to incorporate). 

 
• Most sites are expected to meet the current 8-hour standard by the applicable 

attainment date, except, for sites in western Michigan and, possibly, in eastern 
Wisconsin and northeastern Ohio. 

 
• Current monitoring data show significant nonattainment in these areas (e.g., 

peak design values on the order of 90 – 93 ppb).  It is not clear whether sufficient 
emission reductions will occur in the next couple of years to provide for 
attainment. 

 
• Attainment by the applicable attainment date is dependent on actual future year 

meteorology (e.g., if the weather conditions are consistent with [or less severe 
than] 2005, then attainment is likely) and actual future year emissions (e.g., if the 
emission reductions associated with the existing controls are achieved, then 
attainment is likely).  On the other hand, if either of these conditions is not met, 
then attainment may be less likely. 
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4.3 Weight-of-Evidence Determination for PM2.5  
The WOE determination for PM2.5 consists of the primary modeling and other supplemental 
analyses.  A summary of this information is provided below. 
 
Primary (Guideline) Modeling: The results of the guideline modeling are presented in Section 
4.1.  Key findings from this modeling include: 

 
• Base M regional modeling shows attainment by 2009 at all sites, except Detroit, 

Cleveland, and Granite City, and attainment at all sites by 2012, except for Detroit 
and Granite City. 
 
The regional modeling for PM2.5 does not reflect any air quality benefit expected 
from local controls.  States are conducting local-scale analyses and will use these 
results, in conjunction with the regional-scale modeling, to support their attainment 
demonstrations for PM2.5 

 
• Base K modeling results reflect generally higher future year values, and show more 

sites in nonattainment in 2009 and 2012 compared to the Base M modeling.  The 
difference in the two modeling analyses is due mostly to lower base year design 
values in Base M. 

 
• Base K and Base M modeling analyses are considered “SIP quality”, so the 

attainment demonstration for PM2.5 should reflect a weight-of-evidence approach, 
with consideration of monitoring based information. 

 
• Base M modeling also shows that the new PM2.5 24-hour standard will not be met at 

many sites, even by 2018, with existing controls. 
 
Additional Modeling: EPA’s latest regional PM2.5 modeling was considered as corroborative 
information.  This modeling was performed as part of the September 2006 revision to the PM2.5 
standard (USEPA, 2006).  EPA applied the CMAQ model with 2001 meteorology to estimate 
PM2.5 levels in 2015 and 2020 first with national rules in effect or proposed, and then with 
additional controls to attain the current standard (15 ug/m3 annual/65 ug/m3 daily).  Additional 
analyses were performed to evaluate strategies for attaining more stringent standards in 2020 
(15/35, and 14/35).  Baseline (2015) PM2.5 levels were predicted to be above the current 
standard in four counties in the LADCO region: Madison County, IL at 15.2 ug/m3, Wayne 
County, MI at 17.4, Cuyahoga County, OH at 15.4, and Scioto County, OH at 15.6.  These 
results are consistent with LADCO’s Base K modeling for 2012/2018, which is not surprising 
given that EPA’s modeling and LADCO’s Base K modeling have a similar base year (2001 v. 
2002). 
 
Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., 
application of thermodynamic equilibrium models) is presented in Section 3.  The key findings 
from this modeling are that PM2.5 mass is sensitive to reductions in sulfate, nitric acid, and 
ammonia concentrations.  Even though sulfate reductions cause more ammonia to be available 
to form ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase 
is generally offset by the sulfate reductions, such that PM2.5 mass decreases.  Under conditions 
with lower sulfate levels (i.e., proxy of future year conditions), PM2.5 is more sensitive to 
reductions in nitric acid compared to reductions in ammonia. 
 



   

 90

The primary diagnostic analysis is source apportionment modeling with CAMx to provide more 
quantitative information on source region (and source sector) impacts (Baker, 2007b).  
Specifically, the model estimated the impact of 18 geographic source regions (which are 
identified in Figure 69) and 6 source sectors (EGU point, non-EGU point, on-road, off-road, 
area, and biogenic sources) at PM2.5 monitoring sites in the region. 
 

     
 

Figure 69. Source regions (left) and key monitoring sites (right) for PM2.5 modeling analysis 
 
Modeling results for 2012 (Base K) and 2018 (Base M) are provided in Appendix III for several 
key monitoring sites.  For each monitoring site, there are two graphs: one showing sector-level 
contributions, and one showing source region and sector-level contributions in terms of absolute 
modeled values. 
 
