SECTION 13: GEOTECHNICAL ENGINEERING REPORT

The following report dated May 2008 documents and summarizes the geotechnical exploration, testing, and geotechnical engineering recommendations that have been completed for design of the East End Bridge. Since completion of this report there have been revisions made to the bridge design. Therefore, parts of this report may no longer be applicable or have not been updated for the current design.

Also, attached to the May 2008 report is the results of supplemental geotechnical work that was completed in March 2011 for the Indiana abutment.

Geotechnical engineering recommendations for all substructure foundations will need to be updated and finalized during final design.

SECTION 5 - EAST END BRIDGE OVER OHIO RIVER

KYTC ITEM NO. 5-745.00

GEOTECHNICAL ENGINEERING REPORT

MAY 12, 2008

Prepared by: PB AMERICAS, INC. and FMSM ENGINEERS, INC.

TABLE OF CONTENTS

1.0	IN	ITRC	DDUCTION	.1			
1.	1	Proj	ect Description	. 1			
1.2	2	Scope of Services					
2.0	G	ENE	RAL PHYSIOGRAPHIC FEATURES	. 3			
2.	1	Phy	siography of Kentucky	. 3			
2.2	2	Phy	siography of Indiana	. 3			
2.3	3	Ohio	o River	. 3			
3.0	G	EOL	.OGY	. 4			
3.	1	Reg	ional Geology	. 4			
3.2	2	Loca	al Geology	. 4			
	3.2.	1	Kentucky Geology	. 4			
	3.2.	2	Ohio River Geology	. 4			
	3.2.	3	Indiana Geology	. 5			
3.3	3	Reg	ional Seismicity	. 6			
4.0	F	IELD	RECONNAISSANCE	.7			
4.	1	Surf	ace Conditions	. 7			
4.2	2	Geo	logic Mapping of Rock Exposures	. 8			
5.0	S	UBS	URFACE INVESTIGATION PROGRAM	13			
5.	1	Bori	ng Program	13			
	5.1.	1	General	13			
	5.1.	2	Summary of Borings	14			
5.2	2	Field	d Wave Velocity Measurements for Seismic Design	19			
5.3	3	Labo	oratory Testing Program	20			
	5.3.	1	General	20			
	5.3.	2	Soil Classification Testing	20			
	5.3.	3	Unconfined Compressive Strength Testing on Soil	21			
	5.3.	4	Unconfined Compressive Strength Testing on Rock	22			
	5.3.	5	Direct Shear Testing of Rock Samples	22			
	5.3.	6	Slake Durability Index Testing	27			
	5.3.	7	Corrosivity Tests on Soil and Water	28			
6.0	S	UBS	URFACE CONDITIONS	29			

6.1	Ove	erview of Bridge Site Stratigraphy	29
6.2	Ken	tucky Transition Pier	29
6.2	2.1	Stratigraphy	29
6.2	2.2	Soil Conditions	29
6.2	2.3	Rock Conditions	30
6.2	2.4	Field Wave Velocity for Seismic Design	30
6.3	Ohio	o River – Tower and Anchor Piers	30
6.3	8.1	Stratigraphy	30
6.3.2		Soil Conditions	31
6.3.3		Rock Conditions	31
6.4	India	ana Abutment	32
6.4	l.1	Stratigraphy	32
6.4	.2	Soil Conditions	32
6.4	.3	Rock Conditions	33
7.0	GEOT	ECHNICAL EVALUATION	34
7.1	Geo	otechnical Design Parameters	34
7.2	Seis	smic Design Parameters	34
7.3	Rec	commended Foundation Types	35
7.3	8.1	Pier 1 - Kentucky Transition Pier	35
7.3	8.2	Pier 2 - Kentucky Anchor Pier	36
7.3	3.3	Piers 3 and 4 - Tower Piers	36
7.3	8.4	Pier 5 - Indiana Anchor Pier	36
7.3	8.5	Indiana Abutment	36
7.4	Fou	Indation Analyses, Drilled Shafts	37
7.4	l.1	Axial Bearing	38
7	7.4.1.1	1 Pier 1 - Kentucky Transition Pier	39
7	7.4.1.2	2 Pier 2 - Kentucky Anchor Pier	39
7	7.4.1.3	3 Piers 3 and 4 - Tower Piers	39
7	7.4.1.4	4 Pier 5 - Indiana Anchor Pier	39
7.4	.2	Uplift	40
7	7.4.2.1	1 Pier 2 - Kentucky Anchor Pier	40
-	7.4.2.2	2 Piers 3 and 4 - Tower Piers	40

7.	4.3 Lateral Capacity	41
7.5	Foundation Analyses - Indiana Abutment	43
7.6	MSE Retaining Structure, Indiana Abutment Wing Walls	
7.7	Fills and Embankments, Indiana Abutment	
8.0	CONSTRUCTION CONSIDERATIONS	48
8.1	Drilled Shaft Foundations	
8.2	Drilled Shaft Load Testing	50
8.3	Spread Footing Foundations	51
8.4	Backfill Indiana Abutment Retaining Structure	52

REFERENCES AND DATA SOURCES

FIGURES

APPENDICES

APPENDIX A:	GEOTECHNICAL SUBSURFACE DATA SHEETS
APPENDIX B:	COORDINATE DATA SUBMISSION FORM
APPENDIX C:	GEOLOGIC MAPPING OF ROCK EXPOSURES
APPENDIX D:	FIELD TEST RESULTS- P-S LOGGING
APPENDIX E:	LABORATORY TEST RESULTS - SOIL
APPENDIX F:	LABORATORY TEST RESULTS - ROCK
APPENDIX G:	CORROSIVITY TEST RESULTS (SOIL AND WATER)
APPENDIX H:	CALCULATIONS

LIST OF TABLES

LIST OF	TABLES	Page No.
TABLE 1.	SUMMARY OF BORING LOCATIONS AND ELEVATIONS	15
TABLE 2.	SUMMARY OF ROCK CORE DATA	
TABLE 3.	SUMMARY OF SOIL CLASSIFICATION DATA	21
TABLE 4.	SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH	TESTS ON
	SOIL	
TABLE 5.	SUMMARY OF LABORATORY ROCK TEST DATA	
TABLE 6.	SUMMARY OF SLAKE DURABILITY INDEX TESTING	
TABLE 7.	SUMMARY OF SOIL CORROSIVITY TESTS	
TABLE 8.	SUMMARY OF CHEMICAL ANALYSIS OF WATER	
TABLE 9.	SUMMARY OF SHEAR WAVE VELOCITY MEASUREMENTS	S 30
TABLE 10.	RANGE OF DRILLED SHAFT LOADS FOR GEOTECHNICAL	-
	EVALUATION	
TABLE 11.	APPROXIMATE ELEVATIONS OF FIXITY	
TABLE 12.	SUMMARY OF MSE WALL ANALYSIS	

LIST OF FIGURES

- FIGURE 1. SITE VICINITY MAP (USGS TOPO MAP)
- FIGURE 2. BORING LOCATION PLANS
- FIGURE 3. REGIONAL GEOLOGIC MAPS
- FIGURE 4. TOP OF BEDROCK ELEVATIONS AT BORING LOCATIONS
- FIGURE 5. GENERALIZED SUBSURFACE PROFILES PER SUBSTRUCTURE ELEMENT LOCATION
- FIGURE 6. PRELIMINARY EARTHQUAKE RESPONSE SPECTRA
- FIGURE 7. DRILLED SHAFT RESISTANCE VS. SOCKET LENGTH, PIER 1, 7.5-FOOT DIAMETER SHAFTS
- FIGURE 8. DRILLED SHAFT RESISTANCE VS. SOCKET LENGTH, PIERS 2 THROUGH 5, 7.5-FOOT DIAMETER SHAFTS
- FIGURE 9. DRILLED SHAFT RESISTANCE VS. SOCKET LENGTH, PIER 1, 8.0-FOOT DIAMETER SHAFTS
- FIGURE 10. DRILLED SHAFT RESISTANCE VS. SOCKET LENGTH, PIERS 2 THROUGH 5, 8.0-FOOT DIAMETER SHAFTS

1.0 INTRODUCTION

This geotechnical evaluation was authorized by the Kentucky Transportation Cabinet (KYTC) and the Indiana Department of Transportation (INDOT) through the Bi-State Management Team (BSMT) as part of the design services for the proposed I-265 East End Bridge over the Ohio River near Louisville, Kentucky.

PB Americas, Inc. (PB) is the prime consultant for the Louisville-Southern Indiana Ohio River Bridges Project, as part of the Phase 3B – Preliminary Bridge Design for the East End Bridge. This report has been jointly prepared by PB and geotechnical subconsultant Fuller, Mossbarger, Scott, and May Engineers Inc. (FMSM).

1.1 **Project Description**

The proposed East End Bridge is a cable-stayed structure that will link the Gene Snyder Freeway in Kentucky (KY 841) with the Lee Hamilton Highway in Indiana (IN 265). This bridge will carry six lanes of traffic over the Ohio River at Mile Point 596, approximately 11 miles upstream of the McAlpine Lock and Dam. The general location of the site is shown in Figure 1, Site Vicinity Map.

The East End Bridge layout is shown on Figure 2, Boring Location Plan. The overall length of the bridge is 2,510 feet, with a 1,235-foot long center span. The bridge will be a cable-stayed structure, with two tower piers (Piers 3 and 4) in the river and two anchor piers (Piers 2 and 5) near the banks of the river. On the Kentucky side, a transition pier (Pier 1) is included in the scope of work. The bridge abutment on the Indiana side is skew to the bridge centerline, paralleling the slope of the bank.

This report presents the subsurface data and geotechnical design recommendations for the bridge foundations and Indiana abutment. The report also addresses stability of the rock slope in the vicinity of the Indiana abutment.

Elevations in this report are referenced to the project datum, NAVD88.

1.2 Scope of Services

The scope of services for this geotechnical evaluation includes preparation of a boring plan, performance of borings on land and water with soil sampling and rock coring, geologic mapping of rock outcrops in the vicinity of the Indiana abutment, field testing of seismic velocities by P-S logging techniques, laboratory testing of soil and rock, foundation type evaluations, geotechnical analyses of land and river piers and the Indiana abutment for bearing, uplift, and lateral loads, and preparation of this report. This report includes discussions of geology, results of drilling, seismic testing, and laboratory testing, results of engineering analyses, discussion of constructability issues, and recommendations for bridge foundations. The engineering analyses include drilled shaft analyses for the bridge piers, and shallow foundation and stability analyses for the Indiana abutment.

This report has been jointly prepared by PB and geotechnical subconsultant Fuller Mossbarger Scott & May Engineers, Inc. (FMSM). Subsurface explorations, laboratory testing, preparation of records and summaries of data, and evaluation of the geology and subsurface conditions has been performed by FMSM as a subconsultant to PB. Geotechnical evaluation, analyses and recommendations for foundations and slopes, have been performed by PB, with the assistance of FMSM.

2.0 GENERAL PHYSIOGRAPHIC FEATURES

2.1 Physiography of Kentucky

The East End Bridge project is located in the northwestern portion of Central Kentucky within the Outer Bluegrass Physiographic Region. This region is characterized by gently rolling lowland due to the outcrop of Ordovician and Silurian carbonates and shales that are situated on the crest and flanks of the Cincinnati Arch. These erosion resistant rocks, combined with the structural features of the Cincinnati Arch and the Ohio River Floodplain result in a region that exhibits low to moderate topographic relief. However, along the Ohio River Valley, steep ravines and bluffs descend from the bluegrass plains to the river terraces. Overburden soils within this portion of the Outer Bluegrass Physiographic Region generally consist of loess underlain by residual clay soils. An exception to this is the Ohio River Floodplain, which consists of lacustrine and outwash deposits. Surface drainage patterns observed in the area of the bridge are typically dendritic and flow toward the Ohio River.

2.2 Physiography of Indiana

The Indiana portion of the project site is located in the southeastern portion of Indiana, within the Muscatatuck Regional Slope, Indiana's equivalent of the Outer Bluegrass Physiographic Region of Kentucky. The Muscatatuck Regional Slope is characterized by a gently sloping plain that has been dissected by streams flowing to the Ohio River. The Muscatatuck group consists of westward dipping carbonates, along with westward dipping shale that underlie the region. These rocks are of Devonian, Silurian, and Ordovician age and are exposed on the westward side of the Cincinnati Arch. In the immediate vicinity of the bridge site the topography presents a steep slope transitioning from an upland area down to the Ohio River. Soils on this slope are typically shallow with occasional bedrock outcrops visible.

2.3 Ohio River

At the location of the East End Bridge the Ohio River is approximately 1,900 feet in width at normal pool. The pool elevation is controlled by McAlpine Locks and Dam which is located approximately 10.8 miles downstream of this site. The pool is typically maintained at a normal elevation of 420 feet above mean sea level. The 100-year flood elevation of the river is 452.8 feet. During the drilling programs for the East End Bridge, the water surface varied from elevation 418 feet to 420 feet. The maximum depth of the river encountered during the drilling was 44 feet at the location of the Indiana Tower Pier. This corresponds to a river bottom elevation which varied from 420 feet to 374 feet.

3.0 GEOLOGY

Available geologic mapping (Geologic Map of Parts of the Jeffersonville, New Albany and Charlestown quadrangles, Kentucky-Indiana. Kentucky Geologic Survey, 1974 and Geologic Map of the Anchorage Quadrangle, Jefferson and Oldham Counties, Kentucky, 1971) was used to identify and characterize the bedrock at the bridge site. In addition, a geologic map, availability of ground water, and columnar section and waterbearing character of the rocks in Bullitt, Jefferson, and Oldham Counties, Kentucky are presented as Figures 3a through 3c in the report.

3.1 Regional Geology

Regionally, the East End Bridge site is located within the boundaries of the Cincinnati Arch. The Cincinnati Arch is described as a prominent elongated north-trending regional uplift (anticlinal fold) that extends from the Nashville Dome in central Tennessee to northwestern Ohio. Essentially the Cincinnati Arch separates the Appalachian Basin from the Illinois and Michigan basins. Structural features of the arch, related to the East End Bridge, are the Springdale Anticline and the Lyndon Syncline. No geologic faults are shown in the immediate vicinity of the bridge.

3.2 Local Geology

3.2.1 Kentucky Geology

The backstation portion of the bridge (Piers 1 and 2) crosses alluvium, primarily lacustrine and outwash deposits, associated with the Ohio River Floodplain. Consisting of intermixed clay, silt, sand, and gravel, these deposits can be in excess of 100 feet deep and were deposited by glacial activity during the Pleistocene Epoch of geologic time. More specifically, deposition occurred during Illinoisan and Wisconsinan glaciations. Bedrock underlying the Ohio River Floodplain reportedly consists of the Drakes Formation. The Drakes Formation is generally described as limestone that is olive gray to grayish green, very fine grained, grades to dolomitic and becomes interbedded with medium to dark gray shale as depth increases. The limestones of this Ordovician bedrock are susceptible to chemical weathering and development of solution features. Typically these features occur along bedding planes, joints and fractures, and can be evidenced by clay filled seams in the unit.

3.2.2 Ohio River Geology

Overburden soils consisting of sand and gravel, deposited as both glacial outwash and fluvial deposits, range in thickness from roughly 90 feet at the Kentucky shoreline to less than 11 feet at the Indiana shore. Bedrock strata located beneath the Ohio River consist of the Osgood Formation, Brassfield Formation, and the Drakes Formation. The Osgood formation is generally described as limestone interbedded with shale, both of

which are dolomitic. The Brassfield Formation is described as a crystalline grained limestone with dolomitic and glauconitic zones. The Drakes Formation is identified as limestone that grades to dolomitic limestone and becomes interbedded with shale as depth increases.

3.2.3 Indiana Geology

Available geologic mapping (Geologic Map of the 1° X 2° Louisville Quadrangle, Indiana, Showing Bedrock and Unconsolidated Deposits, Indiana Geologic Survey, 1972) indicates the area in the vicinity of the East End Bridge is underlain by Quaternary sediments and soils, as well as Devonian, Silurian, and Ordovician age bedrock. These sediments and soils consist of outwash deposits from the Pleistocene epoch of geologic time. Referred to as the Wheeling-Sciotovile-Otwood complex these sediments and soils are described as very deep, well drained and moderately well drained, nearly level to moderately steep, eroded, and are occasionally flooded for brief durations.

The ground surface elevation varies from over 490 feet at the Indiana Abutment location to approximately 420 feet at the location of Pier 5, resulting in the involvement of several geologic units. Rock units noted in the literature consist of, in order of descending lithology, the Sellersburg, Jeffersonville, and Louisville Limestones, Laurel Dolomite, and Osgood Formation. Where these formations are exposed in local roadcuts and in the quarry to the north of the bridge site, localized solutioning of the various limestones was noted. The solutioning is primarily noted in joints, fractures, and bedding planes, with clay noted as a common replacement material. This indicates the limestones underlying the bridge site are also susceptible to solutioning.

The Sellersburg Limestone is subdivided into two members. The upper Beechwood Member is described as a limestone that sits unconformably on the Silver Creek Limestone, the lower member of the Sellersburg Limestone. The unconformity is marked by a dark gray shale seam containing phosphatic pebbles and quartz sand. The Silver Creek Member is a limestone that is argillaceous, dolomitic, and fossiliferous. Below the Silver Creek Members is the Jeffersonville Limestone.

The Jeffersonville Limestone is medium to coarse grained, thin to thick bedded, fossiliferous, and rests unconformably on the Louisville Limestone. The unconformity is marked by a sharp transition from the coarse grained Jeffersonville Limestone above to the fine grained Louisville Limestone below. This Louisville Limestone is generally described as a fossiliferous, dolomitic, massive limestone that rests on top of the Waldron Shale. The Waldron Shale is a silty, dolomitic, and pyritic clay shale that, when exposed, often undercuts the above-lying Louisville Limestone. Beneath the Waldron Shale the mapping identifies the Laurel Dolomite. This unit is subdivided into two sections of which both consist of dolomitic limestone and are separated by a clay shale layer that is up to 2.5 feet in thickness. Beneath the Laurel Dolomite is the Osgood Formation. This formation consists of limestone interbedded with shale, both of which are dolomitic.

3.3 Regional Seismicity

Seismicity within the region surrounding the bridge site varies widely depending on location. The western portions of the states of Kentucky and Indiana are dominated by the New Madrid and Wabash Valley seismic source zones. In general, these zones are fairly active with many documented historical seismic events. A series of four earthquakes, part of the New Madrid Earthquakes of 1811 and 1812, in southeast Missouri and northeast Arkansas, reportedly caused the Mississippi River to flow backwards and were of sufficient intensity to topple chimneys in Louisville (Kentucky Transportation Research Report KTC-96-4). A major earthquake centered in Charleston, South Carolina in 1886 was also strongly felt in Kentucky. More recently, an earthquake centered in Sharpsville, Kentucky in 1980 was felt throughout the area along the Ohio River.

The East End Bridge will be located in the north-central region of Kentucky and the south-central region of Indiana. Both the Kentucky and Indiana portions of the bridge will likely experience less frequent earthquakes because the source zones are quite distant from this area. The nearest of these, the Wabash Valley source zone, is on the order of 100 miles west-northwest of the project site and occupies portions of southwest Indiana, southeastern Illinois and northwestern Kentucky.

According to the recent earthquake history and studies in Central United States, the Wabash Valley zone may be able to trigger an earthquake as large as magnitude 7 (<u>http://www.cusec.org/S_zones/Wabash/index.htm</u>). In the Wabash Valley zone, a recent earthquake occurred April 18, 2009, was recorded as a magnitude of 5.2. After the main shock, there were 6 aftershocks on the same date with magnitudes of up to 4.6. The epicenter was 6 miles south of West Salem, Illinois, which is about 200 miles from the bridge site.

4.0 FIELD RECONNAISSANCE

The proposed East End bridge site encompasses both the Indiana and the Kentucky sides of the Ohio River. Pier 1 and Pier 2 fall on the Kentucky bank and at the river's edge respectively, while Piers 3 and 4 are the main tower piers within the river. Pier 5 is located on the Indiana bank at the river's edge, and the Indiana Abutment is located near the top of a steep wooded slope. On the Kentucky side the bridge is located within the floodplain of the Ohio River. Within the bridge limits a maximum topographic relief of approximately 15 feet can be measured from the location of Boring AC-1 to the normal pool elevation of 420 feet. The land use at the location of Piers 1 and 2 is residential, with vegetation consisting of moderate tree cover, shrubs, and grass covered lawns.

The Indiana side of the bridge is located on a relatively steep slope of the Ohio River. A maximum topographic relief of approximately 80 feet is achieved by comparing the elevation of the Ohio River's normal pool with the surface elevation of boring AC-26 at the Indiana Abutment (elevation 498 feet). At an elevation of approximately 436 feet, existing River Road traverses the bridge site. The current land use is residential and land cover consists of heavily forested land. Physical features noted on the site indicate the area of the Indiana Abutment was previously the location of a small limestone quarry. This quarry activity left behind short vertical faces of limestone to the north of the abutment, as well as occasional mounds of spoil rock and soil.

Because of the steep slope of the Indiana bank, the relatively shallow soils inferred by the numerous rock outcrops, and the orientation of Pier 5 and the Indiana Abutment, geologic outcrop mapping of the Indiana slope was performed by FMSM personnel. After reviewing topographic and geologic literature while at the site, a total of eight locations were identified for performance of geologic outcrop mapping.

Approximately 1000 feet north of the Indiana Abutment location, a closed limestone quarry of significant size is currently being developed for residential home sites. Permission was obtained to view and map portions of the quarry entrance and wall for correlation with data obtained at the bridge site.

4.1 Surface Conditions

At the Indiana Abutment location the site was heavily wooded with bedrock and boulders, remaining from quarrying operations, visible on the ground surface. The ground surface falls steeply from the abutment to the location of River Road where bedrock is exposed in a rock cut for the existing roadway. Soils in this area appear to be relatively thin above the elevation of River Road and could be described as a combination of colluvial and residual in origin.

4.2 Geologic Mapping of Rock Exposures

Geologic mapping of the eight outcrops was performed in accordance with "Rock Slopes Reference Manual", Publication No. FHWA HI-99-007. The geologic outcrop mapping depicting the data collected is presented in Appendix C.

Equipment used in the mapping process included a Brunton Compass (used to obtain strike and dip of discontinuities), altimeter (source of elevation), GPS unit (coordinate source), 300 feet tape measure, 12 feet tape measure, digital camera, rock hammer, and pocket penetrometer (estimates soil strength). In order to calibrate the Brunton Compass the magnetic declination of the area must first be determined. The magnetic declination of the project site, as obtained from the USGS Jeffersonville Quadrangle, is 2°NW of True North. Once the magnetic declination was known the Brunton Compass was calibrated accordingly at the Base Station.

A total of eight outcrops were selected and assigned titles and outcrop numbers. Those outcrops were mapped over a two day time period ending on October 4, 2007.

The elevations included in the observation summaries refer to the base of the mapped outcrop. Observations made at each outcrop are summarized below:

Site # 1- Base Station

Site # 1 would serve as the Base Outcrop, a source of known elevation used to calibrate the altimeter. The Base Outcrop was visited at the beginning of each day to calibrate the altimeter and conduct the daily safety meetings. The location of site # 1 is N 38° 20' 42.2" W 85° 38' 46.5" with a base elevation of 495 feet. This is also the location of Boring AC-25.

Outcrop # 1 - West Old Quarry Wall

The location of Outcrop # 1 is N 38° 20' 43.6" W 85° 38' 48.4" with a base elevation of 479 feet. The rock unit exposed at this outcrop is the Jeffersonville Limestone of Silurian age. A description of the Jeffersonville Limestone exposed at this outcrop is a coarsely crystalline grained, brownish gray, medium strong, slightly to moderately weathered limestone that weathers to a light gray and buff (brownish gray) color with a blocky structure. Bedding planes were noted to be horizontal. Three discontinuity sets were observed with strikes ranging from N 12° E to N 80° W with dips ranging from 83° S to 88° S. These discontinuities are further described in the following paragraphs.

Joint Set #1 exhibited a strike of N 12° E with a dip of 88° South. This discontinuity set exhibited apertures ranging from 0.1 - 1.1 feet, with a rough surface, low persistence, and undulating surface shape. Evidence of water flow was noted from the discontinuity set being filled with clay which exhibited a strength of 5 tons per square foot.

Joint Set #2 exhibited a strike of N 80° W with a dip of 83° South. This discontinuity set exhibited apertures ranging from 0.1 - 0.9 foot, with a rough to smooth surface,

medium persistence, and undulating surface shape. Evidence of water flow was from clay, exhibiting a strength of 5 tons per square foot, filling the discontinuity set.

Joint Set #3 exhibited a strike of N 60° W with a corresponding dip of 85° South. This discontinuity set exhibited apertures ranging from 0.1 - 1.1 feet, with a rough to smooth surface, low persistence, and stepped to undulating surface shape. Evidence of water flow included clay, exhibiting a strength of 3.1 tons per square foot, filling the discontinuity set.

Outcrop # 2 – Solution Feature Ridge

The location of Outcrop # 2 is N 38° 20' 44.7" W 85° 38' 44.2" with a base elevation of 493 feet. The rock unit exposed at this outcrop is the Sellersburg Limestone of Devonian age. A description of the Sellersburg Limestone exposed at this outcrop is a coarsely crystalline grained, brownish gray, medium strong, slightly to moderately weathered dolomitic limestone that weathers to a light gray and buff (brownish gray) color with a blocky structure. The bedding planes were noted to be horizontal. One major discontinuity set was observed with a strike of N 23° E and a dip of 86° S, and presented an aperture range of 1.5 - 6.0 feet widening toward the base. The discontinuity showed evidence of water flow from clay deposits being present which exhibited a strength of 1 ton per square foot.

Outcrop# 3 – Knobs

The location of Outcrop # 3 is N 38° 20' 39.8" W 85° 38' 47.7" with a base elevation of 500 feet. Rock units exposed at this outcrop consist of both the Sellersburg Limestone and the Jeffersonville Limestone. The Sellersburg Limestone is described as a coarsely crystalline grained, brownish gray, medium strong, slightly to moderately weathered dolomitic limestone that weathers to a light gray and buff (brownish gray) color with a columnar structure. The Jeffersonville Limestone is described as a coarsely crystalline grained, brownish gray hard limestone (dolomite) that weathers to a light gray and buff (brownish gray) color. One major discontinuity set consisting of two major joints was observed. Joint strikes range from N 2°E to N 13° E with a dip range from 82° S to 87° S. These discontinuities are further described in the following paragraphs.

North Knob Joint Set #1 exhibited a strike of N 2° E with a corresponding dip of 82° S. This discontinuity set exhibited apertures ranging from 0.2 - 6.2 feet, with a rough surface, low to medium persistence, and stepped to undulating surface roughness. Noted evidence of water flow includes clay deposits which exhibited a strength of 0.3 tons per square foot.

South Knob Joint Set #2 exhibited a strike of N 4° E with a corresponding dip of 86° N. This discontinuity set exhibited apertures ranging from 0.2 - 4.7 feet, with a rough surface, low to medium persistence, and undulating surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 4.5 tons per square foot. The joints were also lined with calcite and limestone travertine providing evidence of

previous water transport. Bedding planes for both the Sellersburg and Jeffersonville Limestones were noted to be horizontal.

Outcrop # 4 – East Quarry Bluff Cut

The location of Outcrop #4 is N 38°20' 56.0" W 85° 38' 39.9" with a base elevation of 453 feet. Rock units exposed at this outcrop are the Louisville Limestone underlain by the Waldron Shale. The Louisville Limestone is described as a coarsely crystalline grained, brownish gray hard limestone that weathers to a light gray and buff (brownish gray) color. The Waldron Shale is described as clay shale that is dark greenish gray in color that weathers to a light gray, silty, and contains dolomitic zones. The Waldron Shale has been noted to undercut the above lying Louisville Limestone during the weathering process. One major discontinuity set was observed consisting of two joints, however one joint was inaccessible for strike and dip measurements. The other joint exhibited a strike of N 38° W and a dip of 78° S. Bedding planes observed were noted to be horizontal.

Outcrop # 5 – Road Cut to Quarry Bluff Estates

The location of Outcrop # 5 is N 38° 20' 59.5" W 85° 38' 41.8" with a base elevation of 452 feet. The rock unit exposed at Outcrop # 5 is the Louisville Limestone. The Louisville Limestone is a coarsely crystalline grained, brownish gray hard limestone that weathers to a light gray and buff (brownish gray) color and is horizontally bedded. Two major discontinuity sets were observed with a total of six joints with a strike range of N 0° to N 27° E with a dip range of 73° S to 86° N. Iron staining was also noted at an elevation of 464.8 feet.

Outcrop# 6 – North Old Quarry Wall

The location of Outcrop # 6 is N 38° 20' 44.9" W 85° 38' 47.5" with a base elevation of 493 feet. The rock unit exposed at this station is the Sellersburg Limestone. The Sellersburg Limestone is described as a horizontally bedded coarsely crystalline grained, brownish gray, medium strong, slightly to moderately weathered dolomitic limestone that weathers to a light gray and buff (brownish gray) in color with a columnar structure. No discontinuity feature was observed at this site; however some solution features were observed, such as pitting on the rock face as well as circular depressions indicative of solutioning.

Outcrop # 7 – Solution Feature Outflow

The location of Outcrop # 7 is N 38° 20' 44.5" W 85° 38' 43.5" with a base elevation of 437 feet. Rock units exposed at this site are the Louisville Limestone underlain by the Waldron Shale. The Louisville Limestone is described as a coarsely crystalline grained, brownish gray hard limestone that weathers to a light gray and buff (brownish gray) color and the Waldron Shale is described as clay shale that is dark greenish gray in color that weathers to a light gray, silty, and contains dolomitic zones. One major discontinuity set was observed containing three joints with a strike range of N 83° W to N 78° W with a dip range of 85° S to 87° S. The bedding planes of both units are

horizontal. Colluvial slopes were also noted at the base of the discontinuities with an overburden thickness of up to two feet. Solution feature outflow refers to a series of three joint sets that correspond to the solution features that lie directly above the aforementioned joint sets. These features are described in detail below:

Joint Set #7 exhibited a strike of N 87°W with a corresponding dip of 87° South. This discontinuity set exhibited apertures ranging from 0.3 - 3.4 feet, with a rough surface, low persistence, and a stepped surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 3.1 tons per square foot.

Joint Set #2 exhibited a strike of N 83° W with a corresponding dip of 85° South. This discontinuity set exhibited apertures ranging from 0.3 - 3.4 feet, with a smooth surface, low persistence, and a smooth surface. No evidence of water flow was observed at this joint set.

Joint Set #3 exhibited a strike of N 78° W with a corresponding dip of 86° South. This discontinuity set exhibited apertures ranging from 0.3 - 3.4 feet, with a rough to smooth surface, low persistence, and undulating surface shape. Evidence of water flow includes clay deposits which exhibited a strength of 0.6 ton per square foot.

Outcrop # 8 – Upper River Road Cut

The location of Outcrop # 8 is N 38° 20' 40.6" W 85° 38' 43.8" with a base elevation of 436 feet. Rock strata observed at this site is the Louisville Limestone. The Louisville Limestone is described as a horizontally bedded coarsely crystalline grained, brownish gray hard limestone that weathers to a light gray and buff (brownish gray) color. Four major discontinuity sets were observed containing a total of twelve joints. The strike range for these discontinuities is N 21° W to N 88° W with a corresponding dip range of 79° S to 88° N. These discontinuities are further described in the following paragraphs.

Joint Set #1 exhibited a strike of N 49° W with a corresponding dip of 81° South. This discontinuity exhibited an aperture ranging from 1.4 - 2.7 feet with a rough to smooth surface roughness, medium persistence, and a stepped to undulating surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 3.1 tons per square foot.

Joint Set #2 exhibited a strike of N 23° W with a corresponding dip of 88° North. This discontinuity exhibited an aperture ranging from 0.7 - 1.9 feet with a rough surface, medium persistence, and an undulating surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 4.6 tons per square foot.

Joint Set #3 exhibited a strike of N 21° W with a corresponding dip of 88° South. This discontinuity exhibited an aperture ranging from 0.4 - 2.6 feet with a rough surface, medium persistence, and an undulating surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 2.7 tons per square foot.

Joint Set #4 exhibited a strike of N 74° W with a corresponding dip of 85° South. This discontinuity exhibited an aperture ranging from 0.1 - 0.4 foot with a rough surface, medium persistence, and a planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 5.0 tons per square foot.

Joint Set #5 exhibited a strike of N 88° W with a corresponding dip of 86° South. This discontinuity exhibited an aperture ranging from 0.1 - 3.3 feet with a rough surface, medium persistence, and an undulating surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 5.0 tons per square foot.

Joint Set #6 exhibited a strike of N 82° W with a corresponding dip of 87° South. This discontinuity exhibited an aperture ranging from 0.1 - 0.3 feet with a rough surface, medium persistence, and a planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 5.0 tons per square foot.

Joint Set #7 exhibited a strike of N 86° W with a corresponding dip of 76° North. This discontinuity exhibited an aperture ranging from 0.1 - 1.4 feet with a rough surface, medium persistence, and an undulating to planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 5.0 tons per square foot.

Joint Set #8 exhibited a strike of N 79° W with a corresponding dip of 79° North. This discontinuity exhibited an aperture ranging from 0.1 - 1.1 feet with a rough surface, medium persistence, and an undulating to planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 5.0 tons per square foot.

Joint Set #9 exhibited a strike of N 78° W with a corresponding dip of 83° North. This discontinuity exhibited an aperture ranging from 0.7 - 1.8 feet with a smooth surface, medium persistence, and an undulating to planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 3.3 tons per square foot.

Joint Set #10 exhibited a strike of N 27° W with a corresponding dip of 88° North. This discontinuity exhibited an aperture greater than 3.0 feet with a smooth surface, medium persistence, and a planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 1.8 tons per square foot.

Joint Set #11 exhibited a strike of N 79° W with a corresponding dip of 79° South. This discontinuity exhibited an aperture ranging from 0.1 - 3.1 feet with a smooth surface, medium persistence, and a planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 0.1 ton per square foot.

Joint Set #12 exhibited a strike of N 48° W with a corresponding dip of 79° North. This discontinuity exhibited an aperture ranging from 0.1 - 3.3 feet with a smooth surface, medium persistence, and a planar surface shape. Noted evidence of water flow includes clay deposits which exhibited a strength of 3.6 tons per square foot.

5.0 SUBSURFACE INVESTIGATION PROGRAM

In October 2005, FMSM advanced four borings as a preliminary exploration for the bridge. Each boring was drilled from a floating plant at the preliminary locations of Piers 2 through 5 and designated Boring B-1 through B-4. From June 13 to October 10, 2007 a total of 28 additional borings (ten from a floating plant and eighteen from a land based drill) were performed at the locations of the piers, Indiana Abutment and retaining wall for the bridge. These 2007 borings are designated AC-1 through AC-28. Both investigations were performed in general accordance with the Kentucky Transportation Cabinet (KYTC) Geotechnical Manual in terms of drilling, sampling, and laboratory testing The locations of the borings are presented on both Figure 2 and on the geotechnical drawings in Appendix A.

5.1 Boring Program

5.1.1 General

FMSM performed traditional geotechnical drilling and sampling operations for the bridge substructure element locations using truck-mounted drill rigs for land work, and a truck-mounted drill rig positioned on a floating barge for borings advanced beneath the Ohio River. Drilling and sampling operations were performed using hollow-stem augers or casing advancement techniques from the ground surface to the top of bedrock. Drilling personnel collected samples of the soils from specific borings at approximate five-foot intervals. Soil sampling typically consisted of performing standard penetration tests (SPT) in non-cohesive soils and in cohesive soils having significant gravel contents. Cohesive soils were sampled with undisturbed thin-wall (Shelby) tubes.

Upon reaching bedrock, FMSM switched to NQ2 sized rock coring equipment to obtain a minimum of approximately 40 feet of rock core sample from each of the four preliminary borings (B-1 through B-4), and 50 feet of rock core at the planned locations of Piers 1 through 5. These rock cores provide identification of bedrock strata and samples for strength testing in support of foundation design. At the location of the Indiana Abutment, two borings were drilled 40 feet into the bedrock and one boring (AC-23) was advanced approximately 70 feet into bedrock. The purpose of the additional rock coring footage in Boring AC-23 was to provide continuous rock core data from the elevation of the abutment to the elevation of Pier 5. This information would be used to design a rock cut slope if River Road required relocation into the hillside.

In addition to traditional drilling operations, Boring AC-3 was drilled using PQ-sized coring tools in bedrock to allow geophysical testing of the soils and bedrock on the Kentucky side of the river. The PQ-sized rock core boring allowed installation of flush joint casing of sufficient size to pass the geophysical equipment from the ground surface to the bottom of the boring.

5.1.2 Summary of Borings

A total of 32 borings were drilled during the exploration for the East End Bridge over the The locations and graphical logs of these borings are shown on the Ohio River. Subsurface Data Sheets, respectively, in Appendix A. A summary of borings drilled by FMSM for this exploration is presented in Table 1. All borings were performed at the original planned locations of the substructure elements and retaining wall. Three sample and rock core borings were performed at each anchor/transition pier (Piers 1, 2, and 5). Five sample and rock core borings were drilled at each of the main tower locations (Piers 3 and 4) within the river. Three sample and rock core borings were performed at the location of the Indiana Abutment, and two for the Indiana Abutment retaining wall. Additionally, eight rock soundings were advanced to bedrock by a truck mounted drill equipped with solid stem continuous flight augers in front of and behind the planned location of the Indiana Abutment and abutment retaining wall to better identify bedrock surface elevations. The stations and offsets of the boring locations along with latitudes and longitudes are included in Appendix B. The results of the drilling program were used to develop a top of bedrock contour map at the bridge site. This map is presented as Figure 4 in the report.

During the drilling process in soils, attention was given to the description and consistency of the soils encountered. Soils were identified in terms of classification, color, grain size, consistency, and moisture content. The location or absence of the groundwater table was also noted on the logs by the geologist in the field.

Because of the size of this bridge and the loads to which it could be subjected, rock bearing foundations are anticipated for substructure support. Immediately following the drilling process the bedrock was described by a geologist in terms of classification, color, grain size, bedding characteristics, and other descriptions. Fractures, clay seams and other notable features were also recorded on the boring log. As an indication of general competency of the rock cored, the Rock Quality Designation (RQD) of each coring run was recorded. The Standard RQD is defined as the cumulative length of intact pieces longer than four inches divided by the length of the coring run and expressed as a percentage. Generally, the higher the RQD value the more competent the rock mass. In addition to the Standard RQD, a "KY" RQD was also recorded. The KY RQD is defined as cumulative length of pieces longer than four inches which cannot be broken by hand pressure divided by the length of the coring run and expressed as a percentage. Typically the KY RQD is a lower value than the Standard RQD. The RQD values, both Standard and KY, for the rock core borings drilled for the East End Bridge varied from a low of 0 to a high value of 100 with lower values typically recorded in the upper or weathered portions of the bedrock strata. A complete listing of the RQD values recorded for the borings is presented in Table 2.

hio River	
Je Over C	
End Bridg	5-118.00
3 - East I	tem No. §
LSIORE	KYTC F

Sub-				River Water		Ground			Groun	nd Water	Botto	om of
structure	Boring			Surface	Water	Surface	Top of	Bedrock	Ϋ́	able	Ŧ	le
Element	No.	Station	Offset	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
Pier 1	AC-1	187+18.6	44.6' Lt.			434.1	100.3	333.8	20.6	413.5	150.5	283.6
	AC-2	187+28.4	13.5' Lt.			434.0	100.4	333.6	14.4	419.6	139.4	294.6
	AC-3	187+46.6	60.9' Rt.			433.7	98.8	334.9	12.0	421.7	150.6	283.1
Pier 2	AC-4	189+81.7	62.0' Lt.	419.8	15.7	404.1	91.7	328.1			143.9	275.9
	AC-5	189+46.1	63.7' Rt.			428.9	98.4	330.5	Dry		148.4	280.5
	B-1	189+60.0	CL	419.6	0.0	419.6	81.0	338.6	0.0	419.6	126.6	293.0
Pier 3	AC-6	193+51.9	CL	419.4	40.9	378.5	87.2	332.2			138.2	281.2
	AC-7	193+94.5	68.1' Lt.	419.5	40.5	379.0	89.1	330.4			139.1	280.4
	AC-8	193+95.1	1.2' Rt.	419.4	40.7	378.7	86.5	332.9			137.9	281.5
	AC-9	193+95.2	70.0' Rt.	419.4	40.6	378.8	86.2	333.2			140.8	278.6
	B-2	194+50.0	CL	420.2	42.0	378.2	87.3	332.9			116.0	304.2
Pier 4	AC-10	205+97.9	70.0' Lt.	418.3	44.0	374.3	84.2	334.1			135.5	282.8
	AC-11	205+93.8	0.7' Rt.	419.4	39.1	380.3	81.7	337.7			132.9	286.5
	AC-12	205+94.4	71.2' Rt.	418.4	40.5	377.9	81.7	336.7			131.7	286.7
	AC-13	206+53.0	1.6' Lt.	418.9	38.7	380.2	82.7	336.2			132.3	286.6
	B-3	205+50.0	CL	419.9	41.0	378.9	79.5	340.4			122.0	297.9
Pier 5	AC-14	210+56.2	72.4' Lt.			436.0	12.1	423.9	Dry		81.5	354.5
	AC-15	210+35.1	37.3' Rt.	419.4	4.2	415.2	27.0	392.4			77.3	342.1
	B-4	210+30.0	CL	420.2	1.0	419.2	11.0	409.2			56.2	364.0
Indiana	AC-18	212+20.0	25.0' Lt.			495.2	4.0 *	491.2 *			4.0	491.2
Abutment	AC-20	212+30.0	56.0' Lt.			494.7	3.1	491.6	Dry		44.0	450.7
	AC-21	212+42.0	37.0' Rt.			490.1	1.4 *	488.7 *			1.4	488.7
	AC-22	212+46.0	35.0' Lt.	:	-	493.9	2.8 *	491.1 *		1	2.8	491.1
	AC-23	212+50.0	CL	1	ł	493.3	3.0	490.3	Dry	1	74.2	419.1
	AC-25	212+68.0	27.0' Rt.	1	1	497.3	6.9 *	490.4 *	1	1	6.9	490.4
	AC-26	212+70.0	55.0 Rt.'			498.5	7.4	491.1	Dry		47.5	451.0
Indiana	AC-16	212+17.0	139.4' Lt.			496.1	6.3 *	489.8 *			6.3	489.8
Abutment	AC-17	212+17.0	87.0' Lt.		!	492.0	1.6	490.4	Dry		12.0	480.0
Wing	AC-19	212+26.0	86.0' Lt.		-	492.6	1.7 *	490.9 *			1.7	490.9
Wall	AC-24	212+67.0	95.4' Rt.	1	1	492.9	2.6 *	490.3 *	-	1	2.6	490.3
	AC-27	212+87.0	125.0 ' Rt.		-	493.6	1.2	492.4	Dry		27.2	466.4
	AC-28	212+91.0	90 .0' Rt.			497.5	5.5 *	492.0 *	-		5.5	492.0

Table 1. Summary of Boring Locations and Elevations

* Depths and elevations of auger refusal.

Substructure					
Element	Boring No.	Depth Interval	Elevation	KY RQD (%)	Std. RQD (%)
Pier 1	AC-1	100.3 – 101.8	333.8 - 332.3	0	0
		101.8 – 103.3	332.3 - 330.8	0	0
		103.3 – 113.3	330.8 - 320.8	60	70
		113.3 – 123.3	320.8 - 310.8	45	57
		123.3 – 133.3	310.8 - 300.8	81	92
		133.3 – 143.3	300.8 - 290.8	70	84
		143.3 – 150.5	290.8 - 283.6	72	82
	AC-2	100.4 – 103.5	333.7 - 330.6	74	74
		103.5 – 105.4	330.6 - 328.7	55	74
		105.4 – 110.4	328.7 - 323.7	41	56
		110.4 – 120.4	323.7 – 313.7	37	82
		120.4 – 129.4	313.7 – 304.7	42	50
		129.4 – 139.4	304.7 – 294.7	51	66
	AC-3	99.5 – 103.6	334.2 - 330.1	93	93
		103.6 - 108.6	330.1 – 325.1	40	40
		108.6 – 113.6	325.1 – 320.1	86	86
		113.6 – 118.6	320.1 – 315.1	68	68
		118.6 – 123.6	315.1 – 310.1	94	94
		123.6 – 128.6	310.1 – 305.1	82	82
		128.6 – 133.6	305.1 – 300.1	100	100
		133.6 – 138.6	300.1 – 295.1	72	72
		138.6 – 143.6	295.0 – 290.1	86	86
		143.6 – 148.6	290.1 – 285.1	100	100
		148.6 – 150.6	285.1 – 283.1	85	85
Pier 2	AC-4	92.3 – 95.8	327.5 – 324.0	14	14
		95.8 – 105.8	324.0 – 314.0	22	38
		105.8 – 115.8	314.0 – 304.0	59	83
		115.8 – 125.8	304.0 - 294.0	48	51
		125.8 – 135.8	294.0 – 284.0	71	90
		135.8 – 143.9	284.0 – 275.9	89	99
	AC-5	98.4 – 103.4	330.5 - 325.5	8	88
		103.4 – 113.4	325.5 - 315.5	38	38
		113.4 – 123.4	315.5 – 305.5	40	56
		123.4 – 133.4	305.5 - 295.5	45	73
		133.4 – 143.4	295.5 – 285.5	80	84
		143.4 – 148.4	285.5 - 280.5	44	88
	B-1	85.0 - 89.0	334.6 - 330.6	10	15
		89.0 - 99.0	330.6 - 320.6	25	69
		99.0 - 109.0	320.6 - 310.6	37	50
		109.0 - 119.0	310.6 - 300.6	56	70
		119.0 – 126.6	300.6 – 293.0	71	76

Table 2. Summary	of	Rock	Core	Data
------------------	----	------	------	------

Substructure					
Element	Boring No.	Depth Interval	Elevation	KY RQD (%)	Std. RQD (%)
Pier 3	AC-6	87.7 – 93.2	331.7 – 326.2	33	35
		93.2 - 98.2	326.2 - 321.2	22	28
		98.2 - 108.2	321.2 – 311.2	26	62
		108.2 – 118.2	311.2 – 301.2	60	79
		118.2 – 128.2	301.2 – 291.2	48	69
		128.2 – 138.2	291.2 – 281.2	55	78
	AC-7	89.1 – 94.1	330.4 - 325.4	28	32
		94.1 – 99.1	325.4 - 320.4	18	40
		99.1 – 109.1	320.4 - 310.4	42	53
		109.1 – 119.1	310.4 - 300.4	45	68
		119.1-129.1	300.4 - 290.4	66	73
		129.1 – 139.1	290.4 – 280.4	63	86
	AC-8	87.0 - 89.9	332.4 - 329.5	0	0
		89.9 - 93.5	329.5 - 325.9	42	44
		93.5 – 103.5	325.9 – 315.9	36	46
		103.5 – 113.5	315.9 – 305.9	23	33
		113.5 – 123.5	305.9 – 295.9	41	47
		123.5 – 133.5	295.9 – 285.9	49	68
		133.5 – 134.9	285.9 – 284.5	93	93
	AC-9	90.2 - 96.3	329.2 - 323.1	18	18
		96.3 - 106.3	323.1 – 313.1	47	47
		106.3 - 116.3	313.1 – 303.1	50	71
		116.3 - 126.3	303.1 - 293.1	48	66
		126.3 - 136.3	293.1 – 283.1	68	75
		136.3 - 140.8	283.1 – 278.6	76	89
	B-2	88.0 - 93.0	332.2 - 327.2	44	44
		93.0 - 103.0	327.2 - 317.2	56	73
		103.0 - 113.0	317.2 - 307.2	63	95
		113.0 - 116.0	307.2 - 307.2	37	37
Pier 4	AC-10	84.2 - 85.5	334.1 – 332.8	0	0
		85.5 - 95.5	332.8 – 322.8	22	27
		95.5 – 105.5	322.8 – 312.8	63	75
		105.5 – 115.5	312.8 – 302.8	57	75
		115.5 – 125.5	302.8 – 292.8	63	92
		125.5 – 135.5	292.8 – 282.8	68	68
	AC-11	81.7 – 82.9	337.7 – 336.5	0	0
		82.9 - 87.9	336.5 - 331.5	38	52
		87.9 – 97.9	331.5 – 321.5	75	86
		97.9 – 107.9	321.5 - 311.5	72	79
		107.9 – 117.9	311.5 – 301.5	74	93
		117.9 – 127.9	301.5 – 291.5	63	83
		127.9 – 132.9	291.5 – 286.5	74	78

Table 2. Summary of Rock Core Data

Substructure					
Element	Boring No.	Depth Interval	Elevation	KY RQD (%)	Std. RQD (%)
Pier 4	AC-12	81.7 – 83.5	336.7 – 334.9	0	0
		83.5 – 88.5	334.9 – 329.9	18	20
		88.5 – 98.5	329.9 – 319.9	38	58
		98.5 – 108.5	319.9 – 309.9	46	71
		108.5 – 118.5	309.9 - 299.9	62	80
		118.5 – 128.5	299.9 - 289.9	81	81
		128.5 – 131.7	289.9 - 286.7	100	100
	AC-13	82.3 - 84.3	336.6 - 334.6	0	0
		84.3 - 89.3	334.6 - 329.6	28	28
		89.3 – 99.3	329.6 – 319.6	25	25
		99.3 – 109.3	319.6 – 309.6	65	73
		109.3 – 119.3	309.6 - 299.6	59	72
		119.3 – 129.3	299.6 – 289.6	65	73
		129.3 – 132.3	289.6 - 286.6	57	57
	B-3	82.0 - 92.0	337.9 – 327.9	39	55
		92.0 - 102.0	327.9 – 317.9	59	92
		102.0 - 112.0	317.9 – 307.9	60	91
		112.0 – 122.0	307.9 – 297.9	64	80
Pier 5	AC-14	15.0 – 19.2	421.0 - 416.8	64	64
		19.2 – 29.2	416.8 – 406.8	70	80
		29.2 - 34.0	406.8 - 402.0	52	63
		34.0 - 43.0	402.0 - 393.0	64	64
		43.0 - 53.0	393.0 - 383.0	95	95
		53.0 - 62.9	383.0 - 373.1	97	97
		62.9 – 72.9	373.1 – 363.1	73	90
		72.9 – 81.5	363.1 – 354.5	80	98
	AC-15	27.0 – 29.3	392.4 - 390.1	65	78
		29.3 – 32.3	390.1 – 387.1	33	50
		32.3 – 42.3	387.1 – 377.1	62	82
		42.3 – 47.3	377.1 – 372.1	66	66
		47.3 – 52.3	372.1 – 367.1	92	92
		52.3 – 62.3	367.1 – 357.1	77	77
		62.3 – 72.3	357.1 – 347.1	68	85
		72.3 – 77.3	347.1 – 342.1	64	64
	B-4	15.5 – 21.5	404.7 – 398.7	53	60
		21.5 – 31.5	398.7 - 388.7	85	98
		31.5 – 41.5	388.7 – 378.7	84	97
		41.5 – 51.5	378.7 – 368.7	83	87
		51.5 – 56.2	368.7 - 364.0	80	96

Substructure					
Element	Boring No.	Depth Interval	Elevation	KY RQD (%)	Std. RQD (%)
Indiana	AC-20	3.7 – 7.5	491.0 - 487.2	61	61
Abutment		7.5 – 17.5	487.2 – 477.2	80	84
		17.5 – 27.5	477.2 – 467.2	61	83
		27.5 – 37.5	467.2 – 457.2	70	93
		37.5 – 44.0	457.2 – 450.7	95	95
	AC-23	3.6 - 8.0	489.7 – 485.3	82	82
		8.0 – 18.0	485.3 – 475.3	45	49
		18.0 - 23.0	475.3 – 470.3	83	83
		23.0 - 28.0	470.3 - 465.3	60	78
		28.0 - 38.0	465.3 – 455.3	96	96
		38.0 - 48.0	455.3 – 445.3	100	100
		48.0 - 57.5	445.3 – 435.8	82	82
		57.5 – 67.5	435.8 – 425.8	96	96
		67.5 – 74.2	425.8 – 419.1	80	87
	AC-26	7.4 – 17.5	491.1 – 481.0	80	80
		17.5 – 27.5	481.0 - 471.0	60	71
		27.5 – 37.5	471.0 - 461.0	62	91
		37.5 – 47.5	461.0 - 451.0	86	92
Indiana	AC-17	2.0 - 7.0	490.0 - 485.0	86	86
Abutment		7.0 – 12.0	485.0 - 480.0	74	74
Wing	AC-27	1.8 – 6.5	491.8 - 487.1	87	87
Wall		6.5 – 12.0	487.1 - 481.6	35	35
		12.0 – 17.2	481.6 - 476.4	0	0
		17.2 – 22.2	476.4 – 471.4	0	22
		22.2 – 27.2	471.4 - 466.4	31	66

Table 2. Summary of Rock Core Data

5.2 Field Wave Velocity Measurements for Seismic Design

In order to provide shear wave and compression wave velocities for soil and bedrock at the bridge site in support of seismic analyses, suspension velocity measurements were obtained in the soils and bedrock of the site. Pier 1 was selected as the location for the test because it presented the deepest soil deposits for the site. On October 17, 2007 OYO suspension velocity measurements were performed in a cased, water filled hole at the location of Boring AC-3 by GEOVision Geophysical Services of Corona, California. The resulting report produced by GEOVision is presented in its entirety in Appendix D.

In general, the method consisted of lowering a single probe down the cased boring. The probe contained both a sending unit and receivers. The sending unit created a horizontal pressure wave in the borehole fluid which was converted to shear and compression waves in the surrounding soil or bedrock. The receivers recorded the resulting waves and the data was filtered to calculate compression (p) and shear (S_H) wave velocities at specific intervals from the ground surface to the bottom of the boring.

5.3 Laboratory Testing Program

5.3.1 General

FMSM personnel conducted laboratory testing of the samples obtained during the field explorations for the bridge at the Lexington, Kentucky laboratory facility in accordance with applicable AASHTO or Kentucky Methods of soil and rock testing. The results of the laboratory testing are shown on the Subsurface Data Sheets presented in Appendix A. Tests performed on the soil samples obtained during drilling consisted of moisture contents, particle size analyses, Atterberg limits, and specific gravity determinations. Groups of SPT samples of like soil types were combined and subjected to composite classification testing. Laboratory testing for undisturbed thin-walled (Shelby) tube samples included unconfined compressive strength (UC) and soil classification tests. The results for all soil testing are presented in Appendix E.

Tests performed on rock core samples recovered from the borings consisted of unconfined compressive strength, direct shear tests, and Slake Durability Index (SDI) testing. The results of the rock testing are presented in Appendix F. Six soil samples and three water samples from the Ohio River were also subjected to resistivity and corrosivity testing. The results of corrosivity and resistivity results are presented in Appendix G.

5.3.2 Soil Classification Testing

FMSM laboratory personnel completed classification tests on 67 samples of the foundation soils collected from the borings at the proposed substructure locations. This testing resulted in the identification of fourteen soil types as defined by the Unified Soil Classification System (USCS) method, and six soil types defined by the American Association of State Highway and Transportation Officials (AASHTO) system. Of the 67 samples tested, 18 samples classified as SP-SM by the USCS system, 12 classified as SW-SM, and 12 classified as SM, SW, SP, or SC. Sixteen of the samples tested were classified as GW, GP-GM, GM, GW-GM, or GP, with nine samples being classified as CL, CL-ML, or ML. A summary of the results is presented in Table 3.

The majority of the soils tested were identified as non-cohesive soils. This correlates well with the referenced geologic mapping, which identifies non-cohesive alluvial soils consisting of poorly to well-graded sands and gravels occurring beneath the Kentucky and Ohio River portions of the bridge.

USCS Soil Classification	Number of Soils Identified
CL	7
CL-ML	1
SM	5
SW-SM	12
SW	3
SC	1
SP-SM	18
SP	3
GP-GM	5
GM	3
GW	6
GW-GM	1
GP	1
ML	1

 Table 3a.
 Summary of USCS Soil Classification Data

 Table 3b.
 Summary of AASHTO Soil Classification Data

AASHTO Soil Classification	Number of Soils Identified
A-7-6	3
A-6	4
A-4	3
A-1-b	38
A-2-4	4
A-1-a	15

5.3.3 Unconfined Compressive Strength Testing on Soil

Laboratory personnel completed unconfined compressive strength tests on six selected thin-walled tube samples to provide information from which total stress shear-strength parameters could be estimated. The results of the unconfined compressive strength tests are presented on the appropriate Subsurface Data Sheets and are summarized in Table 4.

The six samples from Borings AC-1 through AC-3 represent cohesive strata of the location of Pier 1 and returned test values with an average strength of 1533 psf. These values ranged from 280 psf to 3140 psf, with two of the values being less than 1000 psf. The lowest value was returned for a sample obtained immediately above the change in material type from a clay to a sand with clay and immediately above the noted water table. It is possible that a very thin sand lense or zone of saturation was present within the sample and established a plane of weakness which resulted in a low failure

strength. A value of 680 psf was returned from a sample interval obtained within 3.0 feet of the existing ground surface. This low value could be explained by the presence of a silt lens or organic remnant within the sample. The range of unconfined compressive strength values may also be attributed to the soil material being from alluvial deposits which by nature can be non-uniform over relatively short vertical or horizontal distances.

				Unit We	eights	Moisture	U.C.	
Boring No.	Station	Offset	Depth Interval (ft)	Dry (pcf)	Wet (pcf)	Content (%)	Strength (psf)	USCS Classification
AC-1	187+18.6	44.6 Lt.	2.5 – 4.5	89.8	106.9	19.1	3140	CL
AC-1	187+18.6	44.6 Lt.	10.0 – 12.0	101.5	125.2	23.4	1160	CL
AC-2	187+28.4	13.5 Lt.	5.0 – 7.0	94.8	112.4	18.6	2820	CL
AC-2	187+28.4	13.5 Lt.	20.0 - 22.0	104.0	128.5	23.6	280	CL
AC-3	187+46.6	60.9 Rt.	2.5 – 4.5	82.7	110.7	33.9	680	CL
AC-3	187+46.6	60.9 Rt.	10.0 – 12.0	88.4	118.8	34.3	1120	CL

Table 4. Summary of Unconfined Compressive Strength Tests on Soil

5.3.4 Unconfined Compressive Strength Testing on Rock

A total of 50 rock core samples obtained from the borings were tested for unconfined compressive strength. Samples were selected at elevations within or below the likely drilled shaft rock socket limits. The consideration of shallow foundations at the Indiana Abutment focused the selection of two samples at shallow elevations. The results of testing varied from a low value of 13 tons per square foot returned by a shale sample from Boring AC-14, to a high value of 1,037 tons per square foot in a limestone shale mixture sample recovered from Boring AC-15. For individual rock test results refer to Table 5.

5.3.5 Direct Shear Testing of Rock Samples

To support deep foundation design, a total of 30 rock core samples from the borings were subjected to direct shear testing. The samples were specifically oriented in the testing mold in order to facilitate shear along a limestone/shale interface. This orientation was considered to present the most representative failure surface within the samples recovered. Because the pier foundations are likely to consist of drilled shafts socketed into bedrock, the normal stress confining the sample was estimated to be equal to the existing overburden pressure at the depth of the sample being tested. Both peak and post peak values of shear stress were recorded during the test. A maximum peak shear stress of 542.5 pounds per square inch was returned at a normal stress of 46.3 pounds per square inch in Boring AC-15. The minimum peak shear stress of 31.4 pounds per square inch in Boring AC-6. As would be expected, the post peak shear stress. The

maximum post peak shear stress recorded was 88.4 pounds per square inch at a normal stress of 64.9 pounds per square inch in Boring AC-3. The minimum post peak shear stress recorded was 10.9 pounds per square inch under a normal stress of 35.3 pounds per square inch in Boring AC-15. These maxima and minima vary greatly because of the tests being performed in multiple geologic units and of the variance in failure surface competency and orientation. Refer to Table 5 for results of individual direct shear tests.

5.3.6 Slake Durability Index Testing

Samples of the bedrock cored were selected for Slake Durability Index (SDI) testing. This test simulates the weathering processes of bedrock exposed to the elements, and is typically performed on shales. The process involves placing a measured weight of rock sample in a closed wire basket which rotates vertically while submerged in water. The sample pieces are subjected to a series of tumble (wet) and dry cycles and then weighed. The remaining sample weight is divided by the original sample weight to determine the percentage of remaining sample (SDI value). Therefore, the more durable the rock the more sample remains, and the higher the SDI value.

The use of this test, relative to the East End Bridge, relates to the installation of drilled shafts in bedrock. If drilled shafts are installed into bedrock, the SDI tests will indicate if there should be concern if water is used as the circulating agent. Shales with low SDI values may degrade upon exposure to drilling fluid and be removed, leaving spaces between limestone/dolomite layers. The layers may become loose and collapse into the shaft during concrete placement, thereby jeopardizing the integrity and structural capacity of the drilled shaft. Based on the guidelines presented in the Kentucky Transportation Cabinet – Geotechnical Manual, shales that have an SDI from 50 to 94 are potentially degradable and those with an SDI of less than 50 should be considered soil-like (degradable). SDI values above 94 indicate the sample is durable and should not degrade. The results of SDI testing preformed for the East End Bridge are presented in Table 6.

Six of the 41 samples tested returned values with an SDI value less than 50 and are therefore considered degradeable. Review of the rock core indicates the shale layers in the tested intervals are typically less than 0.4 feet in vertical thickness. The locations of these seams should be further evaluated during the final design of the bridge foundations relative to the tip elevation of the shaft and anticipated installation practices.

LSIORB – East End Bridge Over Ohio River KYTC Item No. 5-118.00

Data
Test
Rock
Laboratory
of
Summary
Table 5.

					Direct Sh	iear Test		Unco	nfined	
				д	Peak	Pos	it Peak	Compress	ion Strength	
				Normal		Normal				
Structure	-	Depth	Elevation	Stress	Peak Shear	Stress	Peak Shear	Peak	:	H
Element	HOIE #	(11)	(11)	(psi)	Stress (psi)	(psi)	Stress (psi)	Strength (tsf)	Failure Type	коск туре
Pier 1	AC-1	114.95 - 115.35	319.16 - 318.76	-	1	1	-	625	Shear	Mix*
	AC-1	114.05	320.06	66.7	246.9	66.7	37.5			Mix*
	AC-1	120.10	314.01	73.5	178	73.5	47.5	-		Mix*
	AC-1	127.30 - 127.65	306.81 - 306.46	-				296	Shear	Mix*
	AC-2	103.10	330.89	51.3	70.1	51.3	24.7			Mix*
	AC-2	113.55	320.44	63.1	135.9	63.1	50.2	1	1	Mix*
	AC-2	119.10 - 119.50	314.89 - 314.49		1	1		538	Undetermined	Mix*
	AC-2	124.70 - 125.10	309.29 - 308.89	-	1	1	-	179	Shear	Mix*
	AC-3	102.00	331.72	50.5	136.1	50.5	37	-		Mix*
	AC-3	114.90	318.82	64.9	322.5	64.9	88.4			Mix*
	AC-3	124.10 - 124.7	309.62 - 309.02					525	Shear	Mix*
	AC-3	128.60 - 129.20	305.12 - 304.52					300	Cone and Split	Mix*
Pier 2	AC-4	102.15	317.65	43.3	443.5	43.3	37.8	1	-	Mix*
	AC-4	116.65	303.15	59.4	112.8	59.4	58.1			Limestone
	AC-4	117.40 - 117.80	302.40 - 302.00					662	Columnar	Mix*
	AC-4	123.60	296.20	67.0	207.8	67.0	26.2			Mix*
	AC-4	124.35 - 124.75	295.45 - 295.05					409	Shear	Mix*
Pier 3	AC-6	97.40	322.00	31.4	20.0	31.4	18.3	-		Shale
	AC-6	105.00 - 105.35	314.40 - 314.05					594	Cone and Split	Mix*
	AC-6	110.70	308.70	45.8	164.8	45.8	38.6			Mix*
	AC-6	113.35 - 113.70	306.05 - 305.70			-		309	Shear	Mix*
	AC-6	128.20 - 128.55	291.20 - 290.85					586	Cone and Split	Mix*
	AC-7	100.00 - 100.35	319.50 - 319.15					691	Cone and Shear	Mix*
	AC-7	103.15	316.35	36.2	39.9	36.2	19.5			Mix*
	AC-7	109.30 - 109.65	310.20 - 309.85					881	Cone and Split	Mix*
	AC-7	111.90 - 112.35	307.60 - 307.15			-		837	Cone and Split	Mix*
	AC-7	115.80	303.70	50.3	196.0	50.3	36.1		-	Mix*
	AC-8	98.55	320.85	33.0	371.8	33.0	35.7			Mix*
	AC-8	99.30 - 99.70	320.10 - 319.70			-		838	Cone and Split	Mix*
	AC-8	102.85 - 103.20	316.55 - 316.20					34	Cone	Shale
	AC-8	113.75	305.65	49.8	83.1	49.8	32.2			Mix*
	AC-8	120.65 - 121.05	298.75 - 298.35	!	1	1	:	577	Shear	Limestone
	AC-9	100.90	318.50	32.9	82.8	32.9	14.0	1	1	Shale

Page 24

LSIORB – East End Bridge Over Ohio River KYTC Item No. 5-118.00

Data
k Test
y Roc
orator
of Lab
Summary c
Table 5.

					Direct Sh	ear Test		Onco	nfined	
				e	eak	Pos	t Peak	Compress	ion Strength	
Structure		Denth	Elevation	Normal		Normal				
Element	Hole #	(ft)	(ft)	otress (psi)	Preak Shear Stress (psi)	otress (psi)	Peak Shear Stress (psi)	геак Strength (tsf)	Failure Type	Rock Type
Pier 3	AC-9	105.75 - 106.15	313.65 - 313.25					507	Undetermined	Mix*
(Continued)	AC-9	115.95	303.45	49.6	191.9	49.6	19.3		1	Mix*
	AC-9	116.50 - 116.90	302.90 - 302.50	1	1	-	1	535	Undetermined	Mix*
	AC-9	119.80 - 120.15	299.60 - 299.25				-	760	Shear	Limestone
Pier 4	AC-10	100.20 - 100.50	318.10 - 317.80	1		-		373	Shear	Mix*
	AC-10	101.35	316.95	36.3	109.1	36.3	24.9	1	1	Mix*
	AC-10	104.80 - 105.20	313.50 - 313.10	1				253	Undetermined	Mix*
	AC-10	112.50 - 112.90	305.80 - 305.40					961	Cone and Split	Mix*
	AC-10	117.45	300.35	54.2	458.6	54.2	34.1			Mix*
	AC-11	89.75	329.65	27.0	181.8	27.0	33.4			Mix*
	AC-11	92.10 - 92.55	327.30 - 326.85					412	Undetermined	Mix*
	AC-11	103.80	315.60	42.3	68.7	42.3	74.4			Mix*
	AC-11	104.60 - 105.00	314.80 - 314.40					431	Cone and Split	Mix*
	AC-11	106.95 - 107.30	312.45 - 312.10					636	Undetermined	Mix*
	AC-12	94.00	324.40	31.2	328.0	31.2	29.4		-	Mix*
	AC-12	102.85 - 103.10	315.55 - 315.30					501	Shear	Mix*
	AC-12	103.40 - 103.75	315.00 - 314.65					724	Undetermined	Mix*
	AC-12	109.30	309.10	47.9	93.9	47.9	28.7			Mix*
	AC-12	111.40 - 111.80	307.00 - 306.60					640	Cone and Split	Mix*
	AC-13	90.65 - 91.00	328.25 - 327.90					728	Undetermined	Mix*
	AC-13	95.15	323.75	32.9	237.6	32.9	12.2			Mix*
	AC-13	97.75 - 98.10	321.15 - 320.80					335	Undetermined	Mix*
	AC-13	104.05	314.85	42.9	98.6	42.9	27.8			Mix*
	AC-13	105.85 - 106.20	313.05 - 312.70					465	Undetermined	Mix*
Pier 5	AC-14	29.20 - 29.55	406.78 -406.43					13	Shear	Shale
	AC-14	30.50	405.48	30.3	345.7	30.3	12.5		1	Mix*
	AC-14	34.10 - 34.45	401.88 - 401.53					988	Cone and Shear	Limestone
	AC-15	35.40 - 35.80	384.00 - 383.60					1037	Undetermined	Mix*
	AC-15	48.20 - 48.60	371.20 - 370.80					616	Shear	Limestone
	AC-15	49.90	369.50	35.3	354.6	35.3	10.9			Shale
	AC-15	59.70	359.70	46.3	542.5	46.3	20.2		1	Mix*
	AC-15	60.40 - 60.80	359.00 - 358.60					693	Cone and Shear	Mix*
Indiana	AC-20	8.45 - 8.85	486.23 - 485.83					602	Shear	Limestone
Abutment	AC-20	28.2	466.48	30.3	50.6	30.3	19.5		1	Mix*
	AC-20	29.80 - 30.20	464.88 - 464.48					80	Shear	Shale

Page 25

Data
Test
Rock
ratory
f Labo
ō N
Summar
Table 5.

					Direct SI	near lest		Once	ntined		_
				4	Peak	Pos	t Peak	Compress	ion Strength		
Structure		Denth	Flevation	Normal	Dool Shoot	Normal	Tool Chase	Jood			
Element	Hole #	(ft)	(ft)	ouess (psi)	Stress (psi)	ouress (psi)	Stress (psi)	Strength (tsf)	Failure Type	Rock Type	
Indiana	AC-23	23.85 - 24.25	469.46 - 469.06					291	Cone and Shear	Mix*	
Abutment	AC-26	10.50 - 10.90	488.04 - 487.64	-				862	Cone and Shear	Limestone	
(Continued)	AC-26	27.9	470.64	29.2	40.3	29.2	20.5		-	Mix*	
	AC-26	32.40 - 32.80	466.14 - 465.74	-		-		98	Shear	Shale	
Indiana	AC-17	6.45 - 6.85	485.59 - 485.19					564	Shear	Limestone	
Retaining	AC-27	4.20 - 4.55	489.42 - 489.07	1		-	-	518	Shear	Limestone	_
Wall	AC-27	25.90 - 26.35	467.72 - 467.27	-		-		302	Shear	Limestone	
*-Miv- Mivture c	of chale and li	meetone									_

-MIX- MIXTURE OT SNAIE AND IIMESTONE

Substructure			
Element	Hole No.	Sample Depth (feet)	SDI
	AC-1	106.7 - 107.2	77.7
	AC-1	117.2 - 117.9	76.3
	AC-1	128.1 - 128.7	95.8
	AC-2	104.8 - 105.4	82.2
Pier 1	AC-2	120.7 - 121.1	95.3
	AC-2	129.9 - 130.9	91.1
	AC-3	87.2 - 88.3	48.0
	AC-3	102.5 - 102.9	95.9
	AC-3	106.7 - 107.9	36.6
	AC-4	94.3 - 95.0	92.9
Pier 2	B-1	117.2 - 118.0	94.8
	AC-6	95.7 – 96.1	56.8
	AC-6	102.1 - 102.8	76.3
	AC-7	106.9 - 107.5	72.1
	AC-8	99.4 - 100.2	60.6
	AC-8	108.2 - 108.9	87.7
Pier 3	AC-8	114.8 - 115.3	6.2
	AC-9	94.7 – 95.1	41.5
	AC-9	107.4 - 108.0	86.8
	AC-9	117.5 - 117.9	6.4
	B-2	102.7 - 103.4	83.1
	AC-10	86.8 - 87.4	71.1
	AC-10	99.5 - 100.3	88.4
	AC-10	108.0 - 108.4	81.7
	AC-11	85.6 - 86.2	33.2
	AC-11	95.3 – 95.8	91.1
	AC-11	109.7 - 110.6	94.4
Pier 4	AC-12	92.8 - 93.5	89.9
	AC-12	101.9 - 102.7	91.9
	AC-12	102.9 - 103.5	10.2
	AC-13	22.1 – 23.9	96.1
	AC-13	97.7 - 98.5	89.5
	AC-13	108.7 - 109.3	97.5
	B-3	48.9 - 49.6	98.1
	AC-14	57.5 - 58.8	96.6
Pier 5	AC-15	25.2 - 26.2	56.5
	AC-15	26.6 - 27.5	88.8
	AC-23	35.7 - 36.4	75.2
Indiana Abutment	AC-26	23.3 - 24.0	71.8
	AC-26	106.7 - 107.2	77.7
	AC-27	117.2 - 117.9	76.3

Table 6. Summary of Slake Durability Index Testing

5.3.7 Corrosivity Tests on Soil and Water

Chemical characterization tests were performed on six composite soil samples obtained during drilling and on three water samples obtained from the Ohio River. These tests were performed to identify potentially corrosive environments or subsurface materials which may affect foundation design. The soil samples were comprised of composite samples of similar soil type from multiple boring locations, and were tested by CTL Group of Skokie, Illinois, in terms of water soluble sulfate content (AASHTO T290) and minimum soil resistivity (AASHTO T288). The water samples were obtained approximately 4 feet below the river surface near the Kentucky shore, near mid-river, and near the Indiana shore. The samples were tested by Microbac Laboratories, Inc. of Louisville, Kentucky in terms of pH (SM4500), Chloride content (EPA 300.0) and Sulfate content (EPA 300). The results of the testing are presented in Appendix G, and are summarized in Tables 7 and 8.

Material Description	Sample	Water Soluble Sulfate (as SO4) (mg/kg of sample)	Minimum Resistivity (Ohm-cm)
Lean Clay	Borings AC-1, 2	4	2118
Silty Sand with Gravel	Borings AC-1, 2	33	3135
Well-graded Sand	Borings AC-1, 2, 3	41	2570
Sand with Silt and Gravel	Borings AC-6, 9, 10,11, 12, 13, 15,	82	1864
Poorly graded Sand with Silt and Gravel	Borings AC-10, 11, 12, 13	144	1356
Well-graded Sand with Silt	Borings AC-5, 9, 10, 11, 12, 13	86	2486

Table 7. S	Summary	of Soil	Corrosivity	/ Tests
------------	---------	---------	-------------	---------

 Table 8.
 Summary of Chemical Analysis of Water

Sample Source	рН (SU)	Chloride (mg/l)	Sulfate (mg/l)
Kentucky Shore	7.50	50	130
Mid-River	7.58	50	130
Indiana Shore	7.65	50	130
6.0 SUBSURFACE CONDITIONS

6.1 Overview of Bridge Site Stratigraphy

Available geologic mapping indicates that areas in the vicinity of the I-265 East End Bridge over the Ohio River are underlain by Quaternary sediments and soil, as well as Devonian, Silurian, and Ordovician age bedrock. These sediments and soil consist of, in lithologic order, alluvium, lacustrine deposits, outwash, as well as loess and eolian sand. The alluvium was deposited during the Holocene epoch while the lacustrine, outwash, loess, and eolian sand deposits were deposited during the Pleistocene epoch of geologic time. Typically soils and sediments located within the Ohio River floodplains are of the Huntington-Melvin-Combs complex, which are classified as sandy, loamy, and silty soils that are very deep, well drained to poorly drained, nearly level to moderately steep, and are flooded frequently.

A plan showing the approximate contours of the bedrock surface, based on the data obtained from this subsurface exploration program, is presented as Figure 4.

6.2 Kentucky Transition Pier

The Kentucky Transition Pier (Pier 1) is located at Station 187+40. At this location, Borings AC-1, AC-2 and AC-3 were drilled to provide soil and bedrock data for design. The results of subsequent soil and bedrock testing were used to develop a generalized subsurface profile for the transition pier to provide strength parameters for design. This generalized profile is presented in Figure 5b.

6.2.1 Stratigraphy

Soils encountered during the subsurface exploration, listed by lithologic order, consisted of lean clay, sandy silty clay, silty sand with gravel, well-graded sand with silt, and well-graded sand. Groundwater was encountered at elevations ranging from 421.7 to 413.5 feet with a bedrock surface elevation that ranged from 333.6 to 334.9 feet.

6.2.2 Soil Conditions

As depicted in the generalized soil profile, the uppermost horizon is approximately 25 feet in thickness and is a medium strength low plasticity lean clay with an average unconfined compressive strength of 1,784 pounds per square foot. Beneath the clay a layer generally described as a sand with silt was encountered with a thickness of approximately 30 feet and a bottom elevation of 379 feet. This sand was described as brown to gray, medium to coarse-grained, and loose to medium in consistency. Below elevation 379 feet a well-graded sand with silt and gravel was encountered. This horizon continued to the bedrock surface at elevation 334 feet and was described as medium to coarse-grained and medium dense. Drilling encountered occasional gravels in this horizon.

6.2.3 Rock Conditions

The bedrock encountered at Pier 1 correlates will with the referenced geologic mapping, for the Drakes Formation and is described as limestone (60%) interbedded with shale (40%). The limestone is gray, fine grained, thin bedded and locally argillaceous. The shale is gray, silty, and calcareous. The upper 30 to 40 feet of the bedrock was noted to contain occasional clay seams. Unconfined compressive strength test results varied from 179 to 625 tons per square foot. SDI testing returned values ranging from 37 to 95.

6.2.4 Field Wave Velocity for Seismic Design

The results of suspension logging of Boring AC-3 returned the shear wave velocity ranges presented in Table 9.

Depth	Material	V _s ft/sec
0-25	CL	270-499
25-55	SM, SW	556-1042
55-100	SW-SM	924-1197
100-150.9	Limestone/Shale Mix	2137-7499

 Table 9.
 Summary of Shear Wave Velocity Measurements

Below the water table (elevation 418.3 at Pier 1) and above the bedrock surface compression waves are of little value because the water directly carries the wave signal and returns a typical water velocity on the order of 5000 feet per second. The bedrock returned shear wave velocities between 3,000 and 7,000 feet per second.

6.3 Ohio River – Tower and Anchor Piers

The tower piers for the Ohio River consist of Piers 3 (Station 193+77) and 4 (Station 206+12) and were investigated by Borings AC-6 through AC-13 and Borings B-2 and B-3. The Kentucky Anchor Pier (Pier 2) is located at Station 189+65 and is described by Borings AC-4, AC-5, and B-1. The Indiana Anchor Pier (Pier 5) is located at Station 210+24 and was investigated by Borings AC-14, AC-15, and B-4. A generalized subsurface profile has been prepared for each of these substructure elements and should be utilized during foundation analyses and design. These profiles are presented in Figure 5c, 5d, 5e, and 5f, for Piers 2, 3, 4, and 5 respectively.

6.3.1 Stratigraphy

Soils encountered during the subsurface exploration, listed by lithologic order, consisted of well-graded sand with silt and gravel, poorly graded sand with silt and gravel, and poorly graded sand with silt. Bedrock surface elevations ranged from 423.9 feet at the Ohio River bank on the Indiana side to 334.9 feet at the Ohio River bank on the Kentucky side.

6.3.2 Soil Conditions

The soils at the Kentucky Anchor Pier consisted of approximately five feet of soft, sandy, lean clay above the pool elevation of the river. In order of descending elevation the following horizons were encountered below the water surface: 14 feet of sand with silt which is medium to coarse-grained and medium in consistency, 30 feet of well-graded sand with silt which is medium to coarse-grained and gravel which is medium to dense in consistency and contains sub-rounded to rounded gravel. The bedrock surface was encountered at elevations ranging from 328.5 to 338.6 feet.

The Kentucky Tower Pier will rest in approximately 40 feet of water on sands and gravel horizons. Beginning at a river bottom elevation of 379 feet and decreasing in elevation, the following four soil horizons were noted: 14 feet of well-graded sand with silt and gravel which is medium to coarse-grained and medium in consistency, 11 feet of well-graded sand with silt and gravel which is medium to dense in consistency, 15 feet of dense to very dense well-graded gravel with silt, and 7 feet of poorly graded sand with silt overlying bedrock which is medium grained and is medium to very dense in consistency.

The Indiana Tower Pier also will be located in approximately 40 feet of water with a river bottom elevation of 379 feet. The three soil horizons encountered below the river bottom in order of decreasing elevation, are: 19 feet of poorly to well-graded gravel with sand which is loose to medium in consistency, 16 feet of poorly graded sand with silt and gravel which is medium to coarse-grained and medium to very dense in consistency, and 7 feet of medium to very dense poorly sorted gravel with silt.

The Indiana Anchor Pier is located at the edge of the Ohio River and will fall on both a steep slope rising out of the river and upon alluvial sands and gravels within the river. Because of utility conflicts, Boring AC-14 was advanced within the limits of River Road. The soil beneath River Road is described as moist sandy lean clay which is soft in consistency, and contains some gravel. Bedrock was encountered at an elevation of 424 feet. Borings B-4 and AC-15 were advanced in the river and encountered river bottom elevations of 419 and 416 feet, respectively. Beneath the river bottom, in Boring AC-15, four feet of loose sandy silt with gravel was encountered overlying 17 feet of dense to very dense poorly graded gravel with silt and sand. Bedrock was encountered at an elevation of 392 feet.

6.3.3 Rock Conditions

At the Kentucky Anchor Pier location the bedrock surface elevation varied from 328.5 to 338.6 feet. The top 52 feet of the bedrock was described as limestone (55%) interbedded with shale (45%). This correlates well with the referenced mapping of the Drakes Formation. The limestone is gray, fine grained, thin bedded, locally argillaceous

and locally fossiliferous. At approximate elevation 283 feet the percentage of shale in the unit increased to 70 percent and the limestone decreased to 30 percent.

The bedrock underlying both the Kentucky and Indiana Tower location is also of the Drakes Formation and is described as limestone (which varies from 50% to 80% of the unit) interbedded with shale (30 to 50% of the unit). The limestone is gray, microcrystalline to fine grained, thin bedded, fossiliferous and argillaceous. The shale is silty, laminated to thinly bedded, calcareous and fossiliferous. The surface elevation of the bedrock varied from 330.4 to 333.2 feet at the Kentucky Tower and from 334.1 to 340.4 feet at the Indiana Tower location.

The bedrock surface rises significantly at the location of the Indiana Anchor Pier, with an elevation of 423.9 feet encountered in Boring AC-14 and 392.4 feet noted in Boring AC-15. Five distinct rock units were identified in these borings and belong to two geologic formations as identified in the referenced geologic mapping. The Laurel dolomite is represented by four of the rock units and was encountered between the elevations of 421 and 392 feet. Between elevation 421 and 417 feet the bedrock is a gray, medium grained limestone which is thin to medium bedded. From elevation 417 to 407 the unit consists of 60 percent limestone and 40 percent shale which are interbedded. The limestone is gray, fine to medium grained and very thin to medium bedded, and the shale is gray and silty. A layer of gray to red shale was encountered from elevation 407 to 404 feet, and described as very thin bedded and silty. Testing on this shale indicates it is of low strength and highly degradable. Beneath this shale, a light gray, fine grained, thinly bedded limestone unit was noted from elevation 404 to 392 feet. From elevation 394 to 392 feet this unit becomes dolomitic and is greenish gray in color. Below elevation 392 feet, the Osgood Formation was identified as interbedded limestone and shale. The limestone varies from 30 to 60 percent of the unit while the shale varies from 40 to 70 percent of the unit. The limestone is gray, fine to medium grained, very thin to medium nodulary bedded and fossiliferous. The shale of the unit is gray, silty, laminated, calcareous and fossiliferous.

6.4 Indiana Abutment

6.4.1 Stratigraphy

Soils occurring in the area of the abutment consist of sand and gravelly lean clay, and range from two to twelve feet in thickness. Bedrock surface elevations varied from 490 to 492 feet in the borings advanced. A generalized subsurface profile has been prepared for the Indiana Abutment and should be utilized during foundation analyses and design. This profile is presented in Figure 5g.

6.4.2 Soil Conditions

Soils encountered during the drilling program consist primarily of varying percentages of clays, gravels and sands. Previous mining or earth moving operations have mixed the

residual site soils with gravel and sand-size particles to attain the current soil matrix. The soil is typically brown, soft, and displays low plasticity because of the granular content. The thickness of these soils overlying bedrock varied from 1 to 7 feet.

6.4.3 Rock Conditions

The bedrock surface elevations encountered at the Indiana Abutment location varied from 490 to 492 feet. Beneath this surface, the first of three rock strata was cored. This rock unit consisted of gray limestone which is fine grained, very thick bedded, locally contains clay seams, and was approximately 16 feet in thickness. At the location of Boring AC-27 a clay seam with a thickness of two feet was encountered from elevation 483.6 to 481.6. The limestone terminated at elevation 474 feet, at the top of a shale unit with a thickness of 15 feet. This shale unit was dark gray and tan, very thick, bedded, and ended at the top of another limestone unit at elevation 459 feet. From elevation 459 to 423 feet a gray and tan limestone was cored. This rock was described as fine grained, medium bedded to very thick bedded with zones fractured, and locally dolomitic. Below the limestone a shale layer with a thickness of two feet was recovered from elevation 423 to 421 feet, and was described as dark gray and medium bedded. Beneath the shale and above the bottom of the boring at elevation 419 feet a light gray, medium bedded, limestone was encountered.

7.0 GEOTECHNICAL EVALUATION

The East End Bridge over the Ohio River is being designed using AASHTO LRFD methods. Drilled shaft foundations are planned at Piers 1 through 5, and a spread footing foundation is planned at the Indiana Abutment. Analyses have been performed for foundation bearing, uplift and lateral load conditions.

7.1 Geotechnical Design Parameters

Geotechnical design parameters have been developed for each of the substructure elements, as shown in Figures 5a through 5f, Generalized Subsurface Profiles. The generalized subsurface profiles were developed based on average conditions as represented by the borings at each substructure element. Evident outliers in the data were not included when developing the average design parameters. For the bedrock formations, the Mohr-Coulomb strength parameters, cohesion c and friction angle phi, were based on the AASHTO procedures for the use of Rock Mass Ratings (RMR) for estimation of strength (AASHTO C10.4.6.4). The calculated strength parameters at the Indiana Abutment were reduced due to the presence of clay seams at boring AC-23.

