

REPORT OF GEOTECHNICAL EXPLORATION BRIDGE STRUCTURE REPORT

New Wolf Pen Branch Road Bridge and Temporary Diversion Bridge LSIORBP – Section 4 – KY 841 Louisville, Jefferson County, Kentucky

KSWA Project No. 100-03-0148 KYTC Project No. 5-731.00 Item Number 5-118.00

<u>Prepared For:</u> H. W. Lochner 1040 Monarch Street Lexington, Kentucky 40513

<u>Prepared By:</u> K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, Tennessee 37210

July 23, 2009

54 Lindsley Avenue Nashville, **Tennessee 37210 te: 615-255-9702** fx: 615-256-5873

July 23, 2009

Mr. Jerry Leslie, P.E. H. W. Lochner 1040 Monarch Street Lexington, Kentucky 40513

Subject: Report of Geotechnical Exploration Bridge Structure Report New Wolf Pen Branch Bridge & Temporary Diversion Bridge LSIORBP – Section 4 – KY 841 Louisville, Jefferson County, Kentucky KSWA Project No. 100-03-0148

Dear Mr. Leslie:


K. S. Ware and Associates, L.L.C. (KSWA) is pleased to submit this report which details the results of our geotechnical exploration for the referenced project. The exploration described in this report was performed in general accordance with the guidelines presented in the Kentucky Transportation Cabinet's Geotechnical Manual and the AASHTO LRFD Bridge Design Specifications.

KSWA has presented the results of the field exploration, laboratory data and our recommendations for the design and construction of the substructure elements proposed for the new bridge. We appreciate this opportunity to be of service to you on this project. Please contact us if you have any questions regarding this report.

Respectfully submitted.

K. S. Ware and Associates, L.L.C.

Jason C. Wilson. E.I. Project Manager

John D. Godfrey, Jr., P.E. Senior Geotechnical Engineer

Enclosures: Report of Geotechnical Exploration

Distribution: KYTC (3) + CD Addressee (1) File (1)

TABLE OF CONTENTS

1.0	LOCATION AND DESCRIPTION	1
2.0	SITE TOPOGRAPHY AND GEOLOGIC CONDITIONS	2
3.0	FIELD EXPLORATION	3
3.1	SUMMARY	
3.2	DRILLING AND SAMPLING	
3.3	SOIL CONDITIONS	4
3.	2.3.1 Surface Material	
3.	8.3.2 Probable Fill Materials	
3.	2.3.3 Lean Clays and Clays	4
3.	2.3.4 Auger Refusal	5
3.	2.3.5 Bedrock	5
3.	2.3.6 Groundwater Conditions	5
4.0	LABORATORY TESTING AND RESULTS	6
4.1	General	6
4.2	LABORATORY TESTING OF UNDISTURBED (SHELBY) TUBE SAMPLES	6
4.	2.1 Moisture Contents	6
4.	2.2 Engineering Classification Testing	6
4.	4.2.3 Atterberg Limits Tests	6
4.	1.2.4 Unconfined Compression Testing	7
4.	2.2.5 Consolidation Test	
4.3	LABORATORY TESTING OF STANDARD PENETRATION TEST SAMPLES	8
4.	4.3.1 Moisture Contents	9
4.4	ROCK TESTING	9
5.0	ENGINEERING ANALYSIS	10
5.1	General	10
5.2	CORRECTION OF STANDARD PENETRATION TEST DATA	10
5.3	SOIL PARAMETER SELECTIONS	11
5.4	ROCK PARAMETER SELECTIONS	11
5.	5.4.1 Bearing Capacity of Spread Footings on Bedrock	12
5.	5.4.2 Service Limit State	12
5.	5.4.3 Strength Limit State	13
5.5	GLOBAL STABILITY ANALYSIS	13
5.6	SETTLEMENT ANALYSIS	14
6.0	GEOTECHNICAL CONSIDERATIONS	15
6.1	EXISTING FILL MATERIALS	15
6.2	BEDROCK CONDITIONS	15
6.3	Sinkhole Hazards	15
7.0	CONCLUSIONS AND RECOMMENDATIONS	
7.1	APPROACH EMBANKMENT CONSTRUCTION	
7.2	SPREAD FOUNDATION CONSTRUCTION CONSIDERATIONS	

8.0	SEISMIC SITE COEFFICIENT1	9
9.0	CLOSING	0

TABLES

TABLE 1: BRIDGE SUBSTRUCTURE LOCATIONS	. 1
TABLE 2: SUMMARY OF BORINGS	. 3
TABLE 3: SHELBY TUBE ATTERBERG LIMIT TESTS AND CLASSIFICATION	. 7
TABLE 4: SHELBY TUBE UNCONFINED COMPRESSION TEST	. 8
TABLE 5: SHELBY TUBE CONSOLIDATION RESULTS	. 8
TABLE 6: ROCK CORE UNCONFINED COMPRESSIVE STRENGTH	.9
TABLE 7: BRIDGE ELEMENT ELEVATIONS 1	10
TABLE 8: SUMMARY OF ROCK MASS PARAMETERS 1	12
TABLE 9: SUMMARY OF STABILITY ANALYSIS 1	14
TABLE 10: SEISMIC HAZARD CONSIDERATIONS* 1	19

APPENDICES

APPENDIX A:	SITE LOCATION MAPS
APPENDIX B:	CLIENT ADVANCED SITUATION DOCUMENTS
APPENDIX C:	SUBSURFACE DATA SHEET
APPENDIX D:	BORING LOGS
APPENDIX E:	STABILITY SECTION
APPENDIX F:	LABORATORY TESTING RESULTS
APPENDIX G:	ROCK CORE PHOTOS
APPENDIX H:	IDEALIZED SOIL PROFILES
APPENDIX I:	COORDINATE DATA SUBMISSION FORM

Report of Geotechnical Exploration - Bridge Structure Report New Wolf Pen Branch Road Bridge & Temporary Diversion Bridge LSIORBP – Section 4 – KY 841 Louisville, Jefferson County, Kentucky

1.0 LOCATION AND DESCRIPTION

This project consists of new road and bridge construction along Wolf Pen Branch Road as part of the proposed Louisville – Southern Indiana Ohio River Bridges Project (LSIORBP), Section 4, Kentucky State Route 841 approach project in Louisville, Jefferson County, Kentucky. Based on project information provided by H. W. Lochner, KSWA anticipates cuts of up to 40 feet at the intersection of Wolf Pen Branch Road and KY 841. Currently, a KY 841 bridge crosses over Wolf Pen Branch Road; however, project plans indicate that the elevation of KY 841 will be lowered approximately 40 to 45 feet and a new Wolf Pen Branch Road bridge will be constructed over KY 841. In addition, a temporary diversion bridge, to be utilized during construction of the new Wolf Pen Branch Road Bridge, is planned to be located about 86 feet north of the Wolf Pen Branch Road and Springdale Road intersection. Construction of the approach embankments for the Wolf Pen Branch Road bridge will require about 5 feet of fill at the west abutment and about 2 feet of cut at the east abutment and at the Temporary Diversion Bridge, the grading plans at the abutments indicate about 10 to 12 feet of cut.

The proposed New Wolf Pen Branch Road Bridge begins at Station 48+15.35 and ends at Station 51+50.35 along the Wolf Pen Branch Road alignment. The Temporary Diversion Bridge begins at Station 36+72.57 and ends at Station 38+36.09 along the Diversion Number 1 alignment. The substructure locations for the New Wolf Pen Branch Road Bridge and the Temporary Diversion Bridge are shown in Table 1 below.

