Watershed Report

Lower White (05120202)

Land Use

	Total (Ac.)	Crops (Ac.)	% of Total	Forest (Ac.)	% of Total	Water/Wetland (Ac.)	% of Total	Pasture/Hay (Ac.)	% of Total	Urban (Ac.)	% of Total	No Data (Ac.)	% of Total
Brown	40,146	1,732	0.16	21,584	2.01	1,362	0.13	14,586	1.36	715	0.07	139	0.01
Daviess	202,749	105,390	9.84	12,540	1.17	3,045	0.28	73,049	6.82	3,758	0.35	208	0.02
Gibson	23,850	9,549	0.89	4,017	0.37	847	0.08	8,254	0.77	182	0.02	1	0.00
Greene	293,320	83,469	7.79	74,425	6.95	7,045	0.66	118,423	11.05	7,567	0.71	212	0.02
<u>Johnson</u>	51	2	0.00	18	0.00	0	0.00	35	0.00	0	0.00	0	0.00
Knox	187,701	99,443	9.28	8,888	0.83	4,038	0.38	67,441	6.29	2,415	0.23	95	0.01
Martin	15,584	945	0.09	6,894	0.64	1,156	0.11	5,988	0.56	555	0.05	14	0.00
Monroe	106,330	9,655	0.90	44,542	4.16	1,892	0.18	44,755	4.18	4,956	0.46	132	0.01
Owen	138,801	19,925	1.86	61,833	5.77	2,191	0.20	47,850	4.47	6,196	0.58	22	0.00
<u>Pike</u>	45,707	22,384	2.09	4,718	0.44	1,318	0.12	14,633	1.37	900	0.08	433	0.04
Sullivan	17,105	2,965	0.28	3,811	0.36	1,017	0.09	8,310	0.78	794	0.07	0	0.00
Totals	1,071,344	355,458	33.18	243,269	22.71	23,911	2.23	403,323	37.65	28,037	2.62	1,254	0.12

Data Source = National Ag Statistics Service, 2006, http://www.nass.usda.gov/research/Cropland/SARS1a.htm

% Crop = Sum of the acres of corn, soybeans, wheat, other small grains, etc. divided by the total acres in the watershed.

% Pasture/Hay = Sum of the acres of pasture, hay, and idle land divided by the total acres in the watershed.

% Forest = Sum of the acres of forest land divided by the total acres in the watershed. % Urban = Sum of the acres of residential and urban land divided by the total acres in the watershed.

Public Lands

% Water/Wetland = Sum of the acres of streams, lakes, ponds, etc. divided by the total acres in the watershed.

% Data Not Available = Sum of the acres of clouds on arial photographs divided by the total acres in the watershed.

(data are viewable on the corresponding watershed map)

	Public Lands (Ac.)	% of Total
Brown	4,655	0.43
<u>Daviess</u>	1,273	0.12
<u>Gibson</u>	0	0.00
<u>Greene</u>	9,631	0.90
<u>Johnson</u>	0	0.00
<u>Knox</u>	120	0.01
<u>Martin</u>	13,806	1.29
<u>Monroe</u>	9,780	0.91
<u>Owen</u>	6,063	0.57
<u>Pike</u>	0	0.00

3,914

49.243

Data Source = Indiana Department of Natural Resources (State-Managed Lands), 2004; Hoosier National Forest - U.S. Forest Service, 2004 and Patoka River USFWS, 2003 (Federal-Managed Lands)

0.37

4.60

% Public = Sum of the acres of federal, state, and local government land divided by the total acres in the watershed.

(data are viewable on the corresponding watershed map)

				Cropland	Types					
	Crop (Ac.)	% of Total	Corn (Ac.)	% of Total	Wheat (Ac.)	% of Total	Soybeans(Ac.)	% of Total	Other (Ac.)	% of Total
<u>Brown</u>	1,732	0.16	646	0.06	89	0.01	226	0.02	442	0.04
<u>Daviess</u>	105,390	9.84	53,477	4.99	7,617	0.71	36,115	3.37	5,104	0.48
Gibson	9,549	0.89	4,708	0.44	997	0.09	4,446	0.41	9	0.00
<u>Greene</u>	83,469	7.79	38,253	3.57	4,061	0.38	24,422	2.28	7,743	0.72
<u>Johnson</u>	2	0.00	2	0.00	0	0.00	0	0.00	0	0.00
<u>Knox</u>	99,443	9.28	54,941	5.13	8,433	0.79	34,386	3.21	2,322	0.22
<u>Martin</u>	945	0.09	304	0.03	70	0.01	341	0.03	83	0.01
<u>Monroe</u>	9,655	0.90	3,558	0.33	645	0.06	3,442	0.32	1,072	0.10
Owen	19,925	1.86	8,881	0.83	700	0.07	4,616	0.43	2,085	0.19
<u>Pike</u>	22,384	2.09	10,384	0.97	1,435	0.13	10,561	0.99	48	0.00
Sullivan	2,965	0.28	1,007	0.09	635	0.06	708	0.07	197	0.02
Totals	355,458	33.18	176,162	16.44	24,682	2.30	119,263	11.13	19,105	1.78