For laterally loaded drilled shaft evaluations, use of the average top of rock elevation as depicted in Figure 5 would have been potentially underconservative in predicting deflections under lateral load. Where the top of rock is deeper than average conditions, deflections under imposed lateral load may be larger. In contrast, for the case of imposed deflections due to thermal expansion, or for seismic loading, higher stresses will be obtained where rock is shallower than average conditions, due to a shallower depth of fixity. For preliminary engineering analyses, the average rock elevation is used.

Design scour depths for the project have been developed by Wilbur Smith Associates, with the scour analysis based upon the 100-year storm event. The total design scour depth at the river piers, Piers 3 and 4, is approximately 40 to 43 feet below the bottom of channel. At Pier 3, about 5 to 8 feet of soil is anticipated to remain after scour, and at Pier 4, scour is anticipated to extend to top of rock. To a lesser extent, scour is also anticipated at the transition and anchor piers, Piers 1, 2 and 5, with scour depths of about 13 to 20 feet below the ground surface.

7.2 Seismic Design Parameters

The East End Bridge is considered to be a "Critical" bridge. As such, it is expected to remain serviceable (with minor, repairable damage) following a significant earthquake, and to withstand a lesser earthquake with virtually no damage. Therefore, the East End Bridge is being designed using a dual-seismic hazard approach, considering two sets of ground motions:

- higher level Safety Evaluation Earthquake (SEE) with a return period of approximately 2500 years
- lower level Functional Evaluation Earthquake (FEE) with a return period of approximately 500 years

For the preliminary design phase, design response spectra for the 2500-year SEE were computed following the methodology given in MCEER/ATC 49 Recommended LRFD Guidelines for the Seismic Design of Highway Bridges (2003). A review of the boring logs indicated that site class is between Site Classes C and D. Conservatively, Site Class D was used for the horizontal (longitudinal and transverse) ground motions. The vertical ground motions were computed as 70% of the Site Class B spectra. The response spectra curves used for the preliminary design phase are shown in Figure 6.

In the final design phase, the ground motion inputs (response spectra) for the SEE and FEE will be determined based on a site specific study for the East End Bridge. This will include site response analyses based on data from the boring logs and shear wave velocity measurements (P-S logging) taken at the site.

7.3 Recommended Foundation Types

Rock bearing foundations are recommended for support of the Kentucky transition pier, anchor piers, river piers and the Indiana abutment. Due to the depth to bedrock, drilled shaft foundations are recommended for the Kentucky transition pier, anchor piers, and the river piers. Drilled shaft foundations should be socketed into rock to take advantage of the side friction afforded by the rock socket in compression and uplift, and the high lateral resistance of the rock socket to aid in restraining deflection under lateral loads, particularly at the main pier where the overburden may scour to a depth of more than 40 feet.

Driven pile foundations could not be advanced into rock without predrilling, and therefore would not provide the necessary resistance to uplift and lateral loads. Therefore, driven pile foundations are not recommended for foundations.

At the Indiana abutment, where the depth to rock is shallow, a continuous spread footing foundation bearing on rock is recommended.

7.3.1 Pier 1 - Kentucky Transition Pier

As shown in Table 1, the depth to top of rock at the three borings at Pier 1 ranged from 98.8 to 100.4 feet below ground surface. The corresponding top of rock elevation ranged from 333.6 to 334.9 feet. The preliminary design scour depth at this pier was subsequently determined to be 15.2 feet, or elevation 418.8 feet; a scour depth of 16 feet was used in the foundation analyses. Rock-socketed drilled shaft foundations are recommended, with one drilled shaft supporting each pier column.

7.3.2 Pier 2 - Kentucky Anchor Pier

As shown in Table 1, the depth to top of rock at the three borings at Pier 2 ranged from 81.0 to 98.4 feet below ground surface or river water surface, with a corresponding top of rock elevation ranging from 328.1 to 338.6 feet. The design scour was determined to be 13.3 feet, or elevation 390.8 feet; analyses were performed using a scour depth of 14 feet below the mudline. Rock-socketed drilled shaft foundations are recommended, with one drilled shaft supporting each pier column.

7.3.3 Piers 3 and 4 - Tower Piers

As shown in Table 1, the depth to top of rock at the five borings at Pier 3 ranged from 86.2 to 89.1 feet below river water surface at the time of drilling, with a corresponding top of rock elevation ranging from 330.4 to 333.2 feet. The overburden depth above top of rock ranged from 45.3 to 48.6 feet. The design scour depth at Pier 3 is 40.7 feet, leaving less than 8 feet of overburden soils for the design scour condition.

The depth to top of rock at the five borings at Pier 4 ranged from 79.5 to 84.2 feet below river water surface, with a corresponding top of rock elevation ranged from 334.1 to 340.4 feet. The overburden depth above top of rock ranged from 38.5 to 42.6 feet. The design scour depth at Pier 4 is 42.9 feet, so essentially all soil is anticipated to be removed by scour during the 100-year storm event.

Analyses for Piers 3 and 4 were performed with a preliminary design scour depth of 40 feet.

7.3.4 Pier 5 - Indiana Anchor Pier

As shown in Table 1, the depth to top of rock at the three borings at Pier 5 ranged from 11.0 to 27.0 feet below ground surface or river water surface. The corresponding top of rock elevation at the borings ranged from 392.4 to 423.9 feet. The top of rock rises from north to south along the line of the pier, because the south end of the pier is closer to the steep Indiana bank of the Ohio River. The south boring was offset to the river bank due to utility conflicts, and therefore top of rock at the southernmost foundation location is likely lower than top of rock elevation 423.9 feet as encountered at the boring location. Analyses were performed using a preliminary design scour depth of 17 feet below the mudline; subsequently, the design scour was determined to be 19.7 feet, or elevation 395.5 feet. Rock-socketed drilled shaft foundations are recommended, with one drilled shaft supporting each pier column.

7.3.5 Indiana Abutment

As shown in Table 1, the depth to top of rock or auger refusal at the five borings and eight auger probes at the Indiana Abutment and wing wall ranged from 1.2 to 6.9 feet

below ground surface. The top of rock elevation or refusal elevation ranged from 488.7 to 492.0 feet. A spread footing foundation bearing on rock is recommended for the abutment, and the MSE wall wing walls should also bear on rock. The design bearing elevation of the abutment foundation is approximately elevation 484.0 feet. The south and north MSE wing walls have design top of leveling pad elevations of about 485.0 and 490.0, respectively.

7.4 Foundation Analyses, Drilled Shafts

For the tower piers, a total of eighteen drilled shafts are planned at each pier, arranged as an elliptical outer ring of twelve drilled shafts and two rows of three drilled shafts within the ellipse. For Piers 1, 2 and 5, three individual drilled shafts are planned per pier. The layouts of the drilled shafts at each pier are shown on the Preliminary Design Plans dated December 2007.

Analyses for axial loads in bearing, axial loads in uplift, and lateral loads for the drilled shafts at Piers 1 through 5 are discussed in the following subsections. The drilled shafts will be constructed with permanent steel casing to top of rock. In the analyses performed for this report, the permanent steel casing has been included in the drilled shaft section above top of rock.

Two alternative shaft diameters are under consideration, including:

- 8'-6" diameter shaft (O.D. of steel casing) with 8'-0" diameter rock socket
- 8'-0" diameter shaft (O.D. of steel casing) with 7'-6" diameter rock socket

The project is being designed in accordance with the AASHTO LRFD Bridge Design Specifications, 2007. The preliminary design loads on the drilled shafts were established by PB's structural engineers using the structural analysis program LARSA 4D v7.0. The maximum factored shaft head demands were determined using LARSA based on the worst case from the LRFD load combinations for Strength I through V limit states and the Extreme Event I (seismic) limit state. For geotechnical analyses, a range was applied to the preliminary design maximum loads, in consideration of the preliminary stage of the design.

The highest compression loads, up to about 17,000 kips per drilled shaft, are anticipated at the two tower piers, with significant compression loads also anticipated on drilled shafts at Pier 1 (Kentucky Transition Pier). Uplift loads of up to about 2,700 kips are anticipated at the tower piers, with minor uplift loads (up to 200 kips) also anticipated at Pier 2 (Kentucky Anchor Pier). The maximum compression on the shafts in the main tower foundations is anticipated under the Strength IV Limit State (Dead Load + Water + Wind + Temperature). The maximum uplift on the shafts in the main tower foundation is anticipated under the Strength III Limit State (Dead Load + Water + Wind + Temperature). The ranges of loads evaluated are summarized in Table 10 below:

Pier	Location	Axial Load, Per Drilled Shaft, kips		Lateral Load	Bending Moment
		Uplift	Compression	kips	k-ft
Pier 1	Kentucky Pier	N/A	10,000 to 13,000	200 to 250	4,000 to 6,000
Pier 2	Kentucky Anchor Pier	100 to 200	2,500 to 3,500	200 to 250	4,000 to 6,000
Pier 3	Kentucky Tower Pier	2,000 to 2,700	13,000 to 17,000	1,000 to 1,500	40,000 to 60,000
Pier 4	Indiana Tower Pier	2,000 to 2,700	13,000 to 17,000	1,000 to 1,500	40,000 to 60,000
Pier 5	Indiana Anchor Pier	N/A	3,500 to 4,500	300 to 500	11,000 to 13,000

Table 10.	Range of	Drilled St	haft Loads [•]	for Geoteo	chnical Evaluatio	n
-----------	----------	-------------------	-------------------------	------------	-------------------	---

Note 1: All values presented in Table 10 are factored loads and bending moments.

Note 2: For Piers 3 and 4, the head of the drilled shaft is assumed to be fixed against rotation. Moments at these pier heads include the effects of horizontal shear.

Note 3: Pier 1 loads were developed for a prior configuration of the bridge structure which included extension of the concrete box girder across Transylvania Road. The final desing loads are anticipated to be lower, and analyses will be updated during final design.

7.4.1 Axial Bearing

Preliminary design loads have been provided by PB structural designers. The range of axial loads is summarized in Table 10.

Axial compression load is assumed to be carried entirely in the bedrock, by combined rock socket side friction and end bearing at the base of the rock socket. The contribution of the overburden soil to drilled shaft axial capacity is neglected, based on considerations of scour potential, as well as strain incompatibility between soil and rock side friction. For the tower piers, group effects have been neglected since the drilled shafts will achieve their full axial capacity in rock.

Preliminary design charts have been developed showing compressive capacity as a function of rock socket length, as presented in Figures 7a, 7b, 8a, 8b, 9a, 9b, 10a, and 10b. The compressive capacity includes both socket friction and end bearing, and has been evaluated for both 7.5-foot and 8.0-foot diameter sockets. The capacities shown on the charts are factored resistances, and include a resistance factor of 0.7 on socket friction and end bearing, corresponding to the case where static load tests (Osterberg load cell tests) are to be conducted. For extreme limit states (earthquake, ice, or vessel impact, etc.), a resistance factor of 1.0 is used. The compressive capacity of the 7.5-foot diameter shafts as a function of shaft length is shown in Figure 7a for Pier 1 and in Figure 8a for Piers 2 through 5, with the Extreme Limit State case shown in Figures 7b

and 8b for Pier 1 and Piers 2 through 5, respectively. The compressive capacity of the 8.0-foot diameter shafts as a function of shaft length is shown in Figure 9a for Pier 1 and in Figure 10a for Piers 2 through 5, with the Extreme Limit State case shown in Figures 9b and 10b for Pier 1 and Piers 2 through 5, repsectively. Refer to Appendix H for calculations.

A minimum center-to-center spacing of 2.5 socket diameters should be provided between shafts.

7.4.1.1 Pier 1 - Kentucky Transition Pier

The maximum anticipated factored load of 13,000 kips in compression can be resisted by a drilled shaft with a rock socket length of 27 feet for a 7.5-foot diameter socket, or 25 feet for an 8.0-foot diameter socket. The socket length at the transition pier is governed by the axial compression load since at this location a rock socket is not needed to develop fixity of the drilled shafts to lateral load. Based on the load demands provided by the structural engineers, there are no uplift loads on the drilled shafts at the Kentucky transition pier. Refer to the compressive capacity charts in Appendix H for results of analyses.

7.4.1.2 Pier 2 - Kentucky Anchor Pier

The maximum anticipated factored load of 3,500 kips in compression can be resisted by a drilled shaft with a rock socket length of 5 feet for a 7.5-foot diameter socket, or 4.5 feet for an 8.0-foot diameter socket. The minimum design socket length is 1.5 times the socket diameter, and therefore the 7.5-foot and 8.0-foot diameter sockets must have minimum socket lengths of 11.25 and 12.0 feet, respectively. Lateral loads may govern the required minimum rock socket length in final design. Uplift load demand at the Kentucky anchor pier is small and will not govern the design socket length. Refer to the compressive capacity chart in Appendix H for results of analyses.

7.4.1.3 Piers 3 and 4 - Tower Piers

The maximum anticipated factored load of 17,000 kips in compression can be resisted by a drilled shaft with a rock socket length of 32 feet for a 7.5-foot diameter socket, or 28 feet for an 8.0-foot diameter socket. These shaft socket lengths will provide the necessary resistance to anticipated uplift loads. Lateral loads may govern the required minimum rock socket length in final design. Refer to the compressive capacity chart in Appendix H for results of analyses.

7.4.1.4 Pier 5 - Indiana Anchor Pier

The maximum anticipated factored load of 4,500 kips in compression can be resisted by a drilled shaft with a rock socket length of 7 feet for a 7.5-foot diameter socket, or 6 feet for an 8.0-foot diameter socket. The minimum design socket length is 1.5 times the socket diameter, and therefore the 7.5-foot and 8.0-foot diameter sockets must have

minimum socket lengths of 11.25 and 12.0 feet, respectively. However, lateral loads may govern the actual required rock socket length. Based on the load demands provided by the structural engineers, there are no uplift loads on the drilled shafts at the Indiana anchor pier. Refer to the compressive capacity chart in Appendix H for results of analyses.

7.4.2 Uplift

As shown in Table 10, drilled shafts at Piers 3 and 4, the tower piers, are subject to maximum design uplift loads per shaft of 2,000 to 2,700 kips, applied at the top of the shaft. Uplift loads occur at some of the drilled shafts at Piers 3 and 4 under Strength I through V and Extreme Event load cases; the maximum uplift values are used for evaluation of required rock socket dimensions. In addition, short term uplift is anticipated during the construction condition, based on uplift on the tremie seal; these hydrostatic uplift conditions will be evaluated further in final design. The drilled shafts at Pier 2, Kentucky Anchor Pier are anticipated to be subject to relatively low uplift loads per shaft up to about 200 kips. No uplift loads are anticipated on drilled shafts at Piers 1 and 5. The loads cited above are factored loads based on LRFD analyses.

Preliminary design charts have been developed showing uplift capacity as a function of rock socket length, as presented in Figures 7c, 7d, 8c, 8d, 9c, 9d, 10c, and 10d. In accordance with AASHTO, the resistance factor used for the socket friction for uplift loading was 0.6, corresponding to the case where static load tests (Osterberg load cell tests) are to be conducted. For extreme limit states (earthquake, ice, or vessel impact, etc.), a resistance factor of 0.8 is used for uplift. The uplift capacity of the 7.5-foot diameter shafts as a function of shaft length is shown in Figure 7c for Pier 1 and in Figure 8c for Pier 2 through 5, with the Extreme Limit State case shown in Figures 7d and 8d for Pier 1 and Piers 2 through 5, respectively. The uplift capacity of the 8.0-foot diameter shafts as a function of shaft length is shown in Figure 9c for Pier 1 and in Figure 10c for Piers 2 through 5, with the Extreme Limit State case shown in Figures 9d and 10d for Pier 1 and Piers 2 through 5, respectively. Refer to Appendix H for calculations and preliminary design charts.

7.4.2.1 Pier 2 - Kentucky Anchor Pier

The maximum anticipated factored load of 200 kips in uplift can be resisted by a drilled shaft with a rock socket length of only about 1 ft for either a 7.5-foot diameter socket, or an 8.0-foot diameter socket. However, minimum design socket lengths and/or design for compression and lateral loads will govern the actual required rock socket length. Refer to the uplift capacity chart in Appendix H for results of analyses.

7.4.2.2 Piers 3 and 4 - Tower Piers

The maximum anticipated factored load of 2,700 kips in uplift can be resisted by a drilled shaft with a rock socket length of 11 feet for a 7.5-foot diameter socket, or 10 feet for an 8.0-foot diameter socket. If the load corresponds to an extreme limit state, the

required socket lengths will be smaller (9 feet and 8 feet respectively) due to the higher resistance factor allowed by the code. However, compression and lateral loads will govern the actual required rock socket length in final design. Refer to the uplift capacity chart in Appendix H for results of analyses.

7.4.3 Lateral Capacity

Soil-structure interaction modeling of the bridge is being performed by PB structural engineers using LARSA. The LARSA model requires a depth to fixity of the drilled shafts, and the stiffness properties of the drilled shafts. As part of this geotechnical evaluation, LPILE analyses have been performed in order to estimate an equivalent depth of fixity for use in the LARSA model.

LPILE v5, distributed by ENSOFT, is a program for analysis of a single pile or drilled shaft under lateral loading. The program computes deflection, shear, bending moment, and ground response with respect to depth in nonlinear soils or rock. Several drilled shaft lengths may be automatically checked by the program in order to help the user produce a design with an optimum shaft penetration. Soil and rock behavior is modeled with p-y curves internally generated by the computer program following published recommendations for various types of soils, with special procedures programmed for developing p-y curves for rock.

The section properties used in the LPILE drilled shaft analyses are consistent with those used in the LARSA analyses, for both the cased section above top of rock and the uncased rock socket. The properties are summarized below:

- Casing wall thickness 3/4 inch
- Concrete strength 5,000 psi
- Effective cracked section stiffness 65% of uncracked stiffness

A range of load conditions has been considered, with shear and/or moment, as well as compressive load applied at the drilled shaft head. The load range for factored loads is shown in Table 10. The LPILE analyses were performed both with and without scour, since the LARSA model will be used to evaluate loads in both conditions. For use in modeling the bridge for structural analyses of loads and stresses, loads may be factored in accordance with AASHTO LRFD specifications. For prediction of deflection for comparison to deflection service limits, unfactored service loads should be used.

According to AASHTO, the horizontal geotechnical resistance factor for single shaft or shaft group should be 1.0. In addition, the minimum penetration of the drilled shafts below ground should be such that the fixity is obtained.

One purpose of the calculations is to find the minimum required socket length to provide fixity of the shaft. In these calculations, it is assumed that the fixity is achieved with a certain rock socket length, beyond which increasing the rock socket will have no significant effects on the drilled shaft behavior under lateral loads and bending moment.

Analyses were performed for the cases without scour and with the maximum predicted scour. Either case can be critical under different conditions. In addition, some extreme load cases, such as earthquake, are usually applied with one-half of the maximum scour. The half-scour case was not analyzed for this preliminary stage, as it can be approximated by interpolating between the cases of no scour and maximum scour. The extreme earthquake loading case with half-scour should be evaluated during final design.

For the main tower piers (Piers 3 & 4), the shafts are in large groups arranged in an elliptical pattern in plan. The shaft head is therefore assumed fixed against rotation. For the other piers, the shafts are arranged in a single row in the transverse direction (transverse to the centerline of the bridge); therefore, the shaft head is not fixed in the longitudinal direction, and is assumed free to rotate in LPILE analysis.

Per AASHTO, the group effect for horizontal loading should be modeled with a Pmultiplier in the p~y curves. If the shafts are spaced at a center-to-center spacing of 3 times diameter, P-multipliers of 0.7, 0.5 and 0.35 should be applied on the leading row, second row, and other rows of shafts, respectively. For the large shaft groups supporting Piers 3 & 4, most of the shafts are in the 3rd row or higher, therefore, a Pmultiplier of 0.35 is applied, conservatively. For the shafts supporting other piers, a Pmultiplier of 0.7 was applied as all the shafts are in the first row. Note that these p~multipliers were applied to soil only, as they are not applicable to rock.

LPILE output of load-deflection relationships is presented in Appendix G. LPILE analyses have been performed for each pier location, except that based on similarity of ground conditions and loading, a single analysis was performed for the two tower piers at this preliminary stage of design. The LPILE analyses were performed using the average rock elevation at each pier location. During final design, additional analyses should be performed to evaluate the potential effect of variation in top of rock between boring locations.

Based on the results of lateral load analyses, the minimum required rock socket depths to achieve fixity were determined based on the upper limit lateral loading. At Pier 1, since there will be significant overburden remaining after the maximum design scour, the rock socket is not required for the drilled shaft to achieve fixity. Therefore the axial load requirements will govern the rock socket length. At Pier 2, a minimum 5-foot socket is required to achieve fixity. At Piers 3 and 4, a minimum 25-foot rock socket is required for fixity. At Pier 5, a minimum 15-foot socket is required. See Appendix G for a summary and details of the lateral load analyses. Where the design socket required for lateral load resistance is less than 1.5 times the socket diameter, the socket length will be increased to 1.5 times the socket diameter, in accordance with KYTC practice.

One way to model the drilled shaft foundation in the structural analysis is to model the drilled shafts as columns with an equivalent point of fixity (as used in the LARSA model). Calculations were performed based on results of the lateral load analyses to estimate the equivalent point of fixity at each pier location. The calculation was based on a procedure to find a fixity point of an imaginary column, with the same section modulus (EI) as the drilled shaft, at certain distance below the shaft head that would

produce similar lateral deflections at the shaft head under the same sets of lateral loading (shear and/or bending moment). The resulting approximate equivalent points of fixity, for cases evaluated with and without scour, are summarized in Table 11 for preliminary design purpose.

		Shear	Moment	Approx. Elevati	on of Fixity, ft
		kips	k-ft	Without Scour	Max. Scour
Pier 1	KY Transition Pier	200 to 250	4,000 to 6,000	388	374
Pier 2	KY Anchor Pier	200 to 250	4,000 to 6,000	368	349
Piers 3 & 4	KY & IN Tower Piers	1,000 to 1,500	Fixed Against Rotation	330	323
Pier 5	IN Anchor Pier	300 to 500	11,000 to 13,000	386	385

 Table 11. Approximate Elevations of Fixity

7.5 Foundation Analyses - Indiana Abutment

A cast-in-place concrete retaining wall is planned for the Indiana Abutment, with a total retained height of approximately 39 feet to finished pavement grade. The design of the retaining wall and abutment foundation must be performed in accordance with AASHTO LRFD specifications.

LRFD analyses for shallow foundations and abutments commence with Service Limit State evaluations. Service limit state settlement considerations are generally not anticipated to control design for footings bearing on sound rock. However, due to the presence of a clay seam as encountered at AC-23, and indications of weathering in geologic mapping observations, it is recommended that the factored bearing resistance at the Service I Limit State (settlement) be limited to 20 ksf. This recommended nominal bearing resistance is based on local experience and engineering judgment, with consideration of the influence of clay seams on foundation settlement. A shallow foundation designed in accordance with this recommended nominal bearing resistance, under the anticipated maximum design load of approximately 100 kips per linear foot, is anticipated to experience settlement of about ½ inch.

Global stability was checked using limit equilibrium methods, considering the potential for the loads of the abutment foundation to create a sliding failure of a rock block. The centerline of the abutment foundation is approximately 35 feet in plan from top of slope, and the toe of the abutment foundation will be at least 25 feet from the top of slope.

Due to the offset distance, the risk of abutment loads resulting in rock slope instability was considered low. However, global stability was checked, using unfactored loads for the abutment. Three potential failure modes were evaluated: planar failure along a high angle joint, toppling, and planar failure along a horizontal clay seam. Based on the stereographic projection analysis, 3 major discontinuity sets were identified including a nearly horizontal bedding plane and 2 vertical joint sets. Considering the orientation of

the rock slope with regard to the discontinuity orientations, it was not anticipated that planar failure along the high angle joint would occur because the high angle joint does not daylight to the rock slope. However, it was anticipated that toppling of the high angle joint and sliding along the nearly horizontal seams/layers would be feasible at the Indiana Abutment.

The factor of safety was calculated by a simple toppling analytical technique (Kliche, 1999) and indicated that the factor of safety exceeded the minimum required factor of safety of 1.5 based on the geometry as illustrated in Appendix H.

Due to the clay seams in the limestone layers and interfaces between shale and limestone beds, it is possible that the wedge block formed by high-angle joint and horizontal layer such as the clay seam or the interface could slide toward Upper River Road, depending on the strength of the sliding plane.

For the factor of safety calculation, the shear strength parameters along the sliding plane were estimated to be a 1000-psf cohesion together with 5-degree internal friction angle, based on a literature review (Rock Slope Reference Manual, Publication No. FHWA HI-99-007) and previous experience on similar strata.

Factors of safety were calculated for the following 3 different sliding planes:

- Case I: Along clay seam at approximately elevation 478;
- Case II: Along upper interface of limestone and shale beds at elevation 474.2;
- Case III: Along lower interface of limestone and shale beds at elevation of 459.2.

In each case, 3 different stages of slope conditions were considered, including preconstruction, after construction, and after construction with seismic conditions. Also, 3 different failure plane angles (1, 3, and 6 degrees) were applied to each stage in the factor of safety calculation to reflect slight variations of dips of seams and bedding planes.

The failure planes are likely above the groundwater table. However, because surface runoff temporarily collects in vertical and near vertical joints, a lateral hydrostatic pressure and uplift pressure were considered in the factor of safety calculation. It was conservatively assumed that the vertical joint intersecting the nearly horizontal seam/bedding plane was fully filled with water in the analysis.

Results of the factor of safety calculations are shown in a summary table in Appendix H. As a minimum factor of safety criteria for the slope stability analysis, 1.5 for the abutment ("critical structure") and 1.3 for the abutment wing walls ("non-critical structure"), and 1.1 for seismic loading conditions are applied.

For seismic loading, a horizontal acceleration of 0.1 g was applied as a pseudo-static seismic force acting on the sliding block. Vertical acceleration was not considered in the analysis, as it normally has only a minimal effect on stability calculations. The horizontal

acceleration of 0.1 g corresponds to two-thirds of the peak ground acceleration of 0.15 g as shown in the site-specific response spectra in Figure 6. In eight of the nine seismic cases analyzed, the calculated factors of safety under the 0.1 g horizontal acceleration exceeded the minimum required factor of safety of 1.1 for seismic loading. However, in one case the factor of safety was 1.05, which may still be acceptable as long as the deformation during earthquake is within acceptable limits. In addition, the factor of safety can be transiently lower than 1.0 under the peak acceleration of 0.15 g, in which case some lateral movement of the abutment may occur. During final design, a seismic displacement analysis, such as using the Newmark method, should be performed in final design to estimate the magnitude of the displacement. The displacement is likely to be on the order of a few inches.

It should be noted that further investigation and analysis during final design are necessary to better assess bedding plane orientation and the presence and shear strength of clay seams at the location of the abutment and abutment wing walls. Additional seismic analyses will also be needed to estimate lateral slope displacement due to seismic loading.

Loads on the retaining wall and foundation include the bridge structure loads, earth pressure, traffic surcharge, and dynamic earthquake loading. Sliding and overturning must be considered in design of the footing. For stability against overturning, the resultant of forces on the base of the footing must remain within the middle three-quarters of the footing.

Geotechnical analyses to evaluate nominal bearing resistance and nominal sliding resistance are included in Appendix H. The following parameters were used to design the Indiana Abutment:

- Effective stress friction angle of granular backfill = 32° , unit weight $\gamma = 125$ pcf
- Factored bearing resistance on bedrock = 20,000 psf; this incorporates a resistance factor of 0.45. Bearing resistance is based on the angle of internal friction ϕ =22° of the rock formation and cohesion C=2900 psf as shown in Figure 5f; bearing resistance has been reduced for settlement considerations. The factored bearing resistance is based on the service limit state.
- Sliding may be resisted by friction between the rock and concrete, with a nominal sliding resistance comprised of adhesion of 1,900 psf and a concrete-rock friction angle of 15 degrees.

Preliminary design of the shallow foundation for the Indiana Abutment provides 2 feet of cover over the top of the foundation concrete. The footing thickness is estimated to be 4 feet, so the foundation will bear about 6 feet below finished grade. This will provide more than the minimum required frost protection of the bearing surface. The bearing elevation shown on the Preliminary Design Plans is approximately Elevation 484.0 feet.

7.6 MSE Retaining Structure, Indiana Abutment Wing Walls

Mechanically Stabilized Earth (MSE) retaining walls are planned for the abutment wing walls. Each MSE abutment wing wall is about 60 feet long, with a maximum wall height of about 37 feet.

The internal stability of MSE walls is typically made the responsibility of the wall vendor. The MSE wall vendor will be required to perform the wall design using LRFD. Based on the AASHTO LRFD specifications, and the subsurface conditions anticipated at the Indiana abutment, the following design parameters may be used for the MSE wall under LRFD:

- Effective stress friction angle of granular backfill = 32°, unit weight γ = 125 pcf
- Internal backfill for MSE must conform to "Reinforced Fill Material" as specified in Section 805 of the KYTC Standard Specifications for Road and Bridge Construction.
- Factored bearing resistance on bedrock = 8,100 psf; this incorporates a resistance factor of 0.45. Bearing resistance is based on only the angle of internal friction ϕ =22° of the rock formation, neglecting cohesion for conservative calculation.
- Minimum strap length for MSE walls = greater of 8 feet or 0.7H where H = wall height
- Sliding must be checked for sliding along the base of the reinforced fill, and sliding along the foundation rock immediately below the reinforced fill. The factored sliding resistance = 46,600 lb/ft; this incorporates a resistance factor of 0.9 and the angle of friction ϕ =22° which is the lower of friction angles of reinforced fill and foundation soil, conservatively neglecting the bedrock cohesion.

An MSE wall external stability analysis, performed in LRFD, is included in Appendix H. Design parameters were as described for the Indiana Abutment. Allowable bearing, overturning, and sliding are checked and found to be adequate in accordance with the above parameters, as summarized in Table 12 below. Global stability is adequate based on the analysis performed for the abutment as discussed in Section 7.5 above.

	Factored Resistance (psf)	Factored Load (psf)
Bearing Capacity	8,100	7,800 (Strength 1b)
Sliding	46,600 (Strength 1a)	39,400 (Strength 1a)
Global Stability	OK based on analysis	for Indiana Abutment

 Table 12.
 Summary of MSE Wall Analysis

* In the stability check against overturning, the maximum eccentricity (e) is 3.8 (Strength 1a) which is smaller than $e_{max} = 6.9$.

* Note: In the above analysis, 0.75H of strip length of MSE wall was used, which exceeds the required minimum strip length of 0.7H. The slightly longer strip length of 0.75H was required in order to attain a factored load less than the factored resistance in bearing capacity.

7.7 Fills and Embankments, Indiana Abutment

Approach embankments to the bridge are part of the work of Sections 4 and 6 and are not included in this contract for Section 5. However, backfill of the Indiana abutment and wing walls and construction of the reinforced concrete bridge approach slab is part of the work of this contract under Section 5. Embankment fill side slopes in the area of the retaining wall should be not steeper than 3 horizontal: 1 vertical (3H:1V).

Backfill of the retaining wall at the Indiana Abutment shall be performed in accordance with 603.03.04 of the KYTC Standard Specifications, except that those areas which will be beneath or within a proposed roadway embankment must be backfilled according to Subsection 206.03.03 of the Standard Specifications.

Provisions for drainage should be included in the design of the cast-in-place concrete abutment and the MSE wall. Both the abutment and the MSE wall should be backfilled with material meeting KYTC Structure Backfill, a free-draining granular material, within a 45 degree zone behind the wall. The MSE wall is considered free-draining. For the cast-in-place concrete abutment, a properly filtered perforated wall drain should be provided on top of the foundation. The wall drain should discharge through properly filtered drainage weepholes at the face of the cast-in-place retaining wall. If a single weephole becomes clogged, redundancy is provided through the adjacent weepholes.

8.0 CONSTRUCTION CONSIDERATIONS

This section outlines construction considerations for drilled shaft foundations, spread footing foundations, backfill of the Indiana Abutment, and abutment wing walls. These provisions should be incorporated into the construction specifications for the project.

The construction of the bridge foundation will be in accordance with KYTC Standard Specifications. This includes project elements located within the State of Indiana, including the Indiana anchor pier and Indiana Abutment.

8.1 Drilled Shaft Foundations

The drilled shaft foundations will be constructed with permanent steel casings to top of rock, and with rock sockets advanced below the steel casings.

Selection of the method of construction is the responsibility of the contractor. However, given the highly permeable sand and gravel soils, and the difficulty of seating the casing into the limestone bedrock, it is unlikely that the contractor will be able to achieve a watertight seal at the soil-bedrock interface. Therefore, it is anticipated that the wet construction method will be necessary for construction of the drilled shafts.

It is anticipated that the contractor will advance the casing as the shaft is drilled, with drilling conducted under a head of bentonite or polymer slurry to prevent heave of sands into the casing. The contractor could also elect to vibrate or oscillate the casing into place for all or a portion of its depth.

The soil borings note occasional cobbles, based on field observations during drilling, but did not encounter evidence of potential obstructions which would impede excavation of the drilled shafts. However, in glacial outwash formations, ice-rafted boulders are occasionally present, and the contractor should be prepared to remove obstructions if encountered.

When the casing is seated at top of rock, the rock socket will be advanced below the casing. The use of rock augers will not be feasible in the moderately hard rock present at this site. It is anticipated that the contractor will advance the rock socket using drilled shaft rock core barrels, reverse circulation rock drills, or possibly down-the-hole hammers. To achieve the design rock socket capacity, the socket surface must be rough. The contractor should be required to construct a roughened shaft surface, by attaching teeth to the coring device, or by other means acceptable to the engineer.

Before drilling the rock socket, rock coring should be performed at each drilled shaft location where rock coring was not performed during the design phase of the project. Alternatively, the rock cores can be performed prior to initiating shaft excavation. The purpose of the rock coring is to verify the quality of the rock and to identify the presence

and thickness of clay seams or voids within or below the design socket, to verify compliance with the acceptance criteria established for the drilled shafts.

The bottom of the drilled shaft excavation must be flat; steps in the bearing surface, or a sloping bearing surface, will not be acceptable. After construction of the rock socket and acceptance of the bearing conditions by the engineer's field representative, the drilled shaft excavation must be thoroughly cleaned out. Cleanout may be performed by a cleanout bucket, or other methods acceptable to the engineer. Final bottom cleaning should be accomplished with the aid of an airlift. Soil or rock cuttings must not be left in place at the bottom of the drilled shaft. At the time of concrete placement, a minimum of 50 percent of the base of the shaft shall have less than ½ inch of sediment, and sediment on the base of the shaft shall not be greater than 1-1/2 inches anywhere on the base of the shaft. The bottom of shaft conditions should be checked with an underwater camera equipped with a sediment measurement gage, such as the Mini-Shaft Inspection Device (Mini-SID) manufactured by GPE, Inc, Gainesville, FL.

Reinforcing steel and concrete must be placed within 36 hours of beginning of the drilled shaft rock socket, to limit the potential for deterioration of the rock socket capacity through slaking of shale.

In the wet method of construction, concrete is placed by tremie methods or pumping. Concrete placement must be in accordance with Section 601of the KYTC Standard Specifications. Concrete slump should be 6.5 to 9.5 inches for tremie placement and not less than 4 inches for the full duration of concrete placement. Proper concrete placement methods must be used to prevent mixing of slurry into the concrete. A plug or valve is required to prevent contamination of the concrete in the tremie pipe or pump discharge pipe. The pump or tremie discharge point must remain at least 10 feet below top of concrete at all times during placement. Concrete placement must be continuous without interruption.

Integrity testing of all drilled shafts will be required by crosshole sonic logging (CSL) methods. Crosshole sonic logging uses water-filled access tubes installed on the reinforcing steel cage. After the concrete has achieved its initial strength, a cable-mounted ultrasonic signal transmitter and multiple cable-mounted receivers are placed in the tubes, and testing is performed. The signal is sent from the transmitter tube and travel time and amplitude are measured in the receiver tubes, with testing performed for the full length of the shaft. Testing is performed between all pairs of adjacent tubes as well as between opposite tubes in the shaft. Anomalies in the presence or strength of the signal may represent potential defects in the drilled shaft concrete.

One CSL tube should be provided for each foot of shaft diameter. CSL testing will be required at all shaft locations. If anomalies are observed in the CSL tests, and in the opinion of the engineer these anomalies constitute potential defects in the shafts, then the engineer may require additional CSL testing and/or coring of the drilled shafts to investigate the anomalies. If defects are determined to exist, the engineer will review the load carrying capacity of the drilled shaft and determine remedial measures, if

required, which may include repair of the shaft defects and construction of replacement shafts.

Tolerances for drilled shaft location and plumbness will be required to meet the following criteria:

•	Plan location (at top of shaft)	+/- 3 inches
•	Plumbness	$+/-\frac{1}{4}$ inch per foot of depth

- + 3 inch to -3 inches cage +6 inches to 3 inches Top of shaft elevation
- Top of reinforcing steel cage

For the tower piers, the drilled shafts will be constructed by barge-mounted drilled shaft equipment. At anchor piers, barge-mounted equipment and/or a temporary trestle is anticipated. As shown on Figure 2, at the Kentucky Anchor Pier, the northernmost drilled shaft is located immediately adjacent to the bank, where water depth is insufficient for barge-mounted equipment. Therefore, a temporary trestle may be used at this location. The remaining two Kentucky Anchor Pier drilled shafts can be constructed using barge-mounted equipment. At the Indiana Anchor Pier, the southernmost drilled shaft location is on-shore, but is located on the bank of Upper River Road, and a working platform will be needed to facilitate construction. The center drilled shaft location is in a shallow-water area approximately 10 feet from edge of bank, requiring a temporary trestle for construction. The northernmost drilled shaft location can be installed by barge-mounted equipment. Water depth in this area is shallow, and dredging could be needed for the barge access.

Where temporary trestles or working platforms are required, the contractor should be required to submit shop drawings and calculations prepared by a professional engineer registered in the Commonwealth of Kentucky or the State of Indiana, as applicable to the location.

8.2 Drilled Shaft Load Testing

Considering the size and high load bearing capacity of the drilled shafts used for Piers 1 through 5, and the uncertainty regarding rock socket friction and end bearing resistance, it is recommended that a load test program be performed at the start of construction to verify the design rock socket lengths for the required load demand on these shafts. The resistance factors used in the preliminary design analyses were based on the implementation of a load test program.

The recommended test program includes Osterberg load cell tests at dedicated (nonproduction) drilled shafts. A minimum of three load tests will be required, including one at each of the main piers in the river, and one at the Kentucky transition pier (Pier 1). Testing at the main piers is recommended considering the number of drilled shafts at each of these locations, and the high load demand on these shafts. Testing is recommended at Pier 1 because the load demand at the Pier 1 drilled shafts are

considerably greater than at the anchor piers. Also, the rock bearing stratum there contains numerous clay seams, not observed at the other foundation locations, that may influence the available shaft friction and end bearing resistance.

The depths and locations of low SDI zones encountered in borings, as discussed in Section 5.3.6 of this report, will be considered in finalizing the locations of the load tests. At least one load test shaft will be located near a boring that had zones of low SDI values. This will allow evaluation of the potential influence of degradation of the thin (0.4 feet or less) low SDI zones during construction, to assess whether there is a reduction to the shaft friction resistance.

In the Osterberg load test the Osterberg load cells would be positioned near the base of the rock socket. During the test, the load cells are hydraulically activated to apply an upward load to determine the friction resistance along the socket, and a downward load on the socket base to determine the end bearing resistance. The position of the O-cells and the length of the socket will be sized in an attempt to obtain both the nominal friction and end bearing resistance values. However, the test will be limited to a load equivalent to the nominal friction resistance, the nominal end bearing resistance, or the maximum load capacity of the Osterberg load cells, whichever occurs first. During the final design phase of the project, consideration will be given to testing a reduced diameter rock socket to reduce the cost of the load test program and to better balance the friction and end bearing resistance, if necessary. Whether or not reduced diameter test shafts are used, the specifications will require the use of the same type of excavation equipment and same shaft installation procedures that will be used for the production shafts. Also, all test shafts will be instrumented to determine socket and base displacement versus load, and to determine the unit friction resistance along the length of the socket. CSL testing will be required in all of the test shafts to assess the structural integrity of the completed shafts.

The initial test shaft on water and the test shaft on land will also serve as technique shafts, for the contractor to demonstrate the proposed method of drilled shaft construction.

For construction contract budget management, KYTC prefers to have additional drilled shaft quantities in the budget, in the event that shaft lengths need to be increased based on load test results. Therefore, at locations where the axial capacity governs the design tip elevations, the project plans will show the tip elevations 5 feet lower than the elevation determined based on the analyses. If load tests verify the drilled shaft capacities at the design elevation, the load test results can then be used to shorten the shafts relative to the plan quantities.

8.3 Spread Footing Foundations

Excavation and foundation preparation for the Indiana Abutment must be performed in accordance with Section 603 of the KYTC Standard Specifications. Based on the auger probes and rock core borings performed for the abutment, 6 to 8 feet of rock excavation

is expected to be necessary for foundation construction. The rock should not be expected to be rippable; controlled blasting or mechanical excavation will be necessary. To limit overbreak and reduce the likelihood of fracturing rock outside the excavation limits, pre-splitting should be required.

The abutment area is lightly developed, so controlled blasting is unlikely to pose a risk of vibration damage to nearby structures or facilities. Vibration monitoring should be performed at the closest structure or existing roadway. Specification limits may be established based on the U.S. Bureau of Mines (USBM) R.I. 8507 criterion. The USBM criterion specifies a maximum peak particle velocity (ppv) of 2 inches per second (ips) at the ground line of the closest structure at frequencies of 40 Hz or greater, with lower limits on ppv at lower frequencies. Blasting should be conducted in accordance with federal, state and local regulations.

The bearing surface of the abutment foundation must be level or stepped with step heights not exceeding 12 inches and an average slope of the stepped surface not greater than 1.5 horizontal : 1 vertical (1.5H:1V). The integrity of the bearing surface shall be checked visually, supplemented by probe holes extending to a depth of 10 feet below the bearing surface, spaced not more than 50 feet on center. The probe holes may be drilled with an airtrak drill, and should be checked for evidence of voids by the use of a hooked rod.

Based on the SDI values for the shale at the Indiana Abutment, the rock here generally is not considered durable. Therefore, after acceptance of the bearing surface by the engineer's field representative, the contractor should be required to place a minimum 3 inch thick lean concrete mud mat to protect the bearing surface.

Groundwater is not expected to be present within the excavation for the Indiana abutment, but the contractor should be prepared to remove surface water and perched water at the soil-bedrock interface.

Excavation must be performed in accordance with all applicable federal, state and local standards, including OSHA 29CFR Part 1926 – Excavations. Excavation safety is the responsibility of the contractor.

8.4 Backfill, Indiana Abutment Retaining Structure

Backfill at the Indiana Abutment and wing wall shall be performed in accordance with 603.03.04 of the KYTC Standard Specifications, except that those areas which will be beneath or within a proposed roadway embankment must be backfilled according to Subsection 206.03.03 of the Standard Specifications.

Where granular fill will be placed against undisturbed or fill materials comprised of clay, a geotextile filter fabric should be provided. The purpose of the geotextile is to reduce migration of fines into the granular medium.

Care should be taken not to overcompact backfill behind retaining walls. Existing surfaces to receive fill should be stripped and benched at an average slope not steeper than 2 horizontal to 1 vertical (2H:1V), with step heights not greater than 1 foot.

REFERENCES AND DATA SOURCES:

AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007.

<u>Geologic Map of Parts of the Jeffersonville, New Albany, and Charlestown</u> <u>Quadrangles, Kentucky-Indiana</u>. Kentucky Geologic Survey. 1974.

<u>Geologic Map of the 1° X 2° Louisville Quadrangle, Indiana, Showing Bedrock and Unconsolidated Deposits</u>. Indiana Geologic Survey. 1972

<u>Geologic Map of the Anchorage Quadrangle, Jefferson and Oldham Counties,</u> <u>Kentucky</u>. Kentucky Geologic Survey. 1971.

Web Soil Survey 2.0. National Cooperative Soil Survey. 2007

Source Zones, Recurrence Rates, and Time Histories for Earthquakes Affecting Kentucky, Publication No. KTC-96-4. Kentucky Transportation Center. 1996

<u>Rock Slopes Reference Manual</u>, Publication No. FHWA HI-99-007. Federal Highway Administration. 1999

Report of Investigation 8507, U.S. Bureau of Mines 1980

<u>Rock Slope Stability</u>, Society for Mining, Metallurgy, and Exploration, Inc., Charles A. Kliche, 1999.

Figure 1. Site Vicinity Map (USGS Topo Map)

Figure 2. Boring Location Plans

Figure 3. Regional Geologic Maps:

- Figure 3a USGS Geologic Map of Kentucky Side
- Figure 3b Indiana Geologic Survey Map
- Figure 3c Bedrock Contour Map
- Figure 3d USGS Hydrologic Investigations Atlas

Figure 4. Top of Bedrock Elevations at Boring Locations

Figure 5. Generalized Subsurface Profiles – per substructure element location

- Figure 5a General Soil and Bedrock Profile Legend Sheet
- Figure 5b General Soil and Bedrock Profile Pier 1
- Figure 5c General Soil and Bedrock Profile Pier 2

Figure 5d General Soil and Bedrock Profile – Pier 3

Figure 5e General Soil and Bedrock Profile – Pier 4

Figure 5f General Soil and Bedrock Profile – Pier 5

Figure 5g General Soil and Bedrock Profile – Indiana Abutment

Figure 6. Preliminary Earthquake Response Spectra

Figure 7. Drilled Shaft Resistance vs. Socket Length, Pier 1, 7.5-foot Diameter Shafts

Figure 7a Compressive Resistance vs. Socket Length

Figure 7b Compressive Resistance vs. Socket Length – Extreme Limit States

Figure 7c Uplift Resistance vs. Socket Length

Figure 7d Uplift Resistance vs. Socket Length – Extreme Limit States

Figure 8. Drilled Shaft Resistance vs. Socket Length, Piers 2 through 5, 7.5-foot Diameter Shafts

Figure 8a Compressive Resistance vs. Socket Length

- Figure 8b Compressive Resistance vs. Socket Length Extreme Limit States
- Figure 8c Uplift Resistance vs. Socket Length
- Figure 8d Uplift Resistance vs. Socket Length Extreme Limit States

Figure 9. Drilled Shaft Resistance vs. Socket Length, Pier 1, 8.0-foot Diameter Shafts

Figure 9a Compressive Resistance vs. Socket Length

- Figure 9b Compressive Resistance vs. Socket Length Extreme Limit States
- Figure 9c Uplift Resistance vs. Socket Length
- Figure 9d Uplift Resistance vs. Socket Length Extreme Limit States

Figure 10.Drilled Shaft Resistance vs. Socket Length, Piers 2 through 5, 8.0-foot Diameter Shafts

Figure 10a Compressive Resistance vs. Socket Length

Figure 10b Compressive Resistance vs. Socket Length – Extreme Limit States

Figure 10c Uplift Resistance vs. Socket Length

Figure 10d Uplift Resistance vs. Socket Length – Extreme Limit States

ATLAD HA 32 (SHEET 2 OF 3)

4 7

6 0 10 Miles

DEP# UNITED	ARTME	NT OF	F THE INTERIC	DR RVEY		PREPARED IN COOPERATION WITH T DEPARTMENT OF ECONOMI KENTUCKY GEOLOGICAL SURV	HE COMMONWEALTH OF KENTUCKY C DEVELOPMENT AND THE EY, UNIVERSITY OF KENTUCKY	HYDROLOGIC INVESTIGATION ATLAS HA-22 (SHEET 3 OF 3)
SYSTEM	SERIES	GROUP	FORMATION	THICKNESS, IN FEET	SECTION	LITHOLOGY	TOPOGRAPHY	HYDROLOGY
QUATERNARY	PLEISTOCENE AND RECENT		ALLUVIUM	0-130		Soil, clay, silt, and fine sand, 5 to 40 feet thick, overlying and and gravel with elay lenses in the Ohio River valley. Thin deposits of elay, silt, and fine sand with scattered deposits of gravel in tributary-stream valleys.	Flood plains and terraces, as much as 6 miles wide, in the Ohio River valley; broad flat areas in the valleys of the Salt River and large tributaries.	Yielda 200 to 500 gpm (gallons per minute) to most wells that penetrate the full thickness of alluvium in the Ohio Valley, yields more than 1.000 gpm to large-diameter wells; yields 100 to 500 gpd to wells in tributary-stream valleys, and may yield more than 300 gpd where gravel is present. Water is hard.
	UPPER MISSISSIPPIAN		SALEM LIMESTONE WARSAW LIMESTONE	50± 40±		Fine-grained siliceous and argillaceous limestone and shale with geodes and chert.	Tops of some of the high ridges and knobs in western Bullitt and southwestern Jefferson Counties, and broad, flat valleys in some places.	Yield 100 to 500 gpd to drilled wells on broad uplands, but almost no water on narrow ridges; yield water to small springs in edges of escarpment. Water is hard but otherwise of good quality.
S			MULDRAUGH FORMATION	[75- 95		Hard bedded fine-grained siliceous limestone; argillaceous and crimoidal limestone; and calcareous and argillaceous silisione with drab to black shale, small geodes, and bands and lenses of chert.		
R B O N I F E R O U I S S I S S I P P I A N	M I S S I S S I F P I A N	BORDEN ¹	FLOYDS KNOB FORMATION BRODHEAD FORMATION	1-9 2 2 200 ⁻ 220		Brown siliceous, colitic, or crincidal limestone capped by streak or layer of greenish-black glauconitic silt or clay. Argillaceous silty shale with calcium carbonate concretions, grading upward to massive argillaceous shaly silistone and occasional beds of limestone. Siliceous to crincidal limestone at top in southern Bullitt County.	Main part of the Mississippian escarpment and many outlying knobs. Resistant rocks of the Muldraugh formation cap the escarpment and larger knobs. The Brodhead formation caps and forms cliffs in the upper part of many knobs in Bullit County. The New Providence formation underlies the lower dissected slopes of the knobs and escarpment.	Yields 100 to 500 gpd to wells in valley bottoms; may yield more than 300 gpd where thick siltstone beda occur at and below stream level; yields almost no water to well so nhlls; yields water to small springs in the limestone and siltatone bed. Water from the shale is soft: from the siltstone, hard: and from the limestone, very hard. At shallow depths below stream level, water may contain salt, sulfate, or iron. The silty shale and siltstone are favorable for dug wells, common in this area. Most dug wells yield less than 500 gpd and many yield very little or go dry in late summer and early fall.
C W I	L O W E R		NEW PROVIDENCI FORMATION	5 175- 205		Argillaceous shale or clayatone with feringinous calcareous concretions and lenses and ferruginous lime- stone patches and lenses. Fine-grained sandstone layers with interbedded shale at the top.		

	1.13	1. Charles Andrews					
INDIAN	UPPER DEVONIAN	NEW ALBANY SHALE	100±		Black fissile slightly calcareous carbonaceous shale, pyrite seattered throughout and in a layer at the hase, and several thin sandstone and shale layers.	Broad, flat areas in southwest-central Jefferson and central Bullitt Counties; gentle lower slopes of nuch of the Mississippian escarpment and the knobs.	Yields 100 to 500 gpd to shallow drilled wells in broad, flat areas, but almost no water to drilled wells on hillsides; yields water to small springs and dug wells. Water is hard and from depths greater than about 50 feet may contain hydrogen sulfide and iron.
IQ	DLE	SELLERSBURG LIMESTONE	0-22	18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	Thick-bedded finely to coarcely crystalline argillaceous magnesian limestone, small black phosphatic nodules in upper part.	Rolling upland with sinkholes and underground drainage in northern Jefferson County and broad ridges in western Oldham County. The Jeffersonville	Yield more than 500 gpd to drilled wells in broad, flat valleys or along streams on the upland; yield water to oprings. Water is hard.
	MID	JEFFERSON- VILLE	0-30		Medium- to thick-bedded medium-crystalline to coarsely crystalline limestone, siliccous and cherty in part.	thins toward the south and is not present in Bullitt County.	
RIAN		LOUISVILLE	45- 100		Thick-bedded fine-grained limestone, magnesian or siliceous in part.	Moderately rolling upland with some sinkholes and underground drainage in south-central Jefferson and north-central Builits Counties; broad ridges in south- central Odham and northeastern Builitt Counties. Cliffs and ledges in valley sides.	Vields more than 500 gpd to wells drilled in valley bottoms or along streams on broad uplands; yields as much as 50 gpm in places, yields water to springs at contact with underlying Waldron shale. Water is hard and may contain salt or hydrogen sulfide below stream level.
ILU		WALDRON	10±		Green-gruy nonfissile calcareous magnesian siliceous shale.	Slopes between limestone ledges on hillsides; erosion undermines everying Louisville limestone.	Yields almost no water to wells or springs. Holds up water in the overlying Louisville limestone and prevents recharge to the underlying Laurel dolomite.
- 00		LAUREL	40±		Thin- to medium-bedded fine- to medium-grained dolomitic limestone.	Ledges and cliffs along streams.	Yields 100 to 500 gpd to wells where it occurs along streams, but almost no water to wells on hillsides; yields water to springs. Water is hard.
		OSGOOD FORMATION	30		Coarse lumpy or fissile calcareous and magnesian shale with prominent fine-grained limestone beds at base and about 3 feet below top.	Slopes between limestone ledges.	Yields water to small springs from limestone beds.
		BRASSFIELD	4±		Medium-bedded pink to brown coarsely crystalline limestone.	Ledges on slopes and tops of small cliffs of under-	Yields water to springs. Water is hard.
		SALUDA LIMESTONE	30- 40		Thick-bedded sandy magnesian limestone in upper part, and coarse lumpy mudstone with thin beds of bluish-gray fine-grained limestone at base.	Cliffs along streams and ledges in hillsides; tops of some low, flat ridges.	Yields 100 to 500 gpd to wells in valley bottoms and on broad ridges, but almost no water to wells on hillsides; yields water to small springs. Water is hard.
	z	LIBERTY FORMATION	35- 50		Coarse bluish-gray shale with thin layers of bluish-gray fine-grained limestone.		
/ICIAN	DOVICIA	WAYNES- VILLE LIMESTONE	40±		Thisk-bedded green nongranular argillaceous limestone with shale partings, and 10-foot bed of green shale in lower part.	Moderately dissected upland areas; moderately stoep slopes where shale predominates and less steep slopes	Yield 100 to 500 gpd to wells in large stream valleys, and more where thick limestone is present; yield
ORDOV	UPPER OF	ARNHEIM FORMATION	80- 100		Thin alternating layers of blue lumpy or rubbly, locally crossbedded, argillaceous limestone and clay shale.	where innecessor precominities. Stelp acope acong large streams and cliffs, in pieces. Solutional features evident where thick limestone beds underlie streams.	almost no water to welk on billsides and ridges; yield water to small springs. Water is hard.
		MC MILLAN FORMATION	20 EXP.		Argillaceous limestone and shale.	Stream valleys on east edge of area.	Yields 100 to 500 gpd. Water is hard.

¹ As used by Stockdale (1939). ² Of Stockdale (1939).

GENERALIZED COLUMNAR SECTION AND WATER-BEARING CHARACTER OF THE ROCKS IN BULLITT, JEFFERSON, AND OLDHAM COUNTIES, KENTUCKY (COUNTY GROUP 22) By

W. N. Palmquist, Jr., and F. R. Hall 1960

HYDROLOGIC INVESTIGATIONS ATLAS HA-22 (SHEET 3 OF 3)

300

200

00

0

GRAPHIC SCALE IN FEET

KFD.

NOVEMBER

DATE:

KJS/TC

DETAILED BY: JRF/RWE

IGNED BY:

4

FIGURE

CONTINUE MILLION C. BRÍDGE APPROACH 215+00 I С Z \bigcirc STA. 212+50 @ 20 SKEW LEFT ABUTMENT 0 210+00 TO: STA. 210+24.50 PIER 5 - IN. ANCHOR PIER UPPER RIVER ROAD Ś RET. WALL Œ STA. 206+12.50 PIER 4 IN. TOWER 205+00 OHIO RNER 900'TION PICKHANNEL ╢ 200+00 195+00 ľ STA.193+77.50 PIER 3 KY. TOWER

)

DATA

SUBSURFACE

GENERAL SOIL AND BEDROCK PROFILE LEGEND SHEET

I-265 Bridge over the Ohio River

Parameter	Units	Description
Υt	lb/ft ³	Total Unit Weight ^{1,2}
γ _e	lb/ft ³	Effective Unit Weight ¹
qu	lb/ft ²	Uniaxial Compressive Strength (soil)
qu	ton/ft ²	Uniaxial Compressive Strength (rock)
Cu	lb/ft ²	Undrained Shear Strength
SDI	%	Slake Durability Index (Shale only)
φ	(°)	Angle of Internal Friction ^{1,3}
Ks	lb/in ³	Soil Secant Modulus - Static (computer program LPILE ^{PLUS} 4.0)
Kc	lb/in ³	Soil Secant Modulus - Cyclic (computer program LPILE ^{PLUS} 4.0)
D ₅₀	mm	Particle Diameter Corresponding to 50% Finer
D ₉₅	mm	Particle Diameter Corresponding to 95% Finer

SUMMARY OF PARAMETERS DEVELOPED FOR SOIL PROFILES

¹ Values are averages for the horizon where more than one Standard Penetration Test (SPT) was performed.

² Values of γ_t are capped at a maximum of 133 lb/ft³ for soil.

³ Values of ϕ are capped at a maximum of 38° for soil.

Figure 5a
I-265 Over Ohio River Pier 1 - STA 187+40, CL Borings AC-1, 2, 3

			Description		
Approximate			STRATA	•	
Elevation	Depth				
(ft)	(ft)	Description	Param	eters	
		(USCS Classifi	cation)		
434.0	0.0		<u></u>	·	
		Lean Clay	$\gamma_{\rm f} ({\rm lb/ft}^3) = 121$	$K_{\rm S}$ (lb/in ³) = 100	
418.3	15.7	_ ∇ ^(CL)	γ_{e} (lb/ft ³) = 59	$D_{50}(mm) = 0.03$	
			q _U (lb/ft ²) = 1784	D ₉₅ (mm) = 0.19	
			C_{U} (lb/ft ²) = 892		
409.0	25.0				
		Sand with Silt	$\gamma_{\rm e}$ (lb/ft ³) = 55	D ₅₀ (mm) = 0.90	
i.		(SM, SW-SM,	φ' (°) = 32.5	D ₉₅ (mm) = 20	
		and SP-SIVI)	$K_{\rm S} ({\rm lb/in}^3) = 60$		
379.0	55.0				
		Sand	γ_{e} (lb/ft ³) = 64	D ₅₀ (mm) = 0.76	
		(SW-SM, SW	φ' (°) = 34.8	D ₉₅ (mm) = 8.00	
		and SP-SM)	K_{s} (lb/in ³) = 60	·	
334.0	100.0	Top of Rock			
<u>, , , , , , , , , , , , , , , , , , , </u>		Limestone(60%	b) interbedded with Shale(4	0%). Limestone is gray, fine	
		grained, thin be	edded and arginaceous. Sr	tale is gray, slity, and calcareous.	
		•			
			$\gamma_{\rm t} ({\rm lb/ft}^3) = 165$		
			SDI (%) = 80		
			$q_u(ton/ft^2) = 411$		
			c (lb/in ²) = 300		
			φ' (°) = 28.0		
283.1	150.9				

I-265 Over Ohio River Pier 2 - STA 189+65.5, CL Borings AC-4, 5, B-1

		Description				
Approximate			STRATA			
Elevation	Depth					
(ft)	(ft)	Description	Pa	rameters		
		(USCS Description)				
428.9	0.0					
		Sandy Lean Clay	γ_1 (lb/ft ³) = 121	D ₅₀ (mm) ≈ 0.060		
		<u>(</u> CL)	K _s (lb/in ³) = 30	D ₉₅ (mm) = 0.37		
423,9	5.0					
420.8	8.1	Sand with Silt	γ_1 (lb/ft ³) = 107	$D_{50}(mm) = 0.11$		
		(SM)	$\gamma_{e} (ib/ft^{3})^{*} = 45$	D ₉₅ (mm) = 0.85		
			a' (°) = 28.0			
			$\psi(r) = 20.0$ K _s (lb/in ³) = 25	(Above Water Table)		
			K_{n} (1b/in ³) = 20	(Below Water Table)		
400.0	40.0		(13 (10/11) = 20 · ·			
409,9	19.0	Sand	√ (lb/ff ³)* co	[](mm) = 1.6		
		(SW, SW-SM)	fe(ion() = 00	$D_{50}(mm) = 1.8$		
		(,	$\Psi() = 35.2$	$D_{95}(mn) = 19$		
			$\kappa_{s}(\text{IDAN}) = 60$			
379,9	49.0		(1) (03)*			
		Sand with gravel	$\gamma_{\rm e} ({\rm ID}/{\rm ft}^{-})^{*} = 65$	$D_{50}(mm) = 2.4$		
		(SW-SIVI, SP, SP~ SM, GP-GM,)	¢'(°) = 35.6	D ₉₅ (mm) = 18		
			K _s (lb/in³) = 60			
334.9	94.0	Top of Rock				
		Limestone (55%) int thin bedded, argiilac bedded, calcareous	erbedded with Shale(4 eous and fossiliferous and fossiliferous.	45%). Limestone is gray, fine grained, . Shale is gray, silty, laminated to thin		
			γ_1 (lb/ft ³) = 165			
		· ·	SDI (%) = 73			
			q _u (ton/ft ²) = 563			
			c (lb/in ²) = 300			
			φ [∗] ([°]) ≈ 28.0			
282.6	146.3					
		Shale (70%) interbe bedded, silty, calcare grained, thin bedded	dded with Limestone (eous, fossiliferous, Lir , argillaceous, fossilife	30%). Shale is gray, fine grained, thin nestone is gray, microcrystalline to fine rous.		
			γ _t (lb/ft ³) = 160			
			c (ib/in ²) = 300			
			φ' (°) = 28.0			

Figure 5c

275.9

153,0

I-265 Over Ohio River Pier 3 - STA 193+77.5, CL Borings AC-6, 7, 8, 9, B-2

			Description				
Approximate			STRATA				
Elevation	Depth						
(ft)	(ft)	Description	Param	eters			
		(USCS Description	on)				
419.4	0.0						
		Water - Ohio River					
379.4	40.0			•			
· · · · · · · · · · · · · · · · · · ·		Sand	$\gamma_{\rm e} ({\rm lb/ft}^{\circ})^* = 66$	$D_{50}(mm) = 0.98$			
		(SW-SM, SP, SW)	$\phi'(^{\circ}) = 34.5$ K _S (lb/in ⁻) = 60	D ₉₅ (mm) = 17			
365.4	54.0		· · · · · · · · · · · · · · · · · · ·				
		Sand	$\gamma_{\rm e} (\rm lb/ft^{\circ})^* = 67$	$D_{50}(mm) = 0.62$			
		(SP-SM, SW-	$\Psi() = 36.9$ K _a (lb/in ²) = 60	$D_{95}(mm) = 18$			
		OWI)	((3(10)11)) = 00				
254 4	65.0						
	03.0	Gravel	$\gamma_{\rm e}$ (lb/ft ²)* = 71	D ₅₀ (mm) = 11			
		(GW, GW-GM)	$\phi'(^{\circ}) = 38.0$	$D_{05}(mm) = 30$			
			K_{s} (lb/in ³) = 125				
222.4	00.0						
339.4	80.0	Sand	$\gamma_{\rm e} ({\rm lb/ft}^2)^* = 69$	$D_{50}(mm) = 1.3$			
		(SP-SM, SM)	φ ⁽ (⁰) = 28.0	$D_{-1}(mm) = 10$			
		(···,)	Ψ () - 30,0 K. (lb/in ³) - 125	$D_{95}(1111) = 19$			
			$(c_s(abar) = 125)$				
332.0	87.4	Top of Rock		-			
		Limestone (60%) microcrystalline t Shale is gray, silt) interbedded with Shale to fine grained, thin bedde ty, laminated to thin bedd	(40%). Limestone is gray, ed, fossiliferous and argillaceous. ed, calcareous, fossiliferous.			
			$\gamma_{\rm t}$ (lb/ft ³) = 164				
			SDI (%) = 67				
			$q_u(ton/ft^2) = 647$				
			$c (lb/in^2) = 300$				
			$\phi'(^{\circ}) = 28.0$				
278.6	140.8						

I-265 Over Ohio River Pier 4 - STA 206+12.5, CL Borings AC-10, 11, 12, 13, B-3

			Description		
Approximate		-	STRATA		
Elevation (ff)	Depth	Description	Daram	eters	
(11)	(ii)			eters	
118.8	0.0	(USCS Descripti	ion)		
	0.0	Water - Ohio			
		River			
378,8	40.0				
		Gravel	$\gamma_{e} (lb/ft^{3})^{*} = 71$	$D_{50}(mm) = 9.1$	
		(GW, GP)	¢'(°) = 35.5	D ₉₅ (mm) = 27	
			K_{s} (lb/in ³) = 20		
359.8	59.0				
,		Sand	$\gamma_{\rm e} ({\rm lb/ft}^3)^* = 68$	D ₅₀ (mm) = 2.4	
		(SP-SM, SW-	¢'(°) = 37.0	D ₉₅ (mm) = 18	
		SM, SP)	K_{s} (lb/in ³) = 125		
343.8	75.0				
		Gravel	γ_{e} (lb/ft ³)* = 71	D ₅₀ (mm) = 3.9	
		(GP-GM, GM)	φ' (°) = 38.0	D ₉₅ (mm) = 23	
			K_{s} (lb/in ³) = 125		
336.2	82.6	Top of Rock			
		Limestone (60% microcrystalline and argillaceous and fossiliferous) interbedded with Shale to fine grained, thin, wavy 5. Shale is gray, silty, lam 5.	(40%). Limestone is gray, / to nodular bedded, fossiliferous, inated to thin bedded, calcareous,	
			$\gamma_{\rm t} ({\rm lb}/{\rm ft}^3) = 165$		
			SDI (%) = 74		
			$q_u(ton/ft^2) = 550$		
			c (lb/in ²) = 300		

282.8

136.0

I-265 Over Ohio River Pier 5 - STA 210+24.5, CL Borings AC-14, AC-15, B-4

		AC-14						
Approxi	mate	Desc STRATA	ríption					
levation	Depth							
(ft)	(ft)	Description Para	neters					
436.0	0.0	(USCS Description)						
400,0	0,0	(AC-14) Sandy						
		Lean Clay yt (ib/ft ³) = 12	D Ks(lb/in³) ≖ 100					
		(CL) $q_U(lb/t^2) = 20$	00 D ₅₀ (mm) = 0.011					
		$C_{\rm U}$ (b/ft ²) = 10	$D_{85}(mm) = 4.00$					
						AC-15		
400 D	40.4	Tex of Davis				D		
423.9	12,1	(AC-14) Limestone, gray, medium	grained, thin bedded to	Approvi	mate	Description	I	
		medium bedded.		Elevation	Deoth	Oraid		
		$\gamma_t(\hbar/t^3) = 16$	4	(fl)	(ft)	Description		Paramel
		q _a (tor v′(t²) ,≕ 60	0			(USCS Des	cription)	
		c (ib/in²) = 10		419.4	0.0			1
		¢'(°) ≈ 20	.0	I	Water - C	hio River		Ξ
417.0	19,0	(AC-14) Limestone (60%) interber	ded with Shale (40%).	445.0				
		Limestone is gray, fine to medium	grained, very thin to		4.2 andy Silf y	vith Gravel		
		medium wavy becaed. Shale is gra	ay, shiy	(N	4L)			
		γ _i (ib/Π²) = 16	4		γ _e (lb/ft ³)**	- 38	D _{so} (mm) = 0.26
		SDI (%) = 96			¢' (°)•	* 29.5	D ₉₅ (mm) = 10
		q _u (torv1t ²) = 65	0	١	<₀ (ib/in³)≈	20		
		c (lb/in ²) = 15	D					
		¢'(°) = 27	.0					
407,0	29,0	(AC-14) Shale grav to ted very th	'n		10 porty gred	ed gravel	-	
		bedded to thin bedded, silty		wi	th silt and	sand		
		γ ₁ (ib/π ³) = 14	6	(0	SP-GM) y, (ib/ft ³)*=	= 71	D _{sp} (mm) = 7.1
		SDI (%) = 0			•' (°)	38.0	D _{es} (mm) = 27
		$q_u(ton/1t^2) = 13$		٢	< _s (lþ/in³)=	125		
		$c(b/m^2) = 5$						
		ø' (°) = 20	.0					
404.0	32,0	(AC 14) Limestere Setterey fine						
		grained, thin bedded, shale stringe streaks, and partings	rs.					
		$\gamma_1(1b/ft^3) = 16$	6					
		q _u (ton/1t ²) = 98	8					
		c (Ib/in²) = 15	0					
		φ [*] (⁶) = 32	.0					
394.2	41.8	(AC-14) Dolomite Limestone, gree gray, fine, thin bedded	nish					
		γ ₁ (lb/1t ²) = 16	8					
		$q_u(ton/1t^2) = 60$	0					
		c(lb/in ²) = 15	D					
		φ [*] (^α) = 32	.0					
202.0	440			200.0	27.4		Ton of P	ale
332.0	44,U	Limestone (30% - 60%) interbedde medium nodularty bedded, fossilife	ed with Shale (40% - 70%), L rous, Shale is gray, sitty, lami	392.0 mestone is gray, f nated, calcareous	27.4 ine to me fossilifer	dium crystallin ous.	e grained,	very thin t
			111-11-11-1					
			(10/11) = 366					
			q _u (ton/ft ²) = 97					
			$c(b/in^2) = 100$					
			(

342.0 94.0

¢'(°) = 25.0

I-265 Over Ohio River Indiana Abutment AC- 20, 23, 26

		Description				
Approximate		.	STRATA			
El e vation (ft)	Depth (ft)	Description Parameters				
101 1	0.0	(USCS Descr	iption)			
494.4	0.0	Gravel	$\gamma_{\rm e}({\rm lb/ft}^3) = 133$	$D_{co}(mm) = 2.2$		
		(GC)	ر(⁰) = 38.0	$D_{\rm or}(\rm mm) = 2.2$		
			K_{s} (lb/in ³) = 225	095(mm) - 21		
			0 (
490.8	3.6	Top of Rock				
		Limestone, gr Clay fills som	ay, fine grained, very thick e fractures.	bedded, close fracture spacing,		
			$\gamma_t (Ib/ft^3) = 165$			
			q _u (ton/ft ²) = 732			
			c (lb/in ²) = 10			
			$\phi^{i}(^{o}) = 20.0$			
474.2	20.2					
		Shale, dark g	ray and tan, very thick bedo	ded, close fracture spacing		
			<i>a</i> . 2 3			
			$\gamma_t (\text{Ib/ft}^\circ) = 160$			
			SDI (%) = 74			
			$q_{u}(ton/ft^{-}) = 89$			
			$c (lb/in^2) = 20$			
			φ' (⁵) = 22.0			
459.2	35.2		av and tan fine grained m	edium hedded to very thick		
		bedded, close	e fracture zones, with some	zones dolomitic		
105 5	74.5					
422,8	71.6	Shale, dark o	ray, medium bedded			
		, .				
420 F	73.0					
420.0	10.8	1 :				
		Limestone, lig	int gray, medium bedded, c	sose tracture spacing		
419.1	75.3					

Note:

Note:

Figure 7c

Note:

Figure 8a

Note:

Figure 8b

Note:

Figure 8c

Note:

Figure 8d

Note:

Figure 9a

Note:

Drilled Shaft Resistance vs. Socket Length, Pier 1, 8-foot Diameter Socket Compressive Resistance vs. Socket Length - Extreme Limit States

Note:

Figure 9c

Note:

Figure 9d

Note:

Figure 10a

Note:

Figure 10b

Note:

Figure 10c

Note:

Figure 10d

Note:

APPENDICES

APPENDIX A:	GEOTECHNICAL SUBSURFACE DATA SHEETS
APPENDIX B:	COORDINATE DATA SUBMISSION FORM
APPENDIX C:	GEOLOGIC MAPPING OF ROCK EXPOSURES
APPENDIX D:	FIELD TEST RESULTS- P-S LOGGING
APPENDIX E:	LABORATORY TEST RESULTS - SOIL
APPENDIX F:	LABORATORY TEST RESULTS - ROCK
APPENDIX G:	CORROSIVITY TEST RESULTS (SOIL AND WATER)
APPENDIX H:	CALCULATIONS

APPENDIX A GEOTECHNICAL SUBSURFACE DATA SHEETS

APPENDIX B COORDINATE DATA SUBMISSION FORM

COORDINATE DATA SUBMISSION FORM KYTC DIVISION OF MATERIALS - GEOTECHNICAL BRANCH

County: Jefferson, K	entucky/Clark, India	na		Date: November 1, 2007	
Survey Crew / Consu	litant: HDR/Quest,	Inc.		Notes:	
Contact Person: Kel	ly Meyer				
Item No.: 5-118.00					
Mars No.: N/A Project No.: N/A					
(select one) El	evation Datum	<u>Sea Level</u>	Assumed		
HOLE NUMBER	STATION	OFFSET	ELEVATION (ft)	LATITUDE	LONGITUDE
AC-1	187+18.6	44.6 L	434.1	38.339960690	85.640025200
AC-2	187+28.4	13.5 L	434.0	38.340038260	85.639968700
PC-3	187+46.6	60.9 R	433.7	38.340213490	85.639820600
AC-4	189+81.7	62.0 L	419.8	38.340460380	85.640690600
AC-5	189+43.1	63.7 R	428.0	38.340615920	85.640277100
AC-6	193+51.9	CL	419.4	38.341324310	85.641404200
AC-7	193+94.5	68.1 L	419.5	38.341283310	85.641680300
AC-8	193+95.1	1.2 R	419.4	38.341413520	85.641503800
9C-9	193+95.2	70.0 R	419.4	38.341541430	85.641327400
AC-10	205+97.9	70.0 L	418.3	38.343712750	85.644524500
AC-11	205+93.8	0.7 R	419.4	38.343835740	85.644333300
AC-12	205+94.4	71.2 R	418.4	38.343967810	85.644153800
AC-13	206+53.0	1.6 L	418.9	38.343951290	85.644478800
AC-14	210+56.2	72.4 L	436.0	38.344634740	85.645612100
AC-15	210+35.1	37.3 R	419.4	38.344766150	85.645245900
AC-16	212+17.0	139.4 L	496.1	38.344835410	85.646148600
AC-17	212+17.0	87.0 L	492.0	38.344926570	85.646027800
AC-18	212+20.0	25.0 L	495.2	38.345050280	85.645879000
AC-19	212+26.0	86.0 L	492.6	38.344946000	85.646046800
AC-20	212+30.0	56.0 L	494.7	38.345010970	85.645981000
AC-21	212+42.0	37.0 R	490.1	38.345211960	85.645776500
AC-22	212+46.0	35.0 L	493.9	38.345082320	85.645966700
AC-23	212+50.0	0.0 R	493.3	38.345157190	85.645888700
AC-24	212+67.0	95.4 R	492.9	38.345382280	85.645680300
AC-25	212+68.0	27.0 R	497.3	38.345244270	85.645865100
AC-26	212+70.01	55.0 R	498.5	38.345302000	85.645800100
AC-27	212+87.0	125.0 R	493.6	38.345470240	85.645667800
AC-28	212+91.0	90.0 R	497.5	38.345410840	85.645764700

APPENDIX C GEOLOGIC MAPPING OF ROCK EXPOSURES

Discontinuity Data Strikes Range: N 12° E to N 80° W Dips Range: 83° S to 88° S Description: See Data Sheet lof 1 Rock Unit Exposed

13° E Discontinuity Data Strikes Range: N 2° E to N 1 Dips Range: 82° S to 86° N Description: See Data Sheet N 38° 20′ 39,8" W 85° 38′ 47.7" Elevation: 500′

Sellersburg Limestone Under Jeffersonville Limestone Rock Units Exposed

Jeffersonville Limestone

-lain by

1 o f

GEOLOGIC OUTCROP MAPPING

OHIO RIVER

I-265

Strikes Range: N 78° W to S 83° W Dips Range: 85° S to 87° S Description: See Data Sheet lof 1

Discontinuity Data

Louisville Limestone Underlain by Waldron Shale

Rock Units Exposed

Discontinuity Data Strikes Range: N 6° E to S 24° W Dips Range: 86° N to 90° S Description: See Data Sheet 1 of 1

Louisville Limestone Underlain by Waldron Shale

Rock Units Exposed

ITEM NUMBER

5-118.00

JEFFERSON

APPENDIX D FIELD TEST RESULTS- P-S LOGGING

SDC5 – EAST END BRIDGE OVER THE OHIO RIVER, BORING AC-3 SUSPENSION P & S VELOCITIES

November 26, 2007 Report 7472-02

SDC5 – EAST END BRIDGE OVER THE OHIO RIVER, BORING AC-3 SUSPENSION P & S VELOCITIES

Prepared for

Fuller, Mossbarger, Scott and May, Engineers, Inc. 1409 North Forbes Road Lexington, KY, 40511 (859) 422-3000

Prepared by

GEOVision Geophysical Services 1151 Pomona Road, Unit P Corona, California 92882 (951) 549-1234 Project 7472

November 26, 2007 Report 7472-02

TABLE OF CONTENTS

INTRODUCTION.	
SCOPE OF WORK	
SUSPENSION INSTRUMENTATION	
SUSPENSION MEASUREMENT PROCEDURES6	
SUSPENSION DATA ANALYSIS7	
SUSPENSION RESULTS	
SUMMARY	
Discussion of Suspension Results9	
Quality Assurance	
Data Reliability	

FIGURES

of P-S logging system	11	12	13
) p	on of P-S logging system	d (1400 Hz lowpass) record	sred record
	Figure 1.	Figure 2.	Figure 3.

TABLES

2	9	15
		ata
		ocity d
		ave vel
		d S _H -w
		P- an
ng date	ange	R1-R2
d loggir	depth r	ension
tion an	e and	. Susp
ng locat	jing dat	g AC-3
. Borir	. Logç	. Borin
Table 1	Table 2	Table 3

APPENDICES

APPENDIX A: Suspension velocity measurement quality assurance suspension source to receiver analysis results

APPENDIX A FIGURES

Figure A-1. Boring AC-3. R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H-wave velocities..............A-2

APPENDIX A TABLES

APPENDIX B: OYO Model 170 suspension velocity logging system NIST traceable calibration procedure

INTRODUCTION

OYO suspension velocity measurements were performed in one land boring at the SDC5 – East End Bridge over the Ohio River, near Louisville, Kentucky, as a component of the evaluation of soil stability and load bearing capacity. Suspension logging data acquisition was performed on October 17, 2007 by Rob Steller of GEOVision. The work was performed under subcontract with Fuller, Mossbarger, Scott and May, Engineers, Inc. (FMSM). Kurt Schaefer served as the point of contact with FMSM.

This report describes the field measurements, data analysis, and results of this work.

~

SCOPE OF WORK

This report presents the results of suspension velocity measurements collected on October 17, 2007 in the cased boring designated AC-3, as detailed below. The purpose of these studies was to supplement stratigraphic information obtained during FMSM's soil sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth, which, in turn, can be used to characterize soil condition.

INATES	LONGITUDE	9000005 30
COORD	LATITUDE	010101000
STATION		
DATE	LOGGED	10/17/07
BORING	DESIGNATION	C UV

Table 1. Boring location and logging date

The OYO/Robertson Model 3403 Suspension Logging Probe were used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.64 ft intervals. The acquired data was analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is: <u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

SUSPENSION INSTRUMENTATION

Suspension soil velocity measurements were performed using the Model 3403 Suspension Logging system, manufactured by OYO Corporation and Robertson Geologging. This system directly determines the average velocity of a 3.28 ft high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths. The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.28 ft, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in this survey is 19 ft, with the center point of the receiver pair 12.1 ft above the bottom end of the probe. The probe receives control signals from, and sends the digitized receiver signals to, instrumentation on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data.

The entire probe is suspended by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_{H} -waves in the surrounding soil and rock as it impinges upon the boring wall. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_{H} -waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H-wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal.
- 3. The 7.0 ft separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_{H} -wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_{H} -wave signals.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (foot versus inch scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Model 3403 has six channels (two simultaneous recording channels), each with a 16 bit 1024 sample record. The recorded data is displayed on the control computer for field review before saving the data file for each depth station. Data is stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Model 3403 digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix B.

SUSPENSION MEASUREMENT PROCEDURES

The boring was logged through 3 inch PVC casing, grouted in place and filled with water. The boring probe was positioned with the mid-point of the receiver spacing at grade, and the electronic depth counter was set to zero. The probe was lowered to the bottom of the boring, stopping at 1.64 ft intervals to collect data, as summarized below.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth was reviewed and recorded on disk before moving to the next depth. Upon completion of the measurements, the probe zero depth indication at grade was verified prior to removal from the boring.

_	1 0/1 7/07	1.6	NA	149.3	6.6 - 137.2	1	AC-3
_	LOGGED	(FEET)	(FEET)	(FEET)	(FEET)	NUMBER	NUMBER
		INTERVAL	SLOUGH/COLLAPSE	DEPTH	RANGE		
_	D T T C	SAMPLE	LOST TO	OPEN HOLE	DEPTH		

Table 2. Logging date and depth range

SUSPENSION DATA ANALYSIS

The recorded digital waveforms were analyzed to locate the first minima on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.28 ft segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data.

The P-wave velocity calculated from the travel time over the 7.0 ft interval from source to receiver 1 (S-R1) was calculated and plotted for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.15 ft to correspond to the mid-point of the 7.0 ft S-R1 interval, as illustrated in Figure 1. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from source triger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

The recorded digital records were studied to establish the presence of clear S_{H} -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_{H} -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_{H} -wave signal. Different filter cutoffs were used to separate P- and S_{H} -waves at different depths, ranging from 400 Hz in the slowest zones to 1000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_{H} -wave signal being filtered.

 \sim

Generally, the first maxima was picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/-0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_{H} -wave velocity calculated from the travel time over the 7.0 ft interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.15 ft to correspond to the mid-point of the 7.0 ft S-R1 interval. Travel times were obtained by picking the first break of the S_{H} -wave signal at the near receiver and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. It presents all six seismic records for a given depth on a shared horizontal axis time scale in milliseconds, and a vertical axis scale of arbitrary amplitude, gain ranged to fill the screen. Pick times are demarked with a vertical line across each record, and listed in milliseconds, along the left margin. In Figure 2, the time difference over the 3.28 ft interval of 1.88 milliseconds, along the horizontal signals is equivalent to an S_H-wave velocity of 1745 ft/sec, as listed in the top right corner of the display. Whenever possible, time differences were determined from several phase points on the S_H-waveform records to verify the data obtained from the first arrival of the S_H-wave pulse. Figure 3 displays the same record before filtering of the S_H-waveform records with an 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency S_H-wave by wave energy at the beginning of the record, and distortion of the lower frequency S_H-wave by residual P-wave signal.

SUSPENSION RESULTS

Suspension R1-R2 P- and S_H-wave velocities are plotted in Figure 4. The suspension velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figure A1 to aid in visual comparison. It must be noted that R1-R2 data is an average velocity over a 3.28 ft segment of the soil column; S-R1 data is an average over 7.0 ft, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Table A1. Good correspondence between the shapes of the P- and S_H-wave velocity curves is observed for this data set. The velocities derived from S-R1 and R1-R2 data are in excellent agreement, providing verification of the higher resolution R1-R2 data.

Calibration procedures and records for the suspension measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Both P- and S_H-wave velocities were measured using the OYO Suspension Method in one PVC cased land boring at the alignment of the SDC5 – East End Bridge over the Ohio River, in Louisville, Kentucky. The boring was located in an suburban environment, and no significant signal contamination from ambient vibration was observed.

This boring shows a fairly monotonic increase in S_{H} -wave velocities from 250 ft/sec near the surface, to about 1200 ft/sec at the bedrock contact at a depth of 99 feet. P-wave velocities step up to water velocity (5000 ft/sec.) at 12 feet, which corresponds closely with the level of the Ohio River nearby. The S_{H} -wave velocity of the rock increases rapidly between 99 and 112 feet, reaching a S_{H} -wave velocity of 6000 ft/sec.

Quality Assurance

These velocity measurements were performed using industry-standard or better methods for both measurements and analyses. All work was performed under GEOVision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of data by comparison of receiver-to-receiver and source-toreceiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.28 ft interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of +/-5%. Standardized field procedures and quality assurance checks add to the reliability of these data.