The sector-level results (see, for example, Figure 70) show that EGU sulfate, non-EGU-sulfate, 
and area organic carbon emissions generally have the largest contributions at the key monitor 
locations (> 15% each).  Ammonia emissions are also important contributors (> 10%).  The 
source group contributions vary by receptor location due to emissions inventory differences.   

 

 
Figure 70.  Source-sector results for Detroit (left) and Cleveland (right) monitors – 2018 (Base M) 
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The source region results (see, for example, Figure 71) show that while nearby areas generally 
have the highest impacts (e.g., Detroit nonattainment counties contribute 40% to high sites in 
southeastern Michigan, and Cleveland nonattainment counties contribute 35% to high sites in 
northeastern Ohio), there is an even larger regional impact (i.e., contribution from other states). 
 

 
Figure 71.  Source-region results for Detroit (left) and Cleveland (right) monitors – 2018 (Base M) 

 
 
Summary: Air quality modeling and other supplemental analyses were performed to estimate 
future year PM2.5 concentrations.  Based on this information, the following general conclusions 
can be made: 
 

• Existing (“on the books”) controls are expected to produce significant 
improvement in PM2.5 air quality. 

 
• The choice of the base year affects the future year model projections.  It is not 

clear how much of this is attributable to differences in meteorology, because, as 
noted in Section 3, PM2.5 concentrations are not as strongly influenced by 
meteorology as ozone. 

 
• Most sites are expected to meet the current PM2.5 standard by the applicable 

attainment date, except for sites in Detroit, Cleveland, and Granite City. 
 

• Current monitoring data show significant nonattainment in these areas (e.g., 
peak design values on the order of 16 – 17 ug/m3).  It is not clear whether 
sufficient emission reductions will occur in the next couple of years to provide for 
attainment.  States are conducting local-scale analyses for Detroit, Cleveland, 
and Granite City, in particular, to identify appropriate additional local controls. 

 
• Attainment by the applicable attainment date is dependent (possibly) on actual 

future year meteorology and (more likely) on actual future year emissions (e.g., if 
the emission reductions associated with the “on the books” controls are 
achieved, then attainment is likely).  On the other hand, if either of these 
conditions is not met (especially, with respect to emissions), then attainment may 
be less likely. 
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Section 5.  Reasonable Progress Assessment for Regional Haze 
 
Air quality modeling and other information were used to assess the improvement in visibility that 
would be provided by existing (“on the books”) controls and possible additional control 
programs.  In determining reasonable progress for regional haze, Section 169A of the Clean Air 
Act and EPA’s visibility rule requires states to consider five factors: 
 

• costs of compliance 
• time necessary for compliance 
• energy and non-air quality environmental impacts of compliance 
• remaining useful life of any existing source subject to such requirements 
• uniform rate of visibility improvement needed to attain natural visibility conditions 

by 2064 
 
The uniform rate of visibility improvement requirement can be depicted graphically in the form of 
a “glide path” (see Figure 72). 

 
Figure 72. Visibility “glide paths” for northern Class I areas (units: deciviews) 

 
 
5.1 Future Year Modeling Results  
For regional haze, the calculation of future year conditions assumed:  
 

• baseline concentrations based on 2000-2004 IMPROVE data, with updated 
(subsitituted) data for Mingo, Boundary Waters, Voyageurs, Isle Royale, and 
Seney (see Section 2.3); 

 
• use of the new IMPROVE light extinction equation; and 

 
• use of EPA default values for natural conditions, based on the new IMPROVE 

light extinction equation. 
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The uniform rate of visibility improvement values for the 2018 planning year were derived (for 
the 20% worst visibility days) based on a straight line between baseline concentration value 
(plotted in the year 2004 -- end year of the 5-year baseline period) and natural condition value 
(plotted in the year 2064 -- date for achieving natural conditions).  Plots of these “glide paths” 
with the Base M modeling results are presented in Figure 73 for Class I areas in the eastern 
U.S.  A tabular summary of measured baseline and modeled future year deciview values for 
these Class I areas are provided in Table 14 (2002 base year) and Table 15 (2005 base year)13. 
 
The haze results show that several Class I areas in the eastern U.S. are expected to be greater 
than (less improved than) the uniform rate of visibility improvement values (in 2018), including 
those in northern Michigan and several in the northeastern U.S.  Many other Class I areas in the 
eastern U.S. are expected to be less than (more improved than) the uniform rate of visibility 
improvement values (in 2018).  As noted above, states should consider these results, along with 
information on the other four factors, in setting reasonable progress goals.   
 