Data Source = National Ag Statistics Service, 2006, http://www.nass.usda.gov/research/Cropland/SARS1a.htm

% Corn = Acres of corn divided by the acres in the watershed.

% Beans = Acres of soybeans + double-crop soybeans/wheat divided by the acres in the watershed.

% Wheat = Acres of wheat divided by the acres in the watershed.

% Other Row Crop = Difference of the sum of the acres of corn, soybeans, and wheat minus total cropland acres in the watershed divided by the acres in the watershed.

(data are viewable on the corresponding watershed map)

Ac.: Acres #: Number >: Greater Than

Ft.: Feet %: Percent Mi.: Miles <: Less Than

Sullivan

Totals

All data are the measure of that parameter within the Indiana portion of the watershed.

Page 1 of 5 Lower White (05120202)

	В	Beef and S	wine Proc	essing
	Beef Plants	Beef Animals	Swine Plants	Swine Animals
Brown	0	0	0	0
<u>Daviess</u>	0	0	0	0
<u>Gibson</u>	0	0	0	0
<u>Greene</u>	0	0	0	0
<u>Johnson</u>	0	0	0	0
<u>(nox</u>	0	0	0	0
<u>lartin</u>	0	0	0	0
onroe	0	0	0	0
<u>Owen</u>	1	487	1	788
<u>Pike</u>	0	0	0	0
<u>Sullivan</u>	0	0	0	0
Γotals	1	487	1	788

Data Source = Indiana Board of Animal Health, 2006 (Slaughter Processing), http://www.in.gov/boah/food_safety/inspection/meat_poulty.html

					Co	nfined Live	estock 200	06			
	CAFO/CFO*		airy Animals		eef Animals	Sv Farms	wine Animals	Po Farms	ultry Animals	She Farms	ep Animals
<u>Brown</u>	1	1	1,120	0	0	0	0	0	0	0	0
Daviess	63	3	680	5	1,604	36	41,334	23	1,089,400	0	0
<u>Gibson</u>	0	0	0	0	0	0	0	0	0	0	0
<u>Greene</u>	23	0	0	1	70	10	46,533	13	490,400	0	0
<u>Johnson</u>	0	0	0	0	0	0	0	0	0	0	0
Knox	15	0	0	2	900	9	33,352	5	208,500	0	0
<u>Martin</u>	0	0	0	0	0	0	0	0	0	0	0
Monroe	1	0	0	0	0	1	8,000	0	0	0	0
Owen	1	0	0	0	0	1	1,500	0	0	0	0
<u>Pike</u>	1	0	0	0	0	1	4,046	0	0	0	0
Sullivan	1	0	0	0	0	1	13,300	0	0	0	0
Totals	106	4	1,800	8	2,574	59	148,065	41	1,788,300	0	0

*Because a CAFO/CFO permit may include multiple types of animals, the total number of permits in the county might be less than the sum of the farms with each animal type.

*Data Source = Indiana Department of Environmental Management, Office of Land Quality, 2007, http://www.state.in.us/idem/agriculture/livestock/cfo/index.html (data is viewable on the corresponding watershed map)

Confined Animal Feeding Operation (CAFO) = (U. S. Environmental Protection Agency definition) Operations with at least one of the following: 200 dairy cows; 300 veal calves; 300 beef cattle; 750 swine 55 pounds or more; 3000 swine under 55 pounds; 150 horses; 3000 sheep or lambs; 16,500 turkeys; 9000 chickens (liquid manure); 25,000 chickens - laying hens (not liquid manure); 37,500 chickens - not laying hens (not liquid manure); or 10,000 ducks (not liquid manure).

Confined Feeding Operation (CFO) = (Indiana Department of Environmental Management definition) = Operations with at least one of the following: 300 cattle; 600 swine or sheep; or 30,000 poultry.