5

_	_		_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	
city	d-V	(ft/sec)	5859	5126	5292	5378	5378	5378	5208	6309	9650	12381	12619	11717	10583	10415	12381	12866	12151	13123	12619	12381	11930	12151	11717	11930	12151	11930	13391	12381	14582	13670	12619	
Velo	V- S _H	(ft/sec)	985	1022	1032	929	1139	1116	1197	2137	3281	3454	3454	4687	4557	4971	5608	6190	6104	6402	6220	5885	5781	6190	6371	6190	5756	6104	6402	6765	7171	7499	5445	
	Depth	(feet)	86.94	88.58	90.22	91.86	93.50	95.14	96.78	98.43	100.07	101.71	103.35	104.99	106.63	108.27	109.91	111.55	113.19	114.83	116.47	118.11	119.75	121.39	123.03	124.67	126.31	127.95	129.59	131.23	132.87	134.51	136.15	
city	d-V	(m/sec)	1786	1563	1613	1639	1639	1639	1587	1923	2941	3774	3846	3571	3226	3175	3774	3922	3704	4000	3846	3774	3636	3704	3571	3636	3704	3636	4082	3774	4444	4167	3846	
Velc	V-S _H	(m/sec)	300	312	314	283	347	340	365	651	1000	1053	1053	1429	1389	1515	1709	1887	1860	1951	1896	1794	1762	1887	1942	1887	1754	1860	1951	2062	2186	2286	1660	
	Depth	(meters)	26.5	27.0	27.5	28.0	28.5	29.0	29.5	30.0	30.5	31.0	31.5	32.0	32.5	33.0	33.5	34.0	34.5	35.0	35.5	36.0	36.5	37.0	37.5	38.0	38.5	39.0	39.5	40.0	40.5	41.0	41.5	

Vel	ocity		Velo	CITY
V-S _H	, d-V	Depth	N- SH	d-A
(m/sec)	(m/sec)	(Teet)	(Tt/Sec)	(Tt/sec)
82 105	2062	6.56 8 20	2/0	841 2780
3 5	1250	11 48	6	4101
66	1724	13.12	323	5657
98	1786	13.12	320	5859
86	1852	13.78	320	6076
110	1667	14.76	363	5468
110	1613	16.40	363	5292
105	1724	18.04	84 1	5657
109	1724	19.69	358	5657
551	1429	21.33	430	408/
124	1667	22.97	408	5468
201	+7 / I	10:42		1000
2 [1001	07.02	5/C	00+0
101	1001	20.63	100	2400
153	1667	31.17	203	5468
	1001	20.00	200	0040
201	1613	34.45	650	5202
160	1612	26.00	200	5202
50- C81	1630	20.00	200	5278
197	1429	39.37	646	4687
183	1613	41.01	599	5292
185	1563	42.65	608	5126
179	1667	44.29	586	5468
203	1613	45.93	999	5292
199	1724	47.57	653	5657
256	1724	49.21	841	5657
247	1724	50.85	810	5657
242	1724	52.49	795	5657
237	1667	54.13	111	5468
303	1613	55.77	994	5292
317	1667	57.41	1042	5468
313	1429	59.06	1025	4687
308	1667	60.70	1009	5468
320	1667	62.34	1050	5468
288	1852	63.98	944	6076
286	1724	65.62	937	5657
299	1786	67.26	626	5859
284	1613	68.90	931	5292
286	1667	70.54	937	5468
297	1786	72.18	974	5859
296	1818	73.82	971	5965
288	1724	75.46	945	5657
290	1754	77.10	951	5756
284	1724	78.74	932	5657
282	1587	80.38	924	5208
299	1587	82.02	679	5208
313	1667	83.66	1028	5468
°,	1667			

15

Table 3. Boring AC-3, Suspension R1-R2 P- and $S_{\mathrm{H}}\text{-}wave$ velocity data

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

Depth (meters) 3.6	V-S _H	-v-p	Depth	V- S _H	d-V	
(meters) 3.6				1011-1-1	10.1.1.1	
	10001	(m/sec)	(feet)	(ft/sec)	(ft/sec)	
4.1	154	1251	11./1	481 505	4106 5125	
5.1	166	1609	16.63	543	5279	
5.6	174	1634	18.27	571	5360	
5.6	173	1585	18.27	569	5201	
2.8 9	171	1585	18.93	560	5201	
- 99	175	1565	19.91 21.56	200	5443	
7.1	171	1634	23.20	580	5360	
7.6	181	1685	24.84	592	5528	
8.1	184	1585	26.48	605	5201	
8.6	190	1562	28.12	624	5125	
9.1	199	1609	29.76	653	5279	
9.6	207	1634	31.40	678	5360	
10.1	224	1659	33.04	735	5443	
11.6	222	1520	24.98 26.32	602	5015	
11.6	185	1476	37.96	608 608	4842	
12.1	161	1476	39.60	527	4842	
12.6	153	1476	41.24	501	4842	
13.1	155	1529	42.88	509	5015	
13.6	164	1529	44.52	537	5015	
14.1	178	1585	46.16	583	5201	
14.6	216	1585	47.80	807 806	5279	
15.6	271	1685	51.08	688	5528	
16.1	278	1740	52.72	912	5708	
16.6	278	1712	54.36	912	5617	
17.1	274	1685	56.00	006	5528	
17.6	280	1659	57.64	918	5443	
18.6	276 276	1659	07'6C	906 006	5743	
19.1	282	1712	62.57	924	5617	
19.6	276	1769	64.21	906	5802	
20.1	276	1740	65.85	906	5708	
20.6	276	1685	67.49	906	5528	
21.1	272	1708	20.77	912 804	1005	
22.1	273	1798	72.41	894	5900	
22.6	274	1798	74.05	006	5900	
23.1	274	1769	75.69	006	5802	
23.6	273	1754	77.33	896	5755	
24.1	273	1672	78.97	897	5485	
24.b 25.1	293	1672	80.05 82.25	966	5485 5485	
25.6	296	1672	83.89	971	5485	
26.1	296	1672	85.53	971	5485	
26.6	296	1659	87.17	971	5443	
27.1	299	1726	88.81	982	5662	
27.6	302	1698	90.45	066	5572	

assurance	data
 Boring AC-3, S - R1 quality as 	alysis P- and S _H -wave velocity da
le ⊳	g

		(j	~	10	m	6	4	6	0	4	6	0	2	2	N	ņ	8	N	5	ŝ	2	0	0	ņ	0	0	ņ	0	2	5	5	
citv	2	(ft/se	2995	575	570	615	716	877	1097	1132	1071	1097	1170	1160	1300	1288	1231	1200	1210	1210	1210	1221	1265	1288	1265	1265	1337	1265	1200	1210	1210	
Velc	<u> </u>	(ft/sec)	1082	1113	1160	1644	2147	2988	3922	4744	4842	5125	5360	5900	6269	6501	6297	6213	6297	6186	6325	6501	6471	6412	6412	6531	6817	6951	6354	6354	6354	
	Depth	(feet)	92.09	93.73	95.37	97.01	98.65	100.30	101.94	103.58	105.22	106.86	108.50	110.14	111.78	113.42	115.06	116.70	118.34	119.98	121.62	123.26	124.90	126.54	128.18	129.82	131.46	133.10	134.74	136.38	138.02	
ocity	d-V	(m/sec)	1726	1754	1740	1877	2184	2675	3344	3452	3267	3344	3567	3537	3963	3927	3754	3658	3690	3690	3690	3722	3856	3927	3856	3856	4076	3856	3658	3690	3690	
Velo	V-S _H	(m/sec)	330	339	354	501	654	911	1196	1446	1476	1562	1634	1798	1911	1981	1919	1894	1919	1885	1928	1981	1972	1954	1954	1991	2078	2119	1937	1937	1937	
	Depth	(meters)	28.1	28.6	29.1	29.6	30.1	30.6	31.1	31.6	32.1	32.6	33.1	33.6	34.1	34.6	35.1	35.6	36.1	36.6	37.1	37.6	38.1	38.6	39.1	39.6	40.1	40.6	41.1	41.6	42.1	

APPENDIX B

OYO 170 VELOCITY LOGGING SYSTEM NIST TRACEABLE CALIBRATION PROCEDURE

CALIBRATION PROCEDURE FOR

GEOVISION SEISMIC RECORDER/LOGGER Reviewed 4/6/06

Objective

The timing/sampling accuracy of seismic recorders or data loggers is required for several GEOVision field procedures including Seismic Refraction, Downhole Seismic Velocity, Logging, and P-S Suspension Logging. This procedure describes the method for measuring the timing accuracy of a seismic data logger, such as the OYO Model 170, OYO/Robertson Model 3403, Geometrics Strataview or Geometrics Geode. The objective of this procedure is to verify that the timing accuracy of the recorder is accurate to within 1%.

Frequency of Calibration

The calibration of each GEOVision seismic data logger is twelve (12) months. In the case of rented seismic data loggers, calibration must be performed prior to use.

Test Equipment Required

The following equipment is required. Item #2 must have current NIST traceable calibration.

- 1. Function generator, Krohn Hite 5400B or equivalent
- 2. Frequency counter, HP 5315A or equivalent
- 3. Test cables, from item 1 to item 2, and from item 1 to subject data logger.

Procedure

This procedure is designed to be performed using the accompanying Seismograph Calibration Data Sheet with the same revision number. All data must be entered and the procedure signed by the technician performing the test.

- 1. Record all identification data on the form provided.
- Connect function generator to data logger (such as OYO Model 170) using test cable
- 3. Connect the function generator to the frequency counter using test cable

Seismic Recorder/Logger Calibration Procedure Revision 1.30 Page 1

EDISON ESI [*] Calibration Report Estas A Calibration Report Estas Metrology Metrology Corona, CA 9282 Lab code:10504-0 Lab code:10504-0 Lab code:10504-0	Manufacturet: Oyo Model Number: 3433 Description Junit, Suspension Telemetry, Condition As Left: In Tolerance Durk, Suspension Telemetry, Calibration Date: 04/13/2007 Asset Number: 160023 Sevial Number: 7087-07031361 PO Number: 7087-07031361	Runarie: The UUT (unit under test) was calibrated using the customer's procedure. The UUT was operated by the customer's personnel and dual clienter or customer supplied specifications. Frequency is sociedion. Please see attached data. Non-UUT (unit under test) was calibrated using the customer's procedure. The UUT was operated by the customer's personnel and dual correction. Please see attached data. Standards Utilized Non-UUT (unit under test) was calibrated data. Standards Utilized Customer's presented to customer's presented to the molecular set (fractions). Frequency is socied at the set of the set o	Procedure: Outcome Temperature: 22°C Hamperature: 23°C Hamperature: 23°C Hamperature	This report may not be reproduced, except in full, without written permission of this laboratory. This report may not be used to clear and consernent by NU-AP or any gency of the US covernment. The results stated in this report nate only to the ferst stead or come Measurement to provide the nare areasted for to the US covernment. The results stated on the internet stead or to NU-AP is no report of the nare traceable to SU units variational standards maintained by NIST. This cabitration is no complia NVLAP laboratory accreditation ortheria established by NIST/NVLAP under the specific scope of accreditation for lab code 1050, www.edisonmedias.com
Hz, 0.25 volt (amplitude is approximate, modify cale waveforms on logger display) peak square using the counter and initial space on the data ata record of at least 0.1 second using a 100	requency by measuring the duration of 9 cycles nade using the data logger display device, or by tape can be printed, the resulting printout must id the data in the space provided. ss using separate files.	must be 90.0 milliseconds plus or minus 0.9 age frequency for the nine cycles of 100.0 Hz 9 cycles by the duration in milliseconds). data logger must be marked with a GEOVision retested. cating the initials of the person performing the e due date for the next calibration (12 months).	President Title April 6. 2006 Date Title	Date Seismic Recorder/Logger Calibration Procedure Revision 1.30 Page 2
 Set up generator to produce a 100.0 as necessary to yield less than full s wave or sine wave. Verify frequency sheet. Initialize data logger and record a d microsecond or less sample period. 	 Measure the recorded square wave f of data. This measurement can be n printing out a paper tape. If a paper be attached to this procedure. Recor 7. Repeat steps 5 and 6 three more time 	Criteria The duration for 9 cycles in any file I milliseconds, corresponding to an avers plus or minus 1 Hz (obtained by dividing if the results are outside this range, the REJECT tag until it can be repaired and I results are acceptable affix label indic calibration, the date of calibration, and th	Procedure Approval Approved by: John G. Diehl Name Signaure Signaure Signaure Signaure Signaure Signaure	Signature GE CVision

SEISMOGRAPH CALIBRATION DATA SHEET REV 4/6/06

3403 ATE: 04/13/2007 04/13/2008	5335A 14TE: 12/12/2006 06/12/2007	0ATE: 3325B 11/08/2006 11/08/2007	DAM DUDE APPROXIMATELY E, IF AVALABLE, ANALYZE H PAPER COPIES OF PRINTOUT
MODEL NO.: Calibration D Due Date:	MODEL NO.: CALIBRATION D DUE DATE:	MODEL NO.: CALIBRATION D DUE DATE:	2 10 MHZ 10 MILLISEC 10 MILLISEC 1 16 04/13/207/09:56 24/13/207/09:56 16 WTH AMPLTI AND PAPER TAP UTLITY, ATTAGO
INSTRUMENT DATA SYSTEM MFR: OYO SERIAL NO:: 160023 BY: ROBERT STELLER	COUNTER MFR: HEWLETT PACKARD SERIAL NO.: 2626410854 BY: SCE#\$1-03092	FCTN GEN MFR: HEWLETT PACKARD SERIAL NO.: 2847A14447 BY: SCE #\$1-03355	SYSTEM SETTINGS: GAN: FILTER: FILTER: FILTER: DELAT: DELAT: STACK: 1(STD) DELAT: STACK: 1(STD) DELAT: DELAT: STACK: 1(STD) PLUS: DESTACK: 1(STD) PLUS: DESTACK: 1(STD) PLUS: DESTACK: 1(STD) DESTACK: 1(STD) SET FREQUENCY TO 100.0HZ SOULAREWAN O.23 VOLT PLAK: RECORD BOTH ON DISK AND PAPER TAPES, IF XVAILABLE, TO THIS BETWEEN 99.0 AND 101.0 HZ.

AS FOUND		100.0		AS LEFT	0.001	
WAVEFORM	FILE NO	FREQUENCY	TIME FOR 9 CYCLES Hn	TIME FOR 9 CYCLES Hr	TIME FOR 9 CYCLES V	AVERAGE FREQ.
SQUARE	401	100.0	90.06	90.0	90.06	100.0
SQUARE	402	100.0	90.0	0.06	90.0	100.0
SINE	403	100.0	90.06	0.06	90.06	100.0
SINE	404	100.0	90.0	90.0	90.0	100.0
CALIBRATED F		ROBERT STELLER NAME		04/13/2007 DATE	(LU Stur SIGNATURE	

|--|

APPENDIX E LABORATORY TEST RESULTS - SOIL

	Summary of Soil Tests	Project Number LX2005125 Lab ID 1148A	Date Received 9-28-07 Date Reported 10-25-07	Test Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: Plastic Limit: 35 Plastic Limit: 155 Plastic Limit: 35 Results Plastic Limit: Results Activity Index: Addivity Index: 0.80 Maximum Dry Density (kg/m ³): N/A Optimum Molsture Content (%): N/A Optimum Molsture Content (%): N/A Compacted Dry Density (lb/ft ³): N/A Optimum Molsture Content (%): N/A Compacted Molsture Content (%): N/A <th>, Scott and May Engineers, Inc.</th>	, Scott and May Engineers, Inc.
		Project Name I-265 Over Ohio River Source AC-1, 10.0-10.5'	County Jefferson Sample Type UD	Matural Moisture Content Maisture Content (%):23.4 Test Method: ASHTO T 265 Moisture Content (%):23.4 Particle Size Analysis Preparation Method: ASHTO T 87 Gradation Method: ASHTO T 88 Hydrometer Method: ASHTO T 88 Hydrometer Method: ASHTO T 88 More to the test of test of the test of	Persparation Date: 1986 Revision Date: 05.2003
	Summary of Soil Tests	Project Number LX2005125 Lab ID 146A	Date Received 9-28-07 Date Reported 10-25-07	est Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Prestand: Dry Liquid Limit: Plastic: Limit: Plastic: Limit: Plastic: Limit: Adivity Index: Maximum Dry Density (Br/th ³): Maximum Dry Density (Br/th ³): Maximum Dry Density (Br/th ³): Optimum Moisture Content (%): Optimum Moisture Content (%): Compacted Dry Density (Br/th ³): N/A Optimum Moisture Content (%): Test Nut Performed Bearing Ratio Test Nut Performed Descript Caravity N/A Optimum Moisture Content (%): N/A Compacted Dry Density (Ib/ft ³): Diffic Gravity at 20° Celsus: Specific Gravity at 20° Celsus: Compacted Dry Density (Ib/ft ³): Plastification: ASHTO Classification: Compacted Dry Density (Ib/ft ³): Plastific Gravity at 20° Celsus: Plastific Gravity at 20° Celsus: Diffic Gra	Scott and May Engineers, Inc.
·		Project Name I-265 Bridge over the Ohio River Source AC-1, 2.5-3.0'	County Jefferson Jefferson Sample Type	Tat Natural Moisture Content Noisture Content (%): Test Method: AASHTO 7 85 Moisture Content (%): Particle Size Analysis Preparation Method: AASHTO 7 87 Gradation Method: AASHTO 7 87 Hydrometer Method: AASHTO 7 88 Hydrometer Method: AASHTO 7 88 Hydrometer Method: AASHTO 7 88 No. 4 Particle Size Moisture Content (%): Particle Size Clay Particle Size Stand Comments Comments Comments	Preparation Date: 1988 Revision Date: 05-2003

Summary of Soil Tests	Project Number LX2005125 .36.5', 40.0'-41.5' Lab ID 150	Date Received 9-28-07 Date Reported 10-25-07	Test Results Test Method: AASHTO T 89 & T 90 Prepared: Dry Plasticity Index: Test Method: AASHTO T 89 & T 90 Prepared: Dry Plasticity Index: Note Staticity Index: Activity Index: Note Staticity Index: Note Static Content (%): NiA Optimum Dry Density (kylm ³): Naximum Dry Density (kylm ³): NiA Optimum Moisture Content (%): NiA Over State Correction %: NiA Compacted Dry Density (kp/f1 ³): NiA Comp	
	Project Name I- <u>1-265 Over Ohio River</u> Source <u>AC-1, 25.0-26.5', 30.0-31.5', 35.0'</u>	County Jefferson Sample Type SPT Composite	Test Not Performed Moisture Content (%): Matural Moisture Content Moisture Content (%): Test Not Performed Moisture Content (%): MASHTO T 87 Moisture Content (%): Particle Size Analysis Freparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Monoter Metho	Revision Date: 05-2003
Summary of Soil Tests	Project Number LX2005125 Lab ID 198	Date Received 9-28-07 Date Reported 10-25-07	Test Results Test Results Atterberg Limit: Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: Plasticity Index: 5 Activity Index: 5 Activity Index: 0.33 Maximum Dry Density (kg/m ³): N/A Maximum Dry Density (kg/m ³): N/A Over Size Correction %: N/A Over Size Correction %: N/A Optimum Moisture Content (%): N/A Over Size Correction %: N/A Disture Content (%): N/A Compacted Dry Density (kg/m ³): N/A Compacted Dry Density (kg/m ³): N/A Disture Content (%): N/A Dispecif	
	Project Name I-265 Over Ohio River Source AC-1, 20.0'-21.5'	County Jefferson Sample Type SPT	Matural Moisture Content Test Not Performed Moisture Content (%): MA Test Not Performed Moisture Content (%): MA Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Moistor AASHTO T 88 Method AASHTO T 88 Method AASHTO T 88 Method O 000 0002 14.7 Method O 000 0003 19.6 Method O 000 0003 19.7 Method O 000 0003 19.7	Revision Date: 05-2003

Summary of Soil Tests	Project Number LX2005125 -91.5' Lab ID 152 Date Received 9-28-07 Date Reported 10-23-07	Liquid Limit: Assumed Non Plastic Liquid Limit: Plastic limit: Plastic limit: Plastic limit: Nun Plastic limit: Plastic limit: Nun Activity index: Nun Maximum Dry Density (kyfn ³): Nun Maximum Dry Density (kyfn ³): Nun Deter Context (%): Nun Deter Context	
	Project Name I-265 Over Ohio River Source <u>AC-1, 80.0'-81.5', 85.0'-86.5', 90.0'</u> County <u>Jefferson</u> Sample Type <u>SPT Composite</u>	Test Not Performed Molsture Content (%): Natural Moisture Content Molsture Content (%): Test Not Performed Molsture Content (%): NASHTO T 8/ Molsture Content (%): Preparation Method: AASHTO T 8/ Hydrometer AASHTO T 8/ Hyd	
Summary of Soil Tests	Project Number LX2005125 1-66.5' Lab ID 151 Date Received 9-28-07 Date Reported 10-23-07	Itest Results Assumed Non Plastic Assumed Non Plastic Assumed Non Plastic Atterbera Limits Assumed Non Plastic Liquid Limit: Plasticity Index: Non Activity Index: Ninh Assimum Dry Density (kg)m ³ ; Ninh Assimum Dry Density (kg)m ³ ; Ninh Compacted Dry Density (kg)m ³ ; Ninh Compacted Dry Density (kg)m ³ ; Ninh Compacted Dry Density (kg)m ³ ; Ninh Particle Size: Ninh Compacted Dry Density (kg)m ³ ; Ninh Compacted Dry Density (kg)m ³ ; Ninh Activity at 20° Colsius: 2.71 Activity at 20° Compacted Dry Density (kg)m ³ ; Activity at 20° Compacted Dry Density (kg)m ³ ; Activitat 20°	
	Project Name I-265 Over Ohio River Source <u>AC-1, 55.0'-56.5', 60.0'-61.5', 65.0</u> County <u>Jefferson</u> Sample Type <u>SPT Composite</u>	Matural Moisture Content Test Not Performed Moisture Content (%):	

Summary of Soil Tests Project Number LX2005125 Lab ID 161A	Date Received 9-28-07 Date Reported 10-25-07	Test Results Test Method: AASHTO T 89 & T 90 Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: Test Method: AASHTO T 89 & T 90 Plasticity Index: Molisture-Density Relationship Molisture-Density Relationship Maximum Dry Density (br(f ³): N/A Maximum Dry Density (br(f ³): N/A Over Size Correction %: N/A Over Size Correction %: N/A Over Size Correction %: N/A Compacted Moisture Content (%): N/A Comp	
E N G I N E E R S Project Name 1-265 Over Ohio River Source AC-2, 20:0-255	County Jefferson Sample Type UD	Natural Moisture Content Test Method: ASHTO T 285 Moisture Content (%): 23.6 Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer 80.000 Concest State 1000 Concest Stand 0.000 Silt Particle Size 55.7 1000 Concest Stand 0.00 Concest Stand 0.00	
Summary of Soil Tests Project Number Lab ID 159A	Date Received 9-28-07 Date Reported 10-25-07	Test Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Prestanch Limit Test Method: AASHTO T 89 & T 90 Prestanct: Dry Liquid Limit: Plasticity Index: 28 Activity Index: 28	
E N G I N E E R S Froject Name 1-265 Over Ohio River Source AG-2 5 07-55	County Jefferson Sample Type UD	Natural Moisture Content Test Method: AASHTO T 265 Moisture Content (%): 18.6 Particle Size Analysis Freparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Moisture Content (%): 11.6 Particle Size (mm) Particle Size (mm) 3" 75 9.5 9.4 0.0 0.075 9.4 9.7 0.0 0.001 2.7 9.4 0.002 28.7 9.6 0.001 1.1/2" 25 3.4" 19 9.4 9.6 0.002 9.4 0.001 2.9 9.0 0.002 1.1/2" 28.7 9.6 9.7 9.7 9.4 9.6 0.0 1.1/2" 25.0 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 1.1/2" 28.7 <t< th=""><th></th></t<>	

Summary of Soil Tests	Project Number LX2005125 -46.5', 50.0'-51.5' Lab ID 164	Date Reported 9-23-07 Date Reported 10-23-07	Test Results Assumed Non Plastic Limit: Anite Liquid Limit: Plastic Limit: Non Plastic Limit: Plastic Limit: Non Plastic Limit: Plastic linit: Non Plastic Plastic linit: Non Plastic Lasticy Index. NA Moisture-Density Relationship Construction of the moisture content (%): NA Maximum Dry Density (bh(f ³): N/A Maximum Dry Density (kg/m ³): N/A Maximum Dry Density (kg/m ³): N/A Optimum Dry Density (kg/m ³): N/A Optimum Dry Density (kg/m ³): N/A Compacted Dry Density (kg/m ³): N/A Compacted Dry Density (kg/m ³): N/A Descriptic Gravity Test Not Performed Bearing Ratio Test Not Performed Compacted Dry Density (kg/m ³): N/A Descriptic Gravity Test Method: Specific Gravity Particle Size: Dry Particle Size: Dry Drinfed Gravity at 20° Celsius: 2.70 AshHTO Classification: A-1-b (1) Reviewed by: Reviewed by: <th></th>	
	Project Name I-265 Over Ohio River Source <u>AC-2, 35.0'-36.5', 40.0'-41.5', 45.0'</u>	County Jetterson Sample Type SPT Composite	Natural Moisture Content (%): NIA Test Not Performed Moisture Content (%): NIA Moisture Content (%): NIA Moisture Content (%): NIA Particle Size Amalysis Particle Size Amalysis Particle Size Amalysis Particle Size Amalysis Particle Size (mm) Particle Size 3" 75 95.9 3" 75 100.0 3" 75 100.0 3" 75 100.0 3" 75 100.0 3" 75 100.0 3" 75 100.0 3" 75 100.0 3" 9.5 100.0 3" 9.5 100.0 3" 9.5 100.0 3" 9.5 10.0 3" 9.5 10.0 1" 10.0 1.7 0.0.01 1.0 1.0 0.02 3.0 1.17 1" 0.001 1.0 1" 1.0 1.0 1" 1.17 1.17 1" 1.17 1.17 1" 1.17 1.17 <	Rentsion Date: Up.7003
Summary of Soil Tests	Project Number LX2005125 Lab ID 163	Date Reported 7-25-07 Date Reported 10-25-07	Test Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Test Method: AASHTO T 89 & T 90 Plastic Limit: 25 Plastic Limit: 14 Plastic Limit: 25 Plastic Limit: 14 Plastic Limit: 14 Plastic Limit: 14 Activity Index: 11 Activity Index: 0.92 Maximum Dry Density (By/fr): N/A Maximum Dry Density (By/fr): N/A Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A Compacted Moisture Content (%): N/A Compacted Moisture Content (%): N/A Test Nut Performed N/A Test Nut Performed N/A Compacted Moisture Content (%): N/A Compacted Moisture Content (%): N/A Prepared: Dry Particle Size: Test Method: Activity at 20° Celsius: Diffic Gravity at 20° Celsius: 2.72 Roup Name: Active Group Sam with gravel Action Group Sam with gravel	
	Project Name I-265 Over Ohio River Source AC-2, 25.0-26.5', 30.0'-31.5'	Sample Type SPT Composite	Test Not Performed Moisture Content (%): N/A Test Not Performed Moisture Content (%): N/A Moisture Content (%): N/A Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Bydrometer Method: AASHTO T 88 Bydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Sieve Size Particle Size Analysis 95 Bydrometer Method: AASHTO T 88 Bydrometer AASHTO T	August 1068 Marganet

Summary of Soil Tests	Project Number LX2005125 .76.5' Lab ID 10 167	Date Received 9-28-07 Date Reported 10-24-07	Test Results Liquid Limit: Assumed Non Plastic Liquid Limit: Plastic Limit: Plastic Limit: Nun Plastic Plastic Limit: Nun Plastic Activity Index: Nu/A Maximum Dry Density (kg/m ³): Nu/A Optimum Dry Density (kg/m ³): Nu/A Optimum Dry Density (kg/m ³): Nu/A Over Size Correction %: Nu/A Over Size Correction %: Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Moisture Content (%): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Moisture Content (%): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Dry Density (lb/M ³): Nu/A Compacted Dry Density	Scott and May Engineers, inc.
	Project Name I- <u>255 Over Ohio River</u> Source AC-2, <u>65.0'-66.5', 70.0'-71.5', 75.0'</u>	County <u>Jefferson</u> Sample Type <u>SPT Composite</u>	Natural Moisture Content Test Not Performed Moisture Content (%): Natural Moisture Content Noisture Content Moisture Content (%): Ferbaration Method: AASHTO T 87 Gradation Method: AASHTO T 87 Hydrometer Method: AASHTO T 88 Hydrometer A8 Hydrometer A8 H	Profession Date: 05,2003
Summary of Soil Tests	Project Number LX2005125 Lab ID 166	Date Received 9-28-07 Date Reported 10-25-07	Least Results Atterberg Limits Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: Plastic Limit: Activity index: Mostimum Dry Density (lp/ff"): Maximum Dry Density (lp/ff"): N/A Over Size Correction %: N/A <td< th=""><th>OCUIL AILO INAY ETIGITIS, ITC.</th></td<>	OCUIL AILO INAY ETIGITIS, ITC.
	Project Name <u>I-265 Over Ohio River</u> Source <u>AC-2, 60.0-61.5'</u>	County Jefferson Sample Type SPT	Natural Moisture Content Natural Moisture Content Moisture Content (%): N/A Test Not Performed Moisture Content (%): N/A Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Asht Coarse Sand 0.07 Hydrometer 88 Hydrometer 80 Hydrometer 80 Hydrometer 88 Hydrometer 80 Hydrometer 80 Hydrometer 88 Hydrometer	r ulici, IviCoovargar, r
Summary of Soil Tests	Project Number LX2005125 Lab ID 177A Date Received 9-28-07 Date Reported 10-25-07	Test Results Test Method: AASHTO T 89 & T 90 Test Method: AASHTO T 89 & T 90 Prepared: Dry Liguid Limit: Test Method: AASHTO T 89 & T 90 Prestic Limit: Prestic Limit: 45 Plastic Limit: 20 Plastic Limit: 26 Activity Index: 1.04 Moisture-Density Relationship NA Maximum Dry Density (briff ³): NA Maximum Dry Density (griff ³): NA Optimum Moisture Content (%): NA Optimum Moisture Content (%): NA Over Size Correction %: NA Compacted Dry Density (briff ³): NA Compacted Dry Density (briff ³): NA Compacted Dry Density (briff ³): NA Doer Size Correction %: NA Doer Prepared: Dry NA Compacted Moisture Content (%): NA Compacted Moisture Content (%): NA Doer Prepared: Dry Particle Size: Prepared: Dry Particle Size: Coup Name: Coup Name: Unfifted Group Symbol: CL ASHTO Classification: Arthod (25) Assettic Gravity at 20° Celsus: 271 Reviewed by: Arthod (25)		
-----------------------	--	--	---	
	Project Name I-265 Bridge over the Ohio River Source <u>AC-3, 2.5¹-3.0'</u> County <u>Jefferson</u> Sample Type <u>UD</u>	Natural Moisture Content Test Method: AASHTO T 285 Moisture Content (%): 33.9 Moisture Content (%): 33.9 Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer 10001 Carse Sand 0 0.001 Carse Sand 0 0 Carse Sand 0 0 </td <td>-</td>	-	
Summary of Soil Tests	Project Number LX2005125 -96.5', 100.0'-100.4' Lab ID 169 Date Received 9-28-07 Date Reported 10-23-07	Test Results Assumed Non Plastic Plastic Limit: Non Plastic Plastic Limit: Non Plastic Activity Index: NiA Activity Index: NiA Activity Index: NiA Over Size Correction %: NiA Over Size Correction %: NiA Over Size Correction %: NiA Compacted Dy Density (Rpff*): NiA Deceffic C		
	Project Name I-265 Over Ohio River Source AC-2, 85.0'-86.5', 90.0'-91.5', 95.0' County Jefferson Sample Type SPT Composite	Natural Moisture Content Matural Moisture Content Moisture Content (%):		

	Summary of Soil Tests	Project Number LX2005125 Lab ID 180	Date Received 9-28-07 Date Reported 10-25-07	Test Results	Atterberg Limits Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: 24 Plastic Limit: 14	Plasticity Index: 10 Activity Index: 0.53	Moisture-Density Relationship Test Not Performed	Maximum Dry Density (lb/tt ³): N/A Maximum Dry Density (kg/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio	Test Not Performed Bearing Ratio (%): N/A Compacted Dry Density (bhrt ³): N/A	Compacted Molsture Content (76): 1975 Specific Gravity Test Method: AASHTO T 100	Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.70	Classification Unified Group Symbol: CL Group Name:	AASHTO Classification: A-4 (3)	Reviewed by:	Laboratory Document Presented by AMV Approved BY TLK
		Project Name I-265 Over Ohio River Source AC-3, 16.0-16.5'	County Jefferson Sample Type UD		Natural Moisture Content Test Not Performed Noisture Content (%): N/A	Particle Size Analysis Preparation Method: AASHTO 7 87 Gradation Method: AASHTO 7 88 Hudmometer Method: AASHTO 7 88	Particle Size %	Sieve Size (mm) Passing 3" 75	2" 50 11/2" 37.5 1" 25	3/4" 19 3/8" 9.5	No. 4 4.75 No. 10 2 100.0 No. 40 0.425 99.9	No. 200 0.075 56. 0.02 36.6 0.005 22.6 0.002 16.3 estimated 0.001 13.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%) (%) Gravel 0.0 0.0 0.0 Costes Sand 0.0 0.1 0.1 Medium Sand 0.1 Fine Sand 4.3 2 4.3.2	Silt 34.1 40.4 Clay 22.6 16.3	Comments:	File: LX2050125_5um-18034ii Sheet: Summary Preparation Date: 1989 Revision Date: 05-2003
w.,																	
	Summary of Soil Tests	Project Number LX2005125 Lab ID 179	Date Received 9-28-07 Date Reported 10-25-07	Test Results	Atterberg Limits Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit: 39 Diserio: Limit: 17	Plasticity Index: 22 Activity Index: 0.76	<u>Moisture-Density Relationship</u> Test Not Performed	Maximum Dry Density (Ib/ft ³): N/A Maximum Dry Density (kg/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	<u>California Bearing Ratio</u>	Test Not Performed Bearing Ratio (%): N/A Compacted Dry Density (bHt ³): N/A	Compacted Molsture Content (%): NVA Specific Gravity Test Method: AASHTO T 100	Prepared: Dry Precific Gravity at 20° Celsius: 2.71	Classification Unified Group Symbol: CL Group Name: Lean clay	AASHTO Classification: A-6 (21)	Reviewed by:	Laboratory Discurrent Prepared Sy, MW Approved BY: TLK
		Project Name I-265 Over Ohio River Source AC-3, 10.0'-10.5'	County Jefferson Sample Type UD		Natural Moisture Content Test Method: AASHTO T 265 Moisture Content (%): 34.3	Particle Size Analysis Preparation Method: AASHTO T 87 Cradation Method: AASHTO T 88 Hodrometer Method: AASHTO T 88	Particle Size %	Sieve Size (mm) Passing 3" 75	2" 50 11/2" 37.5 1" 25	3/4" 19 3/8" 9.5	No. 4 4.75 No. 10 2 100.0 No. 40 0.425 99.9	No. 200 0.07/5 93.4 0.02 66.7 0.002 29.4 estimated 0.001 24.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%) (%) Gravel 0.0 0.0 0.1 Coarse Sand 0.0 0.1 0.1 Medium Sand 0.1 0.1 0.1 Fine Sand 0.1 0.5 0.5	Clay 39.9 29.4	Comments:	File. LX2005155 sum 178 x/s Sheet. Summary Proparation. Date: 1988 Revision. Date: 05-2003

Summary of Soil Tests	Project Number LX2005125 0-56.5' Lab ID 184	Date Received 9-28-07 Date Reported 10-23-07	Test Results	Atterberg Limits Assumed Non Plastic Liquid Limit: Plastic Limit: Non Plastic	Plasticity Index:Activity Index:	Moisture-Density Relationship Test Not Performed	Maximum Dry Density (Ib/ff ³): N/A Maximum Dry Density (kg/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio Test Not Performed Bearing Ratio (%): N/A Compacted Dry Density (briff ³): N/A	Compacted Moisture Content (%): <u>N/A</u> Specific Gravity Test Method: AASHTO T 100	Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.69	Classification Unified Group Symbol: SP-SM Group Name: Poorly graded sand with silt AASHTO Classification: A-1-b (1)	Reviewed by:	Laboratory Decriment Prepared by Mary Engineers, Inc.
ENGINEERS	Project Name I-265 Over Ohio River Source AC-3, 45.0-46.5', 50.0-51.5', 55.0'	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): NVA	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hvdrometer Mathod: AASHTO T 88	Particle Size %	Sieve Size (mm) Passing 3" 75	2" 50 100.0 11/2" 37.5 100.0 1" 25 95.6	3/4" 19 94.9 3/8" 9.5 91.1 3/8" 9.5 91.1 No. 4 4.75 85.1 No. 40 0.425 15.7 No. 40 0.425 15.7	No. 200 0.075 5.2 0.02 2.6 0.005 1.6 0.005 1.6 0.005 0.9 estimated 0.001 0.0 0.0	Plus 3 in. material, not included: 0 (%)	Tange TAU Gravel 14.9 27.4 Coarse Sand 12.5 56.9 Medium Sand 56.9 Fine Sand 10.5 10.5 Silt 3.6 4.3 Clay 1.6 0.9	Comments:	File: LX2005135_Sum-104 Sheet Summary Preparation bat: 1996 Revision Cate: 05-2003
Summary of Soil Tests		Date Received 9-28-07 Date Reported 10-25-07	est Results	Atterberg Limits Test Method: AASHTO T 89 & T 90 Prepared: Dry Liquid Limit:	Plasticity Index:	Moisture-Density Relationship Test Not Performed	Maximum Dry Density (Ib/ft ³): N/A Maximum Dry Density (kg/m ³): N/A	Optimum Moisture Content (%): NIA Over Size Correction %: NIA	California Bearing Ratio Test Not Performed NA Description NA Compacted Dv Density (tb(tf ³): NA	Compacted Moisture Content (%): N/A Test Method: AASHTO T 100	Prepared: Dry Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.68	Classification SM Unified Group Symbol: SM Group Name: Silty sand with gravel AASHTO Classification: A-2-4 (0)	Reviewed by:	Laboratory Document Prepared By MW Approved BY: TLK
	Project Name I-265 Over Chilo River Source <u>AC-3, 25.0*-26.5</u> , 30.0*31.5', 35.0*.	County Jefferson Sample Type SPT Composite	F	Natural Moisture Content Test Not Performed Moisture Content (%): N/A	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Luckeneder Method: AASHTO T 88	Particle Size %	Sieve Size (mm) Passing 3" 75	2" 50 11/2" 37.5 100.0 1" 75 86.6	3/4" 19 77.5 3/8" 9.5 66.8 No. 4 4.75 60.6 No. 10 2.2 57.5 No. 40 0.425 53.1	No. 200 0.075 17.9 No. 200 0.02 10.0 0.005 6.4 0.002 4.8 estimated 0.001 4.0	Plus 3 in. material, not included: 0 (%)	Rearge (x0) (x0) Gravel 39.4 42.5 Coarse Sand 3.1 4.4 Medium Sand 4.4 Fine Sand 35.2 35.2 Silt 11.5 13.1 Clay 6.4 4.8	Comments:	File: UZ005172_Sum-182.46 Sheet: Summary Preparation Date: 0988 Revision Date: 05.2003

Summary of Soil Tests	Project Number LX2005125 73.2', 76.7'-78.2', 81.7'-82.4' Lab ID 25	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Assumed Non Plastic Liquid Limit:	Plasticity Index:	Moisture-Density Relationship	Maximum Dry Density (Ib/ft ³): N/A Maximum Dry Density (ka/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio	Lest Not Performed Bearing Ratio (%): N/A Compacted Dry Density (Ib/ft ³): N/A Compacted Moisture Content (%): N/A	Specific Gravity Test Method: AASHTO T 100	Propared: Dy Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.69	Classification Unified Group Symbol: SP-SM Group Name: Poorly graded sand with silt	AASHTO Classification: A-1-b (0)	Reviewed by:	Laboratory Document Prepared By, MW Approved Bri, TLK
	Project Name <u>I-265 Over Ohio River</u> Source <u>AC-4/189+81.55, 91.9 Lt, 71.7⁻⁷-7</u>	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): NJA	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHTO 1 88	Sieve Size (mm) Passing	2" 50 1 1/2" 37.5	3/4" 25 3/4" 19 3/8" 9.5 100.0	No. 4 4.75 97.4 No. 10 2 94.5 No. 40 0.425 45.3 No. 200 0.075 11.7	0.02 4.1 0.005 2.7 estimated 0.001 1.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%) Gravel 2.6 5.5 Coarse Sand 2.9 49.2 Medium Sand 49.2 Fine Sand 33.6 33.6	Slit 9.0 9.7 Clay 2.7 2.0	Comments:	File: UX2005123, Sumof: Summary Preparation Date: 1993 Revision Date: 05-2003
Summary of Soil Tests	Project Number LX2005125 6.5, 80.0-81.5' Lab ID 185	Date Received 9-28-07 Date Reported 10-23-07	sst Results	Assumed Non Plastic Liquid Limit:	Plasticity Index:	Moisture-Density Relationship	Maximum Dry Density (Ib/ft ³): N/A Maximum Dry Density (kg/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio	Lest Not Performed Bearing Ratio (%): NVA Compacted Dry Density (Ib/ft ³): NVA Compacted Moisture Content (%): NVA	Specific Gravity Test Method: AASHTO T 100 Prenared: Drv	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.68	Classification Unified Group Symbol: SW-SM Group Name: Well-graded sand with silt and gravel	AASHTO Classification: A-1-b (1)	Reviewed by:	Leterator Decement cott and May Engineers, Inc. Approval 07, 10,
	Project Name I-265 Over Ohio River Source <u>AC-3, 65.0⁻66.5', 70.0⁻71.5', 75.0⁻7</u>	County Jefferson Sample Type SPT Composite	Te	Natural Moisture Content Test Not Performed Moisture Content (%): N/A	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHTO 1 68 Boddiol Size	Sieve Size (mm) Passing 3" 75	2" 50 11/2" 37.5 100.0	3/4" 23 90.2 3/8" 19 98.2 3/8" 9.5 91.4	No. 4 4.75 64.0 No. 10 2 73.6 No. 40 0.425 24.5 No. 200 0.075 6.7	0.02 2.9 0.005 1.5 0.002 1.1 estimated 0.001 1.0	Plus 3 in. material, not included: 0 (%) ASTM AASHTO	Range (%) %) %) Gravel 15.4 26.4 Coarse Sand 11.0 49.1 Medium Sand 49.1 Fine Sand 17.8 17.8	Sitt 5.2 5.6 Clay 1.5 1.1	Comments:	File LX2005126_Sum-165 Sheet Summary Preparation Date: 1986 Reveisen Date: 1523

Summary of Soil Tests	Project Number LX2005125 Lab ID 202 Date Received 10-23-07 Date Reported 11-2-07	Test Results Atterberg Limits Test Method: ASHTO T 89 & T 90 Frepared: Dry Liquid Limit: Test Method: ASHTO T 89 & T 90 Plasticity Index: Unit: Non Plastic Plasticity Index: NIA NIA Activity Index: NIA NIA Activity Index: NIA NIA Maximum Dry Density (kg/m ³): NIA NIA Optimum Moisture Content (%): NIA NIA Optimum Moisture Content (%): NIA Compacted Dry Density (kg/m ³): NIA Compacted Dry Density (bf/f ³): NIA		
	Project Name <u>1-265 Over Ohio River</u> Source <u>AC-5, 5.0-7.0'</u> County <u>Jefferson</u> Sample Type <u>ST</u>	Matural Moisture Content (%):6.5 Moisture Content (%):6.5 Moisture Content (%):6.5 Moisture Content (%):6.5 Earticle Size Analysis Particle Size Analysis Site Site Site Analysis 2,1,2,1 2,3,4,1 100.0 0,001 11,1/2,2 34,1 100.0 3,4,7 1,3,4 1,1/2,2 2,8,9 Particle Size (mm) Passing 3,4,7 1,1/2,2 2,8,9 0 No. 200 0.022 2.8.8 9,4,1 No. 200 0.022 12.1 Partin and endet (moltored: 0,0) <th col<="" th=""><th>Revision Date: Up.2003</th></th>	<th>Revision Date: Up.2003</th>	Revision Date: Up.2003
Summary of Soil Tests	Project Number LX2005125 Lab ID 201 Date Received 10-23-07 Date Reported 11-2-07	Test Results Test Method: AASHTO T 89 & T 90 Test Method: AASHTO T 89 & T 90 Plastic Limit: 20 Plastic Limit: 20 Plastic Limit: 20 Plastic Limit: 20 Activity Index: 10 Mosisture-Density (Index: 10 Activity Index: 10 Maximum Dry Density (Indft?): NIA Maximum Dry Density (Indft?): NIA Optimum Moisture Content (%): NIA Optimum Moisture Content (%): NIA Over Size Correction %: NIA Optimum Moisture Content (%): NIA Compacted Dry Density (Indft?): NIA Dreatific Gravity at 20' Celsius: 2:66 Unified Group Symbol: CL Compacted Dry Ensity (Index: 0:0		
	roject Name I-265 Over Ohio River ource AC-5, 3.0 ^{-3.5} ounty Jefferson ample Type ST	Natural Moisture Content Test Method: AASHTO T 265 Molsture Content (%): 9.2 Preparation Method: AASHTO T 85 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: 0.002 Particle Size Sin 0.002 37.5 0.102 37.5 99.4 0.001 11/2" 37.5 0.002 21.4 99.4 No. 40 0.002 21.4 0.002 21.4 0.001 11/2" 0.002 21.4 Meddins and O.4 1.7 0.001 Meddins and O.4 0.4 1.7 Meddins and O.4 0.4 1.7 Meddins and O.4 0.4 1.7 Meddins and Clay 0.4 1.7 Silf 31.9 38.6 Silf 21.4 1.4.7		

7	Summary of Soil Tests	Project Number LX2005125 0.71.5', 75.0'-76.5' Lab ID 217	Date Received 10-23-07 Date Reported 11-2-07	Test Results	Atterberg Limits Assumed Non Plastic Liquid Limit: Plastic Limit: Non Plastic	Plasticity Index:	Moisture-Density Relationship	Test Not Performed Maximum Dry Density ((b/ft ³): N/A Maximum Dry Density (kg/m ³): N/A Ootimum Moisture Content (%): N/A	Over Size Correction %: N/A	California bearing katio Test Not Performed Bearing Ratio (%): N/A	Compacted Dry Density (Ib/ft ³): N/A Compacted Moisture Content (%): N/A	Specific Gravity Test Method: AASHTO T 100 Prenared: Drv	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.72	Classification Unified Group Symbol: <u>SW-SM</u> Group Name: <u>Well-graded sand with silt</u>	AASHTO Classification: A-1-b (1)	Reviewed by:	Laborater powners Research By: MV Approved BY: TLK
		Project Name <u>1-265 Over Ohio River</u> Source <u>AC-5, 60.0-61.5', 65.0'-66.5', 70.0</u>	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): N/A	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHTO T 88	Particle Size % Sieve Size (mm) 3" 75 7" 50	11/2" 37.5 1" 25 3/4" 19 100.0	3/8" 9.5 99.5 No. 4 4.75 94.0 No. 10 2 75.1	No. 40 0.425 32.6 No. 200 0.075 6.0 0.02 0.02 2.9	0.005 1.7 0.002 1.6 estimated 0.001 1.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%) Gravel 6.0 24.9 Coarse Sand 18.9 42.5 Medum Sand 26.6 56	Silt 4.3 4.4 Clay 1.7 1.6	Comments:	File, LX000515, Sum 213 Sheet Summary Preparation Use: 1988 Revision Use: US-2003
1																	vitv VIVV TLK
	Summary of Soil Tests	Project Number LX2005125 5.5, 40.0-41.5, 45.0-46.5' Lab ID 209	Date Received 10-23-07 Date Reported 11-2-07	Test Results	Assumed Non Plastic Assumed Non Plastic Liquid Limit:	Plasticity Index: Activity Index:	Moisture-Density Relationship	Test Not Performed Maximum Dry Density (Ib/ft ³): NVA Maximum Dry Density (kg/m ³): NVA Ontimum Molsture Content (%): NVA	Over Size Correction %: N/A	California Bearing Ratio Test Not Performed Bearing Ratio (%): N/A	Compacted Dry Density (Ib/ft ³): NVA Compacted Moisture Content (%): NVA	Specific Gravity Test Method: AASHTO T 100 Prenared: Drv	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.72	Classification Unified Group Symbol: SW Group Name: Well-graded sand with gravel	AASHTO Classification: A-1-b (1)	Reviewed by:	Scott and May Engineers, Inc.
		.0'-36		1		r											arger,

				tex	
	Summary of Soil Tests	Project Number LX2005125 0.5-62.0' Lab ID 49	Date Received 8-10-07 Date Reported 10-17-07	est Results Atterberg Limit: Assumed Non Plastic Assumed Non Plastic Limit: Plast	
	E N G I N E E R S	Project Name <u>1-265 Over Ohio River</u> Source <u>AC-7 193+95, 68' Lt., 55.5-57.0', 6</u>	County Jefferson Sample Type SPT Composite	Test Not Performed Moisture Content (%): Matural Moisture Content Moisture Content (%): N/A Test Not Performed Moisture Content (%): N/A Preparation Method: AASHTO T 88 Hydrometer 8126 No. 400 2 50 91.3 11/2" 27.5 93.8 2" 50 91.3 3" 75 91.3 No. 400 0.002 14.4 No. 400 0.001 0.0 Plus 3 in. material, not included: 0 (%) 78 Plus 3 in. material, not included: 0 (%) 78 Metium Sand 44 30.9 Silit 30.9 21.3 Clay 14 0.8	
, ,	Summary of Soil Tests	Project Number LX2005125 45.5-47.0', 50.5'-52.0' Lab ID Lab ID 48	Date Received 8-10-07 Date Reported 10-17-07	Test Results Afterberg Limit: Area limits Assumed Non Plastic Uquid Limit: Non Plastic Plastic Limit: Plastic limit: Plastic limit: Plastic limit: Non Plastic Activity Index:	
		me <u>I-265 Bridge over the Ohio Rver</u> AC-7 193+95, 68' Lt., 40.5'-42.0',	Jefferson SPT Composite	Natural Moisture Content of Performed Moisture Content (%): N/A Indicute Size Analysis ation Method: AASHTO T 87 tion Method: AASHTO T 88 meter Method: AASHTO AASHT	

					ż≥≚
	Summary of Soil Tests	Project Number LX2005125	Date Received 8-10-07 Date Reported 10-17-07	Test Results Assumed Non Plastic Assumed Non Plastic Atterberg Limit:	, Scott and May Engineers, Inc.
		Project Name I-265 over the Ohio River Source AC-8/193+95, 1.22Lt, 40.7'-42.2	County Jefferson Sample Type SPT Composite	Matural Moisture Content Moisture Content (%):	File, LV2006175, Sume 51 Sheet Summary Proparation Date: 1989 Revision Date: 05-2003
>	lests	212			ocument By: MW BY: TLK
	Summary of Soil	Project Number LX200515 , 85.5'-85.7' Lab ID 6	Date Received 8-10-07 Date Reported 10-17-07	Test Results Assumed Non Plastic Liquid Limit: Assumed Non Plastic Limit: Plastic Density (biff ³): Asimum Dry Density (biff ³): Maximum Dry Density (kg/m ³): Maximum Dry Density (biff ³): NIA Optimum Moisture Content (%): NIA Compacted Dry Density (biff ³): NIA Descrift Gravity at 20° Perpared: Dry Prepared: Dry Prepared: Dry Particle S	Labuatery D Preserve Approved

Summary of Soil Tests	75.7-77.2' Project Number LX2005125 Lab ID 64	Date Received 8-10-07 Date Reported 10-17-07	Test Results Assumed Non Plastic Liquid Limit: Non Plastic Limit: Plasticity Index: Assumed Non Plastic Liquid Limit: Plasticity Index: Assumed Non Plastic Plasticity Index: Moisture-Density Relationship Index Moristure-Density (kg/m ³): N/A Optimum Dry Density (kg/m ³): N/A Maximum Dry Density (kg/m ³): N/A Optimum Moisture Content (%): N/A Optimum Moisture Content (%): N/A Compacted Dry Density (kg/m ³): N/A Description N/A Compacted Dry Density (kg/m ³): N/A Description N/A Compacted Dry Density (kg/m ³): N/A Particle Size: No.10 Specific Gravity at 20° Celsius: 2.69 Drop of Specific Gravity at 20° Celsius: 2.69 Drop of Specific Gravity at 20° Celsius: 2.69 ASHTO Classification:	
	Project Name 1-265 Over Ohio River Source <u>AC-8/193+95, 1.22'L1, 70.7-72.2'</u>	County Jefferson Sample Type SPT Composite	Test Not Performed Moisture Content (%): Matural Moisture Content Moisture Content (%): Matural Moisture Content Moisture Content (%): Freparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Fordation Method: AASHTO T 87 Fordation Method: AASHTO T 87 Fordation Method: AASHTO T 88 Hydrometer AASHTO T 88 Hy	Revision Date: 05-2003
			1)	
Summary of Soil Tests	Project Number LX2005125 2, 60.7'-62.2', 65.7'-66.4' Lab ID 62	Date Received 8-10-07 Date Reported 10-17-07	Test Results Test Results Assumed Non Plastic Assumed Non Plastic Iduid Limit: Liquid Limit: Rastic Limit: Non Plastic Plastic Limit: Non Plastic Plastic Limit: Non Plastic Non Plastic Non Plastic Plastic Limit: Non Performed Maximum Dry Density (tp/ft ³): Naximum Dry Density (tp/ft ³): Naximum Molsture Content (%): NA Over Size Correction %: NA Over Size Correction %: NA Compacted Molsture Content (%): NA Compacted Dry Density (th/ft ³): NA Compacted Dry Density (b/ft ³): NA Compacted Dry Density (th/ft ³): NA Compacted Dry Density (th/ft ³): NA Density (th/ft ³): NA Compacted Dry Density (th/ft ³): NA Density (th/ft ³): <th></th>	
	Project Name <u>1-265 Over Ohio River</u> Source <u>AC-8/193+95, 1.22'Lt, 55.7'-57'2</u>	County Jefferson Sample Type SPT Composite	Natural Moisture Content Test Nut Performed Moisture Content (%): Natural Moisture Content Noisture Content (%): Ferparation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 No. 40 Particle Size % 37 50 38 95 94.8 % 75 817.8 75 94.8 75 94.8 76 37.5 1122 37.5 37 50 37 51 1122 37.5 1122 37.5 37 58 1122 34.0 0.001 0.00 0.002 0.8 0.001 0.0 1122 18.5 1122 18.5 1122 18.5 1122 18.5 1122 18.5 1122 18.5 1132 15.5 1132 15.5 1133 15.5 1142 15.5 1153 15.5 1154 15.5	Revision Date: 05:2003

	Summary of Soil Tests	Project Number LX2005125 70.6-72.1' Lab ID 76	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Atterberg Limits Assumed Non Plastic Liquid Limit:	Plastic Limit: Plastic Limit: Non Plastic Plasticity Index: Activity Index: NIA Test Not Performed Maximum Dry Density (Ib/f1 ³): N/A Optimum Moisture Content (%): N/A Compacted Dry Density (Ib/f1 ³): N/A Compacted Dry Density (Ib/f1 ³): N/A Test Not Performed Baaring Ratio Compacted Dry Density (Ib/f1 ³): N/A Compacted Dry Density (Ib/f1 ³): N/A Test Method: AASHTO T 100 Prepared: Prepared: Dry Particle Size: No. 10 Prepared: Dry Particle Size: No. 10 Drepared: Dry Particle Size: No. 10 Unlifted Gravity at 20° Celsius: 2.70 Divited Gravity at 20° Celsius: Unlifted Gravity at 20° Celsius: 2.70 Divited Gravity at 20° Celsius: 2.70	ASHTO Classification: A-1-a (1) Reviewed by: Action Presentery Document
		Project Name <u>1-265</u> Over Ohio River Source <u>AC-9/193+95, 70' Rt., 65.6'-67.1'</u>	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): N/A	Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Total 2000 2000 Particle Size (mm) Particle Size % Sieve Size (mm) Passing % 3" 75 2" 50 100.0 11" 37.5 40.4 No. 4 4.75 51.5 No. 4 4.75 51.5 No. 200 0.075 6.4 No. 200 0.007 14 Plus 3 in. material, not included: 0 (%) 76,6 Range 75,0 12.7 Castes Sand 59.6 6.8.4 Medium Sand 12.7 Fine Sand 12.5	Comments: Comments: File: UX205135, Summary Preparation Date: 1986 Revelorn Date: 05: 3003 Fuller, Mossbarger,
>							5 5 ×
	l Tests	5125 74	~~~				
	of Soi	TX200	8-10-0 10-17-0			Non Plastic N/A	A-1-b (1) Laboration Uce Prepared Bi Approved Bi
	Summary of Soi	Project Number LX200: 45.6-47.1', 50.6-52.1' Lab ID	Date Received 8-10-0 Date Reported 10-17-0	Test Results	Atterberg Limits Assumed Non Plastic Llouid Limit:	Plastic Limit: Plastic Plasticity Index: NIA Activity Index: NIA Activity Index: NIA Test Not Performed Maximum Dry Density (kg/m ³): NIA Maximum Dry Density (kg/m ³): NIA Optimum Moisture Content (%): NIA Optimum Moisture Content (%): NIA Compacted Dry Density (kg/m ³): NIA Compacted Dry Density (kg/m ³): NIA Test Not Performed Bearing Ratio Compacted Dry Density (kg/m ³): NIA Compacted Dry Density (kg/m ³): NIA Test Method: ASHTO T 100 Prepared: Dry Prepared: Dry Prepared: Dry Prepared: Dry Properific Gravity at 20° Celsius: 256 Coup Name: Well-graded sand with gravel	ASHTO Classification: A-1-b (1) Reviewed by:

 \geq

Summary of Soil Tests Project Number	5, 84.0-84.2' Lab ID 89 Date Received 8-10-07 Date Reported 10-17-07	Test Results Atterberg Limit: Assumed Non Plastic Liquid Limit: Assumed Non Plastic Plasticity Index: Assumed Non Plastic Non Plastic Plasticity Index: Non Plastic Activity Index: NA Maximum Dry Density (kg/m ³): NA Over Size Correction %: NA Compacted Dry Density (hg/f ³): NA Compacted Dry Density (hg/f ³): NA Compacted Dry Density (hg/f ³): NA Test Not Performed Bearing Ratio Test Not Performad Density (hg/f ³): Test Not Performed Density (hg/f ³): Test Method: AASHTO	r, Scott and May Engineers, inc.
E N G I N E E R S Project Name 1-265 Over Ohio River	Source AC-10/205+98, 70' Lt., 79.0'-80.5 County Jefferson Sample Type SPT Composite	Natural Moisture Content Test Not Performed Moisture Content (%): N/A Moisture Content (%): N/A Particle Size Analysis N/A Cradation Method: AASHTO T 87 N/A Particle Size Analysis N/A Freparation Method: AASHTO T 87 N/A Cradation Method: AASHTO T 87 N/A Cradation Method: AASHTO T 88 N/A Mydrometer Method: AASHTO T 88 N/A Total Content Method: AASHTO T 88 N/A Momonter Method: AASHTO T 88 N/A Total Content Method: AASHTO T 88 N/A Total Content Method: AASHTO T 88 N/A Momonter Method: AASHTO T 88 N/A Total Content Method: AASHTO T 88 N/A Momonter Method: AASHTO T 88 N/A Medium Sand 480 N/A Medium Sand 480 N/A Momon	Revision Date: 06-2003
Summary of Soil Tests Project Number LX2005125	80.6'-82.1', 85.6'-87.1' Lab ID 77 Date Received 8-10-07 Date Reported 10-17-07	Test Results Afferberg Limits Assumed Non Plastic Liquid Limit: Liquid Limit: Plastic Limit: Plastic Limit: Plastic Limit: Plastic Limit: Plastic Limit: Resting Index: NIA Assumed Non Plastic Plastic Limit: Plastic Limit: Plastic Limit: Plastic Limit: NIA Activity Index: NIA Activity Index: NIA Activity Index: NIA Optimum Dry Density (Rp/m ³): NIA Optimum Moisture Content (%): NIA Over Size Correction %: NIA Optimum Moisture Content (%): NIA Optimum Moisture Content (%): NIA Oropacted Moisture Content (%): NIA Compacted Dry Density (Infi ^A): NIA Compacted Stavity Context (S):	
E N G I N E E R S Project Name 1-265 Over Ohio River	Source AC-9/193+95, 70' Rti, 75.6'-77.1', i County Jefferson Sample Type SPT Composite	Natural Moisture Content Test Not Performed Moisture Content (%): NA Test Not Performed Moisture Content (%): NA Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Gradation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Bydrine Content (%): 75 75 75 74 Particle Size (mm) 3" 75 3" 3" 3" 75 9,5 88,2 0,00 3,4" 9,5 88,2 0,00 3,4" 9,5 88,2 0,00 3,4" 9,5 88,2 0,00 3,4" 9,5 88,2 0,00 1,1/2" 3,6 1,1/2" 3,1 9,5 7,4 0,000 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/2 1,1/	Revision Date: 05-2003

 \sum

)

Summary of Soil Tests	Project Number LX2005125 61.7'-63.2', 66.7'-68.2' Lab ID 100	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Atterberg Limits Assumed Non Plastic	Plastic Limit <u></u>	Moisture-Density Relationship	l est Not Performed Maximum Dry Density (lb/ft ³): N/A	Maximum Dry Density (kg/m ³): N/A Optimum Moisture Content (%): N/A.	Over Size Correction %: N/A	California Bearing Ratio	Compacted Dry Density (Jb/ft ³): N/A Compacted Dry Density (Jb/ft ³): N/A		Specific Gravity Test Method: AASHTO T 100 Prevared: Drv	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.65		Unified Group Symbol: SP-SM Group Name: Poorly graded sand with silt and gravel	AASHTO Classification: A-1-b(1)		Reviewed by:	Excent and May Engineers, Inc.
ENGINEERS	Project Name I-265 Over Ohio River Source AC-11/205+95,1.3 Lt, 57.1-58.2'	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): NVA	Particle Size Analysis Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHTO 7 88	Particle Size % Sieve Size (mm) Passing	3" 75 2" 50	1 1/2" 37.5 1" 25 100.0	3/4" 19 96.9 3/8" 9.5 87.4 No 4 75 719	No. 10 2 56.9 No. 40 0.425 31.5 Ma. 200 0.425 6.0	No. 200 0.072 0.3 0.002 1.4 0.002 1.4	0.002 0.9 estimated 0.001 0.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%)	Gravel 28.1 43.1 Coarse Sand 15.0 25.4 Medium Sand 25.4 Fine Sand 24.5 24.5	Siit 5.5 6.0 Clay 1.4 0.9	Comments:		File LX200515_Sum-100 Sheet Summary Preparation Date: 188 Revision Date: 05-203
Summary of Soil Tests	Project Number LX2005125 , 46.7'-48.2', 51.7'-53.2' Lab ID 98	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Assumed Non Plastic	Liquid Limit: Plastic Limit: Non Plastic Plasticity Index: Activity Index: N/A	Moisture-Density Relationship	Test Not Performed Maximum Dry Density (Ib/ft ³); N/A	Maximum Dry Density (kg/m ³): N/A Optimum Moisture Content (%): N/A	Over Size Correction %: N/A	<u>California Bearing Ratio</u> Toort Net Defermend	Compacted Dry Density (lb/ft ³): N/A		Specific Gravity Test Method: AASHTO T 100	Specific Gravity at 20° Celsius: 2.66		Classification Unified Group Symbol: <u>GW</u> Group Name: <u>Well-graded gravel with sand</u>	AASHTO Classification: A-1-a (1)		Reviewed by:	Latoratory Decument Present By MW Approved Bit: TLK
E N G I N E E R S	lame I-265 Over Ohio River AC-11/205+95,1.3 Lt., 41.7'-43.2'	Jefferson SPT Composite		Natural Moisture Content Not Performed Moisture Content (%): N/A	Particle Size Analysis Daration Method: AASHTO T 87	rometer Method: AASHTO T 88	Particle Size % eve Size (mm) Passing	3" 75 2" 50	11/2" 37.5 100.0 1" 25 96.1	3/4" 19 92.8 3/8" 9.5 56.1 No. 4 7E 20.E	Nu: 40 0.425 3.3	No. 200 0.0/5 1.2 0.02 0.6 0.05 0.5	0.002 0.2 timated 0.001 0.0	3 in. material, not included: 0 (%)	Range (%) (%) (%)	Gravel 69.5 88.2 arse Sand 18.7 8.5 clium Sand 8.5	Silt 0.7 1.0 Clay 0.5 0.2	nments:		25, Sum 48 Sheet Summary 18: 1948 Fuller, Mossbarger, 05.2003

 \geq

	Summary of Soil Tests	Project Number LX2005125 Lab ID 112	Date Received 8-10-07 Date Reported 10-17-07	Test Results Assumed Non Plastic Liquid Limit: Assumed Non Plastic Index: Index: Index: Plasticity Index: Plasticity Index: Index Activity Index: Plasticity Index: Index Activity Index: Plasticity Index: Index Activity Index: NIA NIA Activity Index: NIA NIA Optimum Dry Density (B/M*): NIA NIA Optimum Dry Density (B/M*): NIA NIA Optimum Moisture Content (%): NIA NIA Optimum Moisture Content (%): NIA NIA Over Size Correction %: NIA NIA Optimum Moisture Content (%): NIA NIA Compacted Dry Density (Ib/M*): NIA NIA Compacted Dry Specific Gravity at 20° Specific Gravity Coup Vame: Pooly graded sand <	
	ENGINEERS	Project Name I-265 Over Ohio River Source <u>AC-12/205+94, 71 Rt., 55.5-57.0'</u>	County <u>Jefferson</u> Sample Type <u>SPT</u>	Natural Moisture Content (%):	
<u> </u>				ЕЗХ	
	Summary of Soil Tests	Project Number LX2005125 2, 76.7'-78.2' Lab ID 10 101	Date Reported 8-10-07 Date Reported 10-17-07	Test Results Test Results Assumed Non Plastic Assumed Non Plastic Atterberg Limits Assumed Non Plastic Plasticity Index: Assumed Non Plastic Plasticity Index: Non Plastic Limit: Non Plastic Activity Index: NIA Activity Index: NIA Maximum Dry Density (kg/m ³): NIA Optimum Moisture Content (%): NIA Optimum Moisture Content (%): NIA Over Size Correction %: NIA Optimum Moisture Content (%): NIA Compacted Dearing Ratio NIA Test Not Pentomed Ratio Test Not Pentomed NIA Optimum Moisture Content (%): NIA Optimum Moisture Content (%): NIA Compacted Dor pensity (htth?): NIA Compacted Dor ponsity (htth?): NIA Compacted Dor ponsity (htth?): NIA Compacted Dory Density (htth?): NIA Compacted Dory Density (htth?): NIA Compacted Dory Density (htth?): NIA Compacted Dory prateice Size : NIA Dory Particle Size : NIA Dory Parted: Dory graded Sand with sitt and gravel AdsHTO Classification:	
		t Name -265 Over Ohio River AC-11/205+95,1.3 Lt., 71.7-73.2	y Jefferson le Type SPT Composite	Natural Moisture Content Natural Moisture Content (%): N/A Not Performed Moisture Content (%): N/A Particle Size Analysis Eparation Method: AASHTO T 87 adation Method: AASHTO T 88 drometer AASHTO T 80 drometer AASHTO T 80	

Summary of Soil Tests	Project Number LX2005125 s', 67.6'-68.5', 72.0'-73.5' Lab ID 125 Date Received 8-10-07	Date Reported 10-17-07	Atterberg Limit: Assumed Non Plastic Atterberg Limit: Assumed Non Plastic Liquid Limit: Assumed Non Plastic Liquid Limit: Assumed Non Plastic Plastic Limit: Assumed Non Plastic Plastic Limit: Plastic Limit: Plastic Limit: Restrictly Index: NA Maximum Dry Density (kp/ft*): NA Maximum Dry Density (kp/ft*): NA Optimum Moisture Content (%): NA Optimum Moisture Content (%): NA Optimum Moisture Content (%): NA Optimum Dry Density (kp/ft*): NA Optimum Dry Density (kp/ft*): NA Over Size Correction %: NA Optimum Dry Density (kp/ft*): NA Compacted Dry Density (kp/ft*): NA Compacted Dry Density (kp/ft*): NA Test Method: AASHTO T 100 Prepared: Dry Particle Size: Diffed Gravity at 20° Celsius: 2.71 ASHTO Classification: A-1-b (1) ASHTO Classification: A-1-b (1)	Ecott and May Engineers, Inc. Persent By With Approved BY TLK
	Project Name I-265 Over Ohio River Source <u>AC-13/206+50, 0.02 Lt, 67.0-67.6</u> County <u>Jeff</u> erson	Sample Type SPT Composite	Natural Moisture Content Test Not Performed Moisture Content (%):	File UZ005125_Sum-126 Sheet Summary Preparation Date: 1978 Review Date: 05:2003
Summary of Soil Tests	Project Number LX2005125 65.5-67.0, 70.5-72.0' Lab ID113 Date Received8-10-07	Date Reported 10-17-07	Assumed Non Plastic Limit: Assumed Non Plastic Limit: Plastic Limit: <u>Non Plastic</u> Plastic Limit: <u>Non Plastic</u> Plastic Limit: <u>Non Plastic</u> Plastic Undex: Activity Index: <u>NNA</u> Maximum Dry Density (kg/m ³): <u>NNA</u> Maximum Dry Density (kg/m ³): <u>NNA</u> Maximum Dry Density (kg/m ³): <u>NNA</u> Optimum Moisture Content (%): <u>NNA</u> Optimum Moisture Content (%): <u>NNA</u> Compacted Dry Density (lb/m ³): <u>NNA</u> Test Not Performed Test Not Per	Scott and May Engineers, Inc.
	Project Name I- <u>265 Over Ohio River</u> Source <u>AC-12/205+94, 71 Rt., 60.5-62.0'</u> County <u>Jefferson</u>	Sample Type SPT Composite	Natural Moisture Content Test Not Performed Moisture Content (%):	rite: L/2005125_20m-113 Sheet: Summary Preparation Cuer: 188 Revision Date: 05-2003

 \geq

7				#5.7	
	Summary of Soil Tests	Project Number LX2005125 Lab ID 226	Date Received 10-23-07 Date Reported 11-22-07	Is Molection Atterberg Limits Action of the state for the state	
		Project Name I-265 Over Ohio River Source <u>AC-14, 0.0</u> -12.1	County Jefferson Sample Type Bag	Test Result Test Not Performed Moisture Content (%):	
	<u> </u>				
	Summary of Soil Tests	Project Number LX2005125 5, 82.0'-82.7', 82.7'-83.0' Lab ID 126	Date Received 8-10-07 Date Reported 10-17-07	Test Results Assumed Non Plastic Assumed Non Plastic Liquid Limit: Assumed Non Plastic Plasticly Index: Plasticity Index: NIA Astivity Index: NIA Assumed Non Plastic NIA Astivity Index: NIA Astivity Index: NIA Astivity Index: NIA Astivity Index: NIA Maximum Dry Density (Br(f ³): NIA Maximum Dry Density (Br(f ³): NIA Optimum Moisture Content (%): NIA Compacted Dry Density (Br(f ³): NIA Compacted D	
	c)	hio River 50, 0.02 Lt., 77.4'-78.5	ite	Content % 6): N/A Alto T 87 MIA Sister SHTO T 87 % FITO T 88 % Alto 0.0 <	

Summary of Soil Tests	Project Number LX2005125 11.5', 12.7'-14.2' Lab ID 137	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Atterberg Limits Assumed Non Plastic Liquid Limit: Plastic Plastic	Plasticity Index:	Moisture-Density Relationship	Test Not Performed Maximum Dry Density (Ib/tf ³): N/A Maximum Dry Density (Arim ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio	Compacted Dry Density (Ib/ft ³): N/A	Compacted Molsture Content (%): WIA	Specific Gravity Test Method: AASHTO T 100 Prepared: Dry	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.79	Classification Unified Group Symbol: GP-GM Group Name: Poorly graded gravel with slit and sand	AASHTO Classification: A-1-a (0)	Reviewed by:	Laboratory Deciment Jer, Scott and May Engineers, Inc. Perpanet Sr. Tux
	Project Name <u>I-265 Over Ohio River</u> Source <u>AC-15/210+20, 37.3 Rt., 10.0⁻¹</u>	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed NiA Moisture Content (%): NiA	Preparation Method: AASHTO T 87 Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHTO T 88	Particle Size % Sieve Size (mm)	2" 50 11/2" 37.5 1000	3/4" 19 87.1 3/8" 9.5 63.1	No. 40 0.425 24.6 No. 40 0.425 24.6	No. 200 0.075 9.7 0.02 4.1 0.002 2.1	estimated 0.001 1.3	Plus 3 in. material, not included: 0 (%)	Range (%) (%) Gravel 56.3 69.1 Coarse Sand 12.8 6.3 Medium Sand 6.3	Fine Sand 14.9 14.9 Sit 7.6 8.4 Clay 2.1 1.3	Comments:	File: LX2016125, 51m-137 Sheat Summary Proparation Date: 1988 Revision Date: 05-2003
Summary of Soil Tests	Project Number LX2005125 5.3-5.7, 6.7-7.2' Lab ID 135	Date Received 8-10-07 Date Reported 10-17-07	Test Results	Atterberg Limits Assumed Non Plastic Liquid Limit: Plastic Limit: Non Plastic	Plasticity Index	Moisture-Density Relationship	Test Not Performed Maximum Dry Density (Ib/tt ³): N/A Maximum Dry Density (Ar/m ³): N/A	Optimum Moisture Content (%): N/A Over Size Correction %: N/A	California Bearing Ratio	Compacted Dry Density (Ib/ft ³): N/A		Specific Gravity Test Method: AASHTO T 100 Prepared: Dry	Particle Size: No. 10 Specific Gravity at 20° Celsius: 2.65	Classification Unified Group Symbol: ML Group Name: Sandy silt with gravel	AASHTO Classification: A-4 (0)	Reviewed by:	Laboratory Document Prepared by MW Approved BY TLK
	Project Name 1-265 Over Ohio River AC-15/210+20, 37.3 Rt., 4.2'-5.3', AC-15/210+20, 37.3 Rt., 4.2'-5.3',	County Jefferson Sample Type SPT Composite		Natural Moisture Content Test Not Performed Moisture Content (%): N/A	Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 88	Hydrometer Method: AASHIO I 88	Particle Size % Sieve Size (mm) 2" 75	2" 50 11/2" 37.5 1000	3.4" 19 89.8 3.8" 9.5 86.4	No. 10 2 68.2 No. 10 2 68.2 No. 40 0.425 66.6	No. 200 0.0/5 61.4 0.02 47.0 0.005 27.1	0.002 18.7 estimated 0.001 13.0	Plus 3 in. material, not included: 0 (%)	Range (%) (%) Gravel 18.3 31.8 Coarse Sand 13.5 1.6 Medium Sand 1.6	Fine Sand 5.2 5.4 5.4 Silt 34.3 42.7 b^{6} Clay 27.1 18.7 b^{6}	Comments:	File: L/20051/3_ Sum:135 Sheet Summury Programmo Detr 1983 Revision Date: 05.2003

27 62 Lil	E N'G I N E E R S	Project Name 1-265 Bridge over the Ohio River Project Number LX2005125 Source & Act.77212+170, 87.0 LI, 00-1.5 & Act.20212+30.0, 56.0 LI, 00-1.5 & Lab ID 231 Act.2321215-60.0 CI, 2.5-3.6. Jefferson Date Received 10-23-07 Sample Type Sample Type Date Received 10-23-07	Test Results	Natural Moisture Content Atterberg Limits Test Not Performed Test Method: AASHTO T 89 & T 90 Moisture Content (%): N/A Prepared: Dry Liquid Limit: 39	Plastic Limit: 15 Particle Size Analysis Plasticity Index: 24 Preparation Method: AASHTO T 87 Activity Index: 1.71 Gradation Method: AASHTO T 88 Activity Index: 1.71	Hydrometer Method: AASHTO 1 88 <u>Moisture-Density Relationship</u> Test Not Performed	Sieve Size (mm) Passing Maximum Dry Density (lb/tf ³): N/A 2 ^m 7 Maximum Dry Density (lb/tf ³): N/A	2 73 75 Meanment of year N, 2000 ye	3/4" 19 88.6 3/8" 9.5 81.0 3/8" 9.5 81.0 No. 4 4.75 64.1	No. 10 2 47.7 Bearing Ratio (%): N/A No. 40 0.425 42.6 Compacted Dry Density (lb/ft ³): N/A No. 200 0.075 38.5 Compacted Moisture Content (%): N/A	0.005 17.5 Specific Gravity 0.002 14.2 Test Method: AASHTO T 100 estimated 0.001 12.0 Plus 3 in. material, not included: 0 (%) Prepared: Dry Particle Size: No. 10	ASTM AASHTO Specific Gravity at 20° Ceisus: 2./b Range (%) (%) (%) (%) Gravel 35.9 52.3 Unified Group Symbol: C Coarse Sand 16.4 5.1 Unified Group Symbol: C Method 5.1 Classification GC Method 5.1 Classification GC Method 5.1 Classification GC Fine Sand 4.1 4.1 Group Name: Classification A5.4 Silt 21.0 24.3 AASHTO Classification: A-6 (4) A	Comments:	File US2005125_Sam_221 Sheet: Summary Prepared by Englineers, Inc. France By KW Revision Daw 05-2003 Fuller, Mossbarger, Scott and May Englineers, Inc. Approved By: NX Revision Daw 05-2003
	ENGINEERS	Project Name I=265 Over Ohio River Project Number LX2005125 Source AC-15/210+20, 37.3 Rt, 15.5'-17.0', 21.7'-23.2', 26.7'-26.9' Lab ID 138 County Jefferson Date Received 8-10-07 Sample Type SPT Composite Date Reported 10-17-07	Test Results	Natural Moisture Content Attenberg Limits Test Not Performed Assumed Non Plastic Moisture Content (%): N/A	Plastic Limit. Non Plastic Preparation Method: AASHTO T 87 Activity Index: Activity Index: N/A	Hydrometer Method: AASHTOT 88 Moisture-Density Relationship Padriche Size % Test Not Performed	Sieve Size (mm) Passing Maximum Dry Density (Ib/ft ¹); N/A 3" 75 Maximum Dry Density (kr/m ³); N/A	Z ⁿ 50 Optimum Moisture Content (%): N/A 1 1/2" 37.5 100.0 Over Size Correction %: N/A 1" 25 89.6	3/4" 19 79.2 3/6" 9.5 55.5 No. 4 4.75 36.2 Test Not Performed	No. 10 2 22.3 Bearing Ratio (%): N/A No. 40 0.425 17.4 Compacted Dry Density (Ib/ft ³): N/A No. 200 0.075 11.8 Compacted Moisture Content (%): N/A	0.005 2.4 0.002 1.6 0.001 1.0 Test Method: AASHTO T 100 Prepared: Dry Plus 3 in. material, not included: 0 (%)	AsTM AsSHTO Specific Gravity at 20° Celsius: Z./9 Range (%) (%) (%) Cravel 6.3.8 77.7 Coarse Sand 13.9 4.9 Medium Sand 4.9 Unified Group Symbol Fine Sand 5.6 5.6 Sitt 9.4 10.2 Group Name: Poorly graded gravel with sitt and sand Clay 2.4 1.6	Comments:	File: LX205126_Smm-138 Sheet Summary Preparation Date: 1958 File: Fuller, Mossbarger, Scott and May Engineers, Inc. Prepared By MV Revision Date: 05-2003

Gradation Analysis AASHTO T 88	Project Number LX2005125 Lab ID 199 Prepared AASHTO T 11 Method A Date Received 09-28-2007 : Total Sample	20 20 1 0.01 Reviewed By Approved By Lix	
	Project Name I-265 Over Ohio River Source AC-1, 50.0:-51.5' Particle Shape Angular Particle Shape Angular Tested by DG Tested by DG Sample Dry Mass (g) 359.48 Analysis based on:		
Summary of Soil Tests	Project Number LX2005125 5, 5, 0-6, 5' Lab ID 241 Date Received 10-23-07 Date Reported 11-5-07	Test Results Test Method: AASHTO T 89 & T 90 Freest Method: AASHTO T 89 & T 90 Prepared: DN Liquid Limit: 74 Plasticity Index: 14 Plasticity Index: 25 Activity Index: 114 Maximum Dry Density (g/m ³): N/A Maximum Dry Density (g/m ³): N/A Over Size Correction %: N/A Over Size Correction %: N/A Over Size Correction %: N/A Difformia Bearing Ratio N/A Compacted Dry Density (b/A ³): N/A Test Not Performed N/A Difformia Bearing Ratio N/A Test Not Performed N/A Difformia Bearing Ratio N/A Compacted Dry Density (b/A ³): N/A Difformia Bearing Ratio N/A Test Not Performed N/A Test Not Perf	
	E N G I N E R S Project Name I-265 Over Ohio River AC-26/212+70.0, 55.0 Rt., 0.0'-1.5 Source AC-26/212+70.0, 55.0 Rt., 0.0'-1.5 AC-26/212+70.0, 55.0 Rt., 0.0'-1.5 Source AC-26/212+70.0, 55.0 Rt., 0.0'-1.5 AC-26/212+70.0, 55.	Natural Moisture Content Not Performed Moisture Content (%): NAtural Moisture Content Not Performed Moisture Content (%): Preparation Method: AASHTO T 87 Gradation Method: AASHTO T 87 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Sieve Size Preparation Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Hydrometer Method: AASHTO T 88 Sieve Size % Preparation Method: AASHTO T 88 Hydrometer Method: 4.175 94.2 84.8 No. 200 3/4" 97.3 97.3 No. 200 0.005 58.3 97.3 No. 200 0.005 58.3 97.3 No. 200 0.001 18.0 Plus 3 in. material, not included: 0 (%) (%) Plus 3 in. material, not included: 0 (%) 75.4 Carse Sand 2.3 2.3 Silt 2.3 2.3 Silt 2.3 2.3	

Gradation Analysis VASHTO T 88	Project Number LX2005125 Lab ID 203	Prepared AASHTO T 11 Method A	Date Received 10-23-2007			200 100 100 100 100 100 100 100
	Project Name 1-265 Over Ohio River Source AG-5, 7,0°-8,2	Particle Shape Angular Particle Hardness Soft	Tested by AW Test Date 10-23-2007	Steve Size Grams % % % Steve Size Retained Retained Passing 6" 3" 9" 3" 1 1/2" 1 3/4" 0 0.0 100.0 No. 4 0 0.0 100.0 No. 40 0.69 0.3 99.7	No. 200 182.79 66.1 33.6 Pan 92.53 33.4 Particle Size Distribution	Percent Passing Percent Passing Percen
Gradation Analysis AASHTO T 88	Project Number LX2005125 Lab ID 28	Prepared AASHTO T 11 Method A	Date Received 08-10-2007	Sitty gravelinitesad Sitty gravelinitesad Cu= 275.0 Cu= 275.0 Cu = 275.0 Cu = 275.0		0.0 0.0 0.00 Labored By Labored Data
Gradation Analysis AASHTO T 88	15 14 Project Number LX2005125 87.3'-87.4', 91.7'-92.1' Lab ID 28	Hardness Hard and Durable Prepared AASHTO T 11 Method A	Test Date 08-20-2007 Date Received 08-10-2007	% $%$ <td>20.71 8.0 12.4 32.08 12.4 Particle Size Distribution </td> <td>ation and a subject of the angle of the angl</td>	20.71 8.0 12.4 32.08 12.4 Particle Size Distribution	ation and a subject of the angle of the angl

ENGINEERS ENGINEERS	Project Name I=265 Over Ohio River Project Number L265 (125) Source AC-5, 10.0 ⁻¹ 0.6 ⁻¹ Lab ID 205 Particle Shape Angular Particle Hardness Hard and Durable Prepared AASHTO T 11 Method A Tested by AW Test Date 10-23-2007 Date Received 10-23-2007 Sample Dry Mass (g) 193.67 Analysis based on: Total Sample	Sieve Size Grams % % Sieve Size Retained Retained Passing 6" 6" 6" 6" 1 1/2" 1 1/2" 1" 1 1 1 3" 0.0 0.0 100.0 No. 40 0.03 0.0 100.0 No. 40 0.48 0.3 39.7 Pan 84.18 43.5	0 []] 1] []] []] []] 1] []] 1] <th< th=""></th<>
ENGINEERS ENGINEERS	Project Name I-265 Over Ohio River Project Number LX2005125 Source AC-5, 8.2*8.5' Lab ID 204 Particle Shape N/A Particle Hardness N/A Prepared ASHTO T 11 Method A Particle Shape JF Test Date 10-23-2007 Date Received 10-23-2007 Sample Dry Mass (g) 145.24 Analysis based on: Total Sample Total Sample	Sleve Size Grams % % Sleve Size Retained Retained Passing 6" 6" 6 7 3" 1 1/2" 7 3/4" 7 7 7 No. 4 0 0 100.0 No. 40 4.33 3.0 97.0 No. 200 111.57 76.8 20.2 Pan 29.02 20.0	0 100 10 10 0.01 0.01 0.01 1000 100 10 Diameter (mm) 0.1 0.01 0.01 Comments Reviewed By Filer (mm) Filer (mm) Comments Filer (mm)

E N G I N E E R S		File: L2005125_200.39 Sheet Siver Report Preparation Date 548 Revision Date 01:2001 Revision Date 01:2001
Gradation Analysis	Lab ID 38 epared ASHTOT 11 Method A Date Received 08-10-2007 tai Sample Well gread gravel with Sand GGW) A-1-a Cu: 25 Cu: 25 Cu: 2.54 00 00 00 00	Neviewed by Lakonaby Deument Lakonaby Deument Prepared By TLK
	Source <u>AcG-61/93+51.7, 0.28; Rt., 709:724, 759:714'</u> Particle Shape <u>Rounded</u> Particle Hardness <u>Hard and Durable</u> Pri Tested by <u>DG</u> Test Date <u>06:22:2007</u> Sample Dry Mass (9) <u>217.15</u> Analysis based on: Tc <u>Sample Dry Mass (9) 277.15</u> <u>Analysis based on: Tc</u> <u>Sample Dry Mass (9) 277.15</u> <u>Analysis based on: Tc</u> <u>S59</u> 712 <u>28.97 10.5 89.55</u> <u>71, 4</u> <u>9, 7, 7</u> <u>7, 7</u>	File: LX205152_200-38 Street Sinve Report Preparation butic 5-58 Revision bate: 01-2001

