

GEOTECHNICAL DATA REPORT VERTICAL BORINGS

Louisville-Southern Indiana Ohio River Bridges Project Vertical Borings Jefferson County, Kentucky Project No. 1831-10-5629

Prepared For:

Kentucky Transportation Cabinet

Geotechnical Branch 1236 Wilkinson Boulevard Frankfort, Kentucky

422 Codell Drive Lexington, Kentucky 40509 January 16, 2012

January 16, 2012

Kentucky Transportation Cabinet Geotechnical Branch 1236 Wilkinson Boulevard Frankfort, Kentucky 40601

Attention: Mr. Daryl Greer, P.E.

Subject:

Geotechnical Data Report Louisville Tunnel Project Vertical Borings Jefferson County, Kentucky Project No. 1831-10-5629

Dear Mr. Greer:

S&ME, Inc. is pleased to submit the following *Geotechnical Data Report* conducted along the proposed alignment of the Louisville Tunnel in Jefferson County, Kentucky. The following report presents the data generated from our conventional vertical drilling, laboratory testing, and geophysical exploration.

Should you have any questions regarding this report, or if we can be of any further assistance, please contact us at your convenience.

Respectfully Submitted,

S&ME, Inc.

Nathan J. Peterson, P.G. hou Geotechnical Professional

William A. Leake, P.E., P.L.S. Project Manager

Attachments: Geotechnical Data Report - Vertical Borings

Craig Lee, P.E Senior Geotechnical Engineer

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	OBJECTIVES	3
3.	SCOPE OF WORK	4
4.	SITE GEOLOGY	4
5.	SUBSURFACE CONDITIONS	6
6.	GROUNDWATER	. 13
7.	PACKER TESTING	. 14
8.	LABORATORY TESTING PROGRAM	. 16
9.	GEOPHYSICAL SURVEY METHODOLOGY	, 17
10.	GEOPHYSICAL SURVEY RESULTS AND DISCUSSION	. 18
11.	GEOPHYSICAL LIMITATIONS	. 19

FIGURES

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – BORING LOCATIONS – Aerial Photograph FIGURE 3 - BORING LOCATIONS - USGS FIGURE 4 - GEOPHYSICAL SURVEY LOCATIONS FIGURE 5 - PROJECT AREA GEOLOGIC MAP FIGURE 6 - TUNNEL GEOTECHNICAL TESTING COORDINATES

APPENDICES

APPENDIX I: BORING LOGS with PHOTOGRAPHS APPENDIX II: LABORATORY TEST RESULTS – ROCK/SOIL APPENDIX III: WELL CONSTRUCTION FIGURES APPENDIX IV: PACKER TEST RESULTS APPENDIX V: GEOPHYSICAL SURVEY RESULTS

1. INTRODUCTION

The Louisville-Southern Indiana Ohio River Bridges Project is a "priority" national transportation project which addresses long-term, cross-river transportation needs in Louisville, Kentucky and Southern Indiana. It is one of the largest transportation projects in the country and will result in safer travel, less congestion and improved access to destinations in the region. The overall project consists of six segments:

- 1. Kennedy Interchange
- 2. New Downtown Bridge
- 3. Downtown Indiana Approach
- 4. East End River Bridge
- 5. Kentucky East End Approach
- 6. Indiana East End Approach

The tunnel project is part of the Kentucky East End Approach segment. The approximate 2,000 foot twin tunnels begin about 1,000 feet east of the intersection of Highway 841 North and Route 42. The original design of the I-265 extension proposed a conventional open cut roadway through the hillside that includes the Drumanard Estate. The Drumanard Estate was recently placed in the National Registry of Historic Places and must be preserved. This forced the alignment underground into twin tunnels, a northbound and a southbound tunnel. As of this date, the tunnels have an inside finished width of approximately 60 feet with an inside finished height of approximately 41 feet.

2. OBJECTIVES

The objectives of our exploration were to determine general subsurface conditions, to obtain data to evaluate the engineering characteristics of the on-site soil and bedrock within the proposed tunnel entrances. A combination of soil test and rock core borings and geophysical surveys were used to assess the subsurface conditions. The geophysical surveys consisted of electrical resistivity and seismic refraction. An assessment of site environmental conditions or an assessment for the presence or absence of contaminants in the soil, bedrock, surface water, or groundwater of the site was beyond the proposed objectives of our scope of work.

Prior to the vertical borings, a comprehensive exploration program using horizontal directional coring was undertaken for the North and South Bound tunnels as well as the pillar between the tunnels. The Geotechnical Data Reports for the horizontal program for the South Bound Tunnel, North Bound Tunnel, and Pillar Boring were reported under separate covers. The exploration and testing reported in this Geotechnical Data Report is a supplement to the Horizontal Directional program.

3. SCOPE OF WORK

The scope of work was based on project information provided to us by Golder Associates and the Kentucky Transportation Cabinet. It included the following:

- Mobilization of a drill rig and field professionals.
- Drilling 13 geotechnical borings to pre-determined termination depths in order to delineate subsurface conditions. Field sampling included Standard Penetration Tests, relatively undisturbed thin walled (Shelby) tube samples, and rock core samples. Boring locations and depths were determined by Golder Associates representatives. The boring locations were staked in the field by S&ME survey crews.
- Measuring and recording groundwater depths at the termination of the boring, 24 hours after completion, and 24 hours after well installation.
- Conducting packer testing in 9 of the 13 borings.
- Using a downhole camera to record the bedrock conditions in 10 of the 13 borings.
- Installing piezometers in four of the borings to predetermined depths.
- Abandoning the sampled boreholes with cement grout utilizing the tremie grouting method in the borings not receiving a piezometer.
- Performing geotechnical laboratory testing on selected soil samples obtained during the geotechnical exploration.
- Performing geotechnical laboratory testing on selected rock core samples obtained during the geotechnical exploration.
- Performing electrical resistivity and seismic refraction to provide data associated with karst features such as cavities and latent dropouts.
- Prepare a Geotechnical Data Report presenting the boring logs, geotechnical laboratory test results, geophysical survey results, and a summary of the field procedures and activities.

4. SITE GEOLOGY

The project site lies within the Bluegrass Physiographic Province of central Kentucky, which is located near the center of the state and is bordered by the Ohio River in the north and west and a ring of hills known as the Knobs in the west, south, and east. It is a rolling plateau that becomes more rugged near the edges. The Bluegrass Region is characterized

by gently rolling hills and fertile soils created by weathering of thick-bedded limestone from the Ordovician and Silurian strata along the crest of the Cincinnati Arch. The soils are fertile because the Ordovician limestones contain phosphate minerals which are natural fertilizers.

The Louisville Bridges Twin Tunnels will encounter three rock formations along the alignment. The Silurian aged Louisville Limestone is the uppermost formation at the project site and is comprised of soluble limestone. The Louisville Limestone is mostly thin-bedded gray dolomitic limestone and gray calcitic dolomite, commonly in lumpy or irregular beds. Shale, in partings and very thin beds, constitutes a few percent, and very sparse chert is present in nodules and thin layers. In the project site, the Louisville Limestone is finely crystalline calcitic dolomite; the sparse fossils are dolomitized and include crinoid columnals, brachiopods, horn corals, and colonial corals.

From an engineering perspective, the Louisville Limestone is characterized by solution enlarged joints and bedding planes. Deep weathering and sinkhole formation are common. The primary impact for conventional building and roadway construction is the presence of latent drop-outs and a highly variable top of rock profile. The residuum derived from the Louisville Limestone is predominantly fat clay with limestone slabs and can exhibit problematic shrink and swell characteristics. For the tunnel, the Louisville Limestone presents several potential problems most associated with the discontinuities such as solution enlarged joints (both horizontal and vertical), solutioning along bedding planes, voids, and sinkholes. The Louisville Limestone can also produce significant groundwater flows after rain events. Water flow is largely along open joints, fractures and bedding planes.

The Waldron Shale is immediately below the Louisville Limestone. The Waldron Shale is composed of greenish-gray shale and minor gray dolomite; with at least 95 percent being shale. The shale is dolomitic and weathers with angular fracture or crude fissility, eventually producing plastic clay. The dolomite is clayey and occurs in irregular masses, lumps, and thin discontinuous beds. Fossils, which are sparse in both the shale and the dolomite, include brachiopods, crinoid columnals, gastropods, and bryozoans. At the tunnel site, the Waldron Shale ranges in thickness from 9 to 15 feet. The basal contact with the underlying Laurel Dolomite is conformable and sharp.

The Waldron Shale breaks down when exposed to water and air. This formation is problematic in conventional earthwork construction as those unfamiliar with its properties, mistakenly place the shale as a durable shot rock fill. Over time the shale will degrade causing structurally significant settlement of buildings and roadways. The Waldron Shale presents a challenge to the construction of the tunnel as the shale is prone to delaminating and degrading during construction of the tunnel.

The Laurel Dolomite underlies the Waldron Shale. The Laurel Dolomite is composed 95 percent or more of gray dolomite with minor greenish-gray shale and sparse gray limestone. The Waldron Shale was encountered to the termination of the South Bound Boring and the Laurel Dolomite was not encountered.

5. SUBSURFACE CONDITIONS

The subsurface conditions at the site were explored with 13 soil test borings (B-82 through B-94). The locations for the borings were determined by Golder Associates and surveyed in the field by S&ME (see **Figures 2 and 3**). An average ground surface elevation of 542.8 feet msl was determined for the site. The ground surface elevation at the site ranged from 592.8 feet msl (Boring B-82) to 517.6 feet msl (Boring B-92).

Subsurface conditions encountered at each boring location are shown on the boring logs in **Appendix I**. The boring logs represent our interpretation of the subsurface conditions, based on the field logs and visual examination of the samples by one of our geotechnical professionals. The lines designating the interfaces between various strata on the boring logs represent the approximate interface locations. The groundwater levels provided on the logs correspond to levels at the time of boring (i.e., when first encountered) and after 24 hours. A summary of the boring depths is presented in Table 5.1.

		Tab Boring S	le 5.1 Summary											
	Ground Surface	Boring Co	oordinates ¹	Boring Termination	Boring Termination									
Boring I.D.	Elevation msl (Feet) ¹	Northing	Easting	Depth (Feet)	Elevation msl (Feet) ¹									
B-82	592.8	302887.4	1247123.99	103.0	489.00									
B-83 583.7 302958.85 1247178.80 36.4 547.00 B-84 569.6 303164.87 1247086.29 37.0 532.00														
B-65 565.7 302950.65 1247170.60 30.4 547.0 B-84 569.6 303164.87 1247086.29 37.0 532.0 B-85 537.3 303581.25 1246351.51 79.0 458.3														
B-85	537.3	303581.25	1246351.51	79.0	458.30									
B-86	532.2	303811.89	1246117.12	81.5	450.22									
B-87	528.3	303857.45	1246163.48	28.0	500.22									
B-88	533.0	303927.54	1246234.80	32.5	500.22									
B-89	546.3	303990.63	1246298.99	96.0	450.22									
B-90	526.0	304038.92	1245989.66	29.1	496.9									
B-91	536.5	304195.44	1245712.74	91.5	444.87									
B-92	517.6	304261.99	1245787.38	72.5	444.87									
B-93 521.4 304328.54 1245936.65 76.5 444.87														
B-94	B-94 532.5 304395.09 1245936.65 87.5 444.87													
Notes:														
1 - Ground surface	e elevations are	based on S&ME	E survey information	tion.										

All geotechnical boring and sampling operations were conducted in general accordance with the following ASTM International (ASTM) standards: ASTM D6151 – Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling; ASTM D1452 - Standard Practice for Soil Investigation and Soil Sampling by Auger Borings; ASTM D1586 – Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils; and ASTM D1587 – Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes; ASTM D2113 Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation.

The borings were advanced by mechanically rotating three and one-quarter inch internal diameter (I.D.) continuous steel hollow-stem auger flights into the ground. At regular intervals, soil samples were obtained with a standard 1.4-inch I.D., 2-inch outside diameter (O.D.), split-tube sampler. The sampler was first seated six inches to penetrate any loose cuttings and then driven an additional foot with blows of a 140-pound hammer falling 30 inches. The number of hammer blows required to drive the sampler one foot below the six inch seating interval was designated the "standard penetration test (SPT) resistance". Proper evaluation of the penetration resistance provides an index to the soil's consistency or relative density. Relatively undisturbed samples were obtained by pushing 3-inch O.D., 16-gauge steel tubing (Shelby tube) into the soil at the desired sampling level. The relatively undisturbed sampling was performed in general accordance with ASTM D1587. The SPT and relatively undisturbed samples were logged and labeled by S&ME's on site professional and then transported to our laboratory. Upon completion of the soil sampling at each boring location, NQ size rock core was collected down to predetermined depths. The rock core was logged, placed in core boxes, photographed, and then samples were collected to provide laboratory data for each rock type encountered.

5.1 South End of Tunnel Alignment (Station 106+50 to Station 108+50)

Borings B-82, B-83, and B-84 were located along the south end of the tunnel alignment. A thin veneer of surface materials consisting of topsoil with roots was encountered in the borings. The topsoil thickness in the borings varied from about 2.5 to 8 inches. Residual lean clay soil was encountered in the borings underlying the veneer of surface materials. The residual soil typically consisted of silty clay extending to the top of the weathered rock depths ranging from about 7.5 to 12.5 feet. Auger refusal was encountered in Boring B-82 at a depth of 12.8 feet and in Borings B-83 and B-84 at a depth of 8 feet. Auger refusal is a designation applied to any material that cannot be penetrated by the power auger

The standard penetration test (SPT) resistance N-values in the residual clays ranged from 12 to 22 blows per foot (bpf), indicating stiff to very stiff consistency. The N-values in the clay and weathered rock above auger refusal depths ranged from 50 bpf to 50 blows per one inch of penetration.

After encountering auger refusal the augers were removed from the boring and NQ size rock core was obtained. In Borings B-82 and B-84 four inch PVC casing was grouted in

place after the removal of the augers. The casing was installed to prevent the overburden from collapsing into the boring after completion, which would interfere with the installation of the piezometers.

In each of the borings the Louisville Limestone was encountered at auger refusal. Boring B-82 encountered the Louisville Limestone down to a depth of 76 feet below ground surface (bgs). Borings B-83 and B-84 encountered the Louisville Limestone at auger refusal to their termination depths of 36.4 feet and 37 feet bgs respectively. The limestone encountered in Borings B-82 and B-83 contained solutional weathering, weathered fractures containing clay, and clay seams to a depth of 29 feet and 16 feet respectively. The limestone within this portion of the borings was discolored to a brownish gray which extended approximately one inch into the rock. The clay seams were observed to be several inches thick to one foot in both borings. Borings B-82 and B-83 lost drilling fluid circulation at 14.2 feet and 13.3 feet respectively which is within the solutional weathering observed in the recovered rock core. Beneath the upper weathered portion of the limestone in these borings, competent limestone was encountered. Boring B-84 encountered competent limestone from auger refusal to the boring termination depth. The competent limestone in all three borings consisted of gray crystalline limestone with stylolites and fossils. The Rock Quality Designation (RQD) values in B-82 and B-83 ranged from 0 to 84 percent with the majority of the values being between 25 to 50 percent within the weathered portion of the limestone. Below the weathered portion in B-82 and B-83 and within the entire depth of B-84 the RQD values ranged from 90 to 100 percent.

Boring B-82 encountered the Waldron Shale at a depth of 76 feet bgs to 87.8 feet bgs. The recovered shale was dark gray, fine grained, and very slightly weathered. Occasional joints and fractures were observed but the majority of the shale recovered was in six inch to one foot pieces. The RQD values were between 94 and 98 percent within the shale.

Beneath the Waldron Shale the Laurel Dolomite was encountered at 87.8 feet bgs to the termination depth of 103 feet bgs in B-82. The dolomite was recovered in two to five foot solid pieces and was slightly weathered, hard, and crystalline. The RQD values within the dolomite were 100 percent.

At the completion of Borings B-82 and B-84 a downhole camera was used to record the entire core section of the boring. The camera was attempted at Boring B-83 but the overburden material had collapsed into the cored portion of the boring which prevented the camera from being lowered into the boring.

The water within Borings B-82 and B-84 was pumped out using a submersible electric pump prior to the installation of the piezometers. Two 3/4 inch PVC piezometers were installed in Boring B-82. The deep well was installed to 103 feet with ten feet of 0.010 slotted well screen. A sand pack composed of #2 filter sand was placed around the well screen from 103 feet up to 91 feet. Bentonite slurry was placed from 91 feet up to 74 feet. A second 3/4 inch piezometer was installed to 73 feet. A one foot sand pack was placed from 74 feet up to 73 feet for the well screen to set on which would keep the bentonite

from potentially covering the well screen. Ten feet of 0.010 slotted well screen was installed from 73 feet to 63 feet. A sand pack composed of #2 filter sand was placed from 73 feet to 60 feet and bentonite slurry was placed from 60 feet to 55 feet. The wells were labeled as P-82A (103 ft) and P-82B (73 ft) and secured with a threaded cap.

A one inch PVC piezometer was installed in Boring B-84 to a depth of 37 feet. Ten feet of 0.010 slotted well screen was installed from 37 feet to 27 feet with a #2 filter sand pack from 37 feet to 25 feet. Bentonite slurry was placed from 25 feet up to 20 feet. The piezometer was labeled P-84 and was secured with a threaded cap. The piezometer construction diagrams are included in Appendix III.

5.2 Station 114+50 to Station 123+50

This section of the tunnel alignment is located within the Drumanard property and includes Borings B-85 through B-90. A thin veneer of surface materials consisting of topsoil with roots was encountered in the borings. The topsoil thickness in the borings varied from about 3 to 4 inches. Residual lean clay was encountered in the borings underlying the veneer of surface materials. The residual soil typically consisted of silty clay extending to auger refusal depths ranging from about 1.5 to 12.3 feet. Auger refusal depths for the borings along this section of the alignment are listed in Table 5.2. Auger refusal is a designation applied to any material that cannot be penetrated by the power auger.

	Tal Auger Re	ble 5.2 efusal Depth	
Boring No.	Surface Elevation (ft)	Auger Refusal Depth (ft)	Auger Refusal Elevation (ft)
B-85	537.3	4.3	533.0
B-86	532.2	2.1	530.1
B-87	528.3	3.8	524.5
B-88	533.0	9.8	523.2
B-89	546.3	12.3	534.0
B-90	526.0	1.5	524.5

The SPT resistance N-values in the residual clays ranged from 3 to 18 blows per foot (bpf), indicating soft to very stiff consistency. The N-values in the clay and weathered rock above auger refusal depths ranged from 50 bpf to 50 blows per one to two inches of penetration indicating hard to very hard consistency.

After encountering auger refusal the augers were removed from the borings and NQ size rock core was obtained. In each of the borings four inch PVC casing was grouted in place after the removal of the augers. The casing was installed to prevent the overburden from collapsing into the boring after completion, which would interfere with the installation of the piezometers.

5.2.1 Borings B-85, B-86, and B-89

Borings B-85, B-86, and B-89 were selected as deep borings along this section of the alignment. Borings B-86 and B-89 are located outside the proposed tunnel construction limits with B-86 to the west of the alignment and B-89 to the east of the alignment. Boring B-85 is located within the pillar section of the proposed tunnel alignment. These borings encountered the Louisville Limestone at auger refusal. The limestone within these borings is moderately to slightly weathered from auger refusal down to 20 feet in B-85 and B-86 and down to 30 feet in B-89. Borings B-85 and B-86 contained joints with iron staining, occasional clay filled joints, and solutional weathering down to 20 feet. Boring B-89 encountered open voids and clay filled voids from auger refusal down to approximately 20 feet. Drilling fluid return was lost at 13.1 feet in B-89 within the open void. From 20 feet to 30 feet in B-89 joints and clay filled joints were encountered and were approximately one centimeter in aperture. The limestone below this weathered zone was very slightly weathered, hard, sound, and crystalline with stylolites. The RQD values ranged from 22 to 96 percent within the weathered zone and ranged from 88 to 100 percent below the weathered zone.

The Waldron Shale was encountered in Boring B-85 at 30.8 to 42.3 feet, B-86 at 27.9 to 39.6 feet, and B-89 at 41.9 to 53.4 feet. The recovered shale was slightly weathered, fine grained, and moderately hard with fractures occurring along bedding occasionally containing clay. The shale becomes sound towards the contact with the dolomite beneath. The RQD values within the shale ranged from 68 to 100 percent.

The Laurel Dolomite was encountered below the Waldron Shale in Boring B-85 at 42.3 to 79 feet, B-86 at 39.6 to 81.5 feet, and in B-89 at 53.4 to 96 feet. The dolomite recovered was very slightly weathered, hard, and crystalline throughout Boring B-85. In Borings B-86 and B-89 the dolomite is slightly weathered with one section in both borings that is weathered to brownish gray, pitted, and moderately hard to hard. This weathered section was encountered in B-86 at 57.3 to 60.4 feet and in B-89 at 71.7 to 74.9 feet. Borings B-86 and B-89 also encountered shale at 78.5 to 80.5 feet and 91.6 to 93.9 feet respectively. The recovered shale was moderately hard, fine grained, calcareous, pyritic, and sound. The RQD values within the dolomite ranged from 94 to 100 percent.

At the completion of Boring B-89 a downhole camera was used to record the entire core section of the boring. The piezometer installation could not be completed at this location because of property owner issues. Water levels were collected at time of drilling and 24 hours after completion of drilling.

5.2.2 Borings B-87, B-88, and B-90

The shallower borings drilled along this section of the alignment were within the construction limits of the proposed tunnel. Boring B-87 was drilled within the south bound section of the tunnel, B-88 within the north bound section, and B-90 within the tunnel exit slope. The borings encountered the Louisville Limestone at auger refusal to

22.9 feet in B-87, to 29.2 feet in B-88, and to 23.8 feet in B-90. The recovered limestone in Borings B-87 and B-88 was slightly weathered, hard, and crystalline with very close joint spacing and occasional joints containing clay. Thin shale partings were also encountered in B-87 and B-88 within the limestone. The limestone encountered within B-90 was slightly to moderately weathered, moderately hard to hard, crystalline, with clay filled solution channels and iron stained fractures. The RQD values within the limestone ranged from 60 to 100 percent in Borings B-87 and B-88 and from 46 to 88 percent in Boring B-90.

The Waldron Shale was encountered beneath the limestone in each of the borings. The recovered shale was dark gray, moderately hard, fine grained, and pyritic, with thin clay lenses along bedding with an aperture of approximately one millimeter. The RQD values within the shale ranged from 48 to 82 percent.

At the completion of Borings B-87 and B-88 a downhole camera was used to record the entire core section of the boring. The piezometer installation could not be completed at these locations because of property owner issues. Water levels were collected at time of drilling and 24 hours after completion of drilling.

5.3 North End of Tunnel Alignment (Station 123+50 to Station 125+50)

Borings B-91, B-92, B-93 and B-94 were located along the north end of the tunnel alignment. These borings were located within the Shadow Wood subdivision. A thin veneer of surface materials consisting of topsoil with roots was encountered in the borings with thickness of about 3 inches. Residual lean clay soil was encountered in the borings underlying the veneer of surface materials. The residual soil typically consisted of silty clay extending to auger refusal depths ranging from about 8.1 to 18.4 feet. Auger refusal depths for the borings along this section of the alignment are listed in Table 5.3. Auger refusal is a designation applied to any material that cannot be penetrated by the power auger.

	Tal Auger Re	ble 5.3 efusal Depth	
Boring No.	Surface Elevation (ft)	Auger Refusal Depth (ft)	Auger Refusal Elevation (ft)
B-9 1	536.5	18.4	518.1
B-92	517.6	8.1	509.5
B-93	521.4	8.3	513.1
B-94	532.5	13.0	519.5

The SPT resistance N-values in the residual clays ranged from 11 to 22 blows per foot (bpf), indicating stiff to very stiff consistency. The N-values in the clay and weathered rock above auger refusal depths ranged from 50 bpf to 50 blows per one to five inches of penetration.

In general, the soil profile along this portion of the alignment consists of silty clay extending to variable depths ranging from about 8 to 18 feet. Up to four inches of weathered limestone was encountered below the residual clay interval.

After encountering auger refusal the augers were removed from the boring and NQ size rock core was obtained. Each of the borings had four inch PVC casing installed which was grouted in place after the removal of the augers. The casing was installed to prevent the overburden from collapsing into the boring after completion, which would interfere with the installation of the piezometers.

Borings B-91 and B-94 were located outside the construction limits of the proposed tunnel alignment. Borings B-92 was drilled along the south bound tunnel and B-93 was drilled along the north bound tunnel. The borings encountered the Louisville Limestone at auger refusal. The limestone encountered in Borings B-91 and B-92 was gray, slightly weathered, hard, crystalline, with occasional clay filled joints and clays seams with an aperture of approximately one centimeter to depths of 20 feet and 37.7 feet respectively. The RQD values within the limestone ranged from 75 to 100 percent for these borings.

The limestone encountered in Borings B-93 and B-94 was light gray to brownish gray, moderately weathered, moderately hard to hard, and crystalline. Solution channels and clay filled voids were encountered in B-93 from 9.3 feet to 11.4 feet and drilling fluid circulation was lost at approximately 10 feet. A solution channel was encountered at 14.3 to 14.5 feet in B-94 and drilling fluid circulation was lost at this feature. The limestone below these features is hard, slightly weathered, crystalline, with very close joint spacing and occasional clay filled joints. The RQD values within the limestone ranged from 52 to 96 percent for these two borings.

Beneath the limestone the Waldron Shale was encountered at 37.7 feet in B-91, at 20 feet in B-92, at 23.6 feet in B-93, and at 35 feet in B-94. The recovered shale from these borings was dark gray, slightly to very slightly weathered, moderately hard, fine grained, with occasional clay seams occurring along bedding and weathered joints. The RQD values within the shale ranged from 38 to 72 percent for these borings.

The Laurel Dolomite was encountered beneath the shale in each of the borings. The dolomite was encountered at 49.3 feet in B-91, at 31.5 feet in B-92, at 35.1 feet in B-93, and at 43 feet in B-94. The recovered dolomite was gray, slightly weathered to very slightly weathered, hard, and crystalline. A weathered zone within the dolomite was encountered in each boring. The dolomite along this zone was discolored to brownish gray and was pitted. This weathering was observed in B-91 from 64.3 to 71.9 feet, in B-92 from 48.8 to 53.2 feet, in B-93 from 51.9 to 57.1 feet, and in B-94 from 62.6 to 67.9 feet. The dolomite is gray, very slightly weathered, hard, crystalline below this feature. The RQD values within the dolomite were 100 percent. The recovered dolomite was either mechanically broken or recovered in solid five foot pieces.

In each of the borings shale was encountered beneath the dolomite to the termination depths of each boring. The shale was encountered at 88.8 feet in B-91, at 70.9 feet in B-

92, at 74.3 feet in B-93, and at 85.4 feet in B-94. The recovered shale was slightly weathered, moderately hard, fine grained, and calcareous with occasional joints.

At the completion of Borings B-91, B-92, B-93, B-94 a downhole camera was used to record the entire core section of the boring.

The water within Borings B-91 and B-94 was pumped out using a submersible electric pump prior to the installation of the piezometers. Two 3/4 inch PVC piezometers were installed in Boring B-91. The deep well was installed at 91.5 feet with ten feet of 0.010 slotted well screen. A sand pack composed of #2 filter sand was placed around the well screen from 91.5 feet up to 89.5 feet. Bentonite slurry was placed from 89.5 feet up to 43 feet. A sand pack was placed from 43 feet up to 41.5 feet to set the shallow piezometer. The second 3/4 inch piezometer was installed to 41.5 feet. Ten feet to 0.010 slotted well screen was installed from 41.5 feet to 31.5 feet. A sand pack composed of #2 filter sand pack composed of #2 filter stand pack composed of #2 filter stand pack composed of 1.5 feet to 31.5 feet. Ten feet to 0.010 slotted well screen was installed from 41.5 feet to 28 feet and bentonite slurry was placed from 28 feet to 20 feet. The wells were labeled as P-91A (91.5 ft) and P-91B (41.5 ft) and secured with a threaded cap.

The piezometers in Boring B-94 consisted of two 3/4 inch PVC piezometers. The deep well was installed to 87.5 feet with ten feet of 0.010 slotted well screen. A sand pack composed of #2 filter sand was placed around the well screen from 87.5 feet up to 75.5 feet. Bentonite slurry was placed from 75.5 feet up to 39 feet. A sand pack was placed from 39 feet up to 37.5 feet to set the shallow piezometer. The second 3/4 inch piezometer was installed to 37.5 feet. Ten feet of 0.010 slotted well screen was installed from 37.5 feet to 27.5 feet. A sand pack composed of #2 filter sand was placed around the well screen from 37.5 feet to 25.5 feet and bentonite slurry was placed from 25.5 feet to 20 feet. The wells were labeled as P-94A (87.5 ft) and P-94B (37.5 ft) and secured with a threaded cap. The piezometer construction diagrams are included in Appendix III.

6. GROUNDWATER

Groundwater levels were measured in all borings at the time of boring (i.e., when first encountered during the advancement of the boring). Further, groundwater measurements were obtained at approximately 24 hours after the completion of drilling in 10 of the 13 borings. The recorded groundwater levels at the time of boring and at 24 hours are presented in Table 6.1 and on the boring logs.

			Table 6.1		
		Ground	water Data Sum	mary	
Boring I.D.	Piezometer Depth (Feet)	Ground Surface Elevation msl (Feet)	Depth to Groundwater at Time of Boring (Feet)	Depth to Groundwater After 24 Hours (Feet)	Groundwater Elevation After 24 Hours msl (Feet)
P-82 A	103	592.8	Dry	98.2	524.9
P-82 B	73	592.8	Dry	34.2	558.6
B-83	None	583.7	Dry	*	
P-84	37	569.6	Dry	25.5	544.1
B-87	None	528.3	Dry	12.5	515.8
B-88	None	533.0	Dry	22.0	511.0
B-89	None	546.3	Dry	47.5	498.8
P-91 A	91.5	536.5	Dry	62.2	474.3
P-91 B	41.5	536.5	Dry	30.3	506.2
B-92	None	517.6	Dry	14.0	503.6
B-93	None	521.4	Dry	17.62	503.8
P-94 A	87.5	532.5	Dry	60.3	472.2
P-94 B	37.5	532.5	Dry	34.4	498.1
Notes: * - borel	hole caved in				

Groundwater was not encountered during drilling. The water levels indicated in Table 6.1 indicate water levels within the piezometers (i.e. P-82 A) or within the boring at the completion of coring.

Upon completion of downhole testing, the borings not receiving a piezometer were abandoned by backfilling the full depth with cement bentonite grout utilizing the tremie method. The tremie method utilizes 1-inch diameter PVC pipe (i.e, "tremie pipe") which is placed in the boreholes. Grout was then pumped through the pipe from the bottom to the top of the borehole until fully sealed.

7. PACKER TESTING

Hydraulic conductivity testing (also known as permeability or "packer" testing) was conducted in all 13 vertical borings upon completion of coring activities. The test intervals were selected by KYTC and S&ME based on the results of the coring activities and subsurface conditions encountered in the bedrock.

The permeability test results were reported as Lugeon values. The Lugeon unit is commonly used in grouting practice for measuring the permeability and the grout take

potential of bedrock. Reporting the permeability test results using this method allows for the evaluation of the permeability characteristics for each stage tested. The equation to calculate permeability in Lugeon units is:

 $L_u = ((Water take, in gallons \div 7.48 \text{ gal/ft}^3) \times (142 \div gauge \text{ pressure in psi}))$ divided by (Stage length in feet x test time in minutes x 0.0107620)

The packer system used in the vertical borings was provided by Tam International. A packer system consisting of two inflatable packers two feet in length and two or three inches in diameter were set 12 feet apart. The two inch packers were used within the NQ size core section of the borings. Solid steel centralizers were placed above each packer to protect them during the placement into and retrieval from the boring. A one inch diameter steel pipe containing offset holes to allow water to pressurize the test section was located between the packers. Above the packer at the top of the boring an In-Situ Incorporated transducer was attached. The transducer provided the pressure level within the boring as the water filled the test section between the packers. The transducer assisted in keeping the pressure at each test interval near the selected pressure levels.

	_	Table 7.1	
_	Pa	acker Testing Su	mmary
Boring	Boring Depth	Test Interval	
No.	(ft)	(ft)	Lugeon Flow
B-82	103	12	Dilation
B-83	36	12	Laminar to Dilation
B-84	37	12	Laminar
B-89	96	12	Laminar
B-90	29.1	12	Wash Out
B-91	91.5	12	Laminar to Dilation
B-92	72.5	12	Laminar to Wash out at 30 feet
B-93	76.5	12	Laminar
B-94	87.5	12	Laminar

The tests were conducted at three pressure intervals with a low pressure of 60 psi and a high pressure of 120 psi. Table 7.1 provides a summary of the Lugeon Values encountered at each boring location.

The recorded Lugeon values and the hydraulic conductivity summary sheets are included in **Appendix IV**. Refer to the *Legend to Lugeon Values* sheet in Appendix IV for additional information describing the Lugeon unit, as well as an explanation of the various flow types that are observed during the water pressure testing.

According to A.C. Houlsby (http://www.grouters.org/rockgrout/WTExpBody.htm#20), 1 Lugeon unit is the type of permeability consistent with sound bedrock, 10 Lugeon units typically indicates a permeable formation in which seepage occurs, and 100 Lugeon units is the type of permeability typically observed in heavily jointed bedrock with relatively open joints, or in slightly to moderately jointed bedrock where joints are wide to very widely open (i.e., severe solution zones).

8. LABORATORY TESTING PROGRAM

8.1 Index Properties

Natural moisture contents, liquid limit, plastic limit, and plasticity index tests (collectively referred to herein as Atterberg limits); and grain size distributions were performed on selected split spoon and relatively undisturbed Shelby tube samples. These tests were used to confirm our visual-manual classifications and classify the unconfined compression test samples.

The laboratory test reports are found in Appendix II.

8.3 Rock Mechanics Testing

The following strength and index tests were performed on selected rock core specimens in general conformance with ASTM International Standards, Kentucky Methods Manual, or other standards where applicable. The laboratory tests were conducted in the S&ME Knoxville, Tennessee Rock Mechanics laboratory with the exception of the Cerchar Abrasivity, Huder-Amberg, and Thin Section Petrographic Analysis which were performed at the Geotechnical Engineering Center at the University of Texas at Austin.

- Axial and Diametrial Point Load Test (D5731)
- Unconfined compressive strength (D7012)
- Direct Shear (D5607)
- Brazilian Stress/Splitting Tensile Strength (D3967)
- Slake Durability Index (D4644)
- Cerchar Abrasivity (D7625)
- Huder-Amberg (Axial Swelling)
- Thin Section Petrographic Analysis
- pH
- Saturation and void ratio

The samples collected for testing were selected from each boring within the different rock formations encountered. The point load, unconfined compressive strength, and Brazilian Split Tensile tests were selected at evenly spaced intervals within each boring.

The Slake Durability Index (SDI) samples were selected from the Waldron Shale. These samples were collected at equally spaced intervals starting at the contact of the Waldron Shale. Samples collected for the Cerchar Abrasivity, Huder-Amberg, and petrographic analysis were also selected from the Waldron Shale and then sent to the University of Texas at Austin. The saturation and void ratio testing were also selected from the Waldron Shale. The samples collected from each boring were selected by the S&ME geologist in the

field based on visual observations and characteristics of the shale. The laboratory test results are found in Appendix II.

9. GEOPHYSICAL SURVEY METHODOLOGY

The geophysical exploration performed at the Louisville Twin Tunnel Site on November 7 through November 17, 2011 utilized the electrical resistivity imaging (ERI) and seismic refraction testing methods. The purpose of the geophysical survey was to further explore the subsurface conditions at site to identify the soil/bedrock interface and potential features associated with karst terrain such as cavities.

9.1 Seismic Refraction

Seismic Refraction is a geophysical exploration technique that can be used to provide information on the location of the soil-rock interface. The method consists of measuring travel times of seismic compression waves (P-waves) and/or shear waves (S-waves) at receivers located along a linear array. The velocity at which the seismic waves propagate along the array can be determined from the slope of arrival times. Both P-wave and Swave velocity provide an indication of density and P-wave velocity an indication of excavation characteristics based on empirical relationships. Waves in soil (low-density) will travel slower than waves in bedrock (high density). Where significant increases in density occur, the seismic waves are refracted much like light in a prism. Depths to denser, higher velocity strata such as rock can be determined from the location of a slope change in the velocity plots.

In this study, compression-wave (P-wave) refraction data were acquired along each of the eleven arrays with lengths that ranged from 260 feet to 1,275 feet as shown in **Appendix V**, **Figure 7**. The seismic refraction survey was performed using a 16-channel Geometrics ES-3000 seismograph in general accordance with ASTM D-5777. Each channel was connected to a 14-Hz geophone placed in the ground at 10-ft intervals along the array. The vertical (P-wave) geophones recorded vibrations generated by the impact of a sledgehammer striking a metal plate. Data were recorded for a period of 0.5 sec at a sampling interval of 0.0625 msec. At each survey line, shot locations were generally spaced at 32.5-foot intervals. Arrival times were determined using the OYO Corporation's SeisImager Pickwin software and analysis was performed using the tomographic method with the Plotrefa software.