An assessment of the five factors was performed for LADCO and the State of Minnesota by a 
contractor (EC/R, 2007).  Specifically, ECR examined reductions in SO2 and NOx emissions 
from EGUs and industrial, commercial and institutional (ICI) boilers; NOx emissions from mobile 
sources and reciprocating engines and turbines; and ammonia emissions from agricultural 
operations.  The impacts of “on the books” controls were also examined to provide a frame of 
reference for assessing the impacts of the additional control measures. 
 
The results of ECR’s analysis of the five factors are summarized below: 

 
Factor 1 (Cost of Compliance): The average cost effectiveness values (in terms of $M 
per ton) are provided in Table 16.  For comparison, cost-effectiveness estimates 
previously provided for “on the books” controls include: 
 
 CAIR  SO2: $700 - $1,200, NOx: $1,400 – $2.600 ($/T) 
 
 BART  SO2: $300 - $963, NOx: $248 - $1,770 
 
 MACT  SO2: $1,500, NOx: $7,600 
 
Most of the cost-effectiveness values for the additional controls are within the range of 
cost-effectiveness values for “on the books” controls. 
 
 
Factor 2 (Time Necessary for Compliance): All of the control measures can be 
implemented by 2018.  Thus, this factor can be easily addressed. 
 

                                            
13 Model results reflect the grid cell where the IMPROVE monitor is located. 
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Figure 73.  Visibility modeling results for Class I areas in eastern U.S.
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Figure 73 (cont.)  Visibility modeling results for Class I areas in eastern U.S. 
 



Worst 20% 2018 2009 2012 2018 2018 2018

Site Baseline URP OTB OTB OTB
EGU2 

(5-state region)
EGU2 

(12-state region)

BOWA1   19.86 17.70 19.05 19.01 18.94 18.40 17.72

VOYA2   19.48 17.56 19.14 19.19 19.18 18.94 18.38

SENE1   24.38 21.35 22.98 22.71 22.38 21.26 20.63

ISLE1   21.59 19.21 20.46 20.28 20.04 19.09 18.64

HEGL1   26.75 22.76 24.73 24.34 23.85 23.01 22.04

MING1   28.15 24.08 25.18 24.67 24.01 22.53 21.45

CACR1   26.36 22.55 24.01 23.55 22.99 22.43 21.57

UPBU1   26.27 22.47 24.02 23.58 23.06 22.31 21.38

MACA1   31.37 26.14 28.06 27.03 25.52 24.27 22.57

DOSO1   29.04 24.23 24.86 23.59 22.42 21.60 20.15

SHEN1   29.31 24.67 24.06 22.79 21.57 20.43 19.42

JARI1   29.12 24.48 24.81 23.79 22.42 21.59 20.88

BRIG1   29.01 24.68 25.87 25.25 24.39 23.91 23.45

LYBR1   24.45 21.16 21.80 21.32 20.69 20.18 19.79

Best 20% 2018 2009 2012 2018 2018 2018

Site Baseline URP OTB OTB OTB
EGU2 

(5-state region)
EGU2 

(12-state region)

BOWA1   6.42 6.42 6.71 6.73 6.87 6.83 6.81

VOYA2   7.09 7.09 7.21 7.25 7.34 7.31 7.26

SENE1   7.14 7.14 7.19 7.19 7.23 7.06 6.91

ISLE1   6.75 6.75 6.57 6.51 6.47 6.20 6.06

HEGL1   12.84 12.84 12.61 12.62 12.61 12.43 12.02

MING1   14.46 14.46 13.96 13.93 13.94 13.74 13.33

CACR1   11.24 11.24 10.91 10.92 10.90 10.75 10.42

UPBU1   11.71 11.71 11.47 11.46 11.42 11.28 11.01

MACA1   16.51 16.51 16.06 15.91 15.54 15.18 14.75

DOSO1   12.28 12.28 11.72 11.45 11.19 10.93 10.67

SHEN1   10.93 10.93 9.73 9.53 9.17 9.05 8.90

JARI1   14.21 14.21 13.56 13.33 12.97 12.65 12.46

BRIG1   14.33 14.33 13.74 13.69 13.47 13.32 13.21

LYBR1   6.36 6.36 6.12 6.05 5.96 5.88 5.82

Table 14. Haze Results - Round 4 (Based on 2000-2004)