Gradation Analy	ENGINEERS	Project Name I=265 Over Ohio River Project Number L20505125 Source AG-12/205+94, 71 Rt, 75, 5770, 80, 55-81.0° Lab ID 114 Particle Shape Rounded Particle Hardness Hard and Durable Project 11 Method A Tested by RC Test Date 08-20-2007 Date Received 08-10-2007	Sample Dry Mass (g) 401.95 Analysis based on: Total Sample	6" 3" A-1-6 GP-6M	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P.O.O Particle Size Distribution Steps Size Index 34 Steve Sign in Size number of 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 20	Cuissed in	bereet	1000 100 10 Diameter (mm) 0.1 0.01 0.001	Comments Reviewed By Tit Revie
nalysis	O T 88	111 111 101 A 107		AC							
Gradation A	AASHT	Project Number LX20C Lab ID Lab ID paredAASHTO T 11 Meth Date Received 08-10-20	tai Sample Well graded graved	VIMERACON N A-1-9 R	Cu = Co. A.	6 a 1:3	Vergenzegenzen bestende beste en bestende bestende en bestende bes			0.01	Reviewed By Commerciane
E N G I N E E R S	Project Name I=265 Over Ohio River Project Number L285 Over Ohio River Source AC-13/206+50, 0.02 Lt, 52.0-53.5', 57.0-58.5', 62.0'-63.5' Lab ID 124 Particle Shape AC-13/206+10, 0.02 Lt, 52.0'-53.5', 57.0'-58.5', 62.0'-63.5' Lab ID 124 Particle Shape Rounded Particle Hardness Hard and Durable Prepared ASHTOT 11 Method A Tested by RC Test Date 08-20-2007 Date Received 08-10-2007 Sample Dry Mass (g) 590.14 Analysis based on: Total Sample Total Sample	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0							
--------------------	---	--	---------------------------	--							
Gradation Analysis	Project Number L2005125 Lab ID 123 able Prepared AASHTOT 11 Method A Date Received 08-10-2007 ised on: Total Sample	$\begin{array}{c c} & \mbox{w} & $		0.1 0.01 0.001 Reviewed By Presentert Presented By Tux							
	Project Name 1-265 Over Ohio River Source AC-13/206+50, 0.02 Lt., 42,0'-43.5', 47,0'-48.5' Particle Shape Rounded Particle Hardness Tested by RM Test Date Sample Dry Mass (g) 603.87 Analysis be	Sieve Size Grams % 6" Fetained Retained P 6" 6" 0 0.0 11/2" 3" 3" 30.59 5.1 37.51 6.2 7/.5 No. 4 151.07 25.0 10.146 16.8 7.6 Pan 10.38 1.5 8.5 1.5	Particle Size Distributio	0 µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ							

ENGINEERS	Project Name Less Over Ohio River Project Number L2005125 Source 8-11/188-460/CL, 200-2215', 25:0-36.5', 30:0-31.5', 25:0-36.5', 40:0'-41.5' Lab ID Jab ID Particle Shape Rounded Particle Hardness Hard and Durable Prepared ASHTOT 11 Method A Prosted by JWH Test Date Test Date I-0.0'-41.5' Lab ID Jab ID Jab ID Tested by JWH Test Date Test Date I-1.30-2005 Date Received I-07-2005 Sample Dry Mass (g) 772.96 Analysis based on: Total Sample Nor-2005 Date Received I-07-2005 Sieve Size Retained Retained Passing % % % Noisture Content (%) 713.6 Nor-2005 Date Received I-07-2005 Sieve Size Retained Retained Passing % % No. 41 1/2? 0.0 0.0 0.00 100.0 No. 41 43 9.0 5.1 11.0 77/5 No. 200 69.14 9.0 5.1 5.1 11.0	<figure><figure></figure></figure>	File: L2005125_200-346 Sheet: Skie-Hapon Preparation Date 5:95 Fuller, Mossbarger, Scott and May Engineers, Inc Prepared Sr. 1uk Revision Date 01:2001
ENGINEERS	Project Name 1-265 Over Ohio River Lx2005125 Source B-1 / 189+60,CL, 5, 0:-5.5, 10:0'-11.5', 15:0'-16.5' Lab ID Particle Shape Rounded Particle Hardness Hard and Durable Prested by WithDC Test Date 11.30-2005 Tested by WithDC Test Date 11.30-2005 Sample Dry Mass (g) 542.06 Analysis based on: Total Received Moisture Content (%) 16.7 Date Received 11-07-2005 Sample Dry Mass (g) 542.06 Analysis based on: Total Sample Moisture Content (%) 16.7 % % Sieve Size Retained Retained Passing 6" 0.0 0.0 100.0 1 1/2" 10.1 73.9 3/4" 53.66 6.0 41.4 No. 40 23.69 7.4 41.8 No. 10 23.69 7.4 4.7 No. 40 22.65 6.0 13.4 No. 200 153.97 28.4 13.4	<figure><figure></figure></figure>	File, L2005135_2002.36 Sheet: Steve-frepont Preparation Date: 10-2001 Hervison Date: 10-2001 Revision Date: 10-2001

Gradation Analysis AASHTO T 88 E N G I N E E R S	Project Name I-265 Over Ohio River Project Number Lx3005125 Source B.1/189-60.01, 65.0°-66.5', 700°-71.5', 75.0°-76.5', 80.0°-81.3' Lab ID Lab ID Particle Shape Anguit Particle Hardness Hard and Durable Prepared ASHTO 111 Method A Tested by MH/IDC Test Date 12-05-2005 Date Received 11-07-2005 Sample Dry Mass (g) 59.02 Analysis based on: Total Sample Prepared ASHTO 111 Method A Moisture Content (%) 7.5 Date Received 11-07-2005 Sample Dry Mass (g) 59.02 Analysis based on: Total Sample Prepared ASHTO 111 Method A Moisture Content (%) 7.50 Date Received 11-07-2005 Noisture Content (%) 7.50 93.0 93.0 Sieve Size Retained Passing % % No. 10 0.0 0.0 0.0 0.0 0.0 No. 40 11/22* 93.0 93.0 93.0 93.0 No. 40 13.1 33.4 73.9 93.0 No. 40 168.04 31.8 29.2 0.7 No. 200 154.62 93.0 93.0 0.7	<figure></figure>
Gradation Analysis AASHTOT 88 E N G I N E E R S	Project Name 1:265 Over Ohio River Source B-1/1189460,C1,45.0,-46.5,50.0:51.5,55.0:-61.5' Lab ID Particle Shape B-1/1189460,C1,45.0,-46.5,50.0:51.5,55.0:-61.5' Lab ID Particle Shape Rounded Particle Harchress Hard and Durable Prepared ASHTO T 11 Method A Tested by JWH Test Date I1-30-2005 Date Received 11-07-2005 Same Dry Wass (g) 0.0334 Analysis based on: Total Sample I1-07-2005 Moisture Content (%) 16.3 Date Received 11-07-2005 Sieve Size Retained Passing % 6r Grams % % 11/2" 0 0.00 100.0 3/4" 0 0.0 100.0 3/4" 0 0.0 100.0 No. 40 58.49 9.7 79.1 No. 40 58.49 9.7 79.1 No. 40 58.49 9.7 79.1 No. 200 102.47 16.9 4.5	<figure></figure>

,

ENGINEERS	Project Name 1265 Over Ohio River Source B.27 (1943-50, CL, 52.0:-53.5; 57.0:-58.5; 62.0:-63.3; Particle Shape Bounded Particle Shape Rounded Particle Shape Rounded Particle Shape NumH Tested by JWH Tested by JWH Tested by JWH Tested by Methods Molisture Content (%) Test Date Italice Stample Dry Mass (g) 558.64 Analysis based on: Total Sample Molisture Content (%) Test Date Molisture Content (%) Test Date 11/2° 0 0.0 0.0 11/2° 0 0.1 100.0 11/2° 5.4 Mo. 10 3.4 88.8 92.2 No. 4 30.5 No. 10 34.5 No. 10 34.5 No. 10 34.5 No. 10 34.5 No. 10 104.15 No. 10 3.7 No. 10 3.7 No. 10 3.7	<figure></figure>
Gradation Analysis AASHTO T 88	Project Number <u>LX2005125</u> Lab ID <u>8</u> ared <u>AASHTOT 11 Method A</u> Date Received <u>11-07-2005</u> Sample	Beviewed By Asproved By Asprov
	Interpret Interpret B2/194450, Cl., 42.0 ^{-43,5} , 47.0 ^{-43,5} Prepret Reprint Brancher Particle Harchness Hard and Durable Preprint Rounded Particle Harchness Hard and Durable Preprint Set Dry Mass (g) 255.77 Analysis based on: Total Molsture Content (%) 10.8 % Molsture Content (%) 10.8 % Sieve Size Retained Retained Passing 6r 0 0.0 0.0 100.0 1 11/2 ⁻¹ 0 0.0 100.0 7 3(4" 47.7 8.2 54.7 No. 40 174.8 29.9 16.7 No. 44.5 Pain 17.39 3.0	Particle Size Distribution Barrier Size Distrib

Gradation Analysis AASHTO T 88	Project Number LX2005125 Lab ID 15	Prepared AASHTO T 11 Method A Date Received 11-07-2005	Fotal Sample	•															0.01 0.001	Reviewed By	Leboratory Document Leboratory Document Approved By: TLK
	Project Name I-265 Over Ohio River Source <u>B-3/205+50, CL, 71.0-72.3', 76.0-77.5'</u>	Particle Shape Rounded Particle Hardness Hard and Durable Pr Tested by JWH Test Date 11-30-2005	Sample Dry Mass (g) <u>582.63</u> Analysis based on: To Moisture Content (%) 13.9 <u>6rams %</u>	Sieve Size Retained Retained Passing	3, 0,	11/2" 0 0.0 100.0 1" 34.76 6.0 94.0	3/4" 33.37 5.7 88.3 3/8" 53.56 9.2 79.1	No. 4 20.94 3.6 75.5 No. 10 21.57 3.7 71.8 10 100 10 10	No. 40 109./2 29.1 42.1 No. 200 214.88 36.9 5.8 Pan 31.45 5.4	Particle Size Distribution Slove Stap incide, , Slove Stap in Store 3.	6 S	20	E Constantino de la constant	Seed Ir	Percei	30	20	5 c	1000 100 10 Diameter (mm) 0.1	Comments	File: LY2005155_200-15.Ms Sheet: Steve-Report Prevention Date: 3-08 Revision Date: 1-08
Gradation Analysis AASHTO T 88	Project Number LX2005125 Lab ID 14	ared ASHTO T 11 Method A Date Received 11-07-2005	Sample																0.01 0.001	Baviewed Bv C	Laboratory Document Prepared By: Turk Aprice Base State
Cradation Analysis AASHTO T 88 N E E R S	5 Over Ohio River LX2005125 / 205+50, 0L, 56:0'-57.5', 61:0'-62.5', 66:0'-67.5' Lab ID Lab ID 14	unded Particle Hardness Hard and Durable Prepared ASHTO T 11 Method A 14/DC Test Date 12-02-2005 Date Received 11-07-2005	ample Dry Mass (<u>9)</u> 523.55 Analysis based on: Total Sample oisture Content (%) 10.5	Sieve Size Retained Retained Passing	7.01	1 1/2" 0 0.0 100.0 1" 56.01 10.7 89.3	1 3/4" 31.49 6.0 83.3 3/8" 76.77 14.7 68.6	No. 4 74.65 14.2 54.4 No. 10 68.34 13.1 41.3	No. 40 103.38 19.7 21.6 No. 200 78.39 15.0 6.6 Pan 34.55 6.6	Particle Size Distribution Sieve Statin Inches									100 10 Diameter (mm) 0.1 0.01 0.001	Baviewed Bv	Lateratory Document Lateratory Document Fuller, Mossbarger, Scott and May Engineers, Inc Approval Br.Tix

The Internation of the contract of the conte conte contract of the contract of the contract of	Stress vs. Strain	staru (s)	Failure Sketch Pocket Penetrometer Reading (ts) 1.0 Torvane Reading (kg/cm ²) <u>NA</u> Comments Comments Reviewed By Common Date: 9.1748 Looper Date: 9.1748	
Image: Description of the contract of the cont of the cont of the cont of the content of the content of the con	Stress vs. Strain		Failure Sketch Pocket Penetrometer Reading (ts) <u>4.0</u> Torvane Reading (ts) <u>10</u> Torvane Reading (ts) <u>4.0</u> Comments Torvane Reading (ts) <u>4.0</u> Reviewed By Reviewed By Comments Reviewed By	Revision Date (33,2001) F 'LIII', IVIUSSU di YET, UVUSU di Kari vivery E-ingritty (11,11), 11.14

Confined Compressive Strength of Chesive Soil Confined Compressive Strength of Cohesive Soil F N G I N E E R J Confined Compressive Strength of Cohesive Soil F N G I N E E R J Confined Compressive Strength of Cohesive Soil F N G I N E R J Project Number L255 Bidge over the Ohio River AC2 5.0.77.0 Project Number L2206125 Source AC2 5.0.77.0 Each I Di River I and Discription I and Clay (CL), brown, molit, firm Recovering Lab ID 1.2 Specifie I Discription I and Clay CL), brown, molit, firm Recovering Test Interval 5.05.5 1.2 Annial Uvet Density (pct) P1 2.0 Date Extruded 10/16/2007 1.2 Initial Dry Density (pct) P1 2.0 Date Extruded 10/16/2007 1.4 Initial Dry Density (pct) P1 2.0 Date Extruded 10/16/2007 1.4 Initial Dry Density (pct) P1 2.0 Date Extruded 10/16/2007 1.4 Average Height (n) 6.104 Unconfined Compressive Strength (fst) 1.4 Average Diameter (n) 6.104 Unconfined Compressive Strength (fst) 1.4 Average Diameter (n) 2.801 Strain at Maximum Stress (%, molity) 2.3 Average Diameter (n) 2.801	Strait	UX3055135_UC-158A.Jis UC-159A.Jis UC-159A.
Image Height Initial Dry Density (pc) Unconfined Compressive Strength of Cohesive Soil ASTM D 2165 FN Glot Name 1-265 Bridge over the Ohio River Project Number LX2005125 Project Name 1-265 Bridge over the Ohio River Project Number LX2005125 Source AC-1, 10.0-12.0 Lab ID 148B Visual Description lean Clay with sand (CL), brown, moist, firm Recovered 1.2 Initial Unitial Wet Density (pc) 124.8 Pl VIA Initial Unitial Unitial Unitial Wet Density (pc) 124.8 Pl VIA Initial Dry Density (pc) 124.8 Pl Date Extruded 1.2 Initial Dry Density (pc) 124.8 Pl N/A Date Extruded VIA Optime of Saturation (%) N/A Date Extruded 10/16/2007 Date Tested N/A Average Height (in) 6.048 Strend end Shear Strength (ts) N/A N/A N/A Average Plainter (in) 2.879 Strain at Maximum Stress (%) N/A N/A Average Diameter (an) 2.879 Strain at Maximum Stress (%) N/A Average Diameter (an) 2.879 Strain at to failure (%, min) N/A	Stress vs. Strain Press vs. Strain Press ve. Strain Press (pa) Press (pa)	LX2005135 UC1488JAB UC-report Prevarilien Date: 41/348 Review Date: 05-2001 Review Date: 05-2001

Image: Strength of Compressive Strength of Cohesive Soli Strength (Strength Of Cohesive Strength Of Cohesive Strength (Strength Of Cohesive Strength (Strength Of Cohesive Strength (Strength Of Cohesive Strength Of Cohesive Strength (Strength Of Cohesive Strength Of Cohesive Strength (Strength Of Cohesive Strength Of Cohesive Strength Of Cohesive Strength (Strength Of Cohesive Strength Of Cohesive Strength Of Cohesive Strength (Strength Of Cohesive Strength Of Cohesive Str	Strain.	Failure Sketch Pocket Penetrometer Reading (ts) 10 Torvane Reading (ts) 10 Torvane Reading (ts) 10
Image: Project Number Compressive Strength Unconfined Compressive Strength E N G I N E E R S Unconfined Compressive Strength e N G I N E E R S ASTM D 2166 et Name 1-265 Bridge over the Ohlo River Project Number L2005125 of Cohesive Soil ASTM D 2166 et Name 1-265 Bridge over the Ohlo River Project Number L2005125 interval 5.6.0 ^{-7.70} Lab ID 158B of Cohesive Soil Acz2, 5.0 ^{-7.70} Lab ID 158B of Cohesive Soil Acz2, 5.0 ^{-7.70} Lab ID 158B of Cohesive Soil Acres Lab ID 178C of Cohesive Strength firm Recovered 1.2 ⁻¹ 1 of Initial VV Date Extruded 1.2 ⁻¹ 1 Initial VV Initial VV Date Tested N/A Initial VV Initial VV Initial VV Initial VV Initial VV N/A Inconfined Compressive	Stress vs. Strain	Failure Sketch Pocket Penetrometer Reading (tsf) 5.0 Dorvane Reading (cg/cm ²) <u>NIA</u> Comments Torvane Reading (cg/cm ²) <u>NIA</u> Reviewed By Reviewed By

Unconfined Compressive Strength	F N G I N E E R S ASTM D 2166 Project Name 1-265 Bridge over the Ohio River Project Number LX2005125 Project Name 1-265 Bridge over the Ohio River Project Number LX2005125 Source AC.3, 2.5'-4.5' Lab ID 177A Visual Description Iaan Clay (CL), brown, molst, firm Recovered 1.3' Specimen Type: Undisturbed LL 45 Date Extruded 1.3' Initial Wet Density (pcf) 82.7 NC Taken Before Test, From Trimmings 0.34 Initial Dry Density (pcf) 82.7 NC Taken Before Test, From Trimmings 0.34 Sepcific Gravity 2.7.3 0.3 Date Extruded 10/16/2007 Initial Dry Density (pcf) 87.8 Unconfined Compressive Strength (ts) 0.34 Strengen G Saturation (%) 8.049 Strain at Maximum Stress (%) 8.5 Average Height (n) 6.049 Strain at Maximum Stress (%) 8.5 Height to Diameter (n) 2.10 Date 0.11	Stress vs. Strain	Stain (%)	Failure Sketch Pocket Penetrometer Reading (tst) 2.0 Torvane Reading (kg/cm ³) NIA Comments Comments Reviewed By	D200615 UC:177A6 UC-report Prepared by WW Reveision Online 9-17-98 Revision Online 02:2001
Unconfined Compressive Strength	Froject Name 1.265 Bridge over the Ohio River ASTMD 2166 Project Name 1.265 Bridge over the Ohio River Project Number LX2005125 Source AC2. 20.0-22.0' Lab ID 161B Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5' Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5' Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5' Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5' Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5' Initial Wet Density (pcc) PL NIA Date Exthuded 10.16/2007 Initial Dry Density (pcc) 27.9 MC Taken Before Test, From Trimmings NIA Degree of saturation (%) NIA Unconfined Compressive Strength (ts) NIA Average Height (in) 5.801 Strain at Maximum Stress (%) NIA Average Diameter Ratio 2.1 Strain rate to failure (% / min.) NIA	Stress vs. Strain	(isd) ssents	Failure Sketch Pocket Penetrometer Reading (ts) 1.0 Torvane Reading (kg/cm ²) <u>MA</u> Comments	U2006152 UC-1618 ak UC-resent Preparation Date 9-17-86 Revision Date 03:2001

Unconfined Compressive Strength	Project Name L265 Bridge over the Ohio River Of Cohesive Soil R N G I N E E R S ASTM D 2166 R N G I N E E R S ASTM D 2166 Project Name L265 Bridge over the Ohio River Project Number LX2005125 Source AC-3, 10.0 ^{-1/2.0'} Lab ID Lab ID Visual Description lean Clay (CL), brown, moist, firm Recovered 1 Specimen Type: Undisturbed LL 39 Date Extruded Initial Dry Density (pct) B8.4 MC Taken Before Test, From Trimmings 1 Specific Gravity 2.7.1 Unconfined Compressive Strength (tst) 0.56 Average Height (in) 6.003 Strain at Maximum Stress (v) 14.1	Height to Diameter Katio stress vs. Strain	⁰⁰	
Unconfined Compressive Strength	FN G I N E E R S of Cohesive Soil FN G I N E E R S ASTM D 2166 Froject Name L265 Bridge over the Ohio River Project Number L2005125 Source AC-3, 2, 5'-4.5' Visual Description lean Clay (CL), brown, moist, firm Project Number L2005125 Source AC-3, 2, 5'-4.5' Visual Description lean Clay (CL), brown, moist, firm Recovered 1.3' Specimen Type: Undisturbed LL N/A Date Extruded 1.1'A Initial We bensity (pcc) 93.3 MC Taken Before Test, From Trimmings Date Extruded N/A Average Height (in) 5.957 Date Strength (sf) N/A Average Diameter (in) 5.957 Strength (sf) N/A	Height to Diameter Katio surface to radiuse (% / mill.) we should be the solution of the sol	Image: State Stat	

ENGINEERS ASTMD 2166	Project Name L265 Bridge over the Ohio River Project Name L255 Bridge over the Ohio River Project Number Source AC-3, 15, 0-17, 0' Lub ID 160B Source AC-3, 15, 0-17, 0' Lub ID 160B Visual Description sandy lean Clay (CL), brown, moist, firm Recovered 1,5' Specimen Type: Undisturbed LL N/A Date Extruded Initial Wet Density (pcf) 125.9 PL N/A Date Extruded Initial Mosture Content (%) N/A Date Extruded 10/16/2007 Initial Mosture Content (%) N/A Date Extruded 10/16/2007 Average Height (in) 5.883 MC Taken Before Test, From Trimmings M/A Average Height (in) 5.883 Strain at Maximum Stress (%) M/A Height to Diameter Ratio 2.0 Strain at to failure (a, min) M/A	Stress vs. Strain	Strait (k)	Failure Sketch Pocket Penetrometer Reading (ts) <u>1.0</u> Torvane Reading (ts) <u>1.0</u> Torvane Reading (ts) <u>1.0</u> Reviewed By Reviewed By
E N G I N E E R S ASTM D 2166	Description L25 Bridge over the Ohio River Project Number L25 Bridge over the Ohio River urce Ac-3, 15, 0 ⁻¹ 17.0 Lab ID 180A urce Ac-3, 15, 0 ⁻¹ 17.0 Lab ID 180A sual Description sandy lean Clay (CL), brown, moist, firm Recovered 1.5 ⁻ Specimen Type: Undisturbed 112/11 PI N/A Initial Wet Density (pct) 127.1 PI N/A Initial Woisture Content (%) 25.4 MC Taken Before Test, From Trimmings Degree of Saturation (%) N/A Undirained Shear Strength (tst) Average Height (in) 6.057 Strain at Maximum Stress (%) Height to Diameter Ratio 2.1 Strain rate to failure (% rmin)	Stress vs. Strain	Strain (%)	Failure Sketch Pocket Penetrometer Reading (st) 1.0 Torvane Reading (kg/cm ³) <u>NIA</u> Reviewed By Reviewe

Image of saturation (%) Image of shear (%) Image of shear (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Initial Dve Description silty Sand (SM), brown, moist, soft Image of saturation (%) Image of saturation (%) Average Height (n) Image of saturation (%) Image of saturation (%) Image of saturation (%) Average Diameter (n) Image of saturation (%) Image of saturation (%) Image of saturation (%) Average Diameter (n) Image of saturation (%) Image of saturation (%) Image of saturation (%) <td< th=""><th>Stress vs. Strain</th><th>Failure Sketch Pocket Penetrometer Reading (tsh) 0.5 Torvane Reading (kg/cm²) <u>NIA</u> Torvane Reading (kg/cm²) <u>NIA</u> Comments No 6" test specimen obtained due to multiple sand lenses. 5.0-7.0° put out for classification testing. Saved in a bag. Comments No 6" test specimen obtained due to multiple sand lenses. 5.0-7.0° put out for classification testing. Saved in a bag. Reviewed By Reviewed By Reviewed By Reviewed By</th></td<>	Stress vs. Strain	Failure Sketch Pocket Penetrometer Reading (tsh) 0.5 Torvane Reading (kg/cm ²) <u>NIA</u> Torvane Reading (kg/cm ²) <u>NIA</u> Comments No 6" test specimen obtained due to multiple sand lenses. 5.0-7.0° put out for classification testing. Saved in a bag. Comments No 6" test specimen obtained due to multiple sand lenses. 5.0-7.0° put out for classification testing. Saved in a bag. Reviewed By Reviewed By Reviewed By Reviewed By
The image of a contract of the image of	Strain Strain Strain (%)	Failure Sketch Pocket Penetrometer Reading (tsf) 0.5 Torvane Reading (gyCm ²) <u>NIA</u> Torvane Reading (gyCm ²) <u>NIA</u> Comments No 6" test specimen due to multiple sand lenses. 3.0-3.5' put out for class. The rest was saved in a bag. 2.0-3.5' put out for class. The rest was saved in a bag. Reviewed By Revi

Moisture Content of Soil AASHTO T 265

Project Number LX2005125 Tested By RC

 No. 10
 No. 4
 3/8"
 3/4"
 1 1/2"
 3"

 20
 100
 500
 2,500
 10,000
 50,000
 Maximum Particle Size in Sample Recommended Minimum Mass (g) Material Type: Stratified, Laminated, <u>Len</u>sed

Material Type: Stlanned, Caminated, Celloca, Hamogeneers				Maximum	Mat	erial	Pass Min.		Wet Soil &	Dry Soil &	
		Date	Material	Particle	Excl	uded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
0	Labin	Tested	Type	Size	Amount	Size	(Y/N)	(g)	(g)	(g)	Content (%)
Source	147	10/16/07	Hom	No. 10			Yes	19.52	88.80	77.64	19.2
AC-1, 5.0'-7.0'	147	10/10/07	110111	140. 10			NIO	20.54	121.52	100.51	26,3
AC-1, 15.0'-17.0'	149	10/16/07	Hom	INO. 4			INU	20.04	00.70	70.00	10.7
AC-2 25-45	158	10/16/07	Hom	No. 10			Yes	20.89	86.72	76.60	10.2
A0-2, 2:0-4:0	160	10/16/07	Hom	No 10			Yes	20.91	99.19	86.20	19.9
AC-2, 10.0-12.0	100	10/16/07	Hom	No. 10	1		Yes	21,40	62.16	53.86	25.6
AC-2, 15.0'-16.5'	102	10/10/07	110111	110.10			Vee	20.27	106.24	83.45	36.1
AC-3, 5.0'-7.0'	178	10/16/07	Hom	No. 10	ļ		res	20.07	100.24	00.10	40.4
AC-3, 20.0'-21.5'	181	10/16/07	Hom	No. 10			Yes	20.90	115.86	100,62	19.1

File: LX2005125_MC Sheet:Input Preparation Date: 5-2002 Revision Date: 7-2002

Fuller, Mossbarger, Scott, and May Engineers, Inc.

		353	B	職品		7	76	3742	EST	a
Fu M Sc M	ller ossbarger ott & ay					-		Ν	N	
		Ε	Ν	G	I	Ν	£	E	R	S
Pr	oject Na	me								

Moisture Content of Soil AASHTO T 265

Project Number LX2005125 Tested By DG

Laboratory Document Prepared by : DDW Approved by : TLK

Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3"		
Recommended Minimum Mass (g)	20	100	500	2,500	10,000	50,000		
Material Type: Stratified, Laminated, Lensed, H	lomogeneous							
		1	1		Maximum	Mate	rial Pass M	1in.

Material Type. Stranner, Calinater, Conocc, Conogene				Maximum	Mate	erial	Pass Min.		Wet Soil &	Dry Soil &	· ·
		Date	Material	Particle	Excit	uded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source	Lab ID	Tested	Туре	Size	Amount	Size	(Y/N)	(g)	(g)	(g)	Content (%)
AC 17/012+17.0 97.0 Lt .0.0'-1.5'	232	10/23/07	Hom	1 1/2"			No	20.62	114.13	106.16	9.3
AC-1/1212+11:0, 81:0 Et., 0.0-1:5	234	10/23/07	Hom	1 1/2"			No	26.26	110.53	98.62	16.5
AC-20/212+30.0, 50.0 Et., 0.0-1.3	238	10/23/07	Hom	3/4"			No	27.17	133.32	128.23	5.0
AC-23/212+50.0 CL, 2.5-5.0	242	10/23/07	Hom	3/8"			No	28.98	120.06	111.61	10.2
AC-26/212+70.0, 55.0 Rt., 0.0-1.5	242	10/23/07	Hom	1 1/2"			No	21.20	99,80	92.07	10.9
AC-26/212+70.0, 55.0 Rt., 5.0-6.5	240	10/23/07	Hom	1 1/2"			No	311.08	611.10	592.71	6.5
AC-2// 212+87, 125.0 RL, 0.0-1.2	243	10/20/01		1	L						-
											C.

APPENDIX F LABORATORY TEST RESULTS - ROCK

E N Unconfined Compressive Strength Of Intact Rock Core Of Intact Rock Core F N Intact Rock Core Project Name I-265 Over Ohio River Project Number LX2005125 I thylow Limestone. aray, moderately hard, shale lavers Lab ID UCR-157	Hole Number AC-1 Depth (ft/elev) 127.3 - 127.65' Date Received 09-28-2007 Dimensional Conformance Height (in) 4.505 Weight (ib) 1.323 Side Planeness Pass Height (in) 4.505 Wet Unit Weight (b) 1.323 For Performation Height (in) 1.974 Wet Unit Weight (b) 1.323 For Planeness Pass Diameter (in) 1.974 Wet Unit Weight (pcf) 165.8 Find Planeness Pass Area (in ²) 3.059 Dry Unit Weight (pcf) 161.6 Height/Diameter Ratio 2.283 Moisture Content' (%) 2.6	Median Accelerations (ac) Det Easted 0-16-2001 Temperature (ac) 0 0 Temperature (ac) 0 0 Temperature (ac) 0 0 Peak (back) 0 0 Peak (back) 0 0 Compressive Strength (ba) 0 0 Failure Type 0 0 Failure Type 0 0 Failure Type 0 0 Compressive Strength (ba) 0 0 Conscion Coefficient Not 0 0 Conscion Compressive Strength (ba) 0 0 Conscion Strength (ba) 0 0	File: 12200515_UCR-157.18 Sheet Report Fuller, Mossbarger, Scott and May Engineers, Inc. Preparation Date 7.2002 Preparation Date 7.2002
Project Name I-265 Over Ohio River Unconfined Compressive Strength Project Name I-265 Over Ohio River Project Number LX2005125	Hole Number AC-1 Depth (fuelew) 114.95' 115.35' Date Received 09-28-2007 Dimensional Conformance Height (in) Becimen Dimensions Weight (in) 1401 Side Planeness Pass Diameter (in) 4.780 Weight (in) 1.401 Find Planeness Pass Diameter (in) 1.981 Weight (in) 164.3 Find Planeness Pass Diameter (in) 1.981 Dry Unit Weight (pcf) 163.2 Height/Diameter Ratio 2.413 Moisture Content ¹ (%) 0.7	Mosture Condition As received, molta Tensterature (*c) 10 Temperature (*c) 10 Temperature (*c) 10 Temperature (*c) 10 Teach (1bf) 267 Teach (1bf) 267 Teach (1bf) 267 Teach (1bf) 267 Tealure Strength (1bf) 626 Tealure Type Strength 10 Tealure Type Strength 10 Tealure Type Strength 10 Tealure Commensative Strength 10 Tealure Totale Commensative Strength 10 Torrection Coefficient IVI 10 Corrected Compressive Strength (1s) 10 Torrected Compressive Strength (1s) 10 <t< td=""><td>File L2005132 UCR-155-Jd Street Report Fuller, Mossbarger, Scott and May Engineers, Inc.</td></t<>	File L2005132 UCR-155-Jd Street Report Fuller, Mossbarger, Scott and May Engineers, Inc.

Inconfined Commessive Strendth	Project Name I-265 Over Ohio River Lithology <u>Limestone, gray, moderately hard, shale seams</u> Hole Number <u>AC-2</u> Depth (ft/elev) <u>124.7'-125</u> ,1' Date Received <u>09-28-2007</u>	Dimensional Conformance Height (in) 4.631 Specimen Dimensions 1.327 Side Planeness Pass Diameter (in) 1.31 Weight (lb) 1.327 Perpendicularity Pass Diameter (in) 1.970 Wet Unit Weight (pc) 160.4 Find Planeness Pass Area (in ²) 3.048 Dry Unit Weight (pc) 160.4 Height/Diameter Ratio 2.351 Moisture Content ¹ (%) 15.37	Molsture Condition American (a) Desk Load (lip) Desk Load (lip) <thd< th=""><th>File, L2205(15, UOR-172.48 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Reparation Date: 7-2002 $\int M^{-5} represently, 1LK Revision Date: 7-2002$</th></thd<>	File, L2205(15, UOR-172.48 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Reparation Date: 7-2002 $\int M^{-5} represently, 1LK Revision Date: 7-2002 $
Incontined Compression Strength	Project Name I-265 Over Ohio River Lithology <u>Limestone, gray, moderately hard, shale seams</u> Hole Number <u>AC-2</u> Depth (fbelav) <u>119.1' - 119.</u> 5' Date Received <u>09-28-2007</u>	Dimensional Conformance Height (in) 4.265 Specimen Dimensions 1.248 Side Planeness Pass Diameter (in) 1.372 Wet Unit Weight (pc) 1.248 Perpendicularity Pass Diameter (in) 1.372 Wet Unit Weight (pc) 165.6 End Planeness Pass Area (in ²) 3.053 Dry Unit Weight (pc) 164.4 Height/Diameter Ratio 2.163 Moisture Content ¹ (%) 0.7	Motifue Condition Acreacined motifue fraction framework (c) Data Load (n) <	The L2300515_UCR-173 As Sheet: Report Programmed Progr

Image: Project Name I-265 Over Ohio River Unconfined Compressive Strength E N G I N E E R S Of Intact Rock Core Project Name I-265 Over Ohio River KM 64-523-02 Lithology Shale, dark gray, moderately hard, limestone layer Lab ID UCR-194 Hole Number AC-3 Depth (ffeleiv) 128.6 - 129.2'	Dimensional Conformance Height (in) Specimen Dimensions 5.504 Stde Planeness Pass Unit Weight (pc) 5.504 Perpendicularity Pass Diameter (in) 3.316 Wet Unit Weight (pc) 166.4 Fend Planeness Pass Drameter (in) 3.316 Wet Unit Weight (pc) 166.4 Find Planeness Pass Area (in ²) 8.636 Dry Unit Weight (pc) 163.5 Height/Diameter Ratio 1.995 Moisture Content ¹ (%) 1.8	Motifue Condition Air received, motifue and the condition are received. Tested a 10-10-2001 Temperature (*C) Bar Lead (Int) Deak Lead (Int) Deak Lead (Int) Deak Lead (Int) Deam Asplit Fairue Type Dene and Split Deate and Split Uther LipdurDiametric Deate and Split U	File: UZ205125, UCR.194.316 Street Report Fuller, Mossbarger, Scott and May Engineers, Inc. (Lappingery Occument Preparation Date: 2-2002 Revision Date: 7-2002
Image: Project Name I-265 Over Ohio River Unconfined Compressive Strength Project Name I-265 Over Ohio River Of Intact Rock Core K(M 64-523-02 Project Name I-265 Over Ohio River Intact Rock Core K(M 64-523-02 Unthology Limestone , gray , moderately hard, shale seams 7.34-1 Hole Number AC-3 Depth (fibelev) 124.7 ¹	Dimensional Conformance Height (in) 7.126 Specimen Dimensions 5.963 Side Planeness Pass Diameter (in) 3.316 Wet Unit Weight (pc) 167.4 Perpendicularity Pass Diameter (in) 3.316 Wet Unit Weight (pc) 167.4 End Planeness Pass Area (in ²) 8.638 Dry Unit Weight (pc) 166.2 Height/Diameter Ratio 2.149 Moisture Content ¹ (%) 0.7	Motifue Condition Areached, motified Desktored (10-16-2007) Temperature (*c) 10 Temperature (*c) 10 Desktored (100) 2000 Desktored (100) 2000 Desktored (100) 2000 Compressive Strendth (ss) 250 Tailure Type 2000 Tailure Strendth (ss) 250 Tailure Type 2000 Texter HelduthDiameter Tailor - 210 2000 Corrected Compressive Strendth Calculation 2000 Corrected Compressive Strendth (ss) 2000 <tr< td=""><td>File: LY2055134_UCR-18.3.48 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Premention Date: 2-2002 Revision Date: 7.2002</td></tr<>	File: LY2055134_UCR-18.3.48 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Premention Date: 2-2002 Revision Date: 7.2002

Image: Fight Complexity of the second co	Moisture Condition As received, moist Date Testered DateTestered Date Testered	File LX200415_UDR34.348 Sheet Report Preparation Date: 2-2002 Revision Date: 7-2002 Approved 5y, TLX
Froject Name I-265 Over Ohlo River E N G I N E E R S Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Name I-265 Over Ohlo River Lithology Limestone, gray, moderately hard, shale seams Hole Number AC-4/180+8/1.55, 91.95 pth (ffelev) 117.4'-117.8' Project Number LX2005125 Lab ID UCR-32 Date Received 08-10-2007 Dimensional Conformance Side Planeness Pass Height (in) 4.754 Area (in ²) 3.111 Weight (in) 1405 Din Unit Weight (pcf) 164.2 End Planeness Pass Diameter (in) 1.990 Area (in ²) 3.111 Wet Unit Weight (pcf) 164.2 HeightViameter Ratio 2.388 Moisture Content ¹ (%) 0.3	Moisture Condition As received dy Luading Rate (Upface) Date Tested _0-19-2001 Lading Rate (Upface) 11.6 Lading Rate (Lading Condition) Date Tested _0-19-2001 Compressive Strength (psi) 9200 Compressive Strength (psi) 9200 Failue Type Columar Pailue Type Columar Failue Type Columar Pailue Type Columar Merie Height/Diameter Ratio <1	File: Lizgosis5_UCR32.46 Sheet Report Puller, Mossbarger, Scott and May Engineers, Inc. Leterator Croament Prepared by Tux Review Date: 7.2002

E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Limestone, gray, moderately hard, shale seams Lab ID UCR-45 UOR Hole Number AC-6/193+51.7, 0.28 Rt.	Dimensional Conformance Side PlanenessHeight (in)4.212 1.978Wet Unit Weight (lb)1.242 1.65.8PerpendicularityPassDiameter (in)1.978Wet Unit Weight (pc)165.8PerpendicularityPassArea (in²)3.073Dry Unit Weight (pc)165.1Find PlanenessPaseArea (in²)2.129Moisture Content ¹ (%)0.4	Mittare Condition A Received, dry Temperature (x ^(x)) Date Texted G10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	File, L2006;12, UCR-45 Jats Street: Rejord Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Presentery University, JW Presenter Date: 2-2002 Revision Date: 7-2002
E N G I N E E R S KM 64-523-02	Project Name 1-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layers Hole Number AC-6/193+51.7, 0.28' Rt. Depth (ft/elev) 105.0' - 105.35' Date Received 08-10-2007	Dimensional Conformance Specimen Dimensions Side Planeness Pass Height (in) 4.700 Weight (ib) 1.362 Perpendicularity Pass Diameter (in) 1.981 Wet Unit Weight (pcf) 162.5 Fund Planeness Pass Diameter (in) 3.081 Dry Unit Weight (pcf) 162.5 Height/Diameter Ratio 2.373 Moisture Content ¹ (%) 0.5	Molture Condition As received, dy Temperature (°C) 215 Date Tested 09:19:2001 Temperature (°C) 215 Date Tested 09:19:2001 Temperature (°C) 210 Date Tested 09:19:2001 Compressive Strength (ps) 826 Date Tested 09:19:201 Compressive Strength (ps) 826 Date Tested 09:19:201 Compressive Strength (ps) 826 Date Tested 09:10 Failure Type Come and Split Profile Profile Compressive Strength (ps) NM Profile White Height/Diameter Ratio < 2)	File: LX2055155_UCR-42.26 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Lehoney Document Preparation Date: 2.2002 Reveion Date: 7.2002

E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Lithology Lithology L	Dimensional Conformance Height (in) 3.998 Specimen Dimensions 1.181 Side Planeness Pass Diameter (in) 3.998 Wet Unit Weight (pc) 1.181 Perpendicularity Pass Diameter (in) 3.996 Wet Unit Weight (pci) 1.64.8 Fund Planeness Pass Area (in ³) 3.097 Dry Unit Weight (pcf) 164.2 Height/Diameter Ratio 2.014 Moisture Content ¹ (%) 0.4	Moiture Condition As received. dry	File L/2006155, UCR-64-36 Sheet Report Preparation bate: 2-2002 Revision bate: 7-2002
E N G I N E E R S KM 64-52-02 KM 64-523-02	Project Name 1-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layer Hole Number AC-6/193+61.7, 0.28' Rt. Depth (ft/elev) 128.2' - 128.55' Date Received 08-10-2007	Dimensional Conformance Height (in) 3.919 Specimen Dimensions 1.108 Side Planeness Pass Diameter (in) 1.376 Weight (pt) 1.108 Perpendicularity Pass Diameter (in) 1.376 Wet Unit Weight (pt) 159.3 Find Planeness Pass Area (in ²) 3.067 Dry Unit Weight (pcf) 158.6 Find Planeness Pass Area (in ²) 3.067 Dry Unit Weight (pcf) 158.6 Find Planeness Pass Moisture Content ¹ (%) 0.5	Moisture Condition As received, dry Temperature (°C) Date Tested 06-19-2007 Temperature (°C) 21.5 Temperature (°C) 21.5 Peak Load (th) 2460 Compressive Strength (ps) 8140 Compressive Strength (st) 66 Failure Type Cone and Split Peak Load (th) Alter Type Cone and Split Peak Load (th) Compressive Strength (st) 66 Compressive Strength (st) 66 Compressive Strength (st) 67 Corrected Compressive Strength (st) 565 Vie stender 566	THe. L2006515, JUR-47 Jie Sheet Repurt Fuller, Mossbarger, Scott and May Engineers, Inc. Lateratory Dearment Preparation takes 2,2002 Preparation takes 2,2002 Revision Date, 7,2002

Unconfined Compressive Strength Of Intact Rock Core KM64-533-02	Project Name <u>1.265 Over Ohio River</u> Lithology Limestone, gray, moderately hard, shale layers Hole Number <u>AC-7 193+95, 68 Lt.</u> Depth (ffelev) <u>111.9' - 112</u> 35' Date Received <u>08-10-2007</u>	Dimensional Conformance Height (in) Sectimen Dimensions 1.053 Side Planeness Pass Height (in) 3.600 Wet Unit Weight (lb) 1.053 Perpendicularity Pass Diameter (in) 1.982 Wet Unit Weight (pc) 165.3 Find Planeness Pass Area (in ²) 3.086 Dry Unit Weight (pc) 164.6 Height/Diameter Ratio 1.816 Moisture Content ¹ (%) 0.4	Motisture Condition As received. dry Temperature (*C) Data Teacined. dry Temperature (*C) Data Teaced 0.0-10.00 Deak Load (hc) 3870 Compressive Strength (ps) 116.0 Compressive Strength (bt) 37 Failure Type Cone and Split 0.0 Failure Type Cone and Split 0.0 Tealure Type Cone and Split 0.0 Compressive Strength (bt) 0.0 Merced Compressive Strength (bt) 0.00 Ornection Coefficient 0.00 Corrected Compressive Strength (bt) 0.00 Corected Compressive Strength (bt)	File: LY2005125_UOR-89.Jult Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Preparation Deer 2.2002 Revision Deer 7.2002
Unconfined Compressive Strength Of Intact Rock Gore KM 64-523-02	Project Name I-265 Over Ohio River Lithology Linnestone, gray, moderately hard, shale seams Hole Number <u>AC-7 193+95, 68' Lt.</u> Depth (fifelev) <u>109.3' - 109</u> .65' Date Received <u>08-10-2007</u>	Dimensional Conformance Specimen Dimensions Side Planeness Pass Height (in) 4.404 Verpendicularity Pass Diameter (in) 1.305 For pendicularity Pass Diameter (in) 1.383 End Planeness Pass Diameter (in) 1.383 Find Planeness Pass Dry Unit Weight (pc) 165.0 Height/Diameter Ratio 2.221 Moisture Content ¹ (%) 0.4	Moisture Condition <u>As received, dy</u> Temperature (°C) Date Tested_00-0002001 Temperature (°C) 21.5 Loading Rate (10/fsec) 110 Peak Load (tb) 37790 Compressive Strength (ps) 12240 Compressive Strength (ts) 881 Failure Type Enture Strength Attente Compressive Strength (ts) 81 Correction Coefficient <u>WA</u> Enture Strength Corrected Compressive Strength (ts) <u>WA</u> Corrected Compressive Strength (ts) <u>WA</u> Corrected Compressive Strength (ts) <u>NA</u> Corrected Compressive Strength (ts) <u>NA</u> Connents Image a standable after compressive strength sea used in mission content determination was performed as per ASTM D 2216-88, where as much of the whole spectrum as analole after compression strength sea used in mission content testing.	File LX2005155_UCR-58.M6 Sheet Report Fuller, Mossbarger, Scott and May Engineers, Inc. Latoratory Document Prepared by JW Revision Date: 2,2002 Revision Date: 7.2002

Complexity Complexity F N G I N E E R S Of Intact Rock Core F N G I N E E R S Froject Name I-265 Over Ohio River Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Shale, dark gray, soft, limestone layer Lab ID UCK-69 Hole Number AC-87(33-455, 1.22LI, Depth (ftelew) 102, 85' - 103. 2' Date Received 08-10-2007	Dimensional Conformance Height (in) 3.991 Side Planeness Pass Height (in) 3.991 Perpendicularity Pass Diameter (in) 2.010 Perpendicularity Pass Diameter (in) 3.172 Propendicularity Pass Area (in ⁴) 3.172 Propendicularity Pass Area (in ⁴) 3.172 Propendicularity Pass Area (in ⁴) 3.172	Metric Condition As reserved, most Temperature (°C) 215 Temperature (°C) 130 Temperature (°C) 140 Temperature (°C) 140 Compressive Strength (str) 1 Falue Type Compressive Strength (str) 1 Temperature (strength (str)) 1 Temperature (strength (str)) 1 Compressive Strength (str) 1 Compressintertistinteres termination in the strength (str)	File, U-22015/35, UCR 453 als Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Prepared by JW Prepared by JW Revision Date: 7-2002
E N G I N E E R S Unconfined Compressive Strength F N G I N E E R S Of Intact Rock Core Froject Name 1-265 Over Ohio River Froject Number LX2005125 Lithology Limestone, gray, moderately hard, shale layer Lab ID UCR-68 Hole Number AC-381/33+55, 1.2211. Depth (fifelely) 99.3 - 99.7	Dimensional Conformance Height (in) 3.991 Specimen Dimensions Side Planeness Pass Height (in) 3.991 Weight (ib) 1.175 Perpendicularity Pass Diameter (in) 1.979 Wet Unit Weight (pcf) 165.4 Fed Planeness Pass Area (in ⁵) 3.076 Dry Unit Weight (pcf) 164.8 Height/Diameter Ratio 2.017 Moisture Content ¹ (%) 0.4	Moleture Condition Ae received, dry Date Tested Go-16-2007 Temperature (*C) 215 Date Tested Go-16-2007 Temperature (*C) 3610 Date Tested Go-16-2007 Compressive Strength (ps) 11640 Date Tested Go-16-2007 Compressive Strength (ps) 11640 Date Tested Go-16-2007 Compressive Strength (ps) 38 Date Type Core and Split Date Type Core and Split Alternate Commessive Strength (ps) Molete Helgin/Unimited Ratio -2) Date Type Core and Split Date Tested Corrected Compressive Strength (ps) Molete Helgin/Unimited Ratio -2) Date Tested Date Tested Corrected Compressive Strength (ps) Moleter Helgin/Unimited Ratio -2) Date Tested Date Tested Corrected Compressive Strength (ps) Moleter Helgin/Unimited Ratio -2) Date Tested Date Tested Corrected Compressive Strength (ps) Moleter Alternation was performed as per ASTM D 2516-36, where as much of the whele spectrum as valuable after compression strength tested as per ASTM D 2516-36, where as much of the whele spectrum as valuable after compression strength tested as per ASTM D 2516-36, where as much of the whele spectrum as valuable after compression strength tested as per ASTM D 2516-36, where as the of the whele spectrum as valuable after compression strength tested as per ASTM D	File: U.2005125_UCR-65.46 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. 114604104 Desument Preparation Date: 7.2002 Approved by TLK Revision Date: 7.2002

E N G I N E E R S KIM G4-523-02 KIM 64-523-02	Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale lavers Hole Number AC-9/193+95, 70' Rt. Depth (ft/elev) <u>105,75' - 106</u> , 15' Date Received <u>08-10-2007</u>	Dimensional Conformance Height (in) 4.414 Specimen Dimensions 1.313 Side Planeness Pass Diameter (in) 4.414 Wet Unit Weight (pc) 1.313 Perpendicularity Pass Diameter (in) 1.984 Wet Unit Weight (pc) 165.7 End Planeness Pass Area (in ²) 3.093 Dry Unit Weight (pc) 165.7 Height/Diameter Ratio 2.225 Moisture Content ¹ (%) 0.3	Motiver condition Are Teachined. dy. Temperature (C) 2.02 Temperature (C) 2.02 Deak Load (th) 2.100 Compressive Strength (ps) 70 Compressive Strength (ts) 60 Falue Type Undetermined 60 Falue Type Undetermined 60 Compressive Strength (ts) 60 Miner Height/Dianeter Ratio <2) 60 Compressive Strength (ts) 60 Miner Height/Dianeter Ratio <2) 60 Compressive Strength (ts) 60 Miner Height/Dianeter Ratio <2) 60 Compressive Strength (ts) 60 Miner Height/Dianeter Ratio <2) 60 Compressive Strength (ts) 60	File: UZ205125, UCR-80.X6 Sheet: Feyont Fuller, Mossbarger, Scott and May Engineers, Inc. Lateratory Document Preparation Date: 2:2002 Revision Date: 7:2002
E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Lithology <u>Limestone, gray, moderately hard</u> Hole Number <u>AC-8/193+95, 1.22'Lt</u> Depth (ft/elev) <u>120.65' - 121</u> .05' Date Received <u>08-10-2007</u>	Dimensional Conformance Specimen Dimensions Side Planeness Pass Height (in) 4.445 Wet Unit Weight (lb) 1.312 Perpendicularity Pass Diameter (in) 1.980 Wet Unit Weight (pcf) 1.65.7 Find Planeness Pass Drameter (in) 3.079 Dry Unit Weight (pcf) 165.2 Find Planeness Pass Moisture Content ¹ (%) 0.3	Moisture Condition As received, dy Temperature (*C) Date Tested 09-20-2007 Temperature (*C) 202 Deak Load (bb) 2470 Peak Load (bb) 2470 Compressive Strength (ps) 810 Compressive Strength (ps) 610 Failure Type Shear 7 Failure Type Shear 7 Failure Type Shear 7 Compressive Strength (ps) 60 Maternate Compressive Strength (st) 60 Outpeer Helddruftbiandet Ratio < 2)	File: LV2206125, UOR/73.xits Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Latrativy Document Preparation Dame 7.2002 Revelant Date 7.2002

ENGINE ROLL COMPLEXIES STRENGTH Continued Compressive Strength Of Intact Rock Core KM 64-523-02	Project Name 1-265 Over Ohio River Lithology Limestone, gray, moderately hard Lab ID UCR-85 Hole Number AC-9/193+95, 70' Rt. Depth (ft/elev) 119.8' - 120.15' Date Received 08-10-2007	Dimensional Conformance Height (in) 4.015 Specimen Dimensions 1.184 Side Planeness Pass Diameter (in) 1.983 Wet Unit Weight (pc) 1.65.1 Perpendicularity Pass Drameter (in) 1.983 Wet Unit Weight (pc) 164.4 End Planeness Pass Area (in ²) 3.087 Dry Unit Weight (pc) 164.4 Height/Diameter Ratio 2.025 Moisture Content ¹ (%) 0.4	Martine Condition A received. drive Data Tested 109-202001 Temperature (C) 202 Temperature (C) 202 Tender (Brites) 2020 Tender (Brites) 2020 Compressive Strength (ps) 000 Tailue Type 000 Failure Type 000 Failure Type 000 Tender Strength (ps) 000 Marter Strength (ps) 000 Marter Strength (ps) 000 Marter Strength (ps) 000 Marter Height/Damieter Ratio 000 Marter Height/Damieter Ratio 000 Marter Strength (ps) 000 Marter Height/Damieter Ratio 000 Marter Height/Damieter Ratio 000 Marter Jointon 000 Marter Jointon 000 Marter Strength (ps) 000 Marter Jointon 000 <th>File: L2006125, UGK-85 xill Stratt: Roport Fuller, Mossbarger, Scott and May Engineers, Inc. Latoratup Document Preparation Date: 7:202. Revision Date: 7:202.</th>	File: L2006125, UGK-85 xill Stratt: Roport Fuller, Mossbarger, Scott and May Engineers, Inc. Latoratup Document Preparation Date: 7:202. Revision Date: 7:202.
END OF IN E E R S KM 64-523-02 KM 64-523-02	Project Name 1-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layers Hole Number AC-9/193+95, 70' Rt. Depth (ft/elev) 116.5' - 116.9' Date Received 08-10-2007	Dimensional Conformance Expectment Dimensions Side Planeness Pass Height (in) 3.755 Perpendicularity Pass Diameter (in) 1.992 Perpendicularity Pass Diameter (in) 1.992 Find Planeness Pass Diameter (in) 1.922 Find Planeness Pass Dry Unit Weight (pcf) 161.8 Height/Diameter Ratio 1.894 Moisture Content ¹ (%) 0.5	Moisture Condition As received, dry Temperature (°C) Date Tested 09-2002007 Temperature (°C) 201 10 Deak Load (Ibi) 22320 22320 Compressive Strength (psi) 7430 7430 Compressive Strength (psi) 7430 7430 Compressive Strength (psi) 733 7430 Failure Type Undetermined 7410 770 Alternate Compressive Strength (sta) 333 780 Corrected Compressive Strength (sta) 330 7380 Corrected Compressive Strength (sta) 330 7380 Corrected Compressive Strength (sta) 330 7380 Corrected Compressive Strength (sta) 331 7380	The L2005135_UCR-83 bit Street Report Fuller, Mossbarger, Scott and May Engineers, Inc. Latoratory Document Preparation Dec. 2,4002 Preparation Dec. 2,4002 Revision Dec. 7,2002

Project Name I-265 Over Ohio River Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Shale, dark gray, soft Hole Number AC-10/205-98, 70*Lt Depth (t/telev) 104.8* - 105.2*	Dimensional ConformanceHeight (in)Specimen DimensionsSide PlanenessPassHeight (in)4.521PerpendicularityPassDiameter (in)1.382PerpendicularityPassArea (in ⁵)3.085End PlanenessPassArea (in ⁵)3.085Height/Diameter Ratio2.281Moisture Content ¹ (%)16	Meisture Condition As received, most Texperative ("C") Zet Lead (101) Termperature ("C") 202 Conding Rate (10/face) 1010 Peak Load (101) 202 Compressive Strength (ps) 320 Compressive Strength (ps) 25 Failue Type Undetermined 26 Failue Type Undetermined 26 Compressive Strength (ps) 26 Compressive Strength (ps)<	File: LX005152. UCR-64-Jak Sheet. Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Prepared By, JW Revision Date: 7/202
Project Name 1-265 Over Ohio River Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Name 1-265 Over Ohio River Project Number LX2005125 Lithology Limestone, gray, moderately hard, shale layer Hole Number AC-10/2054-98, 70'Lt Depth (ffelev) 100.2' - 100.5'	Dimensional Conformance Height (in) Specimen Dimensions Side Planeness Pass Height (in) 3.266 Weight (pcf) 0.962 Perpendicularity Pass Diameter (in) 1.985 Wet Unit Weight (pcf) 164.4 End Planeness Pass Area (in ⁵) 3.096 Dry Unit Weight (pcf) 162.3 Height/Diameter Ratio 1.645 Moisture Content ¹ (%) 1.3	Metric Contrition A received, finitely for the provision of	File: LV2005155_UCR-61 A& Sheet Report Preparation Date: 7,2002 Revision Date: 7,2002

Unconfined Compressive Strength Of Intact Rock Core KM64-523-02	Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Limestone, gray, moderately hard, shale seams Project Number LX2005125 Lithology Limestone, gray, moderately hard, shale seams Lab ID UOR-105 Hole Number AC-11/205+95,1.3 Lt. Depth (fbelev) <u>92.1'-92.55</u> Date Received <u>08-10-2007</u> Dimensional Conformance Height (in) 4.44 Weight (lb) 1.316 Side Planeness Pass Diameter (in) 1.987 Wet Unit Weight (pc) 165.0 End Planeness Pass Diameter (in) 2.336 Moisture Content ¹ (%) 0.8	Mistine Condition As recorded, moist Tengenature (**) Tengenature (**) Temperature (**) 110 Deak Load (hb) 11740 Deak Load (hb) 11740 Deak Load (hb) 11740 Deak Load (hb) 120 Deak Load (hb) 120 <th>File: L22005125_UCR-105 4ls Street Report Fuller, Mossbarger, Scott and May Engineers, Inc. Lateratury bournent Preparation: Date: 2-2002 Revision Date: 7-2002</th>	File: L22005125_UCR-105 4ls Street Report Fuller, Mossbarger, Scott and May Engineers, Inc. Lateratury bournent Preparation: Date: 2-2002 Revision Date: 7-2002
ENGINERS COMPRESSIVE Strength Of Intact Rock Core KM 64-523-02	Project Name 1-265 Over Ohio River Project Number L265 Over Ohio River Lithology Litnology Litnology Lah ID UR-96 Log Number Lah ID UCR-96 Hole Number AC-10/205+98, 70' Lt. Depth (fibelev) 112.5' - 112.9' Dimensional Conformance Height (in) 4.483 Wet Unit Weight (lb) 1.321 Perpendicularity Pass Dry Unit Weight (pcf) 1.321 End Planeness Pass Dry Unit Weight (pcf) 1.64.5 Height/Diameter (in) 1.392 Dry Unit Weight (pcf) 1.64.5	Moisture Condition As received, dry Temperature (°C) Date Tested 09-20-2001 Temperature (°C) 20.2 20.2 Temperature (°C) 20.2 20.2 Temperature (°C) 20.2 20.2 Temperature (°C) 20.2 20.2 Loading Rate (bl/sec) 1336 20.2 Compressive Strength (tst) 961 961 Failure Type Come and Split 961 961 Mittee Height/Diameter Ratio < 2)	Hie. LX205125, UCR-86.46 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Lateratory brunnert Proposition Date: 7-202 Revision Date: 7-202

>

Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Number LX2005125 Lab ID UCR-109 epth (ftelev) 106.95' - 107.3 Date Received 08-10-2007	A 448 Specimen Dimensions 1 4.448 Weight (lb) 1.318 1 1.385 Wet Unit Weight (pcf) 165.5 1 3.095 Dry Unit Weight (pcf) 164.0 0 2.241 Moisture Content ¹ (%) 0.9	Date Tested _0-20-2007	Scott and May Engineers, Inc. Inc. Prepared Br Tix
E N G I N E R S Project Name I-265 Over Chio River Lithology Limestone, gray, moderately hard. Hole Number ACT-11/206-95,1.3.1t. E	Dimensional Conformance Side Planeness Pass Diameter (ir Perpendicularity Pass Diameter (ir End Planeness Pass Height/Diameter Rat	Moisture Condition <u>As received, moist</u> Temperature (°C) <u>202</u> Loading Rate (Ibf/sec) <u>110</u> Peak Load (Ibf) <u>27320</u> Compressive Strength (Isf) <u>636</u> Failure Type <u>Undetermined</u> <u>Alternate Compressive Strength Calculat</u> (Where Heighth[Dilameter Ratio < 2) Corrected Compressive Strength (psi) <u>N/A</u> Corrected Compressive Strength (st) <u>N/A</u> Corrected Compressive Strength (st) <u>N/A</u> Corrected Compressive Strength (st) <u>N/A</u> spectation as available after comp * The alternate content determine whole spectimen as available after comp * The alternate compressive strength calculat	File, L2005136, UCR-103.46 Steel: Report Fuller, Mossbarger, Prepeation Date, 2 2002 Revision Date, 7 2002
Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Number LX2005125 Lab ID UCR-108 104.6 105.0' Date Received 08-10-2007	Specimen Dimensions1.219Weight (lb)1.219Wet Unit Weight (pcd)161.8Dry Unit Weight (pcd)160.7Moisture Content ¹ (%)0.7	Date Tested 09-20-2007	/ Engineers, Inc. Laboratory Document Propared By TLK Approved By TLK
E N G I N E E R S Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layer Hole Number <u>AC-11/205+95,1,3 Lt.</u> Depth (ff/elev).	Dimensional Conformance Side Planeness Pass Diameter (in) 4.215 Perpendicularity Pass Area (in ²) 3.088 End Planeness Pass Height/Diameter Ratio 2.126	Moisture Condition As received, dry Temperature (°C) 20.2 Loading Rate (Ibf)sec) 110 Loading Rate (Ibf)sec) 110 9680 Compressive Strength (psi) 5980 Compressive Strength (tsf) 431 Failure Type Cone and Split Atternate Compressive Strength (calculation ²) (Where Height/Diameter Ratio < 2)	Inc. L2205125_UCH-108.x6 Street: Report Fuller, Mossbarger, Scott and May requester Date: 7.2002 Revision Date: 7.2002

E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale traces Hole Number AC-12/205+94, 71 Rt. Depth (fiblev) 103.4' - 103.75' Date Received 08-10-2007	Dimensional Conformance Height (in) Specimen Dimensions 1.228 Side Planeness Pass Diameter (in) 4.178 Wet Unit Weight (pc) 1.228 Perpendicularity Pass Diameter (in) 1.386 Wet Unit Weight (pc) 163.9 Find Planeness Pass Area (in ²) 3.099 Dry Unit Weight (pc) 162.9 Height/Diameter Ratio 2.103 Moisture Content ¹ (%) 0.6	Moistine Condition As received, dy Data Leading Late (Diffesc) 202.000 Temperature (°C) 202 Deak Load (B) 3110 Compressive Strendth (pst) 100 Compressive Strendth (pst) 100 Failure Trype Undetermined 100 Millere Height/Diameter Ratio <10 100 Compressive Strendth (pst) 100 Compressive Strendth (pst) 100 Millere Height/Diameter Ratio <10 100 Compressive Strendth (pst) 100 Compressive Strendth (pst) 100 Concected Compressive Strendth (pst) 100 Context determined 100 Context determined	File: Lizcostaz, UCN-171Juts Sheet Report Fulller, Mossbarger, Scott and May Engineers, Inc. Laboratory Operament Prepared Sy, JW Revision Ober F-2002
E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layer Hole Number AC-12/205+94, 71 Rt. Depth (ft/elev) 102.85 - 103.1* Date Received 08-10-2007	Dimensional Conformance Specimen Dimensions Side Planeness Pass Diameter (in) 3.127 Side Planeness Pass Diameter (in) 3.127 Vergendicularity Pass Diameter (in) 1.989 Vet Unit Weight (pcf) 163.4 End Planeness Pass Height/Diameter Ratio 1.572 Moisture Content 0.5	Molsture Condition As received. dty Date Tested02-20:001 Temperature (C)	File: LZ005175. UCR-118.MS Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Leburatory bournent Preparation Date: 2002 Revoluti Date: 7:2002

	E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard, shale layers and areas Hole Number AC-13/206+50, 0.02 Lt Depth (ft/elev) 90.65' - 91.0 Date Received 08-10-2007	Dimensional Conformance Height (in) 4.149 Specimen Dimensions 1.225 Side Planeness Pass Diameter (in) 4.149 Wet Unit Weight (ib) 1.525 Perpendicularity Pass Diameter (in) 1.981 Wet Unit Weight (pc) 165.5 Find Planeness Pass Dry Unit Weight (pc) 165.1 0.3 Height/Diameter Ratio 2.095 Moisture Content ¹ (%) 0.3	Mosture Condition As received, dy Tenterature (*C) 202 Temperature (*C) 202 Deak Load (th') 201 Deak Load (th') 201 Deak Load (th') 201 Compressive Strength (ts') 201 Compressive Strength (ts') 201 Compressive Strength (ts') 201 Falure Type Undetermined 201 Compressive Strength (ts') 201 Compressive Strength (ts') 201 Compressive Strength (ts') 201 Concellent Mid 201 Concellent Mid 201 Concellent Mid 201 Concellent Nick 201 Concellent Nick 201 Concellent Compressive Strength (ts) 201 Concellent Compressive Strength (ts) 201 Concellent Compressive strength ender content estimation was performed as per ASIN 0.2.216-80 201 Concellent Compressive strength ender estimation was performed as per ASIN 0.2.216-80 201 Concellent Strength ender estimation was performed as per ASIN 0.2.216-80 201 Concellent Strength ender estimation was performed as performed as per ASIN 0.2.216-80 201 <th>File: Lizzons 12, UCR-12 als Sheer Report Puller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Prepared by JW Revision Date: 7:202</th>	File: Lizzons 12, UCR-12 als Sheer Report Puller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Prepared by JW Revision Date: 7:202
>	·				
	Unconfined Compressive Strength Of Intact Rock Core	5 Over Ohio River LX2005125 estone, gray, moderately hard, shale areas Lab ID UCR-122 12/205+94, 71 Rt. Depth (fbelev) 111.4'111.8' Date Received 08-10-2007	mance Specimen Dimensions Pass Height (in) 4.731 Pass Diameter (in) 1.491 Pass Net Unit Weight (b) 1.412 Pass Area (in ⁵) 3.113 Dry Unit Weight (ccf) 165.7 Pess Area (in ⁵) 3.113 Dry Unit Weight (ccf) 165.2 Height/Diameter Ratio 2.376 Moisture Content ¹ (%) 0.3	Data Tested Jay Data Tested Jay Data Tested Jay Data Tested Jay Utre (°C) 202 (hthse) 110 Dad (bh) 27660 Odd (bh) 27660 Odd (bh) 27660 Odh (br) 880 Ogh (br) 880 Ogh (br) 880 Ogh (br) 640 Or Type Cone and Split 0 Ontrestends Estendition 0 HeidphUlameter Ratio <2)	at Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laborator Document Propert Sp. JW Report Sp. JW Approved Sp. TUK
		Project Name <u>I-265</u> Lithology <u>Lime</u> Hole Number <u>AC-1</u>	<u>Dimensional Conforr</u> Side Planeness <u>F</u> Perpendicularity <u>F</u> End Planeness <u>F</u>	Moisture C Temperat Loading Rate I Peak Ld Compressive Streng Alternate Cd Cd Corrected Compre Corrected Compre Corrected Compre Corrected Compre as I as I	File: LY2005125_UCR-122.XIs Sheel Preparation Dale: 2-2002 Revision Dale: 7-2002

E N G I N E E R S KIN 64-523-02	Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Limestone, gray, moderately hard, shale seams Lab ID UCR-133 Hole Number AC-13/206+50, 0.02 Lt Depth (fbelev) 105.85' - 106.2 Date Received 08-10-2007 Dimensional Conformance Depth (fbelev) 105.65' - 106.2 Date Received 08-10-2007	Side Planeness Pass Height (in) 4.4.22 Wet Unit Weight (pc) 1.2.90 Perpendicularity Pass Diameter (in) 1.968 Wet Unit Weight (pcf) 165.7 End Planeness Pass Area (in ²) 3.042 Dry Unit Weight (pcf) 163.1 Height/Diameter Ratio 2.247 Moisture Content ¹ (%) 1.6	Moisture Condition As received, moist Date Tested 09-20-2007 Temperature (°C) 20.2 110 Loading Rate (lbf/sec) 110 Failure Sketches Peak Load (lbf) 19640 19640	Compressive Strength (tsf) 0400 Compressive Strength (tsf) 465 Failure Twoe Undetermined	Alternate Compressive Strength Calculation ² (Where Height/Diameter Ratio < 2)	Correction Coefficient <u>N/A</u>	Corrected Compressive Strength (tst) <u>N/A</u>	Comments	¹ Post testing moisture content determination was performed as per ASTM D 2216-98, where as much of the whole specimen as available after compression testing was used in moisture content testing.	² The alternate compressive strength calculation is presented when the height to diameter ratio is less than 2, as per KM 84-523-02.		File: UX2005135_UCR-133.45 Street: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Untravered by .u. Preparedist Date: 2-2023 Revision Date: 7-2022
E N G I N E E R S KM 64-523-02	Project Name 1-265 Over Ohio River Project Number LX2005125 Lithology Linnestone, gray, moderately hard, shale layers Lab ID UCR-130 Hole Number AC-13/200+50, 0.02 Lt Depth (ft/elev) 97.75 - 98.1' Date Received 08-10-2007 Dimensional Conformance Mixiokk r/k)	Side Planeness Pass Height (in) 4.228 Wet Unit Weight (pc) 165.5 Perpendicularity Pass Diameter (in) 1.975 Wet Unit Weight (pcf) 165.5 End Planeness Pass Area (in ²) 3.063 Dry Unit Weight (pcf) 164.0 Height/Diameter Ratio 2.141 Moisture Content ¹ (%) 0.9	Moisture Condition As received, moist Date Tested 09-20-2007 Temperature (°C) 20.2 20.2 Loading Rate (lbf/sec) 110 14230 Peak Load (lbf) 14230 110	Compressive Strength (tsf) 4030 Compressive Strength (tsf) 335 Failure Twne Undetermined	Alternate Compressive Strength Calculation ² (Where Height/Diameter Ratio < 2)	Correction Coefficient <u>N/A</u>	Corrected Compressive Strength (tst) <u>N/A</u>	Comments	¹ Post testing moisture content determination was performed as per ASTM D 2216-96, where as much of the whole specimen as available after compression testing was used in moisture content testing.	² The alternate compressive strength calculation is presented when the height to diameter ratio is less than 2, as per KM 64-523-02.		File: UZ2005155_UCR-180.Na Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Preparation Date: 2.202 Preparation Date: 2.202 Review Day, W Review Date: 7.202

E N G I N E E R S Unconfined Compressive Strength Project Name 1-265 Over Ohio River Diatect Rock Core Lithology Limestone, gray, moderately hard Project Number L205 Over Ohio River Dimensional Conformance Height (in) 4.492 Side Planeness Pass Veri Unit Verificit (in) Dimensional Conformance Height (in) 4.492 Propendicularity Diameter (in) 1.883 Propendicularity Pass Vert Unit Weight (ib) 1.334	End Planeness Pass Area (m) 3.000 Uny unit wrey in (wor) Unit wreg in	Corrected Compressive Strength (psi) <u>N/A</u> Corrected Compressive Strength (tsf) <u>N/A</u> Comments	¹ Post testing moisture content determination was performed as per ASTM D 2216-98, where as much of the whole specimen as available after compression testing was used in moisture content testing. ² The atternate compressive strength calculation is presented when the height to diameter ratio is less than 2, as per KM 64-523-02.	File: L2005122, L06-230,Mis Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laheardory Desument Prepared by JW Revision Date: 2,202 Revision Date: 7,202
Find Compressive Strength Interct Rock Gree Interct Rock Gree Intercent Roll Interct Rock Gree Intercent Roll Interct Rock Gree Intercent Roll Intercent Roll Intercent Roll <thintercent roll<="" th=""> Intercent Roll<!--</th--><th>End Planeness Pass Area (in¹) 3.144 Dry Unit Weight (pct) 135.3 Moisture Condition As received, moist Moisture Content¹ (%) 7.8 Moisture Content¹ (%) 7.8 Moisture Condition As received, moist Temperature (°C) 23 23 Past Load 135.5 Loading Rate (Ibfised) 20 23 Past Load (bf) 580 Compressive Strength (psi) 180 Compressive Strength (psi) 13 Failure Type Shear Alternate Compressive Strength Calculation² Alternate Compressive Strength Calculation²</th><th>Corrected Compressive Strength (psi) <u>N/A</u> Corrected Compressive Strength (tsf) <u>N/A</u> Comments</th><th>¹ Post testing moisture content determination was performed as per ASTM D 2216-98, where as much of the whole specimen as available after compression testing was used in moisture content testing. ² The alternate compressive strength calculation is presented when the height to diameter ratio is less than 2, as per KM 64-52-02.</th><th>File: J2006155_UCR.252436 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Leavester Descreet Desc. 2002 Presented Desc. 2002 Review Lawr. 7.2002</th></thintercent>	End Planeness Pass Area (in ¹) 3.144 Dry Unit Weight (pct) 135.3 Moisture Condition As received, moist Moisture Content ¹ (%) 7.8 Moisture Content ¹ (%) 7.8 Moisture Condition As received, moist Temperature (°C) 23 23 Past Load 135.5 Loading Rate (Ibfised) 20 23 Past Load (bf) 580 Compressive Strength (psi) 180 Compressive Strength (psi) 13 Failure Type Shear Alternate Compressive Strength Calculation ² Alternate Compressive Strength Calculation ²	Corrected Compressive Strength (psi) <u>N/A</u> Corrected Compressive Strength (tsf) <u>N/A</u> Comments	¹ Post testing moisture content determination was performed as per ASTM D 2216-98, where as much of the whole specimen as available after compression testing was used in moisture content testing. ² The alternate compressive strength calculation is presented when the height to diameter ratio is less than 2, as per KM 64-52-02.	File: J2006155_UCR.252436 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Leavester Descreet Desc. 2002 Presented Desc. 2002 Review Lawr. 7.2002

Unconfined Compressive Strength Of Intact Rock Core E N G I N E E R S KM 64-523-02	Project Name 1-265 Over Ohlo River Project Number LX2005125 Lithology Linnestone, gray, moderately hand Lab ID UCR-140 Hole Number AC-15/210+20, 37.3 Rt. Depth (ffelev) 48.2' - 48.6' Date Received 08-10-2007 Dimensional Conformance Height (in) 4.553 Wet Unit Weight (Ib) 1.378 Side Planeness Pass Diameter (in) 1.978 Wet Unit Weight (pc) 1.378 End Planeness Pass Diameter (in) 3.073 Dry Unit Weight (pc) 157.4 Height/Diameter Ratio 2.302 Moisture Content ¹ (%) 157.4	Motian Condition As received, most Temperature (*C) 202 Temperature (*C) 202 Temperature (*C) 202 Coading Rate (lint/sec) 11 Peak Load (th) 2520 Compressive Strength (ts) 616 Failure Type 11 Failure Type 11 Failure Type 11 Failure Type 11 Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Compressive Strength (ts) 11 Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Compressive Strength (ts) 11 Compressive Strength (ts) 11 Concole Compressive Strength (ts) 11 Compressive Strength strength (ts) 11 Compressive Strength strength strength (ts) 11 Compressive Strength (ts)	File, Lyzosras_ucr, 40.vk Sheet, Report Fuller, Mossbarger, Scott and May Engineers, Inc. Lakonetor Document Preparation Date 2-2002 Revetorion Date 7-2002
E N G I N E E R S KM 64-523-02	Project Name I-265 Over Ohio River Project Number L2005125 Lithology Limestone, gray, moderately hard, shale seams Lab ID UCR-139 Hole Number AC-15/210+20, 37.3 Rt. Depth (ft/elev) 36.4' - 35.8' Date Received 08-10-2007 Dimensional Conformance Height (in) 4.445 Weight (in) 1.318 Perpendicularity Pass Diameter (in) 1.375 Weight (pcf) 1.318 Perpendicularity Pass Diameter (in) 1.975 Weight (pcf) 165.5 End Planeness Pass Diameter Ratio 2.250 Moisture Content ⁴ (%) 0.4	Moisture Condition As received, dry Temperature (°C) Date Tested 09-20-2001 Temperature (°C) 202 10 Peak Load (tb) 44120 Inter Type Compressive Strength (ps) 1440 Inter Type Compressive Strength (bs) 1400 Inter Type Compressive Strength (bs) 1037 Inter Type Failure Type Intertextended Intertextended Alter Type Undetermined Intertextended Intertextended Alter Type Undetermined Intertextended Intertextended Corrected Compressive Strength (bs) Intextended Intertextended	File, L22005135, UCR-138 As Sweet: Report Preparation Date: 2.2002 Revision Date: 7.2002
Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02	Project Number LX2005125 Lab ID UCR-233 v) 6.45-6.85' Date Received 10-23-2007 Specimen Dimensions Weight (Ib 1.393 Specimen Dimensions Unit Weight (Ib) 1.393 Ort Unit Weight (Ib) 1.56.8 Ort Unit Weight (pct) 156.8 Dry Unit Weight (pct) 156.8 Ort Unit Weight (pct) 156.8 Dry Unit Weight (pct) 166.8 Dry Unit Weight (pct) 165.8	Date Tested 10-26-2007 Failure Sketches	Aay Engineers, Inc. Laboratory boounant Proparadory, JNV Approved By TUK
--	--	---	---
	Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard Hole Number Ac-17 Dimensional Conformance Side Planeness Perpendicularity Pass Diameness Pass Diameter (in) Light/Diameter Ratio 2.36	Moisture Condition As received, moist Temperature (°C) Loading Rate (bt/bsec) 23 Loading Rate (bt/bsec) 24090 Compressive Strength (ps)) 7830 Compressive Strength (ts)) 564 Failure Type <u>Shear</u> Alternate Compressive Strength Calculation ² (Where Height/Diameter Ratio <2) Corrected Compressive Strength (ps) <u>N/A</u> Corrected Compressive Strength (ps) <u>N/A</u> Corrected Compressive Strength (ts) <u>N/A</u> Comments The alternate compressive strength calculation is pressive strength calculation is pressive as performent as a valiable after compression testing as per KM 64-523-02.	File: LX2005128_UCRA233 Jis Sheat Report Preparation Date: 2.2002 Revision Date: 7.2002
Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02	Project Number LX2005125 alle seams Lab ID UCR-1445 elevy 60.4 - 60.8' Date Received 08-10-2007 Specimen Dimensions Unit Weight (lb) 1.379 4.656 Wet Unit Weight (pcf) 1.379 0.5054 Dry Unit Weight (pcf) 1.379 0.5054 Dry Unit Weight (pcf) 1.64.8 0.05112 Moisture Content ¹ (%) 1.7	Date Tested _09-20-2007	nd May Engineers, Inc. Laboratory Document . Popure By, W. Approved By: TLK
	Project Name I-265 Over Ohio River Lithology Limestone. dark gray, moderately hard, st Hole Number AC-15/2/10+20, 37.3 Rt. Depth (ft Dimensional Conformance Side Planeness Pass Diameter (in) Perpendicularity Pass Diameter (in) End Planeness Pass Height/Diameter Ratio	Moisture Condition As received, moist Temperature (°C) 20.2 Loading Rate (Ibr/sec) 110 Peak Load (Ibr) 29410 Compressive Strength (psi) 9630 Compressive Strength (st) 693 Failure Type Cone and Shear Alternate Compressive Strength (st) Alternate Compressive Strength (st) 893 Corrected Compressive Strength (psi) NIA Corrected Compressive Strength (st) NIA Corrected Compressive Strength (st) NIA Corrected Compressive Strength (st) NIA Connents * * Post testing moisture content determination was p whole speciment as available after compression te whole speciment as the referention to the speciment as the reference to the referention to the speciment as the reference to the referen	File: U2006125_UCR-145.xls Sheet: Report Fuller, Mossbarger, Scott at Pregnantion Date: 7:202 Revision Date: 7:202

7	Image: Construction of the compressive Strength Unconfined Compressive Strength E N G I N E E R S MM 64-523-02 Project Name I-265 Over Ohio River Project Number LX2005125 Lithology Shale, dark gray, soft Lab ID UCR-237 Hole Number AC-20 Depth (ftbletv) 288-30.2'	Dimensional Conformance Height (in) 4.472 Specimen Dimensions 1.270 Side Planeness Pass Diameter (in) 1.975 Wet Unit Weight (pcf) 160.2 Perpendicularity Pass Diameter (in) 1.975 Wet Unit Weight (pcf) 153.2 End Planeness Pass Area (in ²) 3.063 Dry Unit Weight (pcf) 153.2 Height/Diameter Ratio 2.265 Moisture Content ¹ (%) 4.6	Meitre Condition Arrecieved, mold. Date Leated Date Leated	File: UZ005125_UCR.237.46 Sheet Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laburant Properties Date: 7.2022 Prepertiese Date: 7.2022
	E N Unconfined Compressive Strength Of intact Rock Core M64-523-02 R N E Project Name 1-265 Over Ohio River Project Number LX2005125 Lithology Limestone, gray, moderately hard Lab ID UCR-235 Hole Number AC-20 Depth (trelev) 8.45-8.85	Dimensional Conformance Height (in) 4.454 Specimen Dimensions 1.322 Side Planeness Pass Diameter (in) 1.487 Wet Unit Weight (lb) 1.322 Perpendicularity Pass Diameter (in) 1.987 Wet Unit Weight (pcf) 165.4 End Planeness Pass Area (in ²) 3.101 Dry Unit Weight (pcf) 164.5 Height/Diameter Ratio 2.241 Moisture Content ¹ (%) 0.6	Moisture Condition As received, molst Date Tested 10:26-2007 Temperature (°C) 23 Deak Load (bi) 23:00 Peak Load (bi) 23:00 Compressive Strength (tst) 602 Failure Type Shear Peak Load (bi) Compressive Strength (tst) 602 Failure Type Shear Peak Load (bi) Compressive Strength Calculation ² Where HeightDiameter Ratio < 2)	File. UX005126, LGR-236 sis Sheet: Report Preparation Date: 2,2002 Revision Date: 2,2002 Revision Date: 7,2002

E N G I N E E R S Unconfined Compressive Strength Froject Name 1-265 Over Ohio River E N G I N E E R S Project Name 1-265 Over Ohio River Project Number LX2005125 Lublogy Limesone, gray, moderately hard Lab ID UCR-244 Date Number AC-26 Date Number (Prelev) 10.5-10.9	Dimensional Conformance Height (in) 4.571 Specimen Dimensions 1.370 Dimensional Conformance Pass Diameter (in) 1.991 Wet Unit Weight (pcf) 1.370 Perpendicularity Pass Diameter (in) 1.391 Dry Unit Weight (pcf) 166.4 Find Planeness Pass Area (in ²) 3.113 Dry Unit Weight (pcf) 165.9 Height/Diameter Ratio 2.296 Moisture Content ¹ (%) 0.3	Moture Condition As received, moist Term persure ("C) 201 Term persure ("C) 201 Tending Rate (Indrises) 110 Peak Load (In) 2720 Compressive Strength (cs) 11980 Compressive Strength (cs) 662 Failure Type Comersive Strength (cs) 662 Failure Type Comersive Strength (cs) 662 Compressive Strength (cs) 101 Concercled Compressive Strength (cs) 101	File: Lyzostis, Ucr.244.46 Sheet: Ruport Fuller, Mossbarger, Scott and May Engineers, Inc. Internet Programmer By J. Revealed on the "2,2002 Revealed by Titk Revealed Date: 7,2002
E N G IN E E R S Unconfined Compressive Strength Project Name 1-265 Over Obio River Project Number LX2005125 Lithology Shale, gray, soft Lab ID UCR-239 Hold Number AC-23 Date Received 10-23-307	Dimensional Conformance Height (in) 4.527 Specimen Dimensions Side Planeness Pass Diameter (in) 1.387 Perpendicularity Pass Diameter (in) 1.981 Perpendicularity Pass Area (in ²) 3.083 End Planeness Pass Dry Unit Weight (pcf) 157.9 Height/Diameter Ratio 2.285 Moisture Content ¹ (%) 3.2	Moisture Condition As received, moist Date Tested 10-26-2001 Temperature (*C) 23 Temperature (*C) 23 Loading Rate (th/sec) 26 Peak Load (tb) 740 Compressive Strength (ts) 400 Compressive Strength (ts) 291 Failure Type Cone and Shear 7 Failure Type Cone and Shear 7 Compressive Strength (ts) 27 Compressive Strength (ts) 27 Compressive Strength (ts) 27 Corrected Compressive Strength (ts) 27 Comments 2 Image and the compressive strength version testing vare used in moisting to diameter ratio is less than 2, as performed by thenoisten contrest performed as performed as performed a	File: Lozostas UcR-289-ais Sheet: Report Preparation Date 7-2002 Review Date 7-2002

Image: Fight Constraint of the second compression of the second compression of the second compression of the second constraint of the second consecond constraint of the second constraint of the second con	Moture Condition As received. motity	File: LY2005173, UGR 252.46 Sheet: Report Fuller, Mossbarger, Scott and May Engineers, Inc. Laboratory Document Preparation Date: 7.2022 Revision Date: 7.2022
Find Compressive Strength F N G I N E E R S F N G I N E E R S Project Name I-265 Over Ohio River Lithology Shale, gray, soft Diplerer Name I-265 Over Ohio River Diplerer Name I-265 Over Ohio River I (n) 0.072-32.07 Diplerer Name I-265 Over Ohio River I (n) 0.072-32.07 Diplerer Name I-265 Over Ohio River I (n) 0.070-010 Displerer Ratio Specimen Dimensions Despendicularity Pass Diameter Ratio Displerer Ratio Displerer Ratio Displerer Content Displerer Ratio Displerer Ratio Displerer Ratio Displerer Ratio Displererer Ratio Displererer Ratio Displererer Ratio Displerererer Ratio Displerererererererer River Rever Rever Rever Reverererererererererererererererererere	Moisture Condition As received, moist Temperature (°C) Date Tested 10-29-2001 Tested (10)(3esc) Date (10)(3esc) Date (10)(3esc) Deak (10)(10)(10) Date (10)(10)(10) Date (10)(10)(10) Deak (10)(10)(10)(10) Date (10)(10)(10) Date (10)(10)(10)(10) Deak (10)(10)(10)(10)(10)(10)(10) Date (10)(10)(10)(10)(10)(10)(10)(10) Date (10)(10)(10)(10)(10)(10)(10)(10)(10)(10)	File: Lx2005125, UCR.245.AIS Sheet Ruport FUIIler, Mossbarger, Scott and May Engineers, Inc. Laterationy Document Propared By: JW Propared By: JW Revision Date: 7.2002