9.2 Electrical Resistivity

Electrical Resistivity Imaging (ERI) surveying is an active geophysical technique that involves the introduction of a known amount of current into the ground and measuring the earth's response in order to identify variations in subsurface electrical potentials. By introducing a known amount of current into the ground, the measured voltage potential at the surface is used to calculate the resistivity of a particular volume of earth, based upon the distribution of electrodes used to introduce the current as well as the electrodes used to measure the potential voltage difference. It is important to note that actual ground resistivity is not determined during a resistivity survey. The survey results are used to determine the apparent resistivity of a volume of soil that is dependent upon electrode spacing. Actual resistivities are later determined through the data inversion process.

ERI methods typically require that a series of small current and potential electrodes be pushed into the ground in various configurations. The electrodes are connected to a transmitter/recording instrument that generates the induced current and stores the measurements for later processing and analysis. The configuration of the electrodes (array) is dependent on the objectives of the investigation (i.e., vertical soil and bedrock profiling, cavity detection, contaminant mapping, or fracture mapping). ERI measurements are acquired from the voltage potential difference measured between two electrodes and are dependent upon the distance between the electrodes. Soil included between the electrodes is essentially averaged. Therefore, limitations of this method exist dependent upon the resolution of data acquisition needed versus the depth of a target.

The resistivity of materials partially depends on the substance filling its pore or void space. If a cavity or fracture is air-filled, a high resistive anomaly within the limestone unit is expected. If it is water-or clay-filled, an anomaly more conductive than the limestone unit is expected. Natural variations in porosity and grain size distribution can also cause such anomalies. Clayey soils result in lower resistivity (higher conductivity) readings, while dry sands and competent limestone units exhibit higher resistivity values. Resistivity anomalies can be further specified with knowledge of the local geology and through drilling at identified site locations.

S&ME used an Advanced Geosciences Incorporated (AGI) Sting R8 / IP for the ERI investigation. A total of eleven resistivity arrays were collected in a dipole-dipole configuration. The arrays consisted of 56 electrodes with spacings of 5 or 6 feet and lengths ranging from 275 to 1,260 feet as shown in **Appendix V**, **Figure 7**. Due to the length of several of the ERI lines, the "roll-along" method was utilized. Roll-along is a method where the first string of electrodes is relocated to the end of the original line and data are reacquired. This process is repeated until the desired line length has been analyzed.

10. GEOPHYSICAL SURVEY RESULTS AND DISCUSSION

Appendix V, Figures 8 through 11 present the seismic refraction and electrical resistivity geophysical results. These results are presented together for ease in interpretation. A brief discussion is presented below:

10.1 Seismic Refraction

The P-wave refractor is presented as a dashed line on **Appendix V**, **Figures 8 through 11** ranging in depths from less than 3 feet to roughly 20 feet. The critical refractor depth generally correlated with the auger refusal/Louisville Limestone depths as indicated from the drilling program. The critical refractor (i.e., Louisville Limestone) also exhibited Pwave velocities ranging from 6,000 to 14,000 feet per second (fps) which, based on our experience, is indicative of highly fractured but competent rock. Velocities of the upper material (i.e., direct arrivals) generally ranged from 1,500 to 2,500 fps which is indicative of unsaturated soils. The velocities of individual lines are not presented on the geophysical results.

The velocities (and densities) of the soil-rock interfaces are somewhat transitional due to the highly weathered nature of the upper portion of the Louisville Limestone, therefore individual variations are not often detected as seismic data can average the conditions between receivers and over the length of the profiles. This is evidenced by the relatively significant variability in the velocity of the refractor. For example, the varying velocities along the array of a refractor (i.e., extremely fractured and non-fractured zones) will be averaged. As such, material with varying velocities could be encountered anywhere along the refractor surface. This also makes predicting the presence of isolated or relatively small areas of nested boulders, differentiating steeply sloping rock surfaces, or identifying discontinuous rock layers less reliable.

10.2 Electrical Resistivity

The ERI results located in **Appendix V, Figures 8 through 11** indicate a varying resistivity contrast across the surveyed area. The results generally show a low resistive layer near the surface that is less than 100 ohm-meters, a second layer of slightly higher resistivity averaging approximately 200 ohm-meters, and a third layer that exhibits higher resistivities above 1,000 ohm-meters. In addition, several localized features above 15,000 ohm-meters and others below 100 ohm-meters were identified within this third layer. Several profiles also exhibited a fourth and fifth layer that had relatively low resistivity values typically below 200 ohm-meters and higher values above 1,000 ohm-meters respectively.

Using soil borings performed at the site and refraction data for interpretation, it appears the upper low resistive layer generally confined within the upper twenty feet corresponds to topsoil and the residual clays. The second layer is likely associated with the upper highly weathered portion of the Louisville Limestone while the third layer is probably the more competent Louisville Limestone. The localized areas within the Louisville Limestone with extremely high resistive anomalies above 15,000 ohm-meters correspond to potential air-filled voids and the low resistive areas below 100 ohm-meters may be related to clay-filled voids and/or solution features. The fourth and fifth layers may be associated with the Waldron Shale and Laurel Dolomite respectively.

11. GEOPHYSICAL LIMITATIONS

The geophysical methods proposed for this survey have inherent limitations and site features which can cause interference. Site metallic features (e.g., cars, HVAC units, fences, utilities, reinforced concrete, etc.) and overhead transmission lines can produce false responses in the electrical resistivity imaging data. As for P-wave refraction, it

should be noted that water in the subsurface can mask the results and be interpreted as rock as saturated soil typically has a velocity in the range of 5,000 to 6,000 ft/s; however, this appears unlikely due to the relatively higher elevations of the site.

In addition, the conclusions submitted herein are based upon the data obtained from the non-invasive testing. As such, even within the surveyed area, the survey cannot be considered 100 percent accurate due to inherent method limitations, survey limitations, site features, and/or unforeseen site-specific conditions. Accordingly, the possibility exists that not all geologic features at the project site have been located due to either subsurface soil conditions or the occurrence of features below the depth of penetration of the methods used. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of sinkholes, voids, or dropouts that may exist that were or were not identified by our survey.

FIGURES

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – BORING LACATIONS – AERIAL FIGURE 3 – BORING LOCATIONS – QUADRIANGLE FIGURE 4 – GEOYPHYSICAL SUREVEY LOCATIONS FIGURE 5 – PROJECT AREA GOLOGIC MAP FIGURE 6 – TUNNEL GEOTECHNICAL TESTING COORDNATES FIGURES

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – BORING LOCATIONS – AERIAL FIGURE 3 – BORING LOCATIONS – QUADRIANGLE FIGURE 4 – GEOPHYSICAL SURVEY LOCATIONS FIGURE 5 – PROJECT AREA GEOLOGIC MAP FIGURE 6 – TUNNEL GEOTECHNICAL TESTING COORDNATES

FIGURES

B-TR- B- D- B-TR- B- D- D- D- D- D- D- D- D- D- D- D- D- D-	B 8 2 B 8 3 (Sh	TIO+00	112+00 112+00 BUS B ST R77 40 F 1705781 40 F 1705781 F 1705781 40 F 1705781 F 1705781 F 1705781 F 1705781 F 1705781 F 1705781 F 1705781	Sto II3+50 SO'RT N 303481.87 E 1246703.17	P P P P P P P P P P P P P P	118+00 510 III 50' IIII 50' IIIII 50' IIII 50' IIIII 50' IIII 50' IIII 50' IIIII 50' IIII 50' IIII 50' III	120 120 120 120 150	122 124 50 Sta 123+50 50 N 50/LT 50 Sta 123+50 50 N 50/LT 50 Sta 123+50 50 N 50/LT 50 Sta 123+50 50 N 302405, 28 50 Sta 123+50 50 Sta 123+50 50 Sta 123+50 50 N 303965, 80 E I2459847, 66 Sta 123+50 Sta 123+50 50 Sta 123+50 1450 Sta 123+50 1450 N 304247, 71 1450 N 304247, 71
E 1247300.44 B-15		ijo ri N 303207.80 E /247120.70		454.27 909.66 ★ RECOMMENDED P DEPTHS TO BE F.	IEZOMETER INALIZED IN	TARGET ELEVAT THE FIELD AF	° //	
Sta 106+50 150° RT N 30317,47 E 1/247300,62		CEOTE			ATION	'N .C		۲ ⁻
		GEOIE				3		
	GEOTECH BORING NUMBER	STATION and OFFSET	туре	PIEZOMETER DEPTHS and ★ LOCATIONS	ELEV DEPTH	NORTH (V)	EAST (V)	
	B82	106 + 50 140' Left	SAMPLE & CORE	P @ 490 and @ 520	489.57	302887 47	1247123.99	1
	B83	106 + 50, 50' Left	SAMPLE & CORE	NONE	539.57	302958.85	1247178.80	
I DO TANT DO TANT	B84	108 + 50, 55' Right	SAMPLE & CORE	P @ 533	532.87	303164.87	1247086.29	
	B85	116 + 75, 115' Left	SAMPLE & CORE	P @ 457 and @ 510	456.88	303581.25	1246351.51	LEGE
To INCEPOINTE	B86	120 + 00, 115' Left	SAMPLE & CORE	P @ 451 and @ 500	450.22	303811.89	1246117.12	Boring
That BLVD	B87	120+00, 50' Left	SAMPLE & CORE (SHORT)	P @ 501	500.22	303857.45	1246163.48	Proposed G
The second secon	B88	120+00, 50' Right	SAMPLE & CORE (SHORT)	P @ 501	500.22	303927.54	1246234.80	 Boring Flectrical R
	B89	120+00, 140' Right	SAMPLE & CORE	P @ 451 and @ 500	450.22	303990.63	1246298.99	Seismic Ref
	B90	122+50, 50' Left	SAMPLE & CORE (SHORT)	P @ 497	496.86	304038.92	1245989.66	
	B91	125 + 50, 150' Left	SAMPLE & CORE	P @ 445 and @ 495	444.87	304195.44	1245712.74	A 100
	B92	125 + 50, 50' Left	SAMPLE & CORE (SHORT)	NONE	444.87	304261.99	1245787.38	
	B93	125 + 50, 50' Right	SAMPLE & CORE (SHORT)	NONE	444.87	304328.54	1245862.02	
	B94	125 + 50, 150' Right	SAMPLE & CORE	P @ 445 and @ 495	444.87	304395.09	1245936.65	

APPENDICES

APPENDIX I – BORING LOGS AND PHOTOGRAPHS APPENDIX II – LABORATORY TEST RESULTS – ROCK/SOIL APPENDIX III – WELL CONSTRUCTION FIGURES APPENDIX IV – PACKER TEST RESULTS APPENDIX V – GEOPHYSICAL SURVEY RESULTS

APPENDIX I BORING LOGS WITH PHOTOGRAPHS

PF		ECT	Jefferson County, Louisville Tunnel			0	RD	OF	D	RIL	.Lŀ	łC)L	E:		E	3-8	82							S	SHEET 1 OF 4
PF		ECT	NUMBER: 1831-10-5629		DRILLIN DRILLIN	IG: IG M	D-50 ETHC	Track	2011				I I		TINC	ng. 3: TION	1: -9	90°		AZIMUTH:					L	ATOM. NAVD 66
E SCALE				IC LOG	ELEV.	No.	ON RATE in) COLOD	« RETURN	NOIT	FR-FR CL-CL SH-SH	EACTU EAVA	JRE .GE	F- J- P- S-	Faul Joint Poli:	T F SHEE		SN R-F ST	-SMC ROUC -STE -PI AI	DOTH GH PPEE NAR	I FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED	BC-BR MB-ME B-BED	OKEI CH. E DING	N COR BREAK	rral n	OAD (psi)	(
DISTANCE			DESCRIPTION	SYMBOL	DISTANCE (ft)	RUN	PENETRATI (ft/m	FLUSH ,	ELEVA	TOTAI CORE		SOLIE	D %	R.Q.I %	D.	FRAC INDE PER	CT. X FT	DIP	DIS w.r.t. AXIS	CONTINUITY DATA TYPE AND SURFACE DESCRIPTION		YDRA NDUC k, cm/	ULIC TIVIT sec		POINT	
		-	GROUND SURFACE											0.04			- ~		96			Ť	404		Π	
- 0	2011		Rootmat and topsoil (2.5 inches)	V///	0.2				Ī			T	T												T	-
-	10/18/2		CLAY (CL) - Light brown; stiff; slightly moist; slity; RESIDUUM																							
ŀ					<u>590.0</u> 3.0			5	90																	
- 5																					+					
ŀ		3.25 HSA																								
-			CLAY (CL) - Reddish brown to tan; very stiff; slightly moist; RESIDUUM					5	85	+++													$\left \right $			-
- 10																										
	3/2011				581.0	-																				
-	10/15	-	CLAY (CH) - Dark red brown; hard; slightly moist; with manganese nodules; <u>RESIDUUM</u> Weathered Limestone		12.0 12.5 12.8			5	80											FR, R, solutional weathering FR, R, solutional						
- - 15			Auger refusal encountered at 12.8 feet and begin NQ core. 12.8 ft to 14.8 ft (Run No. 1) LIMESTONE - Gray with tan weathered		578.2 14.8			_												FR, R, solutional weathering Severly weathered; 100% water loss						
-			fractures and solutional weathering features. Solutional weathering along fractures at 12.9', 13.3', and 13.5'. From 14.2' to 14.8' limestone is severly weathered with complete water loss at			2																				
-			14.2 in solutional feature. Limestone is moderately hard to hard; crystalline; fossiliferous. 14.8 ft to 19.8 ft (Run No. 2)					5	75																	
- - 20			LINES I ONE - Gray and light brown weathered rock. Severly weathered with solutional weathering througout run. Several open voids (3 inches to 1 foot)	臣臣	573.2 19.8			_																		-
ŀ		ore	encountered during run. Limestone is moderately hard; crystalline; fossiliferous. 19.8 ft to 24.8 ft (Run No. 3)																							
		NQ C	from 19.8' to 22.1' with solutional weathering features containing clay and discolored rock. Several open voids			3		5	70																	
-			encountered between 19.8' and 22.1' (3 to 8 inches); Limestone is crystalline, moderately hard, and fossiliferous.		568.2									1-1-1												
- 25			24.8 ft to 29.3 ft (Run No. 4)		24.8															FR, R						
-			LIMESTONE - Gray; slightly weathered; slightly fractured with fractures at 25.9', 26.7', and 29.1' occuring along stylolitic features; hard; crystalline; fossiliferous.			4		5	65											FR, R						
- 30			29.3 ft to 34.3 ft (Run No. 5) LIMESTONE - Gray; very slight weathering; sound; with pressure solution features throughout; hard;		563.7 29.3	5														FR, R						
	┝		crystalline; fossiliferous.			\vdash				+++		\parallel						\parallel	$\left \right $							
DI:	STA	NC to 4	E SCALE DRILLING CONTRAG 4 feet DRILLER:L. Morrison	CTOR n	::S&ME,	Inc.	!		1	ł	-	S		RIN	GIN	TEGI	RITY						<u> </u>			LOGGED: NJP CHECKED: CSL

SME_ROCK GLO NEW.GPJ GLDR_LDN.GDT 10/24/11 DATA INPUT:

PF	OJI	JECT: Jefferson County, Louisville Tunnel		REC	O	RD C	DF D	RIL	.LH	10	LE	:	В	8-82	2						SI	HEET 2 OF 4
LC	CA.	ATION: Louisville, Kentucky			G DA	ATE: 10)/18/201	011 NORTHING: EASTING:													D	ATUM: NAVD 88
PF	Ol	JECT NUMBER: 1831-10-5629		DRILL R	ig: 1 G Me	D-50 Tra ETHOD:	ick NQ				INC	LINA	IG: ATION:	-90	0	AZIMUTH:						
ALE		ORD	g			ATE LOR URN	7	FR-FI CL-CI	RACTU	JRE GE	F-FAL J-JOIN	LT NT		SM-SI R-RO	MOOTH UGH	H FL-FLEXURED UE-UNEVEN	BC-BROKEN CORI MB-MECH. BREAK		E			
CE SC/			DLIC LC	ELEV.	N No.	TION R min) CO RET	ATION	SH-SI VN-VI	HEAR EIN		P-POL S-SLI	ISHE	D ISIDED	ST-ST PL-PL	LEPPE	D W-WAVY C-CURVED	B-BEC	DING		ETRAL	r LOAD X (psi)	
STANG			YMBC	DISTANCE (ft)	RUI	NETRA (ft/ JSH	ELEV	TOTA		SOLID	R.C	.D.	FRAC INDE PER F		DIS IP w.r.t. RE AXIS	TYPE AND SURFACE	- co	YDRA NDUC k, cm/:	ULIC TIVITY sec	DIAM	POIN	
ä	2		0			FL P		8 9 4	8 8	8 9 8	88	20	10 15	0 5	888	DESCRIPTION	10.6	10 5	190 200 190 190	+		
	\vdash	CONTINUED FROM PREVIOUS PAGE																				
	-	LIMESTONE - Gray; very slight weathering: sound: with pressure	臣		5		560															
)/21/201	Solution features throughout; hard; crystalline; fossiliferous.																				
[_	10			<u>558.7</u> 34.3																		
- 35																						
F		34.3 ft to 39.3 ft (Run No. 6) LIMESTONE - Gray; very slight																				
F		weathering; sound; hard; fossiliferous; with pressure solution features throuchout			6																	
ŀ							555		┼╂┼	++	++	H		+++			+	+	\parallel	+	++	
ŀ			日	553.7							╫			$\left \right \right $	$\left \right \right $		++	+	$\left \right $		+	
- 40				39.3				$\left \right \right $		++	+++	\parallel		$\left \right \right $	$\left \right \right $		++	+	$\left \right $		+	
-		39.3 ft to 44.3 ft (Run No. 7)							+		+++						+	_				
ŀ		LIMESTONE - Same as previous run; one fracture at 44.2' with slight			7												$\left \right $					
-		feature.					550															
				5497																		
- 45				44.3												FR, R						
		44.3 ft to 49.3 ft (Run No. 8) LIMESTONE - Gray; very slight weathering: sound: hard: crystalline:			8																	
		fossiliferous; with pressure solution features throughout.																				
F		Core					545															
F		g		543.7 49.3																		
- 50																		-				
ŀ		49.3 ft to 54.3 ft (Run No. 9)									╫						+	+	$\left \right $			
ŀ		LIMESTONE - Same as previous run; all breaks mechanical.			9			$\left \right \right $	+++	++	+++	H		$\left \right \right $	+++		++	+	$\left \right $	+	++	
ŀ							540	$\left \right \right $	+++	++	+++	H		$\left \right \right $	$\left \right \right $		++	+	$\left \right $	+	+	
\mathbf{F}			串	538.7										$\left \right \right $	+++		++	-	$\left \right $		+	
- 55			Ē	54.3					┼╂┤	++	╢	\parallel			$\left \right \right $	FR. R	++	+				
ŀ		54.3 ft to 59.3 ft (Run No. 10)									╢						\parallel					
		fracture at 55.3' along dark gray pressur solution feature with slight weathering;	e ∏ ∏		10																	
		fracture at 58.5' occuring at approximately 30 degrees.	Ē				535	Ш									\parallel					
				1				Ш								FR, R						
				533.7 59.3				HT		$+ \square$		Ħ				J, R J, R						
60												\square										
			Ē		11																	
									╡							J, R, CL	$\uparrow\uparrow$					
	\vdash	CONTINUED NEXT PAGE		1			530		┽╇┼		┦┼	\parallel				FR, R	++		$\left \right $			
) 	L						1									1			1			
DI:	s l'A nch	ANCE SCALE DRILLING CONTR h to 4 feet DRILLER:L. Morris	ACTOF ion	K:S&ME,	INC.			V	5	ENG	NEFRI		NTEGR	ITY								LOGGED: NJP CHECKED: CSL
<u> </u>									- 11	LIVUI	HELDI	10 1	Lan									5

		ΠΟΝ: Louisville, Kentucky ECT NUMBER: 1831-10-5629			G DA G: E	TE: 10)/18/201 lick	1		-11		NC EA	DRTH STI	HING NG:	י ט ק: אוי	-00°	5							C	ATUM: NAVD 88
ET OF	RECORD		IC LOG	ELEV.	NI	in) COLOR % RETURN	NOIT	FR CL SH VN	-FRA -CLE/ I-SHE	CTUR AVAG AR	RE	F-FA J-JO P-PO S-SL			ED F	SM-SN R-ROL ST-ST PL-PL	noot Jgh Eppe Anaf	TH FL-FLEXI UE-UNEV ED W-WAVY R C-CURVE	JRED EN	BC-BR MB-ME B-BED	ROKE ECH. I DDING	N COF BREAI	< < ₹	LOAD (DSI)	
Ē	DRILLING		SYMBOI	DISTANCE (ft)	RUN	FLUSH	ELEV	тс сс	RECO		RY OLID DRE %	- R	Q.D. %	FR IN PE	RACT. IDEX ER FT		DI P.w.r.t. RE AXI	ISCONTINUITY D	ATA JRFACE TION	00 H	NDUC NDUC k, cm	AULIC CTIVIT /sec	Y	POINT	
	_	CONTINUED FROM PREVIOUS PAGE 59.3 ft to 64.3 ft (Run No. 11)					530					╢				╢				\square			+		
65		LIMESTONE - Gray; dark gray and gray green; slightly weathered; slightly fractured with fractures occuring at 62.8' and 63.8' along pressure solution features, Joints at 59.5', 59.8' and 62.4'		528.7 64.3	11		-											FR, R							-
		Joint at 62.4' contains thin shale parting weathered to clay. Limestone is hard, crystalline with occasional thin shale partings, trace fossils.			12																				-
		LIMESTONE - Gray; very slight weathering; sound; hard; with pressure solution features throughout, some gray green in color; crystalline.					525																		-
70				523.7 69.3														FR, R							-
		69.3 ft to 74.3 ft (Run No. 13) LIMESTONE - Same as previous run; fractures at 70.4' an d72.3' occuring along stylolitic features; Joint at 70.7'			13							╂						J, R, CL							-
		with rock weathered to clay.		518.7			520					╂													-
75		74.3 ft to 76.0 ft (Run No. 14) LIMESTONE - Gray; very slight weathering; slightly fractured with fracture at 75.3' along stylolitic feature; hard; crystalline down to 76.0'.		74.3 517.0														FR, R							-
		76.0 ft to 79.3 ft (Run No. 14) SHALE - Gray; very slight weathering; sound; hard; fine grained; pyritic; with dark gray shale partings.		70.0	14		515																		-
80		G C C C C C C C C C C C C C C C C C C C		513.7 79.3			_											J, R							-
		79.3 ft to 84.3 ft (Run No. 15) SHALE - Gray; very slight weathering; moderately hard; wide joint spacing with joint at 80.2 ¹¹ fine grained			15																				-
				508.7			510					╢													-
85		84.3 ft to 87.8 ft (Run No. 16) SHALE - Same as previous run with pyrite.		84.3	16																				-
		87.8 ft to 89.3 ft (Run No. 16) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline; with calcite veins.		505.2 87.8 503.7			505																		-
90		89.3 ft to 94.3 ft (Run No. 17) DOLOMITE - Same as previous run: all		89.3	17																				-
		breaks mechanical.		108 7			500																		
		CONTINUED NEXT PAGE	ŽŹ		18			Ħ				Ħ		╂	$\left \right $	+	₩			+		+		╟╫	

PRO LOC PRO	DJEC CATIC	 T: Jefferson County, Louisville Tunnel N: Louisville, Kentucky T NUMBER: 1831-10-5629 		REC DRILLIN DRILL R DRILLIN	G D/ IG: 1 G MI	RD ATE: D-50 ETH(0 0 10/ Trac 0D:	FD 18/201 k NQ	RI	LI	_H	0		DRTH ASTIN	HING NG: ATIC	B-	-90°	2	AZIMUTH:						S	HEET 4 OF 4 ATUM: NAVD 88
ANCE SCALE FEET	ING RECORD	DESCRIPTION	ABOLIC LOG	ELEV. DISTANCE	RUN No.	TRATION RATE (ft/min)	COLOR % RETURN	EVATION	FR- CL- SH- VN-	FRA CLE SHE VEII	CTUF AVAG AR I OVEF	RE BE	F-FA J-JO P-PO S-SL	ULT INT DLISH ICKE Q.D.		S R S ED P ACT.	M-SM -ROL T-STI L-PL/	/OOTI JGH EPPE ANAR DI:	H FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED SCONTINUITY DATA	BC- MB- B-B	BROI MEC EDDI HYD	KEN H. BF NG RAU		I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	OINT LOAD NDEX (psi)	
DIST	DRILL		SYN	(ft)	_	PENE'	FLUSH	Ξ		TAL RE %	8 20 8 3		8	% 8	920 11NL 120	RFT ₽₽8		P w.r.t. RE AXIS R & R	S TYPE AND SURFACE DESCRIPTION		¢, ¢	cm/se	200 200 200			
- 95 - -	VQ Core	94.3 ft to 99.0 ft (Run No. 18) DOLOMITE - Same as previous run; all breaks mechanical.		94.3	18			495																		-
- 100 - -		99.3 ft to 103.0 ft (Run No. 19) DOLOMITE - Same as previous run; all breaks mechanical.		99.3 490.0 103.0	19			490																		-
- 105 - - - - 110		Coring Terminated at 103.0 Feet																								
- - - 115 - -																										
- 120 - - - - 125 -																										
DIS 1 in	TANC	E SCALE DRILLING CONTRA 4 feet DRILLER:L. Morriso	CTOR	I ::S&ME,	Inc.							S	8 NEEP		M	E										LOGGED: NJP

	Photo 3	
Jefferen Co. Louisville Tornel B-82 FD 520540245037-039, NH 2453018 MARS No. 80404 03D Item Na. 5-731.00, 5-002-2011 Box Ro. <u>3</u> of <u>6</u> DEPTH: <u>463</u> to <u>61.0</u> R	RUN LENGTH DEPTH REC ROD 9 5.0 94.3'-49.3' 5.0' 100% 10 5.0' 54.3'-59.3' 5.0' 100% 11 5.0' 59.3'-64.3' 5.0' 90% UNN II Code Box 4 59.3'-64.3' 5.0' 90%	Photographer: N. Peterson 10/21/2011
Location / Orientation	Boring B-82, Box 3 of 6, 46.3 ft to 61.0 ft	
Remarks	Louisville Limestone	

	Photo 4	
J. Ifferson Co. Lovis V. Ik Turnel B-82 RUN FO 520560265037.037, NH 2653018 II Cont. MARS No. 60604 03D Item No. 5-73100,5-002-2011 12 Box No. 4 of 6 13 DEPTH: (01.0' to 75.3' 14 RUN 14 C	LENGTH DEPTH 5.0' 59.3'-64.3' 5.0' 90% 5.0' 64.3'-69.3' 5.0' 100% 5.0' 64.3'-74.3' 5.0' 94% 5.0' 74.3'-79.3' 5.0' 98% Cont. Box 5 Cont. Box 5	Photographer: N. Peterson 10/21/2011
Location / Orientation	Boring B-82, Box 4 of 6, 61.0 ft to 75.3 ft	
Remarks	Louisville Limestone	

2

	Ph	oto 5				
Jefferson Co. Louisville Tunnel (B-82) / FD 520546245057-039, NH-2253018 MARS No. 804604 03D Etem No. 5-731.65, 3-002-2011 Box No. 5 of	RUN LENCTION 1 cont. 5.0 15 5.0 16 5.0 17 5.0	DEPTH 743-793 793-843 843-893 843-893 893-943	RE 5.0 5.0 5.0 5.0	RAD 98% 94% 100%		10/21/2011
DEPTH: 75.3' to 90.5' R	UN 17 Cont. Box (Photographer: N. Peterson
Location / Orientation	Boring B-82, B	ox 5 of 6, 75.3 ft t	to 90.5 ft			
Remarks	Louisville Lime 76.0' to 87.8'. L	stone to a depth _aurel Dolomite b	of 76.0'. W egins at 8	aldron Shale 7.8'	present a	t

PR	JJE	ECT	: Jefferson County, Louisville Tunnel		REC	0	RD) C)F D	RIL	_Lŀ	10	LE	:	E	3-8	83								;	SHEET 1 OF 2
LO	CAT	TIOI TIOI	N: Louisville, Kentucky		DRILLIN DRILL R	g d. Ig:	ATE: D-50	10/ Trac	/17/201 ck	1			NC EA	ORTH STIP	HING: NG:										I	DATUM: NAVD 88
					DRILLIN	GМ	ETH	OD:	NQ				INC	CLIN	ATION	J: -9	90°		AZIMUTH:							
SCALE	RCORD			IC LOG	ELEV.	No.	ON RATE n)	COLOR RETURN	TION	FR-FI CL-C SH-S	RACTU LEAVA HEAR	JRE AGE	F-FA J-JO P-PC	ULT INT DLISH	ED	SN R-I ST	I-SMO ROUG -STEF	OTH H PPED	FL-FLEXURED UE-UNEVEN W-WAVY	BC-E MB-I B-BE	BROK MECH EDDIN	EN (. BR IG	CORI EAK		OAD	(bsi)
ISTANCE FEE	SILLING F		DESCRIPTION	SYMBOL	DISTANCE (ft)	RUN	ENETRATI (ft/mi	HSH %	ELEVA.	TOTA CORE		ERY SOLID	R.	Q.D. %	FRAC INDE PER	DT. EX FT	DIP w	DISC	CONTINUITY DATA	- c	HYDR ONDU k, cr	RAUL JCTI m/se	LIC VITY	DIAMET	POINT	INDEX
	Ĉ	5					₽	Ц		888	28	8848	3 83	398	°5 ÷	° 8	089	88	DESCRIPTION		0° 0	360	10 0	+		<u> </u>
• 0	5	_	GROUND SURFACE Rootmat and topsoil (3 inches)																							
	0/17/20				0.3					$\left \right $			$\left \right $	$\left \right $						+	$\left \right $	+		+	H	+-
	Ĕ		CLAY (CL) - Tan; slightly moist; silty; stiff; with black oxide staining;																						Ш	<u>_</u>
			RESIDUUM																							
		ł			580.7 3.0																					
		HSA							580	$\left \right $				+				++		+		+			H	+-1
		3.25								Ш															Ш	
5			CLAY (CL) - Reddish brown; slightly																							
			moist; very stiff; RESIDUUM																	T					H	
	111									$\left \right $			$\left \right \right $							+		+		+	H	+
	0/17/2				<u>575.</u> 9					Ш				Щ				$\parallel \parallel$		\perp	\square				\parallel	11
	-		Weathered Limestone	<u>₽</u> ₽	8.0										1											
			Auger refusal encounterd at 8.0 feet and begin NQ core.	Ē		1			575										Solutional Weathering	\uparrow	\square	╈	\dagger			†1
10			8.0 ft to 10.6 ft (Run No. 1) LIMESTONE - Grav: slightly weathered: slightly												$\left \right $				 Solutional Weathering Solutional Weathering Solutional Weathering 	┢		+	_	+	+	+-
10			fractured; hard; with pressure solution features and stylolitic features	臣	573.1														 Solutional Weathering Solutional Weathering 							
			throughout; fossiliferous; solutional weathering at 9.2' to 9.4' and at 9.7' 9.8'		10.6																					
			and 10.1' along stylolitic features.																	+		+			H	+
			10.6 ft to 15.6 ft (Run No. 2)																	+		_			⊢	_
			LIMESTONE - Same as previous run; clay filled void at 13.3' to 14.3'.			2			570										Clay Filled Void (1.0 ft)						
				H					570																	\square
15																				+		+			H	+
		╞		臣	568.1 15.6															+					⊢	-
			15.6 ft to 20.6 ft (Run No. 3)																	Τ					Π	
			weathering; slightly fractured with one fracture at 19.0': moderately hard:			3														╈		+		+		+
			crystalline; fossiliferous; pressure						565											_		_			\parallel	_
		Core	throughout.																FR, K							
20		ğ			563.1															Τ					Π	
		ľ		Ē	20.6					Ħ			╞╋╞	Ħ						+	+	+	+	+	$\left \right $	+1
				臣										$\parallel \mid$		\parallel		$\parallel \mid$		+	\parallel		+		\parallel	+1
			20.6 ft to 25.6 ft (Run No. 4) LIMESTONE - Same as previous run;			4																				\square
			all breaks mechanical.						560	$\left \right $										+		+			H	+
																				+	\square		+		\parallel	+4
25				E.	558.1					Ш	Ш		\square	Ш		$\left \right \right $										
				Ħ	25.6															Τ			T			Π
				<u></u>						$\left + + \right $			+	+ +	$\left\{ \left \right\rangle \right\}$					+	+	+	+	+	╎┼┤	+1
			25.6 ft to 30.6 ft (Run No. 5) LIMESTONE - Gray; very slight	E.										$\parallel \mid$		\parallel		$\parallel \mid$		\perp	\square		\downarrow		μ	11
			weathering; sound; hard; crystalline with dark gray pressure solution features and			5				$\left \right \left \right $					$\left \right \left \right $	$\left \right \right $										
			stylolitic features throughout.	臣	1				555											Τ			T			Π
30				Ħ						$\left \right \right $			+	+ +	$\left\{ \left \right\rangle \right\}$					+	+	+	+	+	╎┼┤	+1
		┟		H	553.1 30.6	-				Щ				\parallel				$\parallel \mid$		1	\square		\downarrow	\parallel	\parallel	44
				臣		6					\parallel			Щ	\square	Щ		$\parallel \parallel$		\bot	\square				Ш	↓
			CONTINUED NEXT PAGE																							
						-						-	-								<u> </u>					
DIS	TA	NCI	E SCALE DRILLING CONTRA		::S&ME,	Inc.				V		9	C	Z												LOGGED: NJP
1 in	ch	to 4	feet DRILLER:L. MOTTISOT								•	ENGI	NEER	ING	INTEG	RITY	1									CHECKED: CSL

PF	OJEC	T: Jefferson County, Louisville Tunnel		REC	:0	RD (OF D	R	IL	Lŀ	10	LE	:		В	3-8	33	5								SHEE	T 2 OF 2	
LC	CATIC	N: Louisville, Kentucky		DRILLIN DRILL R	ig d. Rig:	ATE: 1 D-50 Tra	0/17/201 ack	1				N E	ORT AST	'HIN ING	IG: i:											DATU	M: NAVD 88	
		I NUMBER: 1831-10-5629	-	DRILLIN	IG M	ETHOD	: NQ	1		<u>от</u> .	DF	IN		NAT	'ION:	: -9	0°	<u> </u>	AZIMUTH:	PC		ארי	1000	<u>, , , , , , , , , , , , , , , , , , , </u>				
SCALE	ECORD		CLOG		o.	N RATE	ION	CL	-CLE -SHE	AVA AR	GE	J-J P-P	DINT OLISI	HED		R-F ST-	-SIVIC ROUG	GH PPE	UE-UNEVEN D W-WAVY	MB B-E	BEDD	CH. B	REAM		3AL DAD	(isc		
IANCE FEET	LING R	DESCRIPTION	MBOLIC	ELEV. DISTANCE (ft)	RUN N	ETRATIC (ft/min H	"		REC	N OVE	RY	S-S	LICKI	ENS	IDED RAC	PL- T. X	PLA	DI	C-CURVED SCONTINUITY DATA	1	HY	DRA		Y	DIAMETI	INDEX (I		
DIST	DRIL		SYI	(19		PENE	ш	8	DRE %	80 0.	ORE %	80	898 898	P 1	PER F ,	т. 8		W.F.L E AXIS	S TYPE AND SURFACE DESCRIPTION		01 k,	, cm/s			- u 			
		CONTINUED FROM PREVIOUS PAGE			\vdash			⋕		╈						⋕		⋕		╞		+		+	⋕			
- - 35	NQ Core	30.6 ft to 35.6 ft (Run No. 6) LIMESTONE - Gray; very slight weathering; slightly fractured with fractures at 32.0' along stylolitic features; joint at 33.4'; pressure solution features throughout.			6		550												J, R									
-		35.6 ft to 36.4 ft (Run No. 7) LIMESTONE - Same as previous run; all breaks mechanical. Boring Terminated at 36.4 Feet.		548.1 35.6 547.3 36.4	7		-							-														
- - 40 -																												-
-																	•											
																												-
- - 50 -																												-
- 55																												
-																												
- 60																												-
-																												-
DI:	STANC	XE SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrison	CTOR n	::S&ME,	Inc.						S	NEE	RING	N	TEGR	ITY										C	LOGGED: N CHECKED: C	JP SL

	Photo 2	
CHESTON COLINY LOUSSVALE TUDDELISD-DND-OIL, B FUS20C00285007-000, NI 2053001 MARS NO. 800804 030 FESIXO. 5-731.00. S-002-2011 DOXNO. 2. OF 2. BOINE HOLE ANGLE Longhle constants provides J. U. 3664 Inception Constants	RUN LENGTH DEPTH REC RAD 4 cont. 5.0' 206'-25.6' 5.0' 100% 5 5.0' 25.6'-30.6' 5.0' 100% 6 5.0' 30.6'-35.6' 5.0' 98% 7 0.8' 35.6'-36.4' 0.8' 100%	10/17/2011
A. A		Photographer: N. Peterson
Location / Orientation	Boring B-83, Box 2 of 2, 23.1 ft to 36.4 ft	
Remarks	Louisville Limestone	