Element	New Wolf Pen Branch Road - Centerline Station	Temporary Diversion Bridge - Centerline Station
Abutment 1	48+21.02	36+74.28
Pier	50+00.35	N/A
Abutment 2	51+44.68	38+34.38

 Table 1: Bridge Substructure Locations

N/A – Not Applicable

This geotechnical report addresses geotechnical recommendations for the New Wolf Pen Branch Road Bridge and Temporary Diversion Bridge. The geotechnical considerations for New Wolf Pen Branch Road and intersecting streets have been addressed in a separate report.

The proposed project structure, location, and details are illustrated in Appendix A. Documents from the Advanced Situation Folder for this bridge are reproduced in Appendix B. A plan and profile drawing which depicts the layout of the proposed substructure elements and the boring locations is included in Appendix C.

2.0 SITE TOPOGRAPHY AND GEOLOGIC CONDITIONS

The physiographic map of Kentucky indicates that this area is located on the southwestern border of the Outer Bluegrass Region. This region is located in the central portion of the state where Ordovician (and some Silurian and Devonian) age rocks are exposed at the surface. The Outer Bluegrass Region is characterized by deep valleys, with little flat land because the bedrock in this area is mostly composed of interbedded Ordovician limestones and shales that are more easily eroded than the limestones of the Inner Bluegrass Region.

The geologic map of parts of the Jeffersonville, New Albany and Charlestown quadrangles, Kentucky-Indiana, describes much of the local geologic conditions in Louisville. This map indicates that the geology at this location is mainly Sellersburg and Jeffersonville Limestones with a segment on the south end around Springdale Road listed as Louisville Limestone.

Sellersburg Limestone is divided into two parts; the Beechwood Limestone Member and the Silver Creek Limestone Member. The Beechwood Limestone formation consist of light-gray to greenish-gray, weathers to yellowish brown to light olive-gray. The limestone contains coarse to very coarse fossil fragments and in matrix of silt-sized lime mud or very finely crystalline calcite. The Silver Creek Limestone is dolomitic and argillaceous and ranges from olive-gray to light-greenish-gray in color and weathers to yellowish-gray. Bedding is laminated to cross laminated with crypto grained to micro grained particle sizes. The thickness of the Beechwood and Silver Creek Limestones range from 3 to 8 feet and 0 to 7 feet, respectfully, with a total thickness ranging from 3 to 15 feet.

The Jeffersonville Limestone formation is olive-gray, brownish-gray or medium to light-gray in color and weathers to a yellowish brown to light yellowish gray material. A limestone matrix of silt to clay sized lime mud or crystalline calcite containing fine to very coarse fossil fragments and larger whole fossils. The thickness of the Jeffersonville Limestone ranges from 20 to 27 feet. The total thickness of the Sellersburg and Jeffersonville Limestones, range from approximately 23 to 42 feet.

Louisville Limestone is a dolomitic limestone with a yellowish-gray to light-olive- gray color. The limestone is bedded in thin to very thin layers near the upper regions and thick bedded near they base of the section. Formation includes fossils in the finely crystalline limestone structure. The thickness of the Louisville Limestone ranges from approximately 40 to 80 feet.

Waldron Shale is a clay shale with a dark greenish gray color that weathers to a medium to light gray or yellowish gray to grayish yellow silt. The formations include dolomite and pyrite with rare pod-like inclusions as large as 3 feet thick and 6 feet wide of dolomite. The thickness of the Waldron Shale ranges from approximately 8 to 15 feet with an average thickness of about 10 feet.

3.0 FIELD EXPLORATION

3.1 SUMMARY

Drilling and sampling operations were performed by American Engineers Inc. and monitored by KSWA personnel. The borehole locations were staked in the field by Hall Harmon Engineers and then adjusted in the field by KSWA based on utility proximity and site conditions. The drilling was performed during the period between March 16 and 24, 2009. Eight (8) test borings, numbered B-1 through B-8 were drilled at the New Wolf Pen Branch Road Bridge site and two (2) test borings, numbered TB-1 and TB-2 were drilled at the Temporary Diversion Bridge site. The borings were backfilled with auger cuttings and the surface patched with asphalt cold patch material where applicable. Table 2 details the borehole locations and the borehole profiles.

Boring Number	Station/Offset from Center Line	Surface Elevation, ft**	Top of Rock Elevation, ft	Length of Core, ft	Bottom of Boring Elevation, ft
$B-1^{1}$	48+10.5, 18' LT	608.7	591.3	12.2	579.1
$B-2^{1}$	48+19.4, 2' LT	601.5	591.8	13.1	578.7
B-3 ¹	48+28.2, 22' RT	602.0	599.0	19.1	579.9
$B-4^{1}$	49+94.2, 8' LT	611.1	597.5	63.5	534.0
$B-5^1$	50+02.6, 8' RT	612.3	600.5	65.7	534.8
$B-6^1$	51+34.1, 19' LT	616.5	600.0	15.6	584.4
$B-7^{1}$	51+43, 6' LT	618.1	609.1	22.4	586.7
$B-8^{1}$	51+51.9, 13' RT	617.7	605.8	18.7	587.1
$TB-1^2$	36+71, 6' LT	609.0	595.2	16.4	578.8
$TB-2^2$	38+39.4, 6' RT	621.5	595.0	12.8	582.2

Table 2: Summary of Borings

*Location coordinates for each boring can be found in Appendix G on the Coordinate Data Submission Form **Surface elevations estimated based on road profiles at or near soil boring locations

¹⁻Stationing from Wolf Pen Branch Road

²-Stationing from Temporary Diversion Bridge

Borings associated with both the New Wolf Pen Branch Road Bridge and the Temporary Diversion Bridge encountered auger refusal at depths ranging from 3.0 to 26.5 feet with termination depths ranging from 22.1 to 77.5 feet. Rock coring was completed at each boring location.

3.2 DRILLING AND SAMPLING

Drilling, sampling, and testing were conducted in general accordance with methods of KYTC and the American Society for Testing and Materials (ASTM) or other widely accepted geotechnical engineering standards. A description of the procedures used during this exploration is provided in the following paragraphs.

Ten (10) test borings were drilled at the bridge sites. These borings were drilled into the soil with a trackmounted drill rig using 6-in. continuous-flight hollow-stem power augers in accordance with ASTM D1452. The track mounted drill rig was equipped with an automatic hammer.

Relatively undisturbed samples were obtained at various depths in the borings. The undisturbed soil samples were secured by 3-in. thin-walled Shelby tube samplers (ASTM D1587). The tubes were then identified, sealed air-tight from both ends, and transported to our laboratory for general soil testing.

The relative density and consistency of the *in-situ* soils were measured at discrete depth intervals by penetration tests (ASTM D1586). Standard penetration tests were performed by driving a 1.4-in. I.D., 2-in. O.D. split-barrel sampler into the undisturbed soil by means of a 140-lb weight falling 30 in. The penetration resistance (N-value) in terms of blows per foot of penetration was logged. Samples of soil recovered in the penetration spoon were placed in air-tight containers and transported to our laboratory for evaluation and testing.

3.3 SOIL CONDITIONS

3.3.1 Surface Material

Test Borings B-1, B-6, TB-1 and TB-2 encountered approximately 7 to 12 inches of topsoil and organics. Test Borings B-2 through B-5, B-7 and B-8 encountered approximately 4 to 12 inches of asphalt underlain by 4 to 8 inches of limestone basestone.

3.3.2 Probable Fill Materials

Beneath the surface materials at Test Boring B-5, probable fill materials were encountered to a depth of approximately 3.1 feet. The probable fill material consisted of low plasticity lean clays with limestone gravel. The index-penetration strength test value was 3.5 tons per square foot (tsf).

3.3.3 Lean Clays and Clays

Underlying the fill materials and surface materials, the test borings encountered mostly residuum soils consisting of low and highly plastic clays. The highly plastic clays were encountered beneath the lean clays at Test Borings B-1, B-4, B-5, B-6, B-8, TB-1 and TB-2 at depths ranging from about 4 to 19.5 feet, extending to refusal depths. These soils extended to refusal depths ranging from about 3.0 to 26.5 feet. Index-penetration strength test values ranged between 0.75 and over 4.5 tsf suggesting a firm to hard consistency.