					,)
	Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02	Project Number LX2005125 Lab ID <u>UCR-7</u> Date Received 11-30-2005	Specimen DimensionsWeight (lb)1.3752Wet Unit Weight (pci)164.55Dry Unit Weight (pci)163.18Moisture Content' (%)0.9	Date Tested 12-07-2005	/ay Engineers, Inc. Laboratory Cocument Prepared by JW Approved by TLK
		Project Name <u>I-265 Over Ohio River</u> Lithology <u>Limestone, gray, moderately hard</u> Hole Number <u>B-1 / 183+60, CL</u> Depth (tt/elev) <u>93.1¹-93.5</u>	Dimensional Conformance Height (in) 4.636 Side Planeness Pass Diameter (in) 1.992 Perpendicularity Pass Area (in ²) 3.111 End Planeness Pass Height/Diameter Ratio 2.322	Moisture Condition <u>As received, moist</u> Temperature (°C) <u>21</u> Loading Rate (lbf/sec) <u>21</u> Loading Rate (lbf/sec) <u>26790</u> Compressive Strength (tsf) <u>8600</u> Compressive Strength (tsf) <u>619</u> Failure Type <u>Shear</u> <u>Alternate Compressive Strength Calculation²</u> <u>(Where Heigh/UDiameter Ratio < 2)</u> Corrected Compressive Strength (tsf) <u>N/A</u> Corrected Compressive Strength (tsf) <u>N/A</u> Corrected Compressive Strength (tsf) <u>N/A</u> Comments <u>compressive strength (tsf) N/A</u> <u>The alternate compressive strength calculation was performate specime as available after compression testing as per KM 64-523-02.</u>	File: Lyconetes, UCBAT vias Street: Farport Programmen Date: 2-2002 Revealed: Date: 7-2002
	.				
7	Compressive Strength Of Intact Rock Core KM 64-523-02	Project Number LX2005125 Lab ID <u>UCR-250</u> Date Received <u>10-23-2007</u>	nsions Weight (lb) 1.206 Unit Weight (pcf) 165.7 Unit Weight (pcf) 164.2 ure Content ¹ (%) 0.9	Date Tested 10-26-2007 ailure Sketches	Lateratory Decimant Program Bry, JM Approved By, TLK
	Unconfined) 4.20'-4.55'	Specimen Dime 2 6 Dry Dry 6 Moist	F med as per ASTM D 2 twas used in molsture ented when the height	May Engineers, Inc
		r River , moderately hard Depth (ft/elev	Height (in) 4.07 Diameter (in) 1.98 Area (in ²) 3.08 Area (in ²) 2.05	s received, moist 21 22210 22210 518 near 518 near oefficient <u>N/A</u> ngth (psi) <u>N/A</u> ingth (tst) <u>N/A</u> ingth (tst) <u>N/A</u> samination was perfor a available after compression testing moressive strength calculation is prest	Fuller, Mossbarger, Scott and N
	N G I N E E R S	Name <u>I-265 Over Ohio</u> nology <u>Limestone, gray</u> umber <u>AC-27</u>	nal Conformance eness Pass ularity Pass eness Pass He	Moisture Condition <u>As</u> Temperature (°C) peak Load (Ibf). sssive Strength (psi) essive Strength (tsf) Failure Type <u>Sh</u> <u>Alternate Compressive</u> (Where Height/Di Correction G Correction G Correction C ted Compressive Stren , ^v Post testing mois ^v hole specimen as per KM 84-5 ⁵ as per KM 84-5 ⁵	LuCR-35D.xis Sheet. Report 14:2 - 2:002 7:3:002

Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Number <u>LX2005125</u> Lab ID <u>UCR-16</u> Date Received <u>11-30-2005</u>	Specimen Dimensions 1.364 317 Weight (lb) 1.364 394 Wet Unit Weight (pcf) 163.5 212 Dry Unit Weight (pcf) 162.7 215 Moisture Content ¹ (%) 0.5	Date Tested 12-07-2005	May Engineers, Inc. Laboratory Document Presented by JW Approved By TLX
E N G I N E E R S Project Name 1-265 Over Ohlo River Lithology <u>Limestone, gray, moderately hard</u> Hole Number <u>B-3 / 2054-50</u> , CL Depth (t/telev) <u>97.2'-97</u>	Dimensional Conformance Berpendicularity Pass Diameter (in) 4.0 Perpendicularity Pass Diameter (in) 1.1 End Planeness Pass Area (in ²) 3.1 Height/Diameter Ratio 2.2	Moisture Condition As received, moist Temperature (°C) 21 21 Doading Rate (Ibf/sec) 110 2010 Peak Load (Ibf) 30180 9670 Compressive Strength (ts) 9670 9670 Compressive Strength (ts) 9670 9670 Compressive Strength (ts) 696 110 Failure Type Conne and Split Alternate Compressive Strength calculation ² (Where Height/Diameter Ratio < 2)	File. USD05155, UCH-15 xls Sheet Report Fuller, Mossbarger, Scott and Preparation Date: 7-2002 Revision Date: 7-2002
Unconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Number LX2005125 Lab ID UCR-11 Date Received 11-30-2005	Specimen Dimensions 1.145 Met Unit Weight (pc) 1.145 Dry Unit Weight (pcf) 160.1 Dry Unit Weight (pcf) 158.6 Dry Unit Weight (pcf) 1.0	Date Tested 12-07-2006 Failure Sketches	May Engineers, Inc. Latonator Document Prepared 51,14 Approved 59, 114
Project Name 1-265 Over Ohio River Lithology Limestone, gray, moderately hard Lithology Limestone, gray, moderately hard	mensional Conformance Height (in) 3.99 de Planeness Pass Diameter (in) 1.98 prendicularity Pass Diameter (in) 1.98 nd Planeness Pass Area (in ²) 3.09 nd Planeness Pass Height/Diameter Ratio 2.01	Moisture Condition As received, moist Temperature (°C) 21 Temperature (°C) 21 Loading Rate (Ibf/sec) 110 Peak Load (Ibf) 12460 Compressive Strength (psi) 4020 Compressive Strength (tst) 290 Failure Type Shear 290 Ritemate Compressive Strength Calculation ² (Where Heidph/Diameter Ratio < 2)	 Lucostize_Uoth 1. Ad Sheet: Report Fuller, Mossbarger, Scott and parater base: 7-802 John Date: 7-802

				\
Unconfined Compressive Strength Of Intact Rock Core KtM 64-523-02 Project Number LX2005125 Lab ID UCR-20	Date Received Date Received 11-30-2005 Specimen Dimensions Weight (lb) 1.372 Wet Unit Weight (pci) 165.7 165.7 Dry Unit Weight (pci) 165.7 165.7 Dry Unit Weight (pci) 163.6 1.3.3 Moisture Content ¹ (%) 1.3.3	Date Tested 12-07-2005	med as per ASTM D 2216-98, where as much of the was used in moisture content testing. anted when the height to diameter ratio is less than 2, and when the height to diameter ratio is less than 2,	lay Engineers, Inc. Labratory Decement Propaga 59, 20 Approved 51, 11/K
E N G I N E E R S Project Name I-265 Over Ohio River Lithology Limestone, gray, moderately hard	Hole Number <u>B-4 / 210+30</u> , CL Depth (fbelev) <u>49.9-50.3</u> <u>Dimensional Conformance</u> Side Planeness Pass Diameter (in) <u>1.99</u> Perpendicularity Pass Diameter (in) <u>1.99</u> End Planeness Pass Height/Diameter Ratio <u>2.29</u>	Moisture Condition As received, molst Temperature (°C) 21 Loading Rate (lbf/sec) 110 Peak Load (lbf) 30070 Compressive Strength (psi) 9620 Compressive Strength (tst) 692 Failure Type Undetermined	¹ Post testing moisture content determination was perfort whole specimen as available after compression testing ² The alternate compressive strength calculation is prese as per KM 64-523-02.	File: U-2005135, UCR-80.45 Sheet: Report Frequention Date: 2:2002 Revision Date: 7:2002
Jnconfined Compressive Strength Of Intact Rock Core KM 64-523-02 Project Number LX2005125 Lab ID UCR-19 Lab ID UCR-19	Date Received 11-30-2005 Decimen Dimensions Wet Unit Weight (lb) 1.357 Wet Unit Weight (pct) 165.5 Dry Unit Weight (pct) 164.7 Moisture Content' (%) 0.5	Date Tested 12-07-2005	is per ASTM D 2216-96, where as much of the stand in moisture content testing. When the height to diameter ratio is less than 2,	ingineers, inc. Lakenney Document Regardar, M Approval by: ILX
E N G I N E E R S Project Name 1-265 Over Ohio River Lithology Linnestone, gray, moderately hard	Hole Number <u>B-4 / 210+30</u> , CL Depth (ft/elev) <u>28.1'-28.5'</u> <u>imensional Conformance</u> de Planeness <u>Pass</u> Diameter (in) <u>4.545</u> nd Planeness <u>Pass</u> Diameter (in) <u>1.992</u> Area (in ⁶) <u>3.118</u> Heigh/Diameter Ratio <u>2.281</u>	Moisture Condition As received, moist Termerature (°C) 21 Loading Rate (lbf/sec) 210 Compressive Strength (bsi) 6690 Compressive Strength (psi) 6690 Onrected Compressive Strength (psi) 0 Corrected Compressive Strength (psi) 0	¹ Post testing moisture content determination was performed <i>i</i> whole specimen as available after compression testing was 1 ^c The atternate compressive strength calculation is presented as per KM 64-523-02.	L20063125_UCR-18.xe Sheet: Report Fuller, Mossbarger, Scott and May E paration Date: 2-2002 Jaion Date: 7-2002

Prepared By: JW Approved By: TLK 3.327 0.0 8.69 Direct Shear Strength of Rock RTH 203 - 80 Project Number LX2005125 Lab ID DS-192 Date Received 09-28-2007 ≜ Test B ® Test C × Test D * Test E 📾 Test A Peak Accordingly, Test B (post peak) was performed wherein the Hydro-Stone was chipped away from the shear plane. The resulting post peak stresses differ with Test B lower. Comments The Test A (intact) shear plane extended slightly into the Hydro-stone encasement 0.0 Diameter (in.) Angle of Dip (deg.) Area(in² Test E N/A 0.5 Fuller, Mossbarger, Scott and May Engineers, Inc. A/A N/A <u>Test D</u> N/A Shear Stress vs. Deflection Lithology Limestone, gray, moderately hard, shale layers 0.4 A/A N/A Shear Deflection (in) Test B Test C 64.9 N/A 88.4 N/A 0.4118 N/A 0.3 Test Type Direct shear of intact specimen Moisture Condition As received, moist Roughness (JRC) 14 0.2 <u>Test A</u> 64.9 322.5 0.0613 Project Name 1-265 Over Ohio River ENGINEERS Normal Load (psi) (Peak Shear Stress (psi) 3 Peak Shear Stress (psi) 3 Deflection at Peak (in) 0.0 Post Peak Stress (psi) N/A Deflection at Residual (in) N/A 0.1 File: LX2005125_DS-1922xls Sheet: Report Preparation Date: 12-1999 Revision Date: 2-2002 Hole Number AC-3 0.0 0 50 200 350 300 250 150 100 Fuller Mossbarger Scott & May Shear Stress (psi) Prepared By: JW Approved By: TLK 3.325 Project Number LX2005125 Lab ID DS-188 Date Received 09-28-2007 8.68 ▲ Test B ● Test C × Test D ★ Test E Direct Shear Strength of Rock RTH 203 - 80 🖀 Test A Peak Comments The Test A (intact) shear plane extended slightly into the Hydro-stone encasement. Accordingly, Test B (post peak) was performed wherein the Hydro-Stone was chipped away from the shear plane. The resulting post peak stresses differ with Test B lower. Diameter (in.)____ Angle of Dip (deg.)____ Area(in²)____ 0,6 <u>Test E</u> N/A 0.5 Fuller, Mossbarger, Scott and May Engineers, Inc. A/A N/A Test D N/A Shear Stress vs. Deflection 0.4 Lithology Limestone, gray, moderately hard, shale layers e Number AC-3 N/A N/A Shear Deflection (in) Test B Test C 50.5 N/A 37.0 N/A 0.2401 N/A 0.3 Hole Number AC-3 . Test Type Direct shear of intact specimen Moisture Condition As received, moist 0.2 <u>Test A</u> 50.5 136.1 0.0364 Project Name 1-265 Over Ohio River E N G I N E E R S Post Peak Stress (psi) N/A Deflection at Residual (in) N/A Normal Load (psi) Peak Shear Stress (psi) Deflection at Peak (in) 0.1 Roughness (JRC) File: LX2005125_DS-188.xls Sheet: Report Preparation Date: 12-1999 Revision Date: 2-2002 0.0 80 4 20 0 100 8 140 120 160 Fuller Mossbarger Scat & May Shear Stress (psi)

Laboratory Document Propared By: JW Approved By: TLK 1.979 0.0 3.08 Direct Shear Strength of Rock RTH 203 - 80 Project Number LX2005125 Lab ID DS-31 Date Received 08-10-2007 × Test D * Test E @ Test C ∆ Test B Test A Peak Comments The Test A (intact) shear plane extended slightly into the Hydro-stone encasement. Accordingly, Test B (post peak) was performed wherein the Hydro-Stone was chipped away from the shear plane. The resulting post peak stresses differ with Test B lower. 0.6 Diameter (in.) Area(in²) Angle of Dip (deg.) Test E N/A 0.5 Fuller, Mossbarger, Scott and May Engineers, Inc. A/A N/A <u>Test D</u> N/A Shear Stress vs. Deflection Depth (ft) 116.65' 0.4 A/A N/A Shear Deflection (in) Test B Test C 59.4 N/A 58.1 N/A 0.2800 N/A 0.3 1 Lithology Limestone, gray, moderately hard Hole Number AC-4/189+81.55, 91.9 Lt Test Type Direct shear of intact specimen Moisture Condition As received, dry 0.2 <u>Test A</u> 59.4 112.8 0.0162 Project Name 1-265 Over Ohio River ŝ Normal Load (psi) Peak Shear Stress (psi) Deflection at Peak (in) 0.0 Post Peak Stress (psi) N/A Deflection at Residual (in) N/A ENGINEERS 0.1 Roughness (JRC) File: LX2005125_DS-31.xls Sheet: Report Preparation Date: 12-1999 Revision Date: 2-2002 0.0 ò 20 120 100 80 60 40 Fuller Mossbarger Scott & May Shear Stress (psi) Laboratory Document Prepared By: JW Approved By: TLK 1.982 16.8 3.22 Direct Shear Strength of Rock RTH 203 - 80 Project Number LX2005125 Lab ID DS-29 * Test E Date Received 08-10-2007 🛚 Test A A Test B @ Test C x Test D Peak Comments The Test A (intact) shear plane extended slightly into the Hydro-stone encasement. Accordingly, Test B (post peak) was performed wherein the Hydro-Stone was chipped away from the shear plane. The resulting post peak stresses differ with Test B lower. 0.6 Diameter (in.) Angle of Dip (deg.) Area(in²) Test E N/A 0.5 Fuller, Mossbarger, Scott and May Engineers, Inc. A/A N/A Test D N/A Shear Stress vs. Deflection Project Name 1-265 Over Ohio River Lithology Linnestone, gray, moderately hard, shale seams Hole Number AC-4/189+81.55, 91.9 Lt. Test Type Direct shear of intact specimen 4.0 AN NA Shear Deflection (in) Test B Test C 43.3 N/A 37.8 N/A 0.2399 N/A 0.3 Moisture Condition As received, dry 0.2 <u>Test A</u> 43.3 443.5 0.0364 20 Normal Load (psi) Peak Shear Stress (psi) 4 Deflection at Peak (in) 0.0 Post Peak Stress (psi) N/A Deflection at Residual (in) N/A ENGINEERS 0.1 Roughness (JRC) File: LX2005125_DS-29.xis Sheet: Report Preparation Date: 12-1999 Revision Date: 2-2002 0.0 50 ò 100 250 200 150 500 450 400 350 300 Fuller Mossbarger Scott & May Shear Stress (psi) 1

E N G I N E E R S	Project Name 1-265 Over Ohio River Project Number Lithology Shale, gray, very soft Lithology Shale, gray, very soft Lab ID DS-229 Lithology Shale, AC-14 Depth (ft) 30.5' Date Received 10-23-2007 Hole Number AC-14 Depth (ft) 30.5' Date Received 10-23-2007 Noisture Condition As received, moist Angle of Dip (deg.) 0.0 Roughness (JRC) 6 Angle of Dip (deg.) 0.0	Test ATest BTest CTest CTest CNormal Load (psi)30.330.3 N/AN/AN/APeak Shear Stress (psi)345.7345.7N/ADeflection at Peak (in)0.079812.5 N/AN/APost Peak Stress (psi) N/A12.5 N/AN/AN/ADeflection at Residual (in) N/A0.3004 N/AN/AN/A	Shear Stress vs. Deflection	400 5	File, UZ005/135_D5-253 htt Street: Report Preparation Date: 72-199 Revision Date: 72-202 Revision Date: 22-202
E N G I N E E R S	Project Name1-265 Over Ohio RiverProject NumberLX2005126LithologyLinestone. dark gray, moderately hard, shale seamsLab IDDS-132Hole NumberAcc-132206+50, 0.02 LT.Depth (ft)104.05'Hole NumberAcc-132206+50, 0.02 LT.Depth (ft)104.05'Test TypeDirect shear of intact specimenDiameter (in.)1.975Moisture ConditionAs received, dampAngle of Dip (deg.)0.0Roughness (JRC)8Area(in ⁵)3.06	Test A Test E Test E Test E Normal Load (psi) 42.9 42.9 N/A N/A N/A Peak Shear Sitess (psi) 98.6 0.0125 0.0125 0.0125 Post Peak Sitess (psi) N/A 0.0125 27.8 N/A N/A N/A Post Peak Sitess (psi) N/A 0.2602 N/A N/A N/A	Shear Stress vs. Deflection	¹²⁰ ¹⁰⁰	File: L2201615_058.12 via Sheet Report Preparation Date: 12:102 Preparation Date: 12:102 Review: Date: 2:2022

KM 64 - 513

v

Project Name I-265 Bridge over the Ohio River

LX2005125 Project Number

												· · · ·
		Prepared	1st Dry	Initial Weight	1st Run	2nd Dry	2nd Ryn	3rd	Dry	Final V	Veight	
[Date	10/8/2007	10/8/2007	10/9/2007	10/9/2007	10/9/2007	10/10/2007	10/10	/2007	10/11	/2007	
	Ву	RM	RM	SB	RC	RC	RC	R	С	S	В	
												1
Lab ID	Sample No	./ Hole No.	Sample Depth (ft)	Sar Desc	nple ription	Frag Desc	ment ription	Tare ID	Tare Weight	Initial VVt. + Tare	Final VVt. + Tare	SDI
195	Ą	.C-1	106.7'-107.2'	Limestone w/	shale layers	pile of chips		JH-33	283.53	633.20	555.16	77.7
196	A	C-1	117.2'-117.9'	Limestone w/	shale layers	50 % intact		D-22	284.17	760.88	648.03	76.3
197	A	C-1	128.1'-128.7'	Limestone w/	shale layers	50 % intact		3949	292.04	789.17	768.25	95.8
171	A	NC-2	104.8'-105.4'	Limestone w/	shale layers	50 % intact		HC-89	296.08	828.58	733.62	82.2
174	A	\C-2	120.7'-121.1'	Limestone w/	shale layers	75 % intact		DEL	297.03	777.13	754.44	95.3
176	, A	\C-2	129.9'-130.9'	Limestone w/	shale layers	70 % intact		1921	290.71	833.23	784.80	91.1
189	Þ	\C-3	104.7'-105.1'	Limestone w/	shale layers	75 % intact		D-1	299.87	827.21	790.51	93.0
190	A	AC-3	106.7'-107.9'	Limestone w/	shale layers	50 % intact		ZX-1	288.97	863.75	499.41	36.6
191	A	AC-3	112.5'-112.9'	Limestone w/	/ shale layers	50 % intact		Boss	294.76	844.53	708.35	75.2
								ļ				
				1				ļ				
										ļ		
								<u> </u>		1		
							C	Checked By	4	_ Re	eviewed By	9

File: LX2005125 SDL_10-4-07xis.xls Sheet: Data Preparation Date: 1-2001 Revision Date: 02-2002

Fuller, Mossbarger, Scott and May Engineers, Inc

Laboratory Document Prepared By: JW Approved By: TLK

Nossbarge Scott & ENGINEERS

Slake Durability Index ASTM D 4644

Project Number LX2005125

Project Name I-265 OVER Ohio River

					1		1	r				
		Prepared	1st Dry	Initial Weight	1st Run	2nd Dry	2nd Run	3rd	Dry	Final V	Weight	
	Date	8/22/2007	8/22/2007	8/24/2007	8/24/2007	8/24/2007	8/27/2007	8/27/	2007	8/29/	/2007	
	Ву	RM	RM	тмк	тмк	ТМК	RM	R	M	K	DG	
			Sample	Sar	nple	Frag	ment	Tare	Tare	Initial Wt.	Final Wt.	
Lab ID	Sample No	./ Hole No.	Depth (ft)	Desc	ription	Desc	ription	ID	Weight	+ I are	+ I are	SDI
30	AC-4/189+	81.55, 91.9 Lt.	102.5'-102.9'	gray Limesto	ne w/shale	95% intact		CL17	283.13	933.40	906.86	95.9
40	AC-6/193+	51.7, 0.28' Rt.	94.3'-95.0'	gray Limesto	ne w/shale	100% intact		D-41	309.89	870.50	830.89	92.9
43	AC-6/193+	51.7, 0.28' Rt.	105.5'-106.3'	gray Limesto	ne w/shale	95% intact		MH1	288,96	776.48	746.13	93.8
46	AC-6/193+	51.7, 0.28' Rt.	117.2'-118.0'	gray Limesto	ne w/shale	100% intact		UK19	293.72	768.90	744.03	94.8
53	AC-7 193	3+95, 68' Lt.	97.9'-98.9'	gray Limesto	ne w/shaie	pile of chips		DDW32	294.59	877.58	595.16	51.6
55	AC-7 193	3+95, 68' Lt.	102.1'-102.8'	gray Limesto	ne w/shale	80% intact		KH20	297.32	842.28	713.24	76.3
57	AC-7 193	3+95, 68' Lt.	108.5'-109.1'	gray Limesto	ne w/shale	80% intact		SMD8	293.22	771.98	680.76	80.9
. 66	AC-8/193	+95, 1.22'Lt.	95.7'-96.1'	gray Limesto	ne w/shale	large and sm	all chips	56	292.95	787.25	573.65	56.8
70	AC-8/193	+95, 1.22'Lt.	106.9'-107.5'	gray Limesto	ne w/shale	60% intact		P30	284.01	814.44	666.62	· 72.1
72	AC-8/193	+95, 1.22'Lt.	114.8'-115.3'	gray Limesto	ne w/shale	pile of chips		D43	309.30	800.77	339.78	6.2
78	AC-9/193	3+95, 70' Rt.	99.4'-100.2'	gray Limesto	ne w/shale	50% intact		D26	284.18	858.43	632.16	60.6
81	AC-9/193	3+95, 70' Rt.	108.2'-108.9'	gray Limesto	ne w/shale	95% intact		UK10	297.11	840.07	773.55	87.7
84	AC-9/193	3+95, 70' Rt.	117.5'-117.9'	gray Limesto	ne w/shale	pile of chips		JW32	282.87	713.62	310,32	6.4
90	AC-10/20	5+98, 70' Lt.	94.7'-95.1'	gray Limesto	ne w/shale	pile of chips		D-14	293.62	832.82	517.44	41.5
93	AC-10/20	5+98, 70' Lt.	102.7'-103.4'	gray Limesto	ne w/shale	95% intact		C-2	309.00	855.68	763.26	83.1
95	AC-10/20	5+98, 70' Lt.	108.0'-108.4'	gray Limesto	ne w/shale	70% intact		KC-16	301.07	831.41	734.46	81.7

Checked By KD6

Reviewed By

ASTM D 4644

Project Name I-265 OVER Ohio River

Project Number LX2005125

		Prepared	1st Dry	Initial Weight	1st Run	2nd Dry	2nd Run	3rd	Dry	Final \	Neight	
	Date	8/22/2007	8/22/2007	8/24/2007	8/24/2007	8/24/2007	8/27/2007	8/27/	2007	8/29/	2007	
	By	RM	RM	тмк	ТМК	ТМК	RM	R	М	R	M	
			T			- 1						
1	0		Sample	Sar	nple	Frag	gment	Tare	Tare Weight	Initial Wt.	Final Wt.	SDI
Lab ID	Sample No	D./ Hole No.	Depth (it)	Desc	приоп	Desc	прион		vveigin	- Tale	Tarc	74.4
103	AC-11/20	15+95,1.3 Lt.	86.8'-87.4'	gray Limesto	ne w/shale	80% intact		JW2	289.51	872.29	/03.92	71.1
106	AC-11/20	5+95,1.3 Lt.	99.5'-100.3'	gray Limesto	ne w/shale	100% intact		DDI	286.05	768.45	712.70	88.4
110	AC-11/20	5+95,1.3 Lt.	109.7'-110.6'	gray Limestor	ne w/shale	100% intact		KC5	293.67	865.07	832.88	94.4
115	AC-12/20	5+94, 71 Rt.	85.6'-86.2'	gray Limestor	ne w/shale	50% intact		333	289.44	821.21	465.95	33.2
117	AC-12/20	5+94, 71 Rt.	95.3'-95.8'	gray Limesto	ne w/shale	100% intact		KG2	296.33	888.43	835.96	91.1
118	AC-12/20	5+94, 71 Rt.	101.9'-102.7'	gray Limesto	ne w/shale	100% intact		D16	292.88	923.08	871.87	91.9
128	AC-13/206	6+50, 0.02 Lt.	92.8'-93.5'	gray Limesto	ne w/shale	100% intact		AK32	288.10	839,96	783,96	89.9
131	AC-13/206	6+50, 0.02 Lt.	102.9'-103.5'	gray Limesto	ne w/shale	pile chips		C1	309.58	762.04	355.79	10.2
134	AC-13/206	6+50, 0.02 Lt.	108.7'-109.3'	gray Limesto	ne w/shale	100% intact		SW20	298.18	881.65	867.26	97.5
141	AC-15/210)+20, 37.3 Rt.	48.9'-49.6'	gray Limesto	ne w/shale	100% intact		P-01	287.40	833.31	822.86	98.1
143	AC-15/210)+20, 37.3 Rt.	57.5'-58.8'	gray Limesto	ne w/shale	100% intact		D47	309.66	820.34	803.19	96.6
							5484					

Checked By K-D/3

Laboratory Document Prepared By: JW Approved By: TLK

Reviewed By T

File: LX2005125-SDL_ Sheet: Data Preparation Date: 1-2001 Revision Date: 02-2002

Fuller, Mossbarger, Scott and May Engineers, Inc

Mossbarger Scott & W-W ENGINEERS

Slake Durability Index

KM 64 - 513

Project Number LX2005125

Project Name 1-265 Bridge over the Ohio River

	Prepared	1st Dry	Initial Weight	1st Run	2nd Dry	2nd Run	3rd Dry	Final Weight
Dat	e 10/29/2007	10/29/2007	10/30/2007	10/30/2007	10/30/2007	10/31/2007	10/31/2007	11/1/2007
B	vJF	JF	RC	RC	RC	RC	RĊ	RC

	Lah ID		Sample Depth (ft)	Sample Description	Fragment Description	Tare ID	Tare Weight	Initial Wt. + Tare	Final Wt. + Tare	SDI
	227	AC-14	22.1'-23.9'	fine gray limestone	100% intact	ZX1	289.06	794.54	774.69	96.1
2	240	AC-23 -	25.2'-26.2'	fine gray limestone	50% intact	JH-33	283.61	786.22	567.78	56.5
	247	AC-26	26.6'~27.5'	fine gray limestone	90% intact	SW-20	298.09	818.45	759.93	88.8 💆
1	248	AC-26	35.7'-36.4'	medium gray limestone	85% intact	KH2	296.93	844.47	708.50	75.2 🗸
/	251	AC-27	23.3'-24.0'	fine gray limestone	80% intact	SJ21	283.85	841.08	684.15	71.8 V
									<u> </u>	
						Checked By	<u>, 56</u>	R	eviewed By	<u>F</u>

oject Name			·				×			Project Numbe	r <u>Lyzou - r</u>	-
ſ	Broparad	1et Dry	: Initial Weight	1st Bun	2nd Dry	2nd Run	3rd	Dry	Fina	I Weight		
Data	Hepareu	11,30	12.1.05	12-01-05	12-01-05	12-02-	12-02		12-	03		
By	مع (ت ^{مع} الرار من أو المردار ل	JWIA	KAGG	D.c	D-C.	Drin	D.C.	-	y l	h H		
Sample No./	Hole No.	Sample	Sarr Descr	iple	Frag	jment ription	Tare ID	Tare Weight	Initial Wt. + Tare	Final Wt. + Tare	SDI	
9-1		872. 80. 2	-11	frank			911	300.6	740.98	516.07	48.9	
<u></u>		107 5 1080	11 11	han a l			1034	285.0	811.96	742,66	86.8	
01		077 975	dilla 1	<u></u>			17-13	293.2	812.40	757,88	89.5	
<u>,D. 2</u>		11,1-10.2		<u> </u>	1							
					1						1	
					1						1	1
					+							1
		<u> </u>								1	-	1
												-
		ļ	ļ							<u> </u>		1
			ļ					<u></u>				-
					ļ		ļ					-
			1									1
			<u>]</u>			in=	2	1	1	1	,	-
									ļ	<u>.</u>		
						int				<u>.</u>		
			· · · · · · · · · · · · · · · · · · ·			(Checked By	ΔΜ		Reviewed B	y Contractions	
: ASTM_SDLats She perailon Date: 1-2001			Ft.	iller, Mossba	rger, Scott	C and May E	Checked By		2	² Reviewed B	Laboratory Docume Prepared By: J Approved By: T	ani WW LK
: ASTM_SDLxis She perailion Date: 1-2001 siylon Date: 02-2002			Fi	iller, Mossba	irger, Scott	C and May E	Checked By		2	Reviewed B	Laboratory Docum Prepared By: J Approved By: T	enl WW LK
: ASTM_SDL.its She excision Date: 1-2001 ision Date: 02-2002	it: Input		FL	iller, Mossba	rger, Scott	c and May E	Checked By	A		Reviewed B	Laboratory Documin Prepared By: J Approved By: T	ent
ASTM_SDLxis She setation Date: 1-2001 ision Date: 02-2002	It: Input		Ft	iller, Mossba	rger, Scott	C and May E	Checked By	Амс		Reviewed B	Laboratory Docimu Pegaard By: T Approved By: T	eni WW LK
ASTM_SOLxis She exailon Date: 1-2001 sion Date: 02-2002	it: Input		Ft	iller, Mossba	rger, Scott	C and May E	Checked By	Дмс		Reviewed B	Laboratory Docimu Pegaard By: T Approved By: T	ent JWK
ASTM_SDLxis She reration Date: 1-2001 ision Date: 02-2002	it: Input		Fi	iller, Mossba	rger, Scott	c and May E	Engineers, I	А м)с		Reviewed B	Laboratory Docum Prepared By: J Approved By: T	ant
ASTM_SDLxIs Sher retailon Date: 1-2001 sion Date: 02-2002	i: Input		FL	iller, Mossba	rger, Scott	c	Engineers, I	Inc		Reviewed B	Laboratory Docum	eni JW LK
ASTM_SDLxIs Sher aration Date: 1-2001 sion Date: 02-2002	i: Input		FL	iller, Mossba	rger, Scott	c	Engineers, I	А мс		Reviewed B	Laboratory Docum	ent WW LK
ASTM_SDLxis Sher exailon Date: 1-2001 sion Date: 02-2002	i: Input		FL	iller, Mossba	rger, Scott	c and May E	Engineers, I	А м)с		Reviewed B	Laboratory Docum	ani WW LK
ASTM_SDLxis She exailon Date: 1-2001 sion Date: 02-2002	it: Input		FL	iller, Mossba	rger, Scott	and May E	Engineers, I	<u>А</u> рдс		Reviewed B	Laboratory Docum Prepared By: J Approved By: T	ant WW
ASTM_SDLxis She exailon Date: 1-2001 sion Date: 02-2002	it: Input		FL	iller, Mossba	rger, Scott	and May E	Engineers, I	А м пс		Reviewed B	Laboratory Docum Prepared By: J Approved By: T	ant WW
ASTM_S0I.xis Sha erailon Date: 1-2011 sion Date: 02-2002	it: Input		Fu	iller, Mossba	rger, Scott	and May E	Engineers, I	Inc		Reviewed B	Laboratory Docum Prepared By: J Approved By: T	ant WW
ASTM_SDLxis She beration Date: 1-2001 sion Date: 02-2002			FL	iller, Mossba	rger, Scott	and May E	Engineers, I	inc		Reviewed B	Laboratory Docimi Prepared By: J Approved By: T	
: ASTM_SDLxis She peraiton Date: 1-2001 siton Date: 02-2002	t: Input		Fu	iller, Mossba	rger, Scott	c	Engineers, I	inc		Reviewed B	Laboratory Docum Prepared By: J Approved By: T	
: ASTM_SOLvis She netation Date: 1-2001 ipion Date: 02-2002	it: Input		Fu	iller, Mossba	rger, Scott	c and May E	Engineers, 1			Reviewed B	Laboratory Docum Prepared By: T Approved By: T	ani ani uku
: ASTM, SDLxfs She peration Date: 1-2001 isjon Date: 02-2002	it: Input		Fu	iller, Mossba	rger, Scott	and May E	Engineers, 1			Reviewed B	Laboratory Docum Prepared By: T Approved By: T	ani ani wu
: ASTM, SDLxIs She peration Date: 1-2001 isjon Date: 02-2002	it: Input		Fu	iller, Mossba	rger, Scott	and May E	Engineers, 1			Reviewed B	Laboratory Docum Prepared By: J Approved By: T	
: ASTM_SDLxis She peration Date: 1-2001 isjon Date: 02-2002	it: Input		Fu	ıller, Mossba	rger, Scott	and May E	Engineers, 1			Reviewed B	Laboratory Docum Prepared By: J Approved By: T	
: ASTM_SDLxis She peration Date: 1-2001 isjon Date: 02-2002	it: Input		Fu	ıller, Mossba	rger, Scott	and May E	Engineers, 1				Laboratory Docume Prepared By: T Approved By: T	
ASTM_SOLids She recalion Date: 1-2001 isjon Date: 02-2002	1: Input		Fu	ıller, Mossba	rger, Scott	and May E	Engineers, 1				Laboratory Docimi Prepared By: T Approved By: T	

APPENDIX G CORROSIVITY TEST RESULTS (SOIL AND WATER)

Member WIGTMING WIGTMING RENTUCKY TESTING LABORATORY DIVISION XENTUCKY TESTING LABORATORY DIVISION XENTUCKY TESTING LABORATORY DIVISION XENTUCKY TESTING LABORATORY DIVISION XENTUCKY TESTING LABORATORY DIVISION	Chemical, Biological, Physical, Molecular, and Toxicological Services	ELECTRONIC CERTIFICATE OF ANALYSIS	FULLER,MOSSBARGER,SCOTT & MAY 0709-01071 Date Reported 10/04/2007 PAUL COOPER 09/18/2007 PRO1: LX2005125 Date Sampled 09/18/2007	Analysis Out of Qualif Result Unit Min Max Method Std Date Time Te Spec Limit	THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:	MICROBAC LABORATORIES, INC.	As regulatory limits change frequently. Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or focal authorities before acting in reliance on the regulatory limits provided.	For any feedback concerning our services, please contact Seen Hyde, the Managing Director at 502.962.6400. You may also contact both Trevor Boyce, President and Robert Morgan, Chief Operating Officer at president@microbac.com.								
Microbac Laboratories, Inc. Member MICRODAC Exert RESTING LABORATORY DIVISION ACIL	Chemical, Biological, Physical, Molecular, and Toxicological Services	ELECTRONIC CERTIFICATE OF ANALYSIS	FULLER,MOSSBARGER,SCOTT & MAY 0709-01071 Date Reported 10/04/2007 PAUL COOPER 0/0722007 Date Due 09/27/2007 1901 NELSON MILLER PKWY DATE 000000000000000000000000000000000000	LOUISVILLE, KY 40223 LOUISVILLE, KY 40223 UNION CONTRACT DATE SAMPLEU UNION-2007 LINE CONTRACT DATE DATE DATE DATE DATE DATE DATE DAT	PROJ: LX2065125	Analysis Out of Qualif Result Unit Min Max Method 2 and Jute Lune Lean Spec 5 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample: 001 LV2005125 1A (Kentue Vy Shore) 34 and 54 and 54 and 54 and 54 and 54 and 55 and 54 and 5	Sample: 002 LX2005125-18 (Kentucky Shore) Daea Time samplet: 09/13/2017 @ 11:45 Daea Time samplet: 09/13/2017 @ 11:45 Daea Time samplet: 09/13/2017 @ 11:45	Sample: 003 LX2005125-1C (Kentucky Shore) Sucre and a surger and a surger	Sample: 004 LX2005125 2A (Mid-River)	Sample: 005 LX2005125 28 (Mid-River) Date & Time Sampled: 09/18/2007 @ 1145 CHORDE 67 068125 28 (Mid-River) 60 06/L 67 000 03 09/26/07 1540 744	Sample: 006 LX2005125 2C (Mid/- River) Date & Time Sampled: 09/18/207 @ 1145 Sulfate at 100 D2 20 (Mid/- River) Ma/L Extraord at 100 D2 20 D2	Sample: 007 LX2005125 3A (Trudiena Shore) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample: 008 LX2005125 3B (Indiana Share) 50 Main Share) 0 1145 cucette	Sample: 009 LX2005125 3C (Indiana Shore)	UNLESS OTHERWISE NOTED, SAMPLES RESULTS ARE REPORTED ON AN AS RECEIVED BASIS

The data and other information contained on thits, and other accompanying documents, represents only the sample(s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without written approval from the laboratory. Page 2 of 2

The data and other information contained on this, and other accompanying documents, represents only the sample(s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without written approval from the laboratory. Page 1 of 2

	TROUP Idea Delivering Results.			CONSTRUCTION TECHNOLOGY LABORATORIES ENGINERS & CONSTRUCTION TECHNOLOGY CONSULTANTS www.CTLGroup.com	CTT GROUP Building Krowledge, Dahvering Results.		CONSTRUCTION TECHNOLOGY LABORATORIES EMGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS www.CTLGrup.com
Client: Project: Contact: Submitter: Date Received:	FMSM Engineers P. O. No. LX2005125 Tom Dicken Tom Dicken November 19, 2007		CTL Project No: CTL Project Mgr.: Analyst: Approved: Date Analyzed: Date Reported:	404642 Richard Stevenson Manoj Bharucha · · ·································	 Client: FMSM Engineers (KY) Projact: I-265 Bridge / GEOTECH Contact: Tom Dicken Submitter: Kurt Schaefer Date Received: November 19 2007	CTL Project No: CTL Project Mgr Analyst: Approved: Date Analyzed: Date Reported:	$\begin{array}{c} 404642 \\ 404642 \\ \text{Stevenson Rick} \\ \text{Igor Kirin } L^{4}C_{-} \\ \text{December 03 2007} \\ \text{December 05 2007} \end{array}$
		REPORT OF WATER SOLUB	3LE SULFATE ANALYSIS	6		REPORT OF SOIL RESISTIVITY ANALYSIS	
Sample Identifi <u>CTL ID</u>	cation <u>Client ID</u>	Description	Water Solub (as S(<u>(mq/Kg of</u> ;	ie Sulfate 34) <u>sample1</u>	Cilent's Sample ID: I-265 CS-1 Material type: Lean Clay CTL Sample ID: 1996901		
1996901 1996902 1996903 1996904 1996905 1996905	1-265 CS-1 1-266 CS-2 1-266 CS-3 1-266 CS-4 1-265 CS-4 1-265 CS-6 1-265 CS-6	Lean Clay Silty Sand with Gravel Suld Sand with Sitand Gravel Sand with Silt and Gravel PG Sand with Silt WG Sand with Silt	4 8 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Water Dosage (ml) 150 250 350 450 550 650 Milimetros	Hesistivity (Ohm-cm) 40,955 13.275 2,655 2,118 2,115 2,115 2,118	
					The minimum electrical resistivity of the tester	od sample was 2,118 ohm-cm.	
Notes: 1. This analys 2. The results 3. This report	sis represents specifically the swere determined by gravime may not be reproduced exce	samples submitted as receive. tritic analysis following AASHT(pt in its entirety.	d. O T290 Sec. 8-16.		Notas: 1. This analysis represents specifically the sa 2. The results were datermined by thrametric 3. This report may not be reproduced except	mples submitted on an as recieved basis. analysis tollowing AASHTO T288. in its entriety.	
Main Office 54(Mic-Atlantic Offi New England O	00 Old Orchard Road Stokle, Illina 1980 - Starth Road Stokle, Illina 1980 - Mashinglun Streel, Sulle 30	6 6007-1030 Р. Рноне 847-065-750 19. Солитийн, Магуйна 21045-22070 04. Dover, New Hampshire 03820-31	00 Fax 847-965-5541 3 Phone 410-997-0400 Fax 411 33 Phone 603-515-1500 Fax 1	2-897-8480 503-516-1510	 Main Office 5400 Old Orchard Road Skokle, Illinois Mit-Allanic Office 9030 Red Branch Road Sulle 110 New England Office 1 Washington Street, Sulle 300	60077-1030 Phone 847-965-7500 Fax 847-965-5541 J. Cuanbia, Manjand 21045-5003 Phone 410-997-040 A. Dover, New Hampshire 0320-3821 Phone 603-516-1	Fax 410-997-8480 00 Fax 603-516-1310

ENGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS CONSTRUCTION TECHNOLOGY LABORATORIES www.CTLGroup.com

Stevenson Rick Igor Kirin しん しんしの December 03 2007 December 05 2007 404642 CTL Project No: CTL Project Mgr.: Analyst:

FMSM Engineers (KY) I-265 Bridge / GEOTECH

Approved: Date Analyzed: Date Reported:

Date Received: November 19 2007

Kurt Schaefer

Submitter: Contact: Client: Project:

Tom Dicken

REPORT OF SOIL RESISTIVITY ANALYSIS

Material type: Siity sand with gravel CTL Sample ID: 1996902 Client's Sample ID: I-265 CS-2

The minimum electrical resistivity of the tested sample was 3,135 ohm-cm.

 This analysis represents specifically the samples submitted on an as recieved basis.
 The results were determined by litrametric analysis following AASHTO T288.
 This report may not be reproduced except in its entirety. Notes:

Main Ciffice 5400 Old Orchard Road. Storika, Illinois 60077-1030. Phone 947-5667-5500. Fast App. 2665-5541. Mick-Mittanice Office 3020 Float Planch Float III Countruble, Marghard 21045-2003 Phone 41:0-977-0400 Fast 410,907-8480 New Ergendard Office 11, Natharighon Float Scalar Scalar Scalar Scalar Floatence 032-515-1500 Fast 632-515-1510

CTJCROUP Building frankage. Dakering Results.

Client:

FMSM Engineers (KY) I-265 Bridge / GEOTECH

December 03 2007 December 05 2007 404642 Stevenson Rick Igor Kirin /、ビー www.CTLGroup.com CTL Project No: CTL Project Mgr.: Date Analyzed: Date Reported: Approved: Analyst:

CONSTRUCTION TECHNOLOGY LABORATORIES ENGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS

REPORT OF SOIL RESISTIVITY ANALYSIS

Date Received: November 19 2007 Kurt Schaefer

Submitter: Contact:

Project:

Tom Dicken

Material type: Well graded sand CTL Sample ID: 1996903 Client's Sample ID: 1-265 CS-3

|--|

The minimum electrical resistivity of the tested sample was 2,570 ohm-cm.

 This analysis represents specifically the samples submitted on an as recieved basis.
 The results were determined by titrametric analysis following AASHTO T288.
 This report may not be reproduced except in its entirety. Notes:

Main Office 5400 Old Onthand Pool Stokie, Illinois 60077-1030 Phone 847-965-7500 Fax 847-965-6541 Mid-Alemic Office 9509 Ped Earch Read Stule Into Countribut Maryland Tole 200200 Strong From 6109-7410, 987-64180 New Encound Office 1 Stude Standa Paces State State, New New New Royal Phone 603-516-1500 Fax 603-516-1510

đ	
Delivering Result	
R Knowledge. C	
D	

Client: Project:

Resistivity (Ohm-cm)	5,028	2,655	1,921	1,864	2,288	1,864
Water Dosage (ml)	150	250	350	450	550	Minimum

					* AMETOHOTINA
CT CROUP Building Kinoweder, Definition Results.	TECHNOLOGY LABORATORIES ENGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS	(F	GROUP Building Krowkage, Dekworng Results.		TECHNOLOGY LABORATORIES ENGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS
Client: FMSM Engineers (KY) CTL Project No:	www.CTLGroup.com 404642	Client:	FMSM Engineers (KY)	CTL Project No:	www.cit.deroup.com 404642
Project: I-265 Bridge / GEOTECH CTL Project Mgr.: Analyst:	Stevenson Rick Igor Kirin 1, v	Project:	I-265 Bridge / GEOTECH	CTL Project Mgr.: Analyst:	Stevenson Hick Igor Kirin 1 ↔ 0.
Contact: Tom Dicken Approved: Submitter: Kurt Schaefer Date Analyzed: Date Received: November 19 2007 Date Reported:	December 03 2007 December 05 2007	Contact: Submitter: Date Receiv	Tom Dicken Kurt Schaefer ed: November 19 2007	Approved: Date Analyzed: Date Reported:	Décember 03 2007 December 05 2007
REPORT OF SOIL RESISTIVITY ANALYSIS			REPORT OF SOIL F	RESISTIVITY ANALYSIS	
Client's Sample ID: I-266 CS-4 Material type: Sand with silt & gravel CTL Sample ID: 1996904		Client's Sam Material typ CTL Sample	ple ID: I-265 CS-5 :: PG sand with siti & gravel ID: 1996905		
Water Dosage (mt) Resistivity (Ohm-cm)		Water Dosa	ge (ml) Resistivi	ty (Ohm-cm)	
150 5,028 550 28		150 250	, , ,	5,084 1,779	
350 1,921		350		1,384	
450 1,864 220 2288 250 2288 250 2288 250 2288 250 2288 250 2288 250 2288 250 250 250 250 250 250 250 250 250 250		450 550		1,356 1,582	
000 Minimum 1,864		Minimum		1,356	
The minimum clorition reciptivity of the tested sample was 1.864 phm-cm.		The minim	m electrical resistivity of the tested sample was 1.356	3 ahm-cm.	
		10-1			
Notes: 1. This analysis represents specifically the samples submitted on an as recieved basis. 2. The results were determined by titrametric analysis iollowing AASHTO T288. 3. This report may not be reprodueed except in its entirety.		Notes: 1. This ana 2. The rest 3. This rep	lysis represents specifically the samples submitted on a lits were determined by titrametric analysis following AA ort may not be reproduced except in its entirety.	an as recieved basis. \SHTO T288.	

Main Office 5400 Old Orchard Read. Stokle, Illinois 60077-1020. Phone 847-966-7500. Frag 456-5641 Maid-Altentic Office 9500 Red Bratch Read, Saller 110, Countrika Marphard 21045-5200. Frane 410-997-4410 Frak 410-997-4410 New Experiment Chine. 1 Navinghon Franc, Saller 300A, Dower, New Hampshire 03650-5817. Phone 403-581-5500 Frak 625-515-1510

Main Office 5400 Old Chchard Roolds, Illinois 60077-1030, Phone 847-965-7500 Fax 847-965-6541 Michalmanic Office 9000 Red Branch Read, Suina 10, Countrida, Manyhand 21, 2142-2020 Fax 8410-937-9480 New Ergendor Office 1, Michaengrous Charas, Suina 3004, Duow, New Hamanine 05820, State Phone 6035-167-1500 Fax 8425-515-1510

CONSTRUCTION TCHNOLOGY LIBORATORIES ENGINEERS & CONSTRUCTION TECHNOLOGY CONSULTANTS www.CTLGRup.com CTL Project No: 404642

 Client:
 FMSM Engineers (KY)
 CTL Project No:

 Project:
 I-265 Bridge / GEOTECH
 CTL Project Mgr:

 Project:
 Tom Dicken
 Analyst:

 Contact:
 Tom Dicken
 Approved:

 Submitt:
 Kurt Schaefer
 Date Analysted:

 Date Received:
 November 19 2007
 Date Reported:

REPORT OF SOIL RESISTIVITY ANALYSIS

Client's Sample ID: I-265 CS-6 Material type: WG sand with silt CTL Sample ID: 1996906

Resistivity (Ohm-cm)	10,168	5,141	2,655	2,486	3,107	2,486
Water Dosage (ml)	150	250	350	150	550	Minimum

The minimum electrical resistivity of the tested sample was 2,486 ohm-cm.

Notes: 1. This analysis represents specifically the samples submitted on an as recieved basis. 2. The results were determined by titrametric analysis following AASHTO T288. 3. This report may not be reproduced except in its entirety.

Main Office 5400 Old Orchard Head. Stokle, Illinois 60077-1130. Phone 847-965-7500. Fax 847-965-6541 Maid-Affande Office 8500 Red Tabatis. Stall in Choumbal Maryham 2110422003. Phone 01037-10400. Fax 410-997-8480 New Engelder Office 1: Stanbergion Stall Educk, Down. New Hampsher 05820-3819. Phone 003-516-1500. Fax 405-95-7510

APPENDIX H CALCULATIONS

Appendix H-1 Drilled Shaft Vertical Load Calculations Appendix H-2 Drilled Shaft Lateral Load Calculations Appendix H-3 Drilled Shaft Point of Fixity Calculations Appendix H-4 Correlation of SPT Data Appendix H-5 Rock Stability Analysis Appendix H-6 Abutment Analysis
APPENDIX H-1 DRILLED SHAFT VERTICAL LOAD CALCULATIONS

page <u>8</u> of <u>28</u>

Extreme Limit States for Uplift

page 11 of 28

Factored Rock Socket Uplift Resistance versus Socket Length

Section 10.5.5.3.3

For extreme limit states (earthquake, ice, vehicle impact, or vessel impact, etc.), the following resistance factor is used for uplift:

 $\phi_{up}\coloneqq 0.8 \quad \checkmark$

 $\gamma_{conc} - \gamma_{w} = 87.6 \, \text{pcf}$ resistance factor

 $\phi_{up} = 0.6$

page <u>16</u> of <u>28</u> دلمانا 5. Tip Resistance	Due to existance of many thin clay seams in the rock formation, it is prudent to use a reduced end bearing resistance for the rock socket.	Note: the Rock Mass Rating (RMR) will be evaluated during final design by FMSM. Fur preliminary design, the following rock mass qualities are assumed based on general descriptions in the boring logs.	from Table 10.4.6.44 fair th nood ruality mok mass nock classes A&R (lime drone A0%, shale 40%.)	rair to good quality rock mass, rock classes Aoo (inite store of %, shale 40 %) $m := 0.3$ in between the categories $s := 0.0003$	Equation 10.8.3.5.4c-2 (lower bound values)	$q_{\rm p} := (\sqrt{s} + \sqrt{m}\sqrt{s} + s) \cdot q_{\rm u} \qquad q_{\rm u} = 822 \text{ ksf}$ $q_{\rm p} = 75.177 \text{ ksf} \qquad \qquad$	total shaft tip resistance	$R_p := q_p \cdot A_p$ $R_p = 3779 \text{ kip}$	Total Nominal Resistance	$\begin{pmatrix} 13/11\\ 21766 \end{pmatrix}$	Eactored Axial Compression Resistance of Single Drilled Shaft Resistance Factors, based on tables 10.5.5.2.4-1 and 10.5.5.2.3-2 There will be an Ostenberg Cell load test at each pier locations, therefore a total of 3 load tests for this "stle" (piers 2 through 4). For a medium site variability.
page 15 of 28 CALAI SIN STRENGTH LIMIT STATE DESIGN	Effects of water (or groundwater) table, scour, and downdrag are not considered, as the vertical loads are designed to be resisted by rock alone.	Nominal Axial Compression Resistance of Single Drilled Shaft 1. side resistance from Table 10.4.6.5-1	RQD = 70 % $Em_{-}Ei_{2} := 0.7$ closed joints	from Table 10.8.3.5.4b-1 $\label{eq:alpha} \alpha_E \coloneqq 0.88$	Equation 10.8.3.5.4b-1:	$q_{s} := \min\left[0.65 \alpha_{E} p_{a} \left(\frac{q_{u}}{p_{a}}\right)^{0.5}, 7.8 p_{a} \left(\frac{fc}{p_{a}}\right)^{0.5}\right]$	$q_{\rm S} = 165.7{\rm psi}$	check: $0.65 \cdot \alpha_{\rm E} p_{\rm a} \left(\frac{q_{\rm u}}{p_{\rm a}}\right)^{0.5} = 23.857 \rm ksf$	$7.8p_{a}\left(\frac{fe'}{P_{a}}\right)^{0.5} = 304.467 \text{ksf}$	total shaft side resistance $R_s \coloneqq q_s \cdot \left(\pi \cdot D_s \cdot L_s \right)$	$L_{s} = \begin{pmatrix} 5\\ 10\\ 20\\ 30 \end{pmatrix}$ $R_{s} = \begin{pmatrix} 298\\ 8994\\ 11922\\ 11922\\ 17988 \end{pmatrix}$ $R_{s} = \begin{pmatrix} 298\\ 8994\\ 11922\\ 17988 \end{pmatrix}$ In ordinal shaft side resistance

There will be an Osterberg Cell load test (serving both compression and uplift purposes) at each pier locations, therefore a total of 3 load tests for this "ste" (piers 2 through 4). For a medium site variability:

Borighouts 1. Transactions 1. Transactions	GENERAL SOIL AND BEDROCK PROFILE	I-265 Over Ohio River Pier 1 - STA 187+40, CL Borinas AC-1.2.3	Description	Approximate STRATA	Elevation Depth (1) (1) Description Parameters	(USCS Classification) 434,0 0.0	Lean Clay $\gamma_{1}(Ib/H^{3}) = 121$ K _s (Ib/ In^{3}) = 100	418.3 15.7 \underline{X} (CL) γ_{s} (Ib/lt ³) = 59 D ₂₆ (mm) = 0.03 $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$C_{\rm U}$ (b/t ²) = 892	409.0 25.0	Sand with Silt γ_{e} (Ib/ft ²) = 55 D ₂₆ (mm) = 0.90	$(SW, SW-SW, \phi'() = 32.5 D_{ss}(mm) = 20$ and SP-SM) $K_{S}(lb/m^3) = 60$	379.0 55.0	Sand γ_{6} (B/h^{3}) = 64 D_{50} (mm) = 0.76 (S_{50} Sand γ_{10} γ_{10} γ_{10} γ_{10} γ_{10} γ_{10} γ_{10} γ_{10}	$and SP-SM$ ϕ () = 34.8 $D_{ss}(mm)$ = 8.00 and SP-SM K_s (Ibin ³) = 6.00		334.0 100.0 Ton of Book	Limestone(60%) interbedded with Shale(40%). Limestone is gray, fi grained, thin bedded and argillaceous. Shale is gray, and vado		$r_{1}(v_{0}, v_{1}) = 165$	$q_{\rm u}({\rm tor}) = 411$	c (Ib/in/) = 300	₩1) = Z0.0 283.1 150.9 ₩1) = Z0.0		
page <u>25</u> of <u>28</u>		Factored Rock Socket Uplift Resistance versus Socket Length - Extreme Limit States	Socket Diameter $D_S = 8 \text{ ft}$	1.6.10 ⁴	14-10 ⁴	4i 12:104	y - a	1-10 ⁻¹	Resiis 8000	Ĥik			4000	2000	0 5 10 15 20 25 30	Socket Length - ft	Factored Uplift Kesistance - kip	Nominal Uplift Resistance $q_s = 165.7 \text{ psi}$	weight of shaft $v_{1} = v_{2} = g_{1} f_{1} f_{1}$	resistance factor $\phi_{acc} = 0.8$	tur .				

	1	1	
	28		
Bridge	Ъ		
ast End F	-		
JECT: E	PAGE	ough 5	= 7.5 ft
PRO		ers 2 thr	liameter
		ons for P	Socket [
19/2007	24 07	Calculatio	
ATE: 12/	ATE: 12	al Load (c
۵	ם קו	aft Vertic	ry Desig
A. Du	S. Malt	Drilled Sh	relimina
BY: N	ED BY: 5	NECT: D	μ α
	CHECK	SUE	

PURPOSES

To calculate factored resis Load and Resistance Fac

References

- Preliminary design draw
 Boring logs
 Subsurface soil/rock pn
 AASHTO LRFD Bridge
 Ranges of structural los

Index

- Calculations (pp. 1 ~ 14
 Idealized soil profiles (p
 Sbsurface profiles (pp.

UNITS AND CONSTANTS

(Note: These calculations ar conversions. Most common internaly defined in Mathcad

Reference:L:\Mathcad\Uni

atmospheric pressure

MATERIAL PROPERTIES

rock quality designation

top 10 ft of rock, R(

below 10 ft, RQD r

page <u>2</u> of <u>28</u>

PARSONS BRINCKERHOFF	uniaxial compressive strength of rock	$q_{\rm u} := 550$ tsf $q_{\rm u} = 7639$ psi
COMPUTATION SHEET	concrete compressive strength	fc':= 5000psi per structural engineer
Geotechnical & Tunneling Division u DATE: 12/19/2007 PROJECT: East End Bridge	DRILLED SHAFT GEOMERY	
Hatters, DATE: <u>12/24(67</u> PACE 1 OF 28 ed Shaft Vertical Load Calculations for Piers 2 through 5 minaryDesign Socket Diameter = 7.5 ft	Vertical loads are designed to be resisted by rock rock socket is used in these calculations.	socket alone. Therefore, geometry of
	Diameter $D_{S} := 7.5 ft$	
istances for vertical compression and uplift of the drilled shaft using AASHTO cfor Desion procedures. for Piers 2 through 5	Cross-sectional area $A_p := \frac{\pi}{4} D_s^2$	$A_p = 44.179{\rm ft}^2$
rawings	Length $L_{c} := \begin{bmatrix} 5\\ 10\\ 15 \end{bmatrix}$	Calculations will be performed for a
profiles provided by PB Indianappis Office. ge Design Specifications, 4th Edision, 2007. Ioading provided by PB structural engineers.		series of length for developing capacity vs length chart.
14) 5 (pp. 15 ~ 18) pp. 19 ~ 28)	$i := 0$. length(L_s) - 1	i = 4
	Note: "i" is an index varial	les defined for vector and matrix operations.
50		(117.81)
are performed using Mathcad, which does automatic units only used engineering and scientific units and constants are ad. User-defined units and constants can also be assigned.)	Shaft circumferential area $A_{\rm S} \coloneqq \pi \cdot D_{\rm S} \cdot L_{\rm S}$	$A_{\rm S} = \begin{vmatrix} 235.619 \\ 353.429 \\ 471.239 \end{vmatrix} \frac{1}{{\rm h}^2}$
ilsDefinition.xmcd		(706.858)
$p_a \equiv atm$ $p_a = 14.696 \text{ psi}$		
$\mathbf{p_a} = 2.116\mathrm{ksf}$	SERVICE LIMIT STATE DESIGN	
	Settlements	
CDD mostly between 20% and 50%, say: RQD1 \approx 35%	All vertical loads are designed to be resisted by roc	k. Settlements are expected to be negligible.
	Horizontal Movements of Shaft and Shaft Group	Ø
mostly between 50% and 90%, say: $RQD_2 := 70\%$	Evaluated separately with LPILE.	

F abed	below 10 ft. $q_{s2} := \min \left[0.65 \cdot \alpha_{E2} \cdot p_a \left(\frac{q_u}{p_a} \right)^{0.5} , 7.8 p_a \left(\frac{fc^2}{p_a} \right)^{0.5} \right]$	$q_{s2} = 27.6 \text{ksf}$ $q_{s2} = 191.7 \text{psi}$ check: $0.65 \cdot \alpha_{\text{E2}} \cdot p_{s} \left(\frac{q_{u}}{n} \right)^{0.5} = 27.598 \text{ksf}$	$7.8 p_a \left(\frac{k^2}{p_a} \right)^{0.5} = 304.467 ksf$	total shaft side resistance define function to calculate total shaft side resistance.	$Rs(L_{S}) := \begin{cases} q_{S1}(\pi \cdot D_{S} \cdot L_{S}) \text{ if } L_{S} \leq 10 \text{ff} \\ q_{S1}(\pi \cdot D_{S} \cdot 10 \text{ff}) + q_{S2}[\pi \cdot D_{S} \cdot (L_{S} - 10 \text{ff})] \text{ otherwise} \end{cases}$	(2) (2032)	$L_{s} = \begin{vmatrix} 10 \\ 15 \\ \hat{H} \\ R_{s} := Rs(L_{s}) \\ R_{s} = \begin{vmatrix} 4064 \\ 7315 \\ kip \end{pmatrix}$	$\begin{array}{c cccc} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	Note: the Rook Mass Rating (RMR) will be evaluated during final design by FMSM. Fur preliminary design, the following rock mass qualities are assumed based on general descriptions in the boring logs.	top 10 ft (upper) poor to fair rock below 10 ft (lower) fair to good rock	from Table 10.4.6.4-4 top 10 ft poor to fair quality rock mass, rock classes A&B (lime stone 60%, shale 40%) $m_{l} \coloneqq 0.9 \text{in between the categories} s_{l} \coloneqq 0.000015 \; \int$
page <u>3</u> of <u>28</u>	t supported on piles installed through soft soils subject to	ig. Not applicable. N sisted by rock alone.	ance of Single Drilled Shaft	$D_1 = 35\%$ Em_Ei ₁ := 0.1 for dosed joints	$2D_2 = 70\%$ Em_Ei ₂ := 0.7 for closed joints	$\alpha_{E1} \coloneqq 0.55$	$\alpha_{E2} \coloneqq 0.88$	$q_{s1} = \min\left[0.65 \cdot \alpha_{E1} \cdot p_a \left(\frac{q_u}{p_a}\right)^{0.5} \cdot 7.8 p_a \left(\frac{fc}{p_a}\right)^{0.5}\right]$	q _{s1} = 17.2 ksf q _{s1} = 119.8 psi	check: $0.65 \cdot \alpha_{E1} \cdot p_a \left(\frac{q_u}{p_a} \right)^{0.5} = 17.249 \text{ ksf}$	$7.8 p_a \left(\frac{fe^2}{p_a}\right)^{0.5} = 304.467 \text{ ksf}$
	settlement Due to Downdrag to downdrag is anticipated. ateral Squeeze Dry spicable for bridge abutmer	In paramosed emb ankment till load: STRENGTH LIMIT STATE DESIG Effects of water (or groundwater) t ertical loads are designed to be m	lominal Axial Compression Resis 1. side resistance from Table 10.4.6.5-1	top 10 ft of rock R	below 10 ft Rv from Table 10.8.3.5.4b-1	top 10 ft of rock	below 10 ft	Equation 10.8.3.5.4b-1: top 10 ft of rock:			

	page <u>5</u> of <u>28</u>	page <u>6</u> of <u>28</u>
below 10 ft fair to go	od quality rock mass, rock classes A&B (lime stone 60%, shale 40%)	Factored Axial Compression Resistance of Single Drilled Shaft
	$\mathrm{m_2} \coloneqq 0.5$ in between the categories $\mathrm{s_2} \coloneqq 0.0005$	Resistance Factors, based on tables 10.5.5.2.4-1 and 10.5.2.3-2
Equation 10.8.3.5.4c-2 (lov	wer bound values)	There will be an Osterberg Cell load test at each pier locations, therefore a total of 3 load tests for this "site" (piers 2 through 4). For a medium site variability:
top 10 ft of rock	${}^{n}_{b} \cdot \left(\underbrace{1_{s}}_{s} + \underbrace{1_{s}}_{s} \cdot \underbrace{1_{s}}_{s} + \underbrace{1_{s}}_{s} \right) = : 1_{p}$	$\phi \coloneqq 0.85$ however, $\phi \ll 0.70$
	q _{p1} = 69.344 ksf •	use : $\phi_{\rm dp} \coloneqq 0.70$ for tip resistance $\phi_{\rm ds} \coloneqq 0.70$ for side resistance
below 10 ft	$q_{p2} := \left(\sqrt{s_2} + \sqrt{m_2\sqrt{s_2} + s_2}\right) \cdot q_u$	Factored total resistance of drilled shaft $R_R \coloneqq \phi_{qp} \cdot R_p + \phi_{qs} \cdot R_s$ (3566.9)
	$q_{\rm p2} = 143.48\rm ksf$	7282
total shaft tip resistance		$r_{\rm R} = \frac{1}{2} $
define t	function to calculate total shaft tip resistance:	(16385.6)
$Rp(L_s)$	$= \begin{vmatrix} q_{p1} & A_p & \text{if } L_s < 10\text{ft} \\ q_{p2} & A_p & \text{otherwise} \end{vmatrix}$	
(⁵	(3064)	
$L_{\rm S} = \begin{vmatrix} 10 \\ 15 \\ 20 \end{vmatrix} \text{ff} \qquad R_{\rm P_i} =$	$\operatorname{Rp}(L_{s_1}) \qquad R_{p} = \begin{bmatrix} 6339 \\ 6339 \end{bmatrix} \operatorname{kip}$	
30) note: variab	"" is the index $\left(\frac{6339}{5} \right) \sqrt{5}$ be defined nominal shaft tip resistance	
Total Nominal Resistance		
$R_{\rm s} + R_{\rm p} = \begin{vmatrix} 5096 \\ 10403 \\ 13654 \\ 13654 \\ 16905 \\ 22408 \end{pmatrix}$	$I_{s} = \begin{bmatrix} 5\\ 10\\ 12\\ 20\\ 30 \end{bmatrix}$	

Nominal Axial Uplift Resistance of Single Drilled Shaft

Accoording to 10.8.3.7.2, the uplift resistance of a straight-sided shaft is similar to that for the side resistance in compression, as calculated above.

nominal shaft side resistance in uplift

weight of shaft

 $A_p = 44.179 \, \text{ft}^2 \, \checkmark$ $\mathbf{W}_{\mathbf{S}} := \left(\gamma_{conc} - \gamma_{\mathbf{w}} \right) \cdot \mathbf{A}_{\mathbf{p}} \cdot \mathbf{L}_{\mathbf{S}}$

 $\gamma_{conc} = 150 \text{ pcf}$

 $\gamma_{W}=62.4\,pcf$

 $W_{s} = \underbrace{\begin{array}{c} 19\\ 39\\ 77\\ 116\end{array}}_{116}$ $L_{s} = \begin{pmatrix} 5\\ 10\\ 15\\ 20 \end{pmatrix}$ $L_{s} = \begin{pmatrix} 5\\ 10\\ 15\\ 20\\ 30 \end{pmatrix}$

 $R_{\rm s} + W_{\rm s} = \left(\begin{array}{c} 2051 \\ 4103 \\ 7373 \\ 10644 \\ 11185 \\ 17185 \end{array}\right)$ Total Nominal Uplift Resistance

30

25

20

15

10

Ś

0

5000

top 10 ft of rock q_{s1} = 119.8 psi Nominal Skin Friction

below 10 ft $\phi_{qs} = 1$ resistance factor

q_{p1} = 34.7 tsf ✓

top 10 ft of rock below 10 ft $q_{p2} = 71.7 \text{ tsf}$

 $\phi_{qp} = 1$

resistance Factor

page <u>9</u> of <u>28</u>

Factored Rock Socket Compression Resistance versus Socket Length - Extreme Limit States

Socket Diameter $D_{s} = 7.5 \text{ ft}$

2.5 · 10⁴

 2.10^{4}

 $1.5 \cdot 10^{4}$

 $1 \cdot 10^4$

Resistance - kip

----- Factored Total Compressive Resistance - kip ----- Factored Shaft Tip Resistance - kip ---- - Factored Shaft Side Resistance - kip Socket Length - ft

q_{s2} = 191.7 psi

Nominal End Bearing

page <u>12</u> of <u>28</u>

Extreme Limit States for Uplift

Section 10.5.5.3.3

For extreme limit states (earthquake, ice, vehicle impact, or vessel impact, etc.), the following resistance factor is used for uplift:

$$\phi_{up} \coloneqq 0.8$$

$$\label{eq:Factored uplift} \mbox{Factored uplift resistance of drilled shaft} \qquad R_R \coloneqq \phi_{up}(R_s+W_s) \qquad R_R = \left(\begin{array}{c} 1641 \\ 5899 \\ 8515 \\ 8515 \end{array} \right) \ kp$$

page <u>14</u> of <u>28</u>

Barret Philos Its i come	GENERAL SOIL AND BEDROCK PROFILE 1:265 Over Ohio River Pier 3 - STA 193+77.5, OL Borings AC-6, 7, 8, 9, 5-2	Description Annovimete STRATA	Approximate Elevation Depth (II) (II) Description Parameters	419.4 0.0 <u>v</u> (USCIS Description) <u></u>	379.4 40.0 Sand $V_{s}(ID'II')^{*} = 66$ $U_{ss}(ITTT) = 0.98$ (SW-SM, SP, ϕ (°) = 34.5 $D_{ss}(TTTT) = 17$ SW) $K_{s}(ItDITT) = 60$	365.4 54.0 Sand Y ₆ (ID/11.) = 67 U ₅₆ (Im/1) = 0.62 (SP-SM, SW- φ (.) = 36.9 U ₅₆ (mm) = 18 SM) K ₅ (In/m ⁻) = 60	$354.4 65.0 (Tarvel Y_{g}(UNI.) = 71 U_{50}(TmI.) = 11 (GW, GW^{-1} \psi^{-1})^{-1} = 30$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 332.0 87.4 Top of Rock Limestone (60%) interbedded with Shale (40%). Limestone is gray, microcrystalline to fine grained, thin bedded, fossiliferous and argillaceous. Shale is gray, sity, laminated to thin bedded, calcareous, fossiliferous. 	278.6 140.8 $\psi(^{*}) = 6.7$ $g_{ab}(conft^{*}) = 6.47$ $c_{ab}(bha^{*}) = 300$ $\psi(^{*}) = 28.0$
15/28			•							
	GENERAL SOIL AND BEDROCK PROFILE 1265 Over Ohio River Pier 2 - STA 199-45.5, OL Borings AC-4, 5, 5-1	Description Approximate STRATA	Elevation Depth (it) (it) Description Parameters (USCS Description)	428.9 0.0 Sandy Lean Clay N(lb/lt [*]) = 121 Da(mm) = 0.060 (CL) K ₅ (lb/ln [*]) = 30 D _{b6} (mm) = 0.37	420.5 8.1 $\frac{1}{2}$ Sand with Silt $\chi_1(\text{Ib}/\text{ff}) = 107$ $D_{co}(\text{rmm}) = 0.11$ 420.6 8.1 $\frac{1}{2}$ (SM) $\chi_2(\text{Ib}/\text{ff})^* = 45$ $D_{co}(\text{rmm}) = 0.85$ $\psi_1(f) = 28.0$ $\psi_2(f) = 28.0$ $K_5(\text{Ib}/\text{in}^*) = 25$ (Above Water Table) $K_5(\text{Ib}/\text{in}^*) = 20$ (Balow Water Table)	409.9 19.0 Sand 1,6 ((b)tf ²)* = 68 D ₅₆ ((mm) = 1.6 (SW, SW-SM) ψ (* (* = 35.2 D ₅₆ (mm) = 19 K ₅ (50/m ³) = 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.4 9.10 Too of frock. Unmestore (55%) initratedded with: Shale(45%). Urmestore is gray, fine grained, tim bedded, agglaceous and fossiliterous. Shale is gray, sity, laminated to thin bedded, catazeous and fossiliterous. η(10, μf) ¹ = 165 SDI (%) = 73 SDI (%) = 73	$q_{\alpha}(rov)tt'') = 563$ c ($bt'rn'') = 300\psi (T') = 28.0\psi (T') = 28.0282.6$ 146.3 Shale ($70%$) Interhedded with Limestone ($30%$). Shale is gray, line grained, thin bedded, stry the decrease is, seasiline (30%). Shale is gray, microcrystalline thin herded the intervents. Its additions.	x(lb/lf ²) = 160 c (tb/lf ²) = 300 ψ ² (²) = 28.0

16/28

Ecuity Preizas 12/102007

18/28 Parameters O_{co}(mei) = 0.26 D_{to}(mei) = 10 D_{ia}(mni) = 7.1 O_{ed}(mn) = 27 Approximula Strem Elevenica Dapa Elevenica Dapa (1) (1) Cecchilian Perr (1855 Danchilicen) Dasoription AC-15 415.2 4.2 Sendy SBI wilh Oravol 413.4 0.0 Weitsr - Otsio Riseau (ML) % (5.11)*= 38 % (5.11)*= 38 % (7)*= 28.2 10 Poorly graded graw with sail cal seed (IPP-CM) א (IPP-CM) א (IP-20.0 K_ (ביולי)= 12 423.9 12.1 Top of Rock (AC-14) Linnstone, gray, metaon grained, the bedded to maxim bedded. 417.0 18.0 (10.14) Lineatone (00%) Novérdéde vila Skyle (48%). Lineatone és gruy, film ta macum gradod. Vida lo maclum verve backad. Si vála is gruf, síly 7; (buit') = 168 SDI (55) = 97 0,(wuit') = 782 c (5A4?) = 100 V () = 25.0 GENERAL SOL AND BEDROCK PROFILE Porecelors H265 Over Ohlo River Pler 5 - STA 210+24.5, CL Borings AC-14, AC-15, B-4 Description STRATA %(Bufi^{*}) = 164 q₆(Ienvi^{*}) = 000 c (Bufa^{*}) = 10 ¢ (^{*}) = 20.0 1, (2011) = 164 SOI (%) = 86 9,(93411) = 650 0 (266) = 150 0 (266) = 150 407.0 25.0 (AC-14) Sinda, gray to rod, very thin basedded, eity % (Bult) = 146 SDI (%) = 0 n,(hon/t) = 13 o (Bule) = 5 o (D = 20.0 N (BAN) = 160 q./(confr) = 160 c (BAN) = 150 v () = 22.0 K.(Rufit) = 100 q.(Ionifit) = 589 c.(Rufit) = 150 o.() = 32.0 (AC-14) Linuctono, light groy, fina greinod, licht badded, shelo stringe strenta, end partings 004.2 41.0 (AC-15) Deberie Linestens, groenkin gray, ino, tich bolded Aggraviante Elevation Dogo (1) (1) Description (USCS Description) AC-14 (AC-14) Swody Loon Cley (CL) 401.0 32.0 342.0 04.0 ALCON . 89£1 Top of Rock Linestone (60%) interbedded with Shele (40%). Linestone is gray, microsystalline to fine grained, thin, wary to nodular bedded, fossiliferous, and angliacous. Shale is gray, silly, laminated to thin bedded, calcareous, and fossiliferous. $D_{50}(mm) = 3.9$ $D_{50}(mm) = 2.4$ D₅₀(mm) = 9.1 D_{as}(mm) = 23 $D_{95}(mm) = 18$ D₉₅(mm) = 27 GENERAL SOIL AND BEDROCK PROFILE Parameters I-265 Over Ohio River Pier 4 - STA 206+12.5, CL Borings AC-10, 11, 12, 13, B-3 Description STRATA φ' ([°]) = 35.5 ¢' (°) = 37.0 φ' ([°]) = 38.0 SDI(%) = 74 $q_u(ton/ft^2) = 550$ φ' (°) = 28.0 c (lb/in²) = 300 K_s (lb/in³) = 125 γ_t (lb/ft³) = 165 K_{S} (lb/in³) = 125 K_{S} (lb/in³) = 20 $\gamma_{e} (lb/ft^{3})^{*} = 68$ $\gamma_{e} (lb/ft^{3})^{*} = 71$ $\gamma_{e} (lb/ft^{3})^{*} = 71$ (USCS Description) Sand (SP-SM, SW-SM, SP) Gravel (GP-GM, GM) Z Water - Ohio River Description Gravel (GW, GP) Elevation Depth (ft) (ft) 136.0 59.0 75.0 82.6 40.0 0.0 Approximate 418.8 282.8 359.8 336.2 378.8 343.8 El oring Profilos 1 2/10/2007

.

		page <u>2</u> of <u>14</u>
PARSONS BRINCKERHOFF	uniaxial compressive strength of rock	$q_u := 550 ts f$ $q_u = 7639 ts i$
COMPUTATION SHEET	concrete compressive strength	fc':= 5000psi per structural engineer
BY: M. Du DATE: 12/19/2007 PROJECT: East End Bridge	DRILLED SHAFT GEOMERY	
CHECKED BY: S:Mailhが大 DATE: IJ/24/67 PACE 1 OF 14 SUBJECT: Drilled Shaft Vertical Load Calculations for Piers 2 through 5 Preliminary Design Socket Diameter = 8 ft	Vertical loads are designed to be resisted b rock socket is used in these calculations.	rock socket alone. Therefore, geometry of
DIIRPOSES	Diameter $D_{\rm S} := 8 {\rm fh}$	
To calculate factored resistances for vertical compression and uplift of the drilled shaft using AASHTO Load and Resistance Factor Design procedures, for Piers 2 through 5.	Cross-sectional area $A_p := \frac{\pi}{4} D_s$	$A_p = 50.265 \text{ ft}^2$
References	(⁵)	
Preliminary design drawings	Length $L_{s} = \begin{vmatrix} r_{s} \\ r_{s} \end{vmatrix}$	Calculations will be performed for a
 Borng logs Subsurface soil/rock profiles provided by PB Indianapolis Office. AASHTO LRFD Bridge Design Specifications, 4th Edision, 2007. Ranges of structural loading provided by PB structural engineers. 	30	series of length for developing capacity vs length chart. (0)
Index		I I
 Calculations (pp. 1 ~ 14) Idealized soil profiles - not included, see calculation package for 7.5 ft socket diameter Subsurface profiles - not included, see calculation package for 7.5 ft socket diameter 	1:= 0length[Ls]	$1 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$
	Note: "1" is an index	vanables delined for vector and matrix operations.
UNITS AND CONSTANTS		(125.664)
(Note: These calculations are performed using Mathcad, which does automatic units conversions. Most commonly used engineering and scientific units and constants are internaly defined in Mathcad. User-defined units and constants can also be assigned.)	Shaft circumferential area $\qquad A_S\coloneqq \pi \cdot D_S \cdot L_S$	$A_{S} = \begin{vmatrix} 251.327 \\ 376.991 \\ 622.655 \end{vmatrix} \frac{2251.327}{622}$
Reference:L:MathcadUnitsDefinition.xmcd		(753.982)
atmospheric pressure $p_a \equiv atm$ $p_a = 14.696 \text{ psi}$		
$p_a = 2.116 ksf$	SERVICE LIMIT STATE DESIGN	
	Settlements	
too 10 ft of rock. RQD mostly between 20% and 50%. say: ROD, = 35%	All vertical loads are designed to be resisted t	y rock. Settlements are expected to be negligible.
	Horizontal Movements of Shaft and Shaft (iroups
below 10 ft, RQD mostly between 50% and 90%, say: RQD $_2\coloneqq 70\%$	Evaluated separately with LPILE.	

page 4 of 14 top 10 ft poor to fair quality rock mass, rock classes A&B (lime stone 60%, shale 40%) Note: the Rock Mass Rating (RMR) will be evaluated during final design by FMSM. Fur preliminary design, the following rock mass qualities are assumed based on general descriptions in the boring logs. $m_1 := 0.9$ in between the categories $s_1 := 0.000015$
$$\begin{split} Rs(L_s) &:= \begin{bmatrix} q_{s1}(\pi\cdot D_s,L_s) & \mathrm{if}\ L_s \leq 10 \mathrm{fi} \\ \\ q_{s1}(\pi\cdot D_s,10 \mathrm{fi}) + q_{s2}\cdot \left[\pi\cdot D_s\cdot (L_s-10 \mathrm{fi})\right] & \mathrm{otherwise} \\ \end{split}$$
check: $0.65 \cdot \alpha_{E2} \cdot p_a \cdot \left(\frac{q_u}{p_a}\right)^{0.5} = 27.598 \, ksf$ nominal shaft side resistance $7.8 p_a \left(\frac{fe^1}{p_a}\right)^{0.5} = 304.467 \text{ ksf}$ $R_{\rm s} = \begin{pmatrix} 2168 \\ 4335 \\ 7803 \\ 11277 \end{pmatrix}$ define function to calculate total shaft side resistance: $q_{s2}\coloneqq \min\left[0.65\cdot\alpha_{E2}\cdot p_{a}\left(\frac{q_{u}}{p_{a}}\right)^{0.5}, 7.8p_{a}\left(\frac{\epsilon c^{2}}{p_{a}}\right)^{0.5}\right]$ fair to good rock poor to fair rock q_{s2} = 191.7 psi $r_{s2} = 27.6 \, \text{ksf}$ note: "i" is the index variable defined above $R_{S_{j}} \coloneqq Rs \left(L_{S_{j}} \right)$ below 10 ft (lower) top 10 ft (upper) total shaft side resistance from Table 10.4.6.4-4 $\mathbf{L}_{s} = \begin{bmatrix} 5\\ 10\\ 12\\ 20\\ 30 \end{bmatrix}$ below 10 ft: 2. Tip Resistance page 3 of 14 for closed joints for closed joints Only applicable for bridge abutment supported on piles installed through soft soils subject to unbalanced embankment fill loading. Not applicable. $0.65 \,\alpha_{\rm E1} \, P_{\rm a} \left(\frac{q_{\rm u}}{p_{\rm a}} \right)^{0.5} = 17.249 \,\rm ksf$ Effects of water (or groundwater) table, scour, and downdrag are not considered, as the vertical loads are designed to be resisted by rock alone. $7.8p_{a} \cdot \left(\frac{fc'}{p_{a}}\right)^{0.5} = 304.467 \text{ ksf}$ $q_{s1}:= \min \left[0.65 \cdot \alpha_{E1} \cdot p_{a} \left(\frac{q_{u}}{p_{a}}\right)^{0.5} \cdot 7.8 p_{a} \left(\frac{fc'}{p_{a}}\right)^{0.5}\right]$ $Em_Ei_1 \approx 0.1$ $Em_{Ei_2} := 0.7$ Nominal Axial Compression Resistance of Single Drilled Shaft q_{s1} = 119.8 psi 🗸 q_{s1} = 17.2 ksf ' $\alpha_{E1}\coloneqq 0.55$ $\alpha_{E2}\coloneqq 0.88$ $RQD_2 = 70\%$ $RQD_1 = 35\%$ check: STRENGTH LIMIT STATE DESIGN Settlement Due to Downdrag No downdrag is anticipated. top 10 ft of rock top 10 ft of rock from Table 10.8.3.5.4b-1 top 10 ft of rock: Equation 10.8.3.5.4b-1: from Table 10.4.6.5-1 below 10 ft below 10 ft 1. side resistance Lateral Squeeze

Resistance - kip

page 12 of 14

Factored Rock Socket Uplift Resistance versus Socket Length - Extreme Limit States

Extreme Limit States for Uplift

page 13 of 14

Section 10.5.5.3.3

For extreme limit states (earthquake, ice, vehicle impact, or vessel impact, etc.), the following resistance factor is used for uplift:

 $\phi_{up} \coloneqq 0.8$

Factored uplifit resistance of drilled shaft $R_R := \phi_{up}(R_s + W_s)$ $R_R = \begin{pmatrix} 1752 \\ 3503 \\ 9087 \end{pmatrix}$ kip $\begin{pmatrix} 14671 \\ 14671 \end{pmatrix}$