PF	roj	EC	T: Jefferson County, Louisville Tunnel		REC	:0	RD	0	FD	RI	LL	.H	OL	E	:		B-	84	1							SF	HEET 1 OF 2
LC			N: Louisville, Kentucky		DRILLIN DRILL R	ig d Rig:	DATE: D-50 ⁻⁷	10/ [,] Tracl	18/201 k	1				NO EA	RTH STIN	IING: IG:	:									DA	TUM: NAVD 88
	- N	EC	I NUMBER: 1831-10-5629	1	DRILLIN	IG N	IETHO	D:		ED	EDAC		_		LINA	ATIO	N: -	-90°	, 100TI	AZIMUTH:	DC D	POK					
SCALE		CORD		LOG			N RATE	RETURN	NO	CL-	CLEA SHEA	VAGI R	E	F-FAU J-JOII P-POI	NT LISHE	ED	R- S	-ROL T-STI	JGH EPPE	UE-UNEVEN D W-WAVY	MB-N B-BE	ROKE IECH. DDIN	BRE/ G	AK	ÅÅ	si)	
ANCE S		ING KE	DESCRIPTION	BOLIC	ELEV. DISTANCE	SUN N	(ft/min)	% F	EVATI	VN-	VEIN	VER	Y	S-SLI	CKEN Q.D.	FRA	D PL		ANAR DIS	C-CURVED SCONTINUITY DATA		HYDR		2	IAMETR DINT LO	VDEX (p	
DIST/		DRILL		SYN	(ft)		DENE.	FLUSH	Ш	TO COF 8 9	TAL RE %	SC COF 08 09	DLID RE %	80	40 20 %	PER 9 00	£ FT ₽ S		Pw.r.t. Reaxis Rogos	TYPE AND SURFACE DESCRIPTION	9 ⁰ 6	k, cn	n/sec	190		=	
- o	11		GROUND SURFACE						570																		
-	10/18/20		Crushed stone and clay fill (8 inches)		569.3	-																					-
ŀ	ſ		CLAY (CL) - Dark reddish brown with crushed stone; slightly moist; FILL		568.5																						-
Ę,					1.5				568																		-
-									500																		
-																											-
F		SA																									-
- 4		3.25 H	CLAY (CH) - Yellow brown; stiff; slightly						566																		-
Ľ			moist to wet at approximately 5 feet; with manganese nodules; RESIDUUM																								-
-																											-
- 6									564																		-
-																											-
-	2011				562.5																						-
- 8	10/19/2		Weathered Limestone	H	7.5 562.0				562																		-
-			Auger refusal encountered at 8.0 feet and begin NQ core.		8.0 561.3	1			002											FR, R							-
-			Gray with light brown weathered fracture at 8.3' with discoloration extending one	臣	8.7									Π		1											-
ŀ			inch into rock; ;hard; crystalline; fossiliferous; with pressure solution features throughout																								-
- 10			8.7 ft to 13.7 ft (Run No. 2) LIMESTONE						560				+							FR, R FR, R						+	-
			- Gray; slightly weathered; slightly fractured with fractures at 9.9', 10.2', and																								-
ŀ			12.4'. Fractures occur along stylolitic features; crystalline limestone; hard; fossiliferous: with pressure solution			2																					-
- 12			features throughout.						558																		-
-																				FR, R							-
-																											-
14		Core			556.3 13.7	-		-	556		+		+	┦┼┤	+												-
		Ø		Ē					200	$\left \right $				$\left \right \right $													
ŀ				臣						Щ		\parallel	\parallel	$\left \right \right $	\parallel	$\parallel \mid$	\parallel	\square			+	_	_		\parallel	+	-
ŀ			13 7 ft to 18 7 ft /Dun No. 3	Ħ						$\left \right $																	-
- 16			LIMESTONE - Same as previous run; fractures at 17.4' and 18.4' along	臣		3			554																		-
Ē			stylolitic features.	臣						$\left \right $																	
ŀ				H						$\left \right $										FR, R							-
- 18				臣					552	$\left \right $																	-
-				臣	551.3					Щ		\square	\parallel							FR, R							-
ŀ					10.7	4				$\left \right $										FR, R							-
- 20				Ē					-550-	Щ		Щ				Щ				FR, R						\parallel	
			CONTINUED NEXT PAGE						-																		
DI	STA	NC	E SCALE DRILLING CONTRA	CTOR	::S&ME,	Inc.							5	8	2		F										LOGGED: NJP
11	ncn	102	2.3 1661								-	E	VGIN	EERI	NGI	NIEG	KIT	٢									UNEUKED: USL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 10/19/11 DATA INPUT:

PR	OJEC.	T: Jefferson County, Louisville Tunnel		REC	:01	RD	of C	R	LL	_H(Ol	E	:		B-	84	4							SI	HEET 2 OF 2
LO PR		N: Louisville, Kentucky		DRILLIN DRILL R	g da Ig: I	ATE: 1 D-50 Tr	0/18/201 ack	11				NO EAS	rth Stin	IING: IG:										D	ATUM: NAVD 88
	0		T	DRILLIN	G MI		: z	FR	-FRAG	CTURI	E	INC	LIN/	ATIO	N: -	90°	, 100T	AZIMUTH:	BC-E	BROK	ENC	ORE			
E SCALI	RECOR		IC LOG	ELEV.	No.	ON RATI		CL SH	-CLEA -SHEA -VEIN	AVAGE AR	E	J-JOIN P-POL S-SUI	NT LISHE CKEN	ED	R- ST	ROU F-STI	JGH EPPE ANAR	UE-UNEVEN ED W-WAVY C-CURVED	MB-N B-BE	MECH	I. BRE NG	AK	CRAL	(jsd)	
STANCE FEE	LLING	DESCRIPTION	YMBOL	DISTANCE (ft)	RUN	VETRATI (ft/m SH	ELEVA	тс	RECO	OVER'	Y	R.C	۵.D.	FRA IND	ACT. DEX	DIF	DI Pw.r.t.		- c	HYDF ONDL k, cr	RAULI JCTIV m/sec	IC /ITY	DIAME POINT	INDEX	
Ĩ	DR	CONTINUED FROM PREVIOUS PAGE	S			H H		88	348	89	4 8 4 8	89	9 8	10 10	15	0.8	888	DESCRIPTION	1	10°	360	190			
- 20 -		COMINCED MOM NEWOOD MOE					550					Ħ	Ħ												
-																		FR, R							-
-		18.7 ft to 23.7 ft (Run No. 4) LIMESTONE - Gray; slightly weathered; slightly fractured with fractures at 19.3			4													FR, R							-
- 22		along pressure solution features; hard;					548											FR, R							-
-		crystalline.																							-
-				546.3 23.7			-																		-
- 24 -							546																		-
-								\vdash																	-
-		23.7 ft to 28.7' (Run No. 5) LIMESTONE																							-
- 26		fractured with fractures at 26.9' and 28.4' occuring along stylolitic features; hard;			5		544																		-
-		crystalline.																FR, R							-
							542																		-
- 20	2 Core			541.3			542											FR, R							-
-	ž			28.7						F		Ī													-
- 30							540																		-
-																									-
-		28.7 ft to 33.7 ft (Run No. 6) LIMESTONE - Same as previous run;			6																				-
- 32		all breaks mechanical.					538																		-
-																									-
-																									-
- - 34				536.3 33.7			536	\vdash			+	$\left \right $													-
																									-
-		33.7 ft to 37.0 ft (Run No. 7) LIMESTONE - Same as previous run:			7			$\left \right $			+									\square					-
- - 36		all breaks mechanical.					534																		-
-																									-
				533.0 37.0			1	$\left \right $			+														-
- 38		Coring Terminated at 37.0 Feet.																							-
-																									-
																									-
- 40																									-
\vdash																									
DIS 1 ir	TANC	E SCALE DRILLING CONTRAC 2.5 feet DRILLER:	CTOR	:S&ME,	Inc.				Ś	EN	NGIN	EERI	NG I	NTEG	RIT	Y									LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 10/19/11 DATA INPUT:

PR		T: Jefferson County, Louisville Tunnel			G DA		DF D	RII	_LI	HC			HINC	B •	- 8 {	5						SH	IEET 1 OF 3
PR	OJEC	T NUMBER: 1831-10-5629		DRILL R DRILLIN	ig: e g me	D-50 Tra ETHOD	ack NQ				E/ IN	ASTI CLIN	NG: NATIO	1246 ON:	351. -90°	.51 °	AZIMUTH:					0,	
E SCALE	RECORD	DESCRIPTION	LIC LOG	ELEV.	No.	TION RATE min) <u>COLOR</u>	ATION	FR-F CL-C SH-S VN-V	RACT LEAV HEAR EIN	URE AGE	F-F/ J-JC P-P S-Si	AULT DINT OLISH LICKE	HED	S F S DED F	SM-SN R-ROU ST-ST PL-PL	noot Ugh Teppe Anaf	H FL-FLEXURED UE-UNEVEN ED W-WAVY C-CURVED	BC-BRO MB-MEO B-BEDD	DKEN DH. B DING	I CORE	ETRAL	LOAD X (psi)	
DISTANC	DRILLING		SYMBO	DISTANCE (ft)	RUN	PENETRA (ft/ FLUSH	ELEV	R TOT/ CORE	ECOV		R	Q.D. %	FF IN PE	RACT. NDEX ER FT	DI	DI P w.r.t. RE AXI	SCONTINUITY DATA S TYPE AND SURFACE DESCRIPTION		DRAU DUCT , cm/s	ULIC TIVITY Sec	DIAM	INDE	
0		GROUND SURFACE						ÎĨ			TT				Í				Τ				
_ 0	5/2011	Rootmat and Topsoil (3 inches)		0.3				\mathbb{H}			₩		+		╫				+		+	\square	
-	11/11 5 HSA	CLAY (CL) - Brown; firm; moist; silty;					535																-
-	3.2	RESIDUUM																					-
-	1/17/20			533.1											Π								-
	-	Weathered Limestone	Ĥ	4.3											Ħ		J, R		+			Ħ	
- 5		Auger refusal encountered at 4.3 feet. Begin NQ core at 4.3 feet.						$\left \right $			┼╋				╫		J, R		+		+	\square	-
-		4.3 ft to 9.0 ft (Run No. 1) LIMESTONE - Gray; slightly weathered; very close joint			1			$\left \right $			┼				\parallel		JR	++	+				-
-		spacing with joints at 4.8', 5.3', 6.6', 7.0', 7.3', and 9.0' (iron stained with solutional weathering): bard: crystalline			'		530								\parallel		J, R J, R						-
-		weathening), hard, crystanine.																					-
-				528.3													J. Fe. solutional						_
				9.0											₶		weathering		+				
- 10		9.0 ft to 14.0 ft (Run No. 2) LIMESTONE						$\parallel \mid$			₩				╫				+			\square	-
-		pressure solution feature weathered at 11.3' to brittle material: all other breaks			2			$\parallel \mid$			╢				╢				+		++	\square	-
-		are mechanical and occur along pressure solution features; hard;					525	Ш							\parallel								-
-		crystalline.																					_
-				523.3																			_
				14.0				Ħ							Ħ		J, R		+			Ħ	
- 15		14.0 ft to 19.0 ft (Run No. 3)						$\parallel \mid$							╫				+			\square	-
-	ore	interbedded shale; very close joint spacing with joints at 14 7' 15 9' 16 6'			3										╢		J, R		+				-
-	Ŋ	16.9', 17.9', 18.0', 18.1', 18.7', and 18.9'. Limestone is hard, crystalline, with	井				520	Ш									J, R					Ш	-
-		stylolites.													H	Ш	J, R J, R						_
-				518.3											H		J, R J, R J, R						-
				19.0											Ħ								
- 20		19.0 ft to 23.2 ft (Run No. 4)						╟┼					+	\square	╫	\square		++	+		+	\mathbb{H}	-
-		LIMESTONE - Gray; very slight weathering; sound; hard; crystalline			4						┼╢				╢				+			\square	-
-		down to 23.2 feet.					515	Ш														Ш	-
-				514.1													J. CL						-
-		23.2 ft to 24.0 ft (Run No. 4) SHALE - Dark gray; slightly weathered; joints with	鼻	23.2 513.3							╷┛						J, CL						_
- 25		fine grained.		24.0				Ħ			Ħt				Ħ				+				
- 20								╟┼					+	\square	╫	\square		++	+		+	\mathbb{H}	_
-		24.0 ft to 29.0 ft (Run No. 5) LIMESTONE - Gray: very slight			5						+++				++			++	+			\square	-
-		weathering; hard; sound; crystalline.	井				510	Ш							\parallel								-
\mathbf{F}	7/2011																						-
	11/2		<u></u>	508.3			4	\square															-
20	re	29.0 ft to 30.8 ft (Run No. 6)		29.0				Ħ	$ \uparrow $				$\uparrow \uparrow$	$\parallel \mid$	\dagger			$\uparrow \uparrow$	\square	$ \uparrow $			_
30	NQ Co	down to 30.8 feet.		506.5	6			╟┼	$\left \right $	+ +	┼╋		++	$\left \right $	\parallel	\parallel		++	+	$\left \right $	++	$\left \right $	_
				30.8				₩		Щ	┼ ┩			₩	⋕			++	\pm	\parallel		Щ	
		CONTINUED NEXT PAGE																					
DIS 1 ir	TANC	2E SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrison	CTOR า	:S&ME,	Inc.			-		S		RING	INTE	GRI	ſY								LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/28/11 DATA INPUT:

PR LO	DJEC CATIC	T: Jefferson County, Louisville TunnelN: Louisville, Kentucky			O	RD	OF	F D	RIL	LH	OL		RTH	B	-8	8 5 81.25	5							SHEET 2 OF 3 DATUM: NAVD 88
PR	DEC	T NUMBER: 1831-10-5629		DRILL R DRILLIN	ig: G M	D-50 ETHC	Track)D: N(Q				INCL	.INA	G:1240 TION:	-90	1.51 0°		AZIMUTH:						
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>VOLOR</u>	ELEVATION	FR-FR CL-CL SH-SH VN-VE RE TOTAL CORE	ACTUR EAVAG EAR IN COVER	E E Y DLID RE %	F-FAU J-JOIN P-POL S-SLIC R.Q. %	T ISHE KEN D.	D SIDED FRACT INDEX PER F	SM-S R-R(ST-S PL-F	SMOC OUGH STEPF PLANA E DIP w.r. ORE A		FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BI MB-M B-BEI	ROKE IECH. DDIN TYDR NDU k, cm	EN CC BRE IG AULIO ICTIVI n/sec	C ITY	DIAMETRAL POINT LOAD	INDEX (pst)
	_	CONTINUED FROM PREVIOUS PAGE							894	2 8 9	940	8.9	10	<u> </u>		0	6				0.10	-		
-		30.8 ft to 34.0 ft (Run No. 6) SHALE - Gray; slight weathering with thin clay seams along bedding (1 cm) at 32.7' and 33.0'; mechanical breaks occur along bedding; moderately hard; fine grained.		503.3	6			505										Clay seam Clay seam						
- 35 - -		34.0 ft to 39.0 ft (Run No. 7) SHALE - Gray; slightly weathered from 34.0' to 35.1' iwth thin clay seams along bedding (1 cm); becomes very slight weathered and sound from 34.1' to 39.0'; fine grained; moderately hard.			7			500																
- 40 -		39.0 ft to 42.3 ft (Run No. 8) SHALE - Gray; very slight weathering; sound; fine grained; moderately hard down to 42.3'.		498.3 39.0	8																			
-		42.3 ft to 44.0 ft (Run No. 8) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline.		495.0 42.3 493.3 44.0				495																
- 45 - -	NQ Core	44.0 ft to 49.0 ft (Run No. 9) DOLOMITE - Same as previous run; all breaks mechanical.		499.2	9			490																
- 50 - -		49.0 ft to 54.0 ft (Run No. 10) DOLOMITE - Same as previous run; all breaks mechanical.		49.0	10			485																
- 55 - -		54.0 ft to 59.0 ft (Run No. 11) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline.		483.3 54.0	11			480																
- 60				478.3 59.0																				
-		59.0 ft to 64.0 ft (Run No. 12) DOLOMITE - Same as previous run; all breaks mechanical.			12			475																
		CONTINUED NEXT PAGE																						
DIS 1 ir	TANC	E SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrisor	CTOR	:S&ME,	Inc.				ł	E	S	8 EERIN	IG II	ITEGRI	TY									LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/28/11 DATA INPUT:

PR	OJE	CT: Jefferson County, Louisville Tunnel		REC	OR	DC)F D	RI	LL	.HC	OL	.E:		I	B-	85							S⊦	IEET 3 OF 3
LO		ON: Louisville, Kentucky		DRILLIN DRILL R	G DAT IG: D∹	E: 1′ 50 Tra	1/15/11 ick					NOF EAS	rth Stin	ING: IG:12	303 2463	581.: 51.5	25 1						DA	TUM: NAVD 88
PK		T		DRILLIN T	G MET	HOD:	NQ	FR	-FRAG	TURF	= 1	INCI			N: -	90°	OTH	AZIMUTH:	BC-BF	ROKE	NCORE	:1	<u> </u>	
SCALE	ECORE		C LOG		lo. N RATE) COLOR RETURN	NOI	CL- SH-	-CLEA -SHEA	AVAGE AR	= . = . 	J-JOIN P-POL	NT ISHE	Ð	R-I ST	ROUC	BH PPED	UE-UNEVEN W-WAVY	MB-M B-BED	ECH.	BREAK G		DAD (isq	
ANCE FEE	LING R	DESCRIPTION	MBOLIC	DISTANCE	RUN N ETRATIC	H (ft/min %	LEVAT		-VEIN RECO		Y	R.Q	D.	ISIDE FRA IND	D PL CT.	-PLAI	DISC	C-CURVED	co	iydr/	AULIC	DIAMET	NDEX (
DIST	DRIL		SYI	(19	PENE	FLUSI	ш	201 201 201	RE %	COR 8 8	6 5 8 %	8 9	40 20	PER ₀₽	FT 22		v.r.t. AXIS g g	TYPE AND SURFACE DESCRIPTION	10 ⁻⁶	k, cm	/sec 005 005		-	
-		CONTINUED FROM PREVIOUS PAGE	<u></u>		10			₩											\square	_			┢	
-				473.3 64.0	12		-	H																-
- 65								Ш																-
-		64.0 ft to 69.0 ft (Run No. 13)						Ш																-
-		DOLOMITE - Gray; very slight weathering; sound; hard; crystalline.			13		470	Ш																-
-								Ш																-
-				468.3 69.0				Ш																-
- 70																								-
-		69.0 ft to 74.0 ft (Run No. 14)																						-
-	2	DOLOMITE - Same as previous run; all breaks mechanical.			14		165																	-
-							405																	-
-				463.3 74.0			-																	-
- 75																								-
-		74.0 ft to 79.0 ft (Run No. 15)																						-
-		DOLOMITE - Same as previous run; all breaks mechanical.			15		100																	-
_							460																	-
_				458.3			-																Π	-
- 80		Coring Terminated at 79.0 Feet		79.0						Ш													Π	-
-																								-
-																								-
-																								-
																								-
- 85																								_
																								-
																								-
																								-
																								-
0																								_
																								-
																								-
																								-
ĺ																								-
\vdash		<u> </u>						Ш															Ш	
DIS 1 ir	TAN	ICE SCALE DRILLING CONTRA o 4 feet DRILLER:L. Morriso	CTOR n	:S&ME,	lnc.				Ś	EN	SIGIN	EERIN		NTEG	RITY									LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/28/11 DATA INPUT:

PR LO PR	oje Cati Oje (CT: Jefferson County, Louisville Tunnel ION: Louisville, Kentucky CT NUMBER: 1831-10-5629			g da Ig: [RD (ATE: 1 D-50 Tra	DF D 1/15/201 ack	9 RI 1	LL	.HC	כבר ו ויייני ויייני	E: IORTI ASTII	HING: NG:12	B- 3038 2461	86 811.8 17.1:	39 2						S D	HEET 1 OF 3 ATUM: NAVD 88
UISTAINCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) FLUSH <u>color</u>	ELEVATION	FR-F CL-C SH-S VN-V F TOT COR	FRAC CLEA SHEA VEIN RECO TAL 2 %	VAGE AR OVERY SOL CORE	F-I J-, P- S-	AULT OINT POLISH <u>SLICKE</u> R.Q.D. %	IED NSIDE INC PEF	SN R- ST ED PL ACT. DEX ₹FT ₽ 8	A-SMO ROUG -STEF -PLAN DIP w CORE	OTH PPED JAR DIS Art. AXIS 00 00	L-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BI MB-M B-BEI	ROKE IECH. DDINC HYDR/ NDUC k, cm	AULI CTIV	DIAMETRAL	POINT LOAD INDEX (psi)	
0	_ 1	GROUND SURFACE												Π									
-	1/29/20015/2011	Rootmat and topsoil (3 inches)		0.3																			-
	-	Weathered Limestone Auger refusal encountered at 2.1 feet. Begin NQ core at 2.1 feet. 2.1 ft to 4.4 ft (Run No. 1) LIMESTONE - Gray; slightly weathered; very close joint		2.1	1		530										J, R J, R J, R J, R — J, CL						
5		spacing with joints at 2.5°, 2.8°, 3.5°, and clay filled joints at 3.8° to 3.9°; limestone is hard; crystalline. 4.4 ft to 9.4 ft (Run No. 2) LIMESTONE - Gray; slightly weathered with solutional weathering along joints with an open joint containing iron staining at 4.9° to		4.4	2												J, Fe J, Fe						
		5.0° very close joint spacing with joints at 5.6°, 7.5° (iron stained and solutional weathering), 8.0° to 8.2° with clay and 9.2°; limestone is hard, crystalline.		522.8	2		525										J, Fe J, CL J, CL J, CL						
10		9.4 ft to 14.4 ft (Run No. 3) LIMESTONE - Gray; slightly weathered; slightly fractured with fractures occuring along stylolites at 9.8', 10.9', 11.0', and 11.6' and 13.8' occuring along dark gray thin shale partings. Clay filled joints at 14.1' and 14.3' (1 cm); limestone is hard; crystalline.		9.4	3		520										J, R J, R J, R J, R J, R						-
15	NO Coro	14.4 ft to 19.4 ft (Run No. 4) LIMESTONE - Dark gray: oolitic limestone with fossils; slightly weathered; with one break at 16.1' along stylolite. From 18.7' limestone is gray; hard; sound; crystalline with gray green color along pressure solution features.		517.8 14.4	4		515										;čL						-
20		19.4 ft to 24.4 ft (Run No. 5) LIMESTONE - Gray green; slightly weathered; fossiliferous; oolitic; clay filled fracture at 20.7'. From 21.1' to 24.4' limestone is gray; very slight weathering; sound; hard; crystalline with stylolites.		512.8 19.4	5		510										FR, CL						
25		24.4 ft to 27.9 ft (Run No. 6) LIMESTONE - Gray; very slight weathering; sound; hard; crystalline with calcite vug at 26.4'.		507.8 24.4 504.3	6		505										Calcite vug						- - -
30		27.9 ft to 29.4 ft (Run No. 6) SHALE - Gray; very slight weathering; moderately hard; calcareous; fine grained.		27.9 502.8 29.4	7		_						-										-
		CONTINUED NEXT PAGE						[]			$ \Gamma$	$\ \ $	$\ $										

PR LO		T: Jefferson County, Louisville Tunnel		REC DRILLIN DRILL R	O G D,	RD ATE: D-50	11/ Trac)F D /15/201 :k	RI	LL	.HC	OI		RTH	IINC	B- 6:303	- 86 8811	6 .89 .12							SI D	HEET 2 OF 3 ATUM: NAVD 88
PR		T NUMBER: 1831-10-5629			GМ	ETHO	DD:	NQ					INC	LIN/		DN: ·	-90°	, 	AZIMUTH:							
VCE SCALE FET	IG RECORD	DESCRIPTION	SOLIC LOG	ELEV.	JN No.	(ATION RATE (t/min)	<u>COLOR</u> % RETURN	VATION	FR- CL- SH- VN-	FRAC CLEA SHEA VEIN RECC	TURE VAGE R	E E Y	F-FAL J-JOIN P-POL S-SLIO	ILT NT LISHE CKEN		SI R S ED PI	M-SM -ROL T-STI L-PL/	IOOTI JGH EPPE ANAR DI	H FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED	BC-BI MB-M B-BEI	ROK IECH DDIN	EN C I. BRI IG RAUL	EAK	METRAL	NT LOAD DEX (psi)	
STAN	SILLIN		SYMB	(ft)	R	ENETR (f	HSU	ELE	TO	TAL RE %	SOL	LID RE %	R.C	≀.D. 6	IN PE	IDEX R FT	DIF	P w.r.t. RE AXIS	TYPE AND SURFACE		NDU k, cr	JCTI m/sec	VITY	DIA		
	Ð				_	a.	۲ ۲		88	9 F	88	5 40	8.8	5 6	ع	5 1 5	- 5	888	DESCRIPTION	10%	10 %	360	500 780		П	
	Τ	29.4 ft to 34.4 ft (Run No. 7) SHALE -				\square			$\left \right \right $			+	┢		╟		╫					+		┼┼	┼┼	
-		Gray, very singit weathering, singity fractured with fractures occuring along bedding at 29.5, 30.5, 31.2, 31.5' to 31.6' with clay, 32.0' and 37.7'. Shale is moderately hard; fine grained.			7			500																		-
-		29.4 ft to 34.4 ft (Run No. 7) SHALE - Gray; very slight weathering; slightly		497.8					╞┼┤						╂┼		╟			++	_	_	_	$\left \right $	┼┼	-
- 35		bedding at 29.5', 30.5', 31.2', 31.5' to		34.4																+						
-		moderately hard; fine grained.																								
		Gray; very slight weathering; sound; moderately hard; fine grained. Dolomite			8																					_
_		seam at 38.0' to 38.9' then returns to shale down to 39.4'.						495																		-
-				492.8					Ш				Ш													
- 40		39.4 ft to 39.6 ft (Run No. 9) SHALE - Same as previous run down to 39.6'.		39.6											1											_
									Ħ						Π		Π									
-		39.6 ft to 44.4 ft (Run No. 9) DOLOMITE - Gray; very slight weathering; hard; sound; crystalline with stylolites.			9			490																		
-													\square		\parallel						_					-
-				487.8					Ш																	_
- 45			Ħ	44.4											11											_
															\prod											
		44.4 ft to 49.4 ft (Run No. 10)							$\left \right \right $						╟											
-	a Core	weathering; sound; hard; crystalline with			10			485	\mathbb{H}	++			₩		\parallel		╢			+		_		$\left \right $	+	
-	ž	Stylonics.							Ш																	-
-				400.0																						_
50				482.8					Ħ																	
- 50									$\left \right \right $								┼┼									
-		49 4 ft to 54 4 ft (Run No. 11)											$\left \right \right $		\parallel		╟			+	_	_		$\left \right $		-
-		DOLOMITE - Same as previous run; all breaks mechanical			11			480	Ш						\parallel					++						-
-																										_
																										_
				477.8 54.4					Ħ				₩		t		Ħ									
- 55									$\left \right \right $				$\left \right \right $		╟		╫				-			+	\square	. –
-		54.4 ft to 59.4 ft (Run No. 12)							\mathbb{H}								\parallel			+						-
-		down to 57.3'. From 57.3' dolomite is			12			475	Ш								\parallel									-
-		weathered; hard; sound; crystalline.																								_
															\prod											
				472.8 59.4	-	$\left \right $	_		Ħ	+	╞┼┼	+	╫	+	╢		\parallel			+	+	+	+	\parallel	\parallel	1
- 60		59.4 ft to 64.4 ft (Run No. 13)			1					++	H	++	$\left\{ \right\}$	$\left \right $	╟		╢	$\left \right \right $		+	+	+	+	\parallel	\parallel	-
$\left \right $		bocown i c - woderately weathered; brown and gray; pitted; hard; sound. From 60 4' to 64 4' dolomite is grav your			13						$\parallel \mid$	\parallel	$\parallel \mid$		\parallel		⋕	$\parallel \mid$		\parallel	+	_		\parallel	\parallel	-
$\left \right $		slight weathering; hard; sound; crystalline with stylolites.						470	Ш		\square		\prod		\parallel					\square				\prod		
		,	ø			Ц			$\parallel \mid$		Щ	\parallel	$\parallel \mid$		\parallel	Ш	\parallel	$\parallel \mid$		\parallel						
		CONTINUED NEXT PAGE																								
DIS 1 in	TANC	E SCALE DRILLING CONTRAC DRILLER:L. Morrisor	CTOR	:S&ME,	Inc.							5	8	2	M											LOGGED: NJP

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/29/11 DATA INPUT:

PRO LOC PRO) JE () JE	 >T: Jefferson County, Louisville Tunnel >N: Louisville, Kentucky >T NUMBER: 1831-10-5629 		REC DRILLING DRILL RI DRILLING	OF IG: [IG: [RD (ATE: 1 ⁻ D-50 Tra ETHOD:	DF D 1/15/201 ack NQ	1		_H(0		ORTH STIN	HINC NG:' ATIC	B 3:30 1246 ON:	-8 381 5117 -90	6 1.89 7.12)°)	AZIMUTH:						5	SHEET 3 OF 3 DATUM: NAVD 88
FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) FLUSH <u>COLOR</u>	ELEVATION	FR CL S⊢ VN	-FRA -CLE I-SHE I-SHE I-VEIN REC DTAL 0RE %		E E Y DLID RE %	F-FA J-JO P-PC <u>S-SL</u> R.	ULT INT DLISH ICKE Q.D. %	IED NSID FF IN PE	ED F RACT NDEX R FT P 9 8	SM-S R-RC ST-S PL-P	SMOO DUGH TEPP LANA C DIP w.r.J DRE A		FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED DNTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-I MB- B-BI	BROK MECH EDDII HYDI CONDI k, c	KEN (H. BR NG RAUL UCTI :m/se		DIAMETRAL	POINT LOAD INDEX (psi)	(rud) sman.
╞	-	CONTINUED FROM PREVIOUS PAGE							- 4 0		4 0		4 0					Ĩ						ļ		
65				<u>467.8</u> 64.4	13		-																			_
		64.4 ft to 69.4 ft (Run No. 14) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline with stylolites.			14		465																			-
70				462.8 69.4			-	Ħ				Ħ		╢			Ť								T	-
								Ħ				Ħ		\parallel			\parallel			╞				\parallel		1
	NO Core	69.4 ft to 74.4 ft (Run No. 15) DOLOMITE - Same as previous run; all breaks mechanical.			15		460																			-
				457.8						\prod																
75				74.4				F						1						\downarrow					\parallel	_
		74.4 ft to 78.5 ft (Run No. 16)						\parallel																		_
		down to 78.5 feet.			16		455	\parallel												_			_			_
				453.7				H															_			_
		78.5 ft to 79.4 ft (Run No. 16) SHALE - Gray; very slight weathering; sound; moderately hard: fine grained.		78.5 452.8				╞						╂┼			+	\parallel		+	$\left \right $		_		+	_
80		79.4 ft to 80.5 (Run No. 17) SHALE - Gray; very slight weathering; sound; moderately bard; fine grained down to		451.7	17			┝						+						+			_	+	+	_
		80.5 feet. // B0.5 feet. // DOLOMITE - Gray; very slight weathering; sound; hard; crystalline. // Coring Terminated at 81.5 Feet		80.5 450.7 81.5			-																			-
85																										
90																										
DIS.	ΓAN	CE SCALE DRILLING CONTRA	CTOR	I I:S&ME, I	nc.		<u>I</u>				5	8	2	M				<u> _</u>		1						LOGGED: NJF

		CT NUMBER: 1831-10-5629			G MI	ETHO	nac)D: I	^{ik} NQ	FR-FR	ACTU	RE	INC F-FAL		ATION:	-90° SM-SN	.40 MOOTH	AZIMUTH:	BC-BR	OKEN	COR	E		<u> </u>
	DRILLING RECORI	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) COLOE	FLUSH <u>COLOT</u>	ELEVATION	CL-CL SH-SH VN-VE RE TOTAL CORE		SE RY SOLID DRE %	J-JOII P-POI S-SLI	NT LISHE CKEN LD.	FRACT	R-ROL ST-ST PL-PL	JGH EPPEL ANAR DIS P.w.r.t. RE AXIS	UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	MB-ME B-BEDI HY CON k	CH. B DING DRAI		DIAMETRAL	POINT LOAD INDEX (psi)	
		GROUND SURFACE					1		004			ĨĨ							Ī		╈	Т	
U I		Rootmat and topsoil (3 inches)		0.3					HH		$\left \right \right $	+++	\parallel	HH	H	+++		++	+	$\left \right $	++	++	-
14710044 441450	3.25 HSA	CLAY (CH)- Brown and light brown; firm; moist; RESIDUUM		524.6				525															-
f		Weathered Limestone	Æ	3.8									Ħ										
_		Auger refusal encountered at 3.8 feet.	朣	523.4	1												J, R, solutional weathering				Т		
5		3.8 ft to 4.9 ft (Run No. 1) LIMESTONE - Gray; slight weathering; joint at 4.4' with solutional weathering and clay; hard; crystalline.		4.9													J, R J, R J, R J, R J, R				+	++	-
		4.9 π to 9.9 π (Run No. 2) LIMESTONE - Gray; slight weathering; very close joint			2				+++	+	++		\parallel		+	$\left \right $	J, R	++	+	$\left \right $	+	++	-
		spacing with joints at 5.2', 5.7', 6.1', 6.3', 7.5', 7.8', 8.3', 8.5', 8.9', and 9.2'. Limestone is hard; crystalline; with stylolites.						520									J, R J, R J, R J, R J, R J, R					+	-
10				518.4 a a	_							₽	\parallel			$\left \right \left \right $	LB						
		9.9 ft to 14.9 ft (Run No. 3) LIMESTONE		0.0													J, R, CL J, R, CL J, R, CL J, R				+	#	-
		- Gray; slight weathering; very close joint spacing with joints at 10.2', 10.9' with			3								1								\square	$\downarrow \downarrow$	-
		clay, 11.1' with clay, and 11.2'. Thin shale partings encountered at 10.9' to			Ũ																		
		12.9'; hard; crystalline.		513.4				515													+	#	-
15			Ē	14.9								I	Ħ			$\parallel \mid \mid$			_		\parallel	\parallel	-
	000	5																					
	Ž	² 14.9 ft to 19.9 ft (Run No. 4)											Π										
		with moderately weathered section at 16 4' to 17 2' which is soft with clay and			4				+++	$\left \right $		╉┼┼	╟	$\left \right \right $	$\left \right \right $	+++			+	$\left \right $	++	++	-
		thin shale partings. Limestone is hard;						510															_
		crystanne, with stylontes.						0.0															
				508.4						╎┫┤			\parallel			$\parallel \parallel$	<u> </u>	++	+		+	++	1
20			H	19.9					\square	H	\square	\prod	Ħ	$\left \right \left \right $		$\left \right $		++	-	\parallel	+	$+\!\!+$	-
		19.9 ft to 22.9 ft (Run No. 5) LIMESTONE - Grav: very slightly							Ш				\parallel										
		weathered; hard; sound; crystalline; with											$ \Gamma$		$ \top$	$ \top $		$ \top$		ΙT		$ \top$	
		5.5.5m00 00mm to 22.0 .		505.4	5				┝┼┼┼	$\parallel \mid$		\parallel	\parallel					++	+	+	+	++	1
		22.9 ft to 24.9 ft (Run No. 5) SHALE -		22.9				505		$\parallel \mid$	$\parallel \mid$	$\parallel \mid$	\parallel					++	_	\parallel	\parallel	\parallel	-
		Gray; very slight weathering with interbedded limestone; fine grained:																					
25		moderately hard; pyritic.		503.4							П		П		\prod	\square		\square	Γ	\square	\prod	\prod	
		24.9 ft to 28.0 ft /Dun No. 6\ SHALE		24.9					┞┼┼┤	+	+++		\parallel	$\left \right \left \right $		+++	J, R	++	+	+	+	++	-
		Dark gray; slightly weathered; with very			6				$\parallel \mid \mid$			₽	\parallel				J.R	\parallel	_		\parallel	\parallel	-
		with clay, 25.6', 26.2', 26.4', and 26.6';			Ŭ										$ \uparrow$		— J, R						
				500.3												\square				\square	\top	$\uparrow\uparrow$]
		Coring Terminated at 28.0 Feet		28.0																			
30																							