Worst 20% 2018 2009 2012 2018 2018

Site Baseline URP OTB OTB OTB OTB+Will DO

BOWA1 19.86 17.94 18.45 18.33 17.94 17.92

VOYA2 19.48 17.75 18.20 18.07 17.63 17.66

SENE1 24.38 21.64 23.10 23.04 22.59 22.42

ISLE1 21.59 19.43 20.52 20.43 20.09 20.13

ISLE9 21.59 19.43 20.33 20.22 19.84 19.82

HEGL1 26.75 23.13 24.72 24.69 24.22 24.17

MING1 28.15 24.27 25.88 25.68 24.74 24.83

CACR1 26.36 22.91 23.39 23.29 22.44 22.40

UPBU1 26.27 22.82 23.34 23.27 22.59 22.55

MACA1 31.37 26.64 27.11 27.01 26.10 26.15

DOSO1 29.05 24.69 24.00 23.90 23.00 23.04

SHEN1 29.31 25.12 24.99 24.87 23.92 23.95

JARI1 29.12 24.91 25.17 25.01 24.06 24.12

BRIG1 29.01 25.05 25.79 25.72 25.21 25.22

LYBR1 24.45 21.48 22.04 21.86 21.14 21.14

ACAD1 22.89 20.45 21.72 21.72 21.49 21.49

Best 20% 2018 2009 2012 2018 2018

Site Baseline Max OTB OTB OTB OTB+Will DO

BOWA1 6.42 6.42 6.21 6.19 6.14 6.12

VOYA2 7.09 7.09 6.86 6.83 6.75 6.76

SENE1 7.14 7.14 7.57 7.58 7.71 7.78

ISLE1 6.75 6.75 6.62 6.59 6.60 6.62

ISLE9 6.75 6.75 6.56 6.55 6.52 6.50

HEGL1 12.84 12.84 12.51 12.32 11.66 11.64

MING1 14.46 14.46 14.07 13.89 13.28 13.29

CACR1 11.24 11.24 10.88 10.85 10.52 10.52

UPBU1 11.71 11.71 11.13 11.08 10.73 10.74

MACA1 16.51 16.51 15.76 15.69 15.25 15.25

DOSO1 12.28 12.28 11.25 11.23 11.00 11.01

SHEN1 10.93 10.93 10.13 10.11 9.91 9.91

JARI1 14.21 14.21 13.38 13.38 13.14 13.14

BRIG1 14.33 14.33 14.15 14.08 13.92 13.92

LYBR1 6.37 6.37 6.25 6.23 6.14 6.15

ACAD1 8.78 8.78 8.86 8.86 8.82 8.82

Table 15. Haze Results - Round 5.1 (Based on 2000-2004)
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Table 16.  Estimated Cost Effectiveness for Potential Control Measures 
 

  Average Cost effectiveness ($/ton) 

Emission category Control strategy Region SO2 NOX NH3 

EGU EGU1 3-State 1,540 2,037  

  9-State 1,743 1,782  

 EGU2 3-State 1,775 3,016  

    9-State 1,952 2,984   

ICI boilers ICI1 3-State 2,992 2,537  

  9-State 2,275 1,899  

 ICI Workgroup 3-State 2,731 3,814  

    9-State 2,743 2,311   

3-State  538  Reciprocating engines 
emitting 100 tons/year or 
more 9-State  506  

Reciprocating engines 
and turbines 

3-State  754  

 
Turbines emitting 100 
tons/year or more 9-State  754  

 3-State  1,286  

 
Reciprocating engines 
emitting 10 tons/year or more 9-State  1,023  

 3-State  800  

  
Turbines emitting 10 
tons/year or more 9-State   819   

10% reduction 3-State   31 - 2,700 Agricultural sources 

 9-State   31 - 2,700 

 15% reduction 3-State   31 - 2,700 

    9-State     31 - 2,700 

Mobile sources Low-NOX Reflash 3-State  241  

  9-State  241  

 MCDI 3-State  10,697  

  9-State  2,408  

 Anti-Idling  3-State  (430) - 1,700  

  9-State  (430) - 1,700  

 Cetane Additive Program 3-State  4,119  

    9-State   4,119   

Cement Plants Process Modification Michigan  -  

 Conversion to dry kiln Michigan  9,848  

  LoTox™ Michigan   1,399   

Glass Manufacturing LNB Wisconsin  1,041  

 Oxy-firing Wisconsin  2,833  

 Electric boost Wisconsin  3,426  

 SCR Wisconsin  1,054  

  SNCR Wisconsin   1,094   

Lime Manufacturing Mid-kiln firing Wisconsin  688  

 LNB Wisconsin  837  

 SNCR Wisconsin  1,210  

 SCR Wisconsin  5,037  

  FGD Wisconsin   128 - 4,828   

Oil Refinery LNB Wisconsin  3,288  

 SNCR Wisconsin  4,260  

 SCR Wisconsin  17,997  

 LNB+FGR Wisconsin  4,768  

 ULNB Wisconsin  2,242  

  FGD Wisconsin   1,078   
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Factor 3 (Energy and Non-Air Quality Environmental Impacts): The energy and other 
environmental impacts are believed to be manageable.  For example, the increased 
energy demand from add-on control equipment is less than 1% of the total electricity 
and steam production in the region, and solid waste disposal and wastewater treatment 
costs are less than 5% of the total operating costs of the pollution control equipment.  It 
should also be noted that the SO2 and NOx controls would have beneficial 
environmental impacts (e.g., reduced acid deposition and nitrogen deposition). 
 