3.3.4 Auger Refusal

Auger refusal conditions were encountered in all of the Test Borings at depths ranging from about 3.0 to 26.5 feet. Refusal conditions varied widely across the site over relatively short distances suggesting that the underlying bedrock is pinnacled with crevices and mounds and valleys. As an example, Test Boring B-1 at abutment 1 encountered auger refusal conditions at approximately 17.4 feet and Test Boring B-3, located about 35 feet south of Test Boring B-1, encountered auger refusal conditions at approximately 3 feet.

Refusal is a designation applied to any material that cannot be penetrated by the power auger and is normally indicative of a very hard or very dense material, such as large boulders or the upper surface of bedrock. In an area of limestone bedrock, refusal can result on slabs of unweathered bedrock suspended in the soil matrix, on rock pinnacles extending above the surrounding bedrock surface, or the upper surface of continuous bedrock.

3.3.5 Bedrock

Rock coring was performed in all of the test borings. The rock core samples consisted of a Rock Disintegration Zone (RDZ), hard, fine to coarse grained, fossiliferious, grey limestone and grey shale. A RDZ layer was encountered in each boring in the upper 2 to 4 feet of the rock cores. The grey shale was encountered at Test Borings B-4 and B-5 at depths of about 69.6 (Elev. 541.5 ft) and 70 feet (Elev. 542.3 ft), respectively, extending to the end of coring depth. Rock recovery ranged between 58 and 100 percent and the Rock Quality Designation (RQD) ranged between 0 and 100 percent indicating a very poor to excellent rock from an engineering standpoint.

3.3.6 Groundwater Conditions

Groundwater measurements were made in the test borings during drilling and at the completion of drilling. Groundwater was not observed in the test borings at the time of drilling or after drilling. At the time of our investigation, the groundwater levels at this site appear to have been below our boring depths, although isolated perched conditions may have existed. Groundwater levels will differ depending on the time of year, climatic conditions and the degree of construction activities.

4.0 LABORATORY TESTING AND RESULTS

4.1 GENERAL

Laboratory tests were performed in accordance with applicable AASHTO or Kentucky Methods of soil testing specifications. The results of the laboratory tests are depicted graphically on the Subsurface Data Sheets presented in Appendix C. Individual laboratory test results are presented in Appendix F.

The test results were used to establish material properties and utilized in subsequent engineering analysis to evaluate foundation alternatives and their respective installation processes.

Undisturbed samples were collected at random depths within the borings. Split spoon sampling continued in cohesionless material (sands and gravel). The testing presented is split into undisturbed and split spoon sampling

4.2 LABORATORY TESTING OF UNDISTURBED (SHELBY) TUBE SAMPLES

Undisturbed (Shelby) tube samples were obtained from each of the borings. Each of the samples was extruded and selected samples were tested. Results are presented on Subsurface Data Sheets in Appendix C.

4.2.1 Moisture Contents

Moisture contest testing was performed on the Shelby tube samples obtained from the borings. The results varied from 18.5 percent to 39.8 percent with an average of approximately 26.5 percent.

4.2.2 Engineering Classification Testing

Classification testing was performed on each of the Shelby tube samples. The samples were classified according to the Unified Soil Classification System (USCS) and the American Association of State Highway and Transportation Officials (AASHTO) guidelines. The classification results from the Shelby tube samples generally indicated the soils were Clay and Silt consistency with low to high plasticity (CL, CH, ML and MH).

4.2.3 Atterberg Limits Tests

Atterberg limits testing were performed on eight borings for the New Wolf Pen Branch Road Bridge and labeled Borings B-1 through B-8 and two borings for the Temporary Diversion Bridge labeled TB-1 and TB-2. Results from those tests are presented in Table 3 on the following page.

Table 3: Sneldy Tube Atterderg Limit Tests and Classification							
Boring No.	Sample No.	Depth (ft)	Liquid Limit	Plastic Limit	Plasticity Index	USCS Classification	AASHTO Classification
B-1	ST-1	2.0-4.0	33	22	11	CL	A-6
B-1	ST-2	4.0-6.0	34	21	13	CL	A-6
B-1	ST-4	9.0-11.0	61	30	31	СН	A-7-5
B-1	ST-5	14.0-16.0	73	34	39	СН	A-7-5
B-2	ST-2	4.0-6.0	35	21	14	CL	A-6
В-3	ST-1	2.0-2.5	39	18	21	CL	A-6
B-4	ST-1	2.0-4.0	48	25	23	CL	A-7-6
B-4	ST-2	4.0-6.0	73	29	44	СН	A-7-6
B-4	ST-4	9.0-11.0	67	29	38	СН	A-7-6
B-5	ST-1	2.0-4.0	42	21	21	CL	A-7-6
B-5	ST-2	4.0-6.0	59	30	29	СН	A-7-5
B-5	ST-3	7.0-9.0	54	26	28	СН	A-7-6
B-5	ST-4	9.0-10.5	56	27	29	СН	A-7-6
B-6	ST-1	2.0-4.0	34	21	13	CL	A-6
B-6	ST-2	4.0-6.0	32	21	11	CL	A-6
B-6	ST-3	7.0-9.0	37	22	15	CL	A-6
B-7	ST-1	2.0-4.0	35	20	15	CL	A-6
B-7	ST-3	6.0-6.75	42	21	21	CL	A-7-6
B-8	ST-1	2.0-4.0	29	20	9	CL	A-4
B-8	ST-2	4.0-6.0	36	21	15	CL	A-6
B-8	ST-3	7.0-9.0	59	29	30	СН	A-7-6
B-8	ST-4	9.0-11.0	67	29	38	СН	A-7-6
TB-2	ST-1	2.5-4.5	29	22	7	CL-ML	A-4
TB-2	ST-2	4.5-6.5	31	19	12	CL	A-6
TB-2	ST-4	9.5-11.5	46	23	23	CL	A-7-6
TB-2	ST-6	19.5-21.5	69	32	37	СН	A-7-5
TB-2	ST-7	25.5-26.7	56	27	29	СН	A-7-6

 Table 3: Shelby Tube Atterberg Limit Tests and Classification

4.2.4 Unconfined Compression Testing

Fifteen unconfined compression tests were performed on the Shelby tube samples. The results are as follows in Table 4 on the next page.

Table 4: Sheldy Tube Uncommed Compression Test							
Boring No.	Sample No.	Depth (ft)	Unconfined Compression				
B-1	ST-2	4.0-6.0	3.1 ksf				
B-1	ST-5	14.0-16.0	3.1 ksf				
B-2	ST-3	7.0-9.0	2.4 ksf				
B-4	ST-2	4.0-6.0	5.1 ksf				
B-4	ST-4	9.0-11.0	5.5 ksf				
B-5	ST-2	4.0-6.0	4.7 ksf				
B-5	ST-3	7.0-9.0	2.3 ksf				
B-6	ST-1	2.5-4.5	3.4 ksf				
B-6	ST-4	5.0-7.0	2.2 ksf				
B-7	ST-2	4.0-6.0	2.7 ksf				
B-8	ST-2	4.0-6.0	3.4 ksf				
B-8	ST-4	9.0-11.0	5.2 ksf				
TB-1	ST-3	7.0-9.0	4.3 ksf				
TB-2	ST-2	4.5-6.5	3.0 ksf				
TB-2	ST-7	24.5-26.5	4.3 ksf				

 Table 4: Shelby Tube Unconfined Compression Test

4.2.5 Consolidation Test

Two consolidation tests were performed: one from Boring B-1, Sample ST-2 and one from Boring TB-1, Sample ST-2. The results are shown below in Table 5:

Tuble 5. Shenby Tuble Consonauton Results						
Boring Number	Sample Number	Sample Depth	Initial Void Ratio	Compressibility Index	Recompression Index	
		(f t)	eo	(C _c)	(C _r)	
B-1	ST-2	4.0-6.0	0.568	0.035	0.0033	
TB-1	ST-2	4.0-6.0	0.639	0.040	0.0033	

Table 5: Shelby Tube Consolidation Results

4.3 LABORATORY TESTING OF STANDARD PENETRATION TEST SAMPLES

Standard Penetration Tests (SPT) were generally performed in sample borings where sand was encountered or the previous Shelby tube sample did not recover significant material. The split spoon samples collected generally encountered brown, poorly graded, fine to coarse grained sand, with trace amounts of river gravel.