PRC LOC P RC	JE ATI	CT: Jefferson County, Louisville Tunnel ON: Louisville, Kentucky CT NUMBER: 1831-10-5629		REC DRILLIN DRILL R DRILLIN	G DA IG: [G ME	RD ATE: D-50 ETHC	11/ Trac	F D 15/201 ⁻ k NQ		LL	. H (OL	NOR EAS	thi Tin Ina	ING: G:12	3-8 3039 462:	88 927.9 34.8	54	AZIMUTH:						S	Sheet 1 of 2 Datum: Navd 88
	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u> <u>RETURN</u>	ELEVATION	FR- CL-I SH- VN- F TO COF	FRAC CLEA SHEA VEIN RECO TAL 8 %		20 80 33 D 20 80 34 Y 10 24 Y	-FAUL -JOINT 2-POLI 3-SLICI R.Q.I %	T SHE KEN D.		SM R-F ST O PL CT. CT. EX FT	-STE -PLAI	DOTH PPEC VAR DIS M.r.t. AXIS 8 8	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BI MB-M B-BEI	ROKI IECH DDIN HYDR NDU k, cr	EN C . BRI IG IG AUL JCTI n/se		DIAMETRAL	POINT LOAD INDEX (psi)	
		GROUND SURFACE					Τ				T	Ţ	\square		Π		Π	\square				Ĵ				
		Rootmat and topsoil (3.5 inches)		0.3					Ш]
		CLAY (CH) - Dark brown; soft; moist; with fine roots; RESIDUUM		529.5				530																		-
5		CLAY (CH) - Reddish brown; very stiff; moist; with chert fragments; with manganese nodules; RESIDUUM		3.5				525																		
				523.3																						
10		Auger refusal encountered at 9.8 feet. Begin NQ core at 9.8 feet. 9.8 ft to 14.2 ft (Run No. 1) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints at 10.2', 10.7', 11.2', 12.4', and 12.9'; hard; crystalline; with thin shale partings and pressure solution features throughout.		9.8	1			520											J, R J, R J, R J, R J, R							
15		14.2 ft to 19.2 ft (Run No. 2) LIMESTONE - Gray; slightly weathered; very close joint spacing with joint at 15.4' and 15.5' occuring along thin shale partings containing clay; hard; crystalline; with stylolites.		513.8	2			515											J, R J, R, CL							
20		19.2 ft to 24.2 ft (Run No. 3) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints at 20.4' with clay; 20.7', 20.8', 21.0', and 21.1' with clay; Shale seam at 20.2' to 21.5' which is moderately hard; slightly weathered; fine grained; Limestone is hard; crystalline; with stylolites.		19.2	3			510											J.R. CL J.R — J.R — J.R — J.R — J,R, CL							-
			Ē	508.8					Щ		₽			╢	++	\mathbb{H}	++	H		+	+	+	+	++	++	-
25		24.2 ft to 29.2' (Run No. 4) LIMESTONE - Gray; very slight weathering; sound with mechanical breaks occuring along stylolites. Interbedded shale at 27.5' to 29.2'; moderately hard; fine grained.		503.8	4			505																		
30		29.2 ft to 32.5 ft (Run No. 5) SHALE - Dark gray; slightly weathered; very close joint spacing with joints at 30.3' to 30.9' with clay and at 31.6' and 31.9'; moderately hard; fine grained.		29.2	5														J, R, CL							-
		CONTINUED NEXT PAGE														\square										
DIST	AN	CE SCALE DRILLING CONTRA DRILLER:L. Morrisc		:S&ME,	Inc.							S	8	N	1	E										LOGGED: NJ

Open of the second processes Description Description <thdescription< th=""> Description <thdescript< th=""><th>SCRIPTION</th></thdescript<></thdescription<>	SCRIPTION
	OBJECTION OBJECTION OBJECTION OBJECTION OBJECTION OBJECTION OBJECTION 0
Image: second	
32.5 Coring Terminated at 32.5 Feet 35 40 40 43 45 50	
	ed at 32.5 Feet
5	
ю	

PF LC PF	ROJ DCA	ес ⁻ тю е с -	 T: Jefferson County, Louisville Tunnel N: Louisville, Kentucky INUMBER: 1831-10-5629 		REC DRILLIN DRILL R	G D, IG:	RC ATE: D-50	11. Trac)F D /15/201 ck	RI 1	L	H	łC) LI E			NG: G:12	B- :303 246:	89 990 298.	.63 99	а <i>7</i> імі ПН [.]					SHEET ? DATUM:	I OF 4 NAVD 88
DISTANCE SCALE FEET		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u>	ELEVATION	FR CL SH VN	-FRA -CLE -SHE -VEIN REC DTAL RE %		RE GE RY SOLID ORE		FAUL OINT POLI: SLICI R.Q.I %	T SHE KEN D.	D SIDE FRA IND PEF	S ED P ACT. DEX FT \$200	H-SN ROU T-STI	OOTH GH EPPEI NAR DIS W.r.t. E AXIS	H FL-FLEXURED UE-UNEVEN D W-WAYY C-CURVED SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-E MB-I B-BE	BROK MECH EDDIN HYDF ONDL k, ci	(EN (H. BR NG NG UCTI m/se		INDEX (psi)	
- o - -	11/15/2011		GROUND SURFACE Rootmat and topsoil (4 inches)		0.3				545																		
- - 5 -		3.25 HSA	CLAY (CL) - Light brown; firm; slightly moist; silty; RESIDUUM		500.0				540																		
-			CLAY (CH) - Brown; stiff; slightly moist; with manganese nodules; RESIDUUM		539.3 7.0 536.3																						
-	11/16/2011		Weathered Limestone; wet at contact with overburden. Auger refusal encountered at 12.3 feet. Begin NQ core at 12.3 feet.		10.0 534.0				535																		
- - - 15			12.3 ft to 14.6 ft (Run No. 1) LIMESTONE - Gray; moderately to severly weathered; open void with solutional weathering at 13.1' to 13.3' (100% water loss at 13.1'); calcite vugs 13.3' to 13.5'; clay filled void at 13.5' to 14.6'; Limestone is hard; crystalline; with etholites		12.3 531.7 14.6	1															Open void; 100% water loss Clay filled void						
-			14.6 ft to 19.6 ft (Run No. 2) LIMESTONE - Gray; slightly weathered with small open void with moderate weathering at 16.8' to 16.9', hard; very close joint spacing with joints at 15.3', 16.5', 17.6', and 17.9'; crystalline; with stylolites.			2			530												J, R Open void J, R J, R						
- 20 - - -		NQ Core	19.6 ft to 24.6 ft (Run No. 3) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints at 20.0', 21.1', 21.2', 22.0', 22.8', 23.5', 23.7', 24.0'. Limestone is hard, crystalline, with pressure solution features throughout.		<u>526.7</u> 19.6	3			525												J, R J, R J, R J, R J, R J, R J, R						
			24.6 ft to 29.6 ft (Run No. 4) LIMESTONE - Gray to dark gray; slightly weathered; very close joint spacing with joints at 24.7', 25.4', 25.5', 26.2', 28.2', and 29.0'. Limestone is hard, crystalline with pressure solution features and thin shale partings present at 28.9' to 29.6'.		521.7 24.6	4			520												J, R J, R J, R J, R J, R						
			29.6 ft to 34.6 ft (Run No. 5) LIMESTONE - Gray to dark gray; slightly weathered; clay seam at 30.1' (1 cm); hard; crystalline; with pressure solution features.		516.7 29.6	5			515												Clay seam						
	STA nch	NC to 4	E SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrison	CTOR n	:S&ME,	Inc.							S			GIN		BIT								LC CHE	OGGED: NJP ECKED: CSL

LOC PR(T: Jefferson County, Louisville Tunnel DN: Louisville, Kentucky TNUMBER: 1831-10-5629 		REC DRILLIN DRILL R DRILLIN	of g da ig: [g me	RD ATE: D-50 T ETHO	0 11/ ⁻ Traci D: I	P F D 15/201 ⁻ k NQ	RI 1		HC	ا ل (⊧ ۱۱	IORT ASTI	'HINC ING:' VATIC	B- 3:303 1246 DN:	• 89 3990.0 298.9 -90°	63 19	AZIMUTH:				SHEET 2 OF 4 DATUM: NAVD 88
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) COLOR	FLUSH % RETURN	ELEVATION	FR-F CL-C SH-S VN-V F TOT COR	FRACT CLEAV SHEAR /EIN ECOV AL E % Q & Q	VRE AGE (ERY SOLII CORE 8 & 9	F-I J-, P-I S-1 S-1 D_000	AULT OINT POLISI BLICKE R.Q.D. %		S R S DED P RACT. NDEX SR FT € € 8	M-SMC -ROUC T-STE L-PLA DIP CORE	DOTH GH PPED NAR DISC M.r.t. AXIS 8 8	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BR MB-ME B-BED H COI	N CO BREA	DIAMETRAL POINT LOAD	INDEX (psi)
		CONTINUED FROM PREVIOUS PAGE															Ш					
		29.6 ft to 34.6 ft (Run No. 5) LIMESTONE - Gray to dark gray; slightly weathered; clay seam at 30.1' (1 cm); hard; crystalline; with pressure solution features.		<u>511.7</u> 34.6	5									-								+-
35		34.6 ft to 39.6' (Run No. 6) LIMESTONE - Dark gray with thin shale partings 34.6' to 35.5' then is gray, very slightly weathered, sound, hard, crystalline, stylolitic.		506.7	6			510														+
40		39.6 ft to 41.9 ft (Run No. 7) LIMESTONE - Gray; very slight weathering; sound; hard; crystalline with interbedded shale at 40.9' to 41.9'.		39.6 504.4				505														+-
		41.9 ft to 44.6 ft (Run No. 7) SHALE - Dark gray; slightly weathered; sound; moderately hard; fine grained.		41.9 501.7	7																	+
45	NQ Core	44.6 ft to 49.6 ft (Run No. 8) SHALE - Dark gray; moderately weathered 44.6' to 46.2' with clay seams at 45.6' to 45.7' and 45.9' to 46.1'. From 46.2' slightly weathered; sound; moderately hard; fine grained.		44.6	8			500										Clay seam Clay seam				+
50		 49.6 ft to 53.4 ft (Run No. 9) SHALE - Dark gray; very slight weathering; sound; moderately hard; fine grained; dolomite lense at 50.7' to 52.6'. 53.4 ft to 54.6 ft (Run No. 9) DOLOMITE 		492.9 53.4	9			495														+++++++++++++++++++++++++++++++++++++++
55		- Gray; very slight weathering; sound; fine grained; hard.		<u>491.7</u> 54.6			_	100														++
		54.6 ft to 59.6 ft (Run No. 10) DOLOMITE - Gray; very slight weathering; close joint spacing with joints at 56.7' and 58.6'; crystalline; hard.		486.7	10			490										J, R J, R				
60		59.6 ft to 64.6 ft (Run No. 11) DOLOMITE - Same as previous run; all breaks mechanical.		59.6	11			485														+
		CONTINUED NEXT PAGE																				

PR		CT NUMBER: 1831-10-5629	_	DRILL RI DRILLIN	ig: [g me	D-50 Tr ETHOD	ack : NQ		EDA			EAS	TIN INA	G:12	2462 N: -	98.9 90°	9	AZIMUTH:	PC F	POK	ENIC	OPE	_		
FEET	JG RECORD	DESCRIPTION	SOLIC LOG	ELEV.	UN No.	(tt/min)	% RELUKIN	CL SH VN	-CLE/ -CLE/ I-SHE/ I-VEIN RECO	AVAG AR I DVER	E 1	FAUL J-JOIN P-POLI S-SLIC	T SHE KEN	D SIDEI	R-I ST D PL CT	I-SMC ROUC -STE -PLA	NOTH H PPED NAR DISC	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED ONTINUITY DATA	вс-в MB-N B-BE		EN CO BRE IG RAULI		METRAL	NI LUAU DEX (psi)	
	DRILLIN		SYME	(ft)	RI	PENETR ((ELE		DTAL DRE %	SC CO 00 00	OLID RE %	R.Q. %	D. 2 8	INDI PER ₀ ₽ 5	EX FT 202		v.r.t. AXIS © ©	TYPE AND SURFACE DESCRIPTION	- co	ONDU k, cn	N/Sec			2 Z Z	
		CONTINUED FROM PREVIOUS PAGE 59.6 ft to 64.6 ft (Run No. 11) DOLOMITE - Same as previous run; all breaks mechanical			11			+																	
65		64.6 ft to 69.6 ft (Run No. 12) DOLOMITE - Same as previous run; very thin clay seam at 68.5' (1 mm); all other breaks mechanical.		<u>481.7</u> 64.6	12		480											Clay seam							
70		69.6 ft to 74.6 ft (Run No. 13) DOLOMITE - Gray; very slightly weathered; weathered joint with clay at 69.8' (1 cm); hard; crystalline down to 71.7'. From 71.7' to 74.6' dolomite is brown; moderately weathered; pitted; hard.		476.7 69.6	13		475											J, R, CL							
75	VQ Core	74.6 ft to 79.6 ft (Run No. 14) DOLOMITE - Brownish gray; moderately weathered; pitted; hard down to 74.9'. From 74.9' to 79.6' dolomite is gray; very slightly weathered; sound; hard; crystalline.		74.6	14		470																		
80		79.6 ft to 84.6 ft (Run No. 15) DOLOMITE - Gray to gray green; very slight weathering; one break at 84.2' along joint with clay; all other breaks are mechanical; hard; crystalline; with stylolites.		<u>466.7</u> 79.6 <u>46</u> 1.7	15		465											J.R.Cl							
35		84.6 ft to 89.6 ft (Run No. 16) DOLOMITE - Gray to gray green; very slight weathering; sound; hard; crystalline.		84.6 456.7	16		460																		
90		89.6 ft to 91.6 ft (Run No. 17) DOLOMITE - Same as previous run down to 91.6'.		89.6 454.7			455																		
		91.6 ft to 93.9 ft (Run No. 17) SHALE - Gray; very slight weathering; moderately hard; calcareous; pyritic; fine grained.		91.6 452.4 93.0	17																				
		CONTINUED NEXT PAGE	<u>\$</u> \$		$\left \right $			Ħ		Ħ				\ddagger	Ħ		₩		Ħ	Ħ	╈	+	Ħ	╞	

PR	OJEC	T: Jefferson County, Louisville Tunnel		REC	OF	RD	0	F D	RI	L	Lŀ	łC	DLI	:		E	3-8	89)								Sł	HEET 4 OF 4
LO PR	CATIO OJEC	N: Louisville, Kentucky T NUMBER: 1831-10-5629		DRILLIN DRILL R DRILLIN	g da Ig: e g mf	NTE: D-50 ⁻ ETHO	11/ Frac D:	'15/2011 :k NQ	I				N E	IORT ASTI	'HIN ING NAT	NG:3 6:124	1629 1629 1: -9	990.) 98.9 90°	63 99	AZIMUTH:							D	ATUM: NAVD 88
ANCE SCALE FEET	LING RECORD	DESCRIPTION	MBOLIC LOG	ELEV. DISTANCE	RUN No.	(ft/min)	H % RETURN	LEVATION	FR- CL- SH- VN-	-FRA -CLE -SHE -VEI REC	AVA AVA AR N OVE	RE GE RY	F-F J-J P-F S-S	AULT OINT POLISI BLICKE		IDED	SM R-F ST PL	-SMC ROUC -STE -PLA	DOTH GH PPE NAR DIS	H FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED SCONTINUITY DATA	BC ME B-f	C-BRO B-ME BEDI BEDI HY CON	OKE CH. I DING	N CC BRE/ BRE/	ORE AK	DIAMETRAL	INDEX (psi)	
DIST	DRILL		SYN	(1)		PENE	FLUSF	Ξ		RE %	08	SOLIE ORE	20 %	% 8 8 8 1 1	2 L	PER I	FT 2 R		w.r.t. E AXIS	TYPE AND SURFACE DESCRIPTION	:	01 k	, cm,	/sec	78 0			
- 95 - -	NQ Core	39.9 ft to 94.6 ft (Run No. 17) DOLOMITE - Gray green; very slight weathering; hard; crystalline; with pressure solution features. 94.6 ft to 96.0 ft (Run No. 18) DOLOMITE - Gray; very slight weathering; sound; hard; with thin shale partings throughout. Coring Terminated at 96.0 Feet		4 51.6 450.3 96.0	18																							
- 100 - 100 -																												
- - 105 -																												
- - 110 -																												
- - 115 -																												
- 120 -																												
- 125																												
DIS 1 ir	STANC	E SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrisor	CTOR	:S&ME,	Inc.							ENG		RING	INT	TEGR	RITY											LOGGED: NJP CHECKED: CSL

1

PR LO PR	OJE CAT		Jefferson County, Louisville Tunnel Louisville, Kentucky NUMBER: 1831-10-5629		REC DRILLIN DRILL R DRILLIN	G D/ IG: 1 G MI	RD ATE: D-50 ETHC	11/ Trac)F D (15/201) ck NQ	R I ₁	L	_H	O		RTI STII	HING NG:1 ATIC	B- 245 211:	-9(1038 989 -90 °) 3.92 .66	AZIMUTH:						SHE	et 1 of 1 JM: Navd 88
FEET	DRILLING RECORD		DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u>	ELEVATION	FR CL SH VN	-FRA -CLE/ -SHE -VEIN REC TAL RE %		E E Y DLID RE %	F-FA J-JO P-PC S-SL	ULT INT DLISH ICKE Q.D. %	ED NSID FR IN PE	S ED P ACT. DEX R FT	M-SN -ROU T-ST L-PL DI	MOOTI JGH EPPE ANAR DIS P.W.r.t. RE AXIS	H FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED SCONTINUITY DATA TYPE AND SURFAC DESCRIPTION	BC-B MB-N B-BE	BROKE	AULI AULI CTIV	ORE AK C ITY	DIAMETRAL POINT LOAD	INDEX (psi)	
_			GROUND SURFACE							Ĩ		Ĩ		Ĩ		Ĩ		ĬĬ						Ĩ			
0	1111/305/2201111	3.25 HSA	Rootmat and topsoil (4 inches) CLAY (CH) - Brown; moist; firm; RESIDUUM		0.3				525																		
			Auger refusal encountered at 1.5 feet. Begin NQ core at 1.5 feet. 1.5 ft to 4.1 ft (Run No. 1) LIMESTONE - Gray, slightly weathered; clay seam at 2.2' to 2.5'. Limestone is hard; crystalline; with stylolites and fossils.		1.5 521.9	1														Clay seam							
5			4.1 ft to 9.1 ft (Run No. 2) LIMESTONE - Gray; moderately weathered to slightly weathered with clay filled joint at 4.7' to 4.8; iron stained joints with solutional		4.1	2			520											J, CL J, Fe J, Fe J, Fe J, Fe							
			weathering at 5.0 [°] , 5.6 [°] , 5.8 [°] , and 6.1 [°] ; clay filled joint at 8.1 [°] ; limestone is hard, fossiliferous, crystalline.		<u>516.9</u> 9.1															J, CL							
10			9.1 ft to 14.1 ft (Run No. 3) LIMESTONE - Gray; moderately weathered with iron stained, clay filled joints with solutional weathering at 9.9' to 10.3', 11.0', and 11.5'; limestone is hard, crystalline with fossils and stylolites. From 11.5' to 14.1' limestone is hard, sound, crystalline with			3			515											J, CL J, CL J, CL J, CL							
15		Core	fossils and stylolites. 14.1 ft to 19.1 ft (Run No. 4)		<u>511.9</u> 14.1																						
		NQ	LIMESTONE - Gray; slightly weathered with fractures occuring along thin gray green shale partings at 15.5', 15.8', 16.3', 16.6', 16.9', 17.4' with clay, and 17.5' with discoloration. Limestone at breaks is moderately hard with surrounding limestone being hard, crystalline.			4			510											FR, R FR, R FR, R FR, R FR, R FR, R, CL							
					<u>506.9</u> 19.1					╞								$\left \right $		FR, R, Fe			+			\square	
20			19.1 ft to 23.8 ft (Run No. 5) LIMESTONE - Brownish gray; moderately weathered with vertical fracture at 19.1' to 21.2' with iron staining. Limestone is hard, crystalline. From 21.2' to 23.8' limestone is gray, hard, crystalline, with joint at 23.3' with clay.			5			505																		
25			23.8 ft to 24.1 ft (Run No. 5) SHALE - Dark gray; slightly weathered; moderately hard; fine grained. 24.1 ft to 24.4 ft (Run No. 6) SHAI F -		502.2 23.8 24.1 24.4															J, CL							
			Gray; very slight weathering; sound; moderately hard; calcareous. 24.4 ft to 26.2 ft (Run No. 6) LIMESTONE - Gray; very slight weathering; hard; sound; fossiliferous; with pyrite. 26.2 ft to 29.1 ft (Run No. 6) SHALE - Gray; slightly weathered; moderately fractured with fractures occuring along bedding olanes with day at fractures of		499.8 26.2	6			500											FR, R FR, R FR, R FR, R FR, R FR, R							
30	L		Coring Terminated at 29.1 Feet		29.1																						
DIS	TAT	NCE	E SCALE DRILLING CONTRA	CTOR	:S&ME,	Inc.		1					S	8	Z	M			<u></u>		- 1			1			LOGGED: NJP

PR LO PR	OJ CA OJ	ECT TIOI ECT	Jefferson County, Louisville Tunnel Louisville, Kentucky NUMBER: 1831-10-5629		REC DRILLIN DRILL R DRILLIN	G DA IG: D G ME	RD (TE: 1 -50 Tra THOD	OF [0/30/20 ack : NQ	DR	ILL	_H	10	LE NG E/	ORTI ASTI CLIN	HIN(NG: IATI	B - G:304 1245 ON:	-9' 4195 712 -90°	1 5.44 .74	AZIMUTH:						S⊦ D4	HEET 1 OF 3 NTUM: NAVD 88
DISTANCE SCALE FEET		חעוררוואפ אבינטאט	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	(ft/min) (ft/min) FLUSH <u>COLOR</u>	% RELUKN	FI CI SI VI	R-FRAI L-CLE/ H-SHE/ N-VEIN REC(TOTAL ORE %		RE GE RY SOLID ORE %	F-F/ J-JC P-P(S-SI R	AULT DLISH LICKE .Q.D. %	HED ENSIE FI II Pl	S DED F RACT. NDEX ER FT ₽₽ 8	SM-SM R-ROU ST-ST PL-PL	AOOTH JGH EPPEI ANAR DIS P w.r.t. RE AXIS S & S	H FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACI DESCRIPTION	BC-I MB-I B-BI	BROK MECH EDDIN HYDI K, c	KEN (H. BR NG RAUL UCTI m/se			INDEX (psi)	
- 0		_	GROUND SURFACE																							
v	10/2011		Rootmat and topsoil (3 inches)		0.3				H	+++	╢	$\left \right $	\parallel	$\left \right $	\parallel	$\left \right $	╢	$\left \right \right $		+	+	+	-		+	
- 5	10/3		CLAY (CL) - Light brown; stiff to very stiff; slightly moist; silty; with black oxide staining; RESIDUUM					535																		
					<u>528.5</u> 8.0			530																		
- 10		3.25 HSA	CLAY (CL) - Reddish brown; very stiff; moist; with black oxide staining; RESIDUUM					525																		
- 15	11/1/2011		Weathered Linestone		518.5 18.0			520																		
- 20	-		Auger refusal encountered at 18.4 feet. Begin NQ core at 18.4 feet. 18.4 ft to 20.0 ft (Run No. 1)		18.4 516.5	1																				
		Core	 weathering; sound; hard; crystalline. / 20.0 ft to 25.0 ft (Run No. 2) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints at 20.6', 20.8', and 21.9'. Limestone is hard, crystalline with stylolites throughout. 		511 5	2		515											J, R J, R J, R							
- 25		NQ C	25.0 ft to 30.0 ft (Run No. 3) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints containing clay at 25.3' and 26.4'; all other breaks mechanical; hard; crystalline.		25.0	3		510											J, CL J. CL							
- 30			30.0 ft to 35.0 ft (Run No. 4) LIMESTONE - Same as previous run; clay filled joints at 30.2' to 30.4'; joints at 30.9', 33.4', 34.2', and 34.6'.		506.5 30.0	4													J, CL J, R							
			CONTINUED NEXT PAGE											$\left \right \right $												
DIS 1 ir	TA		E SCALE DRILLING CONTRAC	CTOR	:S&ME,	Inc.	I	1	1_			S	8		M				I							LOGGED: NJP
	ŊΕ	CT NUMBER: 1831-10-5629		DRILLIN DRILL R DRILLIN	g da Ig: I g me	ATE: 10 D-50 Tra ETHOD:	0/30/201 ack NQ	11			1 3 11	NORTI EASTI NCLIN	HING NG:1 IATIC	6:304 2457 DN: -	.195. 712.7 ∙90°	14 4	AZIMUTH:					D	ATUM: NAVD 88			
------	-----------------	--	--------------	-------------------------------	-----------------------	--	-----------------------	-----------------------------------	--	--	-----------------------------	---	--------------------------------	--	----------------------------------	--	--	----------------------	-------------------------------------	---	---	-------------	---------------			
FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) FLUSH <u>COLOR</u>	ELEVATION	FR CL SH VN FC 000	-FRA -CLE/ -SHE -VEIN REC TAL RE %	CTURE AVAGE AR I DVERY SOLII CORE 8 @ 9	F- J- P- S- D_%	FAULT JOINT POLISH SLICKE R.Q.D. %	IED INSID FR IN PE	SI R- ST ED PL ACT. DEX R FT 2 12 8	N-SMC ROUC T-STE L-PLAI	NOTH SH PPED VAR DISC v.r.t. AXIS 00 00	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-B MB-W B-BE	EN CI BRE IG AULI ICTIV			INDEX (psi)				
┟	_	CONTINUED FROM PREVIOUS PAGE					505				╨				\square				_	_	Ш	μI				
25		30.0 ft to 35.0 ft (Run No. 4) LIMESTONE - Same as previous run; clay filled joints at 30.2' to 30.4'; joints at 30.9', 33.4', 34.2', and 34.6'.		501.5	4												J, R J, R J, R									
30		 35.0 ft to 37.7 ft (Run No. 5) LIMESTONE - Gray; very slight weathering; very close joint spacing with joint at 35.9'; hard; crystalline; interbedded shale at 36.8' to 37.2'. 37.7 ft to 40.0 ft (Run No.5) SHALE. 		35.0 498.8 37.7	5		500										J, R									
40 -	L107/7/L1	Gray; very slight weathering with very close joint spacing; moderately hard; fine grained; trace fossils at contact with limestone.		<u>496.5</u> 40.0			-										J, CL									
15		40.0 ft to 45.0 ft (Run No. 6) SHALE - Gray; slightly weathered; very close joint spacing at 40.0' to 42.2' with clay at joints; spacing increases with depth; moderately hard; fine grained.		491.5	6		495																			
		45.0 ft to 49.3 ft (Run No. 7) SHALE - Gray; very slight weathering; one joint at 48.5' all other breaks mechanical; moderately hard; fine grained down to 49.3'.		45.0	7		490																			
50		49.3 ft to 50.0 ft (Run No. 7) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline; fossiliferous.		49.3 486.5 50.0			-												+							
		 50.0 ft to 55.0 ft (Run No. 8) DOLOMITE Gray; very slight weathering; slightly fractured with fractures at 51.6' and 53.1' occuring along stylolites; hard; crystalline. 		481.5	8		485										F, R									
25		55.0 ft to 60.0 ft (Run No. 9) DOLOMITE - Same as previous run; fracture along stylolite at 59.7' and clay seam at 60.0'.		55.0	9		480										5.0									
60		60.0 ft to 65.0 ft (Run No. 10) DOLOMITE - Same as previous run; all breaks mechanical.		476.5 60.0	10		475										Clay seam									
ſ		CONTINUED NEXT PAGE						$ \top$		[]]	\prod				IT	$ \Pi$		\square				$ \Gamma $				

PR	OJEC	 Jefferson County, Louisville Tunnel 2N: Louisville, Kentucky 			;O	RC Ate:) ()F D /30/201		LL	.H	O		DRTH		B	-9) 1	4								SH DA	IEET 3 OF 3
PR	OJEC	T NUMBER: 1831-10-5629		DRILL R DRILLIN	RIG: IG M	D-50 IETH) Trad	ck NQ					EA	STI CLIN	NG: ATI	1245 ON:	571 -90	2.74)°	Ļ	AZIMUTH:								
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u>	ELEVATION	FR CL- SH VN	-FRAC -CLEA -SHEA -VEIN RECO TAL RE %	CTUR AVAG AR I DVER	E E Y DLID RE %	F-FA J-JO P-PC S-SL	ULT INT ICKE Q.D. %	IED NSII F I P	DED I RACT NDEX ER FT	SM-S R-R(ST-S PL-P		DTH PED AR DISC	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC MB B-E	-BRC I-MEC BEDD HYI CONI K,	DKEN CH. B DING DRAI DUC , cm/s	ULIC TIVIT sec	RE K Υ	DIAMETRAL POINT LOAD	INDEX (psi)	
_	_	CONTINUED FROM PREVIOUS PAGE								4 0		40		40		Π			5.05			-		04 LO 1-				
-		60.0 ft to 65.0 ft (Run No. 10) DOLOMITE - Same as previous run; all breaks mechanical.		471.5	10															J, R								-
- 63		65.0 ft to 70.0 ft (Run No. 11) DOLOMITE - Gray to light brownish gray; slightly weathered with pitting; one joint at 64.3'; hard; crystalline.		65.0	11			470																				-
- 70 -				466.5 70.0				465																	_			-
-		70.0 ft to 75.0 ft (Run No. 12) DOLOMITE - Same as previous run down to 71.9' then is gray; very slightly weathered; sound; hard; crystalline.			12																							-
- 75 - -	NQ Core	75.0 ft to 80.0 ft (Run No. 13) DOLOMITE - Gray; very slightly weathered; sound; hard; crystalline; with stylolites throughout.		461.5 75.0	13			460																				- - -
- 80 - - -		80.0 ft to 85.0 ft (Run No. 14) DOLOMITE - Same as previous run; all breaks mechanical.		456.5 80.0	14			455							-													- - -
- 85 - -		85.0 ft to 88.8 ft (Run No. 15) DOLOMITE - Same as previous run down to 86.4'. From 86.4' to 88.8' dolomite with thin shale partings; trace fossils; crystalline; hard; sound.		451.5 85.0	15			450																				-
- 90 - -		 88.8 ft to 90.0 ft (Run No. 15) SHALE - Gray; very slight weathering; sound; moderately hard; fine grained. 90.0 ft to 91.5 ft (Run No. 16) SHALE - Gray; very slight weathering; sound; moderately hard; fine grained down to 91.1'. 91.1 ft to 91.5 ft (Run No. 17) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline. Coring Terminated at 91.5 Feet 		447.7 88.8 446.5 90.0 445.4 91.1 91.5	16			445							-													- - - -
DIS 1 ir	TAN(CE SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrisoi		:S&ME,	Inc.							S	8 NEER		V	EGRI	TY											LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/2/11 DATA INPUT:

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 1 of 3

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 2 of 3

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 3 of 3

	Photo 5
JEFFERSONCOUNTY B-91 RUN LOUISVILLE TUNNEL (SBF-INB-HPIL) 13 cont. FP52 056 0265 027-039, NH205310 MARS NO. 806 0604 030 14 ITEM NO. 5-731.00, S-002-2011 15 BOXEND. 5 OF BORENDLE ANGLE -90 16 Longititromstartingpoint 78.7' to 91.5' Beginning Coordinates X X Elev. Elev 78.7'	DEPTH REC RaD 5.0' 15.0' 80.0' 5.0' 100% 5.0' 80.0' 90.0' 5.0' 100% 5.0' 85.0' 90.0' 5.0' 100% 1.5' 95.0' 1.4' 93%
Location / Orientation	Boring B-91, Box 5 of 5, 78.7 ft to 91.5 ft
Remarks	Laurel Dolomite

PR	OJE	ECT	F: Jefferson County, Louisville Tunnel		REC	:0	RD ()F D	RIL	L	НО	DLE	:		B -:	92							SI	HEET 1 OF 3
LC PR	CA ⁻	FIOI ECT	N: Louisville, Kentucky F NUMBER: 1831-10-5629		DRILLIN DRILL R	IG DA	ATE: 10 D-50 Tra)/30/201 ick NO	1			N E	ORTH ASTIN	HING NG:1	6:3042 12457	261.9 87.34 90.9	19 1	А 7 ІМІ ІТН [.]					D	ATUM: NAVD 88
CE SCALE EET	GRECORD		DESCRIPTION		ELEV.	N No.	ATION RATE (/min) COLOR % RETURN	VATION	FR-FI CL-CI SH-SI VN-VI	RACT LEAV HEAF EIN	TURE /AGE R	F-F J-J(P-P S-S	AULT DINT OLISHI		SN R-I ST ED PL	I-SMO ROUG -STEF -PLAN	OTH H PPED AR	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED	BC-BR MB-ME B-BED	OKEN CH. E DING		AETRAL	IT LOAD EX (psi)	
DISTAN				SYMB	(ft)	RU	PENETR/ (f) FLUSH	ELE	TOTA CORE	L % 2 %	SOLID CORE 9 8 8 9	3 50 8 %	R.Q.D. % 	FR IN PE	ACT. IDEX RFT 2⊈28		r.t. AXIS 2 6	TYPE AND SURFACE DESCRIPTION	- COV	NDUC k, cm/:	SEC	DIAN		
- 0	11	┨	GROUND SURFACE Rootmat and topsoil (3 inches)																					-
-	10/30/20				0.3			515																-
- - 5		3.25 HSA	CLAY (CL) - Light brown; very stiff; slightly moist; silty; with black oxide staining; RESIDUUM																					-
-	11/1/2011				509 5			510																-
-	-		8.1 ft to 9.3 ft (Run No. 1) LIMESTONE - Gray with light brown weathered section 8.1 to 8.6' with remaining rock being slightly weathered; sound; hard; crystalline.		508.3 9.3	1																		-
- 10 - -			9.3 ft to 14.3 ft (Run No. 2) LIMESTONE - Gray; slightly weathered with discolored seam at 10.0' to 10.5' along high angle fracture occuring at 75 degrees. Light brown discolored rock at 11.1' to 11.7'; clay seam at 11.7' to 12.0' and discolored rock 12.0' to 12.4'; limestone is hard; crystalline with pressure solution features throughout.		503.3	2		505										Clay seam						
- 15 - -			14.3 ft to 19.3 ft (Run No. 3) LIMESTONE - Gray; very slight weathering; slightly fractured; clay seam at 17.6' to 17.7'; crystalline; hard.		14.3	3		500										Clay seam						-
- - 20 -		NQ Core	19.3 ft to 20.0 ft (Run No. 4) LIMESTONE - Gray; slightly weathered; sound; hard; crystalline with clay seam at 20.0'. 20.0 ft to 24.3 ft (Run No. 4) SHALE - Dark gray: slightly weathered with thin		498.3 19.3 497.6 20.0													Clay seam						-
-			clay seams occuring along bedding planes; slightly fractured; thinly bedded with apparent dip of 0 to 3 degrees; moderately hard.		493.3	4		495																
- 25 -			24.3 ft to 29.3 ft (Run No. 5) SHALE - Dark gray; slightly weathered with clay seam at 28.3 to 28.6°; slightly fractured with fractures occuring along bedding at 0 degrees; fine grained; moderately hard.		24.3	5		490																-
- - - 30			29.3 ft to 31.5 ft (Run No. 6) SHALE - Same as previous run with clay seam at		<u>488.3</u> 29.3	6												Clay seam						-
\mathbf{F}			30.7'.		<u>48</u> 6.1									ļ				Clay seam						-
		1	CONTINUED NEXT PAGE									T		\parallel					\uparrow			\parallel		
DIS 1 ii	STA	NCI to 4	E SCALE DRILLING CONTRA(4 feet DRILLER:L. Morrison	CTOR	:S&ME,	Inc.					S			M	GBIT						<u>· I</u>		<u> </u>	LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/2/11 DATA INPUT:

PR LO PR	OJE CAT OJE	ECT: Jefferson County, Louisville Tunnel TION: Louisville, Kentucky ECT NUMBER: 1831-10-5629		REC DRILLIN DRILL R DRILLIN	G D/ IG: I G MI	RD (ATE: 1 D-50 Tr ETHOD	DF 0/30/20 ack : NQ	DF	RILI	_H	0	NO EA:	RTH STIN	IING: IG:12 Atioi	B- 3042 2457 N: -:	92 261.9 787.3	99 4	AZIMUTH:				SI D.	HEET 2 OF 3 ATUM: NAVD 88
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) FLUSH <u>COLOR</u>	% KELUKN ELEVATION	F () () () () () () () () () () () () ()	R-FRA CL-CLE SH-SHE /N-VEIN REC TOTAL CORE %	CTUR AVAG AR I DVER	RE BE RY OLID RE % B & R	F-FAU J-JOII P-POI S-SLI R.C %	JLT NT LISHI CKEI Q.D. %	SIDE FRA IND PER	SN R-I ST D PL CT. EX SCT. 2 FT 2 22 2 22 2 22 2 22 2 22 2 22 2 22	A-SMC ROUG -STEI -PLAI	OTH PPED VAR DIS AXIS 00 00	I FL-FLEXURED UE-UNEVEN O W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BI MB-M B-BEI	EN C BRE G AULI ICTIV n/sec	DIAMETRAL	POINT LOAD INDEX (psi)	
		CONTINUED FROM PREVIOUS PAGE											Π								Π		
		31.5 ft to 34.3 ft (Run No. 6) DOLOMITE - Gray and brownish gray; very slight weathering; slightly fractured with high angle fracture at 32.9 to 33.0' (70 degrees); crystalline; hard; with pressure solution features.		31.5 483.3	6		485	5 -										FR, R					
- 35		34.3 ft to 38.7 ft (Run No. 7) DOLOMITE - Light gray and brown; slightly weathered; sound; crystalline; hard.		34.3 478.9	7		480	-															
- 40		38.7 ft to 43.7 ft (Run No. 8) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline.		38.7	8		475	5															
- 45		43.7 ft to 48.8 ft (Run No. 9) DOLOMITE - Same as previous run; all breaks mechanical.		43.7	9		470																
50		48.8 ft to 53.9 ft (Run No. 10) DOLOMITE - Light brown; slightly weathered with pitting from 48.8' to 53.2' then becomes gray; very slightly weathered; sound; hard; crystalline.		48.8 463.7	10		465	5															
55		53.9 ft to 59.1 ft (Run No. 11) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline; with stylolites.		53.9 4 <u>5</u> 8.5	11		460																
· 60		59.1 ft to 64.1 ft (Run No. 12) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline; with calcite vugs; stylolites throughout.		59.1	12		455	5															
		CONTINUED NEXT PAGE																					
DIS 1 ir	TAN	NCE SCALE DRILLING CONTRA to 4 feet DRILLER:L. Morriso	CTOR	::S&ME,	Inc.						S	8	NG	NTEG	BIT		<u> </u>			 	 	<u></u>	LOGGED: NJP CHECKED: CSL