Factor 4 (Remaining Useful Life): The additional control measures are intended to be 
market-based strategies applied over a broad geographic region.  It is not expected that 
the control requirements will be applied to units that will be retired prior to the 
amortization period for the control equipment.  Thus, this factor can be easily addressed. 
 
Factor 5 (Visibility Impacts): The estimated incremental improvement in 2018 visibility 
levels for the additional measures is shown in Figure 74, along with the cost-
effectiveness expressed in $M per deciview improvement).  These results show that 
although EGU and ICI boiler controls have higher cost-per-deciview values (compared 
to some of the other measures), their visibility impacts are larger. 
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Figure 74. Results of ECR analysis of reasonable progress factors – visibility improvement (Factor 
5) is on top, and cost effectiveness (Factor 1) is on bottom
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5.2 Weight-of-Evidence Determination for Haze 
The WOE determination for haze consists of the primary modeling and other supplemental 
analyses.  A summary of this information is provided below. 
 
Primary (Guideline) Modeling: The results of the guideline modeling are presented in Section 
4.1.  Key findings from this modeling include: 

 
• Base M modeling results show that the northern Minnesota Class I areas are close 

to the glide path, whereas the northern Michigan Class I areas are above the glide 
path in 2018.  Other sites in the eastern U.S. are close to (or below) the glide path, 
except for Mingo (MO), Brigantine (NJ), and Acadia (ME). 

 
• Base K modeling results show that the northern Minnesota and northern Michigan 

Class I areas are above the glide path in 2018.  Other sites in the eastern U.S. are 
close to (or below) the glide path.   

 
• The difference in the two modeling analyses is due mostly to differences in future 

year emission projections, especially for EGUs (e.g., use of IPM2.1.9 v. IPM3.0). 
 
• Base K and Base M modeling analyses are considered “SIP quality”, so the 

attainment demonstration for haze should reflect a weight-of-evidence approach, 
with consideration of monitoring based information. 

 
Additional Modeling: Two additional modeling analyses were considered: (1) the primary 
modeling redone with different baseline values, and (2) modeling by the State of Minnesota 
which looked at different receptor locations in the northern Class I areas (MPCA, 2008).  Each 
of these analyses is described below. 
 
First, the primary modeling analysis (Base M) was revised using an alternative baseline value.  
Specifically, the data for the period 2000-2005 were used to calculate the baseline, given that 
the Base M modeling reflects a 2005 base year.  The results of this alternative analysis (see 
Table 17) are generally consistent with the primary modeling (see Table 15). 
 
Second, Minnesota’s modeling reflects a 2002 base year and much of the data developed by 
LADCO for its modeling.  (Note, Minnesota conducted modeling for LADCO’s domain at 36 km, 
and for a statewide domain at 12 km.)  The purpose of the 12 km modeling was to address local 
scale impacts on the northern Class I areas at several locations, not just the location of the 
IMPROVE monitor.  Results for the Boundary Waters on the 20% worst days range from 18.3 – 
19.0 dv, with an average value of 18.7 dv, which is consistent with Minnesota’s 36 km modeling 
results at the IMPROVE monitor.  This variability in visibility levels should be kept in mind when 
reviewing the values presented in Tables 14, 15, and 17, which reflect results at the IMPROVE 
monitor locations. 
 