A total of 4 split spoon samples were collected. Selected samples were tested for moisture content. Results are presented on the Subsurface Data Sheets in Appendix C.

4.3.1 Moisture Contents

Moisture contest testing was performed on the SPT samples obtained from the borings. The results varied from 38.4 percent to 48.8 percent with an average of approximately 42.8 percent.

4.4 ROCK TESTING

All the borings encountered bedrock and were cored to various depths depending on bearing elevations. Unconfined compressive testing was performed on rock cores at approximately bearing elevations depths as well as areas where more brittle rock was encountered. Unconfined Compressive test results are listed below in Table 6.

Boring No.	Sample No.	Depth (ft)	Unconfined Compressive Strength
B-1	CORE-1	18.0-18.4	8,840 psi
B-2	CORE-2	13.5-13.9	9,580 psi
B-3	CORE-2	11.6-12.0	10,350 psi
B-4	CORE-9	57.0-57.4	9,840 psi
B-4	CORE-13	75.5-75.9	3,670 psi
B-5	CORE-11	58.5-58.9	15,150 psi
B-5	CORE-14	72.8-73.2	4,520 psi
B-6	CORE-2	20.5-20.9	8,140 psi
B-7	CORE-2	16.0-16.4	8,779 psi
B-8	CORE-2	20.5-20.9	10,812 psi
TB-1	CORE-2	17.5-17.9	9,146 psi
TB-2	CORE-1	27.1-27.5	11,786 psi

Table 6: Rock Core Unconfined Compressive Strength

5.0 ENGINEERING ANALYSIS

5.1 GENERAL

It is our understanding that the new Wolf Pen Branch Road Bridge will include two approach abutments and one pier group for support. The Temporary Diversion Bridge will consist of a single span bridge. The proposed foundations for both bridges are spread footings supporting an abutment stem wall founded on competent bedrock.

Based on the Advanced Situation Folder for this bridge, the foundation elevations for both the new Wolf Pen Branch Road Bridge and the Temporary Diversion Bridge are in Table 7 below.

Table 7. Druge Element Elevations					
New Wolf Pen Branch Road Bridge					
Bridge Element	Foundation Elevation, ft	Ground Surface Elevation, ft			
Abutment 1	591	602			
Pier	555	612			
Abutment 2	598	617			
Temporary Diversion Bridge					
Bridge Element	Foundation Elevation, ft	Ground Surface Elevation, ft			
Abutment 1	590	609			
Abutment 2	593	621			

Table 7: Bridge Element Elevations

The engineering analyses shown are based on this premise and the laboratory data presented. Idealized soil profiles are presented in Appendix H.

KYTC has requested that the proposed project be designed using the AASHTO Load and Resistance Factor Design (LRFD). LRFD is "a reliability-based design methodology in which force effects caused by factored loads are not permitted to exceed the factored resistance of the components." LRFD utilizes load and resistance factors to account for unknowns in loads and load resistance of structural members in lieu of using a Factor of Safety to account for unknowns. The resistance factors of LRFD design were developed using either statistical analysis of load tests together with reliability theory, fitting to allowable stress design (ASD), or both.

5.2 CORRECTION OF STANDARD PENETRATION TEST DATA

Split spoon samples were collected where undisturbed samples provided little recovery. Split spoon samples also provided blow counts (N-values) through soils as a general indicator of the soil strengths.

American Engineers Incorporated (AEI) provided drill rig equipment for the borings including automatic hammer samplers. The automatic hammers were tested and reported to be 80 percent efficient. The generally accepted efficiency of a rope and cathead sampler system on a rig is 60 percent.

The LRFD Bridge Design Specifications (Section 10.4.6.2) indicate that where SPT N-values are used to estimate the shear strength of granular soils, the N-values are corrected for both the estimated efficiency of the sampler system and the effects of the overburden pressure. Granular soils were not encountered within the borings which would require a correction for N-values or overburden pressures.

5.3 SOIL PARAMETER SELECTIONS

KSWA derived subsurface characterizations for the foundation soils along the bridge alignment based upon the results of the drilling and sampling program discussed in Section 3 of this report and the laboratory testing addressed in Section 4. The division of soil horizons was based on visual soil descriptions and laboratory classification data associated with the borings.

A Geotechnical Engineer derived estimated soil parameters for each soil horizon. Strength and settlement parameters for the cohesive materials were estimated based on the results of laboratory classification and unconfined compressive strength. The parameters derived for the cohesive materials are representative of lean and high plasticity clay soils and are typical of clay soils found in this region of the state. Idealized soil profiles are presented in Appendix H.

5.4 **ROCK PARAMETER SELECTIONS**

KSWA developed rock parameters for bearing capacity for service and strength limit design. The service limit design values are based on typical correlations for a particular bedrock type. The strength limit design uses subsurface characterizations for the underlying limestone and shale bedrock based on the results of the drilling and sampling program discussed in Section 3 of this report and the laboratory testing addressed in Section 4.

Strength and deformation characteristics of bedrock is highly dependent upon the frequency, orientation and condition (weathered versus unweathered) of joints of discontinuities in the rock mass. Therefore, strengths obtained from laboratory testing of intact specimens should be tempered with observation and assessments of the rock mass or core obtained from the field exploration. Sections 10.4.6.4 and 10.4.6.5 of the AASHTO LRFD Design Specifications outline procedures for determination of a Rock Mass Rating (RMR) and development of strength and deformation parameters based on lab testing and visual assessments of the rock mass or representative samples.

Using these procedures, a Geotechnical Engineer can derive strength and deformation parameters for the bedrock mass at the bridge site based on the results of unconfined compression testing of intact rock core specimens and observations of the rock samples obtained from coring operations. As discussed in

Section 4.4 of this report, the unconfined compressive strengths obtained from testing of intact rock specimens range from 264 to 1090 tsf (528 to 2,180 ksf). KSWA selected a design value of 635 tsf (1,270 ksf) for development of strength of deformation parameters of the rock mass. The design value was selected such that two-thirds of the compressive test results at the proposed bearing elevations were equal to or greater than the design value. Table 8 summarizes the bedrock mass parameters derived for the subject bridge structures.

Table 8: Summary of Rock Mass Parameters							
Rock Mass Parameter	Symbol	Design Value					
Wet Density	$\gamma_{ m rock}$	165.0 pcf					
Unconfined Compressive Strength	\mathbf{q}_{ui}	1,270 ksf					
Shear Strength of Rock Mass	τ	81.2 ksf					
Elastic Modulus of Intact Rock	Ei	5,700 ksi					
Elastic Modulus of Bedrock Mass	E _m	4,275 ksi					
Poisson's Ratio	v	0.23					
Shear Modulus	G _m	1,734 ksi					

It should be noted that the rock mass parameters outlined above are applicable for limestone bedrock at the bridge sites below the weathered zone and voids observed during drilling operations.