PRO		T NUMBER: 1831-10-5629	(1)	DRILL RI DRILLING	G: D G ME	-50 Tra THOD	ack NQ	FR-F	RAC	TURE	E	EAS	STIN LINA	G:12	2457 N: -9 SM	87.3 90° 4-SM	34 00TH	AZIMUTH:	BC-F	BROK	ENCO	ORE		
FEET	DRILLING RECOF	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	FLUSH <u>COLO</u>	ELEVATION	CL-C SH-S VN-V R TOT	2 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7		40 H dl	J-JOIN P-POL S-SLIC R.C %	VT LISHE CKEN L.D.	ED ISIDEI FRA INDI PER	R-I ST D PL CT. EX FT £2 8	-STE -PLA DIP CORE	GH PPEI NAR DIS W.r.t. AXIS 0 0	UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION			RAULI JCTIV m/sec	C ITY	INDEX (psi)	
	_	CONTINUED FROM PREVIOUS PAGE	4																\bot					
65	NQ Core	64.1 ft to 69.1 ft (Run No. 13) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline; pyritic; pressure solution features throughout.		453.5 64.1	12		450																	
70		69.1 ft to 70.9 ft (Run No. 14) DOLOMITE - Same as previous run down to 70.9 70.9 ft to 72.5 ft (Run No. 14) SHALE -		448.5 69.1 446.7 70.9	14																			
		Gray; slightly weathered; very close joint spacing with joints containing clay at 72.0' and 72.1'; moderately hard; fine grained.		445.1 72.5														J, w/clay	+				+	
80		Conng Terminated at 72.5 Feet																						
90																								

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 1 of 3

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 2 of 3

	Photo 3	
Jatterson Co. R.M. LEN. Louisville Turnel [B:92] R.M. LEN. FD 520546245 037-034, NH 2453048 7 60.47. 5.1 MAB No. 60604 03D 8 5.0 Jan No. 5-731.00, 5-002-201 9 5.0 Box No. 3. 6 0 DEPTH: 36.1 4883	AGTH DEFTN REC ROD 0' 34.3'h 38.7' 4.4' 68.2' 0' 38.7'h 45.7' 50' 1007' 0' 43.7'h 498' 50' 1007' 5.1' 1002' 5.1' 1002'	Photographer: N. Peterson 11/1/2011
Location / Orientation	Boring B-92, Box 3 of 5, 38.1 ft to 48.8 ft	
Remarks	Laurel Dolomite	

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 3 of 3

	Photo 5	
Sefferson Co. RUN Louisville Tunnel B-92 FDS20560265037-039, NH 2633018 12 cont. MARS No. 80604 03D 13 Item No. 5-731.00, 5-002-2011 14 Box No. 5 of 5 DSTEN: 125° + 725°	ENGTH DEPTH REC ROD 5.0' 59.1'-64.1' 5.0' 100% 5.0' 64.1'-69.1' 5.0' 100% 3.4' 69.1'-72.5' 3.4' 88% erminated e 72.5'	
	Photographer: N. Peterson	
Location / Orientation	Boring B-92, Box 5 of 5, 63.5 ft to 72.5 ft	
Remarks	Laurel Dolomite	

LO PR	CAT CJE	TION: Louisville, Kentucky		DRILLIN DRILL R DRILLIN	G DA IG: I G MI	ATE: D-50 ETH	10, Trac OD:	/31/201 ck NQ	1			NC EA INC	RTH STIN	HING: NG:12 ATIO	304 2458 N: -	328. 362.0 90°	54 2	AZIMUTH:						I	DATUM: 1	NAVD 88
LEE I	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u>	ELEVATION	FR-F CL-C SH-S VN-V R TOT. CORE	RACT CLEAV CHEAR (EIN ECOV AL E% Q R	URE AGE ERY SOLID CORE 9 8 8 9 9	F-FA J-JO P-PC S-SL R. 8 8	ULT NT LISH ICKE Q.D. %	ED NSIDE FRA IND PER 9	ST R- ST D PL CT. EX FT S 07	N-SMC ROUC I-STE -PLA DIP CORE	OOTH SH PPED VAR DISC v.r.t. AXIS 00 00	FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-E MB-I B-BE	HYDR ONDU k, cr	EN C I. BRI IG IG IG ICTIV m/sec		DIAMETRAL			
0	-1	GROUND SURFACE																								
	10/31/201	Rootmat and topsoil (3 inches)		0.3				520																	-	
		CLAY (CL) - Brown and gray to tan; stiff to very hard; slightly moist; silty; RESIDUUM																								
5	2/2011	Auger rerusal encountered at 8.3 feet. Begin NQ core at 8.3 feet.						515																	-	
	11/2	8.3 ft to 9.3 ft (Run No. 1) LIMESTONE - Gray with light brown weathering at joints (8.7' and 8.9'); hard; crystalline.		513.1 8.3 512.1 9.3	1													J, R Solution weathering			+				-	
0		9.3 ft to 14.3 ft (Run No. 2) LIMESTONE - Brownish gray and gray; moderately weathered with solutional weathering at 9.5', clay filled void at 10.0' to 10.4'; clay filled joints at 10.6' and 11.4'. From 11.4' to 14.0' trackie' ibethum:			2			510										Clay filled void J, CL J, CL							_	
		crystalline with joints at 12.3', 13.3', and 13.7'.		507.1 14.3														J, R J, R			+				-	
5		14.3 ft to 19.3 ft (Run No. 3) LIMESTONE - Gray; moderately weathered with clay filled void at 14.9' to 16.9'. Clay is reddish brown fat clay with manganese nodules. From 16.9' to 19.3' limestone is gray; slightly weathered; hard; crystalline; with stylolites			3			505										Clay filled void (2 fee	t)						-	
		throughout.		502.1 19.3																					-	
0		 19.3 ft to 23.6 ft (Run No. 4) LIMESTONE - Gray; very slight weathering; close to very close joint spacing with joints at 22.7' and 23.6'. Thin shale partings present 22.7' to 23.6'; hard; crystalline. 			4			500										J, R						_	-	
		23.6 ft to 24.3 ft (Run No. 4) SHALE - Gray; very slight weathering; moderately hard; fine grained.		497.8 23.6 497.1 24.3														J, R J, Cl			+				_	
5		24.3 ft to 29.3 ft (Run No. 5) SHALE - Gray; slightly weathered; very close joint spacing with joints at 24.3' to 26.9' some containing clay; shale is moderately hard; fine grained; friable at some joints.			5			495																	-	
0				492.1 29.3	6													.l, R							-	
		CONTINUED NEXT PAGE						490	┞┼┼		₩		+	₩	Ħ	Ħ	₩		╈	Ħ	╡	+	\ddagger			

PR LO PR		T: Jefferson County, Louisville Tunnel N: Louisville, Kentucky T NUMBER: 1831-10-5629	F	REC DRILLING		CDC TE: 10 -50 Tra	DF D //31/201 ⁻ ck		LE: NORTH EASTIN	B- IING:304 NG:12458	93 328.54 362.02				SI D.	HEET 2 OF 3 ATUM: NAVD 88
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	FLUSH <u>COLOR</u>	ELEVATION	FR-FRACTURE CL-CLEAVAGE SH-SHEAR VN-VEIN RECOVERY TOTAL CORE % & & & & & & & & & & & & & & & & & & &	F-FAULT J-JOINT P-POLISH S-SLICKEI R.Q.D. % 8 8 8 9 8	S ED S SIDED P FRACT. INDEX PER FT © ₽ ₽ 8	H-SMOOTH ROUGH T-STEPPED L-PLANAR DISC DIP w.r.t. CORE AXIS 0 % @ 8	AZIMUTH: FL-FLEXURED UE-UNEVEN W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BROKI MB-MECH B-BEDDIN HYDR CONDL k, cr	EN CORE I. BREAK IG RAULIC JCTIVITY m/sec	L DIAMETRAL POINT LOAD INDEX (psi)	
		CONTINUED FROM PREVIOUS PAGE														
- - - 35 -		29.3 ft to 34.3 ft (Run No. 6) SHALE - Gray; slightly weathered with close joint spacing 29.3' to 30.3' then rock becomes sound to 33.8'. From 33.8' to 34.3' moderately weathered; very close joint spacing with clay at joints. Moderately hard, fine grained throughout. 34.3 ft to 35.1 ft (Run No. 7) SHALE - Gray; very slight weathering; sound; moderately hard; fine grained down to 35.1'. 35.1 ft to 39.3 ft (Run No. 7) DOLOMITE		<u>487.1</u> 34.3 <u>486.3</u> 35.1	6		485									
-		 Gray; very slight weathering; sound; hard; crystalline with stylolites. 		482.1												
- 40 - -	NQ Core	39.3 ft to 44.3 ft (Run No. 8) DOLOMITE - Same as previous run; all breaks mechanical.		39.3	8		480									
- 45 - -	11/3/2011	44.3 ft to 49.3 ft (Run No. 9) DOLOMITE - Same as previous run; all breaks mechanical.		472.1	9		475									
- 50 - -		49.3 ft to 54.3 ft (Run No. 10) DOLOMITE - Same as previous run down to 51.9' then dolomite is light brown and gray; slightly pitted; hard; crystalline.		49.3	10		470									-
- 55	NQ Core	54.3 ft to 59.3 ft (Run No. 11) DOLOMITE - Light brown; moderately weathered with pitting; hard; crystalline; sound down to 57.1'. From 57.1' to 59.3' dolomite is gray; very slight weathering; hard; sound; crystalline.		54.3 462 1	11		465									
- 60 - -		59.3 ft to 64.3 ft (Run No. 12) DOLOMITE - Gray, very slight weathering; sound; hard; crystalline; stylolites throughout with one stylolite weathered to gray green at 60.1'.		59.3	12		460									-
<u> </u>		UUNTINUED NEXT PAGE														
DIS 1 ir	TANC	E SCALE DRILLING CONTRAC 4 feet DRILLER:L. Morrison	CTOR:S	S&ME, I	nc.				82	NTEGRIT	Y					LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/3/11 DATAINPUT:

PRO.		N: Louisville, Kentucky F NUMBER: 1831-10-5629		DRILLIN DRILL R DRILLIN	g da Ig: I g me	ATE: 1 D-50 Tra ETHOD	0/31/201 ⁻ ack : NQ	1 FR-	FRA	CTUR	E	NC EA INC	ORTH STIN	HING NG:1 ATIC	::304 245)N: S	1328 862. -90°	3.54 .02 ,	AZIMUTH:	BC-	BRO	KEN	CORI	E		DATUM: NAVD 88
FEET	DRILLING RECOR	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RAT (ft/min) FLUSH <u>COLO</u>	ELEVATION	CL- SH- VN- TO COF 8 99	CLE/ SHE/ VEIN RECO TAL RE %		E Y DLID RE %	J-JO P-PC S-SL	INT DLISH ICKE Q.D. %		R ED P ACT. DEX R FT	-ROL T-STI L-PL/ DIF COR	JGH EPPE ANAF DI P.w.r.t. REAXI 9, 8, 8	UE-UNEVEN ED W-WAVY R C-CURVED SCONTINUITY DATA S TYPE AND SURFACE DESCRIPTION	MB- B-BI		H. BF		DIAMETRAI	POINT LOAD	
		CONTINUED FROM PREVIOUS PAGE	44												Ţ	Ţ									
				457.1	12											Ħ			1						-
65		64.3 ft to 69.3 ft (Run No. 13) DOLOMITE - Same as previous run; all breaks mechanical.		64.3	13		455																		
70	NQ Core	69.3 ft to 74.3 ft (Run No. 14) DOLOMITE - Same as previous run; all breaks mechanical.		<u>452.1</u> 69.3 447.1	14		450																		
75		74.3 ft to 76.5 ft (Run No. 15) SHALE - Gray; very slight weathering; joints at 75.2' and 76.2'; moderately hard; fine grained; calcareous.		74.3 444.9	15		445											J, R J, R							-
80		Coring Terminated at 76.5 Feet.																							
90																									

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 1 of 3

	Photo 1
AFFFERSION COUNTY B-93 RUN LOISVILLE TIANNEL ISBI-INB/ITL) FID 1 FIDS20560205037-039, NH265310HR 1 2 MARS NO, B0604 030 2 2 IFMN0.5-731L00, S-002-2001 2 3 BOXN0.1 0F 3 BOXN0.2 0F 3 BOXN0.1 0F 3 BOXN0.2 0F 3 BOXN0.3 0F 3 BOXN0.4 0F 3 BOXN0.5 0F 7 BOXN0.4 0F 3 BOXN0.5 0F 7 BOX 0F <	LO B3'-9.3 I.0 TOZ TOZ <thtoz< <="" th=""></thtoz<>
Location / Orientation	Boring B-93, Box 1 of 5, 8.3 ft to 25.5 ft
Remarks	Louisville Limestone to a depth of 23.6 feet. Waldron Shale encountered at 23.6 feet.

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 2 of 3

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 3 of 3

	Photo 5
JEFFERSON COUNTY B-93 RUN CONSVILLE TUNNEL (SB-1MB-HPI F0520560265037-039, NH265300 14 cont MARS NO. 80604 030 15 ITEMNO. 5-731.00 S-002-201 BOXNO. 5-06 5 BORE HOLE ANGLE - 90	LENGTH DEPTH REC Rad 5.0 493'743' 5.0 100% 2.1 74.3-76.5 2.2 82%
Lengthtromstarting point <u>70. T 10. 703</u> Begenning Low dinates X X Site: Elev. 70.4 C C C C C C C C C C C C C	Photographer: N. Peterson
Location / Orientation	Boring B-93, Box 5 of 5, 70.4 ft to 76.5 ft
Remarks	Laurel Dolomite down to 74.3 feet. Shale encountered at 74.3 feet to 76.5 feet.

PRO LOC PRO	DJEC ATIO	CT: Jefferson County, Louisville Tunnel DN: Louisville, Kentucky CT NUMBER: 1831-10-5629		REC DRILLIN DRILL R DRILLIN	;O IG D IG: IG:	RC ATE: D-50	10, 10, Trac)F D /31/201 ck NQ	R	IL	Lŀ	łC)LI N E	E: IORT AST	THI FINI	NG:: G:12 TION	B- 304 2459 N: •	94 395 936.0	. 09 65	AZIMUTH:							SHI DA	eet 1 of 3 Tum: Navd 88
FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min)	FLUSH <u>COLOR</u> 8	ELEVATION	FF CI SI VI	R-FR L-CLI H-SH N-VE RE(OTAL ORE %	ACTL EAVA EAR IN COVE	JRE GE RY SOLIE	F-F J-J P-I S-S	FAULT OINT POLIS SLICK R.Q.D %	T SHE (EN)	D SIDEI INDI PER	SI R S D PI CT. EX FT 92 02	N-SM -ROU T-STE L-PL/ DIP COR	OOTH GH EPPEL NAR DIS W.r.t. E AXIS	I FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED CONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC- MB- B-B	BROI MECI EDDI HYD COND k, c	KEN		RE K	DIAMETRAL POINT LOAD	INDEX (psi)	
		GROUND SURFACE			T				Ť	- 4		1	<u>T</u>		Ť	Ĩ		ΠÎ								Π	$\uparrow\uparrow$	
Ŭ	1/2011	Rootmat and topsoil (3 inches)		0.3	1				H	\parallel		\parallel		\parallel	\parallel	++	\parallel	\parallel	++		_	+	-	\parallel	_	\parallel	\parallel	
5	1 3 25 HSA 3 25 HSA	CLAY (CH) - Reddish brown; stiff to hard; slightly moist; RESIDUUM Auger refusal encountered at 13.0 feet. Begin NQ core at 13.0 feet.						530																				
	1/3/20							520	μ			\parallel									_				\downarrow			
15	-	13.0 ft to 15.0 ft (Run No. 1) LIMESTONE - Light gray; moderately weathered with solution channel at 14.3' to 14.5' with clay (100% water loss at 14.3'); hard; crystalline.		519.5 13.0 517.5	1															Solutional weathering with clay filled voids								
15		15.0 ft to 20.0 ft (Run No. 2) LIMESTONE - Gray; moderately weathered with staining at joints; very close joint spacing; joints at 16.1' and 18.2'; severly discolored; solutional weathering. Limestone is hard; crystalline with thin shale partings at 19.0' to 20.0'.		512.5	2			515												J, R J, R								
20	NO Core	20.0 ft to 25.0 ft (Run No. 3) LIMESTONE - Gray; slightly weathered; very close joint spacing with joints at 21.0', 21.4', 22.0' with clay, and 23.1'; limestone is moderately hard with thin shale partings down to 23.2'; becomes fine grained almost oolitic at 23.2' to 25.0'; fossiliferous.		20.0	з			510												J, R J. R J, CL J, R								
25		25.0 ft to 30.0 ft (Run No. 4) LIMESTONE - Gray; slightly weathered to moderately weathered 26.9 to 27.6'; which has thin shale partings; some weathered to clay. From 27.6' limestone is gray; very slight weathering; sound; hard; fine grained.		25.0	4			505																				
30		30.0 ft to 35.0 ft (Run No. 5) LIMESTONE - Gray; slightly weathered with weathered and discolored joint at 33.0' to 33.2'; hard; crystalline.		30.0	5																							
		CONTINUED NEXT PAGE																										
		CE SCALE DRILLING CONTRA	.CTOR	:S&ME,	Inc.	<u> </u>						S	56	2		1			_11							<u> </u>	<u> </u>	LOGGED: N

PR	OJEC	T: Jefferson County, Louisville Tunnel		REC	O	RD	OF	DRI	LL	_H	O	LE	:		B-	94							Sł	HEET 2 OF 3
LO PR	CATIC OJEC	DN: Louisville, Kentucky T NUMBER: 1831-10-5629	ם ב ב	ORILLIN ORILL R ORILLIN	g d# IG: I G MI	ATE: D-50 T ETHOI	10/31/20 īrack D: NQ	011				NC EA	RTH STIN	HING NG:1 ATIC	6:304 2459 2N: •	395. 936.6 90°	09 65	AZIMUTH:					D/	ATUM: NAVD 88
DISTANCE SCALE FEET	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) COLOR	ELEVATION	FR CL SH VN	FRA	CTUR AVAG AR N OVER	E E Y DLID RE %	F-FA J-JOI P-PO S-SL	ULT NT ILISH ICKEI Q.D. %	ED NSID FR IN PE	SI R S ED PI ACT. DEX R FT	ROU ROU I-STE PLA	OOTH GH PPEI NAR DIS w.r.t.	4 FL-FLEXURED UE-UNEVEN D W-WAVY C-CURVED SCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	BC-BF MB-MI B-BED B-BED	ROKEI ECH. E DDING NDUC k, cm/	N CORE BREAK	DIAMETRAL	POINT LOAD INDEX (psi)	
	_	CONTINUED FROM PREVIOUS PAGE					_		40	89	40	8.4	4 0	9	0	0.0	96		-	-	10.40			
-		30.0 ft to 35.0 ft (Run No. 5) LIMESTONE - Gray; slightly weathered with weathered and discolored joint at 33.0' to 33.2'; hard; crystalline.			5		500)										J, R, stained						-
- 35 - -		35.0 ft to 40.0 ft (Run No. 6) SHALE - Dark gray; slightly weathered; very close joint spacing with joints at 35.4', 35.6', 36.9', 37.4', 37.9' with clay, 38.5' with clay; 39.2' with clay; moderately hard; fine grained; calcareous.		<u>497.5</u> 35.0	6			5										J_R J_R J_R J_CL J_CL						-
- 40 -		40.0 ft to 43.0 ft (Run No. 7) SHALE - Dark gray; slightly weathered; with very close joint spacing 40.0' to 43.0' with clay at joints; moderately hard; fine grained.		<u>492.5</u> 40.0	7		490																	-
- - 45	NQ Core	43.0 ft to 45.0 ft (Run No. 7) DOLOMITE Gray; slightly weathered; very close joint spacing with thin shale partings down to 44.0'; moderately hard; fine grained.		489.5 43.0 487.5 45.0			_																	-
-		45.0 ft to 50.0 ft (Run No. 8) DOLOMITE - Gray with shale seam and clay filled joints at 45.0' to 46.0'; from 46.0' to 50.0' gray; very slight weathering; sound; hard; crystalline; stylolites throughout.			8		485	5																-
- 50 - -	/4/2011	50.0 ft to 55.0 ft (Run No. 9) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline with one joint at 54.9'.		<u>482.5</u> 50.0	9		480																	-
- 55 - -	11 NQ Core	55.0 ft to 60.0 ft (Run No. 10) DOLOMITE - Gray; very slight weathering; hard; one clay filled joint at 56.1 to 56.3; all other breaks mechanical; crystalline.		477.5 55.0 472.5	10		475	5																-
- 60		60.0 ft to 65.0 ft (Run No. 11) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline with stylolites down to 62.6'. From 62.6' to 65.0' moderately weathered; brown; pitted; hard; crystalline; with stylolites.		60.0	11		470																	-
		CONTINUED NEXT PAGE							Π		Π	\prod	\prod	\prod		\prod	\prod		\square	Τ		Π		
DIS 1 ir	TAN(2E SCALE DRILLING CONTRA 4 feet DRILLER:L. Morrison	CTOR:	S&ME,	Inc.						S	EER		M	GRIT	Y			_•!					LOGGED: NJP CHECKED: CSL

SME_ROCK GLONEW.GPJ GLDR_LDN.GDT 11/7/11 DATA INPUT:

PRO		CT NUMBER: 1831-10-5629	1	DRILL RI DRILLIN	g: I g me	D-50 Tra ETHOD:	ck NQ	FR	-FRA	CTUF	RE	EA INC	STI	NG: ATI	1245 ON:	5936 -90 SM-S	6.65)°	тн	AZIMUTH:	BC-E	BROM	KEN	CORE	=		
	DRILLING RECORI	DESCRIPTION	SYMBOLIC LOG	ELEV. DISTANCE (ft)	RUN No.	PENETRATION RATE (ft/min) FLUSH <u>COLOR</u>	ELEVATION		-CLE/ -SHE/ -VEIN RECO TAL RE %	AVAG AR V OVEF	SE RY OLID DRE % 2 9 8	J-JO P-PO S-SL	INT DLISH ICKE Q.D. %	IED NSIE FF IN PE	DED I RACT NDEX ER FT	R-RC ST-S PL-PI		PED IR DISCO	UE-UNEVEN W-WAVY C-CURVED DNTINUITY DATA TYPE AND SURFACE DESCRIPTION	MB-N B-BE		H. BR NG RAU UCTI cm/se		DIAMETRAI	POINT LOAD INDEX (psi)	
Ţ		CONTINUED FROM PREVIOUS PAGE	<i>4</i> , 7,					\prod				\square								\bot			\square		\prod	
65				467.5	11															+						-
		65.0 ft to 70.0 ft (Run No. 12) DOLOMITE - Brownish gray;		00.0																+						-
		moderately weathered with pitting; hard; crystalline; down to 67.9'. From 67.9' to 70.0' gray; very slight weathering; sound; hard; with stylolites.			12		465													+					++	-
70				462.5 70.0																+						-
		70.0 ft to 75.0 ft (Run No. 13) DOLOMITE - Gray; very slight weathering; sound; hard; crystalline with			13		460													+					++	-
		stylolites.		457.5																╞						-
0	NO ON			75.0																╞					╟	-
		75.0 ft to 80.0 ft (Run No. 14) DOLOMITE - Same as previous run; all breaks mechanical.			14		455													+					++	-
30				452.5 80.0																+			+			-
		80.0 ft to 85.0 ft (Run No. 15) DOLOMITE - Same as previous run; all			15		450													╞						-
		breaks mechanical.		447 5																+			+			-
85		85.0 ft to 85.4 ft (Run No. 16) DOLOMITE - Same as previous run	Z	447.5 85.0 85.4		\top		Щ		#		#		1	Щ		\parallel			\downarrow					\parallel	-
		down to 85.4'. 85.4 ft to 87.5 ft (Run No. 16) SHALE - Dark gray: very slight weathering; sound; moderately hard; fine grained; calcareous.		445.0	16		445													\downarrow						
90		Coring Terminated at 87.5 Feet		87.5																						

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 1 of 3

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 2 of 3

Photo 3 JEFFERSON COUNTY B-94 RUN LOUIS VILLE TINNEL (SB)-INB)(PIL FD2 056 0265037-039, NI 2653018 MARS NO. 80604 030 8 TEMNO. 5-731.00, S-002-2011 BOXENO. 3 OF 9 BOXE HULF, ANGLE -90 9 Camphfromstarting patr 433' to 58.6' 10 LENGTH DEPTH REC 11/4/2011 ROD 5.0' 40.0-45.0 5.0 32% 5.0 450-50.0 50 78% 5.0 50.0'-55.0' 5.0 98% 5.0 55.0-60.0 5.0 92% EndingCoor RUN 10 Cont. Box 4 Ē Photographer: N. Peterson Boring B-94, Box 3 of 5, 43.3 ft to 58.8 ft Location / Orientation Waldron Shale down to 43.0 feet. Laurel Dolomite Remarks encountered at 43.0 feet.

Louisville Tunnel Project Louisville, Jefferson County, Kentucky Project No. 1831-10-5629 Sheet 3 of 3

	Photo 5	
MEFFERSUN COUNTY B-94 LOUISVILLE TUNNEL (SB)-INB-[UPIL] PD52050255037-0339 NH 2655301B HARS NO. 800640331 HEMNO.5-731.000 S-002-2011 HOXNO.5 OF IS BOREHOLE ANGLE -90 Longliftromstartingpoint IZ. T to <u>B7.5</u> ReparangCoordinates X X Hr. EL.	ENGTH DEPTH REC ROD 50' 700'-750' 50' 100% 50' 750'-800' 50' 100% 50' 800'-850' 50' 100% 25' 850-875' 2.5' 100%	otographer: N. Peterson 11/4/2011
		РЧ
Location / Orientation Remarks	Laurel Dolomite down to 85.4 feet. Shale encountered at 8	85.4
	feet to 87.5 feet.	-

APPENDIX II ROCK LABORATORY TESTING

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project Sample Date: <u>11/28/2011</u>

Report Date: 12/7/2011

Sample Strength Moisture Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load No. (ft) Diameter (in^2) (lb/ft^3) (lb) (psi) (%) Location Length (psi/sec) 1 B-85 Run 2 Box 1 9.2 4.26 1.97 3.05 168.1 88 36,250 11,885 0.1 2 B-85 Run 7 Box 3 36.4 4.53 1.97 3.05 163.7 84 23,640 7,751 2.5 5 4.24 1.98 3.08 162.6 84 31,410 0.2 B-85 Run 12 Box 4 61.2 10,198

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 1 (Run 2 Box 1) 9.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 2 (Run 7 Box 3) 36.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 5 (Run 12 Box 4) 61.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 5 (Run 12 Box 4) 61.2' (Unconfined)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project Sample Date: 11/30/2011

Report Date: 12/8/2011

Sample Strength Moisture Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load No. (ft) Diameter (in^2) (lb/ft^3) (lb) (psi) (%) Location Length (psi/sec) 1 B-86 Run 2 Box 1 6.4 4.23 1.97 3.05 169.1 86 57,520 18,859 0.1 4 B-86 Run 8 Box 3 37.2 4.21 1.97 3.05 165.7 78 16,160 5,298 2.5 5 4.24 1.98 3.08 157.0 90 27,060 0.1 B-86 Run 13 Box 5 62.2 8,786

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 1 (Run 2 Box 1) 6.4' (Unconfined)

(Run 2 Box 1) 6.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 4 (Run 8 Box 3) 37.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 4 (Run 8 Box 3) 37.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 5 (Run 13 Box 5) 62.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 5 (Run 13 Box 5) 62.2' (Unconfined)

> Unconfined Compression Cores sampled 11-30-11 B-86 Page 1 of 1

1413 Topside Road, Louisville, TN 37777 S&ME, Inc. - Knoxville

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project Sample Date: 11/17/2011 Report Date: 12/2/2011

Sample	Boring	Depth	Specimen Dimension, in.		Area	Bulk Density	Loading Rate	Max. Load	Strength	Moisture
No.	Location	(f t)	Length	Diameter	(in ²)	(lb/ft ³)	(psi/sec)	(lb)	(psi)	(%)
1	B-87 Run 2 Box 1	6.8	4.12	1.96	3.02	168.7	84	42,710	14,142	0.1
3	B-87 Run 4 Box 1	15.1	4.22	1.98	3.08	160.9	87	33,600	10,909	0.3
5	B-87 Run 6 Box 2	27.0	4.50	1.95	2.99	165.6	65	21,230	7,100	2.0

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 1 (Run 2 Box 1) 6.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 1 (Run 2 Box 1) 6.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 87 Sample 3 (Run 4 Box 1) 15.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629 Boring 87 Sample 3

(Run 4 Box 1) 15.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 5 (Run 6 Box 2) 27.0' (Unconfined)

Boring 87 Sample 5 (Run 6 Box 2) 27.0' (Unconfined)

12/3/2011

Report Date:

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

11/17/2011

Sample Date:

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project

Sample Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load Strength Moisture (**ft**) (in^2) (lb/ft^3) (lb) (%) No. Location Length Diameter (psi/sec) (psi) 2 3.05 B-88 Run 1 Box 1 11.5 4.42 1.97 167.5 97 40,130 13,157 0.1 3 B-88 Run 2 Box 1 15.7 4.10 1.97 3.05 163.9 93 0.4 33,870 11,105 4 B-88 Run 3 Box 1 22.1 4.33 1.97 3.05 172.1 100 65,050 21,328 0.1 5 B-88 Run 5 Box 2 29.4 4.33 1.97 3.05 163.5 87 29,740 9,751 0.6

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 2 (Run 1 Box 1) 11.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 2 (Run I Box 1) 11.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 3 (Run 2 Box 1) 15.7' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 3 (Run 2 Box 1) 15.7' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 4 (Run 3 Box 1) 22.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 4 (Run 3 Box 1) 22.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 5 (Run 5 Box 2) 29.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 5 (Run 5 Box 2) 29.4' (Unconfined)

Unconfined Compression Cores sampled B-88 Page 1 of 1

3201 Spring Forest Road Raleigh, NC 27616

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project Sample Date: 11/16/2011

Report Date: 12/5/2011

Sample Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load Strength Moisture (in^2) (lb/ft^3) No. Location (**ft**) Length Diameter (psi/sec) (**lb**) (psi) (%) 1 B-89 Run 2 Box 1 18.2 4.26 1.97 3.05 169.1 103 61,430 20,141 0.1 2 B-89 Run 8 Box 3 48.4 4.29 1.97 3.05 166.0 83 25,880 8,485 2.0 5 B-89 Run 14 Box 5 75.4 4.27 1.97 3.05 157.7 101 32,430 10,633 0.1

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 1 (Run 2 Box 1) 18.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 2 (Run 8 Box 3) 48.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 2 (Run 8 Box 3) 48.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 5 (Run 14 Box 5) 75.4' (Unconfined)

Boring 89 Sample 5 (Run 14 Box 5) 75.4' (Unconfined)

Unconfined Compression Cores sampled B-89 Page 1 of 1

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project Sample Date: 11/30/2011

Report Date: 12/9/2011

Sample Strength Moisture Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load No. Location (ft) Length Diameter (in^2) (lb/ft^3) (psi/sec) (lb) (psi) (%) 1 B-90 Run 2 Box 1 7.1 4.32 1.97 3.05 169.4 85 37,140 12,177 0.3 2 B-90 Run 4 Box 1 14.8 4.35 1.97 3.05 169.2 84 54,090 17,734 0.2

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629 Boring 90 Sample 1

(Run 2 Box 1) 7.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 90 Sample 1 (Run 2 Box 1) 7.1' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 90 Sample 2 (Run 4 Box 1) 14.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629 Boring 90 Sample 2 (Run 4 Box 1) 14.8' (Unconfined)

11/23/2011

Report Date:

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

11/2/2011

Sample Date:

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project

Sample Boring Depth Specimen Dimension, in. **Bulk Density** Loading Rate Max. Load Strength Moisture Area (in^2) (lb/ft^3) No. Location (**ft**) Length Diameter (psi/sec) (**lb**) (psi) (%) 1 B-91 Run 2 Box 1 21.0 4.37 1.98 3.08 168.7 96 49,280 16,000 0.1 2 B-91 Run 6 Box 2 43.5 4.28 1.97 3.05 163.0 85 28,110 9,216 1.3 6 B-91 Run 10 Box 4 64.4 4.34 1.98 3.08 166.9 103 66,400 21,558 0.1 7 B-91 Run 14 Box 5 82.9 4.38 1.98 3.08 168.5 89 35,080 11,390 0.1

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 1 (Run 2 Box 1) 21.0' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 2 (Run 6 Box 2) 43.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 6 (Run 10 Box 4) 64.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 91 Sample 6 (Run 10 Box 4) 64.4' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 7 (Run 14 Box 5) 82.9' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 7 (Run 14 Box 5) 82.9' (Unconfined)

Unconfined Compression Cores sampled 11-02-11 B-91 Page 1 of 1

Louisville Tunnel Project 1831-10-5629

> Boring 91 Sample 1 (Run 2 Box 1) 21.0' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 2 (Run 6 Box 2) 43.5' (Unconfined)

3201 Spring Forest Road Raleigh, NC 27616

11/18/2011

Report Date:

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

11/1/2011

Sample Date:

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project

Sample Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load Strength Moisture (**ft**) (in^2) (lb/ft^3) No. Location Length Diameter (psi/sec) (lb) (psi) (%) 3.08 1 B-92 Run 2 Box 1 13.0 4.24 1.98 171.6 94 75,590 24,542 0.1 3 B-92 Run 5 Box 2 24.7 163.8 97 4.29 1.97 3.05 26,020 8,531 1.7 5 B-92 Run 7 Box 2 34.5 4.28 1.98 3.08 169.1 96 43,890 14,250 0.1 6 B-92 Run 10 Box 4 51.8 4.19 1.98 3.08 156.1 96 23,150 7,516 0.1 7 97 B-92 Run 14 Box 5 69.5 4.22 1.98 3.08 168.3 34,010 11,042 0.3

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 1 (Run 2 Box 1) 13.0' (Unconfined)

13.0' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 3 (Run 5 Box 2) 24.7' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 5 (Run 7 Box 2) 34.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 6 (Run 10 Box 4) 51.8' (Unconfined)

51.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 7 (Run 14 Box 5) 69.5' (Unconfined)

(Run 14 Box 5) 69.5' (Unconfined)

Unconfined Compression Cores sampled 11-01-11 B-92 Page 1 of 1

24.7° (Unconfined)

3201 Spring Forest Road Raleigh, NC 27616

34.5' (Unconfined)

11/30/2011

Report Date:

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

11/3/2011

Sample Date:

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project

Bulk Density Sample Boring Depth Specimen Dimension, in. Area Loading Rate Max. Load Strength Moisture (**ft**) (in^2) (lb/ft^3) No. Location Length Diameter (psi/sec) (lb) (psi) (%) 3.08 1 B-93 Run 4 Box 1 19.5 4.13 1.98 168.5 101 50.090 16,263 0.1 4 B-93 Run 6 Box 2 31.3 4.53 1.97 3.05 164.7 83 1.9 29,230 9,584 6 B-93 Run 11 Box 3 54.5 4.24 1.98 3.08 166.1 98 50,160 16,286 0.1 7 B-93 Run 14 Box 5 71.2 4.43 1.98 3.08 171.0 89 60,800 19,740 0.1 8 B-93 Run 15 Box 5 74.9 4.45 1.97 3.05 163.3 88 30,440 9,980 1.2

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 1 (Run 4 Box 1) 19.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 4 (Run 6 Box 2) 31.3' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 6 (Run 11 Box 3) 54.5' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 7 (Run 14 Box 5) 71.2' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 93 Sample 8 (Run 15 Box 5) 74.9' (Unconfined)

Boring 93 Sample 8 (Run 15 Box 5) 74.9' (Unconfined)

Unconfined Compresion Cores sampled 11-03-11 B-93 Page 1 of 1

12/1/2011

Report Date:

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

11/4/2011

Sample Date:

Project #: 1831-10-5629 Project Name: Louisville Tunnel Project

Sample Boring Depth Specimen Dimension, in. Area **Bulk Density** Loading Rate Max. Load Strength Moisture (**ft**) (in^2) (lb/ft^3) No. Location Length Diameter (psi/sec) (lb) (psi) (%) 3.05 168.9 2 B-94 Run 2 Box 1 17.6 4.19 1.97 84 43,990 14,423 0.1 B-94 Run 7 Box 2 40.8 3.02 164.7 82 9,321 1.5 5 4.09 1.96 28,150 6 B-94 Run 11 Box 4 64.0 4.21 1.97 3.05 161.8 89 34,360 11,266 0.1 7 B-94 Run 15 Box 5 81.6 4.25 1.97 3.05 170.7 83 42,400 13,902 0.2 8 B-94 Run 16 Box 5 85.9 4.26 1.98 3.08 164.0 84 31,810 10,328 1.1

NOTES: Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 2 (Run 2 Box 1) 17.6' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 5 (Run 7 Box 2) 40.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 6 (Run 11 Box 4) 64.0' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 7 (Run 15 Box 5) 81.6' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 94 Sample 8 (Run 16 Box 5) 85.9' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 2 (Run 2 Box 1) 17.6' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 94 Sample 5 (Run 7 Box 2) 40.8' (Unconfined)

Louisville Tunnel Project 1831-10-5629

> Boring 94 Sample 6 (Run 11 Box 4) 64.0' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 7 (Run 15 Box 5) 81.6' (Unconfined)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 8 (Run 16 Box 5) 85.9' (Unconfined) **CERCHAR Abrasiveness test**

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_SME_001_02
Test Date	10/28/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-82 Sample 1
Depth	83.2-84.3 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw						
Direction of scratch	Perpendicular to c	ore axis					
Pin Wear	Max width (mm)	Min width (mm)					
	0.054	0.031					
	0.025	0.018					
	0.05	0.03					
	0.03	0.02					
	0.032	0.025					
Average (mm)	0.0	315					
CAI	0.315						
Equipment	Ergo Tech CERCHAR Test Apparatus						
No.100225							

Note:

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave.	
Austin, TX, 78703	

CERCHAR Abrasiveness test

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_SME_001_03
Test Date	12/6/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-85 Sample 1
Depth	39.0-39.8 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw						
Direction of scratch	Perpendicular to c	ore axis					
Pin Wear	Max width (mm)	Min width (mm)					
	0.047	0.036					
	0.058	0.048					
	0.052	0.044					
	0.036	0.018					
	0.045	0.034					
Average (mm)	0.0)45					
CAI	0.	45					
Equipment	Ergo Tech CERCHAR Test Apparatus						
No.100225							

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com
Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	
Client Project No.	1831-10-5629	
Tonon USA Reference	2011_ SME_001_03	
Test Date	12/6/11	
Test Performer	Fulvio Tonon	
Checked by	Gloria Tonon-Kozma	
Location	Louisville, Kentucky	
Boring	B-86 Sample 1	
Depth	32.9-34.1 ft	
Rock Type	Shale	
Formation	Waldron Shale	
Pin Rockwell Hardness	55/56	

Surface condition	Cut by slab saw	
Direction of scratch	Perpendicular to core axis	
Pin Wear	Max width (mm) Min width (mm)	
	0.036	0.029
	0.031 0.030	
	0.050	0.044
	0.035	0.029
	0.039	0.037
Average (mm)	0.036	
CAI	0.36	
Equipment	Ergo Tech CERCHAR Test Apparatus	
	No.100225	

Note: Sample chipped along bedding plane while taking scratch 1. Scratch 1 was disregarded.