	Biofuel Pla	nts
	Ethanol	Biodiesel
<u>Brown</u>	0	0
<u>Daviess</u>	0	0
<u>Gibson</u>	0	0
<u>Greene</u>	0	0
<u>Johnson</u>	0	0
Knox	0	0
<u>Martin</u>	0	0
Monroe	0	0
<u>Owen</u>	0	0
<u>Pike</u>	0	0
Sullivan	0	0
Totals	0	0

Data Source = Indiana Department of Transportation, 2006 (Biofuels Processing),

http://www.in.gov/isda/biofuels/

Surface	and Groundw	ater Resour	ce Concern Areas
Impaired	Impaired	Wellhead	Karst

	Impaired Streams (Mi.)	Impaired Lakes (Ac.)	Wellhead Protection (Ac.)	Karst (Ac.)	% Karst
<u>Brown</u>	40.41	0	0	0	0.00
<u>Daviess</u>	26.00	100	3,334	523	0.05
<u>Gibson</u>	2.51	0	542	0	0.00
<u>Greene</u>	111.56	0	3,086	37,682	3.52
<u>Johnson</u>	0.00	0	0	0	0.00
Knox	20.81	0	4,849	0	0.00
<u>Martin</u>	0.00	0	0	11,029	1.03
<u>Monroe</u>	55.82	0	0	70,369	6.57
<u>Owen</u>	8.16	0	351	42,189	3.94
<u>Pike</u>	32.52	0	2,021	0	0.00
Sullivan	3.58	0	0	0	0.00
Totals	301.38	100	14,183	161,791	15.10

Data Source (Impaired Water Bodies) = 2006 Indiana Department of Environmental Management 303(d) List, http://www.state.in.us/idem/programs/water/303d/index.html (data is viewable on the corresponding watershed map) 303(d)-listed streams = impaired waterbodies that have been identified by IDEM as exceeding threshold limits of specific contaminants.

Data Source (Wellhead Protection Areas) = Indiana Department of Environmental Management, 2007, http://www.in.gov/idem/programs/water/swp/whpp/ (data is not available for viewing)

Data Source (Karst) = Karst Data, 2002, Indiana NRCS, data unpublished (data are viewable on the corresponding watershed map)

Soils-Based Resource Concerns and Analyses

		Hydric (Ac.)	%	Leaching Index >= 10 (Ac.)	%	Subsurface Drainage= H/VH (Ac.)	%	Soil Erosion (Wind) >500 (Ac.)	%	Potential for Frequent Flooding (Ac.)	%	Surface Runoff Class =H/VH (Ac.)	%	Soil Erosion (Water) >37 (Ac.)	%	Sheet/Rill Erosion Potential Between 1T & 2T (Ac.)	%	Sheet/Rill Erosion Potential >=2 (Ac.)	%
<u>B</u>	rown	80	0.01	12,042	1.12	0	0.00	0	0.00	2,380	0.22	21,523	2.01	33,713	3.15	6,833	0.64	15,934	1.49
D	aviess	43,040	4.02	118,056	11.02	0	0.00	0	0.00	33,073	3.09	36,426	3.40	74,744	6.98	10,273	0.96	18,585	1.73
<u>G</u>	<u>iibson</u>	1,086	0.10	18,630	1.74	261	0.02	971	0.09	5,053	0.47	2,030	0.19	10,947	1.02	1,159	0.11	1,846	0.17
<u>G</u>	ireene_	37,663	3.52	156,026	14.56	0	0.00	0	0.00	45,097	4.21	95,504	8.91	173,502	16.19	54,591	5.10	60,999	5.69
<u>J</u>	<u>ohnson</u>	0	0.00	49	0.00	19	0.00	0	0.00	2	0.00	10	0.00	31	0.00	10	0.00	0	0.00
K	nox	43,172	4.03	124,625	11.63	0	0.00	0	0.00	26,544	2.48	18,897	1.76	71,222	6.65	9,714	0.91	9,718	0.91
M	lartin_	68	0.01	14,422	1.35	0	0.00	0	0.00	736	0.07	9,469	0.88	13,436	1.25	4,588	0.43	6,854	0.64
M	lonroe	3,766	0.35	48,243	4.50	0	0.00	0	0.00	12,470	1.16	46,606	4.35	83,721	7.81	8,590	0.80	39,174	3.66
0	<u>lwen</u>	1,780	0.17	72,947	6.81	9,572	0.89	0	0.00	19,620	1.83	70,469	6.58	102,993	9.61	29,551	2.76	33,790	3.15
P	ike	4,758	0.44	29,181	2.72	0	0.00	0	0.00	12,518	1.17	7,929	0.74	22,330	2.08	5,279	0.49	4,682	0.44
<u>s</u>	ullivan	32	0.00	3,021	0.28	2,019	0.19	0	0.00	1,183	0.11	11,351	1.06	4,972	0.46	676	0.06	1,179	0.11
Т	otals	135,445	12.64	597,242	55.75	11,871	1.11	971	0.09	158,676	14.81	320,214	29.89	591,611	55.22	131,264	12.25	192,761	17.99