5.4.1 Bearing Capacity of Spread Footings on Bedrock

Based on our understanding of the proposed abutment and pier locations and the subsurface information, we expect the bridge abutment and piers will be supported by spread foundations bearing on bedrock. Bedrock conditions were encountered at depths ranging from about 3.0 and 26.5 feet. Due to the highly to moderately weathered and fractured condition of the bedrock encountered in the upper 2 to 4 feet at most borings, spread foundations will be required to extend to a depth of up to about 4 feet into the bedrock to achieve suitable bearing resistance.

5.4.2 Service Limit State

KSWA has estimated a presumptive bearing resistance for the service limit state from Table C10.6.2.6.1-1 of the AASHTO LRFD Bridge Design Specifications, Fourth Edition. Based on the average RQD value and rock classification, the limestone bedrock should have a presumptive bearing resistance of 219,000 pounds per square foot (psf), below all moderately to highly weathered and fractured bedrock zones. The joint spacing within the limestone at this bridge location is about 3 to 10 feet. Therefore, the presumptive bearing pressure should be reduced by one-quarter. Based on this information, the allowable bearing capacity for the limestone at this site is estimated to be about 50,000 psf. Section 10.6.2.6.2 indicates that where the presumptive bearing resistance exceeds either the unconfined compression strength of the rock or the nominal resistance of concrete, the lesser of these two should control. In this case, the average unconfined compressive strength of the rock is 1,327 ksf and the nominal resistance of concrete is 576 ksf (4000 psi concrete) are both greater than the recommended rock bearing resistance of 50 ksf.

The recommended bearing resistance is based on a limited foundation settlement of less than one inch and should only be applied at the service limit state. The design of spread footings is frequently controlled by movement at the service limit state. Therefore, it is usually advantageous to proportion spread footings at the service limit state and check for adequate design at the strength and extreme limit states.

5.4.3 Strength Limit State

Based upon the information derived from drilling, sampling, and laboratory testing operations conducted for the subject bridge structures, KSWA has derived nominal bearing estimates for the underlying limestone bedrock. Section 10.6.3.2 of the AASHTO LRFD Bridge Design Specifications, Fourth Edition, provides recommendations for the development of nominal bearing resistance (q_n) using semiempirical or analytical procedures. KSWA derived the nominal bearing resistance of the limestone bedrock mass using Federal Highway Administration (FHWA) and LRFD methods based on the unconfined compressive strength of intact rock samples, and visual assessments of rock samples obtained from coring operations. An unconfined compressive strength of 635 tsf (1270 ksf) yields a nominal end bearing resistance on the order of 205 tsf (410 ksf) for the limestone bedrock below the weathered zone and voids observed during drilling operations.

This project will be designed using the Load and Resistance Factor Design (LRFD) methodology. LRFD is a design approach in which applicable failure and serviceability conditions can be evaluated considering the uncertainties associated with loads and materials resistances. This design methodology incorporates the sue of load factors and resistance factors to account for uncertainty in applied loads and load resistance of structure elements separately in contrast to the Factor of Safety traditionally applied only to the resistances in Allowable Stress Design (ASD) methodology. Selection of the resistance factors account for the type of loading (axial compression versus uplift) and the variability and reliability of models or methodologies used to determine nominal resistance (R_n) capacities. Table 10.5.5.2.2-1 in the AASHTO LRFD Bridge Design Specifications, Fourth Edition recommends a resistance factor (ϕ_b) of 0.45 for shallow foundations bearing on rock. Therefore, the factored bearing capacity for spread footings bearing on bedrock at the bridge site is 92 tsf (184 ksf).

5.5 GLOBAL STABILITY ANALYSIS

The factor of safety against rotational failure for the bridge abutment was determined using the Simplified Bishop Method of the STABL for Windows computer software. The soil parameters input for this program were obtained from our laboratory testing and estimated parameters based on unconfined compressive testing, SPT N-values and soil classification. Global stability analysis was performed for both short term and long term conditions. The KYTC Geotechnical Manual recommends minimum factors of safety of 1.2 and 1.6 for short term and long term analysis, respectively. Short term analysis included little to no cohesive intercept for soft clays and silts (flooded or rapid draw down conditions) and the water table at the 100 year flood level of 450.1 feet. Long term analysis included higher cohesive intercepts and Phi angles for clays and the water table at approximately 420 feet. Our analyses results of the abutments are listed below in Table 9.

New Wolf	Pen Branch Br	<u> </u>							
Structure Station	Long Term	Short Term							
48+15.35	4.6	1.4							
51+50.35	4.2	1.4							
Temporal	ry Diversion Br	idge							
Structure Station	Long Term	Short Term							
36+72.57 23.5 4.9									
20 / 2.0 /									

Table 9: Summary of Stability Analysis

Based on the plans provided, the abutments at the Wolf Pen Branch Road Bridge will be constructed as a stem wall. The Temporary Diversion Bridge plans indicate the abutment will have a 2.5(H):1(V) spill-thru slope. The above analyses were based on these configurations. The short and long term values meet or exceed the KYTC target factor of safety values of 1.6 to 1.8 for long term and 1.2 to 1.4 for short term. The results of the stability analysis are depicted graphically on the Stability Analysis Sheets presented in Appendix E.

5.6 SETTLEMENT ANALYSIS

Construction of the approach embankments for the Wolf Pen Branch Road bridge will require about 5 feet of fill at the west abutment and about 2 feet of cut at the east abutment and at the Temporary Diversion Bridge, the grading plans at the abutments indicate about 10 to 12 feet of cut. KSWA anticipates that should fill placement follow KYTC guidelines for placement and compaction, tolerable settlements will occur, with 40 to 60 percent occurring during construction. The settlement analyses indicate that the clay foundation materials at the west abutment, where up to 5 feet of fills will be required, may experience settlement on the order of less than 1 inch.

6.0 GEOTECHNICAL CONSIDERATIONS

6.1 EXISTING FILL MATERIALS

Existing fill materials were encountered in Test Boring B-5 beneath the ground surface to a depth of about 3.1 feet. The evidence of fill in this area included a mixture of limestone gravel and lean clay soils. Existing fill materials may also be present in other areas not investigated, outside of our test boring locations. The samples obtained appeared relatively free of deleterious material. However, information pertaining to the age, placement and compaction of the fill was not available.

6.2 **BEDROCK CONDITIONS**

Auger refusal conditions were encountered at the test boring locations at elevations ranging from about 591.3 to 609.1 feet above MSL. Based on the boring information, the bedrock surface appears to vary greatly with highs and lows. As an example, Test Borings B-2 and B-3 (separated by about 20 feet) encountered refusal conditions at approximately 591.3 and 599.0 feet above MSL, respectively. As with Test Borings B-6 and B-7 (separated by about 15 feet) encountered refusal conditions at approximately 600.0 and 600.9 feet above MSL, respectively. This illustration is a prime example of a typical karstic landform with relatively large bedrock surface elevation differences over short distances. As previously indicated, RDZ consisting of highly weathered and fractured limestone zones with some voids/soil seams were identified in all of the test borings. The proposed bridge foundations should extend beneath these zones and be founded on competent limestone bedrock.

6.3 SINKHOLE HAZARDS

As previously discussed, the project site is underlain by limestone bedrock that is susceptible to solutioning and karst activity. The depressions and sinkholes in the Louisville, Kentucky area, typically being along fissures, joints or bedding planes and creates channel systems within the bedrock. Generally, ground water flows through these rock channels and removes soil located immediately above the rock line. Ultimately, this process can cause a collapse of the overlying limestone or soil overburden, resulting in a sinkhole. The sinkhole can then allow surface runoff to enter the subsurface passage, further enlarging the sinkhole. The conditions noted on this site are not indicative of an extremely karst region prone to catastrophic sinkhole collapse. Our site reconnaissance did not identify on-site sinkholes at the site or suspect depressions on-site.