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave. Austin, TX, 78703

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	
Client Project No.	1831-10-5629	
Tonon USA Reference	2011_ SME_001_03	
Test Date	12/6/11	
Test Performer	Fulvio Tonon	
Checked by	Gloria Tonon-Kozma	
Location	Louisville, Kentucky	
Boring	B-89 Sample 3	
Depth	46.1-46.5 ft	
Rock Type	Shale	
Formation	Waldron Shale	
Pin Rockwell Hardness	55/56	

Surface condition	Cut by slab saw	
Direction of scratch	Perpendicular to core axis	
Pin Wear	Max width (mm) Min width (mm)	
	0.040	0.033
	0.038 0.032	
	0.049 0.047	
	0.042	0.039
	0.049	0.037
Average (mm)	0.041	
CAI	0.41	
Equipment	Ergo Tech CERCHAR Test Apparatus	
	No.100225	

Note: Sample chipped along bedding plane while taking scratch 1. Scratch 1 was disregarded.

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_ SME_001_02
Test Date	11/15/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-91 Sample 3
Depth	44.5-45.0 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw	
Direction of scratch	Perpendicular to core axis	
Pin Wear	Max width (mm) Min width (mm)	
	0.053	0.049
	0.037 0.03	
	0.04 0.033	
	0.049	0.045
	0.051	0.042
Average (mm)	0.046	
CAI	0.46	
Equipment	Ergo Tech CERCHAR Test Apparatus	
	No.100225	

Note: Sample chipped along bedding plane while taking scratch 1. Scratch 1 was disregarded.

Reference: G.West (1989) Rock Abrasiveness testing for tunneling International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value. Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_ SME_001_02
Test Date	11/15/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-92 Sample 2
Depth	29.7-30.5 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw	
Direction of scratch	Perpendicular to core axis	
Pin Wear	Max width (mm) Min width (mm)	
	0.065	0.058
	0.053 0.046	
	0.058 0.045	
	0.043	0.036
	0.059	0.048
Average (mm)	0.0511	
CAI	0.511	
Equipment	Ergo Tech CERCHAR Test Apparatus	
	No.100225	

Note:

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave. Austin, TX, 78703

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_ SME_001_02
Test Date	11/14/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-93 Sample 2
Depth	29.8-30.3 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw	
Direction of scratch	Perpendicular to core axis	
Pin Wear	Max width (mm) Min width (mm)	
	0.038	0.033
	0.045 0.04	
	0.041 0.037	
	0.051	0.036
	0.043	0.034
Average (mm)	0.0398	
CAI	0.398	
Equipment	Ergo Tech CERCHAR Test Apparatus	
	No.100225	

Note:

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave. Austin, TX, 78703

Test procedure: ASTM D7625

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel
Client Project No.	1831-10-5629
Tonon USA Reference	2011_ SME_001_02
Test Date	11/15/11
Test Performer	Fulvio Tonon
Checked by	Gloria Tonon-Kozma
Location	Louisville, Kentucky
Boring	B-94 Sample 3
Depth	37.9-38.3 ft
Rock Type	Shale
Formation	Waldron Shale
Pin Rockwell Hardness	55/56

Surface condition	Cut by slab saw			
Direction of scratch	Perpendicular to core axis			
Pin Wear	Max width (mm)	Min width (mm)		
	0.058	0.046		
	0.045	0.039		
	0.047	0.037		
	0.054	0.047		
	0.063	0.051		
Average (mm)	0.0	487		
CAI	0.487			
Equipment	Ergo Tech CERCHAR Test Apparatus			
	No.10	00225		

Note:

Reference: G.West (1989) *Rock Abrasiveness testing for tunneling* International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 26, Issue 2, March 1989, 151-160.

R.Plinninger, H.K.asling, K.Thuro, G.Spaun (2003) *Testing conditions and geomechanical properties in influencing the CERCHAR abrasiveness index (CAI) value.* Journal of Rock Mechanics and Mining Sciences, 40(2003) 159-263.

Photo after test

2304 Bowman Ave. Austin, TX, 78703

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 10/21/2011 Report Date: 11/11/2011

Project Name:

Louisville Tunnel Project

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 82 Sample 1 Run 3 Box 1 22.6 1.98 1.22 0.62 162.3 0.1 7,700 435 2,029 50.4 1.98 1.24 0.63 166.8 0.0 7,220 451 1,872 Boring 82 Sample 2 Run 8 Box 3 Boring 82 Sample 4 Run 15 Box 5 80.3 1.98 1.09 0.55 164.6 1.4 4,000 463 1,180 0.64 96.7 1.98 165.6 0.0 10,630 482 2,713 Boring 82 Sample 7 Run 18 Box 6 1.26

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 1 (Run 3 Box 1) 22.6' (Split Tensile)

80.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629 Boring 82 Sample 1

(Run 3 Box 1) 22.6' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 2 (Run 8 Box 3) 50.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 2 (Run 8 Box 3) 50.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 7 (Run 18 Box 6) 96.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 7 (Run 18 Box 6) 96.7' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 10/17/2011 Report Date: 11/3/2011

Project Name:

Louisville Tunnel Project

	Depth	Specimen Dimension			Bulk	Moisture	Maximum	Load	Strength
Hole ID (Sample #)	(f t)	Diameter	Thickness	t/D	Density	Content	Load	Rate	
		(in)	(in)	Ratio	(lb/ft ³)	(%)	(lbs)	(psi/min)	(psi)
Boring 83 Sample 2 Run 3 Box 1	12.7	1.98	1.15	0.58	166.5	0.1	5,730	1,373	1,602
Boring 83 Sample 4 Run 6 Box 2	32.4	1.98	1.28	0.65	168.0	0.1	7,310	1,185	1,836

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 83 Sample 2 (Run 3 Box 1) 12.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 83 Sample 2 (Run 3 Box 1) 12.7' (Split Tensile)

1831-10-5629

Boring 83 Sample 4 (Run 6 Box 2) 32.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 83 Sample 4 (Run 6 Box 2) 32.4' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 10/19/2011 Report Date: 11/3/2011

Project Name:

Louisville Tunnel Project

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 84 Sample 1 Run 2 Box 1 9.1 1.98 1.29 0.65 164.3 0.2 9,290 1,208 2,315 16.7 1.98 1.30 0.66 163.9 0.1 8,610 1,503 2,129 Boring 84 Sample 4 Run 3 Box 1 Boring 84 Sample 6 Run 5 Box 2 24.2 1.98 1.29 0.65 166.8 0.1 6,020 1,034 1,500 32.9 1.98 167.4 0.1 1,040 1,647 Boring 84 Sample 7 Run 6 Box 2 1.31 0.66 6,710

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 84 Sample 1 (Run 2 Box 1) 9.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 84 Sample 1 (Run 2 Box 1) 9.1' (Split Tensile)

1831-10-5629

Boring 84 Sample 4 (Run 3 Box 1) 16.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 84 Sample 4 (Run 3 Box 1) 16.7' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/28/2011 Report Date: 12/7/2011

Project Name:

Louisville Tunnel Project

Depth **Specimen Dimension** Bulk Moisture Maximum Strength Load Hole ID (Sample #) Diameter Thickness t/D Density (ft) Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) 0.57 Boring 85 Sample 1 Run 2 Box 1 9.5 1.98 1.12 166.8 0.1 6,790 818 1,949 1.97 Boring 85 Sample 2 Run 7 Box 3 36.1 1.21 0.61 162.8 2.5 2,740 477 732 Boring 85 Sample 5 Run 12 Box 4 61.4 1.98 1.24 0.63 162.2 0.2 7,190 643 1,864

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 1 (Run 2 Box 1) 9.5' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 1 (Run 2 Box 1) 9.5' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 2 (Run 7 Box 3) 36.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 85 Sample 2 (Run 7 Box 3) 36.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 85 Sample 5 (Run 12 Box 4) 61.4' (Split Tensile)

(Run 12 Box 4) 61.4' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/30/2011 Report Date: 12/8/2011

Project Name:

Louisville Tunnel Project

Depth **Specimen Dimension** Bulk Moisture Maximum Strength Load Hole ID (Sample #) Diameter Thickness t/D Density (ft) Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 86 Sample 1 Run 2 Box 1 6.7 1.97 1.28 0.65 168.7 0.1 6,770 657 1,709 1.97 Boring 86 Sample 4 Run 8 Box 3 36.9 1.17 0.59 166.0 2.5 4,080 676 1,127 Boring 86 Sample 5 Run 13 Box 5 62.4 1.97 1.29 0.65 172.5 0.1 9,940 799 2,490

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 1 (Run 2 Box 1) 6.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 1 (Run 2 Box 1) 6.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 4 (Run 8 Box 3) 36.9' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 4 (Run 8 Box 3) 36.9' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 86 Sample 5 (Run 13 Box 5) 62.4' (Split Tensile)

(Run 13 Box 5) 62.4' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/17/2011 Report Date: 12/2/2011

Project Name:

Louisville Tunnel Project

Depth **Specimen Dimension** Bulk Moisture Maximum Strength Load Hole ID (Sample #) Diameter Thickness t/D Density (ft) Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) 0.59 Boring 87 Sample 1 Run 2 Box 1 6.6 1.96 1.16 167.2 0.1 7,840 1,135 2,195 1.97 Boring 87 Sample 3 Run 4 Box 1 15.3 1.29 0.65 165.7 0.4 5,890 820 1,476 Boring 87 Sample 5 Run 6 Box 2 27.3 1.96 1.17 0.60 163.4 2.1 3,360 629 933

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 1 (Run 2 Box 1) 6.6' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 1 (Run 2 Box 1) 6.6' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 3 (Run 4 Box 1) 15.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 3 (Run 4 Box 1) 15.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 5 (Run 6 Box 2) 27.3' (Split Tensile)

Boring 87 Sample 5 (Run 6 Box 2) 27.3' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/17/2011 Report Date: 12/3/2011

Project Name:

Louisville Tunnel Project

Depth **Specimen Dimension** Bulk Moisture Maximum Strength Load Hole ID (Sample #) Diameter Thickness Density (ft) t/D Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 88 Sample 2 Run 1 Box 1 11.3 1.97 1.30 0.66 167.2 0.1 7,080 583 1,760 Boring 88 Sample 3 Run 2 Box 1 15.9 1.96 1.09 0.56 165.6 0.4 5,780 584 1,722 Boring 88 Sample 4 Run 3 Box 1 22.3 1.97 1.20 0.61 172.9 0.1 10,800 864 2,908 29.6 0.63 1.97 1.25 163.6 0.6 4,670 458 1,207 Boring 88 Sample 5 Run 5 Box 2

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 2 (Run 1 Box 1) 11.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 2 (Run 1 Box 1) 11.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 3 (Run 2 Box 1) 15.9' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 88 Sample 3 (Run 2 Box 1) 15.9' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 4 (Run 3 Box 1) 22.3' (Split Tensile)

Boring 88 Sample 4 (Run 3 Box 1) 22.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 5 (Run 5 Box 2) 29.6' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 88 Sample 5 (Run 5 Box 2) 29.6' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

48.1

76.2

Sample Date: 11/16/2011 Report Date: 12/5/2011

Strength

(psi)

2,217

1,156

1,719

Project Name:

Louisville Tunnel Project

164.9

162.4

Load

Rate

(psi/min)

594

434

621

Depth **Specimen Dimension** Bulk Moisture Maximum Hole ID (Sample #) (ft) Diameter Thickness t/D Density Content Load (lb/ft^3) (in) (in) Ratio (%) (lbs) 0.69 Boring 89 Sample 1 Run 2 Box 1 18.5 1.97 1.35 168.8 0.1 9,260

1.97

1.97

NOTE:

Boring 89 Sample 2 Run 8 Box 3

Boring 89 Sample 5 Run 14 Box 5

Bulk Density includes any moisture that is within the specimen.

1.37

1.32

0.70

0.67

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 1 (Run 2 Box 1) 18.5' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 1 (Run 2 Box 1) 18.5' (Split Tensile)

2.1

0.1

4,900

7,020

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 2 (Run 8 Box 3) 48.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 2 (Run 8 Box 3) 48.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 89 Sample 5 (Run 14 Box 5) 76.2' (Split Tensile)

1831-10-5629 Boring 89 Sample 5

(Run 14 Box 5) 76.2' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/30/2011 Report Date: 12/9/2011

Project Name:

-	-	-	-				
С	ou	iis	vi	lle	Tunnel	Pro	iect

L

mpic	Dute.	11/

	Depth Specimen Dimension			Bulk	Moisture	Maximum	Load	Strength	
Hole ID (Sample #)	(f t)	Diameter	Thickness	t/D	Density	Content	Load	Rate	
		(in)	(in)	Ratio	(lb/ft ³)	(%)	(lbs)	(psi/min)	(psi)
Boring 90 Sample 1 Run 2 Box 1	7.4	1.97	1.26	0.64	170.0	0.3	5,750	708	1,475
Boring 90 Sample 2 Run 4 Box 1	15.0	1.97	1.24	0.63	170.5	0.2	7,330	707	1,910

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 90 Sample 1 (Run 2 Box 1) 7.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629 Boring 90 Sample 1 (Run 2 Box 1) 7.4' (Split Tensile)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date: 11/2/2011 Report Date: 11/23/2011

Project Name:

Louisville Tunnel Project

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (psi/min) (in) (in) Ratio (%) (lbs) (psi) Boring 91 Sample 1 Run 2 Box 1 21.2 1.98 1.22 0.62 167.0 0.1 7,040 675 1,855 1,268 43.8 1.97 1.30 0.66 162.1 1.2 5,100 624 Boring 91 Sample 2 Run 6 Box 2 Boring 91 Sample 6 Run 10 Box 4 64.7 1.98 1.32 0.67 168.0 0.1 12,040 850 2,933 0.65 1.98 1.29 168.8 0.2 7,610 711 1,897 Boring 91 Sample 7 Run 14 Box 5 83.2

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 1 (Run 2 Box 1) 21.2' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 1 (Run 2 Box 1) 21.2' (Split Tensile)

1831-10-5629 Boring 91 Sample 2

(Run 6 Box 2) 43.8' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 91 Sample 2 (Run 6 Box 2) 43.8' (Split Tensile)

1831-10-5629

Boring 91 Sample 6 (Run 10 Box 4) 64.7' (Split Tensile)

1831-10-5629

Boring 91 Sample 6 (Run 10 Box 4) 64.7' (Split Tensile)

11/1/2011

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #: Project Name: 1831-10-5629 Louisville Tunnel Project Sample Date:

Report Date: 11/18/2011

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 92 Sample 1 Run 2 Box 1 13.3 1.98 1.24 0.63 171.2 0.1 9,260 779 2,401 24.4 1.97 1.26 0.64 163.1 1.3 4,360 799 1,118 Boring 92 Sample 3 Run 5 Box 2 Boring 92 Sample 5 Run 7 Box 2 34.7 1.98 1.25 0.63 169.6 0.1 8,650 742 2,225 Boring 92 Sample 6 Run 10 Box 4 52.0 1.98 1.26 0.64 160.1 0.1 729 1,738 6,810 69.7 1.98 0.67 168.7 0.2 8,020 1,939 Boring 92 Sample 7 Run 14 Box 5 1.33 676

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 1 (Run 2 Box 1) 13.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629 Boring 92 Sample 1

(Run 2 Box 1) 13.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 5 (Run 7 Box 2) 34.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 5 (Run 7 Box 2) 34.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 92 Sample 3 (Run 5 Box 2) 24.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 3 (Run 5 Box 2) 24.4' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 6 (Run 10 Box 4) 52.0' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 92 Sample 6 (Run 10 Box 4) 52.0' (Split Tensile)

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc. 3201 Spring Forest Road

Raleigh, NC 27616

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date:

Report Date: 11/30/2011

Project Name:

Louisville Tunnel Project

11/3/2011

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 93 Sample 1 Run 4 Box 1 19.7 1.98 1.14 0.58 168.3 0.1 5,890 773 1,661 31.1 1.97 1.29 0.65 164.7 1.8 4,380 633 1,097 Boring 93 Sample 4 Run 6 Box 2 Boring 93 Sample 6 Run 11 Box 3 54.7 1.98 1.26 0.64 163.4 0.1 7,810 813 1,993 Boring 93 Sample 7 Run 14 Box 5 1.98 0.58 169.6 0.1 8,320 746 2,326 71.4 1.15 74.6 1.25 0.64 162.5 1.0 5,290 717 1,375 Boring 93 Sample 8 Run 15 Box 5 1.96

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 1 (Run 4 Box 1) 19.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 1 (Run 4 Box 1) 19.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 6 (Run 11 Box 3) 54.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 6 (Run 11 Box 3) 54.7' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 93 Sample 4 (Run 6 Box 2) 31.1' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

> Boring 93 Sample 4 (Run 6 Box 2) 31.1' (Split Tensile)

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc. 3201 Spring Forest Road

S&ME, Inc. - Corporate

Raleigh, NC 27616

Split Tensile Cores Boring 93 Page 1 of 1

11/4/2011

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project #:

1831-10-5629

Sample Date:

Report Date: 12/1/2011

Project Name:

Louisville Tunnel Project

Specimen Dimension Bulk Moisture Maximum Strength Depth Load Hole ID (Sample #) Diameter Thickness (ft) t/D Density Content Load Rate (lb/ft^3) (in) (in) Ratio (%) (lbs) (psi/min) (psi) Boring 94 Sample 2 Run 2 Box 1 17.8 1.97 1.34 0.68 168.6 0.1 6,330 721 1,527 Boring 94 Sample 5 Run 7 Box 2 40.6 1.96 1.11 0.57 165.4 1.4 3,960 1,140 1,159 Boring 94 Sample 6 Run 11 Box 4 64.3 1.97 1.39 0.71 159.0 0.1 6,580 1,043 1,530 Boring 94 Sample 7 Run 15 Box 5 1.98 1.26 0.64 171.1 0.1 7,430 1,161 1,896 81.8 86.1 1.98 1.31 165.9 1.2 4,940 1,085 1,212 Boring 94 Sample 8 Run 16 Box 5 0.66

NOTE:

Bulk Density includes any moisture that is within the specimen.

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 2 (Run 2 Box 1) 17.8' (Split Tensile)

Louisville Tunnel Project

1831-10-5629

Boring 94 Sample 6

(Run 11 Box 4)

64.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 2 (Run 2 Box 1) 17.8' (Split Tensile)

Louisville Tunnel Project

1831-10-5629

Boring 94 Sample 6

(Run 11 Box 4)

64.3' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 5 (Run 7 Box 2) 40.6' (Split Tensile)

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 5 (Run 7 Box 2) 40.6' (Split Tensile)

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc. 3201 Spring Forest Road

Raleigh, NC 27616

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	dolomite
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	microcrystalline
Client's Project No.	1831-10-5629	Rock name	Dolomite (or dolomitized shale)
Tonon USA No.	SM&E_2011_01	Studied by	Kathleen Surpless
Drill hole and depth	B-82 Sample 1 83.2'- 84.3'	Date Studied	November 16, 2011
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	75%	3.5-4	0.02-0.09	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	10%	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	3%	4-5	Variable, <0.06	Round shape, concentrated in specific areas of slide (probably former fossils); could be iron oxide minerals or organic material
Quartz	2%	7	0.04-0.1	Silt to very fine sand sized grains of quartz
porosity	10%	NA	<0.1	Pore space is evenly distributed throughout slide
Weighted Average: 3.7		3.7		Excludes porosity

Remarks: thoroughly dolomitized fine-grained rock; may have originally been micritic or shale

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

B-82 Sample 1, 83.2-84.3 ft

B-82 Sample 1, 83.2-84.3 ft

crossed polars

THIN SECTION PETROGRAPHIC ANALYSIS

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	shale
Project location	Louisville, KY	Alteration	Partially dolomitized
Client	SM&E	Texture	shale
Client's Project No.	1831-10-5629	Rock name	Dolomitic shale
Tonon USA No.	SM&E_2011_03	Studied by	Kathleen Surpless
Drill hole and depth	B-85 Sample 1 39.0' - 39.8'	Date Studied	January 10, 2012
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	25	3.5-4	0.02-0.07	Distinctive rhombic shape, high relief, high birefringence
Matrix	45	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	2	4-5	variable	Blotchy shape; could be iron oxide minerals or organic material
Quartz	3	7	0.02-0.06	Silt sized, angular grains of quartz
porosity	25	NA	variable	Pore space is unevenly distributed throughout slide; one part of slide is much more porous than the rest
Weighted	Average:	2.8		Excludes porosity

Remarks: highly porous in one zone of the slide and highly dolomitized on the other; some preferred alignment visible in overall sample; likely that the zones of intense dolomitization reduced original porosity

2304 Bowman Ave. Austin, TX, 78703

B-85 Sample 1, 39.0-39.8 ft

B-85 Sample 1, 39.0-39.8 ft

THIN SECTION PETROGRAPHIC ANALYSIS

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	Dolomitized shale
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	Crystalline (shale-rich zones)
Client's Project No.	1831-10-5629	Rock name	dolomite
Tonon USA No.	SM&E_2011_03	Studied by	Kathleen Surpless
Drill hole and depth	B-86 Sample 1 32.9' - 34.1'	Date Studied	January 10, 2012
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	65	3.5-4	0.02-0.08	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	15	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	5	4-5	variable	Blotchy shape; could be iron oxide minerals or organic material
Quartz	5	7	0.02-0.07	Silt sized grains of quartz
porosity	10	NA	variable	Pore space is unevenly distributed throughout slide; one area of slide is much more porous than the rest
Weighted Average:		3.7		Excludes porosity

Remarks: highly porous in one area and highly dolomitized throughout the rest of the slide; no preferred alignment visible in overall sample; likely that intense dolomitization reduced original porosity

 2304 Bowman Ave.
 Dr. Fulvio Tonon, P.E.

 Austin, TX, 78703
 Phone: +1-512-200-3051

 E-mail: fulvio@tononeng.com

crossed polars

B-86 Sample 1, 32.9-34.1 ft

crossed polars

THIN SECTION PETROGRAPHIC ANALYSIS

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	Silty dolomitic shale
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	Silty shale
Client's Project No.	1831-10-5629	Rock name	Silty dolomitic shale
Tonon USA No.	SM&E_2011_03	Studied by	Kathleen Surpless
Drill hole and depth	B-89 Sample 1 50.4'- 50.7'	Date Studied	January 10, 2012
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	45	3.5-4	0.02-0.1	Distinctive rhombic shape, high relief, high birefringence
Matrix	20	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	5	4-5	variable	Blotchy shape; could be iron oxide minerals or organic material
Quartz	10	7	0.03	Silt sized grains of quartz
porosity	20	NA	variable	Pore space is unevenly distributed throughout slide; one side of slide is much more porous than the other
Weighted Average:		3.8		Excludes porosity

Remarks: secondary fractures and regions of more or less dolomitization or porosity define preferred alignment visible in overall sample; fissile sample

 2304 Bowman Ave.
 Dr. Fulvio Tonon, P.E.

 Austin, TX, 78703
 Phone: +1-512-200-3051

 E-mail: fulvio@tononeng.com

B-89 Sample 1, 50.4-50.7 ft

B-89 Sample 1, 50.4-50.7 ft

THIN SECTION PETROGRAPHIC ANALYSIS

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	Shale
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	Shaley texture with some recrystallization
Client's Project No.	1831-10-5629	Rock name	Dolomitic shale
Tonon USA No.	SM&E_2011_02	Studied by	Kathleen Surpless
Drill hole and depth	B-91 Sample 1 41.8'- 42.1'	Date Studied	December 9, 2011
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	45	3.5-4	0.03-0.08; average 0.05	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	40	1-3	<0.01	Likely clay minerals, but too small to determine composition; alignment defines preferred orientation in sample
Opaque minerals	<3	4-5	variable	Round shape; could be iron oxide minerals or organic material
porosity	12	NA	variable	Pore space is throughout slide
Weighted Average: 3.0			Excludes porosity	

Remarks: fissile character with preferred alignment defined by clay minerals in the matrix; fractures are oriented parallel to this alignment

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

B-91 Sample 1, 41.8 to 42.1 ft

crossed polars

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	shale
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	Silty-shale
Client's Project No.	1831-10-5629	Rock name	Dolomitized shale
Tonon USA No.	SM&E_2011_02	Studied by	Kathleen Surpless
Drill hole and depth	B-92 Sample 1 29.3'- 29.7'	Date Studied	December 7, 2011
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	45	3.5-4	0.03-0.08	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	25	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	3	4-5	variable	Round to elongate shape, concentrated where post-depositional fluids moved through shale; could be iron oxide minerals or organic material
Quartz	5	7	0.02-0.07	Silt to very fine sand sized grains of quartz
Calcite	5	3	variable	Possibly filling pore space
porosity	17	NA	variable	Pore space is evenly distributed throughout slide
Weighted Average:		3.4	Excludes porosity	

Remarks: some preferred orientation results in fissile sample

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

B-92 Sample 1, 29.3 to 29.7 ft

crossed polars

B-92 Sample 1, 29.3 to 29.7 ft

polars
Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	shale
Project location	Louisville, KY	Alteration	Dolomitized
Client	SM&E	Texture	Partially recrystallized silty shale
Client's Project No.	1831-10-5629	Rock name	Dolomitic shale
Tonon USA No.	SM&E_2011_02	Studied by	Kathleen Surpless
Drill hole and depth	B-93 Sample 1 29.5'- 29.85'	Date Studied	December 7, 2011
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	50	3.5-4	0.02-0.08	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	30	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	3	4-5	variable	could be iron oxide minerals or organic material
Quartz	5	7	0.02-0.04	Silt sized grains of quartz
porosity	12	NA	variable	Pore space throughout slide; a few large openings may be from plucked or dissolved fossils
Weighted	Average:	3.4		Excludes porosity

Remarks:

 2304 Bowman Ave.
 Dr. Fulvio Tonon, P.E.

 Austin, TX, 78703
 Phone: +1-512-200-3051

 E-mail: fulvio@tononeng.com

B-93 Sample 1, 29.5 to 29.85 ft

crossed polars

Tonon USA

Engineering, Measurements, and Testing, LLC

Project Name	Louisville Tunnel	Rock Type	Dolomitic shale
Project location	Louisville, KY	Alteration	dolomitized
Client	SM&E	Texture	Microcrystalline (recrystallized) shale
Client's Project No.	1831-10-5629	Rock name	Dolomitic shale or Shaley dolomite
Tonon USA No.	SM&E_2011_02	Studied by	Kathleen Surpless
Drill hole and depth	B-94 Sample 1 35.0'- 35.4'	Date Studied	December 7, 2011
Formation	Waldron Shale	Reviewed by	Fulvio Tonon

Description of Individual Minerals:

Minerals	Mineral Content (%)	Mohs Hardness	Grain Size (mm)	Description and Comments
Dolomite	70	3.5-4	0.02-0.1	Distinctive rhombic shape, high relief, high birefringence; evenly distributed throughout sample
Matrix	8	1-3	<0.01	Likely clay minerals, but too small to determine composition
Opaque minerals	5	4-5	variable	Blotchy shape; could be iron oxide minerals or organic material
Quartz	2	7	0.03	Silt sized grains of quartz
porosity	15	NA	variable	Pore space is unevenly distributed throughout slide; one side of slide is much more porous than the other
Weighted	Average:	3.7		Excludes porosity

Remarks: highly porous on one side and highly dolomitized on the other; some preferred alignment visible in overall sample; likely that the zones of intense dolomitization reduced original porosity

 2304 Bowman Ave.
 Dr. Fulvio Tonon, P.E.

 Austin, TX, 78703
 Phone: +1-512-200-3051

 E-mail: fulvio@tononeng.com

B-94 Sample 1, 35.0 to 35.4 ft

crossed polars

B-94 Sample 1, 35.0 to 35.4 ft

crossed polars

10/21/2011

11/11/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-82 Sample 3 Run 15 Box 5 (79.4 - 80.2)
Date Tested:	10/31/2011 to 11/2/2011

Slake Durability Index (Second Cycle)	89.2	%
Range of water temperature (Cycle 1)	0.0	°F
Average water temperature (Cycle 1)	71.5	°F
Range of water temperature (Cycle 2)	0.5	°F
Average water temperature (Cycle 2)	71.3	°F
Natural Moisture Content	2.34	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Louisville Tunnel Project 1831-10-5629

Boring 82 Sample 3 (Run 15 Box 5) 79.4' - 80.2'

10/21/2011 11/11/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-82 Sample 5 Run 16 Box 5 (84.3 - 85.3)
Date Tested:	10/31/2011 to 11/2/2011

Slake Durability Index (Second Cycle)	94.9	%
Range of water temperature (Cycle 1)	0.0	°F
Average water temperature (Cycle 1)	71.5	°F
Range of water temperature (Cycle 2)	0.0	°F
Average water temperature (Cycle 2)	71.0	°F
Natural Moisture Content	2.18	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Before Test

11/28/2011

12/7/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Louisville Tunnel
1831-10-5629
Waldron Shale
B-85 Sample 3 Run 7 Box 3 (36.7 - 37.4)
12/5/2011 to 12/7/2011

Slake Durability Index (Second Cycle)	96.4	%
Range of water temperature (Cycle 1)	1.0	°F
Average water temperature (Cycle 1)	73.5	°F
Range of water temperature (Cycle 2)	0.0	°F
Average water temperature (Cycle 2)	72.5	°F
Natural Moisture Content	2.86	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	\mathbf{N}
II	Retained specimen consists of large and small fragments	
III	Retained specimen is exclusively small fragments	

Boring 85 Sample 3 (Run 7 Box 3) 36.7' – 37.4'

Before Test

Boring 85 Sample 3 (Run 7 Box 3) 36.7' – 37.4'

11/30/2011

12/8/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-86 Sample 2 Run 7 Box 2 (29.5 - 30.5)
Date Tested:	12/5/2011 to 12/7/2011

Slake Durability Index (Second Cycle)	93.3	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	73.3	°F
Range of water temperature (Cycle 2)	0.0	°F
Average water temperature (Cycle 2)	72.5	°F
Natural Moisture Content	3.65	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	\mathbf{N}
II	Retained specimen consists of large and small fragments	
III	Retained specimen is exclusively small fragments	

11/17/2011

12/2/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-87 Sample 4 Run 6 Box 2 (24.9 - 25.9)
Date Tested:	11/29/2011 to 12/1/2011

Slake Durability Index (Second Cycle)	94.1	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	66.3	°F
Range of water temperature (Cycle 2)	0.5	°F
Average water temperature (Cycle 2)	69.8	°F
Natural Moisture Content	2.83	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	\mathbf{N}
II	Retained specimen consists of large and small fragments	
III	Retained specimen is exclusively small fragments	

Louisville Tunnel Project 1831-10-5629

> Boring 87 Sample 4 (Run 6 Box 2) 24.9' – 25.9

> > Before Test

Louisville Tunnel Project 1831-10-5629

Boring 87 Sample 4 (Run 6 Box 2) 24.9' – 25.9

11/16/2011

12/5/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-89 Sample 3 Run 8 Box 3 (48.6 - 49.6)
Date Tested:	11/29/2011 to 12/1/2011

Slake Durability Index (Second Cycle)	92.2	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	66.8	°F
Range of water temperature (Cycle 2)	1.0	°F
Average water temperature (Cycle 2)	69.5	°F
Natural Moisture Content	1.86	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	$\mathbf{\nabla}$
III	Retained specimen is exclusively small fragments	

Before Test

11/2/2011 11/23/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-91 Sample 3 Run 7 Box 2 (45.0 - 46.0)
Date Tested:	11/15/2011 to 11/17/2011

Slake Durability Index (Second Cycle)	86.6	%
Range of water temperature (Cycle 1)	0.0	°F
Average water temperature (Cycle 1)	75.0	°F
Range of water temperature (Cycle 2)	1.0	°F
Average water temperature (Cycle 2)	76.0	°F
Natural Moisture Content	2.42	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Louisville Tunnel Project 1831-10-5629

> Boring 91 Sample 3 (Run 7 Box 2) 45.0' - 46. 0'

> > Before Test

11/1/2011 11/18/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-92 Sample 4 Run 5 Box 2 (26.8 - 27.8)
Date Tested:	11/15/2011 to 11/17/2011

Slake Durability Index (Second Cycle)	87.4	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	75.3	°F
Range of water temperature (Cycle 2)	1.5	°F
Average water temperature (Cycle 2)	76.3	°F
Natural Moisture Content	2.64	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
Π	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Before Test

11/3/2011 11/30/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

1.9 - 33.0)
1

Slake Durability Index (Second Cycle)	87.5	%
Range of water temperature (Cycle 1)	0.0	°F
Average water temperature (Cycle 1)	75.5	°F
Range of water temperature (Cycle 2)	1.0	°F
Average water temperature (Cycle 2)	76.0	°F
Natural Moisture Content	2.51	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Before Test

1831-10-5629

Boring 93 Sample 5 (Run 6 Box 2) 31.9' - 33. 0'

11/3/2011 11/30/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Louisville Tunnel
1831-10-5629
Shale
B-93 Sample 9 Run 15 Box 5 (75.1 - 76.1)
11/15/2011 to 11/17/2011

Slake Durability Index (Second Cycle)	91.1	%
Range of water temperature (Cycle 1)	0.0	°F
Average water temperature (Cycle 1)	75.0	°F
Range of water temperature (Cycle 2)	0.5	°F
Average water temperature (Cycle 2)	75.3	°F
Natural Moisture Content	2.30	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\mathbf{N}
III	Retained specimen is exclusively small fragments	

Before Test

11/4/2011

12/1/2011

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Sample Date:

Report Date:

Project:	Louisville Tunnel
S&ME Project No.	1831-10-5629
Material:	Waldron Shale
Sample ID:	B-94 Sample 3 Run 6 Box 2 (35.7 - 36.9)
Date Tested:	11/29/2011 to 12/1/2011
Date Tested:	11/29/2011 to 12/1/2011

Slake Durability Index (Second Cycle)	94.7	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	66.8	°F
Range of water temperature (Cycle 2)	1.0	°F
Average water temperature (Cycle 2)	69.5	°F
Natural Moisture Content	1.89	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	\mathbf{N}
II	Retained specimen consists of large and small fragments	
III	Retained specimen is exclusively small fragments	

Before Test

Louisville Tunnel Project 1831-10-5629

> Boring 94 Sample 3 (Run 6 Box 2) 35.7' – 36.9'

Slake Durability of Shales of Similar Weak Rocks (ASTM D4644)

Project:	Louisville Tunnel	Sample Date:	11/4/2011
S&ME Project No.	1831-10-5629	Report Date:	12/1/2011
Material:	Shale		
Sample ID:	B-94 Sample 9 Run 16 Box 5 (86.5 - 87.2)		
Date Tested:	11/29/2011 to 12/1/2011		

Slake Durability Index (Second Cycle)	91.1	%
Range of water temperature (Cycle 1)	0.5	°F
Average water temperature (Cycle 1)	66.8	°F
Range of water temperature (Cycle 2)	0.5	°F
Average water temperature (Cycle 2)	69.3	°F
Natural Moisture Content	1.73	%

Sample Description (Check which applies)

Туре	Description	
Ι	Retained specimen remain virtually unchanged	
II	Retained specimen consists of large and small fragments	\checkmark
III	Retained specimen is exclusively small fragments	

1831-10-5629

Boring 94 Sample 9 (Run 16 Box 5) 86.5' - 87.2'

Before Test

Louisville Tunnel Project 1831-10-5629

Boring 94 Sample 9 (Run 16 Box 5) 86.5' – 87.2' After Second Cycle

Method of Determining Effective (As Received) and Dry Unit Weights and Total Porosity of Rock Cores RTH 109-80

Job Name: Louisville Twin Tunnels

Job Number: 1831-10-5629 (B)

.