Data Source (Hydric Soils) = NRCS Soil Data Mart (2007) - http://soildatamart.nrcs.usda.gov/. A soil mapunit was considered hydric if a majority of its component soils is hydric.

Data Source (Sheet/Rill Erosion Potential) = NRCS Soil Data Mart, 2007, http://soildatamart.nrcs.usda.gov/ and the Revised Universal Soil Loss Equation, Version 2 (RUSLE2). Erosion potential is based on the RUSLE2 calculation for the soil with a "C" Factor equal to that of a typical cropland management system used in Indiana (no-till soybeans, followed by chisel-plowed corn with an injected anhydrous application). Soils (if used to produce annual crops) under this management system between 1 and 2 times of tolerable limits are eroding above sustainable levels; soils (if used to produce annual crops) under this management system greater than 2 times of tolerable limits may be ineligible for certain USDA benefits. Management systems that leave more residue on the surface, those with less soil disturbance, crop rotations with higher-residue crops may increase soil erosion above the typical cropland system. Management systems that leave less residue, disturb the soil more, and those with crop rotations with lower-residue crops may increase soil erosion above the typical cropland system.

Data Source (Leach Index, Wind Erosion, Water Erosion, Flood Potential, and Surface and Subsurface Drainage) = NRCS Soil Data Mart, 2007, http://soildatamart.nrcs.usda.gov/ and the NRCS Indiana Offsite Risk Index (ORI) (Section II of the Indiana Field Office Technical Guide (FOTG)). https://efotg.nrcs.usda.gov/efotg_locator.aspx?map=IN. NOTE: Because climatic and other data elements may be county-based, thresholds values may differ among adjacent counties and result in abrupt data thresholds.

Hydric soils = Characterized by, relating to, or requiring an abundance of water. Hydric soils may be indicators of wetlands, which represent unique management considerations including groundwater impacts, crop production limitations, wildlife considerations, etc. A soil mapunit was considered hydric if a majority of its component soils is hydric.

Leach Index = soils with a relatively high risk of water percolating below the crop root zone; developed using annual precipitation, rainfall distribution data and hydrologic soil groups.

Subsurface Drainage = soils with a relatively high risk of having subsurface drainage; determined from a matrix based on soil drainage class and depth to seasonal high water, and the presence of artificial subsurface drainage and surface tile inlets.

Soil Erosion (Wind) = soils with a relatively high risk of eroding by wind; determined from a location's C (Climate) Factor and a soil's Soil Erodibility Index (I).

Flooding Potential = soils with a relatively frequent risk of being covered by flowing water from any source; determined from the NRCS soil survey.

Surface Runoff Class = soils with a relatively high risk of soil solution movement from the surface of a management unit; determined using soil permeability and percent slope.

Soil Erosion (Water) = soils with a relatively high risk of eroding by water; determined from a location's R (Rainfall-Runoff Erosivity) Factor, and a soil's K (Soil Erodibility) and LS (Length-Slope) factors.

(All data are viewable on the corresponding watershed map)