The present state-of-the-art of Geotechnical Engineering does not permit accurate prediction of where or when sinkholes will occur. Site grading should be established to provide positive drainage both during and after construction so as to minimize the potential for future sinkhole development. During construction the grading contractor should be alert to any indication of possible sinkhole activity. Any sink features encountered during the site grading should be repaired under the direction of the Geotechnical Engineer.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The design recommendations contained in this report section were developed in consideration of the project information detailed in Section 1.0 of this report. If the information contained in Section 1.0 has been revised, we recommend KSWA be contacted to confirm that our foundation design and construction recommendations are appropriate in consideration of the new available information. The following sections provide recommendations for Spread Foundations.

This project will be designed using the Load and Resistance Factor Design (LRFD) methodology. LRFD is a design approach in which applicable failure and serviceability conditions can be evaluated considering the uncertainties associated with loads and materials resistances. This design methodology incorporates the use of load factors and resistance factors to account for uncertainty in applied loads and load resistance of structure elements separately in contrast to the Factor of Safety traditionally applied only to the resistances in Allowable Stress Design (ASD) methodology.

7.1 APPROACH EMBANKMENT CONSTRUCTION

7.1.1 Based on the drawings downloaded from the Projectwise - KTA website, the Wolf Pen Branch Road Bridge abutments are shown as a stem wall abutment. At the writing of this report, a borrow source for embankment material has not been identified. It is recommended that borrow material to be used for embankment construction meet the following minimum strength parameters.

Embankme	ent Material	Retain	ed Fill
Total Stress	Effective Stress	Total Stress	Effective Stress
c = 1400 psf	c'=200 psf	c = 1400 psf	c'=170 psf
$\phi = 0^{\circ}$	$-\phi = 23^{\circ}$	$\phi = 0^{\circ}$	$-\phi = 27^{\circ}$
$\gamma = 120 \text{ pcf}$			

The retained fill material shall be placed in the entire area between the wall and a 1:1 (H:V) line sloping upward and away from the base of the wall to the top of the wall. Non-durable shales and fat clays (USCS classification of CH) should specifically be excluded from use within this zone. The Contractor shall perform laboratory testing to confirm that the minimum total stress and effective stress strength parameters are equal to or greater than the above values per material type for each borrow area. The test results shall be submitted to the Engineer for approval.

7.1.2. Backfill behind the wall can consist of retained fill as noted above or non-erodible granular embankment. Coefficients of active earth pressure (K_a) were determined based on Coulomb earth pressure theory using phi angles of 27 and 38 degrees, a vertical back of wall, and friction angles between the back of the wall and backfill of 17 and 29 degrees. Based on a unit weight of 120 pounds per cubic foot for the backfill material, the following equivalent fluid pressures are applicable:

	Retained F	ill ($\varphi = 27^\circ$)	Granular Emba	nkment ($\phi = 38^\circ$)
	Coefficient of	Equivalent	Coefficient of	Equivalent
Slope of Backfill	Active Earth Pressure (Ka)	Fluid Pressure Per Linear Foot	Active Earth Pressure (Ka)	Fluid Pressure Per Linear Foot
Level	0.335	40 psf	0.218	26 psf
3:1 (H:V)	0.464	56 psf	0.274	33 psf
2:1 (H:V)	0.714	86 psf	0.323	39 psf

Drainage systems consisting of free draining material and filter fabric shall be placed directly behind the wall and be minimum thickness of two feet. Use of filter fabric will help reduce the infiltration of fines into the granular material behind the wall and help reduce clogging of the drainage system. In addition, weep holes should also be provided in the design of the walls. If drainage system is not provided, the design should incorporate full hydrostatic forces behind the wall.

7.1.3. Construction of the approach embankments for the Wolf Pen Branch Road bridge will require about 5 feet of fill at the west abutment and about 2 feet of cut at the east abutment and at the Temporary Diversion Bridge, the grading plans at the abutments indicate about 10 to 12 feet of cut. The subsurface exploration program indicates the foundation soils at the abutment locations consist of approximately 3 to 26 feet of clay foundation soils. The settlement analyses presented in Section 5.6 of this report indicate that the clay foundation materials at the west abutment, where up to 5 feet of fills will be required, may experience settlement on the order of less than 1 inch.

7.2 SPREAD FOUNDATION CONSTRUCTION CONSIDERATIONS

Proper foundation construction procedures may enhance long-term foundation performance. KSWA foundation construction recommendations for spread foundations are detailed below:

• Lateral capacity analyses for foundation elements were beyond the scope of services and have not been conducted. KSWA recommends the Designer use the following bedrock material properties for subsequent lateral load studies, as necessary.

Summary of Kock Mass Faran	neters for Latera	Load Studies
Rock Mass Parameter	Symbol	Design Value
Wet Density	γ_{rock}	165.0 pcf
Unconfined Compressive Strength	q_{ui}	1,270 ksf
Shear Strength of Rock Mass	τ	81.2 ksf
Elastic Modulus of Intact Rock	Ei	5,700 ksi
Elastic Modulus of Bedrock Mass	E _m	4,275 ksi
Poisson's Ratio	v	0.23
Shear Modulus	G _m	1,734 ksi

Summary of Rock Mass Parameters for Lateral Load Studies

• Cavities and crevices that are exposed at the bedrock surface should be cleaned of soil and weathered rock and then sealed with concrete before construction foundation is initiated. In

addition, soil exposed in the rock cut area should be undercut to rock and backfilled to the proposed footing subgrade elevation with concrete.

- Foundation support materials that degrade as a result of exposure should be removed from the foundation bearing area prior to concrete placement.
- Foundations should be individually observed by a Geotechnical Engineer to determine the suitability of the bearing material. The observations should be completed prior to placement of steel reinforcement or concrete in the opened excavations. The bottom of each foundation should be level, cleared of loose material or other extraneous matter and dewatered before it is inspected. Inspections should include probing small-diameter test holes to determine the hardness and continuity of the bearing material. Test holes should be installed in the bottom of each foundation to a minimum depth of 6 feet. Additional test holes may be required by the inspector to adequately evaluate the quality of the underlying material.
- The foundation bearing area should be level or suitably benched. The toe of the foundations should also be at a minimum distance of 10 feet from the face of the rock cut.
- KSWA estimates that foundation settlement will be less than 1/4 inch. This settlement should occur during construction of the bridge. The Contractor should be prepared to accommodate this settlement during construction.