Worst 20% 2009 2012 2018 2018

Site Baseline URP OTB OTB OTB OTB+Will DO

BOWA1 20.10 18.12 18.63 18.51 18.12 18.09

VOYA2 19.62 17.86 18.27 18.15 17.70 17.72

SENE1 24.77 21.94 23.44 23.39 22.94 22.77

ISLE1 21.95 19.71 20.84 20.76 20.41 20.44

ISLE9 21.95 19.71 20.65 20.55 20.15 20.13

HEGL1 27.45 23.67 25.30 25.27 24.79 24.73

MING1 28.92 24.86 25.88 25.68 24.74 24.83

CACR1 27.05 23.44 23.88 23.78 22.92 22.86

UPBU1 26.97 23.36 23.92 23.85 23.14 23.09

MACA1 31.76 26.93 27.42 27.32 26.39 26.44

DOSO1 29.36 24.92 24.20 24.11 23.19 23.23

SHEN1 29.45 25.23 25.06 24.94 23.98 24.01

JARI1 29.40 25.13 25.32 25.17 24.22 24.28

BRIG1 29.12 25.14 25.84 25.77 25.26 25.26

LYBR1 24.71 21.69 22.22 22.06 21.36 21.36

ACAD1 22.91 20.47 21.72 21.72 21.49 21.49

Best 20% 2009 2012 2018 2018

Site Baseline URP OTB OTB OTB OTB+Will DO

BOWA1 6.40 6.40 6.20 6.17 6.13 6.10

VOYA2 7.05 7.05 6.82 6.78 6.71 6.71

SENE1 7.20 7.20 7.60 7.61 7.73 7.80

ISLE1 6.80 6.80 6.67 6.64 6.65 6.66

ISLE9 6.80 6.80 6.62 6.61 6.57 6.55

HEGL1 13.04 13.04 12.71 12.51 11.85 11.82

MING1 14.68 14.68 14.07 13.89 13.28 13.29

CACR1 11.62 11.62 11.24 11.20 10.86 10.86

UPBU1 11.99 11.99 11.41 11.36 11.01 11.02

MACA1 16.64 16.64 15.88 15.82 15.37 15.38

DOSO1 12.24 12.24 11.21 11.19 10.96 10.97

SHEN1 10.85 10.85 10.04 10.02 9.82 9.83

JARI1 14.35 14.35 13.51 13.51 13.27 13.27

BRIG1 14.36 14.36 14.17 14.10 13.94 13.94

LYBR1 6.21 6.21 6.11 6.09 6.01 6.01

ACAD1 8.57 8.57 8.67 8.66 8.62 8.62

Table 17. Haze Results - Round 5.1 (Based on 2000-2005)
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Observational Models and Diagnostic Analyses: The observation-based modeling (i.e., 
application of thermodynamic equilibrium models) is presented in Section 3.  The key findings 
from this modeling are that PM2.5 mass is sensitive to reductions in sulfate, nitric acid, and 
ammonia concentrations.  Even though sulfate reductions cause more ammonia to be available 
to form ammonium nitrate (PM-nitrate increases slightly when sulfate is reduced), this increase 
is generally offset by the sulfate reductions, such that PM2.5 mass decreases and visibility 
improves.  Under conditions with lower sulfate levels (i.e., proxy of future year conditions), PM2.5 
is more sensitive to reductions in nitric acid compared to reductions in ammonia. 
 
As discussed in Section 2, thermodynamic equilibrium modeling based on data collected at 
Seney indicates that PM2.5 there is most sensitive to reductions in sulfate, but also responsive to 
reductions in nitric acid (Blanchard 2004b).  An analysis using data from the Midwest ammonia 
monitoring network for a site in Minnesota (i.e., Great River Bluffs, which is the closest ammonia 
monitoring site to the northern Class I areas) suggested that reductions in sulfate, nitric acid, 
and ammonia concentrations will lower PM2.5 concentrations and improve visibility levels in the 
northern Class I areas. 
 
Trajectory analyses for the 20% worst visibility days for the four northern Class I areas are 
provided in Figure 75.  (Note, this figure is similar to Figure 34, but the trajectory results for each 
Class I area are displayed separately here.)  The orange areas are where the air is most likely 
to come from, and the green areas are where the air is least likely to come from.  Darker 
shading represents higher frequency.  As can be seen, bad air days are generally associated 
with transport from regions located to the south, and good air days with transport from Canada.   
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   Seney     Isle Royale 
 

   
 
  Boundary Waters    Voyageurs 
 

   
 

Figure 75.  Trajectory analysis results for northern Class I areas on 20% worst visibility days 
     
The primary diagnostic analysis is source apportionment modeling with CAMx to provide more 
quantitative information on source region (and source sector) impacts (Baker, 2007b).  
Specifically, the CAMx model was applied to provide source contribution information. 
Specifically, the model estimated the impact of 18 geographic source regions (which are 
identified in Figure 76) and 6 source se ctors (EGU point, non-EGU point, on-road, off-road, 
area, and ammonia sources) at visibility/haze monitoring sites in the eastern U.S. 
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Figure 76. Source regions (left) and key monitoring sites (right) for haze modeling analysis 
 
Modeling results for 2018 (Base K and Base M) are provided in Appendix IV for several key 
monitoring sites (Class I areas).  For each monitoring site, there are two graphs: one showing 
sector-level contributions, and one showing source region and sector-level contributions in 
terms of absolute modeled values. 
 