Ac.: Acres Ft.: Feet

s #: Number

Ft.: Feet %: Percent Mi.: Miles <: Less Than

			,	Water Re	esources				
	Standing Water (Ac.)	Streams (Mi.)	1st Order (Mi.)	2nd Order (Mi.)	3rd Order (Mi.)	4th Order (Mi.)	5th Order (Mi.)	6th+ Order (Mi.)	Stream Order Unavailable (Mi.)
<u>Brown</u>	671	46.22	32.91	6.67	6.63	0.00	0.00	0.00	0.00
<u>Daviess</u>	651	217.42	111.93	61.24	8.30	8.28	0.00	22.23	5.44
<u>Gibson</u>	193	32.65	12.87	2.40	0.45	0.00	0.00	16.93	0.00
<u>Greene</u>	909	307.87	186.61	59.82	20.32	0.00	7.65	30.08	3.40
<u>Johnson</u>	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>Knox</u>	721	205.37	98.86	39.64	9.50	0.00	0.00	47.55	9.82
<u>Martin</u>	813	13.05	11.90	0.28	0.00	0.00	0.00	0.00	0.86
<u>Monroe</u>	1,177	82.36	46.49	2.09	33.18	0.00	0.60	0.00	0.00
<u>Owen</u>	180	146.53	89.80	25.57	0.00	0.22	30.93	0.00	0.00
<u>Pike</u>	190	62.49	30.15	14.97	4.48	0.00	0.00	12.54	0.35
<u>Sullivan</u>	325	11.98	11.98	0.00	0.00	0.00	0.00	0.00	0.00
Totals	5,829	1,125.94	633.50	212.70	82.87	8.50	39.17	129.32	19.87

Data Source = National Hydrography Data - U.S. Geological Survey, 2006, http://www.horizon-systems.com/nhdplus/

Stream Order = A hierarchal stream classification system. The confluence of two first order streams forms a second order stream; the confluence of two second order streams forms a third order stream; etc. Generally, larger order streams (such as the Ohio or Mississippi Rivers) have more volume, depth and channel width. They also are located in the lower reaches of watersheds. First order streams (unforked or unbranched streams) are in the upper reaches of watersheds. (data are viewable on the corresponding watershed map)

Air Res	source Concern Areas
	% of
	Watershed
<u>Brown</u>	0.00
<u>Daviess</u>	0.00
Gibson	0.00
<u>Greene</u>	27.37
<u>Johnson</u>	0.00
Knox	0.00
<u>Martin</u>	0.00
Monroe	0.00
Owen	0.00
<u>Pike</u>	0.00
Sullivan	0.00
Totals	27.38

Data Source = Environmental Protection Agency, 2006, data no longer published. (data are viewable on the corresponding watershed map)

Unique	Habitat Areas

Ac. Within Range of Known T & E Species	% of Watershed Within Range of Known T & E Species	Natural Communities (Ac.)	Permanent Easement (Ac.)	% of Watershed in Permanent Easement
265,189.53	24.75	3,401.40	19,373.00	1.81

Data Source (Threatened & Endangered (T & E) Species and Natural Communities) = Indiana Department of Natural Resources, Division of Nature Preserves; Analysis by NRCS, 2007, data source is not public. Habitat ranges indicate the likely life-history range surrounding known locations of threatened & endangered species (state and federal listed) that have the potential to be used by the species (ranges for plants = point - 0 miles; amphibians/reptiles/insects/aquatic species = ¼ - ½ mile; mammals/birds = 1 mile).

Data Source (Natural Communities) = Areas identified and classified by the IDNR as unique/rare (data include the Natural Community acreage + ¼ mile buffer), data not published.

Data Source (Permanent Easements) = Indiana NRCS (Wetlands Reserve Program), 2008 data not published

Farm Census Data												
	Farms	Farms <10 Ac.	Farms <50 Ac.	Farms <180 Ac.	Farms <500 Ac.	Farms <1000 Ac.	Farms >1000 Ac.	Minority Farmers	Full Time Farmers	Part Time Farmers		
<u>Brown</u>	44	2	22	16	3	1	0	1	11	14		
<u>Daviess</u>	830	56	324	313	73	34	31	7	159	412		
Gibson	39	3	10	10	8	4	5	2	7	16		
Greene	688	34	204	278	115	28	29	8	70	352		
<u>Johnson</u>	0	0	0	0	0	0	0	0	0	0		
Knox	286	20	51	66	59	38	52	2	48	98		
<u>Martin</u>	24	1	6	10	4	1	1	0	4	11		
<u>Monroe</u>	220	20	72	95	25	6	2	4	34	99		
<u>Owen</u>	330	15	97	151	47	11	9	6	33	154		
<u>Pike</u>	59	2	16	21	12	4	4	0	7	30		
Sullivan	26	1	7	8	5	2	3	0	5	10		
Totals	2,546	154	809	968	351	129	136	30	378	1,196		

Data Source = National Ag Statistics Service 2002 Census of Agriculture (http://www.nass.usda.gov/census/census/2volume1/in/index2.htm). Estimates for each watershed were derived from county values based on the percentage of each county in the watershed.