8.0 SEISMIC SITE COEFFICIENT

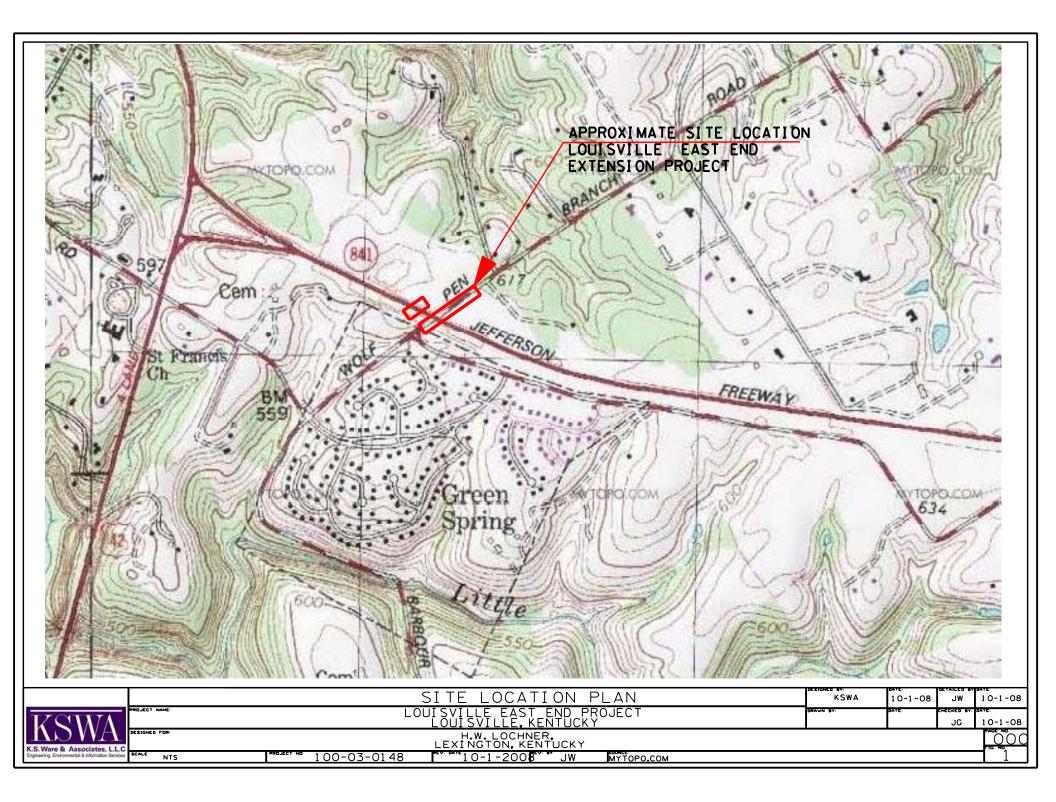
The AASHTO LRFD Bridge Design Specifications, Fourth Edition with the 2008 Interim Revisions provided guidelines for determining the seismic hazard at a bridge site. The seismic hazard for a bridge site is characterized by the acceleration response spectrum and the site factors for the relevant site classification. Based on the results of the drilling and subsequent laboratory testing program, the soil profile in the vicinity of the Wolf Pen Branch Road Bridge and Temporary Diversion Bridge structures should be classified as site classification B. Table 10 presents a summary of the seismic hazard coefficients and the site factors.

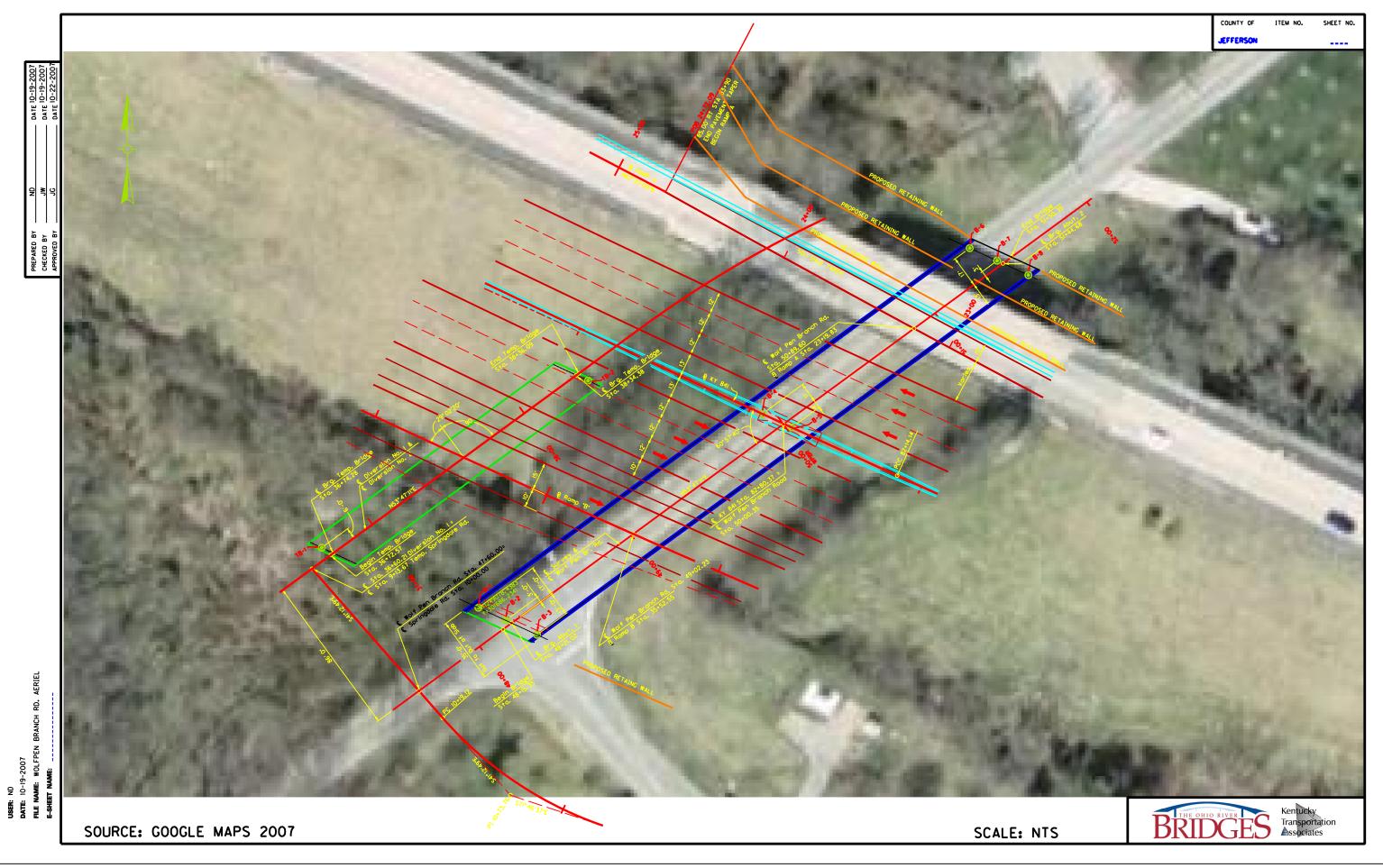
Acceleration Response Spectro	um
Peak Ground Acceleration (PGA)	0.061
Short Period Spectral Acceleration Coefficients (S _S)	0.146
Long Period Spectral Acceleration Coefficients (S ₁)	0.060
Site Factors	
Factor at Peak Ground Acceleration Coefficient (Fpga)	1.0
Factor at Short Period Range of Acceleration Spectrum (F _a)	1.0
Factor at Long Period Range of Acceleration Spectrum (F_v)	1.0

Table 10: Seismic Hazard Considerations*

*Based on 2007 U.S. Geological Survey mapping included in AASHTO LRFD Bridge Design Specifications, Fourth Edition with 2008 Interim Revisions, Sections 3.10.2.