The sector-level results (see, for example, Figure 77) show that EGU sulfate, non-EGU-sulfate, 
and ammonia emissions generally have the largest contributions at the key monitor locations.    
The source group contributions vary by receptor location due to emissions inventory differences.   
 

 
Figure 77.  Source-sector results for Seney (left) and Boundary Waters (right) – 2018 (Base M) 

 
The source region results (see, for example, Figure 78) show that emissions from a number of 
nearby states contribute to regional haze levels. 
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Figure 78.  Source-region results for Seney (left) and Boundary Waters (right) – 2018 (Base M) 

 
 
Summary: Air quality modeling and other supplemental analyses were performed to estimate 
future year visibility levels.  Based on this information, the following general conclusions can be 
made: 
 

• Existing (“on the books”) controls are expected to improve visibility levels in the 
northern Class I areas. 

 
• Visibility levels in a few Class I areas in the eastern U.S. are expected to be 

greater than (less improved than) the uniform rate of visibility improvement 
values in 2018, including those in northern Michigan and some in the 
northeastern U.S.   

 
• Visibility levels in many other Class I areas in the eastern U.S. are expected to 

be less than (more improved than) the uniform rate of visibility improvement 
values in 2018. 
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Section 6.  Summary 

 
To support the development of SIPs for ozone, PM2.5, and regional haze in the States of Illinois, 
Indiana, Michigan, Ohio, and Wisconsin, technical analyses were conducted by LADCO, its 
member states, and various contractors.  The analyses include preparation of regional 
emissions inventories and meteorological modeling data for two base years, evaluation and 
application of regional chemical transport models, and review of ambient monitoring data.   
 
Analyses of monitoring data were conducted to produce a conceptual model, which is a 
qualitative summary of the physical, chemical, and meteorological processes that control the 
formation and distribution of pollutants in a given region.  Key findings of the analyses include: 
 
 Ozone 

• Current monitoring data show about 20 sites in violation of the 8-hour ozone 
standard of 85 ppb.  Historical ozone data show a steady downward trend over the 
past 15 years, especially since 2001-2003, due likely to federal and state emission 
control programs. 

 
• Ozone concentrations are strongly influenced by meteorological conditions, with 

more high ozone days and higher ozone levels during summers with above normal 
temperatures. 

 
• Inter- and intra-regional transport of ozone and ozone precursors affects many 

portions of the five states, and is the principal cause of nonattainment in some areas 
far from population or industrial centers  

 
 PM2.5 

• Current monitoring data show 30 sites in violation of the annual PM2.5 standard of 15 
ug/m3.  Nonattainment sites are characterized by an elevated regional background 
(about 12 – 14 ug/m3) and a significant local (urban) increment (about 2 – 3 ug/m3).  
Historical PM2.5 data show a slight downward trend since deployment of the PM2.5 
monitoring network in 1999. 

 
• PM2.5 concentrations are also influenced by meteorology, but the relationship is more 

complex and less well understood compared to ozone. 
 
• On an annual average basis, PM2.5 chemical composition consists of mostly sulfate, 

nitrate, and organic carbon in similar proportions. 
 
 Haze  

• Current monitoring data show visibility levels in the Class I areas in northern 
Michigan are on the order of 22 – 24 deciviews.  The goal of EPA’s visibility program 
is to achieve natural conditions, which is on the order of 12 deciviews for these 
Class I areas, by the year 2064. 

 
• Visibility impairment is dominated by sulfate and nitrate. 
  

Air quality models were applied to support the regional planning efforts. Two base years were 
used in the modeling analyses: 2002 and 2005.  EPA’s modeling guidance recommends using 
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2002 as the baseline inventory year, but also allows for use of an alternative baseline inventory 
year, especially a more recent year.  Initially, LADCO conducted modeling with a 2002 base 
year (i.e., Base K modeling, which was completed in 2006).  A decision was subsequently made 
to conduct modeling with a 2005 base year (i.e., Base M, which was completed in 2007).  
Statistical analyses showed that 2002 and 2005 both had above normal ozone-conducive 
conditions, although 2002 was more severe compared to 2005.  Examination of multiple base 
years provides for a more complete technical assessment.  Both sets of model runs are 
discussed in this document.  
 
