

MISO was established from FERC compliance but growth has been driven by value creation

The MISO 2011 Value Proposition

Benefit by Value Driver (in \$ millions)

Summer 2012 Overview

- MISO expects to have adequate resources to reliably serve 2012 summer demand
- However, MISO's resource portfolio will evolve over the next five years, significantly altering the resource mix and reducing the reserve margin
- The portfolio transition poses significant challenges, requiring regional coordination and cooperation

MISO's current resource adequacy construct enables capacity sharing while leveraging traditional bilateral methodologies

- Setting planning reserve margins
 - Load serving entity establishes load forecast
 - MISO establishes/recommends planning reserve margin based on Loss of Load Expectation Study
 - Local regulators have authority to modify for their jurisdiction
- Term: Currently monthly \rightarrow moving to annually
- Clearing obligation is met by bringing resources to meet load forecast plus their planning reserve margin
 - Owned resources
 - Controlled resources
 - Voluntary capacity auction
- Penalty: Failure to meet resource obligation results in a settlement charge based on Cost of New Entry (CONE) – currently \$90,000 megawatt/month

For the 2012 summer season, there are sufficient resources to manage weather, load, and outage uncertainty

Reserve Margin Change

Reserve Margin 2012

The primary changes from last year are driven by changes in capacity registered in MISO's resource adequacy process

New transmission identified in the Multi-Value Project portfolio will relieve congestion and improve capacity sharing

٠

Benefits (and costs) from the MVP portfolio are distributed throughout MISO and local resource zones

Technology development/adoption will be a key driver of the evolution of the nation's resource portfolio ...

Source: EPRI, "The Power to Reduce CO2 Emissions", October 2009

The EPA rules significantly impact the MISO region's coal fleet

Supply chain analysis suggests that if decisions are not made soon, options become limited

To reliably and efficiently facilitate the transition, MISO is regionally coordinating

- Planning
 - Outage scheduling
 - Criteria
 - Coordination
 - Supply chain
 - Transmission impacts and requirements
 - Seams coordination
 - Gas/electric harmonization
- Resource adequacy
 - Retirement evaluation
 - Systems support resource designation
 - Resource validation
 - Integration with states' integrated resource plans

The future resource portfolio will be shaped by multiple influences Energy Policy • EPA Regulations • Nuclear Crisis • Clean Energy Standard Technology Development

- Factors
- Supply/Demand Balance
- Construction
 Costs
- Operational Costs (Fuel, O&M)

Resource Portfolio Evolution

- Gas Transmission
- Gas/Electric
- Harmonization
- Electricity
 - Transmission

Infrastructure

& Adoption

Carbon Capture

• Price Responsive

Technologies

Demand

Supply-Side

Energy Efficiency

Source: U.S. Energy Information Administration and RTO data, 2010

5.0 GW of capacity may be needed by 2015 to maintain an appropriate planning reserve margin of 16.5%

Resource Adequacy Projected for 2015

2012 Summer Assessment forecasts a 27.4% reserve margin

Note: MISO did not forecast Incremental Interchange prior to 2012

MISO capacity and estimated demand decreased primarily due to the exits of FirstEnergy and Duke Ohio

Note: Forecasted demand is a net number, but actual peak does not net load modifying resources (LMR).

Note: Available resources includes 100% of nameplate capacity for all resources, including wind.

2012 MISO projected outage limits (maintenance margin)

Planning Reserve Margin Requirements are the margin required to reliably serve load at a 1 day in 10 years Loss of Load Expectation (LOLE)

Planning Reserve Margin	Requirement	Explanation
MISO Coincident Peak	16.7%	 Reserve margin required on hour in which the Midwest ISO load peaks
Load Serving Entity Non- Coincident Peak	11.32%	 Reserve margin required by load serving entity based on their individual peak hour
Unforced Capacity	3.79%	 Capacity resource value reflecting the historical performance of the assets

Our role is focused on a few key valueadded areas

What We Do

Provide independent transmission system access

Deliver improved reliability coordination through efficient market operations

Coordinate regional planning

Foster platform for wholesale energy markets

Implications

- Equal and non-discriminatory access
- Compliance with FERC requirements

- Improved regional coordination
- Enhanced system reliability
- Lowest cost unit commitment, dispatch and congestion management

- Integrated system planning
- Broader incorporation of renewables

- Encourage prudent infrastructure investments
- Facilitation of regulatory initiatives