 $\gamma_{conc} - \gamma_{w} = 87.6 \, pcf$

 $\phi_{up} = 0.8$

resistance factor

weight of shaft

APPENDIX H-2 DRILLED SHAFT LATERAL LOAD CALCULATIONS

KERHOFF Page 2 of HEET Made by: M. Du Made by: M. Du Date: 12/21/2007 Checked by: S. M. OllLecta Design Date: 12/23/N7	AASHTO LRFD Bridge Design Specifications (4 th Edition, 2007) was the drilled shafts subject to vertical and lateral loads and bending arn LPILF, which models the shaft as a bending member and the arn LPILF, which models the shaft as a bending member and the arn LPILF, which models the shaft are a bending moment, shear al along the shaft length. Is applicable to drilled shaft per 10.8.3.8), the minimum penetration that the fixity is obtained. Is applicable to drilled shaft per 10.8.3.8), the minimum penetration that the fixity is obtained. Iminimum required socket length to provide fixity of the shaft. In <i>it is ablewed</i> with a certain rock socket length, beyond which icant effects on the drilled shaft behavior under lateral loads and <i>it is ablewed</i> with a certain rock socket length, they are usually applied fiscant effects on the drilled shaft behavior under lateral loads and <i>it is ablewed</i> with a certain rock socket length, and witch icant effects on the drilled shaft behavior under lateral loads and <i>it is ablewed</i> with a certain rock socket length, period with icant effects on the drilled shaft behavior under lateral loads and <i>it is ablewed</i> with a certain rock socket length, and witch icant effects on the drilled shaft behavior under lateral loads and <i>it is ablewed</i> with a certain rock socket. It is not that a certain rock socket is an de sour . Fither case can be <i>c</i> , some extreme load cases, such as a enthogen of a fither socket. If <i>f</i> -cour case was not analyzed for this preliminary stage, as it can be set on socur and maximum scourt. As the socket is an elliptical pattern in plan. The For the other pices, the shafts are arranged in an elliptical pattern in plan. The <i>f</i> for the other pices, the shafts are arranged in a single row in the is not fixed in the longitudinal direction, and is assumed free to rotate is not fixed in the longitudinal direction, and is assumed free to rotate daths are spaced at a center-to-center spacing of 3 times diameter, P- dined on the leading row second row, and other	
PARSONS BRINCT 200, COMPUTATION St 200, COMPUT	 Design Methodology Analytical Procedures Fuateral load analysis procedures specified in J used. Soil-structural interaction analyses for the moments are carried out using software programmoming soil and rock, and soil reaction pressure are calculated. LRFD Resistance Factor Per Table 10.5.5.2.4-1, the brizontal geotecht fin addition, per section 10.7.3.12 (for piles, al of the piles (shaft) below ground should be used. Minimum Rock Sockert Length Required for F. One purpose of the calculations is to find the three easing the rock socket will have no signifibending moment. Socour Analyses were performed for the cases withou critical under different conditions. In addition, with one-half of the maximum sour. The hal approximated by interpolating between the cases withou critical muder different conditions. In addition. Socour Stant Diameter Two shaft head is assumed for the cases withou critical muder different conditions. In addition. For the maximum sour. The hal approximated by interpolating between the cases withou critical muder different conditions. In addition. For the main tower piers (Piers 3 & 4), the she shaft head is assumed fixed against rotation. In LPLE analysis. Group Effect Per 10.7.2.4 (for piles, also applicable to drill with a level of 0.3 of sand 0.35 sindle be appressioned against rotation. 	-
Page 1 of Made by: M. Du Date: 12/21/2007 Checked by: S.Moglupta	is, and to determine minimum rock socket ury U.S. Units, 4 th Edition, 2007.	
PARSONS BRINCKERHOFF COMPUTATION SHEET COMPUTATION SHEET Comput Lateral Load Calculations Cubject: Drilled Shaft Lateral Load Calculations East End Bridge, Preliminary Design	 Purpose To evaluate lateral load deformation behavior of drilled shaf length to provide fixity. References 1. Preliminary Design Plans, December 2007. 2. Boring logs 3. Idealized soil profiles 4. AASHTO LRFD Bridge Design Specifications, Custome 5. LPILE Plus 5.0, Ensoft, Inc. 2007. I. Cover sheet (p. 1) 2. Design methodology (p. 2) 3. Loading cases (p. 3) 4. Drilled shaft cross-section properties (p. 4) 5. LPILE Run 2 (pp. 2) 3. Loading cases (p. 3) 6. Idealized soil/foundation profiles (pp. 6 - 10) 7. Graphical and numerical computer output (pp. 11 - 234) 6. LPILE Run 1 (pp. 11 - 24) 6. LPILE Run 2 (pp. 53 - 66) 6. LPILE Run 1 (pp. 11 - 24) 7. LPILE Run 1 (pp. 13 - 150) 7. LPILE Run 1 (pp. 13 - 150) 7. LPILE Run 13 (pp. 199 - 102) 7. LPILE Run 14 (pp. 193 - 206) 7. LPILE Run 15 (pp. 277 - 220) 7. LPILE Run 16 (pp. 221 - 234) 7. LPILE Run 16 (pp. 221 - 234) 	

Du, Mangtao		Du, Mangtao		4
From: Sent: To: Co: Subject:	Dwyre, Elizabeth Tuesday, December 18, 2007 7:22 PM Du, Manglao Castelli, Raymond J.; Hsu, Ruchu; Bryson, John RE: EEB: Analyses - Shear and Moment- Dritied Shaft Diameter Discussion / Pile Head Demands - Shear and Moment	From: Sent: To: Cc: Subject:	Bryson, John Tuesday, December 18, 2007 12:50 PM Dwyre, Elizabeth Castelli, Raymond J.; Du, Mangtac; Hsu, Ruchu RE: EEB: Analyses - Drilled Shaft Diameter Discussion / D	Drilled Shaft Section Properties
Monty, These are the load summary of shear an for these analyses, these load cases set	cases I am suggesting you run in LPILE, based on John's spreadsheet ud moment. I don't think it's necessary to run a large suite of loads since we will need to do further work in final design. Let me know if tem reasonable to you.	Miled Shaft Section Properti Liza,		
Simplified analysis V (k) M (k-ft) 1,000 40,000	i cases, Piers 3& 4 (Tower piers, just run one location) P=12,000 k	Attached are our c shaft,socket sizee larger shaft optic in our latest glob Pile analyses.	alculations for the drilled shaft section prop that you are considering for your report. Th m [0:-6" drilled shaft/0:-0" rock socket) are al (LARSA) analysis. You may use these sectio.	werties for the two the properties for the consistent with those used on properties for your L-
1,500 60,000 1,500 60,000 Simplified analysis Pier 2 is in water 20 4,000 225 5,000	reases, Piers 1& 2 (need to run both piers since Pier 1 is on land and P= 12,000 k LOAD CAJES WSED IN LPILE AWALY SES	These section prop and an effective (The concrete in th The section proper option 1: 8'-6" dri 8'-6" dri	erties are based on 5000 psi concrete with a 3 cracked) section of 65% Igross for the concret le rock socket portion is assumed to be uncrack tries are summarized below. tilled shaft with 8'-0" rock socket illed shaft (cased portion): 005,281 psi	/4-inch casing thickness te in the cased section. ted.
simplified analysis P=4,000 k V M 300 11,000 500 13,000 500 13,000	i cases, Pier 5	8 -0, 00 mot 8 -0, 00 mot 8 -1, 0, 00 mot 8 -1, 0, 00 mot 8 -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	9,630.78 in~2 5,431.065 in~4 5,431.065 in~4 7,8 socket (uncased portion): 7,281 psi 7,391.631 psi 7,398.23 in~2 4,169,220 in~4	SHAFT SECTION PROPERTIES USED IN
<pre>Blizabeth M. Dwyre, Blizabeth M. Dwyre, (317) 287-3406 dire (317) 752-0917 cell (317) 972-1706 x 34 www.pbworld.com</pre>	P.E. Let 16 office	Densit Option 2: 8'-0" dr 8'-0" OD dri 8'-1 3 4 5 Ax *	Y = 0.08680b LD./IN 3 (GrY Gensiry) illed shaft with 7'-6" rock socket lled shaft (cased portion): 697,617 psi 8,611.24 in^2	LPILE ANALY SES
Original Messa From: Bryson, John Sent: Tusday, Dece To: Dwyre, Bilzabet Cc: Castelli, Raymo Subject: RE: EEB: A	ige mber 18, 2007 10:46 AM b ond J.; Du, Mangtao; Hsu, Ruchu unalyses - Drilled Shaft Diameter Discussion / Pile Read Demands	IZ = 1 Densit Bensit Bensit C = 1 Ax = Ax = 1 Densit	4,356,263 in 4 4,356,263 in 4 8 Bocket (uncased portion): 074,281 psi 6,951,617 psi 6,951,73 in 4 3,220,623 in 4 3,220,623 in 4	
Liza, Attached are the pi analysis.	ile head loads including the shear forces from our current global	Thanks, John A. Bryson	Martellan Arny c ur/err popoport = A	
By "pile head loads the tremie seal for for the transition Please note that th the Strength I thro	s", we mean the forces and moments in the drilled shaft directly beneath r the main tower foundations and at the column/drilled shaft transition and anchor piers (Piers 1, 2 and 5). te attached forces and moments are factored loads, per AASHTO IRFD, for bugh V limit states and the Extreme Event I limit state (seismic load	PB Americas, Inc. One Pern Plaza New York, NY 101 tel: (212) 465-533 fax: (212) 465-553 fax: (212) 326-40 cell: (347) 326-40	19 16 15 130	
	-		-	

| Q | | | 3 | do do g | o ic
 | 1.7' 140 | 7
폭.

 | ż | - | <u>i</u>
- \
 | | 141 | |
 | | î. | , 8961
 | |
|--|--|--|--|--
--|--
--
--
---	--	---
---	---	---
---	-----------------------------------	
 | Di. | ₹
—

 | <u></u> | 4 |
1
 | | | 7 |
 | | | - 146.9
 | |
| | | | | -4, (-4) | 430

 | | 2211

 | | |
 | | v. fine | alcareous. |
 | | | I.
 | |
| JFILE | | | sters | C | $1 \times K_{s} (b/in^{3}) = 100$
 | $D_{86}(mm) = 0.03$
$D_{85}(mm) = 0.19$ | NHX. SCOUR

 | D ₅₆ (mm) = 0.90
D ₆₆ (mm) = 20 | | D ₅₀ (mm) = 0.76
D ₆₅ (mm) = 8.00
 | | 10%). Limestone is dra | hale is gray, silty, and c |
 | | |
 | |
| AND BEDROCK PRC | Over Ohio River
· STA 187+40, CL
ings AC-1, 2, 3 | Description
errorra | Parame | ation) | Y ₁ (lb//1 ³) = 121 / ∕∕
 | Y₀(Ib/ft [*]) | Cy (lb/it*) = 892

 | γ _e (lb/ft ³) = 55
φ' (*) = 32.5. | Ks (lb/in ³) = 60 | γ. (lb/ft ³) = 64
ψ (⁰) = 34.8.
 | Ks (Ib/in [*]) = 60 | interbedded with Shale(z | ided and argillaceous. Si | γ _i (lb/ft ³) ≥ 165 ●
 | SDi (%) = 80
q _u (ton/11 ²) = 411 | c (lb/in ²) = 300
¢' (*) = 28.0 |
 | |
| GENERAL SOIL | I-265 (
Pler 1 -
Bori | | Description | (USCS Classifioz | //// Lean Clay
 | 1
1
1
1
1 |

 | Sand with Silt
(SM, SW-SM, | and SP-SM) | Sand
(SW-SM, SW
and SP-SM)
 | | Top of Rock
LImestone(60%) | gralned, thin bed |
 | | |
 | |
| | | | Depth
(ft) | ć | 2
 | 15.7 | 25.0

 | | 55.0 |
 | | 100.0 | | c
 | | | 150.9
 | |
| | | Anon | Elevation
((t) | 0101 | 0.40
 | 418.3 | 409.0

 | | 379.0 |
 | | 334.0 | 11 |
 | | | 283.1
 | |
| Prelim | | | | |
 | |

 | | | 1
 | | 1 | |
 | | | ļ
 | |
| Baing | | | | |
 | _ |

 | | _ | |
 | _ | | |
 | | |
 | |
| μ.
 | | 85.
MD4 | DATE: 12/21/2407 | DATE : |
 | |

 | | | |
 | | | |
 | | |
 | |
| ₩ | ra9onigeo (ra) | S C | Totol Date: 12/21/2007 | t on discus
Secende
بالمحصوم | s base
in Plans
 | e.
eign Pise
gisad Yn
esig | bəmuə
surfac
Q Yor
animina

 | age 255 and 2010 and 20 | r) day ng katagang katang katang
Katang katang katang
Katang katang katan
Katang katang kata | 9v9d b59d
9 f66t b9f0
9 0 S0 g 10 S
0 g 10 j
0 g 10 j | t the shaft
oximately
naccoordin
e seal acc
 | am, appr
cap bear
the tremi
the tremi | co si na
po moli
to moli
to moli | od – 6.1
od – 6.2
od – 2. | m head (
Elev, 414
Elev, 405
 | Umixsm s
5 :7 :5:0
5 :2 & S
5 : 4 : 1
5 : 5 : 5 : 5
5 : 5 : 5
5 : | NTT: 5310
Pie
Pie
Pie | |
| S
S
S
S
S
S
S
S | dignel length
trial engineer: | s aft grits
afte structu
2
2
2
2
2
2
2
2 | mich increa
sions with the static sions of the static sions with the static sions of t | n beyond w
1 on discus
, Decembe
לא | st lengt | aan rorce
e a sock
ssign Pla
ssign Pla
pesig
 | d oj ba
bamua
Visto
Vist
Brimina

 | kiry and
s assume
g ground
f Preind
fright
for Pre | ide fixity is
ide fixity is
ide tracting
is S5 in the
is S5 in the
Sheet S2 i | r, que to fi
cet to prov
filest beic
g to Sheet
ording to S | wy momet
f rock sock
order fatel
order fatel
order atel
seal acc
 | e a result
pehavior
inpued a
mpued a
the tremi
the tremi | d kw u
z)hafz
z)hafz
co zi na
co zi na
co zi na
co zi
no
to
mot
to
mot | son any
arti no
polo motico
od – 8.1
od – 2. – 2. | 160 241 250 241 250 250 250 250 250 250 250 250 250 250
 | these ca
s significs
r 1; Elev.
r 2 & 5 : 7
s 3 & 4 ; 1
s 3 & 4 ; 1 | m ponong m
Vuote 2: Foi
Pie
Pie
Pie
Pie | |
| | 153,496 €
23,496 €
23,406 €
23,406 €
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
160011
1600000000 | 10,1,2,2,2,4,606
11,0,2,4,606
11,0,2,4,606
12,2,4,606
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06
14,0,06 | al the shall the | 10
10
10
10
10
10
10
10
10
10 | ailiqqs s
brased s
c Desca s
c Dec
snsig | Scourt
Scourt
ast force
e a sock
e.
e.
e.
ry Desig
 | (10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)

 | 2.7
bins yits
s assumine
s assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assumine
assum | 8
it bead at
ide fixity is
ide fixity is
is vinic
is for ine
to
it
is for
is
is
is
is
is
is
is
is
is
is
is
is
is | 4,000 A
1 od e uo tr
1 od o | 13,000
med to be t
frock sock
order fatel
t fithe shaft
m accordin
e seal acc | 500
500
500
500
500
500
500
500
500
500
 | Free
d lifw bi
ad lifw bi
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
ruminin
rumininin
rumininin
ruminininin
rumininin
rumininininininininininininininininininin | Tr
solitication
freeduption
for the transformation
for the transfor | 392
160, 410
160, 414
160, 414
160, 414
170, - 00
160, 414
160, 405
160, 405
160, 405
160, 405 | Piers 2 8
poment occ
these ca
s asignifica
s 2 & 5 5
s 2 & 4 ; 1
s 3 & 4 ; 1 | 8.¢t4.8
menibra 4.150
menibra 4.1500
menibra 4.1500
men
 | Pier 5 |
| | Itel euglineet:
102/02/02/02/02/02/02/02/02/02/02/02/02/0 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4 | 24
25
24
25
25
25
25
25
25
25
25
25
25 | paliqqs s
parsed s
pased s
pased s
pased s
 | t Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt
Scourt | eeM
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u> <u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>ov</u>
<u>o</u>

 | 8 3 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8.6
8.8
8.6
1000 100
1000 1000 100
1000 1000 1000
1000 1000 1000 1000
10000 1000 1000 1000
1000 1000 1000 1000
1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000
1000 1000000 | 4,000
4,000
4,000
104 et b
102 de to
102 de to | Vote 1
13,000
13,000
100 morter
1 fock sock
1 fock sock
1 fore shaft
1 forestaft
1 fores | 6 200
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 | Fixed
Free
d Rive b
soft free
free
from of
to molf
from of | 0+
Γι
τι
τι
τι
τι
τι
τι
τι
τι
τι
τ | 332
332
332
332
332
332
332
332
332
332 |
415.2
415.2
415.2
415.2
415.4
415.4
415.4
515.4
52.8
515.4
515.4
515.4
52.8
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.4
515.5
51 | 8.204
8.414
8.414
8.414
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407
9.407 | Piers
3&4
Pier 5 |
| | النقا المالية
النقا المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
المالية
الماليمالية
الماليمالية
الماليمالية
المالية
المالية
الماليمالية
الماليمالية
المالية
المالية
المالية
المالية
الماليماليمالية
الماليماليماليماليماليماليماليماليماليما | 17.725
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745
17.745 | 230
230
230
230
230
230
24
25
25
25
25
25
25
25
25
25
25 | المالي المالي المالي |
Paliqates
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
Particular
P | ring action of the second of t | (10) (10) (10) <td>8
3 90000
3 900000
3 90000
3 90000
3 90000
3 90000
3 900000
3 9000000
3 9000000
3 90000000000</td> <td>6.8
8
8.8
8.8
8.8
8.8
8
8
8
8
8
8
9
10
10
10
10
10
10
10
10
10
10
10
10
10</td> <td>12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000</td> <td>6,000
Mote 1
Mote 1
13,000
Mote 1ater
Mote 1</td> <td>2500
2500
2500
2500
2500
2500
2500
2500</td> <td>Free
Free
d win bar
free
free
free
free
free
free
free
fr</td> <td>λt 04 Σ Γ</td> <td>334.9
334.9
392
392
392
392
392
392
392
392
392
39</td>
<td>1.404.1
1.404.1
1.45.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15</td> <td>8.414
2.204
8.414
8.414
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.04159
9.0415900000000000000000000000000000000000</td> <td>Pier 2
3&4
Pier 5</td>
 | 8
3 90000
3 900000
3 90000
3 90000
3 90000
3 90000
3 900000
3 9000000
3 9000000
3 90000000000 | 6.8
8
8.8
8.8
8.8
8.8
8
8
8
8
8
8
9
10
10
10
10
10
10
10
10
10
10
10
10
10 | 12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000 | 6,000
Mote 1
Mote 1
13,000
Mote 1ater
Mote 1 | 2500
2500
2500
2500
2500
2500
2500
2500
 | Free
Free
d win bar
free
free
free
free
free
free
free
fr | λt 04 Σ Γ | 334.9
334.9
392
392
392
392
392
392
392
392
392
39 |
1.404.1
1.404.1
1.45.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15.2
1.15 | 8.414
2.204
8.414
8.414
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0315 910V
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.0415
9.04159
9.0415900000000000000000000000000000000000 | Pier 2
3&4
Pier 5 |
| Total Set | IIISI ENGINEEL:
DOCKET JENGINEEL:
JE SECTOR
SC 202 SECTOR
SC 2 | 22
23
23
23
23
23
23
24
25
24
25
25
25
25
25
25
25
25
25
25 | 2002
2012
2012
2012
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | Pailqqs a |
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
25001
250000000000 | Generation Generation Generation Generation <t< td=""><td>8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
7
9
10
10
10
10
10
10
10
10
10
10</td><td>8.8
8.8
8.8
8.5
8.5
8.5
8.5
8.5
8.5
8.5</td><td>12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000</td><td>6,000
6,000
6,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,00000
14,000000
14,0000000000</td><td>The term
the term
sm, specific
tais assure
tais
assure</td><td>Free
Free
Free
Manue
Free
Free
Free
Free
from
for
from
from
from
from
from
from</td><td>16
14
14
14
14
14
15
14
15
14
16
16
16
16
16
16
16
16
16
16</td><td>334
334.9
332.3
332.3
332.3
332.3
332.3
332.3
332.3
334.9
334.9
332.3
334.9
332.3
334.9
334.9
334.9
334.9
334.9
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,4005
10,405
10,405
10,405
10,405
10,4005
10</td><td>434
434
579.4
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.</td><td>0004
8.416
8.416
8.416
8.416
8.416
8.416
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.4100
9.410
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.41000
9.41000
9.41000
9.41000000000000000000000000000000000000</td><td>Pier 1
Pier 2
3&4
Pier 5</td></t<> |
8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
8
2.7
7
9
10
10
10
10
10
10
10
10
10
10 | 8.8
8.8
8.8
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000
12,000 |
6,000
6,000
6,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
13,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,0000
14,00000
14,000000
14,0000000000 | The term
the term
sm, specific
tais assure
tais assure | Free
Free
Free
Manue
Free
Free
Free
Free
from
for
from
from
from
from
from
from | 16
14
14
14
14
14
15
14
15
14
16
16
16
16
16
16
16
16
16
16 |
334
334.9
332.3
332.3
332.3
332.3
332.3
332.3
332.3
334.9
334.9
332.3
334.9
332.3
334.9
334.9
334.9
334.9
334.9
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
5
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,405
10,4005
10,405
10,405
10,405
10,405
10,4005
10 | 434
434
579.4
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715.2
715. | 0004
8.416
8.416
8.416
8.416
8.416
8.416
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.410
9.4100
9.410
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.4100
9.41000
9.41000
9.41000
9.41000000000000000000000000000000000000 | Pier 1
Pier 2
3&4
Pier 5 |

strand belling for servision bead leter of Unimore

Nung Press

 $\overline{\infty}$

 Number of pile increments = 222 Maximum number of iterations allowed = 100 Deflection tolerance for convergence = 1.0000E-05 in Maximum allowable deflection = 1.0000E+02 in 	Printing Options: - Only summary tables of pile-head deflection, maximum bending and maximum shear force are to be printed in output file.	Pile Structural Properties and Geometry	File Length = 1332.00 in Depth of ground arrface below top of pile = 48.00 in even-and arrefaced	 Outpendiet on ground stated as to a conception of the defined using 4 points 	Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in In in*4 Sq.in DeSG.in	1 0.0000 102.00000 5431065. 9530.7800 4074281 2 1154.0000 102.00000 5431065. 95307300 407428 3 1154.0000 96.00000000 4168250 2334.2340 24072	404 20053827 202630 40000000 86 0000000 41521 4 40 40 40 40 40 40 40 40 40 40 40 40 4	Soil and Rock Layering Information	The soil profile is modelled using 5 layers	Layer 1 is stiff day without free water Distance from top of pile to top of layer = 48.000 in Distance from top of pile to bottom of layer = 140.000 in	Layer 2 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 140.000 in Distance from top of pile to bottom of layer = 252.2000 in p-y subgrade modulus k for top of scoil Betra = 100.000 Bis/in* p-y subgrade modulus k for bottom of layer = 100.000 Bis/in*	Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 252.000 in Distance from top of pile to bottom of layer = 601.000 lbs/in* p-y subgrade modulus k for bottom of layer = 60.000 lbs/in*	Layer 4 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 612.000 in Distance from top of pile to top on of layer = 1152.000 in p-y subgrade modulus k for top of soil layer = 60.000 lbs/in* p-y subgrade modulus k for bottom of layer = 60.000 lbs/in*	Layer 5 is strong mok (wuggy limestone) Distance from top of pile to top of layer = 1152.000 in
PILE Plus for Windows, Version 5.0 (5.0.31) aalysis of Individual Piles and Drilled Shafts biyered to Lateral Loading Using the p-y Method	(e) 1985-2007 by Easoft, Inc. All Rights Reserved	ran is licensed to:	bu bas, Jnc.	e locations: L:\East End Bridge\Lateral Load Analyses\Pier I\ apput data file: Pier 1 - large - no scour.pd	auptunt filte: Prier 1 - large - no scourt.pp Joi ontput filte: Prier 1 - large - no scourt.pp Julime file: Prier 1 - large - no scourt.pr	Time and Date of Analysis	ate: December 21, 2007 Time: 10:39: 0	Problem Title	ridee - Preliminary Desian for Pier Foundation		in Computations - US Customary Units: Inches, Pounds	ype 1: tion of Lateral Pile Response Using User-specified Constant El on Options: smally-generated p-y curves used in analysis	usses prantingers are resistance at pile tip assumes no shear resistance at pile tip charter the trapit damet the trapit unumary table of valuation stiffness matrix elements unumary table of values for pile-head deflection, maximum	ioment, auto a solare norce astring on pile sumes no sola movements av ional p-y curves to be computed at user-specified depths

	Distribution of p-y multipliers with depth defined using 2 pounts Point Depth X p-mult y-mult No. in	1 -48,000 -7000 1:0000 2 1122.000 -7000 1:0000		Loading Type	Cyclic loading criteria was used for computation of p-y curves	Number of cycles of loading $=$ 30.	Pile-head Loading and File-head Fixity Conditions	Number of loads specified = 3	Load Case Number 1	Pite-head boundary conditions are Shear and Moment (BC Type 1) Shear force at nile head $= 550000$ fbo lie	Bending moment at pile head = 72000000.000 in-lbs Axial load at pile head = 12000000.000 lbs	Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.	Load Case Number 2	Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 225000.000 lbs Bending moment at pile head = 6000000.000 in-lbs Axial load at pile head = 12000000.000 lbs	Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.	Load Case Number 3	Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 200000.000 lbs Bending moment at pile head = 4800000.000 in-lbs Axial load at pile head = 12000000.000 lbs	Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.		
 7																				
	(Depth of lowest layer extends 431.00 in below pile tip)	Effective Unit Weight of Soil vs. Depth	Distribution of effective unit weight of soil with depth is defined using 10 points	Point Depth X Eff. Unit Weight No. in Iss/in**3	1 48.00 07002 1 740.00 77002	3 140.00 03414 4 252.00 03414 5 512.00 03183 5 612.00 03183	7 612.00 03704 8 1152.00 03704 9 1152.00 05974	1763.00 05937 V		Shear Strength of Soils	Distribution of shear strength parameters with depth defined review 10 nomine	uctures using to pound Point Depth X Cohesion c Angle of Friction E50 or RQD No. in Ibs/in**2 Deg. k_rm %		1 100.000 6.19444 .00 .01000 .0 2 222.000 6.19444 .00 .01000 .0 5 252.000 0.0000 32.50 6 6.12.000 .00000 32.50	9 1152.000 4800.00000 34.80 9 1152.000 4800.00000 0.00 9 1152.000 4800.00000 0.00 10 1763.000 4800.00000 0.00	Notes:	 Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay strata. Default values will be generated for E50 when input values are 0. RQD and k_m are reported only for weak tock strata. 		p-y Modification Factors	

5

omputed Values of Load for Lateral Loading for I

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified share Torce are pible head = 25000000 bis Specified moment at pile head = 72000000 000 his Specified axial load at pile head = 12000000 000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a fice-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 225000.000 lbs Specified moment at pile head = 6000000.000 ihls Specified axial load at pile head = 1200000.000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a fice-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specifical shear force at pile head = 200000.000 lbs Specifical moment at pile head = 4800000.000 in-lbs Specifical axial load at pile head = 12000000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification

Computed forces and moments are within specified convergence limits.

3

Summary of Pile Response(s)

Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Stope, , m = Pile-head Moment Ibs-in Type 2 = Shear and Rots Stiffness, V = Pile-head Shear Force lbs Type 4 = Deflection and Moment, S = Pile-head Shope, natians Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad

Axial Pile-Head Maximum Maximum Load Deflection Moment Shear in in-lbs lbs Load Pile-Head Pile-Head Type Condition Condition

lbs ____

I V= 2.50E+05 M= 7.206E+07 1.2000E+07 9146662 1.2006E+08 -286089 I V= 2.25E+05 M= 6.00E+07 1.2000E+07 7734806 1.0179E+08 -242428 I V= 2.20E+05 M= 4.80E+07 1.2000E+07 6.356247 8.3767E+07 200000.

Pile-head Deflection vs. Pile Length

Boundary Condition Type 1, Shear and Moment

Shear = 250000. lbs Moment = 72000000. in-lbs Axial Load = 12000000. lbs

Maximum Shear Pile Head Maximum Moment sd in-lbs Deflection .e Pile P Length in 1332.000 91466.16 1.200599E+08 -286089.48519 1265.400 92217197 120566E+08 -2855.673173 1128.800 91223.451 1.19967E+08 -2855.473170 1112.200 92226671 1.200679E+08 -283913.66305 999.000 932205671 1.21958E+09 423913.66305 999.000 9327954 1.1998.60E+08 -298156.51257 932.400 9337954 1.1998.60E+08 -298156.51257 799.200 1.0119299 1.1915.41E+08 -357422.919257 732.600 1.11208861 1.186604E+08 -09514.92893

The analysis ended normally.

 \$3 Solution Control Parameters: Number of pile increments 222 Number of pile increments 222 Maximum number of iterations allowed = 100 Deflection tolerance for convergence = 1,000E-05 in Maximum allowable deflection = 1,000E+02 in Printing Options: Other of pile head deflection, maximum bending and maximum shear force are to be crinted in output file. 	Pile Structural Properties and Geometry Pile Length Pile Length Deeth of ground surface below top of pile	Slope angle of ground surface 00 deg. Structural properties of pile defined using 4 points Point Deph 7 Pile Monent of Pile Modulus of X Diameter Inertia Area Elasticity in in in ***4 Sq.in lbsdSq.in	1 0,000 102,0000 5431065 9530.7800 4074281. 2 1154.000 102.00000 5431065 9530.7800 407428 3 1154.000 96.0000000 4169220. 7238.2300 40742. 4 1332.0000 96.00000000 4169220. 7238.2300 40742.	Soil and Rock Layering Information The soil profile is modelled using 4 layers	Layer 1 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 144.000 in Distance from top of pile to bornon flayer = 100.000 hs/in* p-y subgrade modulus k for bottom of layer = 100.000 hs/in* p-y subgrade modulus k for bottom of layer = 100.000 hs/in*	Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 252.000 in Distance from top of pile to bottom of layer = 612.000 in p-y subgrade modulus k for hottom of layer = 60.000 lbs/in** p-y subgrade modulus k for bottom of layer = 60.000 lbs/in**	Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top fayer = 112.000 in Distance from top of pile to bottom of layer = 60.000 lay.net p-y subgrade modulus k for bottom of layer = 60.000 lay.net	Layer 4 is strong rock (wuggy limestone) Distance from top of pile to top of layer = 1152,000 in Distance from top of pile to bottom of layer = 1763,000 in (Depth of lowest layer extends 431,00 in below pile tip)
LPILE Plus for Windows, Version 5.0 (5.0.3.1) Analysis of Individual Piles and Drilled Shafts Subjected to Lattera Loading Using the P-y Method (c) 1985-2007 by Ensoft, Inc.	This program is licensed to: Mangtao Du PB Americas, Inc.	Path to file locations: L-YEast End Bridge/Lateral Load Analyses/Piter 1/ Name of input data file: Piter 1 - large - scour.pd Name of output file: Piter 1 - large - scour.lpo Name of plot output file: Piter 1 - large - scour.lpp Name of nutitime file: Piter 1 - large - scour.lpr	Time and Date of Analysis Date: December 21, 2007 Time: 10:37:42	Problem Title	cast End Bridge - Preurunary Design for Pier Foundation Program Options	Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options: Analysis Type 1: Communition of Lateral Pile Ressonce Usine User-snecified Constant Et	Computation Options: - Only internally-generatedy curves used in analysis - Analysis assumes no shear resistance at pile in - Analysis assumes no shear resistance at pile in	Anaryss incluses automate computation of pur-top neutection vs. price embedrated inegrith Nu computation of foundation stiffness matrix elements colling montant, and shear force only Analysis assumes no soil movements acting on pile No additional p-y curves to be computed at user-specified depths

*

20 Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head (toading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 250000.000 lbs Specified moment at pile head = 7200000.000 in-lbs Pile-head boundary conditions are Shear and Moment (BC Type I) Shear force at pile head = 25000000 000 hs Arial foad ar pile head = 72000000 000 in-lbs Axial load ar pile head = 12000000 000 his Pile-head boundary conditions are Shear and Moment (BC Type I) Shear force at pile head = 20000000 000 hs Bending moment at pile head = 20000000 000 in-bs Arial load at pile head = 12000000 000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 2000000 000 hs Areadingrowents at pile head = 48000000 000 in-lbs Axial load at pile head = 12000000 000 hs Cyclic loading criteria was used for computation of p-y curves Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head Loading and Pile-head Fixity Conditions 30. Loading Type Number of cycles of loading = Number of loads specified = 3 Load Case Number 1 Load Case Number 2 Load Case Number 3 35 ð Cohesion = uniaxial compressive strength for rock materials.
 Values of E50 are roptred for for systrata.
 Default values will be generated for E50 when input values are 0.
 RQD and k_, m are reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Point Depth X Cohesion c Angle of Friction E50 or No. in Ibs/in**2 Deg. k_m % o o Distribution of effective unit weight of soil with depth is defined using 8 points 01000 Effective Unit Weight of Soil vs. Depth Distribution of shear strength parameters with depth y-mult 1.0000 p-y Modification Factors .00 .00 .32.50 .34.80 .34.80 88 Shear Strength of Soils Depth X Eff. Unit Weight in lbs/in**3 6.19444 6.19444 00000 .00000 .00000 .00000 4800.00000 4800.00000 p-mult .7000 .03183 .03183 .03704 .03704 .03937 .03414 .03414 ----defined using 8 points 144.000 1152.000 Depth X 144.00 252.00 252.00 612.00 612.00 1152.00 1152.00 1152.00 1 144.000 2 252.000 3 522.000 4 612.000 6 1152.000 7 1152.000 8 1763.000 .= Notes: Point No. No.

I V= 250E+05 M= 7.20E+07 1.2000E+07 1.9384 1.7518E+08 422396. I V= 2.25E+05 M= 6.00E+07 1.2000E+07 1.6159 1.4965B+08 359312. I V= 2.00E+05 M= 4.80E+07 1.2000E+07 1.3174 1.2471E+08 -298222. Axial Pile-Head Maximum Maximum Load Deflection Moment Shear in in-lbs lbs Type 4 = Deflection and Moment, S = Pile-head Slope, radiansType 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad1332.000 1.93441170 1.751819E-08 422396.38420 1265.400 2.00502177 1.171053E-04 8420394.97769 1132.800 1.986.8023 1.761536E+08 420394.97769 1132.200 2.01645069 1.769806E+08 431347.86729 1065.600 2.03542113 1.770705E+08 449396.42248 99000 2.15287873 1.7685002E+08 49697.17729 932.400 2.40921630 1.806602E+08 -577959.08619 865.800 3.40552291 1.879045E+08 743772.93729 Pile-head Deflection vs. Pile Length Ptle Head Maximum Maximum h Deflection Moment Shear Boundary Condition Type 1, Shear and Moment .**E** Shear = 250000. lbs Mornent = 72000000. in-lbs Axial Load = 12000000. lbs କ୍ଷ Load Pile-Head Pile-Head Type Condition Condition 1 2 lbs Deflection Mo in in-lbs The analysis ended normally. Pile P Length in 3 Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. File-head boundary conditions are Shear and Moment (BC Type 1) Specified stare force an pile thead = 225000000 bis Specified moment ar pile head = 6000000 000 in-lbs Specified axial load at pile head = 12000000 000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified abser force at pile head = 200000.000 lbs Specified moment at pile head = 48000000.000 in-lbs Specified axial load at pile head = 12000000.000 lbs $\label{eq:constraint} Type \ l = Shear \ and \ Moment, \qquad y \ \approx pile-head \ displacment \ in Type \ 2 = Shear \ and \ Slope, \qquad M = Pile-head \ Moment \ lbs-in Type \ 3 = Shear \ and \ Roi. \ Stiffness, \ V = Pile-head \ Shear \ Force \ lbs$ Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Definition of Symbols for Pile-Head Loading Conditions: Specified axial load at pile head = 12000000.000 lbs Summary of Pile Response(s) Output Verification: Output Verification: Output Verification:

.

40 ok'. 5 ł ۱ Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file. ۱ 0.0000 96.000000 4356263. 8611.2400 4074281. 1154.000 96.0000000 4356263. 8611.2400 4074281. 1154.000 90.0000000 / 3220623. 6361.7300 4074281. 1132.000 90.0000000 / 3220623. 6361.7300 4074281. Layer 2 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 140000 in Distance from top of pile to bottom of layer = 252.000 in Pry subgrade modulus k for top for soil layer = 100.000 lbs/in+*3 Pry subgrade modulus k for bottom of layer = 100.000 lbs/in+*3 Distance from top of pile to top of layer = 252.000 in Distance from top of pile to botrom of layer = 61.000 in Py subgrade modulus k for top of soil layer = 60.000 lbs/in+*3 Py subgrade modulus k for bottom of layer = 60.000 lbs/in+*3 Distance from the of pile to top of layer = 612.000 in Distance from the of pile to bottom of layer = 1132.000 in ye subgrade modulus k for top of soil layer = 60.000 lbs/in*3 py subgrade modulus k for bottom of layer = 60.000 lbs/in*3 Modulus of -48.000 in 140.000 in Layer 5 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 1152.000 in Distance from top of pile to bottom of layer = 1763.000 in - Number of pile increments = 222 Maximum number of reactions allowed = 100 D-Refaction tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in -48.00 in Elasticity Depth of ground surface below top of pile = 48.00 Slope angle of ground surface = .00 deg. Pile Mornent of Pile Mo meter Inertia Area Elasti in**4 Sq.in lbs/Sq.in Pile Structural Properties and Geometry Structural properties of pile defined using 4 points Soil and Rock Layering Information Layer 3 is sand, p-y criteria by Reese et al., 1974 Layer 4 is sand, p-y criteria by Reese et al., 1974 = 1332.00 in Distance from top of pile to top of layer = - - Distance from top of pile to bottom of layer = The soil profile is modelled using 5 layers Layer 1 is sniff clay without free water Solution Control Parameters: Point Depth Pue V Diameter .<u>5</u> Printing Options: Pile Length × .5 N m 4 47 L:\East End Bridge\Lateral Load Analyses\Pier I\ Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant EI Analysis includes automatic computation of pile top deflection vs. pile embernel length
 No computation of foundation stiffness marix elements
 Output summary table of values for pile-head deflection, maximum bending moment, and share force on pile
 Analysis assumes no soil movements acting on pile
 No additional p-y curves to be computed at user-specified depths Units Used in Computations - US Customary Units: Inches, Pounds Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method East End Bridge - Preliminary Design for Pier Foundation :: Pier I - small - no scour.lpd Pier I - small - no scour.lpo le: Pier I - small - no scour.lpp Pier I - small - no scour.lpr LPILE Plus for Windows, Version 5.0 (5.0.31) Date: December 21, 2007 Time: 10:44:25 Computation Options: - Only internally-generated p-y curves used in analysis - Analysis uses p-y multiplers for group action Analysis assumes no shear resistance at pile tip (c) 1985-2007 by Ensoft, Inc. Time and Date of Analysis All Rights Reserved Program Options Problem Title This program is licensed to: Name of plot output file: Name of runtime file: Name of input data file: Name of output file: Basic Program Options: Path to file locations: PB Americas, Inc. Mangtao Du

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 25000000 001 Ba Ariat load at pile head = 72000000 010 in-lbs Axial load at pile head = 12000000 000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 22000000 bis Bending moment at pile head = 6000000.000 in-lbs Axial load at pile head = 1200000.000 bis Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 2000000 000 hs Bending moment at pile head = 48000000 010 in-bs Axial load at pile head = 12000000 000 hs Distribution of p-y multipliers with depth defined using 2 points Cyclic loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity Conditions 1.0000 p-mult y-mult 30. Loading Type Number of cycles of loading = Number of loads specified = 3 .7000 .7000 Load Case Number 1 Load Case Number 2 Load Case Number 3 Depth X -48.000 1152.000 5 Point No. 49 Angle of Friction E50 or RQD Deg. k_m % Cohesion = uniaxial compressive strength for rock materials.
 Values of E50 are reported for 105 strans.
 Delueus for Substance and the strans.
 Rock and k_ma are reported only for week rock strans. o. o o (Depth of lowest layer extends 431.00 in below pile tip) Distribution of effective unit weight of soil with depth is defined using 10 points 01000 Distribution of shear strength parameters with depth Effective Unit Weight of Soil vs. Depth .00 .00 .00 .00 .00 .00 .32.50 .32.50 .34.80 .34.80 .00 p-y Modification Factors Shear Strength of Soils Depth X Eff. Unit Weight in lbs/in**3 Depth X Cohesion c in Ibs/in**2 .00000 .00000 4800.00000 4800.00000

6.19444 6.19444 6.19444 6.19444 6.19444 0.00000

 1
 -48,000

 2
 140,000

 3
 140,000

 5
 252,000

 6
 612,000

 7
 612,000

 7
 612,000

 9
 1152,000

 9
 1152,000

 10
 1763,000

Notes:

defined using 10 points

Point I No.

.07002 .07002 .03414 .03414 .03183 .03183 .03704 .03704 .03704 .05937

140.00 140.00 252.00 252.00 48.00

Point No.

612.00 612.00 1152.00 1152.00 1763.00

2

е,

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 2500000000 lbs Specified moment at pile head = 72000000000 in-lbs Specified arial load at pile head = 12000000.000 lbs

Non-zero moment for this load case indicates the pile-fread may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force a pible head = 22500000 bis Specified moment at pile head = 60000000 000 in-bis Specified axial load at pile head = 12000000 000 bis

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at the head = 200000.000 lbs Specified moment at pile head = 42000000.000 in-lbs Specified atrail load at pile head = 12000000.000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Summary of Pile Response(s)

 $\overline{\zeta}$

Definition of Symbols for Pile-Head Loading Conditions:

Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Stope, M = Pile-head Moment Ibs-in Type 3 = Shear and Rots. Stiffness, V = Pile-head Shear Force Ibs Type 4 = Deflection and Moment, S = Pile-head Shop, radians Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-Ibs/rad

Axial Pile-Head Maximum Maximum Load Deflection Moment Shear in in-Ibs Ibs Load Pile-Head Pile-Head Type Condition Condition 1 2 lbs I V= 250E+05 M= 720E+07 1,2000E+07 1,0748 1,2099E+08 -303428. I V= 2.25E+05 M= 6.00E+07 1,2000E+07 -9065911 1.0246E+08 -256728. I V= 2.00E+05 M= 4.80E+07 1,2000E+07 -731125 8,4215E+07 -210896.

Pile-head Deflection vs. Pile Length

Boundary Condition Type 1, Shear and Moment

Shear = 250000. lbs Moment = 72000000. in-lbs Axial Load = 12000000. lbs

Maximum Shear Pile Head Maximum h Deflection Moment in in-lbs Ibs Pile P. Length .**E**

1332.000 11/74/8756 1209873E-08 -503428.18920 1265.400 108447722 1201006E-08 -502540.32051 1195.800 107845778 121006E-08 -502540.32051 1132.200 10846950 121056E-08 -501545.75245 999.000 1.09848950 12101577E-08 -301547.75245 995.000 1.0904381 12111377E-08 -301557.72372 932.400 1.0904381 1201145E+08 -302515.12372 995.000 1.40904381 1211147E+08 -301557.52372 995.000 1.40904381 1201445E+08 -302515.12372 995.000 1.40904381 1201445E+08 -302515.12372 995.000 1.40904381 1201445E+08 -302515.12372 995.000 1.40904881 1201445E+08 -305515.12372 995.000 1.40904881 120145E+08 -305515.23722 995.000 1.40904881 120145E+08 -305515.23722 995.000 1.40904881 120145E+08 -305515.23722 995.000 1.40904881 120145E+08 -305515.23722 995.000 1.50904881 120145E+08 -305515.23722 995.000 1206455+08 -305515.23722 995.000 1206455+08 -305515.23722 995.000 1206455+08 -305515 1201455+08 -3055152+08 -30551545+08 -30551545+08 -30551545+08 -30551545+08 -30551545+08 -30551545+08 -305545+08 -305545+08 -305545+08 -305545+08 -305545+08 -305545+08 -305545+08 -305545+08 -30545+08 -305545+08 -305545+08 -305545+08 -30

The analysis ended normally.

5				essPier IV				nds nstant E1	vs.	
solution Control Parameters: - Number of pile increments = 222 Maximum number of iterations allowed = 100 Deflection tolerance for convergence = 1,000E-05 in Maximum allowable Affection	Printing Options: Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.	Pile Structural Properties and Geometry	Pile Length = 1332.00 in Deph of ground surface below top of pile ≈ 144.00 in Slope angle of ground surface = .00 deg.	Structural properties of pile defined using 4 points Voint Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity	1 0000 96.0000000 435525. 5611.2400 4074281. 1 154.0000 96.00000000 4355253. 5611.2400 4074281. 3 1134.0000 90.00000000 3220623. 5551.7300 4074281. 4 1332.0000 90.00000000 3220623. 5361.7300 4074281.	Soil and Rock Layering Information	The soil profile is modelled using 4 layers (ayer 1 is stiff clay with water-induced crosion Distance from top of pile to top of layer = 144.000 in Distance from top of pile to bottom of layer = 222.000 in - y subgrade modulus k for top for oil layer = 100.000 lbs/in*3	Layer 2 is sand, p-y criteria by Reese et al., 1974 Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to bottom of Layer = 252.000 in -y subgrade modulus k for top of soil layer = 60.000 lbs/in+3 -y subgrade modulus k for bottom of Layer = 60.000 lbs/in+3 -ayer 3 is sand, p-y criteria by Reese et al., 1974	Distance from top of pile to top of layer = 612.000 in Distance from top of pile to bottom of layer = 1152.000 in Distance from top of pile to bottom of layer = 60.000 lbs/in3 >> subgrade modulus k for top of soil ayer = 60.000 lbs/in3 :ayer 4 is strong rock (vuggy limestone) Distance from top of pile to bottom of layer = 1152.000 in Distance from top of pile to bottom of layer = 1753.000 in	(Depth of lowest layer extends 431.00 in below pile tip)

64																	
	Loading Type Cyclic loading criteria was used for computation of p-y curves Number of cycles of loading = 30.	Pile-head Leading and Pile-head Fixity Conditions Number of loads specified = 3 Load Case Number 1	Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 250000 000 lbs Bending moment at pile head = 72000000 000 in-lbs Axial load at pile head = 12000000 000 lbs	Non-zero moment at pite head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Load Case Number 2	Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 225000.000 lbs Bending moment at pile head = 60000000 000 in-lbs Axial load at pile head = 12000000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head	may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Load Case Number 3	Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 20000000 bls Brending moment a pile head = 48000000 000 in-lbs Axial head at pile head = 12000000000 bls Non-zero moment at bile head for this load case indicates the nile-head	rest could under the applied pile-head loading, but is not a free-head (zero moment) condition.	Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1	Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head $= -25000000000$ lbs Specified moment at pile head $= -72000000.0000$ in-lbs							
63																	
	Effective Unit Weight of Soil vs. Depth uution of effective unit weight of Soil with depth and using 8 points Dept X Eff. Unit Weight in 10:2015-2016-2016	14.00 03414 - 1522.00 03313 - 1522.00 03183 - 1522.00 03183 - 152.00 03183 - 152.00 03704 - 1152.00 03704 - 1152.00 03704 - 1152.00 05937 - 1763.00 05937 - 1755.00 0595.00 0505.00 - 1755.00 0595.00 0505.00 - 1755.00 0595.00 - 1755.00 0595.00 - 1755.00 0595.00 - 1755.00 0595.00 - 1755.00	Shear Strength of Soils	ulion of shear strength parameters with depth d using 8 points Depth X Cohesion c Angle of Friction B50 or RQD in hashin*2 Deg k_m %	144.000 6.19444 00 01000 0 252.000 6.19444 00 01000 0 252.000 00000 32.50 612.000 00000 34.80	152.000 4800.00000	htsion = uniaxial compressive strength for rock materials. Julues of ESO are reported for clay streata. Esbut values will be generated for ESO when input values are 0. QD and k_m are reported only for weak rock strata.	p-y Modification Factors	oution of p-y multipliers with depth defined using 2 points Depth X p-mult y-mult	in 144.0007000 1.0000 1152.0007000 1.0000							
	Type 4 = Deflection and Moment, S = Pile-head Slope, radians Type 5 = Deflection and Slove. R = Rot. Stiffness of Pile-head in-Ibs/rad	Load Pile-Head Pile-Head Azial Pile-Head Maximum Maximum Type Condition Load Deltection Moment Shear	I V= 2.50E+05 M= 7.20E+07 1.2000E+07 2.4489 1.8084E+08 458903. I V= 2.25E+05 M= 6.00E+07 1.2000E+07 2.4689 1.8084E+08 458903. I V= 2.25E+05 M= 4.80E+07 1.2000E+07 1.6154 1.2785E+08 -3213505.	Pile-head Deflection vs. Pile Length	Boundary Condition Type 1, Shear and Moment Shear = 250000. lbs Moment = 72000000. lbs Axial Load = 12000000. lbs	Pile Pile Haad Maximum Maximum Length Deflection Moment Shear in in rin-Ds los	1322.000 2.4488.051 1.8008.423E+08 -458902.73356 1325.400 2.55294061 1.825902E+08 -462582.19973 1195.800 2.51108107 1.822197E+08 -49515.5.77096 1132.200 2.55910013 1.832829E+08 -465262.77656	1065.600 2.55214127 1.833523E-06 4.7867.04664 999.000 2.75458006 1.856263E9405 8.25351.83987 932.400 3.095237 1.88213E+08 -6.1395.82499 865.800 4.38630636 1.972995E+08 -803494.59291	The analysis ended normally.								
----	---	---	--	---	--	--	---	--	---	---	----------------------	--	-----------------------------	---	--	--	--
59																	
	Specified axial load at pile head = 12000000.000 lbs	Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.	Output Verification: Computed forces and moments are within specified convergence limits.	Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2	Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 225000.000 lbs Specified martat pile head = 6000000.000 in-lbs Specified axial load at pile head = 12000000.000 lbs	Non-zero moment for this load case indicates the pile-bread may rotate under the applied pile-hread loading, but is not a free-hread (zero moment)condition. Output Verification:	Computed forces and moments are within specified convergence litruits.	Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	Pile-head boundary conditions are Shear and Mornent (BC Type 1) Specified shear force at pile head = 200000.000 its Specified moment at pile head = 48000000.000 in-lbs Specified axial load at pile head = 12000000.000 lbs	Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.	Output Verification:	Computed forces and moments are within specified convergence limits.	Summary of Pite Response(s)	Definition of Symbols for Pile-Head Loading Conditions:	Type 1 = Shear and Moment, $y = pile-head displacment inType 2 = Shear and Slope, M = Pile-head Moment Ibs-inType 3 = Shear and Rot. Sliffinds, V = Pile-head Shear Force Ibs$		

Ż

 Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file. 00000 102.0000 5431055 9530.7800 4074281. 961.0000 56.000000 5431055 9530.7800 4074281. 961.0000 56.0000000 5430520 7238.2300 4074281. 1199.0000 56.00000000 4169220. 7238.2300 4074281. / / / Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of Jayer = 12800 in Distance from top of pile to bottom of Jayer = 419.000 in Distance from top of pile to bottom of Jayer = 60.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 60.000 lbs/in+3 Distance from top of pile to top of ayer = 419,000 in Distance from top of pile to bottom of ayer = 50,000 in p-y subgrade modulus k for top of soil Jayer = 60,000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 60,000 lbs/in+3 Pile Moment of Pile Modulus of meter Inertia Area Elasticity in**4 Sq.in Ibs/Sq.in Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 959.000 in Distance from top of pile to bottom of layer = 1586.000 in - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Pie Length = 1199.00 in Depth of ground surface below top of pile = 128.00 in Slope angle of ground surface = .00 deg. (Depth of lowest layer extends 387.00 in below pile tip) 8 Distribution of effective unit weight of soil with depth Effective Unit Weight of Soil vs. Depth Pile Structural Properties and Geometry Structural properties of pile defined using 4 points Soil and Rock Layering Information Layer 2 is sand, p-y criteria by Reese et al., 1974 200 - Number of pile increments = 20 - Maximum number of iterations allowed = The soil profile is modelled using 3 layers Solution Control Parameters: Depth ... Diameter Printing Options: ×.5 Point - ~ ~ ~ 5 Path to file locations. L'UEast End Bridge/Lateral Load Analyses/Pier 2/ Name of input data file: Pier 2 - large - no scour.lpd Name of output file: Pier 2 - large - no scour.lpp Name of polo curput file: Pier 2 - large - no scour.lpr Name of nuttime file: Pier 2 - large - no scour.lpr Computation of Lateral Pile Response Using User-specified Constant El Analysis includes automatic computation of pile-top deflection vs. pile embedment length
 No computation of foundation stiffness matrix elements
 Outyut summary table of values for pile-head deflection, maximum bending moment, and shear force only Units Used in Computations - US Customary Units: Inches, Pounds Analyšis assumes no soil movements acting on pile
 No additional p-y curves to be computed at user-specified depths Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method East End Bridge - Preliminary Design for Pier Foundation LPILE Plus for Windows, Version 5.0 (5.0.31) - Only miemently-generated p-y curves used in analysis - Analysis uses p-y multiplers for group action - Analysis assumes no shear resistance at pile tip Date: December 21, 2007 Time: 10:52:35 (c) 1985-2007 by Ensoft, Inc. All Rights Reserved Time and Date of Analysis Program Options **Problem Title** This program is licensed to: Basic Program Options: Computation Options: Mangtao Du PB Americas, Inc. Analysis Type 1:

76

20

	Pile-head Loading and Pile-head Fixity Conditions
	Pile

17

Number of loads specified = 3

Load Case Number 1

Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 25000000 000 is Avial load at pile head = 72000000 000 in-lbs Avial load at pile head = 12000000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Load Case Number 2

Pile-head boundary conditions are Shear and Moment (BC Type I) Shear force at pile head = 250000000 bis Arvial load at pile head = 60000000 bio.rlbs Axial load at pile head = 12000000.000 lbs

Axial load at pile head = 1200000.000 lbs Non-zero moment at pile head for this load case indicates the pil

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Load Case Number 3

Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 200000.000 ths Bending moment at pile head = 4800000.000 in-ths Axial load at pile head = 12000000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number* 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force are pile head = 220000.000 bis Specified anoment at pile head = 7200000.000 bis Specified axial load at pile head = 1200000.000 bis Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

.03935	.03935	.03762	.03762	.05937	.05937
128.00	419.00	419.00	959.00	959.00	1586.00

Depth X Eff. Unit Weight in lbs/in**3

Point No.

is defined using 6 points

Soils	
5	
Strength	
Shear	

Distribution of shear strength parameters with depth defined using 6 points

Point Depth X Cohesion c Angle of Friction E50 or RQD No. in Ibs/in**2 Deg. k_m %

	Į]		ļ	
•				ļ	I	1	
`		35.20	35.20	35.60	35.60	8	0 <u>.</u>
		00000.	00000	00000	00000	4800.00000	4800.00000
		128.000	419.000	419.000	959.000	959.000	1586.000
	1	_	5	ŝ	4	s	9

/

Notes:

Cohesion – uniaxial compressive strength for rock materials.
 Values of E50 are roptred for for systrama.
 Default values will be generated for E50 when input values are 0.
 RCD and k_m are reported only for weak rock strata.

Distribution of p-y multipliers with depth defined using 2 points

p-y Modification Factors

Point Depth X p-mult y-mult No. in 1 228.000 7000 1.0000 2 959.000 7.000 1.0000 .

Loading Type

Cyclic loading criteria was used for computation of p-y curves

Number of cycles of loading = 30.

000 1199.000 1.28718309 1.51118E-08 -36375 14573 1139.050 1.2872397 1.512142E-08 -35657 56268 1079.100 1.28766398 1.512142E-08 -359557 56268 1019.150 1.29290143 1.512797E-08 -351557 4655 595.200 1.2997797 1.51353E=04 8-31553 4655 599.200 1.35931331 1.51353E=04 8-49833.39872 899.250 1.35931331 1.51353E=04 8-49833.39872 899.250 1.3597476 1.51353E=04 8-49833.39872 779.350 1.61777245 1.523813E+08 -525798 76283 779.400 2.06960325 1.547844E+08 -637243.61161 Pile-head Deflection vs. Pile Length Maximum Boundary Condition Type 1, Shear and Moment Shear Pile Head Maximum Deflection Moment in in-lbs lbs Shear = 250000. lbs Morrent = 72000000. in-lbs Axial Load = 12000000. lbs The analysis ended normally. , E Pile F Length in 95 I V= 2.50E+05 M= 7.20E+07 1.2000E+07 1.2872 1.5121E+08 -360375. I V= 2.52E+05 M= 6.00E+07 1.2000E+07 1.1967 1.2909E+08 -308933. I V= 2.00E+05 M= 4.80E+07 1.2000E+07 -9140806 1.0888E+08 -258627. Axial Pite-Head Maximum Maximum Load Deflection Moment Shear in in-lbs lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Type I = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Stope, M = Pile-head Moment lbs.in Type 2 = Shear and Rots. Stiffues, Y = Pile-head Shope, radians Type 4 = Deflection and Moment, R = Rot. Stiffness of Pile-head in-lbs/rad Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specifical stare force rot bit head = 225000000 bits Specified moment ar pile head = 600000000 min-bits Specified axial load at pile head = 12000000000 lost Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified stare froce are pile head = 20000000 lbs Specified moment at pile head = 44000000 000 in-lbs Specified axial load at pile head = 12000000000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Definition of Symbols for Pile-Head Loading Conditions: Summary of Pile Response(s) Load Pile-Head Pile-Head Type Condition 1 2 ibs Output Verification: Output Verification:

LPILE Plus for Windows, Version 5.0 (5.0.31) Analysis of Individual Files and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (s) 1985-2007 by Ensoft, Inc. All Rights Reserved	 Solution Control Parameters: Number of pile interments Adminum tumber of pile interments Maximum allowable deflection Deflection tolerance for convergence = 1,0000E-403 in Maximum allowable deflection Intring Options: Conty straney values of pile-head deflection, maximum bending moment, and maximum stlear force are to be printed in output file.
program is licetsed to:	Pile Structural Properties and Geometry
ngtao Du Americas, Inc.	Pile Length = 1199.00 in Depth of ground surface below top of pile = 296.00 in
n to file locations: L:\East End Bridge\Lateral Load Analyses\Pier 2\ ne of input data file: Pier 2-large - scour.lpd ne of outburk File: Direc - court loo	Slope angle of ground surface 🖛00 deg. Structural properties of pile defined using 4 points
us output nic. rist. z - targe - sour. ipo ne of ploi output file: Pire 2 - large - scour. ipp ne of runtime file: Pier 2 - large - scour. ipr	Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Arraa Elaaticity in in in**4 Sq.in Ibs/Sq.in
Time and Date of Analysis Date: December 21, 2007 Time: 10:54:42	1 0.0000 102.0000 6.31065. 9530.7800 4074281. 2 961.0000 102.00000 6431065. 9630.7800 4074281. 3 961.0000 96.00000000 4169220. 7238.2300 4074281. 4 1199.0000 96.00000000 4169220. 7238.2300 4074281.
Problem Title	Soil and Rock Layering Information
	The soil profile is modelled using 3 layers
t End Bridge - Freitrinnary Design for Frief Foundation Program Options	Layer 1 is stand, py criteria by Reese et al., 1974 Distance from top of pile to top of layer = 296.000 in Distance from top of pile to top of contom of layer = 419.000 in py subgrade modulus k for top of cont layer = 60.000 lbs/in*3 py subgrade modulus k for bottom of layer = 60.000 lbs/in*3
ts Used in Computations - US Customary Units: Inches, Pounds	Layer 2 is sand, py criteria by Reese et al., 1974 Distance from too of role to boo of layer = 413,000 in
ie Program Options: Jysis Type I:	Distance from top of pile to bottom of layer = 959.000 in p-y subgrade modulus k for top of soil layer = 60.000 lbs/in++3 p-y subgrade modulus k for bottom of layer = 60.000 lbs/in++3
omputation of Lateral Pile Response Using User-specified Constant El noutation Options: nly internally generated p.y curves used in analysis	Layer 3 is strong tock (vuggy litmestone) Distance from top of pile to top of layer = 959,000 in Distance from top of pile to bottom of layer = 1586,000 in
aalysis uees p-y multiphers for group action anglysis assumes to shear resistance at pile tip aalysis includes automatic computation of pile-top deflection vs. le embedment length	(Depth of lowest layer extends 387.00 in below pile tip)
o computation of foundation stiffness matrix elements urpu summary table of Yalues for pile-head deflection, maximum tablest assumes no soil movements acting on pile	Bffective Unit Weight of Soil vs. Depth
o additional p-y curves to be computed at user-specified depths	Distribution of effective unit weight of soil with depth

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-2±ro moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (2±ro moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero mement) condition. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 2500000 000 lbs Specified moment ar pile head = 72000000 000 in-lbs Specified axial load at pile head = 12000000 000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head ~ 230000.000 lbs Bending moment at pile head ~ 7200000.000 lis-lbs Arial load at pile head ~ 1200000.000 lbs Pile-head boundary conditions are Shear and Moment (BC Type I) Shear force at pile head = 220000.000 lbs Bending moment at pile head = 6000000.000 lbs Axial load at pile head = 12000000.000 lbs Pile-head boundary conditions are Shear and Morrent (BC Type 1) Shear force at pile head = 30000000 lbs Bending morrent at pile head = 48000000 bin-lbs Avail load at pile head = 12000000000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 3 Load Case Number 1 Load Case Number 2 Load Case Number 3 Output Verification: 6 ß Cohesion = uniaxial compressive strength for rock materials.
 Values of E50 are roported for e194 strata.
 Default values will be generated for E50 when input values are 0.
 RCD and k_mm are reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Cyclic loading criteria was used for computation of p-y curves ES0 or % Ĕ Distribution of shear strength parameters with depth defined using 6 points Angle of Friction Deg. k_rm y-mult 35.20 35.20 35.60 .00 .00 p-y Modification Factors 1.0000 ä. Shear Strength of Soils Depth X Eff. Unit Weight in lbs/in**3 Loading Type p-mult Number of cycles of loading = Depth X Cohesion c .00000 4800.00000 4800.00000 .03935 .03935 .03762 .03762 .03762 .05937 .7000 00000. 00000 lbs/in**2 is defined using 6 points 1 Depth X in 296.000 959.000 959.00 959.00 1586.00 i 296.000 2 419.000 3 419.000 4 959.000 5 959.000 6 1586.000 296.00 419.00 419.00 .E .5 Notes: Point No. Point No. Point No. 1 450

25

2 1199000 292577295 2126992E+08-606173 25751 1139050 2.92031775 2.124984E+08-60503.80458 1079100 2.92131969 2.12477E+08-603304543457 1019.150 2.91678142 2.123129E+08-60332664343 959.200 3.17895900 2.139229E+08 -1295352 899.250 9.12669375 2.568029E+08 -1295352 Pile-head Deflection vs. Pile Length Maximum Boundary Condition Type 1, Shear and Moment Shear Pile Head Maximum 250000. lbs 72000000. in-lbs 12000000. lbs Moment os ibs Deflection Mo in in-lbs The analysis ended normally. Shear = 2 Moment = 7 Axial Load = Pile P Length in \$ 2.9258 2.1270E+08 -606173. V 2.4977 1.8416E+08 -520244. 2.0859 1.5594E+08 -436727. Maximum Shear Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Type I = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slope, M = Pile-head Moment lbs-in Type 2 = Shear and Rots. Stiffness, V = Shle-head Shear Force lbs Type 4 = Deflection and Moment, B = Pile-head Slope, radians Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified base frore are pile head = 200000 to 00 bis Specified moment at pile head = 4800000.000 in-lbs Specified axial load at pile head = 1200000.000 bis Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified abstar force at pile head = 2250000000 lbs Specified moment at pile head = 12000000.000 lbs Specified axial load at pile head = 12000000.000 lbs Axial Pile-Head Maximum Load Deflection Moment in in-Ibs Ibs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Definition of Symbols for Pile-Head Loading Conditions: 1 V= 2.50E+05 M= 7.20E+07 1.2000E+07 1 V= 2.25E+05 M= 6.00E+07 1.2000E+07 1 V= 2.02E+05 M= 4.80E+07 1.2000E+07 1 V= 2.00E+05 M= 4.80E+07 1.2000E+07 Summary of Pilc Response(s) Load Pile-Head Pile-Head Type Condition Condition 1 2 lbs Output Verification: Output Verification: ļ

LPILE Plus for Windows, Version 5.0 (5.0.31)	Solution Control Parameters: - Number of pile increments = 200 - Maximum number of iterations allowed = 100 - Aritium number of iterations allowed = 200	
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method	- Deflection folerance for convergence = 1,0000±-45 in - Maximum allowable deflection = 1,00005+02 in	
(c) 1985-2007 by Ensoft, Inc. All Rights Reserved	Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.	
iis program is licensed to:	Pile Structural Properties and Geometry	
aargtao Du B. Armericas, Inc.	Pile Length = 1199,00 in Depth of ground surface below top of pile = 128,00 in	
with to file locations: LABast End Bridge\Lateral Load Analyses\Pier 2\ are of input data file:	Stope angle of ground surface = .00 deg. Structural properties of pile defined using 4 points	
ance of output inte: retr. 4 - small - ho scout.po ame of plot output file: Pier 2 - small - no scout.ipp ame of runtime file: Pier 2 - small - no scout.ipr	Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in**A Soin Heckonin	
Time and Date of Analysis	1 0.000 95000000 435557, 36112407 4074281, 9 661 00000 0 43555553, 3611 2400 4474281, 9 9 661 000000 1 43555553	
Date: December 21, 2007 Time: 10:58: 0	3 961.0000 90.0000000 2320623 6361.7300 4074281.	
Problem Title	Soil and Rock Layering Information	·
et Erd Andes - Desliminary Desien for Pier Foundation	The soil profile is modelied using 3 layers	
	Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 128.000 in	
Program Options	Distance from top of pile to bottom of layer = 419.000 in p-y subgrade modulus K for op of oil layer = 60.000 lbs/in*3 p-y subgrade modulus K for bottom of layer = 60.000 lbs/in*3	
nits Used in Computations - US Customary Units: Inches, Pounds	Layer 2 is sand, p-y criteria by Reese et al., 1974	
asic Program Options:	Distance from top of pie to top of a layer = 412.000 In Distance from top of the to bottom of layer = 920.000 in Distance from top of the fire to non-formal house = 600.000 here = 2	
aalysis Type 1: Computation of Lateral Pile Response Using User-specified Constant El	p-y subgrade modulus k for bottom of layer = 60.000 lbs/m**3 p-y subgrade modulus k for bottom of layer = 60.000 lbs/m**3	
omputation Options: Only internally-generated p-y curves used in analysis	Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 959.000 in Distance from top of pile to bottom of layer = 1586.000 in /	
Anaysis uses p-y munipars to igoup action syste assumes on stear resistance at pile tip Analysis includes automatic computation of pile-top deflection vs.	(Depth of lowest layer extends 387.00 in below pile tip)	
oile embedment itangth No computation of foundation stiffness matrix etements Output summary table of values for pile-head deflection, maximum	Effective Lie Watch of Cail or Dank	
erang monten, and suear torce only Analysis assumes no soil movement acting on pile to - Adviscand a concare to he commund an user conciled durity.		
to additional p-y curves to be puttiputed at user-spectrued deputs	Distribution of effective unit weight of soil with depth	

		Pile-head Loading and Pile-head Fixi		Number of loads specified = 3	Load Case Number 1	Pile-head boundary conditions are Shear and 1 Shear force at pile head = 250000.000 hb Bending moment at pile head = 72000000.0	Axial load at pile head = 12000000.000 lf	Non-zzro moment at pile head for this load ca may rotate under the applied pile-head loading (zero moment) condition.	Load Case Number 2	Pile-head boundary conditions are Shear and 1 Shear force at pile head = 225000.000 lb; Bending moment at pile head = 6000000.00 Axial load at pile head = 12000000.000 lb;	Non-zero moment at pile head for this load ca may rotate under the applied pile-head loadin (zero moment) condition.	Load Case Number 3	Pile-head boundary conditions are Shear and I Shear force at pile head = 200000.000 h; Bending moment at pile head = 4800000.00 Axial load at pile head = 1200000.000 h	Non-zero moment at pile head for this load ca may rotate under the applied pile-head loadin (zero moment) condition.		Computed Values of Load Distributio		Pile-head boundary conditions are Shear and 1 Specified shear force at pile head	Non-zero moment for this load case indicates the applied pile-head loading, but is not a free	-	Output Verification:	Computed forces and moments are within spe
Jar																						
	idenned using 6 points	ond Leepan A Estr. Unit weight 40. in Ibs/in**3. 	1 128.00 .03935	2 419.00 .03762	1 959.00 .03762 5 959.00 .05937	0 1586.00	Shear Strength of Soils	ersting of shear strength parameters with depth		uid Depth X Contestont C Angle of Friction E30 or KQD 0. in 1bs/in**2 Deg. k.m. % 128.000 .00000 35.20 / 4.19.000 .00000 35.20 /	419.000 000000 33.60	otes:	 Cohesion = uniaxial compressive strength for rock materials. Values of E50 are reported for clay straa. Default values will be generated for E50 when input values are 0. RQD and k_rm are reported only for weak rock strata. 		p-y Modification Factors	istribution of p-y multipliers with depth defined using 2 points	pint DepthX p-mult y-mult lo. in	1 128.000 7000 1.0000 2 959.000 7000 1.0000		Loading Type	yclic loading criteria was used for computation of p-y curves	umber of cycles of loading = 30.

city Conditions Moment (BC Type 1) 000 in-lbs bs ase indicates the pile-head g, but is not a free-head

Moment (BC Type I) 000 in-lbs bs ase indicates the pile-head g, but is not a free-head

Moment (BC Type 1) 000 in-lbs bs use indicates the pile-head g, but is not a free-head

ion and Deflection Number 1

Moment (BC Type 1) 00.000 lbs 000.000 in-lbs 000.000 lbs

the pile-head may rotate under ⊳head (zero moment)condition.

cified convergence limits.

Summary of Pile Response(s) of Symbols for Pile-Head Loading Conditions: hear and Moment, y = pile-head displacment in hear and Moment, y = pile-head Moment Best hear and Store, M = Pile-head Moment Best head Dise Head Maximum Maximum 2 lbs 10: Hoad 1.5000-H07	Summary of Pile Response(s) of Symbols for Pile-Hard Loading Conditions: Of Symbols for Pile-Hard Moment 19: in Bater and SNOver. M = Pile-Hard Moment 19: in Bater and SNOver. R = Pile-Hard Moment 19: in Ba
of Symbols for Pile-Head Loading Conditions. Hear and Moment, w = Pile-head displament in hear and Stope, M = Pile-head displament lbs.in hear and Stope, M = Pile-head Shear Force lbs hear and Stope, M = Stope-Head Shear Force lbs and Deltertein Moment. Shear 2 lbs in in-lbs lbs in in in-lbs lbs in in-lbs lbs in in in-lbs lbs in in in-lbs lbs in in in-lbs lbs in in in-lbs lbs in	of Symbols for File-Head Loading Conditions. New and Moment. y = pilvie-Head Kingharment in Sherr and Korpe. M = Pitch-head Moment Iban Sherr and Korpe. M = Pitch-head Moment Iban Sherr and Korpe. A = Pitch-head in-Ibas/and Ceffection and Momen, S = Pitch-head in-Ibas/and Filed Pitch-Head Anzinum Maximum 2 libs in minbs lbs worm Sherr 2 libs in minbs lbs worm Sherr 2 libs in minbs lbs 11015E+08 331977 S0EHOS M = 200E+07 12000E+07 13451 1312E-108 331977 S0EHOS M = 430E+07 12000E+07 13451 1312E-108 273135
beflection and Moment, S = Pile-bread Slope, radians Head Pile-Head Axial Pile-Head Maximum Maximum Tion Condition Load Deflection Moment Shear 2 libs in in-libs lbs 22 lbs in in-libs lbs 23 lbs 1010:64-07 1.2006-470 1.3338E-408 -326981. 360-605 = 7.2006-470 1.3335.1.10155-408 -325951.	Editerion and Noment, S = Pile-head Slope, radians Editerion and Slope, R = Rcu. Stiffness of Pile-head in-lbs/rad Head Divel-head Axial Pile-Head Maximum 2 lbs in in-lbs lbs SIGE-05 M = 1,2006 + 07 1,2006 + 07 1,2006 + 09 1,2008 + 08 - 32681. SIGE-05 M = 4,80E + 07 1,2006 + 07 1,2005 + 08 - 273155.

ð₀ ≈

2 Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head. = 2000000 000 hs. Axial load at pile head = 43000000 000 in-lbs Axial load at pile head = 12000000.000 hs. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified state frore are pile head = 25000000 Dis Specified moment at pile head = 72000000 000 in-lbs Specified axial load at pile head = 12000000 000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile-head = 22000000 00b se Bending moment at pile head = 72000000 000 in-lbs Axial load at pile head = 12000000.000 lbs Pile-head boundary conditions are Shear and Moment (BC Type I) Shear force at pile head = 20000000 100 in-Bendia moment at pile head = 6000000 000 in-lbs Arvial load at pile head = 12000000.000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 3 Load Case Number 2 Load Case Number 3 Load Case Number 1 Output Verification: *1*9 RQD Cohesion – uniaxial compressive strength for rock materials.
 Values of ES0 are roported for list strata.
 Default values will be generated for ES0 when input values are 0.
 RQD and k_m are reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Angle of Friction E50 or Deg. k_rm % * **| | |** | | Cyclic loading criteria was used for computation of p-y curves E, H Distribution of shear strength parameters with depth 00000 35.20 00000 35.20 00000 35.20 00000 35.60 14800.00000 35.60 14800.00000 00 00 14800.00000 00 y-mult p-y Modification Factors 1.0000 Shear Strength of Soils 30. Depth X Eff. Unit Weight in lbs/in**3 Loading Type X Cohesion c / lbs/in**2 D p-mult Number of cycles of loading = .03935 .03935 .03762 .03762 .05937 7000 is defined using 6 points defined using 6 points Point Depth X No. in lbs/ Depth X 296.000 959.000 296.00 419.00 959.00 959.00 1586.00 1 296.000 2 419.000 3 419.000 4 959.000 5 959.000 6 1586.000 Ē Point No. Notes: Point No. 00000 - 6

171	211
Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2	Pile-head Deflection vs. Pile Length
Pite-head boundary conditions are Shear and Moment (BC Type 1) Pite-head boundary conditions are Shear and Moment (BC Type 1) Specified moment at pite head = 2000000.000 in-bis Specified axial load at pite head = 1200000.000 lis	Boundary Condition Type 1, Shear and Moment Shear = 720000.in-lbs Moment = 7200000.in-lbs Axial Lead = 12000000.lbs
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Ontwirt Verification	Pile PileHead Maximum Maximum Length Deflection Moment Shear is in the Moment Shear
Computed forces and moments are within specified convergence limits.	1199 000 1.56248701 2.195124E+08 -643574 69084 1139 050 1.56184728 2.192932E+08 -639516.3754 1079.100 3.56199056 2.193456E+08 -6539716.3340
Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	1019-150 3.61095055 2.191259E+08 -623858.42249 959-200 3.90079836 2.210345E+08 -697692.25936 The analysis ended normally.
Pile-head boundary conditions are Shear and Morment (BC Type 1) Specified shear force at pile head = 200000.000 lbs Specified moment at pile head = 1200000.000 in-lbs Specified axial load at pile head = 12000000.000 lbs	
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.	
Output Verification: Communed forces and moments are within exectified conversance limits	
Summary of Pile Response(s)	
Definition of Symbols for Pile-Head Loading Conditions:	
Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Stope, M = Pile-head Moment lbs-in Type 2 = Shear and Rcs. Stiffness, V = Pile-head Shear Force lbs Type 4 = Deflection and Moment, S = Pile-head Shear Force lbs Type 5 = Deflection and Stope, R = Rot. Stiffness of Pile-head in-lbs/rad	
Load Pile-Head Axial Pile-Head Maximum Maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in-lbs lbs	
1 V= 2.50E+05 M= 7.20E+07 1.2000E+07 3.6255 2.1951E+08 -643575. 1 V= 2.25E+05 M= 6.00E+07 1.2000E+07 3.0807 1.8985E+08 -550048. 1 V= 2.00E+05 M= 4.80E+07 1.2000E+07 2.5621 1.6059E+08 459990.	

132 Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
 1
 0.0000
 102.00000
 5431065.
 9630.7800
 4074281.

 2
 844.0000
 102.00000
 5431065.
 9630.7800
 4074281.

 3
 884.0000
 96.00000000
 1169220.
 7238.2300
 4074281.

 4
 1302.0000
 96.00000000
 4169220.
 7238.2300
 4074281.
 ١ Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 313.000 in Distance from top of pile to bottom of layer = 60.000 hs/in**3 p-y subgrade modulus k for top of soil layer = 60.000 hs/in**3 p-y subgrade modulus k for bottom of layer = 60.000 hs/in**3 ١ Layer 4 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 793.000 in Distance from top of pile to bottom of layer = 823.000 in Distance from top of pile to bottom of layer = 125.000 lbs/m**3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/m**3 Distance from top of pile to top of layer = 613.000 in Distance from top of pile to bottom of layer = 793.000 in Py subgrade modulius k for top of soil layer = 125.000 lbs/in+3 py subgrade modulius k for bottom of layer = 125.000 lbs/in+3 Distance from top of pile to bot of layer = 481.000 in Distance from top of pile to bottom of layer = 60.000 lbs/m+3 py subgrade modulus k for top of soil layer = 60.000 lbs/m+3 py subgrade modulus k for bottom of layer = 60.000 lbs/m+3 Modulus of Pile Nuc. Elasticity - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Depth of ground surface below top of pile = 313.00 in Stope angle of ground surface = .00 deg. 001 Pile Moment of Pile Mo meter Inertia Area Elastic in**4 Sq.in Ibs/Sq.in Pile Structural Properties and Geometry Structural properties of pile defined using 4 points Soil and Rock Layering Information Layer 2 is sand, p-y criteria by Reese et al., 1974 Layer 3 is sand, p-y criteria by Reese et al., 1974 197 = 1302.00 in Solution Control Parameters: - Number of pile increments = 19 - Maximum number of iterations allowed = The soil profile is modelled using 5 tayers Layer 5 is strong rock (vuggy limestone) Diameter .5 Printing Options: Point Depth Pile Length z. × 12 L:\East End Bridge\Lateral Load Analyses\Piers 3&4\ Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Output summary table of values for pile-head deflection, maximum bending moment, and shear force only
 Analysis assumes no soil movements acting on pile
 No additional p-y curves to be computed at user-specified depths Only internally sected p-y curves used in analysis
 Only internally sected p-y curves used in analysis
 Analysis uses p-y multipliers for group action
 Analysis assumes no shear resistance at plie tip
 Analysis includes automatic computation of pile-top deflection vs. Units Used in Computations - US Customary Units: Inches, Pounds Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method Name of input data file: Piers 3&4 - large - no scour.jpd Name of output file: Piers 3&4 - large - no scour.jpd Name of loutput file: Piers 3&4 - large - no scour.jpd Name of routput file: Piers 3&4 - large - no scour.jpd Name of runtime file: Piers 3&4 - large - no scour.jpd East End Bridge - Preliminary Design for Pier Foundation pile embedment length No computation of foundation stiffness matrix elements LPILE Plus for Windows, Version 5.0 (5.0.31) Date: December 21, 2007 Time: 11: 3:45 (c) 1985-2007 by Ensoft, Inc. All Rights Reserved Time and Date of Analysis Program Options Problem Title This program is licensed to: Basic Program Options: Computation Options: Path to file locations: PB Americas, Inc. Mangtao Du

	P-y Modification Factors	Distribution of p-y multipliers with depth defined using 2 points Point Depth X p-mult y-mult No. in	1 1100 1000 2 882.000 3500 1.0000		Loading Type	Cyclic loading criteria was used for computation of p-y curves	Number of cycles of loading == 30.	Pile-head Loading and Pile-head Fixity Conditions	Number of loads specified = 3	Load Case Number 1	Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 100000,000 lbs Slope at pile head = 1000 in/in Axial load at pile head = 1200000.000 lbs	(Zero slope for this load indicates fixed-head condition)	Load Case Number 2	Pile-head boundary conditions are: Shear and Slope (BC Type 2) Shear force at pile head = 1250000.000 lbs Slope at rible-head = 2000 nym Axial load at pile head = 12000000.000 lbs	(Zero slope for this load indicates fixed-head condition)	Load Case Number 3	Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 1000000.000 lbs Slope at pile head = 000 invin	Axtal load at pite nead = 1 200000.000 los (Zero slope for this load indicates fixed-head condition)	Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1	
(33	Distance from top of pile to top of layer ⊨ 882.000 in Distance from top of pile to bottom of layer ⊨ 1523.000 in	(Depth of lowest layer extends 221.00 in below pile tip)	Effective Unit Weight of Soil vs. Depth	Distribution of effective unit weight of soil with depth is defined using 10 points	Point Depth X Eff. Unit Weight No. in Ibs/in-*-3	1 11.000 000000	3 481.00 .03877 × 5 613.00 .03877 × 5 793.00 .04109	7 793.00 03993 5 8 882.00 03993 5 9 882.00 05680 5	2 098c0 00.52c1 01		Shear Strength of Soils Distribution of ahear strength parameters with depth	actimed using to points Point Depth X. Cohesion c. Angle of Friction E50 or RQD	No. In 185/11**2 LJeg. K_m %	2 481.000 00000 34.50 3 481.000 00000 34.50 3 481.000 00000 36.90 4 613.000 00000 36.90	5 613.000 .00000 38.00 38.00 38.00 7 793.000 .00000 38.01	8 882.000 00000 38.00 9 882.000 4800.00000 .00	10 1523.000 4800.00000 .00	 Cohesion = untaxial compressive strength for rock materials. Values of E50 are reported for clay streag. Default values will be generated for E30 when input values are 0. RQD and k, rm are reported only for weak rock strate. 	•	

	Type 3 = Shear and Rot. Stiffness, V = Pile-head Shear Force lbs Type 4 = Deflection and Moment. S = Pile-head Shear Force lbs Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-lbs/rad Load Plle-Head Pile-Head Axial Pile-Head Maximum Maximum Type 1 = 2 Load Difference 1 = 2 Load Difference 2 V = 1150E-665 = 0.000 1.2000E-07 3 2 V = 1150E-665 = 0.000 1.2000E-07 3 2 V = 125E-665 = 0.000 1.2000E-07	Dia had Palation w Dia 1 and	Boundary Condition Type 2, Shear and Stope Shear = 1500000. Ibs	Slope = .00000 Axial Load = 12000000. lbs	Pile Pile Head Maximum Maximum Length Deflection Moment Shear in in in-Ibs Ibs	1302.000 4.31950401-6.881955E+08 4632701. 136.900 4.31692165 6.8803995E+08 4628097. 1171.800 4.3275723 -6.8855335+08 4630223.	1106.700 + 42195600 - 588437E-68 + 2954601. 1041.600 + 2.29332509 - 5.888437E-68 + 3727464. 976.500 + 7.98543956 - 1.062348E-90 - 5993924. 845.300 11.05195611 - 1.12388E-90 1 1500000. 781.200 70.93442059 -1.084775E+09 15000016.	The analysis ended normally.					
1221													
	nts are Shtear and Slope (BC Type 2) + head = 1500000.000 lts = 0.000E+00 in/m head = 1200000.000 lbs hicates fixed-head conditions)	ents are within specified convergence limits.	f Load Distribution and Deflection g for Load Case Number 2	ns are Sthear and Stope (BC Type 2) thead = 1250000.000 lbs = 0.00051+00 in/in = 12000000.000 lbs	icates fixed-head conditions)	ints are within specified convergence limits.	f Load Distribution and Deflection 18 for Load Case Number 3	ns are Shear and Shope (BC Type 2) head = 1000000.000 lbs = 0.000E+00 in/in ead = 1200000.000 lbs	icales fixed-head conditions)	nts are within specified convergence limits.	Pile Response(s)	ile-Head Loading Conditions: t, y = pile-bread displacment in M = Pile-head Moment Ibs-in	

	Coluitor Conversion
LPILE Plus for Windows, Version 5.0 (5.0.31)	Soution Control rearmeters: = 197 Number of bits increments = 197 Maximum number of iterations allowed = 100 Docurs increases allowed = 1000
Analysis of Individual Pites and Drilled Shafts Subjected to Lateral Loading Using the p-y Method	- Vetterun loratize or convergence – 1.0000E+02 in Maximum allowable deflection = 1.0000E+02 in
(c) 1985-2007 by Ensoft, Inc. All Rights Reserved	Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
ais program is licensed to:	Pile Structural Properties and Geometry
angtao Du 3 Americas, Inc.	Pile Length = 1302.00 in Depth of ground surface below top of pile = 793.00 in
th to file locations: L'VEast End BridgeU ateral Load Analyses/Piers 3&4/ nme of input data file: Piers 3&4-1 large - scour.lpd tme of output file: Piers 3&4-1 large - scour.lpo tme of ptot output file: Piers 3&4-1 large - scour.lpp une of runtime file: Piers 3&4-1 large - scour.lpr	Slope angle of ground surface = .00 deg. Structural properties of pile defined using 4 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in baSA.in
Time and Date of Analysis Date: December 21, 2007 Time: 11: 7: 9	1 00000 102,00000 6431065, 9540,7800 4074281. 2 884,0000 96,00000000 4169220. 7238,2300 4074281. 3 884,0000 96,00000000 4169220. 7238,2300 4074281.
Problem Title	Soil and Rock Layering Information
st End Bridge - Preliminary Design for Pier Foundation Program Options	The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 733.000 in Distance from top of pile to bottom of layer = 132.000 ls/m ⁴³ p-y subgrade modulus K for top of soil layer = 125.000 ls/m ⁴³
nis Used in Computations - US Customary Units: Inches, Pounds tsic Program Options:	Layer 2 is strong nock (vuggy litnestone) Distance from top of pile to top of layer = 822.000 in Distance from top of pile to bottom of layer = 1523.000 in
aalysis Type 1: Computation of Lateral Pile Response Using User-specified Constant EI	(Depth of lowest layer extends 221.00 in below pile tip)
omputation Options: Only internally-generated p-y curves used in analysis Analysis uses p-y multiplets for group action Analysis assents no shear traisizance at pile tip	Effective Unit Weight of Soil vs. Depth
(nallysis includes automatic computation of pile-top deflection vs. de embedwent length computation of foundation stiffness matrix elements burbut summary table of values for pile-head deflection, maximum duing moment, and shaar force only (nallysis assumes no soil movements acting on pile (o additional p-y curves to be computed at user-specified depths	Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff. Unit Weight No. in Ibs/fn+5 1 793.00 03993

8
 1236 900
 5 40454225 -7.5976108+08
 -6563469.

 1171.800
 5,42720926 -7.6087895+08
 -6572847.