Operator: LP, DB Checked By: NRR

¹ Degree of Saturation (%), S=V _w /V _v	45%	49%	65%	56%	
¹ Void Ratio, e=V _v /V _s	0.0954	0.1272	0.1255	0.0911	
Volume of Water (cm ³), V _w	7.68	11.29	14.41	8.74	
Volume of Voids (cm ³), V_v	17.25	23.08	22.25	15.65	
Volume of Solids (cm 3), V _s	180.8	181.4	177.2	171.8	
Total Porosity (%), n=V _v /V	8.71	11.28	11.15	8.35	
Grain Unit Weight (lb/ft ³)	176.4	176.2	174.8	176.1	
Specific Gravity of Solids from RTH 108	2.83	2.83	2.81	2.83	
Dry Unit Weight (lb/ft ³)	161.1	156.4	155.3	161.4	
Dry Unit Weight (g/cm³)	2.58	2.50	2.49	2.59	
Effective Unit Weight (g/cm ³)	2.64	2.59	2.59	2.60	
Mass of Solids (g)	510.99	512.22	496.01	484.72	
Crushed Minus No. 4 Mass	0.0100	0.0220	0.029	0.010	
Volume (cm [°]), V Water Content (ratio)	198.05 0.0150	204.51	1 99.44 0.029	187.46 0.018	
Area (cm ²)	19.92	19.83	19.81	19.76	
Average Length (mm)	99.41	103.14	100.67	94.89	
Avgerage Dia. (mm)	50.37	50.25	50.22	50.15	
Specimen Volume:					
Specimen Mass (g):	523.28	530.60	516.50	487.60	
Depth (it):	00.0-00.0	20.8-21.5	40.0-40.0	28.6-29.3	
Specifien ID.	D-02, 30	B-92, 52	D-91, 34	B-93, 53	

Corps of Engineers Rock Testing Handbook RTH 109-80, RTH 108-89 ASTM D854, D2216

Notes: ¹These parameters are not a part of RTH 109 or RTH 108, they are included at the request of the client

The water content was determined from a separate specimens.

Operator: LP, DB Checked By: NRR

Method of Determining Effective (As Received) and Dry Unit Weights and Total Porosity of Rock Cores RTH 109-80

Job Name:	Louisville Twin Tunnels	
-		

Job Number: 1831-10-5629 (B)

Sampl Date: 11/28/2011

Specimen ID:	B-85 S-4	B-86 S-3		
Depth (ft):	38.2 - 39.0	30.5 - 31.3		
Specimen Mass (g):	388.4	437.2		
On a sine on Malanna a			 	
Specimen volume:	40.06	40.00		
Average Length (mm)	49.90 74.49	49.99		
Area (cm ²)	19.61	19.63		
Volume (cm ³), V	146.04	166.99		
Water Content (ratio)	0.0240	0.0290		
Crushed Minus No. 4 Mass				
Mass of Solids (g)	376.94	420.67		
Effective Unit Weight (g/cm ³)	2.66	2.62		
Dry Unit Weight (g/cm ³)	2.58	2.52		
Dry Unit Weight (lb/ft ³)	161.1	157.3		
Specific Gravity of Solids from RTH 108	2.83	2.83		
Grain Unit Weight (lb/ft³)	176.2	176.5		
Total Porosity (%), n=V _v /V	8.54	10.89		
Volume of Solids (cm³), V _s	133.6	148.8		
Volume of Voids (cm 3), V $_v$	12.47	18.19		
Volume of Water (cm ³), V _w	9.07	12.22		
¹ Void Ratio, e=V _v /V _s	0.0934	0.1223		
¹ Degree of Saturation (%), S=V _w /V _v	73%	67%		

Corps of Engineers Rock Testing Handbook RTH 109-80, RTH 108-89 ASTM D854, D2216

Notes: ¹These parameters are not a part of RTH 109 or RTH 108, they are included at the request of the client

The water content was determined from separate specimens

Operator: LP, DB Checked By: NRR

Method of Determining Effective (As Received) and Dry Unit Weights and Total Porosity of Rock Cores RTH 109-80

Job Name:	Louisville Twin Tunnels

Job Number: 1831-10-5629 (B)

Sampl Date: 11/4/2011

2011

Specimen ID:	B-89, S4	B94, S4		
Depth (ft):	49.6 - 50.4	36.9 - 37.4		
Specimen Mass (g):	521.4	500.9		
Specimen Volume:			_	
Avgerage Dia. (mm)	50.13	50.04	_	
Average Length (mm)	100.37	96.74	_	
Area (cm²)	19.73	19.67		
Volume (cm ³), V	198.08	190.28		
Water Content (ratio)	0.0290	0.0240		
Crushed Minus No. 4 Mass				
Mass of Solids (g)	501.74	484.71		
Effective Unit Weight (g/cm ³)	2.63	2.63		
Dry Unit Weight (g/cm ³)	2.53	2.55		
Dry Unit Weight (lb/ft ³)	158.1	159.0		
Specific Gravity of Solids from RTH 108	2.84	2.83		
Grain Unit Weight (lb/ft ³)	176.7	176.3		
Total Porosity (%), n=V _v /V	10.53	9.80		
Volume of Solids (cm 3), V _s	177.2	171.6		
Volume of Voids (cm 3), V $_v$	20.86	18.66		
Volume of Water (cm ³), V_w	14.58	11.66		
¹ Void Ratio, e=V _v /V _s	0.1177	0.1087		
¹ Degree of Saturation (%), S=V _w /V _v	70%	62%		

Corps of Engineers Rock Testing Handbook RTH 109-80, RTH 108-89 ASTM D854, D2216

Notes: ¹These parameters are not a part of RTH 109 or RTH 108, they are included at the request of the client

The water content was determined from separate specimens

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

S&ME, Inc Knoxville 1413 Topside Road, Louisville, TN 37777									
Project #:	1831-10-5629	Sample Date:	10/21/2011	Report Date:	11/11/2011				
Project Name:	Louisville Tunnel Project			_					

Lab	Danin a ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-361	B-82 (1) Run 3 Box 1	22.7	L'ville Limestone	As-Received	А	N/A	М	1.98	1.50	1.46	3.68	1.92	1847	502	0.989	496	3	11,391
C11-361	B-82 (1) Run 3 Box 1	22.9	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2115	557	0.996	555	2	12,746
C11-362	B-82 (2) Run 8 Box 3	50.6	L'ville Limestone	As-Received	А	⊥PSF	MP	1.98	1.57	1.52	3.83	1.96	2951	770	0.998	768	3	17,668
C11-362	B-82 (2) Run 8 Box 3	50.7	L'ville Limestone	As-Received	D	PSf	MP	N/A	1.97	1.93	3.80	1.95	2408	634	0.996	631	2, 3	14,508
C11-364	B-82 (4) Run 15 Box 5	80.4	Waldron Shale	As-Received	А	⊥Bed	MB	1.98	1.57	1.50	3.78	1.94	1574	416	0.993	413	3	9,493
C11-364	B-82 (4) Run 15 Box 5	80.6	Waldron Shale	As-Received	D	Bed	MB	N/A	1.97	1.93	3.80	1.95	590	155	0.996	154	2	3,547
C11-367	B-82 (7) Run 18 Box 6	96.9	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.59	1.54	3.88	1.97	3707	955	1.000	955	3	21,974
C11-367	B-82 (7) Run 18 Box 6	97.1	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3562	937	0.996	933	2	21,441

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision Date: 4/26/2011

Point Load Strength Index of Rock (for Horizontal Borings)

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topsi	de Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	10/17/2011	Report Date:	11/3/2011
Project Name:	Louisville Tunnel Project				

Lab	Daring ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Bornig ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-346	B-83 (1) Run 3 Box 1	11.2	L'ville Limestone	As-Received	А	⊥PSF	MP	1.98	1.50	1.46	3.68	1.92	2631	715	0.989	707	3	16,225
C11-346	B-83 (1) Run 3 Box 1	11.4	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	1357	357	0.996	356	2	8,169
C11-348	B-83 (3) Run 6 Box 2	30.7	L'ville Limestone	As-Received	А	⊥PSF	MP	1.98	1.56	1.54	3.88	1.97	2516	648	1.000	648	3	14,910
C11-348	B-83 (3) Run 6 Box 2	30.9	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2526	665	0.996	662	2, 3	15,217

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

≟ = Load applied perpendicular to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Anisotropic Load:

Revision Date: 4/26/2011

Point Load Strength Index of Rock (for Horizontal Borings)

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	10/19/2011	Report Date:	11/3/2011
Project Name:	Louisville Tunnel Project				

Lab	Desire ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	Sc
ID	Boring ID	(ft)	Туре	Condition	Type	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-351	B-84 (2) Run 2 Box 1	10.4	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2842	748	0.996	745	2	17,116
C11-352	B-84 (3) Run 2 Box 1	11.0	L'ville Limestone	As-Received	А	N/A	М	1.98	1.54	1.50	3.78	1.94	3440	910	0.993	904	3	20,765
C11-354	B-84 (5) Run 3 Box 1	18.2	L'ville Limestone	As-Received	А	N/A	М	1.98	1.46	1.42	3.58	1.89	2998	837	0.982	822	3	18,834
C11-354	B-84 (5) Run 3 Box 1	18.0	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.91	3.76	1.94	2496	664	0.993	659	2	15,152
C11-355	B-84 (6) Run 5 Box 2	24.4	L'ville Limestone	As-Received	А	N/A	М	1.98	1.54	1.50	3.78	1.94	2671	707	0.993	702	3	16,133
C11-355	B-84 (6) Run 5 Box 2	24.6	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.91	3.76	1.94	2398	638	0.993	634	2	14,559
C11-357	B-84 (8) Run 7 Box 2	34.4	L'ville Limestone	As-Received	А	N/A	М	1.98	1.48	1.42	3.58	1.89	2586	722	0.982	709	3	16,246
C11-357	B-84 (8) Run 7 Box 2	34.2	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	1989	523	0.996	521	2	11,968

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside B	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/28/2011	Report Date:	12/7/2011
Project Name:	Louisville Tunnel Project				

Lab		Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Р	(psi)	Туре	(psi)
C11-416	B-85 (1) Run 2 Box 1	9.6	L'ville Limestone	As-Received	А	N/A	М	1.98	1.59	1.56	3.93	1.98	2697	686	1.003	688	3	15,828
C11-416	B-85 (1) Run 2 Box 1	9.8	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2731	719	0.996	716	2	16,453
C11-417	B-85 (2) Run 7 Box 3	36.2	Waldron Shale	As-Received	А	⊥bed	MB	1.97	1.56	1.52	3.81	1.95	1362	357	0.996	356	3	8,169
C11-417	B-85 (2) Run 7 Box 3	35.8	Waldron Shale	As-Received	D	bed	MB	N/A	1.95	1.93	3.76	1.94	282	75	0.993	74	2	1,711
C11-420	B-85 (5) Run 12 Box 4	61.6	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.61	1.57	3.96	1.99	3093	781	1.005	785	3	18,070
C11-420	B-85 (5) Run 12 Box 4	61.8	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.91	3.76	1.94	1979	526	0.993	522	2	12,003

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and De.

Notes / Deviations / References: ASTM D5731

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/30/2011	Report Date:	12/8/2011
Project Name:	Louisville Tunnel Project				

Lab	Device ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-423	B-86 (1) Run 2 Box 1	7.0	L'ville Limestone	As-Received	А	N/A	М	1.98	1.44	1.40	3.53	1.88	2687	761	0.980	746	3	17,075
C11-423	B-86 (1) Run 2 Box 1	7.2	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2071	545	0.996	543	2	12,471
C11-426	B-86 (4) Run 8 Box 3	36.8	Waldron Shale	As-Received	А	⊥bed	MB	1.97	1.56	1.52	3.81	1.95	1283	337	0.996	336	3	7,711
C11-426	B-86 (4) Run 8 Box 3	36.6	Waldron Shale	As-Received	D	bed	MB	N/A	1.95	1.91	3.72	1.93	360	97	0.991	96	2 note	2,207
C11-427	B-86 (5) Run 13 Box 5	62.5	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.56	1.52	3.83	1.96	2816	735	0.998	734	3	16,865
C11-427	B-86 (5) Run 13 Box 5	62.7	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2305	607	0.996	605	2	13,890

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

o anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Note: Failure did not go through both loading points.

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside I	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/17/2011	Report Date:	12/2/2011
Project Name:	Louisville Tunnel Project			_	

Lab	Daring ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Bornig ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-402	B-87 (2) Run 2 Box 1	7.2	L'ville Limestone	As-Received	А	⊥PSF	MP	1.97	1.57	1.54	3.86	1.96	2292	594	0.998	593	3	13,630
C11-402	B-87 (2) Run 2 Box 1	7.3	L'ville Limestone	As-Received	D	PSF	MP	N/A	1.95	1.91	3.72	1.93	1177	316	0.991	313	2	7,191
C11-403	B-87 (3) Run 4 Box 1	15.5	L'ville Limestone	As-Received	А	N/A	М	1.97	1.61	1.57	3.94	1.98	2982	757	1.003	759	3	17,466
C11-403	B-87 (3) Run 4 Box 1	15.7	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3553	935	0.996	931	2, 3	21,395
C11-405	B-87 (5) Run 6 Box 2	27.4	Waldron Shale	As-Received	А	⊥bed	MB	1.96	1.42	1.38	3.44	1.85	845	246	0.972	239	4	5,473
C11-405	B-87 (5) Run 6 Box 2	27.9	Waldron Shale	As-Received	D	bed	MB	N/A	1.93	1.91	3.69	1.92	129	35	0.989	35	2	794

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside Ro	oad, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/17/2011	Report Date:	12/3/2011
Project Name:	Louisville Tunnel Project				

Lab	Decise ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	sc
ID	Boring ID	(ft)	Туре	Condition	Type	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-406	B-88 (1) Run 1 Box 1	10.8	L'ville Limestone	As-Received	А	N/A	М	1.97	1.50	1.46	3.66	1.91	2472	675	0.987	666	3	15,274
C11-406	B-88 (1) Run 1 Box 1	11.0	L'ville Limestone	As-Received	D	N/A	М	N/A	1.95	1.91	3.72	1.93	1901	511	0.991	506	2	11,628
C11-408	B-88 (3) Run 2 Box 1	16.0	L'ville Limestone	As-Received	Α	⊥bed	М	1.97	1.32	1.26	3.16	1.78	2650	839	0.956	802	3	18,293
C11-408	B-88 (3) Run 2 Box 1	16.2	L'ville Limestone	As-Received	D	bed	М	N/A	1.95	1.91	3.72	1.93	1963	528	0.991	523	2	12,015
C11-409	B-88 (4) Run 3 Box 1	22.5	L'ville Limestone	As-Received	Α	N/A	М	1.98	1.67	1.63	4.11	2.03	4290	1044	1.014	1059	3	24,420
C11-409	B-88 (4) Run 3 Box 1	22.7	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	5115	1346	0.996	1341	2, 3	30,800
C11-410	B-88 (5) Run 5 Box 2	29.8	L'ville Limestone	As-Received	Α	N/A	MP	1.97	1.61	1.57	3.94	1.98	1458	370	1.003	371	3 note	8,537
C11-410	B-88 (5) Run 5 Box 2	30.0	L'ville Limestone	As-Received	D	N/A	MP	N/A	1.97	1.93	3.80	1.95	474	125	0.996	125	2 note	2,860

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Note: Specimen failed through a pressure solution feature.

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside R	oad, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/16/2011	Report Date:	12/5/2011
Project Name:	Louisville Tunnel Project			_	

Lab	Doring ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	Sc
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-411	B-89 (1) Run 2 Box 1	18.6	L'ville Limestone	As-Received	А	N/A	М	1.97	1.57	1.54	3.86	1.96	2851	739	0.998	738	3	16,957
C11-411	B-89 (1) Run 2 Box 1	18.8	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2004	527	0.996	525	2	12,059
C11-412	B-89 (2) Run 8 Box 3	48.0	Waldron Shale	As-Received	А	N/A	М	1.97	1.56	1.50	3.76	1.94	1217	324	0.993	322	3	7,393
C11-412	B-89 (2) Run 8 Box 3	47.8	Waldron Shale	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	1288	339	0.996	338	2	7,757
C11-415	B-89 (5) Run 14 Box 5	75.8	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.65	1.61	4.06	2.01	2861	705	1.009	711	3	16,401
C11-415	B-89 (5) Run 14 Box 5	76.0	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3117	820	0.996	817	2	18,764

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside F	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/30/2011	Report Date:	12/9/2011
Project Name:	Louisville Tunnel Project			_	

Lab	Darina ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-428	B-90 (1) Run 2 Box 1	7.5	L'ville Limestone	As-Received	А	N/A	М	1.98	1.48	1.44	3.63	1.91	2408	663	0.987	654	3	15,003
C11-428	B-90 (1) Run 2 Box 1	7.7	L'ville Limestone	As-Received	D	PSF	MP	N/A	1.97	1.93	3.80	1.95	1494	393	0.996	391	2	8,993
C11-429	B-90 (2) Run 4 Box 1	15.2	L'ville Limestone	As-Received	А	N/A	М	1.98	1.56	1.52	3.83	1.96	3072	802	0.998	800	3	18,403
C11-429	B-90 (2) Run 4 Box 1	14.2	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	1696	446	0.996	444	2	10,206

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

ar to anisotropic planes $\|$ = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/2/2011	Report Date:	11/23/2011
Project Name:	Louisville Tunnel Project				

Lab	Derine ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	s _c
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-376	B-91 (1) Run 2 Box 1	21.4	L'ville Limestone	As-Received	А	N/A	М	1.98	1.67	1.61	4.06	2.01	2336	575	1.009	580	3	13,377
C11-376	B-91 (1) Run 2 Box 1	21.6	L'ville Limestone	As-Received	D	PSF	MP	N/A	1.97	1.93	3.80	1.95	1763	464	0.996	462	2	10,617
C11-380	B-91 (5) Run 10 Box 4	63.7	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.50	1.44	3.63	1.91	4025	1109	0.987	1095	3	25,095
C11-380	B-91 (5) Run 10 Box 4	63.9	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3907	1028	0.996	1024	2	23,523
C11-382	B-91 (7) Run 14 Box 5	83.3	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.52	1.48	3.73	1.93	3257	873	0.991	865	3	19,866
C11-382	B-91 (7) Run 14 Box 5	83.5	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.91	3.76	1.94	1955	520	0.993	516	2	11,866

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside Ro	ad, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/1/2011	Report Date:	11/18/2011
Project Name:	Louisville Tunnel Project				

Lab	Davin a ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	Sc
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-369	B-92 (1) Run 2 Box 1	13.4	L'ville Limestone	As-Received	А	N/A	М	1.98	1.61	1.57	3.96	1.99	5026	1269	1.005	1275	3	29,360
C11-369	B-92 (1) Run 2 Box 1	13.6	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3334	877	0.996	873	2	20,068
C11-373	B-92 (5) Run 7 Box 2	34.9	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.61	1.57	3.96	1.99	3107	785	1.005	789	3	18,162
C11-373	B-92 (5) Run 7 Box 2	35.1	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	3233	851	0.996	848	2	19,473
C11-374	B-92 (6) Run 10 Box 4	52.2	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.50	1.46	3.68	1.92	2179	592	0.989	585	3	13,434
C11-374	B-92 (6) Run 10 Box 4	52.4	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2443	643	0.996	640	2	14,713
C11-375	B-92 (7) Run 14 Box 5	69.9	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.30	1.26	3.18	1.78	2472	777	0.956	743	3	16,941
C11-375	B-92 (7) Run 14 Box 5	70.1	Laurel Dolomite	As-Received	D	bed	MB	N/A	1.97	1.95	3.84	1.96	297	77	0.998	77	2	1,767

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

o anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and De.

Notes / Deviations / References: ASTM D5731

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside Ro	oad, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/3/2011	Report Date:	11/30/2011
Project Name:	Louisville Tunnel Project			_	

Lab	Barina ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	Sc
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-384	B-93 (2) Run 4 Box 1	20.6	L'ville Limestone	As-Received	А	N/A	М	1.98	1.56	1.52	3.83	1.96	2631	687	0.998	686	3	15,764
C11-384	B-93 (2) Run 4 Box 1	20.4	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	1963	517	0.996	515	2	11,830
C11-386	B-93 (4) Run 6 Box 2	30.9	Waldron Shale	As-Received	А	⊥bed	MB	1.97	1.63	1.57	3.94	1.98	1439	365	1.003	366	3	8,422
C11-386	B-93 (4) Run 6 Box 2	30.7	Waldron Shale	As-Received	D	bed	MB	N/A	1.95	1.93	3.76	1.94	96	26	0.993	26	2	593
C11-388	B-93 (6) Run 11 Box 3	54.9	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.57	1.54	3.88	1.97	1915	494	1.000	494	3	11,367
C11-388	B-93 (6) Run 11 Box 3	54.7	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2159	568	0.996	566	2	12,997
C11-389	B-93 (7) Run 14 Box 5	71.6	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.57	1.54	3.88	1.97	3148	811	1.000	811	3	18,661
C11-389	B-93 (7) Run 14 Box 5	71.8	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2882	758	0.996	755	2	17,345

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

to anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and D_e .

Notes / Deviations / References: ASTM D5731

Revision No. 0

Revision Date: 4/26/2011

Point Load Strength Index of Rock

ASTM D5731, ISRM Point Load Test

Quality Assurance

		S&ME, Inc Knoxville 1413 Topside	Road, Louisville, TN 37777		
Project #:	1831-10-5629	Sample Date:	11/4/2011	Report Date:	12/1/2011
Project Name:	Louisville Tunnel Project				

Lab	Decise ID	Depth	Rock	Moisture	Test	Aniso.	Folliation /	W	D	D'	D_e^2	D _e	Load	Is	Б	I _{S(50)}	Failure	sc
ID	Boring ID	(ft)	Туре	Condition	Туре	Load	Joint Dip	(in)	(in)	(in)	(in)	(in)	(lbs)	(psi)	Г	(psi)	Туре	(psi)
C11-392	B-94 (1) Run 2 Box 1	15.4	L'ville Limestone	As-Received	А	N/A	М	1.97	1.59	1.56	3.91	1.98	2243	574	1.003	576	3	13,244
C11-392	B-94 (1) Run 2 Box 1	15.6	L'ville Limestone	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2169	571	0.996	569	2	13,066
C11-396	B-94 (5) Run 7 Box 2	40.5	Waldron Shale	As-Received	А	⊥bed	MB	1.97	1.22	1.18	2.96	1.72	1534	518	0.941	487	3	11,097
C11-396	B-94 (5) Run 7 Box 2	40.2	Waldron Shale	As-Received	D	bed	MB	N/A	1.95	1.91	3.72	1.93	1362	366	0.991	363	2	8,329
C11-397	B-94 (6) Run 11 Box 4	64.4	Laurel Dolomite	As-Received	А	N/A	М	1.97	1.54	1.50	3.76	1.94	2447	651	0.993	646	3	14,855
C11-397	B-94 (6) Run 11 Box 4	64.6	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.95	1.91	3.72	1.93	2349	631	0.991	625	2 Note	14,359
C11-398	B-94 (7) Run 15 Box 5	81.9	Laurel Dolomite	As-Received	А	N/A	М	1.98	1.57	1.54	3.88	1.97	3435	885	1.000	885	3	20,363
C11-398	B-94 (7) Run 15 Box 5	82.1	Laurel Dolomite	As-Received	D	N/A	М	N/A	1.97	1.93	3.80	1.95	2661	700	0.996	697	2	16,018

Nomenclature Test Type: D = Diametral, A = Axial, B = Block, and I = Irregular

Anisotropic Load: \perp = Load applied perpendicular to anisotropic planes

anisotropic planes = Load applied parallel to anisotropic planes.

Folliation / Joint Dip: Angle measured from plane perpendicular to core axis, F = Foliation, J = Joint, B = Bedding, M = Massive (no apparent folliation of joints), P = Pressure Solution Feature

Failure Type: 1 = Along joint, folliation or other feature, 2 = across core axis, 3 = along core axis, 4 = pop-out (invalid), 5 = failure prior to loading (invalid)

Sc calculated using generalized strength conversion factors interpolated from Table 1 in ASTM D5731 and values of J and De.

Notes / Deviations / References: ASTM D5731

Note: Specimen did not fail through both loading points.

Huder-Amberg Test

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	10/26/11
Start Test Date	10/28/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B-82
Depth	83.2-84.3
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to	bedding
Method of sampling	Core boring	
Method of specimen preparation	Cut by slab sa	aw
Max. axial strain	0.87 %	
Original height of specimen	16.57 mm	0.65 in
Maximum pressure requested by client	4644 kPa	9700 psf
Diameter of specimen	50.32 mm	1.98 in
Test temperature	20.0 °C	68.0 °F

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

Huder-Amberg Test

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load ii	ncrement	Axial displ	acement	Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
11/15/11	110	225	7.6	0.3	0.046
11/16/11	215	450	17.8	0.7	0.107
11/17/11	215	450	27.9	1.1	0.169
11/18/11	645	1350	48.3	1.9	0.291
11/19/11	1075	2250	76.2	3.0	0.460
11/20/11	1200	2500	109.2	4.3	0.659
11/21/11	1200	2500	144.8	5.7	0.874
11/24/11			17.8	0.7	0.107
11/26/11	-1200	-2500	-12.7	-0.5	-0.077
11/28/11	-1200	-2500	-38.1	-1.5	-0.230
11/29/11	-1075	-2250	-73.7	-2.9	-0.445
11/30/11	-645	-1350	-101.6	-4.0	-0.613
12/1/11	-215	-450	-109.2	-4.3	-0.659
12/2/11	-215	-450	-127.0	-5.0	-0.766

Note: axial load, displacement and strain increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

Huder-Amberg Test

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail fulvio@tononeng.com
(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	12/5/11
Start Test Date	12/10/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B85, Sample 1
Depth	39.0-39.8 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-2.54 %		
Original height of specimen	16.69 mm	0.66 in	
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.13 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial displacement		Axial strain (%)	
	kPa	psf	mm (x 1,000)	in (x 1,000)		
12/1/11	95.76	200	5.08	0.2	0.03	
12/1/11	191.52	400	10.16	0.4	0.06	
12/2/11	191.52	400	12.7	0.5	0.08	
12/2/11	574.56	1200	15.24	0.6	0.09	
12/3/11	957.6	2000	17.78	0.7	0.11	
12/4/11	1340.64	2800	20.32	0.8	0.12	
12/5/11	1340.64	2800	27.94	1.1	0.17	
12/8/11			-243.84	-9.6	-1.46	
12/10/11	-1340.64	-2800	-259.08	-10.2	-1.55	
12/12/11	-1340.64	-2800	-289.56	-11.4	-1.73	
12/13/11	-957.6	-2000	-327.66	-12.9	-1.96	
12/14/11	-574.56	-1200	-365.76	-14.4	-2.19	
12/15/11	-191.52	-400	-386.08	-15.2	-2.31	
12/16/11	-191.52	-400	-424.18	-16.7	-2.54	

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave	Dr. Fulvio Tonon, P.F.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	12/5/11
Start Test Date	12/10/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B86, Sample 1
Depth	32.9-34.1 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-0.90 %		
Original height of specimen	16.41 mm 0.65 in		
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.05 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial displacement		Axial strain (%)	
	kPa	psf	mm (x 1,000)	in (x 1,000)		
12/1/11	95.76	200	7.62	0.3	0.05	
12/1/11	191.52	400	15.24	0.6	0.09	
12/2/11	191.52	400	20.32	0.8	0.12	
12/2/11	574.56	1200	33.02	1.3	0.20	
12/3/11	957.6	2000	45.72	1.8	0.28	
12/4/11	1340.64	2800	63.5	2.5	0.39	
12/5/11	1340.64	2800	73.66	2.9	0.45	
12/8/11			-7.62	-0.3	-0.05	
12/10/11	-1340.64	-2800	-15.24	-0.6	-0.09	
12/12/11	-1340.64	-2800	-48.26	-1.9	-0.29	
12/13/11	-957.6	-2000	-76.2	-3	-0.46	
12/14/11	-574.56	-1200	-96.52	-3.8	-0.59	
12/15/11	-191.52	-400	-104.14	-4.1	-0.63	
12/16/11	-191.52	-400	-147.32	-5.8	-0.90	

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	F-mail fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	12/5/11
Start Test Date	12/10/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B89, Sample 1
Depth	50.7-51.1 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-6.24 %		
Original height of specimen	16.78 mm	0.66 in	
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.06 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial disp	lacement	Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
12/15/11	95.76	200	10.16	0.4	0.06
12/15/11	191.52	400	22.86	0.9	0.14
12/16/11	191.52	400	33.02	1.3	0.20
12/16/11	574.56	1200	55.88	2.2	0.33
12/17/11	957.6	2000	81.28	3.2	0.48
12/18/11	1340.64	2800	106.68	4.2	0.64
12/19/11	1340.64	2800	124.46	4.9	0.74
12/22/11			-289.56	-11.4	-1.73
12/24/11	-1340.64	-2800	-335.28	-13.2	-2.00
12/26/11	-1340.64	-2800	-398.78	-15.7	-2.38
12/27/11	-957.6	-2000	-477.52	-18.8	-2.85
12/28/11	-574.56	-1200	-622.3	-24.5	-3.71
12/29/11	-191.52	-400	-698.5	-27.5	-4.16
12/30/11	-191.52	-400	-1046.48	-41.2	-6.24

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	11/09/11
Start Test Date	11/12/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B91, Sample 2
Depth	42.1-42.64 ft
Rock Type	

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-0.80 %		
Original height of specimen	20.76 mm	0.82 in	
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.15 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial disp	lacement	Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
12/1/11	95.76	200	10.16	0.4	0.05
12/1/11	191.52	400	17.78	0.7	0.09
12/2/11	191.52	400	25.4	1	0.12
12/2/11	574.56	1200	38.1	1.5	0.18
12/3/11	957.6	2000	58.42	2.3	0.28
12/4/11	1340.64	2800	76.2	3	0.37
12/5/11	1340.64	2800	91.44	3.6	0.44
12/8/11			53.34	2.1	0.26
12/10/11	-1340.64	-2800	30.48	1.2	0.15
12/12/11	-1340.64	-2800	-7.62	-0.3	-0.04
12/13/11	-957.6	-2000	-53.34	-2.1	-0.26
12/14/11	-574.56	-1200	-101.6	-4	-0.49
12/15/11	-191.52	-400	-134.62	-5.3	-0.65
12/16/11	-191.52	-400	-165.1	-6.5	-0.80

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	11/09/11
Start Test Date	11/12/11
Test Performer / Checker	Fulvio Tonon
	Gloria Tonon-Kozma
Boring no.	B92, Sample 2
Depth	29.7-30.5 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-5.75 %		
Original height of specimen	18.51 mm	0.73in	
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.15 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial disp	lacement	Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
12/10/11	95.76	200	7.62	0.3	0.04
12/10/11	191.52	400	15.24	0.6	0.08
12/12/11	191.52	400	17.78	0.7	0.10
12/12/11	574.56	1200	33.02	1.3	0.18
12/13/11	957.6	2000	48.26	1.9	0.26
12/14/11	1340.64	2800	63.5	2.5	0.34
12/15/11	1340.64	2800	78.74	3.1	0.43
12/18/11	0	0	-403.86	-15.9	-2.18
12/20/11	-1340.64	-2800	-452.12	-17.8	-2.44
12/22/11	-1340.64	-2800	-510.54	-20.1	-2.76
12/23/11	-957.6	-2000	-589.28	-23.2	-3.18
12/24/11	-574.56	-1200	-690.88	-27.2	-3.73
12/25/11	-191.52	-400	-873.76	-34.4	-4.72
12/26/11	-191.52	-400	-1064.26	-41.9	-5.75

Note: axial load, displacement and strain increments are positive if compressive, negative if tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	F-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	11/09/11
Start Test Date	11/12/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B93, Sample 3
Depth	31.5-31.9 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-3.74 %		
Original height of specimen	20.43 mm 0.80		
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	50.15 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial displacement		Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
12/1/11	95.76	200	5.08	0.2	0.02
12/1/11	191.52	400	12.7	0.5	0.06
12/2/11	191.52	400	17.78	0.7	0.09
12/2/11	574.56	1200	33.02	1.3	0.16
12/3/11	957.6	2000	43.18	1.7	0.21
12/4/11	1340.64	2800	66.04	2.6	0.32
12/5/11	1340.64	2800	88.9	3.5	0.44
12/8/11			-330.2	-13	-1.62
12/10/11	-1340.64	-2800	-436.88	-17.2	-2.14
12/12/11	-1340.64	-2800	-487.68	-19.2	-2.39
12/13/11	-957.6	-2000	-546.1	-21.5	-2.67
12/14/11	-574.56	-1200	-607.06	-23.9	-2.97
12/15/11	-191.52	-400	-650.24	-25.6	-3.18
12/16/11	-191.52	-400	-764.54	-30.1	-3.74

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Project name	Louisville Tunnel
Client project no.	1831-10-5629
Date samples were received	11/09/11
Start Test Date	11/12/11
Test Performer	Fulvio Tonon
Checker	Gloria Tonon-Kozma
Boring no.	B94, Sample 2
Depth	37.4-37.9 ft
Rock Type	Waldron Shale

Orientation of specimen axis	Orthogonal to bedding		
Method of sampling	Core boring		
Method of specimen preparation	Cut by slab saw		
Max. axial strain	-5.51 %		
Original height of specimen	20.45 mm 0.81		
Maximum pressure requested by client	4644 kPa	9700 psf	
Diameter of specimen	49.96 mm	1.97 in	
Test temperature	20.0 °C	68.0 °F	

Testing set-up 1

Testing set-up 2

2304 Bowman Ave. Austin, TX, 78703

Dr. Fulvio Tonon, P.E. Phone: +1-512-200-3051 E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

Date	Axial load	increment	Axial displacement		Axial strain (%)
	kPa	psf	mm (x 1,000)	in (x 1,000)	
12/1/11	95.76	200	5.08	0.2	0.02
12/1/11	191.52	400	17.78	0.7	0.09
12/2/11	191.52	400	22.86	0.9	0.11
12/2/11	574.56	1200	45.72	1.8	0.22
12/3/11	957.6	2000	66.04	2.6	0.32
12/4/11	1340.64	2800	91.44	3.6	0.45
12/5/11	1340.64	2800	104.14	4.1	0.51
12/8/11			-238.76	-9.4	-1.17
12/10/11	-1340.64	-2800	-396.24	-15.6	-1.94
12/12/11	-1340.64	-2800	-485.14	-19.1	-2.37
12/13/11	-957.6	-2000	-607.06	-23.9	-2.97
12/14/11	-574.56	-1200	-746.76	-29.4	-3.65
12/15/11	-191.52	-400	-861.06	-33.9	-4.21
12/16/11	-191.52	-400	-1127.76	-44.4	-5.51

Note: axial load, displacement and strains increments are positive if compressive, negative is tensile or extensional.