Basecase modeling was conducted to evaluate model performance (i.e., assess the model's 
ability to reproduce the observed concentrations).  This exercise was intended to assess 
whether, and to degree, confidence in the model is warranted (and to assess whether model 
improvements are necessary).  Model performance for ozone and PM2.5 was generally 
acceptable and can be characterized as follows: 
 
 Ozone 

• Good agreement between modeled and monitored concentration for higher 
concentration levels (> 60 ppb) – i.e., bias within 30% 

 
• Regional modeled concentrations appear to be underestimated in the 2002 base 

year, but show better agreement (with monitored data) in the 2005 base year due to 
model and inventory improvements. 

 
• Day-to-day and hour-to-hour variation in and spatial patterns of modeled 

concentrations are consistent with monitored data 
 

• Model accurately simulates the change in monitored ozone concentrations due to 
reductions in precursor emissions. 

 
 PM2.5 

• Good agreement in the magnitude of fine particle mass, but some species are 
overestimated and some are underestimated 

• Sulfates: good agreement in the 2002 base year, but underestimated in 
the summer in the 2005 base year due probably to meteorological factors 

• Nitrates: slightly overestimated in the winter in the 2002 base year, but 
good agreement in the 2005 base year as a result of model and inventory 
improvements 

• Organic Carbon: grossly underestimated in the 2002 and 2005 base 
years due likely to missing primary organic carbon emissions 

 
• Temporal variation and spatial patterns of modeled concentrations are consistent 

with monitored data 
 
Future year strategy modeling was conducted to determine whether existing (“on the books”) 
controls would be sufficient to provide for attainment of the standards for ozone and PM2.5 and if 
not, then what additional emission reductions would be necessary for attainment.  Traditionally, 
attainment demonstrations involved a “bright line” test in which a single modeled value (based 
on EPA guidance) was compared to the ambient standard.  To provide a more robust 
assessment of expected future year air quality, other information was considered.  Furthermore, 
according to EPA’s modeling guidance, if the future year modeled values are “close” to the 
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standard (i.e., 82 – 87 ppb for ozone and 14.5 – 15.5 ug/m3 for PM2.5 ), then the results of the 
primary modeling should be reviewed along with the supplemental information in a “weight of 
evidence” (WOE) assessment of whether each area is likely to achieve timely attainment.  Key 
findings of the WOE determination include: 
 

• Existing controls are expected to produce significant improvement in ozone and 
PM2.5 concentrations and visibility levels. 

 
• The choice of the base year affects the future year model projections.  A key 

difference between the base years of 2002 and 2005 is meteorology.  2002 was 
more ozone conducive than 2005.  The choice of which base year to use as the 
basis for the SIP is a policy decision (i.e., how much safeguard to incorporate). 

 
• Most sites are expected to meet the current 8-hour standard by the applicable 

attainment date, except for sites in western Michigan and, possibly, in eastern 
Wisconsin and northeastern Ohio. 

 
• Most sites are expected to meet the current PM2.5 standard by the applicable 

attainment date, except for sites in Detroit, Cleveland, and Granite City. 
 

The regional modeling for PM2.5 does not reflect air quality benefits expected 
from local controls.  States are conducting local-scale analyses and will use 
these results, in conjunction with the regional-scale modeling, to support their 
attainment demonstrations for PM2.5. 

 
• These findings of residual nonattainment for ozone and PM2.5 are supported by 

current (2005 – 2007) monitoring data which show significant nonattainment in 
the region (e.g., peak ozone design values on the order of 90 – 93 ppb, and peak 
PM2.5 design values on the order of 16 - 17 ug/m3).  It is unlikely that sufficient 
emission reductions will occur in the next few of years to provide for attainment at 
all sites. 

 
• Attainment at most sites by the applicable attainment date is dependent on actual 

future year meteorology (e.g., if the weather conditions are consistent with [or 
less severe than] 2005, then attainment is likely) and actual future year 
emissions (e.g., if the emission reductions associated with the existing controls 
are achieved, then attainment is likely).  If either of these conditions is not met, 
then attainment may be less likely. 

 
• The new PM2.5 24-hour standard and the new lower ozone standard will not be 

met at several sites, even by 2018, with existing controls. 
 

• Visibility levels in a few Class I areas in the eastern U.S. are expected to be 
greater than (less improved than) the uniform rate of visibility improvement 
values in 2018 based on existing controls, including those in northern Michigan 
and some in the northeastern U.S.  Visibility levels in many other Class I areas in 
the eastern U.S. are expected to be less than (more improved than) the uniform 
rate of visibility improvement values in 2018. 
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