 1106.700
 40.03260229 -2.112945E+09
 15000000.
 The analysis ended normally. 3 2 V= 150E+06 S= 0.000 12000E+07 5.4085.7.5996E+08 -6559964. V 2 V= 132E+06 S= 0.000 12000E+07 5.4085.7.5996E+08 -5523668. 2 V= 1,00E+06 S= 0.000 1.2000E+07 3.5260-5.0261E+08 4445360. Load Pile-Head Pile-Head Axial Pile-Head Maximum Maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in-Ibs Ibs Type I = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Stope, M = Pile-head Mornent Ibs-in Type 3 = Shear and Rot. Stiffness, V = Pile-head Shear Force los Type 4 = Deflection and Mornent, S = Pile-head Shear Force, radians Type 5 = Deflection and Stope, R = Rot. Stiffness of Pile-head in-Ibs/rad Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified shear force try jule head = 1000000.000 lbs Specified slope at pile head = 0.0000E+00 m/in Specified exist load at pile head = 1.200000.000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Definition of Symbols for Pile-Head Loading Conditions: (Zero slope for this load indicates fixed-head conditions) 1302.000 5.40852186 -7.599557E+08 -6559964. Pile Pile Head Maximum Maximum Length Deflection Moment Shear in in In-Ibs Ibs Pile-head Deflection vs. Pile Length Summary of Pile Response(s) Boundary Condition Type 2, Shear and Slope Shear = 1500000. lbs Slope = .00000 Axial Load = 12000000. lbs Output Verification: l

 	LPILE Plus for Windows, Version 5.0 (5.0.31) Analysis of Individual Piles and Drilled Shafts	Solution Control Parameters: Number of pile increments = 197 - Maximum number of iterations allowed = 100 - Deflection tolerance for convergance = 1.0000E-0.5 in - Maximum allowable deflection = 1.0000E+0.2 in
The financial content of the standard content o	(c) 1985-2007 by Ensoft, Inc. All Rights Reserved	Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
OR Length - 100.00 mm of the control of the contro of the control of the control of the control	gram is licensed to:	Pile Structural Properties and Geometry
Provident (in: Proc. 34: a mit an exact plue (stremating the stremating the stremating the stremating the stremating the stremating the stremating (stremating the strat	o Du rricas, Inc.	Pile Length = 1302.00 in Depth of ground surface below top of pile = 313.00 in /
Thread Thread (AmAysis) in merk (Sein) in m	lie locations: L'uEast End Bridge/Lateral Load Analyses/Piers 3&44 i input data file: Piers 3&4 - small - no scour.hpd couput file: Piers 3&4 - small - no scour.hpd plot ouput file: Piers 3&4 - small - no scour.hpt runnime file: Piers 3&4 - small - no scour.hpt	Stope angle of ground surface = .00 deg. Structural properties of pile defined using 4 points Point Depth Pile Moment of Pile Modulus of
The December 21, 2007 Time 11:10:14 The December 21, 2007 Time 11:10:14 Prober Time 1:20:000 95:0030 95:03:00 97:031 Bridge - Pretrimanary Decign for Pre Foundation 2: 88:000 90:000000 32:0321 661:300 97:031 Bridge - Pretrimanary Decign for Pre Foundation The set of the Pretrimanary Decign for Pre Foundation 2: 88:000 90:000000 32:0321 661:300 47:031 Bridge - Pretrimanary Decign for Pre Foundation The set of the Pretrimanary Decign for Pre Foundation 2: 88:000 90:000000 32:0321 661:300 47:331 Bridge - Pretrimanary Decign for Pre Foundation The set of the Pretriman Pretrimanary Decign for Pretrimanary Decig	Time and Date of Andresis	in in in**4 Sq.in lbs/Sq.in 1 0.0000 96.0000000 4356253. 8611.2400 4074281.
Prolon Tile Sal and Rock Layering Information Bridge - Pretinnary Dasign for Pier Foundation Bridge - Pretinnary Dasign for Pier Foundation Dependentiation Dependentiation Program Options Dependentiation Dependentiation Dependentiation Program Options Dependentiation Dependentiation Dependentiation Program Options Dependentiation Dependentiation Dependentiation	Date: December 21, 2007 Time: 11:10:14	2 884.0000 96.0000000 4355263. 8611.2400 4074281. 3 884.0000 90.00000000 3220623. 6361.7300 4074281. 4 1302.0000 90.00000000 3220623. 6361.7300 4074281.
Bridge - Preliminary Design for Pier Foundation Image: 1 is startly provident with with with with provident with with with with with with with wit	Problem Title	Soil and Rock Layering Information
Togen I is sand, py criteria by Resee at 1, 1974 Program Options Series form top of pile to bottom of layer = 00000 listines Options STYPe I: Type I: and to Computations - US Customary Units: Inches, Pounds Options STYPe I: and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using User-specified Constant El and to Cartaral Pile Response Using Resee et al. 1974 and to Cartaral Pile Response Using Resee et al. 1974 and to Cartaral Pile Response Using Resee et al. 1974 and to Cartaral Pile Response Using Resee et	d Bridge - Preliminary Design for Pier Foundation	The soil profile is modelled using 5 layers
aed in Computations - US Customary Units: Inches, Pounds orgarn Options: a Type 1: Type 1: Tation of Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 481.000 in p-y subgrade modulus: k for top of layer = 60.000 lbs/in+3 p-y subgrade modulus k for top of layer = 61.3000 in Distance from top of pile to bottom of layer = 61.3000 in Distance from top of pile to bottom of layer = 61.300 in Distance from top of pile to bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 732.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3 p-y subgrade modulus k f	Program Options	Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 313.000 in Distance from top of pile to bottom of layer = 431.000 in p-y subgrade modulus k for top of soil layer = 60.000 lbs/in+3 p-y subgrade modulus k for bottom of layer = 60.000 lbs/in+3
eType 1: attion of Lateral Pile Response Using User-specified Constant El attion Options: attion of pile to pot of layer = 733.000 in bis/inv-3 py subgrade modulus kire to pot of layer = 733.000 in bis/inv-3 py subgrade modulus kire to pot of layer = 733.000 in bis/inv-3 py subgrade modulus kire to pot of layer = 733.000 in bis/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade modulus kire to pot of layer = 125.000 las/inv-3 py subgrade m	sed in Computations - US Customary Units: Inches, Pounds rogram Options:	Layer 2 is stand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 481.000 in Distance from no of cile to known of lawer = 413.000 in
ation Options: aternally generated p-y curves used in analysis aternally generated p-y curves used in analysis p-y subgrade modulus k for top of foll ayrer = 125.000 lbs/in+*3 p-y subgrade modulus k for top of foll ayrer = 733.000 in moment, and shear force only moment, and shear force only thereform top of pile to bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for top of foll ayrer = 125.000 lbs/in+*3 p-y subgrade modulus k for top of foll ayrer = 125.000 lbs/in+*3 p-y subgrade modulus k for top of soil layer = 125.000 lbs/in+*3 p-y subgrade modulus k for toptom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+*3 p-y subgrade modulus k layer p-y subg	s Type 1; uration of Lateral Pile Response Using User-specified Constant E1	Py subgrade modulus k for two for sub layer = 60.000 lbs/n+3 Py subgrade modulus k for bottom of layer = 60.000 lbs/n+3
bedment length Invariation of foundation stiffness matrix elements Isummustion of notation stiffness matrix elements Isummustion of not a proper level of a proper a proper level of a proper le	ation Options: nternally.generated p-y curves used in analysis is uses p-y multiplers for group action sis assumes no shear resistance at pile the section vs.	Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 613.000 in Distance from top of pile to bottom of layer = 793.000 in P-y subgrade modulus k for top of soil layer = 125.000 lbs/in**3 P-y subgrade modulus k for bottom of layer = 125.000 lbs/in**3
	nbedment length myutakino of foundation stiffness matrix elements aurimany table of values for pile-head deflection, maximum moment, and shear force only sis assumes no soli movements acting on pile livioaal p-y curves to be computed at user-specified depths	Layer 4 is sund, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 932.000 in Distance from top of pile to bottom of layer = 882.000 in P-y subgrade modulus k for top of soil layer = 125.000 lbs/in**3 P-y subgrade modulus k for bottom of layer = 125.000 lbs/in**3

•

	p-y Modification Factors	Distribution of p-y multipliers with depth defined using 2 points Point Depth X p-mult y-mult	No. In 1 313.000 3500 1.0000 2 882.000 3500 1.0000		Loading Type	Cyclic loading criteria was used for computation of p-y curves	Number of cycles of loading = 30.	Pile-head Loading and Pile-head Fixity Conditions	Number of loads specified = 3	Load Case Number 1	Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 150000.000 lbs Slope at pile head = 1200000.000 lbs Axial load at pile head = 12000000.000 lbs	(Zero slope for this load indicates fixed-head condition) · Load Casc Number 2	Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 1250000.000 lbs Slope at pile head = .000 in/in Axial ioad at pile head = 12000000.000 lbs	(Zero stopé for this load indicates fixed-head condition)	Load Case Number 3 Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 1000000.000 lbs	Stope at pile head =	(Zero slope for this load indicates fixed-head condition)	Computed Values of Load Distribution and Deflection for Latteral Loading for Load Case Number 1	
191	Distance from top of pile to top of layer = 882.000 in Distance from top of pile to bottom of layer = 1523.000 in	(Depth of lowest layer extends 221.00 in below pile tip)	Effective Unit Weight of Soil vs. Depth	Distribution of effective unit weight of soil with depth is defined using. IO poins	Point Depth X Eff. Unit Weight No. in Ibs/in**3	1 11300 00819 2 481.00 03819	3 481.00 03877 5 613.00 0.03877 5 613.00 0.4109 5 793.00 04109	8 82.00 0.03993 9 882.00 0.0588 10 1513.00 0.0588			Shear Strength of Solis Distribution of shear strength parameters with depth defined using 10 notints	Point Depth X Cohesion c Angle of Friction E50 or RQD No. in Ibs/in**2 Deg. k_rm %	1 313.000 0.00000 34.50 2 481.000 0.00000 34.50 3 481.000 0.00000 36.90 4 613.000 0.00000 36.90 4 613.000 0.00000 36.90	793.000 38.00 7 793.000 38.00 7 993.000 38.00	8 82.000 4800.00000 38.00 1000 38.00 100 100 1523.000 4800.00000 .00 100 100 1523.000 100	Notes: /1) Cohesion = unitatial commensitive stremoth for mork materials	 Contrastor a manual sorting serve atomic for day stata. Values of E30 are reported for day stata. Default values will be generated for E30 when input values are 0. RQD and k_rm are reported only for weak rock strata. 		

	Type 3 = Shear and Rot. Stiffness, V = Pile-head Shear Force lbsType 4 = Deflection and Moment, S = Pile-head Slope, radiansType 5 = Deflection and Slope, R = Rot. Sliffness of Pile-head in-lbs/radLoad Pile-Head Pile-Head Arial Pile-Head Maximum MaximumType Condition Condition Load Deflection Moment Shear122V= 1.50E+66 S=0.000 1.2000E+073.33704.717E+08-2872895.	Pile-head Deflection vs. Pile Length Boundary Condition Type 2, Shear and Stope Shear = 1500000. lbs Stope = .00000 Axial Load = 1200000. lbs	Pile Pile Head Maximun Length Deflection Moment Shear in in-bis Its Shear in in-bis Its Shear in in-bis Its Shear 1302.000 5.41530091.6/929085E+08 4926894. 1302.000 5.4244551.6/92136.6-017405. 1171.800 11171.1800 5.4244551.6/921324-901106-08 4597366.3 11106.700 5.4244551.5.6/93132E+08 4897360. 11106.700 5.4244551.5.6/931378E+08 4897360. 11106.700 5.4244551.5.6/931378E+08 4597360. 11106.700 5.4244551.5.6/931378E+08 4597360. 11106.700 5.44642391.127713E+09 1530458. 911.400 14.67642391.127713E+09 1500000. 846.300 14.533393521.163675E+09 1500000.	The analysis ended normally.	
\$ 9)	Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 150000.000 lbs Specified shope at pile head = 0.000E+00 in/in Specified axial load at pile head = 1200000.000 lbs (Zero slope for this load indicates fixed-head conditions) Output Verification: Computed forces and moments are within specified convergence limits.	Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Pie-head boundary continous are Share Ala Cype 2) Specified shear force at pile head = 125000.000 lbs Specified shear force at pile head = 1200000.000 lbs Specified at pile head = 1200000.000 lbs	(Zero slope for this load indicates fixed-head conditions) Output Verification: Computed forces and moments are within specified convergence limits. Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	Pile-head boundary conditions are Shear and Stope (BC Type 2) Specified shear force at pile head = 100000.000 lbs Specified stope at pile head = 0.0005+00 in/in Specified at pile head = 1200000.000 lbs (Zero stope for this load indicates fixed-head conditions) Output Verification: Computed forces and moments are within specified convergence limits.	Summary of Pile Response(s) Definition of Symbols for Pile-Head Loading Conditions: Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slope, M = Pile-head Moment Ibs-in

_

	Solution Control Parameters: - Number of pile increments = 197 - Number of pile increments = 190 - Deflection toleranse (for convergence = 1,0000E-05 in - Maximum allowable deflection = 1,0000E-02 in Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.	Pile Structural Properties and Geometry Pile Length = 1302.00 in Pile Length = 1302.00 in Depth of ground surface below top of pile = 793.00 in Stope angle of ground surface = .00 deg. Structural properties of pile defined using 4 points Point Point Depth of Branch Inerties Point Depth of Branch Inerties	in in in 18-54, 54, 18-54, 18-54, 18-54, 19-55, 19-	The soil profile is modelled using 2 layers Layer 1 is sand, py criteria by Recest et al., 1974 Distance from top of pile to bod clayer = 822.000 in Distance from top of pile to bottom of layer = 822.000 in py subgrade modulus k for top of soil layer = 125.000 lbs/in**3	Layer 2 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 882.000 in Distance from top of pile to bottom of layer = 1523.000 in (Depth of lowest layer extends 221.00 in below pile tip)	Effective Unit Weight of Soil vs. Depth Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff. Unit Weight No. in 1 793.00 .03993
22	LPILE Plus for Windows, Version 5.0 (5.0.31) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) 1985-2007 by Ensoft, Inc. All Rights Reserved	This program is licensed to: Mangtao Du PB Armericas, Inc. Path of the locations: L.'East End BridgeLateral Load Analyses/Piers 3&4 Name of input fale: Piers 3&4 - small - scour.pd Name of output file: Piers 3&4 - small - scour.pp Name of routine file: Piers 3&4 - small - scour.pp	Time and Date of Analysis Date: December 21, 2007 Time: 11:38:35 Problem Title	East End Bridge - Preliminary Design for Pler Foundation Program Options	Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El	Computation Options: - Only internally-generated py curves used in analysis - Analysis uses py unlipties for group action - Analysis uses provide a submatric for group action - Analysis includes automatic computation of pile-top deflection vs. pile embedment length - No computation of foundation stiffness matrix elements - On computation of foundation stiffness matrix elements - On computation of foundation stiffness matrix elements - Analysis susmess no soil movements acting on pile - Analysis sumes no soil movements acting on pile - No additional p-y curves to be computed at user-specified depths

Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 100000.000 lbs Arvial load at pile head = 1200000.000 lbs Arvial load at pile head = 1200000.000 lbs Pile-head boundary conditions are Shear and Slope (BC Type 2) Shear force at pile head = 1125000.0001 lbs Stope at pile head = .000 in/in Axial load at pile head = 1200000.000 lbs Pile-head boundary conditions are Shear and Slope (BC Type 2) Shore at pile head = 100000.0001 bs Shore at pile head = 000 in/in Axial load at pile head = 1200000.000 lbs Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified shear force at pile head = 1500000 bio Specified slope at pile head = 000003-00 lish Specified axial load at pile head = 12000000 000 lish Pile-head boundary conditions are Shear and Slope (BC Type 2) Specified schear force at pile head = 125000100 lbs Specified schear pile head = 0000E-90 in/in Specified axial load at pile head = 12000000.000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 (Zero slope for this load indicates fixed-head conditions) (Zero slope for this load indicates fixed-head conditions) (Zero slope for this load indicates fixed-head condition) (Zero slope for this load indicates fixed-head condition) (Zero slope for this load indicates fixed-head condition) Load Case Number 2 Load Case Number 3 Output Verification: Output Verification: 175 RQD Cohesion = uniaxial compressive strength for rock materials.
 Values of ES0 are roptred for elsy strans.
 Default values will be generated for ES0 which input values are 0.
 ACD and k_rm are reported only for weak rock strans. 1 Distribution of p-y multipliers with depth defined using 2 points ١. Cyclic loading criteria was used for computation of p-y curves Point Depth X Cohesion c Angle of Friction E50 or No. in lbs/in**2 Deg. k_rm % ||| Pile-head Loading and Pile-head Fixity Conditions Distribution of shear strength parameters with depth I 38.00 38.00 .00 y-mult 1.0000 p-y Modification Factors Shear Strength of Soils 30. Loading Type .00000 4800.00000 4800.00000 Number of cycles of loading = Number of loads specified = 3 p-mult .03993 .05880 .05880 3500 3500 00000 defined using 4 points Load Case Number 1 Depth X 793.000 882.000 882.00 882.00 1523.00 2 882.000 3 882.000 4 1523.000 793.000 .5 Notes: Point ς. δ 7 m 5 - 2

1236.900 6.87306469-7.703153E+08 -6964100. 11711.8000 6.501366964-7.7114405E+08 -6983414. The analysis ended normally.	· · ·									
d forces and moments are within specified convergence limits. Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	d boundary conditions are Shear and Slope (BC Type 2) d shear force at pile head = 1000000.000 lbs d slope at pile head = 0.000E+00 in/in d axial load at pile head * 12000000.000 lbs ope for this load indicates fixed-head conditions)	terification: A forces and moments are within specified convergence limits.	Summary of Pile Response(s) an of Symbols for Pile-Head Loading Conditions:	 Sher and Slop, M= Pile-head Monet II. Sher and Slop, M= Pile-head Monet II. Sher and Monet, S= Pile-head Shere Force Ibs Sher and Monent, S= Pile-head Slop, radians Deflection and Monent, S= Pile-head In-lbs/rad Deflection and Slops, R = Rot. Stiffness of Pile-head In-lbs/rad Deflection and Slops, I and International Monet. Deflection and Monet. Shear monotion Load Deflection Monet. Shear monotion Load Deflection Monet. 	1.50E+06.5= 0.000 1.2000E+07 6.8777-7.7650E+08 6.972826. 1.25E+06.5= 0.000 1.2000E+07 5.6531 6.3889E+08 4773386. 1.00E+06.5= 0.000 1.2000E+07 4.4594 -5.0852E+08 4773386.	Pile-head Deflection vs. Pile Length	= 1500000.1bs ⇒ .00000 ad ⇒ 12000000.1bs	Pile Head Maximum Maximum Deflection Moment Shear in in-bs bs	00 6.87767917 <i>-17.</i> 04978E+08 -6972826.	

for Windows, Version 5.0 (5.0.31)	187 Solution Control Parameters: - Number of pile increments = 287 - Maximum number of iterations allowed = 100
ndividual Piles and Drilled Shafts Lateral Loading Using the p-y Method 5-2007 by Ensoft, Inc. Rights Reserved	 Deflection indexance for convergence = 1.0000E-03 in Maximum allowable deflection = 1.0000E+02 in Printing Options. Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
	Pile Structural Properties and Geometry
	Pile Length = 574.00 in Depth of ground surface below top of pile = -5.00 in
L: 'East End Bridge\Lateral Load Analyses\Pier S\ le: Pier 5 - large - no scour.lpd Pier 5 - large - no scour.lpp ile: Pier 5 - large - no scour.lpp Pier 5 - large - no scour.lpr	Slope angle of ground surface = 10.00 deg. Structural properties of pile defined using 4 points Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Blasticity in in in••4 dia Aria Ibasticity
and Date of Analysis mber 21, 2007 Time: 11:41:53	1 0.0000 102.0000 5431065. 9630.7800 4074281. 2 276.0000 102.00000 5431065. 9630.7800 4074281. 3 276.0000 96.00000000 4169220. 7238.2300 4074281. 4 574.0000 96.00000000 4169220. 7238.23000 4074281.
noblem Trite	Soil and Rook Layering Information
	The soil profile is modelled using 3 layers
liminary Design for Pier Foundation ogram Options	Layer 1 is stand, p-y criteria by Reese et al., 1974 Distance from top of pile to bottom of layer = -5.000 in Dystance from top of pile to bottom of layer = 0.000 in p-y subgrade modulus k for top scal layer = 20.000 lbs/in*3 p-y subgrade modulus k for bottom of layer = 20.000 lbs/in*3
itations - US Customary Units: Inches, Pounds ns: 	Layer 2 is sand, py criteria by Reces et al., 1974 Distance from top of pile to bottom of layer = 65,000 in Distance from top of pile to bottom of layer = 274,000 in p-y subgrade modulus k for top of soil layer = 125,000 lbs/in**3 p-y subgrade modulus k for bottom of layer = 125,000 lbs/in**3
erar rie response cang over-specuted consant pr se ublighes for group action	Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 274.000 in Distance from top of pile to bottom of layer = 874.000 in
o sharar resistance at pile tip gunarici computation of pile-top deflection vs. Bo lo dudation striftness matrix elements ble or values for pile-head deflection, maximum	(Depth of lowest layer extends 300.00 in below pile tip)
i shear force only o soil movements acting on pile urves to be computed at user-specified depths	Effective Unit Weight of Soil vs. Depth Distribution of effective unit weight of soil with depth

190 Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 5000000.000 hs Bending moment at pile head = 15600000.000 in-bs Axial biad at pile head = 400000.000 hs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 40000000 00b Braching moment at pile head = 1440000000 bin-bls Axial load at pile head = 400000.000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 300000000 bis Bending moment at pile head = 123000000000 in-lbs Axial load at pile head = 400000000 lis Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 500000000 bits Specified moment at pile head = 15000000.000 in-bits Specified axial load at pile head = 4000000.000 bits Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 3 Load Case Number 1 Load Case Number 2 Load Case Number 3 Output Verification: 681 Angle of Friction E50 or RQD Deg. k_rm % Colhesion = uniaxial compressive strength for rock materials.
 Values of ES0 are reported for city strata.
 Default values will be generated for ES0 when input values are 0.
 RQD and k_im are reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Cyclic loading criteria was used for computation of p-y curves Distribution of shear strength parameters with depth t y-mult 1.0000 p-y Modification Factors 88 29.50 29.50 38.00 38.00 ю́ Shear Strength of Soils Depth X Eff. Unit Weight in lbs/in**3 Loading Type Number of cycles of loading = Point Depth X Cohesion c No. in Ibs/in**2 .00000 .00000 .00000 .00000 4800.00000 4800.00000 p-mult 7000 .02257 .04109 .04109 .04109 .06111 .02257 is defined using 6 points defined using 6 points Depth X -5.000 274.000 65.00 65.00 274.00 874.00 65.000 274.000 274.000 874.000 -5.00 65.000 -5.000 <u>.</u> Notes: Point No. Point No. ŝ

	61
Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2	Pile-head Deflection vs. Pile Length
Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 400000.000 lbs Specified moment at pile head = 14000000.000 in-lbs Specified axial load at pile head = 4000000.000 lbs	Boundary Condition Type 1, Shear and Moment Shear = 500000. lbs Moment = 15600000. in-lbs Axial Load = 4000000. lbs
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Output Verification:	Pile PileHead Maximum Maximum Length Deflection Moment Shear in in in-Us lts lts
Computed forces and moments are within specified convergence limits. Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	574.000 74216496 2824227E+08 -2970957 545.300 77360525 2822625E+08 -2950977 516.600 77385270 2.82255E+08 -2950977 457.900 77382525 2.82254E+08 -2950305 459.200 77364252 2.825051E+08 -39336441 430.500 73570294 2.8220191E+08 -3411977 773.100 87.438742 2.818451E+08 -3410654
Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head $=$ 300000 000 lbs Specified moment at pile head $=$ 132000000 000 in-lbs Specified axial load at pile head $=$ 4000000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.	344.400 -20.39923880 1.560047E+08 559826.0440 315.700 -20.49212883 1.55958E+08 548191.45962 The analysis ended normally.
Ourput Verification: Computed forces and moments are within specified convergence limits.	
Summary of Pite Response(s) Definition of Swebolc for Pite-Head Lookinor.	
Type 1 = Stream and Moment, y = piethead displament in Type 2 = Stream and Moment, y = piethead displament in Type 2 = Stream and Stope, M = Pith-head Moment Ibs-in Type 3 = Deflection and Moment, S = Pith-head Stope, radians Type 5 = Deflection and Stope, R = Rot. Stiffness of Pith-head stope, radians Type 5 = Deflection and Stope, R = Rot. Stiffness of Pith-head in-lbs/rad Type 6 = Deflection and Stope, R = Rot. Stiffness of Pith-head in-lbs/rad Type 1 = 2 lbs in mbs. Bis	
I V = 3.00E+05 M = 1.44E+08 40000004421630 2.4542549 - 3256757 I V = 4.00E+05 M = 1.44E+08 40000005452596 2.0392E+08 - 214841. I V = 3.00E+05 M = 1.32E+08 40000005452596 2.0392E+08 - 214841.	· .

	29t
LPILE Plus for Windows, Version 5.0 (5.0.31) Analysis of Individual Pites and Drilled Shafts Subjected to Lateral Loading the p-y Method (c) 1985-2007 by Eusoft, Inc. All Rights Reserved	 Solution Control Parameters: Number of pile increments: Number of pile increments: Maximum number of iterations allowed = Deflection tolerance for convergence = 1.0000E405 in Maximum allowable deflection = 1.0000E402 in Printing Options: Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.
s program is licensed to:	Pile Structural Properties and Geometry
giao Du Americas, Inc.	Pile Length = 574.00 in Depth of ground surface below top of pile = 199.00 in Stope angle of ground surface = 10.00 deg.
a to file locations: L'VEast End Bridge\Lateral Load Analyses\Pier Si e of input data file: Pier 5 - large + scour.po ne of onput file: Pier 5 - large + scour.lop me of ploi output file: Pier 5 - large + scour.lpp ne of runtime file: Pier 5 - large - scour.lpr	Structural properties of pile defined using 4 points Point Depth Pile Moment of Pile Modulus of X Diameter Inentia Area Elasticity in in in 4 Sq. in bs/Sq.in
Time and Date of Analysis Date: December 21, 2007 Time: 11:44:36	1 0.0000 102.00000 5431065. 9630.7800 4074281. 2 276.0000 102.00000 5431065. 9530.7800 4074281. 3 276.0000 96.00000000 4169220. 7238.2300 4074281. 4 574.0000 96.00000000 4169220. 7238.2300 4074281.
Problem Title	Soil and Rock Layering Information
End Bridge - Preliminary Design for Pier Foundation Program Options	The soil profile is modelled using 2 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = 274.000 in Pristance from top of pile to bottom of layer = 274.000 in P-y subgrade modulus k for top of soil layer = 1.25.000 lbs/m***
s: Used in Computations - US Customary Units: Inches, Pounds ce Program Options:	P-Y subgrade modulus k for bottom of layer = 125.000 bs/m**3 Layer 2 is strong rock (vuggy linnestone) Distance from top of pile to top of layer = 274.000 in Distance from top of pile to bottom of layer = 874.000 in
lysis Type 1: unputation of Lateral Pile Response Using User-specified Constant EI	(Depth of lowest layer extends 300.00 in below pile tip)
ly internally-generated p-y curves used in analysis ly internally-generated p-y curves used in analysis alysis assumes p-y multiplers for group action alysis assumes on stear resistance at pile tip alysis includes automatic computation of pile-top deflection vs. ermbedment langth computation of foundation stiffness matrix elements put summary table of orphise-matrix elements put summary table of orphise-matrix elements ing moment, and shear force only alysis assumes no soil movements acting on pile additional p-y curves to be computed at user-specified depths	Effective Unit Weight of Soil vs. Depth Effective unit weight of soil with depth is defined using 4 points Point Depth X Eff. Unit Weight No. in bs/in**3 1 199.00 04109

ŝ ROD Cohesion = uniaxial compressive strength for rock materials.
 Values of ESO are ropered for clay strana.
 Default values will be generated for ESO when input values are 0.
 Default ACD and k. mare reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Cyclic loading criteria was used for computation of p-y curves Angle of Friction E50 or Deg. k_rm % Pile-head Loading and Pile-head Fixity Conditions Distribution of shear strength parameters with depth y-mult 1.0000 1.0000 p-y Modification Factors 88 38.00 38.00 Shear Strength of Soils ю́ Loading Type X Cohesion c / lbs/in**2 E 4800.00000 4800.00000 p-mult Number of cycles of loading = Number of loads specified = 3 .04109 .06111 .06111 7000 00000. defined using 4 points Load Case Number 1 Point Depth X No. in lbs/ 274.00 274.00 874.00 Depth X 199.000 274.000 199.000 274.000 274.000 874.000 E Notes: Point No. 0 n 4 ~~~ 4

Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile bead = 5000000.000 fts Ariation comment at pile head = 15600000.000 in-bts Axial load at pile head = 400000.000 lts Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Load Case Number 2

Pite-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 40000000 lbs Brending moment at pile head = 1440000000 in-ibs Axial load at pile head = 400000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Load Case Number 3

Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 3000000 lbs Breading moment at pile head = 132000000.000 in-bs Axial load at pile head = 400000.000 lbs Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 500000.000 lbs Specified momentar pile head = 1560000.000 in-bs Specified axial load at pile head = 400000000 lbs

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified convergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 400000.000 lbs Specified moment at pile head = 14400000.000 in-lbs

202	gor
Specified axial load at pile head = 400000.000 lbs	Axial Load == 4000000. lbs
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.	Pile Pile Head Maximum Maximum
Output Verification:	Length Dethechton Monterit Shear in in in-in-Ibs Ibs
Computed forces and moments are within specified convergence limits.	574.000 77248808 2970066E+08 -3124177 545.300 76813672 2507591E+08 -3121602 516.600 76837472 2567248E+08 -311692 487.900 76908770 2567246E+08 -3103831
Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	430.500 47.66998525 1.56000EH08 564666.42377 The analysis ended normally.
Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 300000.000 hs Specified moment at pile head = 132000000.000 in-lbs Specified at ial load at pile head = 400000.000 hs	
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)-condition.	
Output Verification:	
Computed forces and moments are within specified convergence limits.	
	•
Summary of Pile Response(s)	
Definition of Symbols for Pile-Head Loading Conditions:	
Type 1 = Shear and Moment, y = pile-head displaement in Type 2 = Shear and Stope, M = Pile-head Asner Force los Type 3 = Shear and Moment, S = Pile-head Shear Force los Type 4 = Deflection and Moment, S = Pile-head Sin-Jbs/rad	
Load Pile-Head Pile-Head Axial Pile-Head Maximum Maximum Type Condition Condition Load Deflection Moment Shear 1 2 lbs in in-Ibs Ibs	
1 V= 5.00E+05 M= 1.56E+08 4000000. 7724881 29701E+08 -3124177. 1 V= 4.00E+05 M= 1.44E+08 4000000. 6724177 2.5693E+08 -2702692. 1 V= 3.00E+05 M= 1.32E+08 4000000. 5723577 2.1686E+08 -2281246.	
Pile-head Deflection vs. Pile Length	
Boundary Condition Type 1, Shear and Moment	
Shear = 500000. Ibs Moment = 156000000. in-Ibs	

Solution Control Parameters: • Number of pile increments = 287 • Maximum number of iterations allowed = 100 • Maximum compositions allowed = 100000000000000000000000000000000000	- Detection instration on convergence – 1.00008+02 in • Maximum allowable deflection = 1.00008+02 in	Printing Options: - Only summary tables of pile-head deflection, maximum bending moment, and maximum shear force are to be printed in output file.	Pile Structural Properties and Geometry	Pite Length = 574.00 in Depth of ground surface below top of pite = -5.00 in stores analos of monucle surfaces	outproves of contract and and the second s	Point Depth Pile Moment of Pile Modulus of X Diameter Inertia Area Elasticity in in in**4 Sq.in Ibs/Sq.in	1 0.0000 96.00000000 4355263. 8611.2400 4074281. 2 276.0000 96.00000000 3355263. 8611.2400 4074281. 3 276.0000 90.000000000 2220623. 5561.7300 4074281.	. 4 574.0000 90.0000000 3220623, 6361.7300 4074281.	Soil and Rock Layering Information	The soil profile is modelled using 3 layers	Layer 1 is sand, p-y criteria by Keese et al., 13-00 in Distance from top of pile to top of there = -5.000 in Distance from top of pile to bottom of layer = 65.000 in p-y subgrade modulus k for top of soil layer = 20.000 lbs/n+*3 p-y subgrade modulus k for bottom of layer = 20.000 lbs/n+*3	Layer: 2 is sand, p-y criteria by Reces et al., 1974 Distance from top of pile to top of layer = 65.000 in Distance from top of pile to botcom of Layer = 724.000 in p-y submarket modulusk for too of Saoil Layer = 125.000 [Byfin*3	p-y subgrade modulus k for bottom of layer = 125.000 lbs/in+3	Layer 3 is strong rock (vuggy limestone) Distance from top of pile to top of layer = 274.000 in Distance from top of pile to bottom of layer = 874.000 in	(Depth of lowest layer extends 300.00 in below pile tip)	Effective Unit Weight of Soil vs. Depth	الانصاب مردمات مراقبه والمعاونين والمناقبة والمرابع والموالي والموالية
LPILE Plus for Windows, Version 5.0 (5.0.31)	Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method	(c) 1985-2007 by Ensoft, Inc. All Rights Reserved	gram is licensed to:	o Du ericas, Inc.	file locations: L:\East End Bridge\Lateral Load Analyses\Pier 5\ fingued data file: Pier 5 small - noscour.pd	a output and the starts - starts - no source point of plot output file. Piter 5 - strail - no sour lipp of runtime file. Piter 5 - strail - no scour.lipp	Time and Date of Analysis	Date: December 21, 2007 Time: 11:47:37	Problem Title	ıd Bridge - Preliminary Design for Pier Foundation	Program Options	Jsed in Computations - US Customary Units: Inches, Pounds . trogram Options:	is Type 1: uutation of Lateral Pile Response Using User-specified Constant El	tation Options: internally-generated p-y curves used in analysis aris ense. An milithens for provins action	as eaces P-7 standards as dependent sis assumes no shader resistance at pile to sis includes automatic computation of pile-top deflection vs. mbedment length	mputation of foundation stitness matrix elements ut summary table of values for pile-head deflection, maximum g moment, and shear force only esi assumes no soil movements acting on pile	Iditional p-y curves to be computed at user-specified depths

	Pile-head Loading and Pile-head Fixity Conditions Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 3 Load Case Number 1 Pile-head = 300000.000 lbs Berding moment argule head = 15600000.000 lbs Axial load at pile head = 400000.000 lbs	Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Load Case Number 2 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 400000.000 hs. Bending moment at pile head = 400000.000 hs. Arial load at pile head = 400000.000 hs. Mon-zero moment at pile head = 400000.000 hs. Zero moment at pile head = 400000.000 hs. Load case Number 3 Load Case Number 3	Pile-head boundery conditions are Shear and Moment (BC Type 1) Shear force at pile head = 300000000 bis Bending noment at pile head = 122000000.000 habs Axial load at pile head = 4000000.000 bis Non-zero moment at pile head for this load case indicates the pile-head my votate under the applied pile-head loading, but is not a free-head (zero moment) condition.	Pie-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = 500000.000 lbs Specified axial load at pile head = 4000000.000 lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Ourput Verification: Computed forces and moments are within specified convergence limits.
217		h depth ritcion E30 or RQD <u>k_m</u> %	h for rock materials. a when input values are 0. ak rock strata. fired using 2 points	ation of P-y curves
	is defined using 6 points Point Depth X Eff. Unit Weight No. in lbs/in+*3 1 -5.00 02257 2 65.00 02257 3 65.00 04109 5 274.00 06111 6 874.00 06111	Shear Strength of Soils Distribution of shear strength parameters with defined using 6 points Point Depth X Cohesion c Angle of Fi No. in lbs/in+22 Deg. 000000 25:000 000000 3 65:000 000000 3 65:000 000000 6 874:000 4800.00000 8 74:000 800.0000 0 0 870.00000 38.00 0 0 8874.000 00000 0 0 100000 00000	 Cohesion – uniaxial compressive strengt Values of E30 are reported for elay stratt Default values will be generated for E30 RQD and k_m are reported only for weight Pcy Modification Factors Pcint Distribution of P-y multipliers with deph def Point Deph X P-mult 	No. in 1 -5.000 .70000 1.0000 2 274.000 .70000 1.00000 Cyclic loading Trype

2 774.000 9103444 2819511E+08 -3163369, 545.300 90451667 2817635E+08 -3162515 516.660 9045529 517143E+08 -3162515 487.900 9055356 281763E+08 -3152914, 487.900 9055350 2817612E+08 -3157314, 493.500 5995642 2814615E+08 -3175704, 401.800 91144052 2814486E+08 -3453617 374.400 -18.7133825 1560296E+08 555617,2438 315.700 -18.44266151 1.559964E+08 535018,64235 Pile-head Deflection vs. Pile Length Maximum Boundary Condition Type 1, Shear and Moment Shear Shear = 500000. lbs Moment = 156000000. in-lbs Axial Load = 4000000. lbs Pile Head Maximum Deflection Moment n in-lbs lbs The analysis ended normally .g Pile P Length .5 49 I V= 500E+05 M= 1.56E+08 4000000. 910346 2 8195E+08 -3163369. I V= 4.00E+05 M= 1.44E+08 4000000. 7891612 2 4256E+08 -2720995. I V= 3.00E+05 M= 1.32E+08 4000000. 6685145 2 0331E+08 -2280187. Axial Pile-Head Maximum Maximum Load Deflection Moment Shear in in-lbs lbs Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slope, M = Pile-head Moment lbs-in Type 2 = Shear and Ros. Siffness, V = Pile-head Shear Force lbs Type 4 = Deflection and Moment, S = Pile-head Slope, nadians Type 5 = Deflection and Slope, R = Rot Stiffness of Pile-head in-lbs/rad. Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Computed forces and moments are within specified convergence limits. Computed forces and moments are within specified convergence limits. Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified baser force are pile head = 400000000 lbs Specified moment ar pile head = 14000000.000 in-lbs Specified axial load at pile head = 4000000.000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified abser from a pible head = 300000,000 lbs Specified moment at pible head = 13000000,000 in-lbs Specified axial load at pible head = 4000000,000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2 Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3 Definition of Symbols for Pile-Head Loading Conditions: Summary of Pile Response(s) .<u>e</u> Load Pile-Head Pile-Head Type Condition sdl Output Verification: Output Verification: 2 _

LPILE Plus for Windows, Version 5.0 (5.0.3.1) Analysis of Tainiviaballing Units the psy. Method Analysis of Tainiviaballing Units the psy. Method (j) 1935-2007 by Ensont, Inc. (j) 2037 (j) 2037	Solution Control Parmeters: = 287 = Wampter of plain increments: = 287 = Maximum number of iterations and lowed = 10000E963 in = Deflection maximum beard affection, maximum bearding more and maximum shear force are to be printed in output file. Pile Enrouted Properties and Geometry Pile Enrouted Surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,006 in Store angle of ground surface below too of pile = 199,000 in Store angle of ground surface below too of pile = 199,000 in Store angle of ground surface below too of pile = 199,000 in pile territor in in * 4 Rq. in Area Ellishitty 4 2 276,0000 96,00000000 32206223 (5611,300 407231, 3 276,0000 99,000000000 32206223 (5611,300 407231, 3 276,0000 99,0000000 32206223 (5611,300 407231, 3 276,0000 99,00000000 32206223 (5611,300 407231, 3 276,0000 99,00000000 32206223 (5611,300 407231, 3 276,0000 99,0000000 32206223 (561,300 407231, 3 276,0000 99,0000000 32206223 (561,1300 407231, The soll porfle to more of pile to botton of layer = 125,0001 bin pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,000 in pistance from top of pile to botton of layer = 274,
alysis includes automatic computation of pile-top deflection vs. e embedment length roput summary table of values for pile-head deflection, maximum ling moment, and shear force only ling moment, and shear force only ling moment, and shear force only ling moment, and shear force only additional p-y curves to be computed at user-specified depths	Distribution of effective unit weight of soil with depth is defined using 4 points Point Depth X Eff. Unit Weight No. in by Sfin**3 1 195,00 04109

•

230

Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Non-zero moment at pile head for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment) condition. Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 50000000 lbs Brain force at pile head = 150000000 lbs Axial load at pile head = 400000.000 lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 40000000 l0bs Bending moment at pile head = 144000000 lob in-lbs Axial load at pile head = 4000000 l0b lbs Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = 300000000 lbs and a strain at pile head = 13200000000 in-lbs Axial load at pile head = 400000.000 lbs Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 Load Case Number 2 Load Case Number 3

ž

2

Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force are pile head = 50000000 bis Specified moment at pile head = 15600000 000 in-bis Specified axial load at pile head = 4000000 000 bis

Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.

Output Verification:

Computed forces and moments are within specified eonvergence limits.

Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 2

Pite-head boundary conditions are Shear and Morment (BC Type 1) Specified shear force at pile head = 400000.000 lbs Specified moment at pile head = 14400000.000 in-lbs

Number of loads specified = 3

Load Case Number 1

Point Depth X Cohesion c Angle of Friction ES0 or RQD No. in 1bs/in**2 Deg. k_m % Cohesion = uniaxial compressive strength for rock materials.
 Values of E30 are ropticed for lays grama.
 Dicatul values will be generated for E30 when input values are 0.
 RQD and k_m are reported only for weak rock strata. Distribution of p-y multipliers with depth defined using 2 points Cyclic loading criteria was used for computation of p-y curves Pile-head Loading and Pile-head Fixity Conditions Distribution of shear strength parameters with depth 1 p-y Modification Factors y-mult 00001 88 38.00 38.00 ЗÖ. Shear Strength of Soils Loading Type p-mult Number of cycles of loading = 4800.00000 4800.00000 .04109 .06111 .06111 .7000 00000. defined using 4 points Depth X tn 199.000 274.000 274.00 274.00 874.00 1 199.000 2 274.000 3 274.000 4 874.000 Notes: Point No. ~~ 4 - 7

		न २ ६
Specified axial load at pile head = 400000.000 lbs	Axial Load = 4000000. lbs	5
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition. Output Verification:	Pile PileHead Maximum Maximum Length Deflection Moment Shear in in lbs bs	
Computed forces and moments are within specified convergence limits.	574.000 95143581 2976724E+08 -3338202 545.300 944462A2 2.973789E+08 -3336915 516.500 9447452A2 2.973495E+08 -3335844 8451900 94514739 2.972799E+08 -3310945 459.200 94514739 2.972799E+08 -3310945	
Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 3	430.500	
Pile-head boundary conditions are Shear and Morment (BC Type 1) Specified ahear force at pile head = 300000,000 lbs Specified moment at pile head = 13200000,000 in-lbs Specified axial load at pile head = 400000,000 lbs	•	
Non-zero moment for this load case indicates the pile-head may rotate under the applied pile-head loading, but is not a free-head (zero moment)condition.		
Output Verification:		
Computed forces and moments are within specified convergence limits.		
Summary of Pile Response(s)		-
Definition of Symbols for Pile-Head Loading Conditions:		
Type 1 = Shear and Moment, y = pile-head displacment in Type 2 = Shear and Slove, M = Pile-head Moment Ubs-in Type 3 = Shear and Rou Stiffines. V = Pile-head Shear Force Us Type 4 = Deflection and Moment, S = File-head Shear Force Us Type 5 = Deflection and Slope, R = Rot. Stiffness of Pile-head in-bs/ad		
Load Pile-Head Axial Pile-Head Maximum Maximum Type Condition Condition Load Deflection Moment Shear 1 2 bis in in-ibs bis		
I V= 5.00E+05 M= 1.56E+08 4000000951438 2.9767E+08 -3338202 I V= 4.00E+05 M= 1.44E+08 40000008267117 2.5745E+08 -2887900. I V= 3.00E+05 M= 1.32E+08 40000007039511 2.1730E+08 -2437999.		
Pile-head Deflection vs. Pile Length	·	
Boundary Condition Type 1, Shear and Moment		
Shear = 500000. lbs Morrent = 15600000. in-lbs		·

APPENDIX H-3 DRILLED SHAFT POINT OF FIXITY CALCULATIONS

				bai
PARSONS BRINCKERHOFF COMPUTATION SHEET	Drilled Shaft Cross-Section	n Properties		
Geotechnical & Tunneling Division	Young's Modulus:	E := 4074281psi		
BY: M. Du DATE: 12/26/2007 PROJECT: East End Bridge CHECKED BY: S: Moducation DATE: 12/26 [67] PAGE 1 OF 4	8.5 ft Diameter Shaft:	$I_{8.5} = 5431065in^4$		
SUBJECT: Drilled Shaft Equivalent Point of Fixity Calculations for Pier 1 Preliminary Design	8 ft Diameter Shaft:	I ₈ := 4356263in ⁴ /		
Purpose	Shaft Head Conditions and	d Loading		
To estimate equivalent point of fixity for drilled shaft, based on LPILE results, for Pier 1. References	Head Fixity: Free			
 Results of lateral load analyses with LPILE Elastic beam deflection equations 	Shaft Head Elevation:	EL _h := 430ft		
Index	Shear:	Moment:		
• Calculations (pp. $1 \sim 4$)	$P := \begin{pmatrix} 250 \\ 225 \\ kip \end{pmatrix}$	$M := \begin{bmatrix} 6 \\ 5 \end{bmatrix}$	000 kip-ft	
	(200)	4	(000	
Functions to define beam end deflections under concentrated loads and bending moments:	Deflection computed by LP	<u> </u>		
Cantilever beam under concentrated shear at cantilever end: $p_{1,L}^{3}$	Run 1 Run 8.5 ft Shaft 8.5 No scour Ma	n 2 Run 3 5 ft Shaft 8 ft Shaft No scour	Run 4 8 ft Shaft Max scoure	
$\delta_{p}(P,L,E,I) \coloneqq \frac{1}{3E_{1}}$	(0.915)	(1.038) (1.07	(2.449)	
Cantilever beam under concentrated bending moment at cantilever end:	$\Delta_1 := \left(\begin{array}{cc} 0.773 \\ 0.636 \end{array} \right) \text{ in } \Delta_2$	$:= \left[\begin{array}{ccc} 1.616 & \text{in} & \Delta_3 := \\ 1.317 & & \end{array} \right] $	$\begin{array}{ccc} 07 \\ 13 \\ 13 \\ 13 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$	
$\delta_{M}(M,L,E,I) := \frac{M \cdot L^2}{2E \cdot I}$	<u>Equivalent Beam</u> Lengths:			
Cantilever beam under combined concentrated shear and bending moment:	8.5 ft Shaft, No scour	$L_1 := 42ft$	trial & error	
p.1 ³ M.1 ²	8.5 ft Shaft, Max scour	L ₂ := 55.6ft	trial & error	
$\delta_c(P,M,L,E,I) \coloneqq \frac{1}{3E\cdot I} + \frac{1}{2E\cdot I}$	8 ft Shaft, No scour	L ₃ := 41ft	trial & error	
Beam with one end fixed and one end free to translate but not rotate:	8 ft Shaft, Max scour	$L_4 := 55.8 ft$	trial & error	
P.L ³	Deflections of Equivalent Bear			
$\delta_{f}(P,L,E,I) := \frac{1}{12E \cdot I}$	8.5 ft Shaft, No scour	$\delta_1 := \delta_c(\mathbf{P}, \mathbf{M}, \mathbf{L}_1, \mathbf{E}, \mathbf{I})$	8.5)	

age 2 of 4

page 1 of 4			
PARSONS BRINCKERHOFF	Drilled Shaft Cross-Section P	roperties	
GOMPULATION SHEET Geotechnical & Tunneling Division	Young's Modulus:	E := 4074281psi	
BY: M Du DATE: 12/26/2007 PROJECT: East End Blidge	8.5 ft Diameter Shaft:	$l_{8.5} = 5431065in^4$	
CHECKED BY: 51/40LLs6ct DATE: 12.12.71.6.7 PAGE 1 OF 4 SUBJECT: Drilled Shaft Equivalent Point of Fixly Calculations for Pier 2 Preliminary Design	8 ft Diameter Shaft:	I ₈ := 4356263in ⁴	
urpose	Shaft Head Conditions and L	pading	
o estimate equivalent point of fixity for drilled shaft, based on LPILE results, for Pier 2.	Head Fixity: Free		
teferences	Shaft Head Elevation:	EL _h := 414.8ft	
Results of aterial load analyses wur LFTLE Elastic beam deflection equations		=	
ndex	Shear:	Moment:	
Calculations (pp. $1 \sim 4$)	$P := \begin{pmatrix} 250 \\ 225 \\ kip \end{pmatrix}$	$M := \begin{bmatrix} 6000 \\ 5000 \end{bmatrix} ki$	cin-ft
urpose	200	4000	-
o estimate equivalent point of fixity for drilled shaft, based on LPILE results.	Deflection computed by LPILf	úì	
unctions to define beam end deflections under concentrated loads and bending moments:	Run 1 Run 2 8.5 ft Shaft 8.5 ft	Shaft 8 ft Shaft	Rur 8 ft
Cantilever beam under concentrated shear at cantilever end:	No scour, Max s	cour, No scour,	Max
$\delta_{p}(P,L,E,I) := \frac{P \cdot L^3}{3 \cdot I}$	$\Delta_1 := \begin{pmatrix} 1.287 \\ 1.097 \\ 0 \end{pmatrix} \xrightarrow{1}_1 \Delta_2 :=$	$\begin{array}{c c} 2.926 \\ 2.498 \\ \text{in} \\ \Delta_3 := \\ 1.307 \\ 1.307 \\ 1.00$	Δ_4
Cantilever beam under concentrated bending moment at cantilever end:		(1.089)	
$\delta_{\mathbf{M}}(\mathbf{M},\mathbf{L},\mathbf{E},\mathbf{l}) := \frac{\mathbf{M}\cdot\mathbf{L}^2}{2\mathbf{E}\cdot\mathbf{l}}$	Equivalent beam Lengths:	a a a a a a a a a a a a a a a a a a a	0
Cantilever beam under combined concentrated shear and bending moment:	8.5 ft Shaft, Max scour	$L_2 := 65.7ft$ trial	l & error
$5 \text{ (P M I. F. D)} = \frac{P \cdot L^3}{P \cdot L^2} + \frac{M \cdot L^2}{M \cdot L}$	8 ft Shaft, No scour	L ₃ := 47.2ft trial	al & error
Contraction and a BE-I 2E-I	8 ft Shaft, Max scour	$L_4 := 65.4 ft$ trial	il & error
Beam with one end fixed and one end free to translate but not rotale:	Deflections of Equivalent Beams		
$\delta_f(\mathbf{P},\mathbf{L},\mathbf{E},\mathbf{I}):=\frac{\mathbf{P}\cdot\mathbf{L}^3}{12\mathbf{E}\cdot\mathbf{I}}$	8.5 ft Shaft, No scour	$\delta_1 := \delta_c(P, M, L_1, E, I_{8,5})$	

 $\Delta_4 := \begin{pmatrix} 3.626\\ 3.081\\ 2.562 \end{pmatrix} \text{ in }$

Run 4 8 ft Shaft Max scour,

page 2 of 4

				page 2 of 4
PARSONS BRINCKERHOFF COMPLITATION SHEET	Drilled Shaft Cross-Sect	ion Properties		
Geotechnical & Tunneling Division	Young's Modulus:	E := 4074281ps	.19	
BY: M. Du DATE: 12/26/2007 PROJECT: East End Bridge CHECKED BY: 5.: Mark.oftra DATE: 12/12/16/7 PAGE 1 OF 4	8.5 ft Diameter Shaft:	I _{8,5} := 5431065	sin 4	
SUBJECT: Drilled Shaft Equivalent Point of Fixity Calculations for Pier 3 Preliminary Design	8 ft Diameter Shaft:	I ₈ := 4356263ir	4 c	
Purpose	Shaft Head Conditions a	and Loading		
To estimate equivalent point of fixity for drilled shaft, based on LPILE results, for Pier 3.	Head Fixity: Fixed			
References				
 Results of lateral load analyses with LPILE Elastic beam deflection equations 	Shaft Head Elevation:	ELh := .	405.5ft	
Index	Shear:	Moment		
Calculations (pp. 1 ~ 4)	(1500)			
Purpose	$\mathbf{P} \coloneqq \begin{vmatrix} 1250 \\ 1000 \end{vmatrix}$	¢.	Not applied as the	shaft head is fixed against rotation.
To estimate equivalent point of fixity for drilled shaft, based on LPILE results.	Deflection computed by	LPILE:		
Functions to define beam end deflections under concentrated loads and bending moments:	Run 9 8.5.ft.Shaft	Run 10 F	Run 11 8.ft.Shaft	Run 12 8 ft Shaft
Cantilever beam under concentrated shear at cantilever end:	No scour,	Max scour, N	lo scour,	Max scour,
$\delta_{\mathbf{D}}(\mathbf{P},\mathbf{L},\mathbf{E},\mathbf{I}) := \frac{\mathbf{P}\cdot\mathbf{L}^3}{\mathbf{P}\cdot\mathbf{L}^3}$	$\Delta_1 := \begin{bmatrix} 4.319\\ 3.485 & \text{in} \end{bmatrix}$	$\Delta_2 := \begin{bmatrix} 5.409\\ 4.455 \end{bmatrix} \text{ in } 2$	$\Delta_2 := \left(\begin{array}{c} 5.415\\ 4.359 \end{array} \right)$ in	$\Delta_A := \left(\begin{array}{c} 6.878\\ 5.653 \end{array} \right)$
3B-1	2.671	2 (3.526)	3.337	4.459
Cantilever beam under concentrated bending moment at cantilever end:	Equivalent Beam			
$\delta_{M}(M,L,E,I) := \frac{M \cdot L^{2}}{2E \cdot I}$	Lengths: 8.5 ft Shaft, No scour	$L_1 \approx 75 ff$	trial & c	error
Cantilever beam under combined concentrated shear and bending moment:	8.5 ft Shaft, Max scour	L ₂ := 82ft	trial & e	error
$\delta_{c}(\mathbf{P}, \mathbf{M}, \mathbf{L}, \mathbf{E}, \mathbf{I}) := \frac{\mathbf{P} \cdot \mathbf{L}^{3}}{3\mathbf{E}_{1}} + \frac{\mathbf{M} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{1}}$	8 ft Shaft, No scour	L ₃ := 75.51	ft trial & e	error
	8 ft Shaft, Max scour	$L_4 := 82.51$	ft trial & e	error
Beam with one end fixed and one end free to translate but not rotate:	Deflections of Equivalent B	eams:		
$\delta_{\mathbf{f}}(\mathbf{P},\mathbf{L},\mathbf{E},\mathbf{I}) := \frac{\mathbf{P}\cdot\mathbf{L}}{12\mathbf{E}\cdot\mathbf{I}}$	8.5 ft Shaft, No scour	$\delta_1 := \delta_f(\mathbf{P},$	L1,E,I _{8.5})	

PARSONS BRINCKERHOFF	Drilled Shaft Cross-S	ection Properties		
GOMPOLATION SHEET Geotechnical & Tunneling Division	Young's Modulus:	E := 407	4281psi	
BY: M. Du DATE: 12/26/2007 PROJECT: East End Bridge	8.5 ft Diameter Shaft	: I _{8.5} := 5 [,]	431065in ⁴	
CHECKED BT: 3.: MALLECAL DATE: 12.12.716.7 SUBJECT: Difiled Shaft Equivalent Point of Fixity Calculations for Pier 5 Preliminary Design	8 ft Diameter Shaft:	I ₈ := 435	6263in ⁴	
Purpose	Shaft Head Condition	is and Loading		
To estimate equivalent point of fixity for drilled shaft, based on LPILE results, for Pier 5. References	Head Fixity: Free			
 Results of lateral load analyses with LPILE Elastic beam deflection equations 	Shaft Head Elevation	ш	L _h := 414.8ft	
Index	Shear:	Μ	oment:	
Calculations (pp. 1 ~ 4)	$\mathbf{P} \coloneqq \begin{bmatrix} 500 \\ 100 \end{bmatrix}$	ki	$M := \begin{bmatrix} 13000 \\ 12000 \end{bmatrix}_{ki}$	÷.
Purpose	(300)		(11000)	
To estimate equivalent point of fixity for drilled shaft, based on LPILE results.	Deflection computed	by LPILE:		
Eunctions to define beam end deflections under concentrated loads and bending moments:	Run 1 8.5 ft Shaft No scour.	Run 2 8.5 ft Shaft Max scour.	Run 3 8 ft Shaft No scour.	Run 4 8 ft Shaft Max scour
Cantilever beam under concentrated shear at cantilever end:	(0747.0)	(022.0)	(100)	(0.051)
$\delta_p(P,L,E,I) := \frac{P.L^3}{3E.I}$	$\Delta_1 := \begin{pmatrix} 0.544 \\ 0.545 \end{pmatrix}$	$\Delta_2 := \left \begin{array}{c} 0.672 \\ 0.572 \\ 0.572 \end{array} \right \text{in}$	$\Delta_3 := \begin{pmatrix} 0.789\\ 0.789 \end{pmatrix}$ in	$\Delta_4 := \begin{pmatrix} 0.827 \\ 0.704 \end{pmatrix}$ in
Cantilever beam under concentrated bending moment at cantilever end:	Equivalent Beam Leng	ths:		
$\delta_{M}(M,L,E,I) := \frac{M \cdot L^{2}}{2E \cdot I}$	8.5 ft Shaft, No scour	rl ≓	: 29ft trial 8	error
Cantilever beam under combined concentrated shear and bending moment:	8.5 ft Shaft, Max scou	ır L ₂ ≔	: 29.5ft trial 8	error
$\delta_{\sigma}(\mathbf{P},\mathbf{M},\mathbf{L},\mathbf{E},\mathbf{I}) := \frac{\mathbf{P}\cdot\mathbf{L}^3}{\mathbf{P}\cdot\mathbf{L}} + \frac{\mathbf{M}\cdot\mathbf{L}^2}{\mathbf{M}\cdot\mathbf{L}^2}$	8 ft Shaft, No scour	$L_3 =$: 28.7ft trial 8	error
3E-1 2E-1 Beam with one end fixed and one end free to translate but not rotate:	8 ft Shaft, Max scour	L4 :=	: 29.3ft trial &	error
D.1.3	Deflections of Equivalen	t Beams:		
$\delta_{\mathbf{f}}(\mathbf{P},\mathbf{L},\mathbf{E},\mathbf{I}) \coloneqq \frac{1}{12\mathbf{E}\cdot\mathbf{I}}$	8.5 ft Shaft, No scour	δ ₁ =	$\delta_{c}\!\!\left(P,M,L_{1},E,I_{8.5}\right)$	

page 2 of 4

APPENDIX H-4 CORRELATION OF SPT DATA

Project No: LX2005125 File Name: J:2005projlLX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 1 SPT Correction

						I-26	5 OVER O	HIO RIVE	R					
			(CORREL	ATION OF	SPT DATA	TO UNIT	WEIGHTS	AND SHEA	AR STRENG	THS			
		and the second				FOR CO	DARSE GF	AINED S	OILS					
A	В	С	D	E	F	G	н		J	К	L	M	N	0
-	Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	Malal
	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	vveight	Woisture	In-situ	Vola
Soil	of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soll	Friction	Dry	Content	Unit weight	Ratio
No.	(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pct)	(%)	(pcr)	
		ý.,	σ'	Nao	Neo	CN	(N1)60	Dr		¢'	γd	m	Ye	e
	NOTES:]								
	C.	This spreadsh	neet has be	en designe	d such that ar	n initial "Assur	ned Estimate	ed Unit Weig	ht" is placed in	to Column C.				
	E.	N ₈₀ is the blow	v count per	foot as def	termined in the	e field using a	automatic h	ammer.						
	F.	$N_{60} = (E_{AH}/60)$	NAH, where	e: E _{AH} = au	tohammer eff	ciency (80%)	: NAH = blowd	ount from th	e autohammer	, as referenced	in (1)			
		The autoham	mer efficien	cv is based	d on typical va	lues of efficie	ncies (85 - 9	5) and actua	I testing prefor	med on FMSM	hammers.	SPT Analy	zer equipmer	it from
		Pile Dynamics	s Inc. was u	ised to con	duct the testin	g. An autoha	mmer is mor	e enegry eff	icient than a st	andard hammer				
		Hammer effic	iency is a m	neans of co	mparing the e	nergy transfe	rred from the	hammer to	the drill string e	during sampling				
	G.	Correction Fa	ctor Based	on 1/(squ	are root of ver	tical effective	stress). (Liad	o, S.C. and V	Whitman, R.V.	1985.				
		"Overburden	Correction I	Factors for	SPT in Sand"	, JGED, ASC	E, Vol. 112, I	Vo. 3, pp. 37	3-377; as refe	renced in (2).		1		
		This correctio	n factor is l	imited to ve	ertical effective	e stresses gre	ater than 0.2	5 tsf.						
ou his out to be	I.	Relative Dens	sity based o	n Tokimats	su, K. and See	ed, H.B. 1988	. "Evaluation	of Settleme	nts in Sands D	ue to Earthqual	ke Shaking"	1,		
		JGED, ASCE	, Vol. 113, I	No. 8, pp. 8	861-878; as re	ferenced in (2	2).							
	J.	Classification	based on f	ield and lat	ooratory data l	by FMSM.		L			1			
	K, L and O	Angle of Inter	nal Friction	(phi), Unit	Weight Dry ar	nd Void Ratio	based on NA	VFAC 7.1 "	Soil Mechanics	", May 1982, pa	ge 7.1-149.		l	
	Μ.	Moisture cont	ent above t	he water ta	ble is based o	on laboratory	testing of SP	T samples b	y FMSM. Mois	iture contents b	elow the wa	iter table a	re based upo	n correlations
		with limited te	sting by FN	ISM for Se	ction 4 of the	Louisville Brid	lges Project.		· · · · · · · · · · · · · · · · · · ·		T		r1	
	N.	In-situ unit we	eight is base	ed on dry u	nit weight (L) I	times (1 + mo	isture conten	t).			ļ			
	(1)	Goble, Georg	e, GRL Nev	wsletter, De	ecember 1995	"SPT Improv	rements"		Ļ <u>.</u>					
	(2)	Seed and Ha	rder, Volum	e 2 Memor	ial Symposiur	n Proceeding	s, May 1990.	"SPT Base	d Analysis of					
		Cyclic Pore P	ressure Ge	neration ar	nd Undrained	Residual Stre	ngth", pp. 36	1-362.		L		L	L	

Pier 1 SPT Correction

Project No; LX2005125 File Name: J\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 1 SPT Correction

								1-265 OVE	R OHIO F	RIVER					
					CORF	RELATIO	N OF SPT D	DATA TO U	NIT WEIG	HTS AND SHI	EAR STREN	GTHS			
							FO	R COARS	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT		[Internal	Unit		Revised	
	-	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
ample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
iterval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			4	ď	Neo	N60	CN	(N1)60	Dr		ų.	γd	m	γ	e
	1				Input Require	ed									
		· · · · · ·			0/10/0007										
A0-1		2.5	water =		9T	NΔ	1.00	NA	NΔ		NA	NA	י 191	NA	NA
50	4.5	5.5	120	0.21	ST	NA	1.00	NA	NA	CI	NA	NA	19.2	NA	NA
10.0	12.0	11	120	0.66	ST	NA	1.00	NA	NA	C	NA	NA	23.4	NA	NA
150 -	17.0	16	120	0.96	ST	NA	1.00	NA	NA	CL	NA	NA	26.3	NA	NA
20.0 -	21.5	20.75	120	1.10	2	3	0.95	3	18	CL-ML	FALSE	NA	26.3	NA	NA
250 -	26.5	25.75	109	1.21	5	7	0.91	6	35	SM	30	94	16.0	109	0.78
30.0 -	31.5	30.75	113	1.34	11	15	0.86	13	52	SM	32	97	16.0	113	0.72
35.0 -	36.5	35.75	121	1.48	31	41	0.82	34	84	SM	35.5	104	16.0	121	0.61
40.0 -	41.5	40.75	110	1.60	9	12	0.79	10	44	SM	30.5	95	16.0	110	0.76
45.0 -	46.5	45.75	117	1.74	2	3	0.76	2	18	SW-SM	28.5	98	19.0	117	0.71
50.0	51.5	50.75	122	1.89	16	21	0.73	16	58	SW-SM	33.5	106	15.0	122	0.57
55.0 -	56.5	55.75	124	2.04	21	28	0.70	20	65	SW-SM	34.5	108	15.0	124	0.55
60.0 -	61.5	60.75	123	2.19	18	24	0.68	16	60	SW-SM	34	107	15.0	123	0.56
65.0 -	66.5	65.75	125	2.35	26	35	0.65	23	70	SW-SM	35	109	15.0	125	0.54
70.0 -	71.5	70.75	123	2.50	20	27	0.63	17	60	SW-SM	34	107	15.0	123	0.5
75.0 -	76.5	75.75	133	2.68	24	32	0.61	20	65	SW	. 35.5	115	16.0	133	0.4
80.0 -	81.5	80.75	132	2.86	24	32	0.59	19	63	SW	35	114	16.0	132	0.4
85.0 -	86.5	85.75	133	3.03	25	33	0.57	19	65	SW	35.5	115	16.0	133	0.4
90.0 -	91.5	90.75	133	3.21	26	35	0.56	19	65	SW	35.5	115	16.0	133	0.4
95.0 -	96,5	95.75	131	3.38	22	29	0.54	16	60	SW	35	114	16.0	132	0.4
100.0	100.3	100 15	140	3 55	50	67	0.53	35	86	SW	38.5	1 120.5	16.0	140	, 0

Project No: LX2005125 File Name: J./2005proj/LX2005125 I-265 Bridge/Advance Contract/Analyses/Pier 1 SPT Correction

								1-265 OVE	R OHIO F	RIVER		1.1			
					COR	RELATION	OF SPT D	DATA TO U	NIT WEIG	GHTS AND SHI	EAR STREN	GTHS			
	-						FC	R COARS	E GRAINE	ED SOILS					
		Depth of	Assumed	Vertical	SPT	SPT	1				Internal	Unit		Revised	
	1	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample	1	of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			Ъ	ิธ์	Nao	N60	CN	(N1)60	Dr		ý'	γd	m	γ _w	е
					Input Requi	red									
IN SWARD STOLEN CONTACT					CONTRACTOR CONTRACTOR										
AC-2			water =	14.4	8/15/2007										
2.5 -	4.5	3.5	120	0.21	ST	NA	1.00	NA	NA	CL	NA	NA	18.2	NA	NA
5.0	7.0	6	120	0.36	ST	NA	1.00	NA	NA	CL	NA	NA	18.6	NA	NA
10:0 -	12.0	11	120	0.66	ST	NA	1.00	NA	NA	CL	NA	NA	19.9	NA	NA
15.0 -	16.5	15.75	120	0.80	2	3	1.00	3	18	CL	FALSE	NA	25.6	NA	NA
20.0 -	22.0	21	120	0.95	ST	NA	1.00	NA	NA	CL	· NA	NA	23,6	NA	NA
25.0 •	26.5	25.75	104	1.05	2	3	0.98	3	18	SC	28	90	16.0	104	0.85
30.0 -	31:5	30.75	111	1.17	9	12	0.92	11	47	SC	31	96	16.0	111	0.74
35.0 -	36.5	35.75	127	1.33	23	31	0.87	27	75	SW-SM	36	110	15.0	127	0.52
40.0	41.5	40.75	121	1.48	11	15	0.82	12	52	SW-SM	33	105	15.0	121	0.59
45.0 -	46.5	45.75	122	1.63	14	19	0.78	15	56	SW-SM	33.5	106	15.0	122	0.57
50.0	51.5	50.75	124	1.78	19	25	0.75	19	65	SW-SM	34.5	108	15.0	124	0.55
55.0 -	56.5	55.75	125	1.94	25	33	0.72	24	73	SW-SM	35	109	15.0	125	0.54
60.0 -	61.5	60.75	116	2.07	22	29	0.69	20	67	SM	33.5	100	16.0	116	0.67
65.0 -	66.5	65.75	123	2.22	21	28	0.67	19	63	SP-SM	34	107	15.0	123	0.56
70.0	71.5	70.75	124	2.38	25	33	0.65	22	68	SP-SM	34.5	108	15.0	124	0.55
75.0 -	76.5	75.75	133	2.55	88	117	0.63	73	100	SP-SM	39	116	15.0	133	0.44
80.0 -	81.5	80.75	127	2.71	33	44	0.61	27	75	SP-SM	36	110	15.0	127	0.52
85.0 -	86.5	85.75	125	2.87	30	40	0.59	24	71	SW-SM	35	109	15.0	125	0.54
90.0	91.5	90.75	120	3.02	13	17	0.58	10	47	SW-SM	32	104	15.0	120	0.61
95.0 -	96.5	95.75	122	3.16	19	25	0.56	14	56	SW-SM	33.5	106	15.0	122	0.57
100.0 -	100.4	100.2	130	3.31	50	67	0.55	37	86	SW-SM	37	113	15.0	130	0.48

Pier 1 SPT Correction

Project No: LX2005125 File Name: J\2005proj\LX2005125 I-265 BridgeV/dvance Contract/Analyses/Pier 1 SPT Correction

	1							1-265 OVE	R OHIO F	RIVER					
					COR	RELATIO	N OF SPT [DATA TO U	NIT WEIG	HTS AND SH	EAR STREN	GTHS			
							FC	R COARS	E GRAINE	D SOILS					
	1	Depth of	Assumed	Vertical	SPT	SPT	1	Γ			Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample	-	of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
nterval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			j.	σ	NBO	Neo	CN	(N1)60	Dr		ą,	γd	m	γw	е
	1	10/12/11/14/14			Input Requir	ed				· · · · ·		1			
			ana a ha Contra da Araba	20000000000000000000000000000000000000											
AC-3			water =	12.0	8/24/2007										
2.5 -	4.6	3.5	120	0.21	ST	NA	1.00	NA	NA	CL	NA	NA	36.0	NA	NA
5.0 -	7.0	6	120	0.36	ST	NA	1.00	NA	NA	CL	NA	NA	36.1	NA	NA
10.0 -	12.0	11	120	0.66	ST	NA	1.00	NA	NA	CL	NA	NA	30.0	NA	NA
15.0 -	17.0	16	120	0.80	ST	NA	1.00	NA	NA	CL.	NA	NA	24.0	NA	NA
20.0 -	21.5	20.75	120	0.94	2	3	1.00	3	18	CL	FALSE	NA	19.1	NA	<u>NA</u>
25.0 -	26.5	25.75	109	1.06	5	7	0.97	7	35	SM	30	94	16.0	109	0.78
30.0 -	31.5	30.75	117	1.19	18	24	0.92	22	70	SM	34	101	16.0	117	0.65
35.0 -	36.5	35.75	115	1.33	16	21	0.87	19	63	SM	33	99	16.0	115	0.69
40.0	41.5	40.75	121	1.47	12	16	0.82	13	53	SP-SM	33	105	15.0	121	0.59
45.0 -	46.5	45.75	123	1.62	17	23	0.78	18	60	SP-SM	34	107	15.0	123	0.56
50.0	51.5	50.75	123	1.77	17 .	23	0.75	17	60	SP-SM	34	107	15.0	123	0.56
55.0 -	56.5	55.75	121	1.92	13	17	0.72	13	52	SP-SM	33	105	15.0	121	0.59
60.0 -	61.5	60.75	128	2.08	36	48	0.69	33	84	SW-SM	36.5	111.5	15.0	128	0.5
65.0 -	66.5	65.75	127	2.25	30	40	0.67	27	75	SW-SM	36	110	15.0	127	0.52
	71.5	70.75	125	2.40	30	40	0.65	26	74	SW-SM	35	109	15.0	125	0.54
75.0 -	76.5	75.75	127	2.56	35	47	0.62	29	79	SW-SM	36	110	15.0	127	0.52
80.0 -	81.5	80.75	122	2.71	18	24	0.61	15	56	SW-SM	33.5	106	15.0	122	0.57
85.0 -	86.5	85.75	123	2.86	22	29	0.59	17	60	SW-SM	34	107	16.0	123	0.56
90.0 -	91.5	90.75	131	3.03	22	29	0.57	17	60	SP	35	114	15.0	131	0.46
95.0	96.5	95 75	131	3.21	25	33	0.56	19	63	SP	35	114	15 0	131	0.46

Project No: LX2005125 File Name: J:12005proj\LX2006125 I-265 Bridge\Advance Contract\Analyses\Pier 2 SPT Correction

								1-265 OVE	R OHIO F	RIVER					
					COR	RELATION	OF SPT D	DATA TO U	NIT WEIG	HTS AND SHI	EAR STREN	GTHS			
•							FO	R COARS	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative	·	Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			y.	σ	Neo	N60	CN CN	(N1)60	Dr		¢'	γd	m	γ	е
·					Input Requi	red									
AC-4	i		water =	0.0	6/15/2007	Bottom of Riv	ver@	15.7							
15.7	17.2	16.45	124	0.02	16	21	1.00	21	68	SW-SM	34.5	108	15.0	124	0.55
21.7	23.2	22.45	125	0.21	18	24	1.00	24	73	SW-SM	35	109	15.0	125	0.54
26.7	28.2	27.45	123	0.36	13	17	1.00	17	60	SW-SM	34	107	15.0	123	0.56
31.7	. 33.2	32.45	129	0.53	10	13	1.00	13	53	SW	33.6	112	15.0	129	0.49
36.7	. 38.2	37.45	135	0.71	20	27	1.00	27	75	SW	37	117.5	15.0	135	0.42
41.7	43.2	42.45	137	0.90	25	33	1.00	33	84	SW	37.8	119	15.0	137	0.4
46.7	48.2	47.45	134	1.08	18	24	0.96	23	71	SP	36.2	116.5	15.0	134	0.43
51.7	53.2	52.45	132	1.25	18	24	0.89	22	68	SP	35.5	115	15.0	132	0.45
56.7	58.2	57.45	132	1.43	17	23	0.84	19	65	SP	35.5	115	15.0	132	0.45
61.7	63.2	62.45	135	1.61	15	20	0.79	16	58	GP-GM	34.8	117.5	15.0	135	0.42
66.7	68.2	67.45	148	1.82	65	87	0.74	64	100	GP-GM	41.6	129	15.0	148	0.29
71.7	- 73.2	72.45	131	1.99	48	64	0.71	45	93	SP-SM	38	114	15.0	131	0.47
76.7	- 78.2	77.45	127	2.15	34	45	0.68	31	79	SP-SM	36	110	15.0	127	0.52
81.7	- 83.2	82.45	131	2.33	52	69	0.66	46	93	SW-SM	38	114	15.0	131	0.47
86.7	87.4	87.05	122	2.46	50	67	0.64	43	91	SM	36.5	106	15.0	122	0.58
91.7	92.1	91.9	144	2.66	50	67	0.61	41	89	GM	39.3	125	15.0	144	0.34

Pier 2 SPT Correction

Project No: LX2005125 File Name: J/2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 2 SPT Correction

								1-265 OVE	R OHIO F	RIVER					
					COR	RELATIO	N OF SPT D	DATA TO U	NIT WEIG	HTS AND SHI	EAR STREN	GTHS			
							FC	R COARS	E GRAINE	DSOILS					
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
	-	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			j.	σ	Nso	N60	CN	(N1)60	Dr		ų,	γd	m	γw	е
					Input Requir	red									
AC-5			water =	71	10/9/2007										
30-2	5.0	4	120	0.24	ST	NA	1.00	NA	NA	CL	NA	NA	9.2	NA	NA
50.	7.0	6	120	0.36	ST	NA	1.00	NA	NA	SM	#N/A	#N/A	6.5	#N/A	#N/A
70 -	8.5	7.75	107	0.40	2	3	1.00	3	18	SM	28	90	19.0	107	0.85
10.0 -	11.5	10.75	107	0.47	2	3	1.00	3	18	SM	28	90	19.0	107	0.85
15.0 -	16.5	15.75	107	0.58	2	3	1.00	3	18	SM	28	90	19.0	107	0.85
20.0 -	21.5	20.75	135	0.76	18	24	1.00	24	73	SW	36.2	116.5	16.0	135	0.43
25.0 -	26.5	25.75	140	0.95	29	39	1.00	39	87	SW	38.5	120.5	16.0	140	0.39
30.0 -	31.5	30.75	132	1.13	14	19	0.94	18	60	SW	35	114	16.0	132	0.46
35.0 -	36.5	35.75	135	1.31	20	27	0.87	23	71	SW	36.2	116.5	16.0	135	0.43
40.0 -	41.5	40.75	136	1.49	25	33	0.82	27	77	SW	37	117.5	16.0	136	0.42
45.0	46.5	45.75	143	1.70	52	69	0.77	53	99	SW	40	123	16.0	143	0.36
50.0 -	51.5	50.75	125	1.85	24	32	0.73	24	71	SW-SM	35	109	15.0	125	0.54
55.0 -	56.5	55.75	125	2.01	24	32	0.71	23	70	SW-SM	35	109	15.0	125	0.54
60.0 -	61.5	60.75	125	2.17	25	33	0.68	23	70	SW-SM	35	109	15.0	125	0.54
65.0 -	66.5	65.75	122	2.32	16	21	0.66	14	56	SW-SM	33.5	106	15.0	122	0.57
70.0 -	71.5	70.75	124	2.47	25	33	0.64	21	68	SW-SM	34.5	108	15.0	124	0.55
75.0 -	76.5	75.75	125	2.63	27	36	0.62	22	70	SW-SM	35	109	15.0	125	0.54
80.0 -	81.5	80.75	125	2.79	28	37	0.60	22	70	SW-SM	35	109	15.0	125	0.54
85.0 -	86.5	85.75	125	2.94	30	40	0.58	23	71	SW-SM	35	109	15.0	125	0.54
90.0 -	91.5	90.75	124	3.10	. 27	36	0.57	21	67	SW-SM	34.5	108	15.0	124	0.55
950 -	96.5	95.75	124	3.25	27	36	0.55	20	67	SW-SM	34.5	108	15.0	124	0.55

Project No: LX2005125 File Name: J:\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 3 SPT Correction

								1-265 OVE	r ohio f	RIVER					
					COR	RELATIO	N OF SPT D	ATA TO U	NIT WEIG	GHTS AND SHE	EAR STREN	GTHS			
							FO	R COARSI	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
	and an excitation of the second se	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			Ĭv	· σ'	N80	Neo	CN	(N1)60	Dr		, V	γa	m		e
					Input Requir	ed									
AC-6			water =	0.0	7/10/2007										
40.9	42.4	41.65	126	0.02	17	23	1.00	23	70	SW-SM	35	109	16.0	126	0.54
45.9	47.4	46.65	126	0.18	18	24	1.00	24	73	SW-SM	35	109	16.0	126	0.54
50.9	52.4	51.65	124	0.34	13	17	1.00	17	60	SW-SM	34	107	16.0	124	0.56
55.9	57,4	56.65	131	0.51	34	45	1.00	45	93	SP-SM	38	114	15.0	131	0.47
60.9	62.4	61.65	130	0.68	29	39	1.00	39	87	SP-SM	37	113	15.0	130	0.48
65.9	. 67.4	66.65	133	0.86	53	71	1.00	71.	100	SP-SM	39	116	15.0	133	0.44
70.9	72.4	71.65	161	1.10	25	33	0.95	32	81	GW	41 ,	140	15.0	161	0.2
75.9	. 77.4	76.65	164	1.36	39	52	0.86	45	93	GW	43	143	15.0	164	0.16
80.9	82.4	81.65	125	1.52	21	28	0.81	23	70	SP-SM	35	109	15.0	125	0.54
85.9	87.2	86.55	133	1.69	84	112	0.77	86	100	SP-SM	39	116	15.0	133	0.44

Pier 3 SPT Correction

Project No: LX2005125 File Name: J/2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 3 SPT Correction

	1							1-265 OVE	R OHIO F	RIVER					
					COR	RELATION	N OF SPT E	DATA TO U	NIT WEIG	HTS AND SHI	EAR STREN	GTHS			
				******			FO	R COARS	E GRAINE	DSOILS					
		Depth of	Assumed	Vertical	SPT	SPT]	1		-	Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
nterval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			Ĭ•	σ'	Neo	Neo	CN	(N1)60	Dr		¢	γd	m	γ	e
					Input Requi	red									
AC-7			water =	00	7/3/2007										
40.5	- 42.0	41.25	119	0.02	7	9	1.00	9	44	SW-SM	31.5	103	16.0	119	0.62
45.5	- 47.0	46.25	126	0.18	19	25	1.00	25	74	SW-SM	35	109	16.0	126	0.54
50.5	- 52.0	51.25	125	0.34	15	20	1.00	20	67	SW-SM	34.5	108	16.0	125	0.55
55.5	- 57.0	56.25	129	0.51	25	33	1.00	33	84	SP-SM	36.5	111.5	16.0	129	0.5
60.5	- 62.0	61.25	126	0.67	19	25	1.00	25	74	SP-SM	35	109	16.0	126	0.54
65.5	- 67.0	66.25	169	0.93	52	69	1.00	69	100	GW	45	147	15.0	169	0.13
70,5	- 72.0	71.25	169	1.20	60	80	0.91	73	100	GW	45	147	15.0	169	0.13
75.5	- 77.0	76.25	161	1.45	31	41	0.83	34	84	GW	41	140	15.0	161	0.2
80.5	- 82.0	81.25	132	1.62	45	60	0.79	47	95	SP-SM	38.5	115	15.0	132	0.45
85.5	- 85.7	85.6	132	1.77	50	67	0.75	50	98	SP-SM	38.5	115	15.0	132	0.45
88.0	89.1	88 55	124	1.86	93	124	0.73	91	100	SM	38	108	15.0	124	0.55

	1							1-265 OVE	R OHIO F	RIVER					
					COR	RELATION	OF SPT D	DATA TO U	NIT WEIG	HTS AND SHE	EAR STREN	GTHS			
							FO	R COARS	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
	1	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			Ϊ×	ď	Nao	Neo	CN	(N1)60	Dr		¢'	γd	m	γ	e
					Input Requi	ed									
AC-8			water =	0.0	7/9/2007										
40.7 -	42.2	41.45	128	0.02	6	8	1.00	8	41	SP	32.3	110	16.0	128	0.52
45.7 -	47.2	46.45	135	0.21	17	23	1.00	23	70	SP	36.2	116.5	16.0	135	0.43
50.7 -	52.2	51.45	132	0.38	12	16	1.00	16	60	SP	35	114	16.0	132	0.46
55.7 -	57.2	56.45	128	0.55	25	33	1.00	33	84	SW-SM	36.5	111.5	15.0	128	0.5
60.7 -	62.2	61.45	132	0.72	38	51	1.00	51	98	SW-SM	38.5	115	15.0	132	0.45
65.7 -	67.2	66.45	133	0.90	63	84	1.00	84	100	SP-SM	39	116	15.0	133	0.44
70.7 -	72.2	71.45	133	1.08	65	87	0.96	84	100	SP-SM	39	116	15.0	133	0.44
75.7 -	77.2	76.45	131	1.25	36	48	0.90	43	91	SP-SM	38	114	15.0	131	0.47
80,7 -	82.2	81.45	128	1.41	31	41	0.84	35	84	SP-SM	36.5	111.5	15.0	128	0.5
CONTRACTOR OF THE OWNER.	A DESCRIPTION OF A DESC	00.4	100	1	CONTRACTOR OF THE OWNER OF THE OWNER	67	0.90	50	00	DESCRIPTION DECKARDER	20 5	116	160	122	0.45

Pier 3 SPT Correction

								1-265 OVE	R OHIO F	RIVER					
	1				COR	RELATION	OF SPT	ΟΑΤΑ ΤΟ U	NIT WEIG	SHTS AND SHI	EAR STREN	GTHS			
							FC	R COARS	E GRAINE	ED SOILS					
		Depth of	Assumed	Vertical	SPT	SPT	1				Internal	Unit		Revised	/
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
nterval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			Ĭv.	ď	Niso	Neo	CN	(N1)60	Dr		¢	γa	m	γ	е
	1				Input Requir	ed									
AC-9			water =	0.0	7/9/2007										
40.6 -	42.1	41.35	132	0.03	13	17	1.00	17	60	SW	35	114	16.0	132	0.46
45.6 -	47.1	46.35	133	0.20	16	21	1.00	21	68	SW	35.5	115	16.0	133	0.45
50.6 -	52.1	51.35	132	0.38	12	16	1.00	16	60	SW	35	114	16.0	132	0.46
55.6 -	57.1	56.35	127	0.54	22	29	1.00	29	79	SW-SM	36	110	15.0	127	0.52
60.6 -	62.1	61.35	127	0.70	21	28	1.00	28	77	SW-SM	36	110	15.0	127	0.52
65.6 -	67.1	66.35	169	0.97	78	104	1.00	104	100	GW-GM	45	147	15.0	169	0.13
70.6 -	72.1	71.35	169	1.23	73	97	0.90	88	100	GW-GM	45	147	15.0	169	0.13
75.6 -	77.1	76.35	133	1.41	50	67	0.84	56	100	SP-SM	39	116	15.0	133	0.44
80.6 -	82.1	81.35	127	1.57	26	35	0.80	28	77	SP-SM	36	110	15.0	127	0.52
85.6 -	86.2	85.9	132	1.73	50	67	0.76	51	98	SP-SM	38.5	115	15.0	132	0.45

Project No: LX2005125

Project No: LX2005125 Fills Name: J:2005projULX2005125 I-265 BridgeVAdvance Contract(Analyses\Pier 4 SPT Correction

									I-265 OVE	R OHIO F	RIVER					
	1					COF	RELATION	OF SPT D	ATA TO U	NIT WEIC	GHTS AND SHI	EAR STREN	GTHS			
	1							FC	R COARS	E GRAINE	ED SOILS					
	1		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
			Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample	-		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval	-		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	(
				ÿ.	σ	Nao	Neo	CN	(N1)60	Dr		ş	γd	m	γ	е
	(Input Requ	ired									
AC.10				water =) no	7/6/2007	Bottom of Riv	ver@	44.0							
44 0		45.5	44.75	139	0.03	9	12	1.00	12	52	GP	34.5	120	16.0	139	120
49.0		50.5	49.75	120	0.17	4	5	1.00	5	32	GP	31.5	115	16.0	133	115
54.0		55.5	54.75	139	0.36	9	12	1.00	12	52	GP	34.5	120	16.0	139	120
59.0		60.5	59.75	131	0.54	32	43	1.00	43	91	SP-SM	38	114	15.0	131	0.47
64,0		65.5	64.75	133	0.71	53	71	1.00	71	100	SP-SM	39	116	15.0	133	0.44
69.0		70.5	69.75	127	0.87	22	29	1.00	29	79	SW-SM	36	110	15.0	127	0.52
74;0		75.5	74.75	127	1.03	20	27	0.98	26	75	SW-SM	36	110	15.0	127	0.52
79.0		80.5	79.75	123	1.19	13	17	0.92	16	58	SW-SM	33.5	106	16.0	123	0.57
84.0		84 4	84.2	133	1.34	50	67	0.86	58	100	SW-SM	39	116	15.0	133	0.44

Pier 4 SPT Correction

Project No: LX2005125 File Name: J\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 4 SPT Correction

	Π								I-265 OVE	R OHIO P	RIVER					
				(and a feed of a second se		COR	RELATION	OF SPT D	ATA TO U	NIT WEIG	HTS AND SH	EAR STREN	GTHS			
								FO	R COARS	E GRAINE	ED SOILS					
			Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
			Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample			of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval			(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
				Ĩ.	σ	N80	N60	СN	(N1)60	Dr		ý	γa	m	γw	е
						Input Requi	red									
AC-11				water =	0.0	6/28/2007	Bottom of Riv	ver@	39.1							
41.7		43.2	42.45	151	0.15	9	12	1.00	12	52	GW	35.8	130	16.0	151	0.28
46.7		48.2	47.45	148	0.36	7:	9	1.00	9	44	GW	34	127.5	16.0	148	0.31
51.7		53.2	52.45	152	0.59	11	15	1.00	15	56	GW	36.8	131	16.0	152	0.27
56.7		58.2	57.45	128	0.75	22	29	1.00	29	79	SP-SM	36	110	16.0	128	0.52
61.7		63.2	62.45	133	0.93	100	133	1.00	133	100	SP-SM	39	116	15.0	133	0.44
66.7	ine):	68.2	67.45	132	1.10		52	0.95	50	97	SP-SM	38.5	115	15.0	132	0.45
71.7		73.2	72.45	133	1.28	99	132	0.88	117	100	SP-SM	39	116	15.0	133	0.44
76.7		78.2	77.45	128	1.44	30	40	0.83	33	84	SP-SM	36.5	111.5	15.0	128	0.5
81.6		82.0	81.8	147	1.63	50	67	0.78	52	98	GM	41	127.5	15.0	147	0.31
															,	

	1							1-265 OVE	R OHIO F	RIVER					
	1				COR	RELATION	OF SPT D	ATA TO U	NIT WEIG	HTS AND SH	EAR STREN	GTHS			
	1						FO	R COARSI	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
nterval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			7.	σ	Nao	N60	CN	(N1)60	Dr		¢'	γd	m	γ	е
	[Input Requi	red				·					
AC-12			water =	0.0	l 7/2/2007	Bottom of Ri	ver @	40.5							
40.5 -	42.0	41.25	144	0.03	- 4	5	1.00	5	32	GW	32.2	124	16.0	144	0.34
.45.5 -	47.0	46.25	154	0.26	12	16	1.00	16	60	GW	37.5	133	16.0	154	0.25
50.5 -	52.0	51.25	160	0.50	21	28	1.00	28	77	GW	40	138	16.0	160	0.21
55.5 -	57.0	56.25	133	0.68	16	21	1.00	21	68	SP	35.5	115	16.0	133	0.45
60.5 -	62.0	61.25	133	0.86	59	79	1.00	79	100	SP-SM	39	116	15.0	133	0.44
65.5 -	67.0	66.25	125	1.02	15	20	0.99	20	65	SP-SM	34.5	108	16.0	125	0.55
70.5 -	72.0	71.25	130	1.19	31	41	0.92	38	87	SP-SM	37	113	15.0	130	0.48
75.5 -	77.0	76.25	141	1.38	30	40	0.85	34	84	GP-GM	38.5	123	15.0	141	0.35
SADE AND TALK MONTHLY AND A	In the second second	00.75	447	A 07	E O MARK	67	0.00	50	00	OD ON	41	107 5	15.0	147	0.21

Pier 4 SPT Correction

Project No: LX2005125 File Name: J\:2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 4 SPT Correction

	1							1-265 OVE	R OHIO F	RIVER					
					COR	RELATION	OF SPT D	ATA TO U	NIT WEIG	HTS AND SHE	EAR STREN	GTHS			
							FO	R COARS	E GRAINE	D SOILS					
		Depth of	Assumed	Vertical	SPT	SPT	T				Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			ï*	σ'	Neo	Neo	CN	(N1)60	Dr		ş	γd	m	γ	e
					Input Requi	red									
AC-13			water ≃	0.0	6/21/2007	Bottom of Riv	ver @	38.7							
42.0	- 43.5	42.75	151	0.18	9	12	1.00	12	52	GW	35.8	130	16.0	151	0.28
47.0	- 48.5	47.75	154	0.41	12	16	1.00	16	60	GW	37.5	133	16.0	154	0.25
52.0	- 53.5	52.75	125	0.57	16	21	1.00	21	68	SP-SM	34.5	108	16.0	125	0.55
57.0	- 58.5	57.75	133	0.74	55	73	1.00	73	100	SP-SM	39	116	15.0	133	0.44
62.0	. 63,5	62.75	133	0.92	55	73	1.00	73	100	SP-SM	39	116	15.0	133	0.44
67.0	- 68.5	67.75	124	1.08	15	20	0.96	19	65	SP-SM	34.5	108	15.0	124	0.55
72.0	73.5	72.75	127	1.24	23	31	0.90	28	77	SP-SM	36	110	15.0	127	0.52
77.0	- 78.5	77.75	148	1.45	95	127	0.83	105	100	GP-GM	41.6	129	15.0	148	0.29
82.0	- 83.0	82.5	147	1.65	50	67	0.78	52	98	GP-GM	41	127.5	15.0	147	0.31

Project No: LX2005125 File Name: J:\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Pier 5 SPT Correction

								1-265 OVE	R OHIO I	RIVER					
					COR	RELATION	OF SPT D	DATA TO L	NIT WEIC	HTS AND SH	EAR STREN	GTHS			
					an an ann ann Graith ann a Ann a Ann	····	FO	R COARS	E GRAINI	ED SOILS		****			
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	in-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			7.	ď	Nso	N60	CN	(N1)60	Dr		¢.	γa	m	γw	е
					Input Requi	red									
AC-15			water =	0.0	6/21/2007	Bottom of Riv	ver@	4.2							
4.2	E	4.95	101	0.01	6	8	1.00	8	41	ML	30	87	16.0	101	0.93
6.7	~ 8	3.2 7.45	99	0.06	4	5	1.00	5	32	ML	29	85	16.0	99	0.97
10.0	- 1	1.5 10.75	148	0.20	52	69	1.00	69	100	GP-GM	41.6	129	15.0	148	0.29
12.7	1	4.2 13.45	148	0.32	43	57	1.00	57	100	GP-GM	41.6	129	15.0	148	0.29
15.5	- 1	7.0 16.25	148	0.44	63	84	1.00	84	100	GP-GM	41.6	129	15.0	148	0.29
21.7	- 2	3.2 22.45	148	0.70	42	56	1.00	56	100	GP-GM	41.6	129	15.0	148	0.29
26.7	2	7 2 26 95	148	0.90	50	67	1.00	67	100	GP-GM	41.6	129	15.0	148	0.29

Pier 5 SPT Correction

Project No: LX2005125 File Name: Jh2005projlLX2005125 I-265 Bridge\Advance Contract\Analyses\Indiana Abutment & Retaining Wall SPT Correction

							1-265 OVE	R OHIO F	RIVER					
				COR	RELATION	I OF SPT D	ATA TO U	NIT WEIG	HTS AND SH	EAR STREN	GTHS			
						FO	R COARS	E GRAINE	D SOILS					
	Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample	of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval	(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
		J.	ď	N80	N60	CN	(N1)60	Dr		ý.	γd	m	γ	e
				Input Requir	ed	ļ				-	a ha i nan na ana hata a si san i na anato da a			
AC-17		water =	DRY	9/26/2007										
0.0 - 1.5	0.75	139	0.05	36	48	1.00	48	95	GC	41	127.5	9.3	139	0.31

Project No: LX2005125 File Name: J/\2005projLX2005125 I-265 Bridge/Advance Contract/Analyses\Indiana Abulment & Retaining Wall SPT Correction

		I-265 OVER OHIO RIVER														
		CORRELATION OF SPT DATA TO UNIT WEIGHTS AND SHEAR STRENGTHS														
		FOR COARSE GRAINED SOILS														
All and the second s	1		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
			Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample			of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval			(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
				<u>۲</u>	ď	N80	N60	CN	(N1)60	Dr		¢	γd	m	γ	e
						Input Requi	ed									
AC-20				water =	DRY	9/26/2007										
0.0	i i pie	1,5	0.75	150	0.06	49	65	1.00	65	100	GC	41.6	129	16.5	150	0.29

Indiana Abutment & Retaining Wall SPT Correction

Project No: LX2005125 File Name: J\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Indiana Abutment & Retaining Wall SPT Correction

	1							1-265 OVE	R OHIO F	RIVER					
	CORRELATION OF SPT DATA TO UNIT WEIGHTS AND SHEAR STRENGTHS														
	FOR COARSE GRAINED SOILS														
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			ĵ.	σ'	N80	N60	CN	(N1)60	Dr		¢.	γa	m	γw	e
					Input Requi	red									
				and the second s	ano esteri minazorranoz										
AC-23			water =	DRY	9/27/2007										
2.5 -	3.6	3.05	135	0.21	68	91	1.00	91	100	GC	41.6	129	5.0	135	0.29

Drainat No: 1 X2005125	
PT0ject NO. EA2005125	
File Name, U2005 areiti V2005125 L265 Bridge/Advance Contract/Analyzes/Indiana Abutment & Retaining Mail SPT Correct	ion
File Marrie, J. 2000ph0/LA2000120 1-200 bill/ge/Advance Contract/Analyses/indiana Abuthent & Retaining Warrow 1 Contect	

								1-265 OVE	R OHIO F	RIVER					
		CORRELATION OF SPT DATA TO UNIT WEIGHTS AND SHEAR STRENGTHS													
	FOR COARSE GRAINED SOILS														
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
	and a reason to the state of the	Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
	-		7-	ď	N80	Neo	CN	(N1)60	Dr		¢'	γd	m		е
	· · · ·				Input Requir	ed	ļ								
AC-26			water =	DRY	9/26/2007										
0.0	- 1.5	0.75	120	0.05	14	19	1.00	19	63	CL	FALSE	NA	10.2	NA	NA
5.0	- 6.5	5.75	120	0.35	. 41	55	1.00	55	99	CL	FALSE	NA	10.9	NA	NA

Indiana Abutment & Retaining Wall SPT Correction

Project No: LX2005125 File Name: J:\2005proj\LX2005125 I-265 Bridge\Advance Contract\Analyses\Indiana Abutment & Retaining Wall SPT Correction

								1-265 OVE	R OHIO F	RIVER					
		CORRELATION OF SPT DATA TO UNIT WEIGHTS AND SHEAR STRENGTHS													
	FOR COARSE GRAINED SOILS														
		Depth of	Assumed	Vertical	SPT	SPT					Internal	Unit		Revised	
		Mid. Pt.	Estimated	Effective	N	N	Correction	Corrected	Relative		Angle of	Weight	Moisture	In-situ	Void
Sample		of Sample	Unit Weight	Stress	Value	Value	Factor	N-Value	Density	Unified Soil	Friction	Dry	Content	Unit Weight	Ratio
Interval		(ft.)	(pcf)	(tsf)					(%)	Classification	(degrees)	(pcf)	(%)	(pcf)	
			y.	ď	Nao	N60	CN	(N1)60	Dr		¢'	γa	m	γ	е
		Input Required			_										
AC-27			water =	DRY	9/26/2007										
0.0	- 1.2	0.6	120	0.04	60	80	1.00	80	100	CL	FALSE	NA	6.5	NA	NA
APPENDIX H-5 ROCK STABILITY ANALYSIS

PB AMERICAS COMPUTATION SHEET East End E

¥Б 2/25/0 of Date Checked by Date Made by Page

[Summary of Factor of Safety (FS*)]

Case I: Sliding along Clay Seam ū

Stage	1. Preconstruction Case	2. After Construction	3. After Construction and Seismic Condition**
beta = 1 deg	12.447	2.132	1.378
beta = 3 deg	9.666	1.865	1.284
beta = 6 deg	8.132	1.606	1.186

Case II: Sliding along Upper Interface of Limestone and Shale Beds Ň ŝ 0000 2

	3. After Construction and Seismic Condition**	1.358	1.268	1.175
one and shale (EL. 474.2)]	2. After Construction	2.169	1.892	1.626
he upper interface of limestc	1. Preconstruction Case	8.85	7.087	5.985
[H=16.6 ft for th	Stage	beta = 1 deg	beta = 3 deg	beta = 6 deg

	2)]	3. After Construction and Seismic Condition**	1.183	1.114	1.046
f Limestone and Shale	ne and shale (EL. 459.2	2. After Construction	2.02	1.767	1.529
ng along Lower Interface of	the lower interface of limesto	1. Preconstruction Case	3.83	3.283	2.86
Case III: Slidin	[H=31.6 ft for th	Stage	beta = 1 deg	beta = 3 deg	beta = 6 deg

* Factor of safety was calculated using the method by Kliche (1999).