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	E-mail: fulvio@tononeng.com

(W. Wittke, Rock Mechanics, Springer 1991, pages 176-178)

Tonon USA

Engineering, Measurements, and Testing, LLC

2304 Bowman Ave.	Dr. Fulvio Tonon, P.E.
Austin, TX, 78703	Phone: +1-512-200-3051
	F-mail fulvio@tononeng.com

APPENDIX II SOIL LABORATORY TESTING

\$S&ME

*						
JOB NAME : Louisville Bridge Twin Tunnels						
JOB NO. : 1831-10-5629 SAMPLE DATE: 10/20/1	1 REPORT D	ATE: 11/03/11	REVIEWED BY :		JJ	В
DEPTH / ELEV. : 5.0'-7.0'	SAMPLE N	D.: 3	SAMPLE TYPE:		UD	
SAMPLE LOCATION: B-82			DIAMETER, INCHE	ES :	2.82	21
SOIL DESCRIPTION : CL- Brown Lean clay			LENGTH , INCHES	:	3.8	06
LIQUID LIMIT, % : 45 PLASTICITY INDEX , % 24	FINES,%	97.8	SPECIFIC GRAVIT	Y,Gs:	2.6	35
		S	PECIMEN PROPE	RTIES		
9 0F-08			INITIAL			
8.0E-08		MOISTURE CONT	ENT	W _o	18.8	%
5 07.0E-08		DRY BULK DENS	ITY	$\gamma_{\rm dryo}$	105.8	pcf
5.0E-08		SATURATION		So	91.5	%
9 9 4.0E-08		VOID RATIO		e _o	0.563	
3.0E-08		A	FTER CONSOLID	ATION		
₹ 1.0E-08		MOISTURE CONT	ENT	W _c	20.7	%
0.0% 0.1% 0.1% 0.2% FLOW IN PORE VOLUMES , PV (%)	0.2%	DRY BULK DENS	ITY	$\gamma_{ m dryc}$	106.8	pcf
		B-VALUE			0.95	%
HYDRAULIC CONDUCTIVITY, k		VOID RATIO		e _c	0.549	
5.0E-08 CM / SEC @ 20 °C			PERMEATION	1		
		FINAL BACK PRE	SSURE	u _o	60.0	psi
		EFFECTIVE CONS	SOLIDATION	σ,'	6.0	psi
		MAXIMUM HYDR	AULIC GRADIENT	i _{max}	5.1	
		MINUMUM HYDR	AULIC GRADIENT	i _{min}	5.0	
		QUANTITY OF FL	ow	Q	0.2	cm ³
		TOTAL PORE VO	LUME OF FLOW	PV	0.2	%
TEST CONDITIONS		RE	MOLDED SOIL PRO	PERTIES		
		The specimen w	as remolded to	99.5%	of in-	situ
		density , at a mois	ture content of	18.8%		
PERMEANT DESCRIPTION : Water						
@ 24 °C						
METHOD: C - Falling Head, Rising Tailwater						
		IN- SITU DENSITY	· :	12:	5.7	PCF

NATURAL MOISTURE CONTENT :

18.8

%

\$S&ME

JOB NAME : Louisville Bridges Twin Tunnels				
JOB NO. : 1831-10-5629 SAMPLE DATE: 10/20/11 REPOR	RT DATE: 11/03/11 REVIEWED BY :		SI	В
DEPTH / ELEV. : 10.0'-12.0' SAMPL	E NO.: 6 SAMPLE TYPE:		Ul	D
SAMPLE LOCATION: B-82	DIAMETER , INCH	ES :	2.8	08
SOIL DESCRIPTION : CL- Brown Lean clay	LENGTH, INCHES	:	4.0	13
LIQUID LIMIT, % : 37 PLASTICITY INDEX , % 19 FINES ,	,%: 97.4 SPECIFIC GRAVIT	Y,Gs:	2.6	35
	SPECIMEN PROPE	RTIES		
9.0E-07	INITIAL			
8.0E-07	MOISTURE CONTENT	Wo	16.6	%
5 υ ^{7.0E-07}	DRY BULK DENSITY	$\gamma_{ m dryo}$	111.9	pcf
Q W 6.0E-07 S 5.0E-07 S 5.0E-07	SATURATION	So	91.5	%
	VOID RATIO	e _o	0.478	
	AFTER CONSOLID	ATION		
£ 2.0E-07 1.0E-07	MOISTURE CONTENT	W _c	17.8	%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% FLOW IN PORE VOLUMES , PV (%)	DRY BULK DENSITY	$\gamma_{ m dryc}$	112.3	pcf
	B-VALUE		0.95	%
HYDRAULIC CONDUCTIVITY, k	VOID RATIO	e _c	0.473	
7.5E-07 CM / SEC @ 20 °C	PERMEATIO	N		
	FINAL BACK PRESSURE	u _o	65.0	psi
	EFFECTIVE CONSOLIDATION PRESSURE	σ₃'	10.0	psi
	MAXIMUM HYDRAULIC GRADIENT	i _{max}	4.8	
	MINUMUM HYDRAULIC GRADIENT	i _{min}	3.7	
	QUANTITY OF FLOW	Q	2.7	cm ³
	TOTAL PORE VOLUME OF FLOW	PV	2.1	%
	The specimen was remolded to	99.7%	of in-	situ
	density, at a moisture content of	16.6%	01111	Sila
PERMEANT DESCRIPTION : Water @ 24 °C				
METHOD: C - Falling Head, Rising Tailwater				
	IN-SITU DENSITY :	13	υ.8	PCF
	NATURAL MOISTURE CONTENT :	16	3.6	%

FLEXIBLE WALL PERMEABILITY TEST REPORT

(ASTM D 5084)

JOB NAME : Louisville Bridge Twin Tunnels	
JOB NO. : 1831-10-5629 SAMPLE DATE: 11/15/11 RE	EPORT DATE: 12/16/11 REVIEWED BY : SB
DEPTH/ELEV. : 8.0'-10.0' SA	AMPLE NO.: 4 SAMPLE TYPE: UD
SAMPLE LOCATION: B-88	DIAMETER , INCHES : 2.89
SOIL DESCRIPTION : CL- Orange brown Lean clay	LENGTH , INCHES : 4.36
LIQUID LIMIT, % : 33 PLASTICITY INDEX, % 12 FIN	NES, % : 98.1 SPECIFIC GRAVITY, GS : 2.69
	SPECIMEN PROPERTIES
	INITIAL
▶ 9.0E-06 8.0E-06	MOISTURE CONTENT W _o 21.4 %
	DRY BULK DENSITY γ_{dryo} 97.2 pcf
SOE-06	SATURATION So 78.8 %
9 × 4.0E-06	VOID RATIO e _o 0.728
3.0E-06	AFTER CONSOLIDATION
₹ 1.0E-06	MOISTURE CONTENT W _c 25.7 %
0.0% 1.0% 2.0% 3.0% FLOW IN PORE VOLUMES , PV (%)	4.0% DRY BULK DENSITY γ_{dryc} 99.2 pcf
	B-VALUE 0.96 %
HYDRAULIC CONDUCTIVITY, k	VOID RATIOe_c0.692
2.7E-06 CM / SEC @ 20 °C	PERMEATION
	FINAL BACK PRESSUREuo40.0psi
	PRESSURE 03' 7.4 psi
	MAXIMUM HYDRAULIC GRADIENT i _{max} 4.4
	MINUMUM HYDRAULIC GRADIENT i _{min} 2.3
	QUANTITY OF FLOW Q 6.4 cm ³
	TOTAL PORE VOLUME OF FLOWPV3.4%
TEST CONDITIONS	REMOLDED SOIL PROPERTIES
PERMEANT DESCRIPTION : Water @ 25 °C	The specimen was remolded to - of in- situ density , at a moisture content of -
INIE I NOD: C - Failing Head, Kising Tallwater	IN- SITU DENSITY : 118.0 PCF
	NATURAL MOISTURE CONTENT : 21.4 %

4

(ASTM D 5084)			AASHTO R18	K
JOB NAME : Louisville Bridge Twin Tunnels				
JOB NO. : 1831-10-5629 SAMPLE DATE: 11/15/11 REPORT DATE: 12/16/11	REVIEWED BY :		SE	3
DEPTH / ELEV. : 4.0'-6.0' SAMPLE NO.: 2	SAMPLE TYPE:		UL)
SAMPLE LOCATION: B-89	DIAMETER , INCHES	6:	2.78	84
SOIL DESCRIPTION : CL- Orange brown Lean clay	LENGTH , INCHES :		3.70	09
LIQUID LIMIT, % : 33 PLASTICITY INDEX , % 11 FINES , % : 99.5	SPECIFIC GRAVITY,	Gs :	2.6	8
5	SPECIMEN PROPER	TIES		
	INITIAL			
9.0E-06 ■<	TENT	W _o	21.4	%
	SITY	$\gamma_{\rm dryo}$	99.7	pcf
		So	83.7	%
		e _o	0.685	
2.0E-06	AFTER CONSOLIDA	TION		
	TENT	W_{c}	22.7	%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% FLOW IN PORE VOLUMES , PV (%)	SITY	$\gamma_{\rm dryc}$	104.2	pcf
B-VALUE			0.96	%
HYDRAULIC CONDUCTIVITY, k VOID RATIO		e _c	0.611	
4.5E-06 CM / SEC @ 20 °C	M / SEC @ 20 °C PERMEATION			
FINAL BACK PRI	ESSURE	u _o	40.0	psi
EFFECTIVE CON PRESSURE	SOLIDATION	σ,'	4.2	psi
MAXIMUM HYDR	AULIC GRADIENT	i _{max}	5.2	
MINUMUM HYDR	AULIC GRADIENT	i _{min}	3.6	
QUANTITY OF FL	_ow	Q	4.5	cm ³
TOTAL PORE VO	DLUME OF FLOW	PV	3.3	%
TEST CONDITIONS RE	MOLDED SOIL PROP	ERTIES		
The specimen w	as remolded to	-	of in- s	situ
PERMEANT DESCRIPTION : Water @ 26 °C METHOD: C - Falling Head, Rising Tailwater	sture content of	-		
IN- SITU DENSIT	Y :	12	1.1	PCF
NATURAL MOIS	TURE CONTENT :	21	.4	%

\$S&ME

				5
JOB NAME : Louisville Bridge Twin Tunnels				
JOB NO. : 1831-10-5629 SAMPLE DATE: 11/15/11 REPOR	RT DATE: 12/16/11 REVIEWED BY :		SI	В
DEPTH / ELEV. : 8.0'-10.0' SAMPI	LE NO.: 4 SAMPLE TYPE:		UI	D
SAMPLE LOCATION: B-89	DIAMETER , INCHE	S :	2.8	26
SOIL DESCRIPTION : CL- Brown Lean clay	LENGTH , INCHES	:	3.7	09
LIQUID LIMIT, % : 35 PLASTICITY INDEX , % 15 FINES	,%: 96.8 SPECIFIC GRAVITY	′, Gs :	2.6	68
	SPECIMEN PROPE	RTIES		
	INITIAL			
≥ 9.0E-06 8.0E-06	MOISTURE CONTENT	Wo	22.6	%
5 J.0E-06	DRY BULK DENSITY	$\gamma_{\rm dryo}$	100.5	pcf
\overrightarrow{B}	SATURATION	S _o	91.0	%
9 5 4.0E-06	VOID RATIO	e _o	0.665	
3.0E-06	AFTER CONSOLID	ATION		
₹ 1.0E-06	MOISTURE CONTENT	W_{c}	23.9	%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% FLOW IN PORE VOLUMES , PV (%)	⁶ DRY BULK DENSITY	$\gamma_{ m dryc}$	102.0	pcf
	B-VALUE		0.95	%
HYDRAULIC CONDUCTIVITY, k	VOID RATIO	e _c	0.641	
2.8E-06 CM / SEC @ 20 °C	PERMEATION	1	-	
	FINAL BACK PRESSURE	u _o	40.0	psi
	EFFECTIVE CONSOLIDATION PRESSURE	σ_{3}'	7.4	psi
	MAXIMUM HYDRAULIC GRADIENT	i _{max}	5.2	
	MINUMUM HYDRAULIC GRADIENT	i _{min}	4.0	
	QUANTITY OF FLOW	Q	4.0	cm ³
	TOTAL PORE VOLUME OF FLOW	PV	2.7	%
	The specimen was remolded to	- <u></u>	of in-	situ
PERMEANT DESCRIPTION : Water @ 23 °C METHOD: C - Falling Head, Rising Tailwater	density , at a moisture content of	-		
	IN- SITU DENSITY :	12	3.2	PCF
	NATURAL MOISTURE CONTENT :	22	2.6	%

S&ME		(AS	STM D 5084)				AASHTO R18	R
JOB NAME : Louisville Bridge Twin 7	Funnels		•					
JOB NO. : 1831-10-5629 SAMPLE	E DATE: 10/20	0/11	REPORT DATE:	12/16/11	REVIEWED BY :		SE	3
DEPTH / ELEV. : 9.0'-11.0'			SAMPLE NO.:	4	SAMPLE TYPE:		UL)
SAMPLE LOCATION: B-91					DIAMETER , INCHE	S :	2.85	57
SOIL DESCRIPTION : CL- Orange bro	own Lean clay		•		LENGTH , INCHES	:	3.95	56
LIQUID LIMIT, % : 38 PLASTIC	CITY INDEX , %	19	FINES,%:	96.8	SPECIFIC GRAVITY	, Gs :	2.6	9
				S		RTIES		
					INITIAL			
5.1E-06			MOIS	TURE CONT	ENT	W _o	17.7	%
4.1E-06			DRY	BULK DENS	ITY	$\gamma_{ m dryo}$	107.7	pcf
9 8 3.1E-06			SATU	JRATION		So	84.8	%
2.1E-06			VOID	RATIO		e _o	0.560	
				Α	FTER CONSOLIDA	TION		
₣ 1.0E-07			MOIS	TURE CONT	ENT	W_{c}	20.4	%
0.0% 0.1% 0.2% 0.39 FLOW IN PORE	% 0.4% 0.5% E VOLUMES,PV(%	0.6% %)	^{6 0.7%} DRY	BULK DENS	ITY	$\gamma_{\rm dryc}$	108.5	pcf
	-	-	B-VA	LUE			0.95	%
HYDRAULIC CO	NDUCTIVITY, k		VOID	RATIO		e _c	0.548	
1.1E-06	CM / SEC @ 20	°C			PERMEATION			
			FINA	L BACK PRE	SSURE	u _o	50.0	psi
			EFFE PRES	CTIVE CONS	SOLIDATION	σ,'	8.0	psi
			MAXI		AULIC GRADIENT	i _{max}	1.0	
			MINU		AULIC GRADIENT	İ _{min}	0.9	
			QUA	NTITY OF FL	ow	Q	0.9	cm ³
			τοτΑ	L PORE VO	LUME OF FLOW	PV	0.6	%
TEST CONDITIONS			ı —	RFI		PRTIES		
		The	specimen wa	as remolded to	-	, of in- s	situ	
PERMEANT DESCRIPTION :	Water @ 24 °C		densi	ty , at a moist	ture content of	-		
METHOD: C - Falling Head, Risi	ing Tailwater							
			IN- SI	TU DENSITY	′:	120	6.7	PCF
			NATU	JRAL MOIST	URE CONTENT :	17	.7	%

FLEXIBLE WALL PERMEABILITY TEST REPORT

(ASTM D 5084)

(ASTM D 5084)			AASHTO R18	R
JOB NAME : Louisville Bridge Twin Tunnels				
JOB NO. : 1831-10-5629 SAMPLE DATE: 11/2/11 REPORT DATE: 12/16/11	REVIEWED BY :		SE	3
DEPTH / ELEV. : 4.0'-6.0' SAMPLE NO.: 2	SAMPLE TYPE:		U)
SAMPLE LOCATION: B-92	DIAMETER , INCHES	:	2.78	39
SOIL DESCRIPTION : CL- Brown Lean clay	LENGTH , INCHES :		4.046	
LIQUID LIMIT, % : 34 PLASTICITY INDEX , % 15 FINES , % : 98.0	SPECIFIC GRAVITY,	Gs :	2.6	8
5	PECIMEN PROPER	TIES		
	INITIAL			
≥ 9.0E-07 8.0E-07 MOISTURE CON	ΓΕΝΤ	Wo	11.7	%
	SITY	$\gamma_{\rm dryo}$	111.1	pcf
SATURATION		So	61.2	%
		e _o	0.512	
2.0E-07	FTER CONSOLIDAT	ΓΙΟΝ		
	ΓΕΝΤ	W _c	18.6	%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% FLOW IN PORE VOLUMES , PV (%)	SITY	$\gamma_{\rm dryc}$	111.9	pcf
B-VALUE			0.99	%
HYDRAULIC CONDUCTIVITY, k VOID RATIO		e _c	0.501	
7.6E-07 CM / SEC @ 20 °C	PERMEATION			
FINAL BACK PR	ESSURE	u _o	55.0	psi
EFFECTIVE CON PRESSURE	SOLIDATION	σ,'	8.8	psi
MAXIMUM HYDR	AULIC GRADIENT	i _{max}	4.8	
MINUMUM HYDR	AULIC GRADIENT	i _{min}	3.7	
QUANTITY OF FI	wo	Q	3.3	cm ³
TOTAL PORE VC	LUME OF FLOW	PV	2.4	%
The specimen w	as remolded to	-	of in- s	situ
PERMEANT DESCRIPTION : Water @ 23 °C METHOD: C - Falling Head, Rising Tailwater	ture content of	-		
IN- SITU DENSIT	Y:	124	4.0	PCF
NATURAL MOIST	URE CONTENT:	11	.7	%

FLEXIBLE WALL PERMEABILITY TEST REPORT

(ASTM D 5084)

(ASTM D 5084)		AASHTO R18				
JOB NAME : Louisville Bridge Twin Tunnels						
JOB NO. : 1831-10-5629 SAMPLE DATE: 11/2/11 REPORT DATE: 12/16/11 REVIEWED BY :		SE	3			
DEPTH / ELEV. : 4.0'-6.0' SAMPLE NO.: 2 SAMPLE TYPE:		UL	2			
SAMPLE LOCATION: B-93 DIAMETER , INCHES	; :	2.8	53			
SOIL DESCRIPTION : ML- Brown Silt LENGTH , INCHES :		3.979				
LIQUID LIMIT, % : 34 PLASTICITY INDEX , % 6 FINES , % : 98.8 SPECIFIC GRAVITY,	Gs :	2.6	8			
SPECIMEN PROPERTIES						
INITIAL						
5.8E-06 MOISTURE CONTENT	W_{o}	22.5	%			
ΔRY BULK DENSITY	$\gamma_{\rm dryo}$	100.7	pcf			
SATURATION	So	91.1	%			
	e _o	0.661				
AFTER CONSOLIDA	TION					
	W_{c}	23.3	%			
0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% FLOW IN PORE VOLUMES , PV (%)	$\gamma_{\rm dryc}$	103.1	pcf			
B-VALUE		0.97	%			
HYDRAULIC CONDUCTIVITY, k VOID RATIO	e _c	0.623				
1.0E-06 CM / SEC @ 20 °C PERMEATION						
	u _o	55.0	psi			
PRESSURE	σ_{3}'	4.3	psi			
MAXIMUM HYDRAULIC GRADIENT	i _{max}	4.8				
MINUMUM HYDRAULIC GRADIENT	İ _{min}	3.5				
QUANTITY OF FLOW	Q	3.9	cm ³			
TOTAL PORE VOLUME OF FLOW	PV	2.5	%			
The specimen was remolded to	-	of in- :	situ			
density , at a moisture content of	-					
PERMEANT DESCRIPTION : Water						
@ 24 °C						
METHOD: C - Falling Head, Rising Tailwater						
IN- SITU DENSITY :	123	3.4	PCF			
NATURAL MOISTURE CONTENT :	22	.5	%			

ASHTO R18

S&ME (ASTM D 5084)		AASHTO R1	
JOB NAME : Louisville Bridge Twin Tunnels			
JOB NO. : 1831-10-5629 SAMPLE DATE: 10/20/11 REPORT DATE: 12/16/11 REVIEWED B	Y :	S	В
DEPTH / ELEV. 9.0'-11.0' SAMPLE NO.: 3 SAMPLE TYPE	E:	U	D
SAMPLE LOCATION: B-94 DIAMETER, II	NCHES :	2.8	36
SOIL DESCRIPTION : CL- Orange brown Fat clay with sand LENGTH , INC	HES :	4.4	45
LIQUID LIMIT, % : 70 PLASTICITY INDEX , % 44 FINES , % : 80.6 SPECIFIC GRA	AVITY, Gs:	2.7	74
SPECIMEN PR	OPERTIES		
INITIA	۱L		
	W _o	24.2	%
	$\gamma_{ m dryo}$	103.3	pcf
	So	100.0	%
	e _o	0.655	
AFTER CONSC	LIDATION		
\$\frac{1}{2}\$ 4.0E-09 MOISTURE CONTENT	W _c	23.2	%
0.0% 0.1% 0.1% 0.2% 0.2% 0.3% FLOW IN PORE VOLUMES , PV (%)	$\gamma_{ m dryc}$	104.6	pcf
B-VALUE		0.96	%
HYDRAULIC CONDUCTIVITY, k VOID RATIO	e _c	0.635	
9.2E-09 CM / SEC @ 20 °C PERMEA	TION		-
FINAL BACK PRESSURE	u _o	69.0	psi
EFFECTIVE CONSOLIDATION PRESSURE	σ₃'	8.8	psi
MAXIMUM HYDRAULIC GRADIE	NT i _{max}	16.7	
MINUMUM HYDRAULIC GRADIE	. NT i _{min}	16.5	
QUANTITY OF FLOW	Q	0.4	cm ³
TOTAL PORE VOLUME OF FLO	N PV	0.2	%
TEST CONDITIONS REMOLDED SOIL	PROPERTIE	S	
The specimen was remolded to) -	of in-	situ
PERMEANT DESCRIPTION : Water	-		
@ 24 °C			
METHOD: C - Falling Head, Rising Tailwater			
IN- SITU DENSITY :	12	8.5	PCF
NATURAL MOISTURE CONTEN	T: 2	4.2	%

PARTICLE- SIZE DISTRIBUTION TEST REPORT SIEVE AND HYDROMETER (ASTM D422)

422 Codell Drive, Lexington, KY 40509

PARTICLE- SIZE DISTRIBUTION TEST REPORT SIEVE AND HYDROMETER (ASTM D422)

422 Codell Drive, Lexington, KY 40509

PARTICLE- SIZE DISTRIBUTION TEST REPORT SIEVE AND HYDROMETER

(ASTM D422)

422 Codell Drive, Lexington, KY 40509

Louisville Bridges Twin Tunnels PROJECT NAME:

PARTICLE- SIZE DISTRIBUTION TEST REPORT SIEVE AND HYDROMETER (ASTM D422)

422 Codell Drive, Lexington, KY 40509

PARTICLE- SIZE DISTRIBUTION TEST REPORT

11/15/2011

12/16/2011

2.65

97.4

N/A

N/A

WEIGHT

Ъ

FINER

%

0.001

SIEVE AND HYDROMETER (ASTM D422) 422 Codell Drive, Lexington, KY 40509 Louisville Bridges Twin Tunnels PROJECT NAME: PROJECT NUMBER: 1831-10-5629 TEST DATE: 11/01/11-11/02 **REVIEWED BY** : DEPTH / ELEV. : 10.0'-12.0' **SAMPLE TYPE:** BORING / PIT NO. : B-82 UD SAMPLE RECEIVED: SAMPLE NO: SAMPLE LOCATION : -6 REPORT DATE: SOIL DESCRIPTION : CL- Brown Lean clay SP. GRAVITY, Gs : PLASTICITY INDEX, % : LIQUID LIMIT, % : MOISTURE, % : 37 19 16.6 FINES, % : D10, MM : D30, MM : COEFF. OF CURVATURE , C_c : N/A N/A D60, MM : N/A COEFF. OF UNIFORMITY , C_u : CLASSIFICATION UNIFIED : CL AASHTO : A-6 (26) GRAVEL SAND FINES COARSE FINE COARSE MEDIUM FINE SILT CLAY .005mm 3/4" SIEVE # 4 SIEVE # 10 SIEVE # 40 SIEVE #200 SIEVE 3" SIEVE 100 90 80 70 60 50 40 30 20 10 0 100.000 10.000 1.000 0.100 0.010 **GRAIN SIZE IN MILLIMETERS**

(ASTM D422)

(ASTM D422)

(ASTM D422)

(ASTM D422)

422 Codell Drive, Lexington, KY 40509

PROJECT NAME: Louisville Bridges Twin Tunnels

(ASTM D422)

REVIEWED BY :

REPORT DATE:

FINES,%:

SP. GRAVITY, Gs :

SAMPLE RECEIVED:

12/4/11

SPT

1

17.7

11/15/11

12/14/11

2.68

98.4

(ASTM D422)

(ASTM D422)

PARTICLE- SIZE DISTRIBUTION TEST REPORT (ASTM D422)

SIEVE AND HYDROMETER

(ASTM D422)

(ASTM D422)

(ASTM D422)

APPENDIX III WELL CONSTRUCTION FIGURES

APPENDIX IV PACKER TEST

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test Data

Boring : **B-82** Elevation: **592.8** Test by: <u>N. Peterson</u> Date: <u>10/25/2011</u>

Formula for Lugeon (Lu) calculation:

(water take in gallons ÷ 7.48 gal/ft³) x (142 psi ÷ gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620)

Data Entry -		Enter Boreho	le Stage (from	a & to); Test T	ime; Gauge F	Pressure; and Water Ta	ake.	
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
91.0	91.0	1	12.0	10	60.0	0.3	0	
103.0	103.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	54.5	7	1
		4	12.0	10	90.0	2.0	0	0 0
		5	12.0	10	60.0	0.0	0	
81.0	81.0	1	12.0	10	60.0	1.1	0	
93.0	93.0	2	12.0	10	90.0	0.0	0	1
		3	12.0	10	120.0	29.5	4	2
		4	12.0	10	90.0	1.1	0	
		5	12.0	10	60.0	0.0	0	
71.0	71.0	1	12.0	10	60.0	0.0	0	
/1.0	/ 1.U 92.0	2	12.0	10	00.0	0.0	0	
03.0	03.0	2	12.0	10	120.0	67.0	Q Q	2
			12.0	10	00.0	07.9	0	3
		5	12.0	10	60.0	0.0	0	
		5	12.0	10	00.0	0.0	0	l
61.0	61.0	1	12.0	10	60.0	0.0	0	
73.0	73.0	2	12.0	10	90.0	0.0	0	1
		3	12.0	10	120.0	88.9	11	4
		4	12.0	10	90.0	0.4	0	
		5	12.0	10	60.0	0.0	0	
51.0	51.0	1	12.0	10	60.0	0.0	0	
63.0	63.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	68.0	8	5
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
41.0	41.0	1	12.0	10	60.0	0.2	0	
53.0	53.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	53.5	7	6
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
							ļ	
31.0	31.0	1	12.0	10	60.0	0.8	0	
43.0	43.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	52.4	6	7
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
21.0	21.0	1	12.0	10	60.0			
33.0	33.0	2	12.0	10	90.0	Free Flow. Could	not achieve	
		3	12.0	10	120.0	test press	ure.	8
		4	12.0	10	90.0			
		5	12.0	10	60.0			

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	7
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	4
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	8
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	11
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

	TEST PRESSURE (psi)	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	11
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

LOUISVILL GEOTECHI WATER PR	E TUNNEL NICAL INVE RESSURE T	PROJECT STIGATIC ESTING)N			S&	ME	
Field Test I	Data							
Boring : Elevation:	<i>B-83</i> 583.7				Test by: Date:	<u>D. Durman</u> <u>10/26/2011</u>		
Formula for Lugeon (Lu) calculation: (water take in gallons ÷ 7.48 gal/ft ³) x (142 psi ÷ gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620) Data Entry - Enter Borehole Stage (from & to); Test Time; Gauge Pressure; and Water Take. Strandshort coloridate Stage ength and unper likite								
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
24.0	24.0	1	12.0	10	60.0	0.0	0	
36.0	36.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.5	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
11.0	14.0	1	12.0	10	60.0	0.0	0	-
26.0	14.0 26.0	2	12.0	10	00.0	0.0	0	
20.0	20.0		12.0	10	120.0	48.4	6	2
		4	12.0	10	90.0	0.0	0	2
		5	12.0	10	60.0	0.0	0	

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	6
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING						S&	ME	
Field Test I	Data							
Boring : Elevation:	<i>B-84</i> 569.6				Test by: Date:	<u>D. Durman</u> <u>10/27/2011</u>		
Formula for Lugeon (Lu) calculation: (water take in gallons ÷ 7.48 gal/ft ³) x (142 psi ÷ gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620) Data Entry - Enter Borehole Stage (from & to); Test Time; Gauge Pressure; and Water Take.								
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
25.0	25.0	1	12.0	10	60.0	0.0	0	
37.0	37.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
15.0	45.0	1	10.0	10	60.0	0.5	0	
15.0	15.0	2	12.0	10	00.0	0.5	0	
27.0	27.0	2	12.0	10	90.0	0.0	0	2
		4	12.0	10	90.0	0.0	0	۷.
		5	12.0	10	60.0	0.0	0	

RE LUGEON VALUE
0
0
0
0
0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test Data								
Boring : Elevation:	<i>B-8</i> 9 546.3				Test by: Date:	<u>N. Peterson</u> <u>11/30/2011</u>		
Formula for	Formula for Lugeon (Lu) calculation: (water take in gallons ÷ 7.48 gal/ft ³) x (142 psi ÷ gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620)							
Data Entry -		Enter Boreho Spreadsheet	le Stage (fro	m & to); Test	Time; Gauge	e Pressure; and Water	Take.	
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
84.0	84.0	1	12.0	10	60.0	0.0	0	
96.0	96.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
74.0	74.0	1	12.0	10	60.0	0.0	0	
74.0 86.0	74.0 86.0	2	12.0	10	00.0	0.0	0	
00.0	00.0	3	12.0	10	120.0	0.0	0	2
		4	12.0	10	90.0	0.0	0	-
		5	12.0	10	60.0	0.0	0	
			-					
64.0	64.0	1	12.0	10	60.0	0.0	0	
76.0	76.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	3
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
	F ()		40.0	40	00.0	0.0	<u> </u>	
54.0	54.0		12.0	10	60.0	0.0	0	
66.0	66.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	4
		4 5	12.0	10	90.0	0.0	0	
		5	12.0	10	00.0	0.0	U	l
44.0	44.0	1	12.0	10	60.0	0.0	0	
56.0	56.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	5
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar Flow

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar Flow

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE (psi)	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar Flow

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test Data

Boring : **B-90** Elevation: **526.0** Test by: <u>N. Peterson</u> Date: <u>11/30/2011</u>

Formula for Lugeon (Lu) calculation:

(water take in gallons \div 7.48 gal/ft³) x (142 psi \div gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620)

Data Entry -

Enter Borehole Stage (from & to); Test Time; Gauge Pressure; and Water Take. Spreadsheet calculates Stage Length and Lugeon Units.

Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
17.1	17.1	1	12.0	10	60.0	71.0	17	1
29.1	29.1	2	12.0	10	90.0			
		3	12.0	10	120.0			
		4	12.0	10	90.0	Free Flow. Could	not maintair	pressure
		5	12.0	10	60.0	abov	e 60 psi.	•
7.1	7.1	1	12.0	10	60.0	0.0	0	
19.1	19.1	2	12.0	10	90.0	75.4	12	2
		3	12.0	10	120.0			
		4	12.0	10	90.0	Free Flow. Could	not maintair	pressure
		5	12.0	10	60.0	abov	e 90 psi.	

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	17
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Wash Out

Permeability increases because fractures are enlarged by the test.

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	12
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Wash Out

Permeability increases because fractures are enlarged by the test.

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test Data

Boring : **B-91** Elevation: **536.5**
 Test by:
 D. Durman

 Date:
 11/10/2011

Formula for Lugeon (Lu) calculation:

(water take in gallons \div 7.48 gal/ft³) x (142 psi \div gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620)

Data Entry - Enter Borehole Stage (from & to); Test Time; Gauge Pressure; and Water Take. Spreadsheet calculates Stage Length and Lugeon Units.								
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
79.5	79.5	1	12.0	10	60.0	0.0	0	
91.5	91.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
	00.5	4	10.0	40	00.0	0.0	<u> </u>	
69.5	69.5	1	12.0	10	60.0	0.0	0	
81.5	81.5	2	12.0	10	90.0	0.0	0	-
		3	12.0	10	120.0	0.0	0	2
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
59.5	59 5	1	12.0	10	60.0	0.0	0	
71.5	71.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	3
		4	12.0	10	90.0	0.0	0	-
		5	12.0	10	60.0	0.0	0	
		-						
49.5	49.5	1	12.0	10	60.0	0.0	0	
61.5	61.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	4
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
-								
39.5	39.5	1	12.0	10	60.0	0.0	0	
51.5	51.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	17.0	2	5
		4	12.0	10	90.0	4.8	1	
		5	12.0	10	60.0	0.0	0	
29.5	29.5	1	12.0	10	60.0	0.0	0	
41.5	41.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	6
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
19.5	19.5	1	12.0	10	60.0	0.0	0	
31.5	31.5	2	12.0	10	90.0			
		3	12.0	10	120.0	Could not maintain	n pressure	7
		4	12.0	10	90.0	above 57 psi. F	ree Flow	
		5	12.0	10	60.0			

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE (psi)	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	2
Test Increment 4	90	1
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Dilation

Permeability increases at the highest water test pressure as fractures are being hydraulically opened. Flow is laminar at the lower pressures.

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test	Data							
Boring : Elevation:	<i>B-9</i> 2 517.6				Test by: Date:	<u>D. Durman</u> <u>11/11/2011</u>		
Formula for Data Entry	Lugeon (Lu) calculatic (water take ir divided by (st Enter Boreho	on: agallons ÷ 7. age length ir le Stage (fro	48 gal/ft ³) x (n feet x test tin m & to); Test	142 psi ÷ gau ne in minute Time; Gaug	uge pressure in psi) s x 0.0107620) e Pressure; and Wate	r Take.	
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
60.5	60.5	1	12.0	10	60.0	0.0	0	
72.5	72.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
						•		
50.5	50.5	1	12.0	10	60.0	0.0	0	
62.5	62.5	2	12.0	10	90.0	0.0	0	2
		3	12.0	10	120.0	0.0	0	
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
40.5	40.5	1	12.0	10	60.0	0.0	0	
52.5	52.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	3
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
30.5	30.5	1	12.0	10	60.0	15.0	4	
42.5	42.5	2	12.0	10	90.0	68.4	11	
		3	12.0	10	120.0	180.4	22	4
		4	12.0	10	90.0	119.4	20	
		5	12.0	10	60.0	117.8	29	
20.5	20.5	1	12.0	10	53.0	209.8	58	
32.5	32.5	2	12.0	10	90.0			5
		3	12.0	10	120.0	Could not maintai	n pressure	
		4	12.0	10	90.0	above 53 psi. Fi	ree Flow	
		5	12.0	10	60.0			
10.5	10.5	1	12.0	10	53.0	299.6	83	
22.5	22.5	2	12.0	10	90.0	4		
		3	12.0	10	120.0	Could not maintain	n pressure	6
		4	12.0	10	90.0	above 53 psi. F	ree Flow	
		5	12.0	10	60.0			

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	4
Test Increment 2	90	11
Test Increment 3	120	22
Test Increment 4	90	20
Test Increment 5	60	29

INTERPRETATION OF RESULTS: Wash Out

Permeability increases because the fractures are enlarged by the test.

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

	Data					·		
Boring :	B-93				Test by:	D. Durman		
Elevation:	521.4				Date:	<u>11/8/2011</u>		
Formula for Data Entry	· Lugeon (Lu -) calculatio (water take ir divided by (st	on: a gallons ÷ 7. age length ir le Stage (fro	48 gal/ft ³) x (n feet x test tii m & to): Test	142 psi ÷ gau me in minute Time: Gauge	uge pressure in psi) s x 0.0107620) e Pressure: and Wate	r Take.	
		Spreadsheet	calculates S	tage Length a	and Lugeon l	Jnits.		
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
63.0	63.0	1	12.0	10	60.0	0.0	0	
75.0	75.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
53.0	53.0	1	12.0	10	60.0	0.0	0	
65.0	65.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	2
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
						Γ		
43.0	43.0	1	12.0	10	60.0	0.0	0	
55.0	55.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	3
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
33.0	33.0	1	12.0	10	60.0	0.0	0	
45.0	45.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	4
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
	00.0		46.6	40	00.0			
23.0	23.0	1	12.0	10	60.0			
35.0	35.0	2	12.0	10	90.0	Free Flow. Could r	not achieve	-
		3	12.0	10	120.0	test pressu	lie.	5
		4 5	12.0	10	90.0			
		5	12.0	10	00.0			
13.0	13.0	1	12.0	10	60.0			
25.0	25.0	2	12.0	10	90.0	Free Flow Could r	not achievo	
		3	12.0	10	120.0	test pressi	lice achieve	6
		4	12.0	10	90.0			-
		5	12.0	10	60.0			

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

LOUISVILLE TUNNEL PROJECT GEOTECHNICAL INVESTIGATION WATER PRESSURE TESTING

Field Test Data

 Boring :
 B-94

 Elevation:
 532.5

 Test by:
 D. Durman

 Date:
 11/7/2011

Formula for Lugeon (Lu) calculation:

(water take in gallons \div 7.48 gal/ft³) x (142 psi \div gauge pressure in psi) divided by (stage length in feet x test time in minutes x 0.0107620)

Data Entry ·	Data Entry - Enter Borehole Stage (from & to); Test Time; Gauge Pressure; and Water Take. Spreadsheet calculates Stage Length and Lugeon Units.							
Borehole Stage Interval (ft)	Vertical Stage Interval (ft)	Increment	Stage Length (ft)	Test Time (min.)	Gauge Pressure (psi)	Water Take (gallons)	Lu _(incr.)	Lu _(stage)
75.5	75.5	1	12.0	10	60.0	0.0	0	
87.5	87.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	1
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
05.5	05.5	4	40.0	40	00.0	0.0		
65.5	65.5	1	12.0	10	60.0	0.0	0	
//.5	//.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	2
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
55.5	55.5	1	12.0	10	60.0	0.0	0	
67.5	67.5	2	12.0	10	90.0	0.0	0	
01.0	01.0	3	12.0	10	120.0	0.0	0	3
		4	12.0	10	90.0	0.0	0	°,
		5	12.0	10	60.0	0.0	0	
		Ţ					-	
45.5	61.0	1	12.0	10	60.0	0.0	0	4
57.5	73.0	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
35.5	35.5	1	12.0	10	60.0	0.0	0	
47.5	47.5	2	12.0	10	90.0	3.2	0	
		3	12.0	10	120.0	20.0	0	5
		4	12.0	10	90.0	9.4	0	
		5	12.0	10	60.0	0.0	0	
25.5	25.5	1	12.0	10	60.0	0.0	0	
37.5	37.5	2	12.0	10	90.0	0.0	0	
		3	12.0	10	120.0	0.0	0	6
		4	12.0	10	90.0	0.0	0	
		5	12.0	10	60.0	0.0	0	
15.5	15.5		12.0	10	60.0			
27.5	27.5	2	12.0	10	90.0	Free Flo	w	_
		3	12.0	10	120.0			7
		4	12.0	10	90.0			
<u> </u>		5	12.0	10	60.0		<u> </u>	

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

	TEST PRESSURE (psi)	LUGEON VALUE
Test Increment 1	60	0
Test Increment 2	90	0
Test Increment 3	120	0
Test Increment 4	90	0
Test Increment 5	60	0

INTERPRETATION OF RESULTS: Laminar

APPENDIX V GEOPHYSICAL SURVEY RESULTS

422 Codell Drive, Lexington, Kentucky 40509