NRCS Practices Gully Confined Vegetative Control Gully Livestock Wetland Agronomic Aquatic Grazing Control Wildlife Forestry Grassed Waste Buffers Practices CNMPs Habitat **Practices** Upland Nutrient Other Practices Practices No Till Mulch Till Pest Mat. Waterway Storage Irrigation Year: (Ac.) (Ac.) Mgt. (Ac.) (#) (Ac.) (Ac.) (Ac.) Buffers (Ft.) (Ac.) (Ac.) (Ac.) (Ac.) (Ac.) (#) (Ac.) (#)⁻ 2007 4.266 9.612 5.684 37.857 193 1.404 9,724 8,313 3.569 1,459 1,408 58 52 1,186 1,838 0 152 2006 326 1,026 394 33,513 124 4,172 3,697 27 1,845 27.400 92 361 2.294 2,514 12 535 538 2005 284 6.936 4.340 0 124 14 0 1,693 103 14 600 2004 441 2,872 318 141,389 71 846 0 0 n/a 23 830 3 1.366 2003 n/a 971 31.401 737 679 6 669 1.640 0 n/a n/a 2 199 383 0 886 0 1,071 2002 n/a 790 3.865 14.325 1.691 642 2.886 332 n/a n/a 3.489 357 8 0 1.398 Totals (2002-2007): 5,317 22,207 15.487 285.885 3,281 128 59 136 8,552 2.968 26,591 16,496 12.237 16 4.975

Data Source = NRCS Performance Results System Reports, 2007, http://ias.sc.egov.usda.gov/prshome/index.aspx.

Vegetative Agronomic Practices = Acres of Conservation Cover (327) + 342 (Critical Area Planting) + 340 (Cover Crops) practices installed in the given fiscal year.

No-Till = Acres of Residue & Tillage Management, No-Till/Strip Till/Direct Seed (329) + Residue Management, No-Till/Strip Till (329A) practices installed in the given fiscal year.

Mulch-Till = Acres of Residue & Tillage Management, Mulch Till (345) + Residue Management, Mulch Till (329B) practices installed in the given fiscal year.

Upland Buffers = Feet of Field Border (386) + Windbreak/Shelterbelt Establishment (380) + Hedgerow Planting (422) + Windbreak/Shelterbelt Renovation (650) practices installed in the given fiscal year.

Aquatic Buffers = Acres of Filter Strips (393) + Riparian Forest Buffers (391) practices installed in the given fiscal year.

Grazing Practices = Acres of Prescribed Grazing (528 and 528A) + Pasture and Hayland Planting (512) practices installed in the given fiscal year.

Nutrient Mgmt = Acres of Nutrient Management (590) + Waste Utilization (633) practices installed in the given fiscal year.

Pest Mgmt = Acres of Pest Management (595) practices installed in the given fiscal year.

Irrigation = Acres of Irrigation System, Microirrigation (441) + Irrigation System, Sprinkler (442) + Irrigation System, System, Microirrigation (441) + Irrigation System, Sprinkler (442) + Irrigation System, Sprinkler (443) + Irrigation System, Microirrigation (441) + Irrigation System, Sprinkler (442) + Irrigation System, Sprinkler (443) + Irrigation System, Sprinkler (443) + Irrigation System, Sprinkler (443) + Irrigation System, Microirrigation (441) + Irrigation System, Sprinkler (442) + Irrigation System, Sprinkler (443) + Irrigation System, Sprinkler (4

CNMPs = Number of Comprehensive Nutrient Management Plans written in the given fiscal year.

Gully Control - grassed waterways = Acres of Grassed Waterway (412) practices installed in the given fiscal year.

Gully Control - other = Acres of Grade Stabilization Structure (410) + Water and Sediment Control Basin (638) practices installed in the given fiscal year.

Wildlife habitat = Acres of Upland Wildlife Habitat Management (645) + Wetland Wildlife Habitat Management (644) + Restoration and Management of Rare and Declining Habitats (653) + Early Successional Habitat Development/Management (647) practices installed in the given fiscal year.

practices installed in the given fiscal year.

Forestry Practices - Acres of Tree/Shrub Establishment (612) + Forest Stand Improvement (666) practices installed in the given fiscal year.

Confined Livestock Waste Storage Facilities = Number of Waste Storage Facility (313) + Composting Facility (317) + Waste Treatment Lagoon (359) practices installed in the given fiscal year.

Wetland Practices = Acres of Wetland Restoration (657) + Wetland Creation (658) + Wetland Enhancement (659) practices installed in the given fiscal year.