** 0.1g of horizontal acceleration was applied to the factor of safety calculation.

The 0.1g of horizontal acceleration corresponds the 2/3 of 0.15g of the peak acceleration obtained from the site-specific response spectra as illustrated in Figure 6.

EEB

EEB FS Summary Table 122707

FS Summary

1. Preconstruction Case	<mark>(beta = 1 deg)</mark>		
<step 1=""> INPUT Data</step>			
Dip of failure plane (beta) =	1.0 degre	ee	
Dip of Slope face (psi) =	28.0 degre	99	
Cohesion (c) =	1000.0 psf		
Friction angle (phi) =	5.0 degre	99	
Unit Weight of Rock =	165.0 pcf		
Unit Weight of Water =	62.4 pcf		
Height of Slope $(H)^* =$	13.0 ft		
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	(assumed)	
Seismic acceleration (a) =	0.00 g		
Vertical weight by surcharge (W2) =	ମ୍ <mark>ୱା 0.0</mark>		
Horizontal force by surcharge (V2) =	ମ <mark>ା 0:0</mark>		
<step 2=""> Calculation of geometry</step>	2 - 2		
Length along the top of slope to the intersection of the bedc $h = \frac{1}{2}$	ding plane (b) 720.3 ft		
Hor dist from tension crack to intersection of bedding and s	urface (b')		
p = 0	673.3 ft		
Length of bedding plane from daylight in the slope face to it	ntersection to ground :	surface (L)	
L=	744.9 ft		
Tension crack depth (TC) =	11.8 ft		
Height of water in vertical joint (zw) =	11.8 ft	zw/TC=	÷
Length of bedding plane from daylight in the face to tension	i crack (L')		
L'=	71.5		
<step 3=""> Calculation of weight of unstable block</step>			
Weight (W1) =	119,685.6 lb		
<step 4=""> Calculaiton of water pressure</step>			
Uplift pressure along failure plane (U) =	26,203.7 lb		
Hor water pressure in tension crack (V1) =	4,309.6 lb		

Case I: Sliding along Clay Seam [H=13 ft for clay seam (EL. ~478)]

1. Preconstruction Case	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degree	Θ
Dip of Slope face (psi) =	28.0 degree	Φ
Cohesion (c) = $(c) = (c) + ($	1000.0 psf	
Friction angle (phi) =	5.0 degree	Φ
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	13.0 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Lension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	0.0 lb	
Horizontal force by surcharge (V2) =	dl <mark>0.0</mark>	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ng plane (b)	
p =	223.6 ft	
Hor dist from tension crack to intersection of bedding and su	rface (b')	
p, =	176.6 ft	
Length of bedding plane from daylight in the slope face to in	ersection to ground su	urface (L)

Length along the top of slope to the intersection of the bed	ding plane (b)	
= q	223.6 ft	
Hor dist from tension crack to intersection of bedding and s	surface (b')	
p' =	176.6 ft	
Length of bedding plane from daylight in the slope face to i	intersection to ground s	urface (L)
L=	248.4 ft	
Tension crack depth (TC) =	9.3 ft	
Height of water in vertical joint (zw) =	9.3 ft	zw/TC = 1.0
Length of bedding plane from daylight in the face to tensior	in crack (L')	
<u>ر</u> =	71.5	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	104.964.7 lb	

0.

<step 4.=""> Calculation of water pressure Uplift pressure along failure plane (U) = Hor water pressure in tension crack (V1) =</step>	20,660.9 lb 2,672.7 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	78,898.3 lb
Driving Force (DF) =	8,162.5 lb
FS = (RF/DF) =	9.666

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case I 122707

FS clay precon beta1

EEB FS Case I 122707

79,630.8 lb 6,397.8 lb

<Step 5> Calculation FS Resisting Force (RF) = Driving Force (DF) =

FS = (RF/DF) =

12.447

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB

FS clay precon beta3

1. Preconstruction Case	(beta = 6 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	6.0 degree	
Dip of Slope face (psi) =	28.0 degree	
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	13.0 ft	
Hor dist between tension crack and slope crest = (Tension crack (vertical isint) behind spread footind)	47.0 ft	(assumed)
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	ସ <mark>ା 0.0</mark>	
Horizontal torce by surcharge (vz) =	a 0.0	
<step 2=""> Calculation of geometry</step>		
בפווטנוו מוטוט נוופ וטף טו אטףפ וט נוופ ווונפואבנוטוו טו נוופ שבת b =	airig piarie (b) 99.2 ft	
Hor dist from tension crack to intersection of bedding and s	urface (b')	
p. =	52.2 ft	
Length of bedding plane from daylight in the slope face to in	ntersection to ground surfac	e (L)
	П 24.4 П 	
Heision crack deptri (TC) = Height of water in vertical joint (zw) =	5.5 ft	zw/TC= 1.
Length of bedding plane from daylight in the face to tension	crack (L')	
L'=	71.8	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	82,770.9 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	12,306.7 lb	
Hor water pressure in tension crack (V1) =	940.5 lb	

Case I: Sliding along Clay Seam [H=13 ft for clay seam (EL. ~478)]

2. After Construction	(beta = 1 deg)		
<step 1=""> INPUT Data</step>			
Dip of failure plane (beta) =	1.0	degree	
Dip of Slope face (psi) =	28.0	degree	
Cohesion (c) =	1000.0	psf	
Friction angle (phi) =	5.0	degree	
Unit Weight of Rock =	165.0	oct	
Unit Weight of Water =	62.4	pcf	

Height of Slope (H) =	13.01	Ľ	
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 f	t (assumed)	
Seismic acceleration (a) =	0.00	Ē	
Vertical weight by surcharge (W2) =	108,500.0	p	
Horizontal force by surcharge (V2) =	33,500.0	þ	
<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the beddi	ng plane (b)		
p =	720.3 1	ft	
Hor dist from tension crack to intersection of bedding and su	rface (b')		
p. =	673.3	H.	

Horizontal force by surcharge (V2) =	33,500.0 lb		
			_
<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the bedc	ting plane (b)		
p =	720.3 ft		
Hor dist from tension crack to intersection of bedding and s	urface (b')		
p' =	673.3 ft		
Length of bedding plane from daylight in the slope face to in	ntersection to ground s	surface (L)	
L=	744.9 ft		
Tension crack depth (TC) =	11.8 ft		
Height of water in vertical joint (zw) =	11.8 ft	zw/TC = 1.0	-
Length of bedding plane from daylight in the face to tension	crack (L')		_
L'=	71.5		
			_
<step 3=""> Calculation of weight of unstable block</step>			
Weight (W1) =	119,685.6 lb		_
			_
<step 4=""> Calculaiton of water pressure</step>			
Uplift pressure along failure plane (U) =	26.203.7 lb		_

<mark>0.</mark>

26,203.7 lb 4,309.6 lb		dl 7.070,68	41,786.3 lb	2.132
Uplift pressure along failure plane (U) = Hor water pressure in tension crack (V1) =	<step 5=""> Calculation FS</step>	Resisting Force (RF) =	Driving Force (DF) =	FS = (RF/DF) =

 $Resisting \ force = cL' + [\ (W1+W2)\ (cos(beta)\ - a^*sin(beta))\ - \ (V1+V2)\ sin(beta)\ - \ U]\ tan(phi)$

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case I 122707

FS clay precon beta6

EEB FS Case I 122707

77,959.6 lb 9,587.3 lb 8.132

<Step 5> Calculation FS Resisting Force (RF) = Driving Force (DF) =

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

EEB

FS clay after beta1 no eq

2. After Construction	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 de	egree
Dip of Slope face (psi) =	28.0 de	egree
Cohesion (c) =	1000.0 ps	5f
Friction angle (phi) =	5.0 de	egree
Unit Weight of Rock =	165.0 pc	5ť
Unit Weight of Water =	62.4 pc	d,
Height of Slope (H)* =	13.0 ft	
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	(assumed)
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) = Horizontal force bv surcharge (V2) =	108,500.0 lb 33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bed	ding plane (b)	
= a	223.6 ft	
Hor dist from tension crack to intersection of bedding and s	urface (b')	
p_=	176.6 ft	
Length of bedding plane from daylight in the slope face to in	ntersection to grou	nd surface (L)
L = Tension crack denth (TC) –	240.4 11	
Height of water in vertical joint (zw) =	9.3 ft	zw/TC= 1.
Length of bedding plane from daylight in the face to tensior	ו crack (L')	
F.=	71.5	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	104,964.7 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	20,660.9 lb	

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 88,224.4 lb 47,295.0 lb 1.865

FS = (RF/DF) =

20,660.9 lb 2,672.7 lb

Hor water pressure in tension crack (V1) =

<Step 5> Calculation FS Resisting Force (RF) = Driving Force (DF) =

Case I: Sliding along Clay Seam [H=13 ft for clay seam (EL. ~478)]

2. Atter Construction	(beta = 6 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	6.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	pcf
Unit Weight of Water =	62.4	pcf
Height of Slope (H)* =	13.0	ft
Hor dist between tension crack and slope crest =	47.0	ft (assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0:00	0
Vertical weight by surcharge (W2) =	108,500.0	q
Horizontal force by surcharge (V2) =	33,500.0	p
<step 2=""> Calculation of geometry</step>		
I enoth along the top of slope to the intersection of the her	lding plane (h)	

<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the beddin	g plane (b)		
p =	99.2 ft		
Hor dist from tension crack to intersection of bedding and surf	ace (b')		
p' =	52.2 ft		
Length of bedding plane from daylight in the slope face to inte	rsection to ground s	surface (L)	
L=	124.4 ft		
Tension crack depth (TC) =	5.5 ft		
Height of water in vertical joint (zw) =	5.5 ft	zw/TC =	1.0
Length of bedding plane from daylight in the face to tension cr	ack (L')		
L'=	71.8		
<step 3=""> Calculation of weight of unstable block</step>			

1.0

Step 4> Calculaiton of water pressure	
plift pressure along failure plane (U) =	12,306.7 Ib
or water pressure in tension crack (V1) =	940.5 lb
Step 5> Calculation FS	
esisting Force (RF) =	87,093.7 lb

82,770.9 lb

Weight (W1) =

> Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 54,245.1 lb 1.606 Driving Force (DF) = FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case I 122707

FS clay after beta6 no eq

EEB

FS clay after beta3 no eq

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case I 122707

3. After Construction and Seismic Condition	(beta = 1 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	1.0 degree	Θ
Dip of Slope face (psi) =	28.0 degree	٥
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	Φ
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	13.0 ft	
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	(assumed)
Seismic acceleration (a) =	0.10 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ding plane (b)	
Hor dist from tension crack to intersection of bedding and s	1/20.3 11 11/13/06 (h')	
	673.3 ft	
Length of bedding plane from daylight in the slope face to it	ntersection to ground si	urface (L)
Γ=	744.9 ft	
Tension crack depth (TC) =	11.8 ft	, (1)
Height of water in vertical joint (zw) =	11.8 ft	
Length of bedding plane from daylight in the face to tension	ı crack (L')	
L'=	71.5	
Step 3> Calculation of weight of unstable block		
Weight (W1) =	119 685 6 lh	
	2 00000	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	26,203.7 lb	

Case I: Sliding along Clay Seam [H=13 ft for clay seam (EL. ~478)]

3. After Construction and Seismic Condition	oeta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degree	
Dip of Slope face (psi) =	28.0 degree	
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	
I Init Meinht of Bock –	165 0 ncf	
	200	
Unit Weight of Water =	62.4 pcf	
Height of Slope $(H)^* =$	13.0 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.10 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the beddir	g plane (b)	
p =	223.6 ft	
Her dist from topoion ereck to interception of hedding and cuit	(P)	

Length along the top of slope to the intersection of th	e bedding plane (b)		
= q	223.6 ft		
Hor dist from tension crack to intersection of bedding	and surface (b')		
p. =	176.6 ft		
Length of bedding plane from daylight in the slope far	ce to intersection to ground :	surface (L)	
L=	248.4 ft		
Tension crack depth (TC) =	9.3 ft		
Height of water in vertical joint (zw) =	9.3 ft	zw/TC =	1.0
Length of bedding plane from daylight in the face to t	ension crack (L')		
L'=	71.5		
<step 3=""> Calculation of weight of unstable block</step>			

1.0

<step 4=""> Calculaiton of water pressure</step>	
Uplift pressure along failure plane (U) =	20,660.9 lb
Hor water pressure in tension crack (V1) =	2,672.7 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	88,126.7 lb
Driving Force (DF) =	68,612.2 lb

104,964.7 lb

Weight (W1) =

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 1.284 FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

FS clay after beta1 eq

EEB FS Case I 122707

EEB

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

89,035.8 lb 64,601.3 lb

1.378

4,309.6 lb

Hor water pressure in tension crack (V1) =

<Step 5> Calculation FS Resisting Force (RF) = Driving Force (DF) =

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case I 122707

FS clay after beta3 eq

3. After Construction and Seismic Condition	(beta = 6 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	e.0 de	egree
Dip of Slope face (psi) =	28.0 de	sgree
Cohesion (c) =	1000.0 ps	ŝf
Friction angle (phi) =	5.0 de	egree
Unit Weight of Rock =	165.0 pc	,t
Unit Weight of Water =	62.4 pc	4
Height of Slope (H)* =	13.0 ft	
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	(assumed)
Seismic acceleration (a) =	0.10 g	
Vertical weight by surcharge (W2) = Horizontal force by surcharge (V/2) =	108,500.0 lb 33,500.0 lb	
	2	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bed	ding plane (b)	
D = Hor dist from tansion crack to intersection of badding and s	99.2 T	
	52.2 ft	
Length of bedding plane from daylight in the slope face to i	intersection to grour	nd surface (L)
L=	124.4 ft	
Tension crack depth (TC) =	5.5 ft	
Height of water in vertical joint (zw) =	5.5 ft	zw/TC= 1.0
Length of bedding plane from daylight in the face to tensior	n crack (L')	
L'=	71.8	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	82,770.9 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	12,306.7 lb	

Case II: Sliding along Upper Interface of Limestone and Shale Beds [H=16.6 ft for the upper interface of limestone and shale (EL. 474.2)]

1. Preconstruction Case	(beta = 1 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	1.0 degree	
Dip of Slope face (psi) =	28.0 degree	
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	16.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft (ass	umed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	dl <mark>0.0</mark>	
Horizontal force by surcharge (V2) =	0.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ng plane (b)	
= q	919.8 ft	
Hor dist from tension crack to intersection of bedding and su	rface (b')	
p. =	872.8 ft	
Length of bedding plane from daylight in the slope face to in	ersection to ground surface (L	
	051 0 4	

<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the beddir	ing plane (b)	
p = 0	919.8 ft	
Hor dist from tension crack to intersection of bedding and sur	irface (b')	
p' =	872.8 ft	
Length of bedding plane from daylight in the slope face to int	tersection to ground s	urface (L)
L=	951.2 ft	
Tension crack depth (TC) =	15.2 ft	
Height of water in vertical joint (zw) =	15.2 ft	zw/TC = 1.
Length of bedding plane from daylight in the face to tension c	crack (L')	
L'=	78.2	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	162,678.1 lb	
<step 4=""> Calculation of water pressure</step>		

 lane (U) = 37,185.3 lb	i crack (V1) = 7,241.4 lb		89,197.9 lb	10,079.4 lb	8.850
Uplift pressure along failure plane (U) =	Hor water pressure in tension crack (V1) =	<step 5=""> Calculation FS</step>	Resisting Force (RF) =	Driving Force (DF) =	FS = (RF/DF) =

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case II 122707

EEB FS Case I 122707

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

86,918.8 lb 73,267.4 lb

1.186

940.5 lb

Hor water pressure in tension crack (V1) =

<Step 5> Calculation FS Resisting Force (RF) = Driving Force (DF) =

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB

FS clay after beta6 eq

EEB

FS upper precon beta1

Case II: Sliding along Upper Interface of Limestone and Shale Beds $[H=16.6\,tt$ for the upper interface of limestone and shale (EL. 474.2)]

1. Preconstruction Case	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 d	egree
Dip of Slope face (psi) =	28.0 d	egree
Cohesion (c) =	1000.0 p	sf
Friction angle (phi) =	5.0 d	egree
Unit Weight of Rock =	165.0 p	cf
Unit Weight of Water =	62.4 p	cf
Height of Slope (H)* =	16.6 ft	
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	(assumed)
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	ql <mark>0.0</mark>	
Horizontal force by surcharge (V2) =	dl 0.0	
<step 2=""> Calculation of geometry</step>		
Lerigin along the top of slope to the intersection of the bear b	uirig piairie (b) 285.5 ft	
Hor dist from tension crack to intersection of bedding and s	urface (b')	
p'=	238.5 ft	
Length of bedding plane from daylight in the slope face to i L =	ntersection to grou 317.2 ft	ind surface (L)
Tension crack depth (TC) =	12.5 ft	
Height of water in vertical joint (zw) =	12.5 ft	zw/TC= 1.0
Length of bedding plane from daylight in the face to tension $L' = L'$	n crack (L') 78.3	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	145,035.2 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	30,549.3 lb	
Hor water pressure in tension crack (V1) =	4,875.5 lb	
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	88,303.9 lb	
Driving Force (DF) =	12,459.4 lb	
FS = (RF/DF) =	7.087	

Case II: Sliding along Upper Interface of Limestone and Shale Beds [H=16.6 ft for the upper interface of limestone and shale (EL. 474.2)]

1 Preconstruction Case	(heta = 6 ded)	
<step 1=""> INPUT Data</step>	40	
Dip of failure plane (beta) =	6.0 degree	0
Dip of Slope face (psi) =	28.0 degree	Ø
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	٥
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	16.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.00 g	
V/ortion] weight by curdened (MD) =		
	0.0 10	
Horizontal force by surcharge (V2) =	0.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ing plane (b)	
p =	126.7 ft	
Hor dist from tension crack to intersection of bedding and su	irface (b')	
p, =	79.7 ft	
Length of bedding plane from daylight in the slope face to in	tersection to ground su	urface (L)
L=	158.8 II	

Horizontal force by surcharge (V2) =	dl 0.0	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ing plane (b)	
p =	126.7 ft	
Hor dist from tension crack to intersection of bedding and su	irface (b')	
b' =	79.7 ft	
Length of bedding plane from daylight in the slope face to in	tersection to ground s	surface (L)
= _	158.8 ft	
Tension crack depth (TC) =	8.4 ft	
Height of water in vertical joint (zw) =	8.4 ft	zw/TC = 1.0
Length of bedding plane from daylight in the face to tension	crack (L')	
۲, =	78.7	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	118,435.8 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	20,560.7 lb	

-	
Uplift pressure along failure plane (U) =	20,560.7 lb
Hor water pressure in tension crack (V1) =	2,190.3 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	87,137.1 lb
Driving Force (DF) =	14,558.3 lb
FS = (RF/DF) =	5.985

 $Resisting \ force = cL' + [\ (W1+W2)\ (cos(beta)\ - a^*sin(beta))\ - \ (V1+V2)\ sin(beta)\ - \ U]\ tan(phi)$

Driving force = (W1+W2) (sin(beta) + $a^{cos(beta)}$) + (V1+V2) cos(beta)

EEB FS Case II 122707

FS upper precon beta3

EEB FS Case II 122707

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

EEB

FS upper precon beta6

Case II: Sliding along Upper Interface of Limestone and Shale Beds $[H=16.6\,tt$ for the upper interface of limestone and shale (EL. 474.2)]

2. After Construction	(beta = 1 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	1.0 0	legree
Dip of Slope face (psi) =	28.0 c	legree
Cohesion (c) =	1000.0 p	sf
Friction angle (phi) =	5.0 c	legree
Unit Weicht of Rock =	165.0 p	ocf
Unit Weight of Water =	62.4 D	of
Height of Slope (H)* =	16.6 f	-
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0 ft	t (assumed)
Seismic acceleration (a) =	0.00 0	
Vertical weight by surcharge (W2) =	108,500.0 lt	
Horizontal force by surcharge (V2) =	33,500.0 lt	0
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bedd</step>	ding plane (b)	
p =	919.8 f	
Hor dist from tension crack to intersection of bedding and s	surface (b')	
p. =	872.8 f	t
Length of bedding plane from daylight in the slope face to ir	ntersection to grou	und surface (L)
L=	951.2 f	
Tension crack depth (TC) = Height of water in vertical joint (zw) =	15.2 ft 15.2 ft	t t
Length of bedding plane from daylight in the face to tension	n crack (L')	
	78.2	
Weight (W1) =	162,678.1 lt	0
<sten 4=""> Calculation of water pressure</sten>		
Ublift pressure along failure plane (U) =	37.185.3 I	
Hor water pressure in tension crack ()/1) –	II V 1VC Z	
	- ++	
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	98,637.9	.0
Driving Force (DF) =	45,467.9 #	0

Case II: Sliding along Upper Interface of Limestone and Shale Beds [H=16.6 ft for the upper interface of limestone and shale (EL. 474.2)]

2. After Construction	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degre	.ee
Dip of Slope face (psi) =	28.0 degre	ee.
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degre	.ee
	100 0.00 PCT	
Unit Weight of Water =	62.4 pcf	
Height of Slope $(H)^* =$	16.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the beddi	ng plane (b)	
p =	285.5 ft	
Hor dist from tension crack to intersection of hedding and su	rface (h')	

<step 2=""> Calculation of geometry</step>		
-ength along the top of slope to the intersection of the bedding p	ane (b)	
p =	285.5 ft	
Hor dist from tension crack to intersection of bedding and surface	(,q)	
p' =	238.5 ft	
-ength of bedding plane from daylight in the slope face to interse	ction to ground surf.	ace (L)
L=	317.2 ft	
Fension crack depth (TC) =	12.5 ft	
Height of water in vertical joint (zw) =	12.5 ft	zw/TC = 1.0
-ength of bedding plane from daylight in the face to tension cract	: (L')	
۲.= ۲.	78.3	
step 3> Calculation of weight of unstable block		
Neight (W1) =	145,035.2 lb	

<step 4=""> Calculaiton of water pressure</step>	
Uplift pressure along failure plane (U) =	30,549.3 lb
Hor water pressure in tension crack (V1) =	4,875.5 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	97,630.0 lb
Driving Force (DF) =	51,591.9 lb
FS = (RF/DF) =	1.892

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case II 122707

FS upper after beta1 no eq

EEB FS Case II 122707

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

2.169

EEB

EEB

FS upper after beta3 no eq

Case II: Sliding along Upper Interface of Limestone and Shale Beds $[H=16.6\,tt$ for the upper interface of limestone and shale (EL. 474.2)]

2. After Construction	(beta = 6 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	6.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	bcf
Unit Weiaht of Water =	62.4	pcf
Height of Slope $(H)^* =$	16.6	ft
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0	ft (assumed)
Seismic acceleration (a) =	0.00	D
Vertical weight by surcharge (W2) =	108.500.0	<u>q</u>
Horizontal force by surcharge (V2) =	33,500.0	q
<rep 2=""> Calculation of geometry Length along the top of slope to the intersection of the bed</rep>	ding plane (b)	
= q	126.7	ft
Hor dist from tension crack to intersection of bedding and s	surface (b')	
p' =	79.7	ft
Length of bedding plane from daylight in the slope face to i	ntersection to gr	ound surface (L)
L=	158.8	ft
Tension crack depth (TC) = Height of water in vertical joint (zw) =	8.4 8.4	ft ft
I enouth of hedding plane from daylight in the face to tension	crack (L)	
	1 0100 (L) 78.7	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	118,435.8	lb
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	20,560.7	qI
Hor water pressure in tension crack (V1) =	2,190.3	lb
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	96,271.2	ସା
Driving Force (DF) =	59,216.1	lb

Case II: Sliding along Upper Interface of Limestone and Shale Beds $[H=16.6\,tf$ or the upper interface of limestone and shale (EL. 474.2)]

3. After Construction and Seismic Condition	(beta = 1 deg)		1
<step 1=""> INPUT Data</step>			
Dip of failure plane (beta) =	1.0	degree	
Dip of Slope face (psi) =	28.0	degree	
Cohesion (c) =	1000.0	psf	
Friction angle (phi) =	5.0	degree	
Unit Weight of Rock =	165.0	pcf	
Unit Weight of Water =	62.4	pcf	
Height of Slope (H)* =	16.6	ft	
Hor dist between tension crack and slope crest =	47.0	ft (assumed)	
(Tension crack (vertical joint) behind spread footing)			
Seismic acceleration (a) =	0.10	D	
Vertical weight by surcharge (W2) =	108,500.0	q	
Horizontal force by surcharge (V2) =	33,500.0	lb	
<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the bedd	ing plane (b)		
	010 B	4	

<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the be	edding plane (b)		
p =	919.8 ft		
Hor dist from tension crack to intersection of bedding an	d surface (b')		
p' =	872.8 ft		
Length of bedding plane from daylight in the slope face t	o intersection to ground s	surface (L)	
L=	951.2 ft		
Tension crack depth (TC) =	15.2 ft		
Height of water in vertical joint (zw) =	15.2 ft	zw/TC = 1.0	9
Length of bedding plane from daylight in the face to tens	ion crack (L')		
L'=	78.2		
<step 3=""> Calculation of weight of unstable block</step>			

<pre>cStep 4> Calculation of water pressure</pre>	
Jplift pressure along failure plane (U) =	37,185.3 lb
Hor water pressure in tension crack (V1) =	7,241.4 lb
<pre>cStep 5> Calculation FS</pre>	
Resisting Force (RF) =	98,596.5 lb

162,678.1 lb

Weight (W1) =

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 72,581.6 lb 1.358 Driving Force (DF) = FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case II 122707

FS upper after beta6 no eq

EEB FS Case II 122707

EEB

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

59,216.1 lb 1.626

EEB

FS upper after beta1 eq

Case II: Sliding along Upper Interface of Limestone and Shale Beds [H=16.6 ft for the upper interface of limestone and shale (EL. 474.2)]

3. After Construction and Seismic Condition	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	pcf
Unit Weight of Water =	62.4	pcf
Height of Slope (H)* =	16.6	ft
Hor dist between tension crack and slope crest = //Tension crack (vertical faint) habited encoded footing)	47.0	ft (assumed)
Seismic acceleration (a) =	0.10	6
Vertical weight by surcharge (W2) =	108,500.0	ସ
Horizontal force by surcharge (V2) =	33,500.0	q
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bed</step>	ding plane (b)	
= q	285.5	ft
Hor dist from tension crack to intersection of bedding and s	surface (b')	
p'=	238.5	ft
Length of bedding plane from daylight in the slope face to i	intersection to gr	ound surface (L)
L=	317.2	ft
Tension crack depth (TC) =	12.5	ft surff sur
Height of water in vertical joint (zw) =	9.21	
Length of bedding plane from daylight in the face to tension $L' = L' = 0$	n crack (L') 78.3	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	145,035.2	Ŋ
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	30,549.3	qI
Hor water pressure in tension crack (V1) =	4,875.5	lb
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	97,513.9	ସ
Driving Force (DF) =	76,910.7	ସା

Case II: Sliding along Upper Interface of Limestone and Shale Beds [H=16.6 ft for the upper interface of limestone and shale (EL. 474.2)]

3. After Construction and Seismic Condition	(beta = 6 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	6.0 de	egree
Dip of Slope face (psi) =	28.0 de	egree
(c) unisedo	1000 0	
Friction angle (phi) =	5.0 de	egree
Unit Weight of Rock =	165.0 pc	ct
Unit Weight of Water =	62.4 pc	ct
Height of Slope (H)* =	16.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.10 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry I enoth along the top of slope to the intersection of the bedd</step>	na nlane (h)	
	126.7 ft	
Hor dist from tension crack to intersection of bedding and su	irface (b')	
p, =	79.7 ft	
1	A new reliance the second	

Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ing plane (b)	
p =	126.7 ft	
Hor dist from tension crack to intersection of bedding and su	irface (b')	
p' =	79.7 ft	
Length of bedding plane from daylight in the slope face to in	tersection to ground s	iurface (L)
L=	158.8 ft	
Tension crack depth (TC) =	8.4 ft	
Height of water in vertical joint (zw) =	8.4 ft	zw/TC = 1.
Length of bedding plane from daylight in the face to tension	crack (L')	
L'=	78.7	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	118,435.8 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	20,560.7 lb	

<scept 4=""> Carculation of water pressure Uplift pressure along failure plane (U) = Hor water pressure in tension crack (V1) =</scept>	20,560.7 lb 2,190.3 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	96,063.7 lb
Driving Force (DF) =	81,785.3 lb
FS = (RF/DF) =	1.175

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case II 122707

FS upper after beta3 eq

EEB FS Case II 122707

1.268

FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

EEB

FS upper after beta6 eq

1. Preconstruction Case	(beta = 1 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	1.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	pcf
Unit Weight of Water =	62.4	pcf
Height of Slope $(H)^* =$	31.6	ft
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0	ft (assumed)
Seismic acceleration (a) =	0.00	D
Vertical weight by surcharge (W2) = Horizontal force by surcharge (V2) =	0.0	<u>ם</u>
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bed</step>	ding plane (b)	
p =	1750.9	ft
Hor dist from tension crack to intersection of bedding and s	surface (b') 1703 o	+
Length of bedding plane from daylight in the slope face to i	ntersection to gro	ound surface (L)
L=	1810.6	ft
Tension crack depth (TC) = Heicht of water in vertical ioint (zw) =	29.7	tt ft <mark>zw/TC=1.0</mark>
Length of bedding plane from daylight in the face to tension	n crack (L')	
11	100.1	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	383,682.3	b
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	98,778.5	b
Hor water pressure in tension crack (V1) =	27,599.5	b
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	131,325.8	þ
Driving Force (DF) =	34,291.5	þ
FS = (RF/DF) =	3.830	

Case III: Sliding along Lower Interface of Limestone and Shale Beds $[H{=}31.6\,tt$ for the lower interface of limestone and shale (EL. 459.2)]

1. Preconstruction Case	(beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degre	
Dip of Slope face (psi) =	28.0 degre	ee.
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degre	ee.
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	31.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	di <mark>0.0</mark> lb	
Horizontal force by surcharge (V2) =	0.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ing plane (b)	
= q	543.5 ft	
Hor dist from tension crack to intersection of hedding and su	urface (b')	

<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the bed	lding plane (b)		
p = q	543.5 ft		
Hor dist from tension crack to intersection of bedding and	surface (b')		
p' =	496.5 ft		
Length of bedding plane from daylight in the slope face to	intersection to ground :	surface (L)	
L=	603.8 ft		
Tension crack depth (TC) =	26.0 ft		
Height of water in vertical joint (zw) =	26.0 ft	zw/TC =	1.0
Length of bedding plane from daylight in the face to tensio	n crack (L')		
L'= L'=	106.6		
<step 3=""> Calculation of weight of unstable block</step>			
Weight (W1) =	351,018.2 lb		

39,469.1 lb	Driving Force (DF) =
129,578.0 lb	Resisting Force (RF) =
	<step 5=""> Calculation FS</step>
21,127.2 lb	Hor water pressure in tension crack (V1) =
86,529.1 lb	Uplift pressure along failure plane (U) =
	<step 4=""> Calculaiton of water pressure</step>

Resisting Force (RF) =	129,578.0 lb
Driving Force (DF) =	39,469.1 lb
FS = (RF/DF) =	3.283
Resisting force = $cl' + [(W1+W2)(cos(heta) - a^*sin(heta)) - l'$	1+V/2) sin(heta) - [1] tan(nhi)

resisting force = cL + [(W1+W2) (costpeta) - a sin(beta)) - (V1+V2) sin(beta) - U] tan(ph) Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case III 122707

FS upper precon beta1

EEB FS Case III 122707

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

EEB

FS upper precon beta3

1. Preconstruction Case	(beta = 6 deg <u>)</u>	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	6.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	pcf
Unit Weight of Water =	62.4	pcf
Height of Slope $(H)^* =$	31.6	ft
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0	ft (assumed)
Seismic acceleration (a) =	0.00	D
Vertical weight by surcharge (W2) = Horizontal force by surcharge (V2) =	0.0 0.0	ସ
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bed.</step>	ding plane (b)	
= q	241.2	ft
Hor dist from tension crack to intersection of bedding and s	surface (b')	
	194.2	ft
Length of bedding plane from daylight in the slope face to i L =	intersection to gro 302.3	ound surface (L) ft
Tension crack depth (TC) =	20.4	ft +
	70.7	
Length of bedding plane from daylight in the face to tension $L' =$	n crack (L') 107.0	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	301,772.2	q
<step 4=""> Calculation of water pressure</step>		
Uplift pressure along failure plane (U) =	68,159.9	q
Hor water pressure in tension crack (V1) =	13,001.6	q
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	127,192.1	p
Driving Force (DF) =	44,474.1	q
FS = (RF/DF) =	2.860	

Case III: Sliding along Lower Interface of Limestone and Shale Beds $[H{=}31.6\,tt$ for the lower interface of limestone and shale (EL. 459.2)]

2. After Construction	(beta = 1 deg)		
<step 1=""> INPUT Data</step>			
Dip of failure plane (beta) =	1.0 o	legree	
Dip of Slope face (psi) =	28.0 o	degree	
Cohesion (c) =	1000.0 F	sf	
Friction angle (phi) =	5.0 0	legree	
Unit Weight of Rock =	165.0 p	ocf	
Unit Weight of Water =	62.4 p	ocf	
Height of Slope $(H)^* =$	31.6 f	t	
Hor dist between tension crack and slope crest =	47.0 f	t (assumed)	
(Tension crack (vertical joint) behind spread footing)			
Seismic acceleration (a) =	0.00 g		
Vertical weight by surcharge (W2) =	108,500.0	٩	
Horizontal force by surcharge (V2) =	33,500.0	P	
<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the beddi	ing plane (b)		
= q	1750.9 f	t	

Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedd	ing plane (b)	
p =	1750.9 ft	
Hor dist from tension crack to intersection of bedding and su	urface (b')	
p. =	1703.9 ft	
Length of bedding plane from daylight in the slope face to in	tersection to ground surface (I	Ĺ
L=	1810.6 ft	
Tension crack depth (TC) =	29.7 ft	
Height of water in vertical joint (zw) =	29.7 ft ZW/	TC = 1.0
Length of bedding plane from daylight in the face to tension	crack (L')	
L'=	106.4	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	383,682.3 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	98,778.5 lb	
Hor water pressure in tension grack (//1) -	77 EOD E IN	

98,778.5 lb	27,599.5 lb		140,765.7 lb	69,680.0 lb	2.020	
Uplift pressure along failure plane (U) =	Hor water pressure in tension crack (V1) =	<step 5=""> Calculation FS</step>	Resisting Force (RF) =	Driving Force (DF) =	FS = (RF/DF) =	

 $Resisting \ force = cL' + [\ (W1+W2)\ (cos(beta)\ - a^*sin(beta))\ - \ (V1+V2)\ sin(beta)\ - \ U]\ tan(phi)$

Driving force = (W1+W2) (sin(beta) + $a^{cos(beta)}$) + (V1+V2) cos(beta)

EEB FS Case III 122707

FS upper precon beta6

EEB FS Case III 122707

EEB

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

FS upper after beta1 no eq

2. After Construction	<mark>(beta = 3 deg)</mark>	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degree	
Dip of Slope face (psi) =	28.0 degree	
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope (H)* =	31.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft (assumed)	
(Tension crack (vertical joint) pening spread rooting)		
Seismic acceleration (a) =	0.00 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bedd</step>	ting plane (b)	
= q	543.5 ft	
Hor dist from tension crack to intersection of bedding and s	urface (b')	
p, =	496.5 ft	
Length of bedding plane from daylight in the slope face to i	ntersection to ground surface (L)	
L=	603.8 ft	
Tension crack depth (TC) =	26.0 ft	0
Height of water in vertical joint (zw) =		1.0
Length of bedding plane from daylight in the face to tension $L' = L'$	i crack (L') 106.6	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	351,018.2 lb	
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	86,529.1 lb	
Hor water pressure in tension crack (V1) =	21,127.2 lb	
<step 5=""> Calculation FS</step>		
Resisting Force (RF) =	138,904.1 lb	
Driving Force (DF) =	78,601.7 lb	

Case III: Sliding along Lower Interface of Limestone and Shale Beds $[H{=}31.6\,tf$ or the lower interface of limestone and shale (EL. 459.2)]

2. After Construction	(beta = 6 deg)		
<step 1=""> INPUT Data</step>			_
Dip of failure plane (beta) =	6.0	degree	
Dip of Slope face (psi) =	28.0	degree	
Cohesion (c) =	1000.0	psf	
Friction angle (phi) =	5.0	degree	
			-
Unit Weight of Rock =	165.0	pcf	
Unit Weight of Water =	62.4	pcf	
			-
Height of Slope $(H)^* =$	31.6	ft	
Hor dist between tension crack and slope crest =	47.0	ft (assumed)	
(Tension crack (vertical joint) behind spread footing)			_
Seismic acceleration (a) =	0.00	σ	
Vertical weight by surcharge (W2) =	108,500.0	q	
Horizontal force by surcharge (V2) =	33,500.0	p	1
<step 2=""> Calculation of geometry</step>			
Length along the top of slope to the intersection of the bedd	ing plane (b)		
	0110	4	-

Horizontal force by surcharge (vz) =	al 0.000,55	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the bedc	ling plane (b)	
p =	241.2 ft	
Hor dist from tension crack to intersection of bedding and s	urface (b')	
p' =	194.2 ft	
Length of bedding plane from daylight in the slope face to ir	itersection to ground s	surface (L)
L=	302.3 ft	
Tension crack depth (TC) =	20.4 ft	
Height of water in vertical joint (zw) =	20.4 ft	zw/TC = 1.0
Length of bedding plane from daylight in the face to tension	crack (L')	
L'=	107.0	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	301,772.2 lb	

<step 4=""> Calculaiton of water pressure</step>	
Uplift pressure along failure plane (U) =	68,159.9 lb
Hor water pressure in tension crack (V1) =	13,001.6 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	136,326.3 lb
Driving Force (DF) =	89,132.0 lb

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 1.529 FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + $a^{cos}(beta)) + (V1+V2) \cos(beta)$

EEB FS Case III 122707

EEB

FS upper after beta6 no eq

FS upper after beta3 no eq

EEB FS Case III 122707

EEB

FS = (RF/DF) =

78,601.7 lb 1.767

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

After Construction and Seismic Condition	(beta = 1 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	1.0	degree
Dip of Slope face (psi) =	28.0	degree
Cohesion (c) =	1000.0	psf
Friction angle (phi) =	5.0	degree
Unit Weight of Rock =	165.0	pcf
Unit Weight of Water =	62.4	pcf
Height of Slope (H)* =	31.6	ft
Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	47.0	ft (assumed)
Seismic acceleration (a) =	0.10	ס
Vertical weight hv surcharge (W2) =	108.500.0	<u>-</u>
Horizontal force by surcharge (V2) =	33,500.0	2 0
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bed</step>	dina plane (b)	
= q	1750.9	ft
Hor dist from tension crack to intersection of bedding and s	surface (b')	
p' =	1703.9	ft
Length of bedding plane from daylight in the slope face to i	ntersection to gro	ound surface (L)
	1810.6	ft
Tension crack depth (TC) = Height of water in vertical joint (zw) =	29.7 29.7	ft
Length of bedding plane from daylight in the face to tension	n crack (L')	
C	106.4	
<step 3=""> Calculation of weight of unstable block</step>		
Weight (W1) =	383,682.3	q
<step 4=""> Calculaiton of water pressure</step>		
Uplift pressure along failure plane (U) =	98,778.5	ସ
Hor water pressure in tension crack (V1) =	27,599.5	ସ
		-
Kesisting Force (KF) =	140,080.5	<u>0</u>
Driving Force (DF) =	118,890.7	ସ

Case III: Sliding along Lower Interface of Limestone and Shale Beds $[H{=}31.6\,tf$ or the lower interface of limestone and shale (EL. 459.2)]

3. After Construction and Seismic Condition	beta = 3 deg)	
<step 1=""> INPUT Data</step>		
Dip of failure plane (beta) =	3.0 degree	
Dip of Slope face (psi) =	28.0 degree	
Cohesion (c) =	1000.0 psf	
Friction angle (phi) =	5.0 degree	
Unit Weight of Rock =	165.0 pcf	
Unit Weight of Water =	62.4 pcf	
Height of Slope $(H)^* =$	31.6 ft	
Hor dist between tension crack and slope crest =	47.0 ft	(assumed)
(Tension crack (vertical joint) behind spread footing)		
Seismic acceleration (a) =	0.10 g	
Vertical weight by surcharge (W2) =	108,500.0 lb	
Horizontal force by surcharge (V2) =	33,500.0 lb	
<step 2=""> Calculation of geometry</step>		
Length along the top of slope to the intersection of the beddi	ıg plane (b)	
p = q	543.5 ft	

			<step 3=""> Calculation of weight of unstable block</step>
		106.6	C=
		ו crack (L')	Length of bedding plane from daylight in the face to tension
1.(zw/TC =	26.0 ft	Height of water in vertical joint (zw) =
		26.0 ft	Tension crack depth (TC) =
		603.8 ft	L=
	urface (L)	ntersection to ground s	Length of bedding plane from daylight in the slope face to in
		496.5 ft	p' =
		surface (b')	Hor dist from tension crack to intersection of bedding and s
		543.5 ft	p =
		ding plane (b)	Length along the top of slope to the intersection of the bedc
			<step 2=""> Calculation of geometry</step>

Weight (W1) =	351,018.2 lb
<step 4=""> Calculaiton of water pressure</step>	
Uplift pressure along failure plane (U) =	86,529.1 lb
Hor water pressure in tension crack (V1) =	21,127.2 lb
<step 5=""> Calculation FS</step>	
Resisting Force (RF) =	138,693.7 lb

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi) 124,490.5 lb 1.114 Driving Force (DF) = FS = (RF/DF) =

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB FS Case III 122707

FS upper after beta1 eq

EEB FS Case III 122707

1.183

FS = (RF/DF) =

Resisting force = cL' + [(W1+W2) (cos(beta) - a*sin(beta)) - (V1+V2) sin(beta) - U] tan(phi)

Driving force = (W1+W2) (sin(beta) + a*cos(beta)) + (V1+V2) cos(beta)

EEB

FS upper after beta3 eq

	гг. 433. <i></i> /ј]	COMPUTATION SHEET		Made by KHC
3. After Construction and Seismic Condition	<mark>(beta = 6 deg)</mark>			Date 12/25/07
<pre><step 1=""> INPUT Data</step></pre>		Subject East End Bridge Prov. Store Stability in N. Abitment		Checked by EMD
up or tailure plane (pera) = Dip of Slope face (psi) =	6.0 degree 28.0 degree	FLEWKE + 114/6YD 014 Generating IEEE 1.04/6/10 014 Generating IEEE 1.04/6/10 014 Generating IEEE 1.04/6/10 014	build	
Cohesion (c) = Triction annle (chi) =	1000.0 psf 5.0 demee	[Simplistic Factor of Safety Analysis for Toppling (Joint S	Set 2 is involved)]	
		FS=(vh)/tan(beta)		
unit weight of Kock = Unit Weight of Water =	62.4 pcf	t=width of block =	5 ft	0.5 to > 20 ft, typically 5 ft*
Height of Slope (H)* = Hor dist between tension crack and slope crest = (Tension crack (vertical joint) behind spread footing)	31.6 ft 47.0 ft (assumed)	h=height of block= beta=dip of bedding plane = FS =	31.6 ft 1 deg 9.06	(490.8-459.2) 1-6 deg
Seismic acceleration (a) =	0.10 g	beta-dio of beddino opane =	3 dea	1-6 dea
Vertical weight by surcharge (W2) = Horizontal force by surcharge (V2) =	108,500.0 lb 33,500.0 lb		3.02	2) 3
		beta=dip of bedding plane =	6 deg	1-6 deg
<step 2=""> Calculation of geometry Length along the top of slope to the intersection of the bedd</step>	ting plane (b)	" "	1.51	
= q -	241.2 ft			
Hor dist from tension crack to intersection of bedding and s $\mathbf{b}' = \mathbf{b}'$	urface (b) 194.2 ft	[Sketch for General Model for Toppling Failure]		
Length of bedding plane from daylight in the slope face to ir $L = 0$	ntersection to ground surface (L) 302.3 ft	(Kilche, 1999)		
Tension crack depth (TC) =	20.4 ft		4	
Height of water in vertical joint (zw) =	20.4 ft zw/TC=	10 	-	
Length of bedding plane from daylight in the face to tension $L' =$	n crack (L') 107.0	Quis M		
<step 3=""> Calculation of weight of unstable block</step>				
Weight (W1) =	301,772.2 lb			
<step 4=""> Calculaiton of water pressure</step>				
Uplift pressure along failure plane (U) =	68,159.9 lb		J.	- w cosß
Hor water pressure in tension crack (V1) =	13,001.6 lb			Pivot Point, O
<step 5=""> Calculation FS</step>				
Resisting Force (RF) =	135,951.1 lb			
Driving Force (DF) =	129,934.4 lb			
FS = (RF/DF) =	1.046			

EEB Toppling 122707

EEB

FS upper after beta6 eq

EEB FS Case III 122707

EEB

Toppling

APPENDIX H-6 ABUTMENT ANALYSIS

	0.307		
	H (Ib/ft)	M arm (ft)	M _o (Ib/ft-ft
P _{EH} =	26,290	12.33	324,241
P _{LSH} = "P2 in ASD" =	0	18.5	0

(NHI Course No. 130082A Table 6.2.9)

			anic 0.2.3/
roup	r _{ev}	Г _{ЕН}	r _{LS}
ngth I-a	1.00	1.50	1.75
ngth I-b	1.35	1.50	1.75
vice I	1.00	1.00	1.00
with 1-a an	of t-b oro used	I for minimum	muniter pue

vertical load factors, respectively. (Sưengư 1-a and 1-b are AASHTO Table 3.4.1-2)

Loads	(0)			(Ib/ft)	
	Group	P _{EV}	P _{LSV}	V _{total}	
	Unfactored	128,344	0	128,344	
	Strength I-a	128,344	0	128,344	
	Strength I-b	173,264	0	173,264	
	Service I	128,344	0	128,344	
				(Ib/ft)	
	Group	P _{EH}	PLSH	H _{total}	
	Unfactored	26,290	0	26,290	
	Strength I-a	39,435	0	39,435	
	Strength I-b	39,435	0	39,435	
	Service I	26,290	0	26,290	

[Stability of MSE Wall]

Check Eccentricity (e)

Ain. = 0.7H

> 2.0 5.5 MSE Wall Analysis_LRFD FSovernuming

2

Revised Results of Supplemental Geotechnical Work

Indiana Abutment I-265 Over the Ohio River LSIORB, Section 5, Phase 4 Jefferson County, Kentucky Item No. 5-118.00

Stantec Consulting Services Inc.

One Team. Infinite Solutions 1409 North Forbes Road Lexington, KY 40511-2050 Tel: (859) 422-3000 • Fax: (859) 422-3100 www.stantec.com Prepared for: Parsons Brinckerhoff, Inc. Lexington, Kentucky

March 2, 2011

Stantec Consulting Services Inc. 1409 North Forbes Road Lexington, KY 40511-2050 Tel: (859) 422-3000 Fax: (859) 422-3100

March 2, 2011

let_022_175565125

Mr. Steve Slade, PE, PLS Parsons Brinckerhoff, Inc. 2333 Alumni Park Plaza, Suite 330 Lexington, Kentucky 40517

Re: Revised Results of Supplemental Geotechnical Work Indiana Abutment I-265 Over the Ohio River LSIORB, Section 5, Phase 4 Jefferson County, Kentucky Item No. 5-118.00

Dear Mr. Slade:

Submitted herein are the results of the supplemental geotechnical work for the Indiana abutment. The initial geotechnical engineering report was submitted May 12, 2008. This supplemental exploration at the Indiana abutment is to obtain more data regarding the presence and conditions of clay seams and orientation of bedding planes for evaluation of rock slope stability under the abutment loads. Stantec Consulting Services Inc. (Stantec) mobilized to the site and performed the fieldwork the week of August 16, 2010. The drilling and field work was conducted in accordance with the supplemental boring plan dated June 16, 2010.

Three rock core borings (AC-29, AC-30 and AC-31) were advanced using split tube barrels to the approximate bottom of hole elevation of 455 feet. The subsurface materials were visually described by the field representative in general accordance with the KYTC Geotechnical Manual. The boring logs are attached and summarized in Table 1.

Hole No.	Station and Offset	Surface Elev.	Top of Rock Elev.	Bottom of Hole Elev.
AC-29	212+36, 44.0' Lt.	494.2	491.3	454.2
AC-30	212+47, 13.0' Lt.	496.2	492.8	454.6
AC-31	212+67, 40.0' Lt.	498.2	486.9	455.1

Table 1.Summary of Borings

Parsons Brinckerhoff, Inc. March 2, 2011 Page 2

Observation wells were installed in each core boring. They were installed to evaluate potential groundwater within the zone containing clay and soft shale seams and layers. The wells typically incorporated a 1-inch schedule 80 polyvinyl chloride (PVC) pipe with a 10-slot screen of varying length wrapped in a sand pack. A bentonite seal installed in the boring annulus created a seal above the monitored bedrock zone. The sand pack installed below the bentonite seal allowed a free exchange of water from the bedrock zone to the PVC screen. Because these wells were installed in rock core borings where water was introduced as part of the coring process, compressed nitrogen was used to evacuate (blow) water from the piezometers. All of the water could not be removed from the piezometer/core boring using this method. As such, the resulting water level readings may not be indicative of the actual groundwater surface. The observation wells monitored for a period of six months and end in February 2011. The water level readings obtained are attached.

During the field work, a geologist collected supplemental data relative to strike and dip of the near-horizontal bedding planes exposed in nearby rock cuts/rock quarries near the proposed abutment. Strike and dip measurements were taken at 22 locations using a Brunton compass and are included as an attachment to this letter. Also included in the attachment are stereonets developed from the field data using the computer program RockWorks98 developed by Rockware. An average dip of 3.1 degrees was calculated. The adjustment for magnetic declination (Utica, IN) used was 4 degrees 20 minutes or 4.33 degrees.

	Dip Angle (degrees)	Dip Direction (Azimuth)	Strike
Unadjusted	3.1	276 (N84W)	N6E
Adjusted*		272 (N88W)	N2E

Table 2.	Average Strike and Dip Res	sults
----------	----------------------------	-------

*Adjusted for magnetic declination (Utica, IN [4.33 degrees west]).

During the drilling process, selected samples of rock core were selected for potential laboratory testing. Identified samples generally consisted of clay partings, seams and layers of various thicknesses, in addition to shale layers. These samples were wrapped in cellophane, aluminum foil and then waxed to preserve the as-drilled condition. Samples were selected for direct shear and unconfined compression testing. Results of the laboratory testing are presented in the following tables.

Parsons Brinckerhoff, Inc. March 2, 2011 Page 3

Hole No.	Test Location Depth (Elevation) (feet)	Normal Stress (psi)	al Peak Shear Post Pea psi) Stress (psi) Stress (p		Sample Material
AC-29	14.4 (479.8)	13.0	*	*	clay seam
					weathered
AC-29	33.4 (460.8	32.5	17.2	12.4	shale/clay seam
AC-30	17.3 (478.9)	16.8	13.6	9.6	clay seam
AC-30	36.3 (459.9)	35.3	24.0	21.8	weathered shale
AC-31	16.9 (481.3)	16.4	10.7	9.7	clay seam
					limestone/clay
AC-31	23.3 (474.9)	22.7	12.6	9.2	seam

Table 3	Reculte	of Direct	Shoar	Testing
lable J.	nesuits	OI Direct	Snear	resung

*After completion of the test, the specimen was found to contain an \pm % inch rock fragment, which may have affected the test. No apparent peak or post peak was observed.

		•	0
Hole No.	Test Depth feet (Elevation)	Compressive Strength (tsf)	Sample Material
AC-29	25.3 - 25.7 (468.9 - 468.5)	68	weathered shale
AC-29	33.5 - 33.8 (460.7 - 460.4)	17	weathered shale
AC-30	35.7 - 36.1 (460.5 - 460.0)	64	weathered shale
AC-31	27.6 - 27.9 (470.6 - 470.3)	8	weathered shale
AC-31	35.3 - 35.7 (462.9 - 462.5)	23	weathered shale
AC-31	35.9 - 36.3 (462.3 - 461.9)	14	weathered shale

 Table 4.
 Results of Unconfined Compression Testing

The unconfined compressive strength varied from 8 tsf to 68 tsf.

Stantec appreciates the opportunity to provide these services to you. If you need further assistance, please contact our office.

Sincerely,

STANTEC CONSULTING SERVICES INC.

anala Donald Blanton, PE

Project Manager

/rdr

Boring Logs and Boring Plan

Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Page 1 of 2

Project II Item Nur	D: <u>S-05;</u> mber: <u>0;</u>	<u>5-2008</u> 5-118.00	Clark (Indiana) - I-265Project Type:Ohio RiverProject Manager:					ucture				
Hole Numb Surface Ele Total Depth Location _:	er <u>AC-29</u> >vation <u>49</u> n <u>40.0'</u> 212+36.00	- <u>4.2'</u> 44.0' Lt	Immediate Water Depth <u>19.</u> Static Water Depth <u>NA</u> Driller <u>D. Jessie</u> Geologist <u>Ben Halada (Eng</u>	<u>8 (08/18/10)</u>)	Start Date <u>08/16/2010</u> End Date <u>08/16/2010</u> Latitude(83) <u>38.345011</u> Longitude(83) - 85.646206			Hole Type <u>NQ-3 core</u> Rig_Number <u>CME 45 (811)</u>				
Lithok	ogy		Overburden St		Sample Depth Rec. Sf No. (ft) (ft) Blc		SF Blc	די ws	Sample Type			
Elevation	Depth	Description	۱ 	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Re (%	∋c %)	SDI (JS)	Remarks	
491.3	2.9	Medium dens organics (g	e, gray to brown, moist, clayey gr ravel 1/2" to 1", with boulders 6"	ravel with to 12").							- (Begin Core)	
5 -					84 / 84	3.8	3.8	10	10		<u>5</u>	
- 10 - 15 -		Gray lime: moder;	Gray limestone, (microcrystalline to fine grained, moderately hard, thin to medium bedded).				9.9 9		9		Shale (dark <u>1(</u> gray) with some clay (light brown) @ 9.4-10.4 clay seam (light brown), <u>1</u> (light brown), <u>1</u>	
- 20 - - 472.0 -	22.2						10.0	10	0		16.7 stained from 14.1 to 15.2 @ 14.1-14.6 healed <u>2(</u> vertical fracture @ 14.8-16.7 water stained @ 16.8-17.3	
25 30 460.2	34.0	Dark gray sha	ale, (fine grained, soft to moderat laminated to thin bedded).	ely hard,	79 / 64	10.1	10.1)0		Sandstone 25 (light brown), 26.7 some clay in 19.9-20 trace clay (<0.02') @ 30 20.9 clay seam (gray) @ 23-23.1	
<u>35</u> - -	40.0	Gray limes modera	stone, (microcrystalline to fine gra ately hard, thin to medium bedder	ained, d).	100 / 100	3.2	3.2	10			clay seam (gray, <0.05') 36.8 @ 23.9 clay seam (dark gray, soft, <0.05')	
40 454.2 - - 45 - - 50	40.0		(Bottom of Hole 40.0') (Refusal @ 2.9)								40.0 (224.9 40 clay seam 25.8-26.1 - clay seam - - 29.3-29.4 - - clay seam - - (<0.1')	

Drilling Firm: Stantec For: Division of Structural Design Geotechnical Branch

DRILLER'S SUBSURFACE LOG

Printed: 2/3/11

Page 2 of 2

Project II Item Nur	D: <u>S-05</u> nber: <u>0</u> {	<u>5-2008</u> 5-118.00	<u>Clark (Indiana) - I-265</u> <u>Ohio River</u>				Projec Projec	Project Type: <u>Structure</u> Project Manager: _			
Hole Numb	er <u>AC-29</u>	_	Immediate Water Depth	<u>19,8 (08/18/10)</u>	Start (Date <u>08/16/2</u>	010	Hole Type <u>NQ-3 core</u>			
Surface Elevation 494.2' Sta			Static Water Depth <u>NA</u>		End D)ate <u>08/16/20</u>	10		Rig_N	lumber <u>Cl</u>	ME 45 (811)
Total Depth	40.0'		Driller <u>D. Jessie</u>		Latitud	de(83) <u>38.34</u>	<u>5011_</u>				
Location _2	12+36.00	44.0' Lt.	Geologist <u>Ben Halada (Er</u>	<u>1g)</u>	Longi	tude(83) <u>-85.</u>	<u>646206</u>				
Litholo	уgy			Overburden	Sample No.	Depth (ft)	Rec. (ft)	SF Blo	o⊤ ws	Sample Type	
Elevation	Depth	Description	1	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Re (%	ЭС 6)	SDI (JS)	Remarks
$\frac{55}{60}$		Observation well ft) screen. Remainin The water de attempting to	set. 1" PVC with a 10 foot scr . Sand pack to ± 2 feet above ng backfilled with pellets. 2X2 flushmount cover. apth recorded is the depth to w evacuate the water from the p	reen (30 ft to 40 pad install with /ater before piezometer.							@ 32.9-34 water stained @ 33.3-33.4 water stained @ 33.6-34.6 healed 55 vertical fracture @ 38.7-38.8 60 60
100											-
I	-			I	1		<u>دل</u>			. <u> </u>	100
DRILLER'S SUBSURFACE LOG

Printed: 2/3/11

Page 1 of 2

Project ID: <u>S-055-2008</u> Item Number: <u>05-118.00</u> Hole Number <u>AC-30</u> Surface Elevation <u>496.2'</u> Total Depth <u>41.6'</u> Location <u>212+47.00 13.0' Lt</u>			<u>Clark (Indiana) - I-265</u> <u>Ohio River</u>			Project Type: <u>Structure</u> Project Manager: _			
			Immediate Water Depth <u>20.8 (08/18/10)</u> Static Water Depth <u>NA</u> Driller <u>D. Jessie</u> Geologist <u>Ben Halada (Eng)</u>		Start Date <u>08/17/2010</u> End Date <u>08/17/2010</u> Latitude(83) <u>38,345092</u> Longitude(83) <u>-85.6461</u>		Hole Rig_	Hole Type <u>NQ-3 core</u> Rig_Number <u>CME 45 (811)</u>	
Litholo	рду		Overburden	Sample No.	Depth (ft)	Rec. (ft)	SPT Blows	Sample Type	_
Elevation	Depth	Description	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Rec (%)	SDI (JS)	Remarks
- - 492.8	3.4	Medium stiff 1/2	brown, moist, clay with gravel (gravel is " to 1" with boulders 3" to 5").						(Begin Core)
5				78 / 78	4.1	4.1	100		5
10 	14.6	Gray limes moderately h	tone, (microcrystalline to fine grained, ard, thin to medium bedded, with broken joints and shale streaks).	50 / 50	10.0	7.4	74		water stained @ 10.2-10.5 clay seam (<0.05') @ - 10.4
<u>15</u> 480.6	15.6	Gray limes	(VOID). tone, (microcrystalline to fine grained,		an Selana V				water stained 15 (<0.1') @ 10.7 water stained 17.5 @ 11.7-11.8
20 475 7	20.5	moderately h	ard, thin to medium bedded, with broken joints and shale streaks).	20 / 20	2.0	1.5	75		Clay, brown, 19.5 0.3' recovery, rest washed 20
474.9 - - 25_471.1	25.1	Gray limes moderately h	(VOID). tone, (microcrystalline to fine grained, ard, thin to medium bedded, with broken joints and shale streaks).	47 / 40	10.0	6.8	68		away @ 15.6-17.5 sporadic rod drops, solution features and vuggy @ 17.5-24
30 	36.4	Dark gray sha	le, (fine grained, soft to moderately hard, laminated to thin bedded).	92 / 78	10.0	10.0	100		blocked off @ 19.5 ^{29.5} core water 30 return lost @ 20.5 clay seam (<0.05') @ 28 water stained 35 @ 35-35.6
40		Gray limes moderately h	tone, (microcrystalline to fine grained, ard, thin to medium bedded, with broken joints and shale streaks).	90/					water stained @ 35.9-37 clay ^{39.5} seam(<0.1') 40
454.6	41.6	·	,	90	2.1	2.1	100		@ 36.3 41.6 water stained @ 38.6-39.5
4 <u>5</u> 			(Bottom of Hole 41.6') (Refusal @ 3.4)						stylolitic fracture, healed @ 45 41.4
				l		- <u>L</u> L			50

DRILLER'S SUBSURFACE LOG

Printed: 2/3/11

	eotecnn	Ical Branch									Page 2 of 2	
Project ID): <u>S-05</u> ;	<u>5-2008</u>	<u>Clark (Indiana) - I-265</u> Obio River				Project	Project Type: <u>Structure</u>				
	nber: <u>ut</u>	<u>)-778.00</u>		lo River			Project	t Mana	ager:	-		
Hole Numbe	er <u>AC-30</u>		Immediate Water Depth).8 (08/18/10)	Start [Date <u>08/17/20</u>	<u>010</u>		Hole Type <u>NQ-3 core</u>			
Surface Eler	vation <u>49</u>	6.2	Static Water Depth <u>NA</u>		End D	ate <u>08/17/20</u>	10		Rig_N	lumber <u>CI</u>	<u>ME 45 (811)</u>	
Total Depth	<u>41.6'</u>		Driller <u>D. Jessie</u>		Latituc	de(83) <u>38.34</u>	5092					
Location 2	12+47.00	<u>13.0' Lt.</u>	Geologist <u>Ben Halada (Eng</u>	<u>v</u>	Longit	ude(83) <u>-85.(</u>	<u>646154</u>					
Litholo	уgy		(Overburden	Sample No.	Depth (ft)	Rec. (ft)	SF Blo	рт wws	Sample Type		
Elevation	Depth	Description	n Rock Core		Std/Ky RQD	Run (ft)	Rec (ft)	Re (%	әс %)	SDI (JS)	Remarks	
$\frac{55}{55}$		Observation wel 41.6 screen. Remaini The water de attempting to	I set. 1" PVC with a 25 foot scre 3 ft). Sand pack to ±2 feet above ng backfilled with pellets. 2X2 pr flushmount cover. spth recorded is the depth to wall o evacuate the water from the pic	en (16.6 ft to a d install with ter before ezometer.							55 60 65 70 75 80 80 80 85 80 80 80 85 80 90 90	
100 ,				<u> </u>	ł							

DRILLER'S SUBSURFACE LOG

Project ID: <u>S-05</u>	<u>5-2008</u>	Clark (Indiana) - I-265				Project Type: <u>Structure</u>				
Item Number: 0	<u>5-118.00</u>	<u>_</u>	hio River			Project	Mana	ager:	-	
Hole Number <u>AC-31</u> Surface Elevation <u>49</u> Total Depth <u>43.1'</u> Location <u>212+67.00</u>		Immediate Water Depth Static Water Depth <u>NA</u> Driller <u>D. Jessie</u> Geologist <u>Ben Halada (Er</u>	22.9 (08/18/10) 1991 -	Start Date <u>08/17/2010</u> End Date <u>08/17/2010</u> Latitude(83) <u>38.345233</u> Longitude(83) <u>-85.64607</u>				Hole Type <u>NQ-3 core</u> Rig_Number <u>CME 45 (811)</u>		
Lithology		Overburden S		Sample No.	Depth (ft)	Rec. (ft)	SF Blo	РТ ws	Sample Type	
Elevation Depth	Description	n	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Re (%	ec 5)	SDI (JS)	Remarks
- - - - - - - - - - - - - - - - - - -	Medium sti	ff, light brown to dark brown, n with some chert fragments).	noist, clay							<u>5</u> (Begin Core)
486.0 12.2 15		No recovery.		40 / 40	5.7	4.8	84	1		boulders, washed away @ 11.3-12.2 water stained @ 12.2-14 15 clay seam 17.0 (<0.02 ¹) @
20 	Gray lime: modera	stone, (microcrystalline to fine ately hard, thin to medium bed	grained, ded).	73 / 62	10.0	10.0	10	0		15.9 clay seam @ 16.79-17.2 20 water stained @ 16.8-17.8 clay seam @
<u>25</u> - - -							 ,,			23.2-23.3 shale streaks 25 @ 23.3-24.5 27.0 clay streak (<0.02') @
<u>30</u> - - - <u>35</u> - 461.9 <u>36.3</u>	Dark gray sha	ale, (fine grained, soft to mode laminated to thin bedded).	rately hard,	98 / 74	10.0	10.0	10	0		25.1-25.3 clay / shale <u>30</u> streak, weathered @ 26.3-27 clay seam (<0.05') @ 27.5 <u>35</u> clay / shale
40 	Gray limes modera	stone, (microcrystalline to fine steely hard, thin to medium bed	grained, ded).	100 / 100	6.1	6.1	10	0		37.0 seam, weathered @ 27.7-27.9 water stained @ 34.8-36.9 <u>40</u> clay seam (<0.05') @ 43.1 35.1
<u>45</u> - - 50		(Bottom of Hole 43.1') (Refusal @ 11.3)								snare / clay, lightly 45 weathered @ 35.2-36.3 horizontal fracture @ 38.2 water stained 50

Page 1 of 2

DRILLER'S SUBSURFACE LOG

Printed: 2/3/11

Page 2 of 2

Project ID: <u>\$-055-2008</u> Item Number: <u>05-118.00</u>			<u>Clark (Indiana) - I-265</u> <u>Ohio River</u>			Project Type: <u>Structure</u> Project Manager: _					
Hole Number <u>AC-31</u> Surface Elevation <u>498.2'</u> Total Depth <u>43.1'</u>			Immediate Water Depth <u>22.9 (08/18/10)</u> Static Water Depth <u>NA</u> Driller <u>D. Jessie</u>			Start Date <u>08/17/2010</u> End Date <u>08/17/2010</u> Latitude(83) <u>38.345233</u>			Hole Type <u>_NQ-3 core</u> Rig_Number <u>_CME 45 (811)</u>		
Location 2	12+07.00	40.0 Ll.	Geologist <u>Ben nalada (r</u>	<u>:ngj</u>	Longit	ude(83) <u>-85.</u>	<u>0460/1</u>				
Litholo	gy			Overburden	Sample No.	Depth (ft)	Rec. (ft)	SP Blov	T Sampl ws Type	e	
Elevation	Depth	Description	1	Rock Core	Std/Ky RQD	Run (ft)	Rec (ft)	Re (%	sc SDI 5) (JS)	Remarks	
										@ 39.1-43.1 stylolitic fracture @ 40.5	
<u>55</u> -										55	
- - - -		Observation well 43.1 screen. Remainin	I set. 1" PVC with a 30 foot s I ft). Sand pack to ±2 feet ab ng backfilled with pellets. 2X flushmount cover.	creen (13.3 ft to ove 2 pad install with						<u>60</u>	
- 6 <u>5</u> -		attempting to	evacuate the water from the	piezometer.				9		65	
										70	
- 7 <u>5</u> -										75	
- 80 - -										- 80 - -	
<u>85</u> - -										<u>85</u>	
<u>90</u> - -										<u>90</u> -	
<u>95</u> - -										<u>95</u> - -	
100				I						100	

Observation Well Readings

11/18/2010

12/21/2010

1/25/2011

2/23/2011

22.7 ft

20.0 ft

20.0 ft

20.8 ft

Project Name:	I-265 East End	Bridge - I	ndiana Abu	tment		Location:	Charles Mod	ore Property
Stantec Project No:	1758	65125						
Ground Surface	Elevations		ALL W	ATER LEV	/EL ER	READINGS WEF	E TAKEN FR	OM THE TOP OF
AC-29 = 494	4.2 feet above Mea	in Sea Le	evel					
AC-30 = 490	6.2 feet above Mea	in Sea Le	evel					
AC-31 = 498	8.2 feet above Mea	in Sea Le	evel					
				Well Nu	ımł	per - Elevation		
Reading Date	AC-29	E	levation	AC-30	D	Elevation	AC-31	Elevation
8/18/2010	19.8	ft -	474.4 ft	20.8	ft	475.4 ft	22.9 ft	475.3 ft
9/17/2010	33.4	ft 4	460.8 ft	36.7	ft	459.5 ft	36.1 ft	462.1 ft
10/22/2010	33.2	ft 4	461.0 ft	33.3	ft	462.9 ft	35.4 ft	462.8 ft

21.0 ft

20.6 ft

20.4 ft

21.4 ft

475.2 ft

475.6 ft

475.8 ft

474.8 ft

463.2 ft

468.0 ft

467.8 ft

467.4 ft

35.0 ft

30.2 ft

30.4 ft

30.8 ft

471.5 ft

474.2 ft

474.3 ft

473.4 ft

Page 1 of 1

Strike and Dip Measurements

175565125-East End Approach

Stike and Dip Measurements Along Bedding Joints

1/1	9/	20	1	1	

ID Site	Latitude	Longitude	Strike (In Azimuth)	Strike Magnetic Declination Adjusted	Strike (Quadrant)	Dip Angie (degrees)	Dip Direction (In Azlmuth)	Dip Direction Magnetic Declination
15	N38.34513	W85.64682	10	5.7	N10E	4	280	275.7
17	N38.34586	W85.64644	9	4.7	N9E	5	279	274.7
19	N38.34586	W85.64652	9	4.7	N9E	5	279	274.7
20	N38.34581	W85.64617	9	4.7	N9E	3	279	274.7
21	N38.34585	W85.64625	16	11.7	N16E	5	286	281.7
25	N38.34588	W85.64618	9	4.7	N9E	4	279	274.7
27	N38.34583	W85.64581	22	17.7	N22E	3	292	287.7
28	N38.34568	W85.64571	9	4.7	N9E	2	279	274.7
29	N38.34575	W85.64580	11	6.7	N11E	2	281	276.7
30	N38.34490	W85.64756	7	2.7	N7E	1	277	272.7
31	N38.34471	W85.64718	10	5.7	N10E	4	280	275.7
32	N38.34466	W85.64715	12	7.7	N12E	1	282	277.7
34	N38.34495	W85.64762	4	359.7	N4E	3	274	269.7
35	N38.34444	W85.64648	7	2.7	N7E	3	277	272.7
37	N38.34452	W85.64651	348	343.7	N12W	1	258	253.7
38	N38.34439	W85.64650	344	339.7	N16W	3	254	249.7
39	N38.34433	W85.64645	350	345.7	N10W	2	260	255.7
42	N38.34491	W85.64574	2	357.7	N2E	2	272	267.7
43	N38.34474	W85.64582	15	10.7	N15E	4	285	280.7
44	N38.35074	W85.64895	10	5.7	N10E	3	280	275.7
45	N38.35207	W85.64795	355	350.7	N5W	6	265	260.7
46	N38.35060	W85.64630	350	345.7	N10W	2	260	255.7

Projection	Wulff	(Equal	Angle)
Number of Sample Points	22		
Mean Lineation Azimuth	275.5		
Mean Lineation Plunge	3.1		
Great Circle Azimuth	215.5		
Great Circle Plunge	3.6		
1st Eigenvalue	0.972		
2nd Eigenvalue	0.028		
3rd Eigenvalue	0.001		
LN (E1 / E2) $\ldots \ldots \ldots$	3.564		
LN (E2 / E3)	3.924		
(LN(E1/E2)] / (LN(E2/E3))	0.908		
Spherical variance	0.0143	j.	
Rbar	0.9857	,	

	Projection	Wulff	(Equal	Angle)
	Number of Sample Points	22		
	Mean Lineation Azimuth	271.2		
	Mean Lineation Plunge	3.1		
	Great Circle Azimuth	211.3		
	Great Circle Plunge	3.6		
	1st Eigenvalue	0.972		
	2nd Eigenvalue	0.028		
-	3rd Eigenvalue	0.001		
	LN (E1 / E2) $\ldots \ldots \ldots$	3.564		
	LN (E2 / E3) $\ldots \ldots \ldots$	3.924		
	(LN(E1/E2)] / (LN(E2/E3))	0.908		
	Spherical variance	0.0143	i	
	Rbar	0.9857	,	

175565125 Lineations Magnetic Declination Adjusted

	Projection	Wulff	(Equal	Angle)
	Number of Sample Points	22		
	Mean Lineation Azimuth	276.3		
	Mean Lineation Plunge	86.9		
	Great Circle Azimuth	99.7		
	Great Circle Plunge	89.8		
	1st Eigenvalue	0.999		
	2nd Eigenvalue	0.001		
-	3rd Eigenvalue	0		
	LN (E1 / E2) \ldots	7.46		
	LN (E2 / E3)	2.026		
2	(LN(E1/E2)] / (LN(E2/E3))	3.681		
	Spherical variance	0.0003	,	
	Rbar	0.9997	,	

	Projection	Wulff (Equal Angle)
	Number of Sample Points	22
	Mean Lineation Azimuth	272
	Mean Lineation Plunge	86.9
	Great Circle Azimuth	95.4
	Great Circle Plunge	89.8
	1st Eigenvalue	0.999
	2nd Eigenvalue	0.001
1	3rd Eigenvalue	0
	LN (E1 / E2) $\ldots \ldots \ldots$	7.46
f	LN (E2 / E3) $\ldots \ldots \ldots$	2.026
	(LN(E1/E2)] / (LN(E2/E3))	3.681
	Spherical variance	0.0003
	Rbar	0.9997

175565125 Planes Magnetic Declination Adjusted