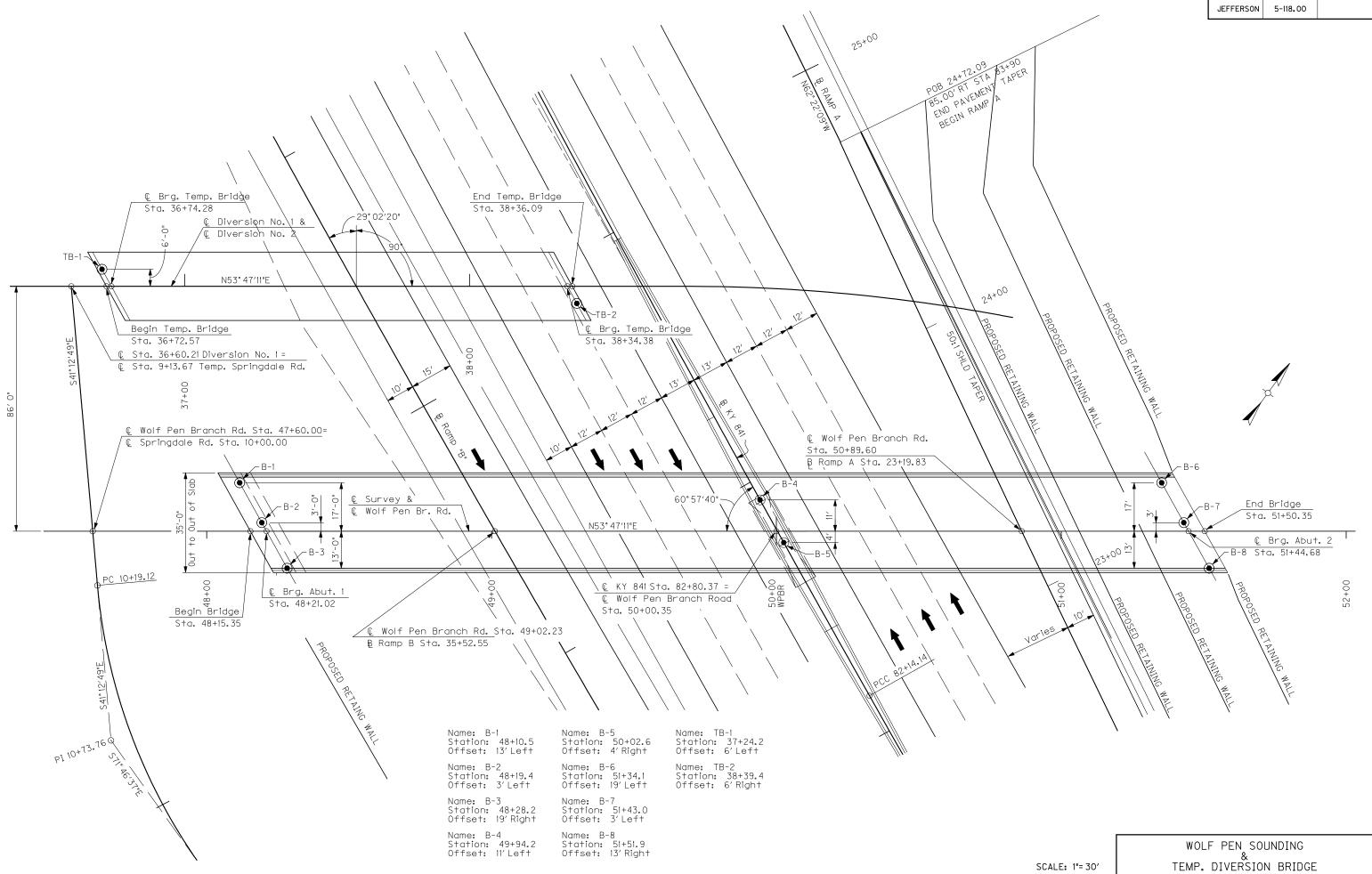
Based on the coefficients and factors in Table 10 above, the bridge site classifies as Seismic Performance Zone 1, with a 93 percent probability of not being exceeded in 75 years. It is recommended that the structure be designed based on AASHTO LRFD Bridge Design Specifications, Fourth Edition with 2008 Interim Revisions Sections 3.10.9 and 4.7.4 (for seismic) specifications. Further analyses were beyond the scope of KSWA's work for this project.


9.0 CLOSING


- General soil descriptions and indicated boundaries are based on an engineering interpretation of all available subsurface information and may not necessarily reflect the actual variation in subsurface conditions between borings and samples. Collected data and field interpretation of conditions encountered in individual borings are shown on the attached Subsurface Data Sheets.
- The observed water levels and/or conditions indicated on the boring logs are as recorded at the time of exploration. These water levels and/or conditions may vary considerably, with time, according to the prevailing climate, rainfall or other factors and are otherwise dependent on the duration of and methods used in the exploration program
- Sound engineering judgment was exercised in preparing the subsurface information presented herein. This information was prepared and is intended for design and estimating purposes. Its presentation on the plans or elsewhere is for the purpose of providing intended users with access to the same information available to the KYTC. This subsurface information interpretation is presented in good faith and is not intended as a substitute for personal investigations, independent interpretations or judgments of the Contractor.

All structure details shown herein are for illustrative purposes only and may not be indicative of the final design conditions shown in the contract plans.

APPENDIX A:


SITE LOCATION MAPS

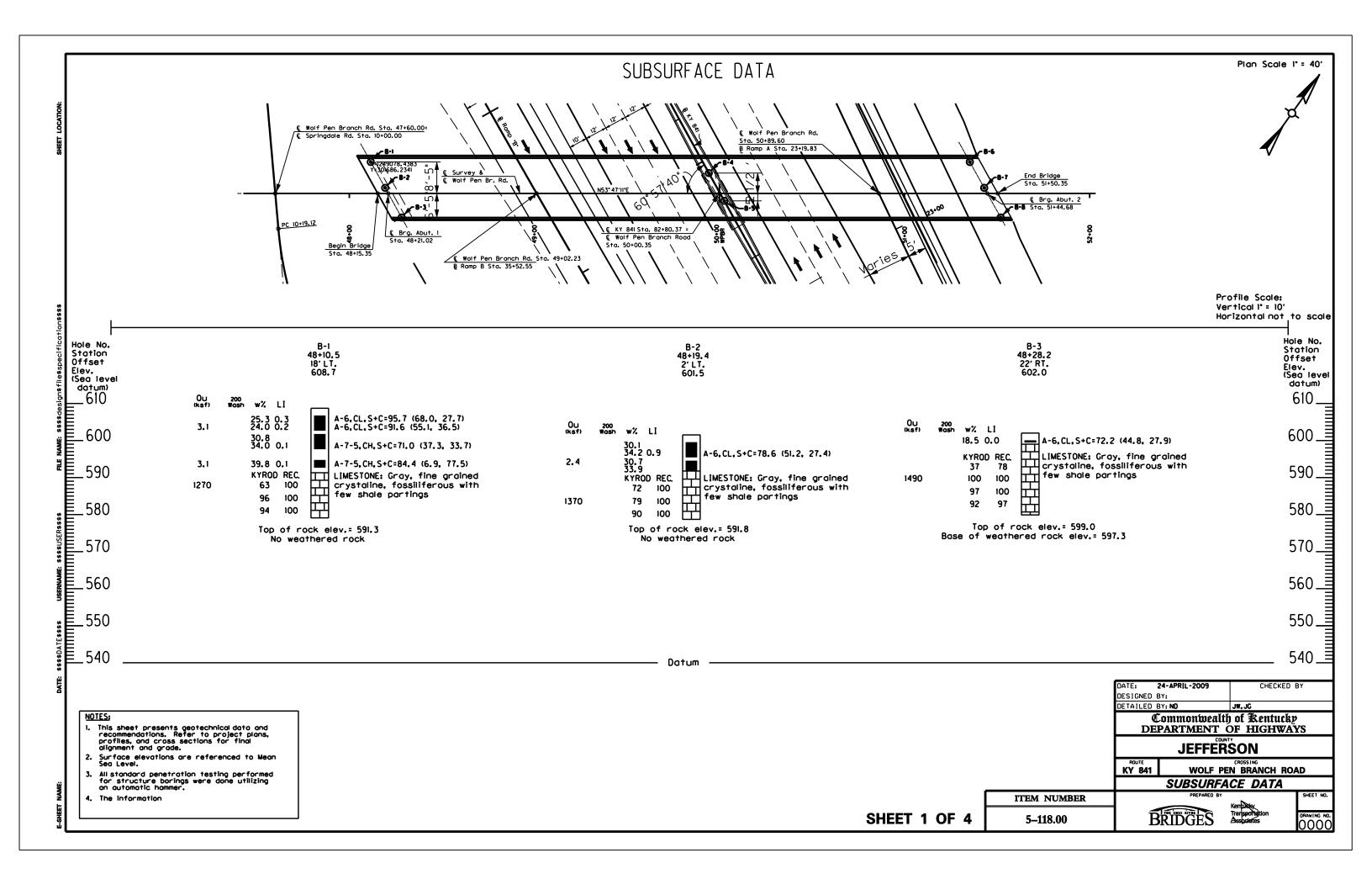
APPENDIX B:

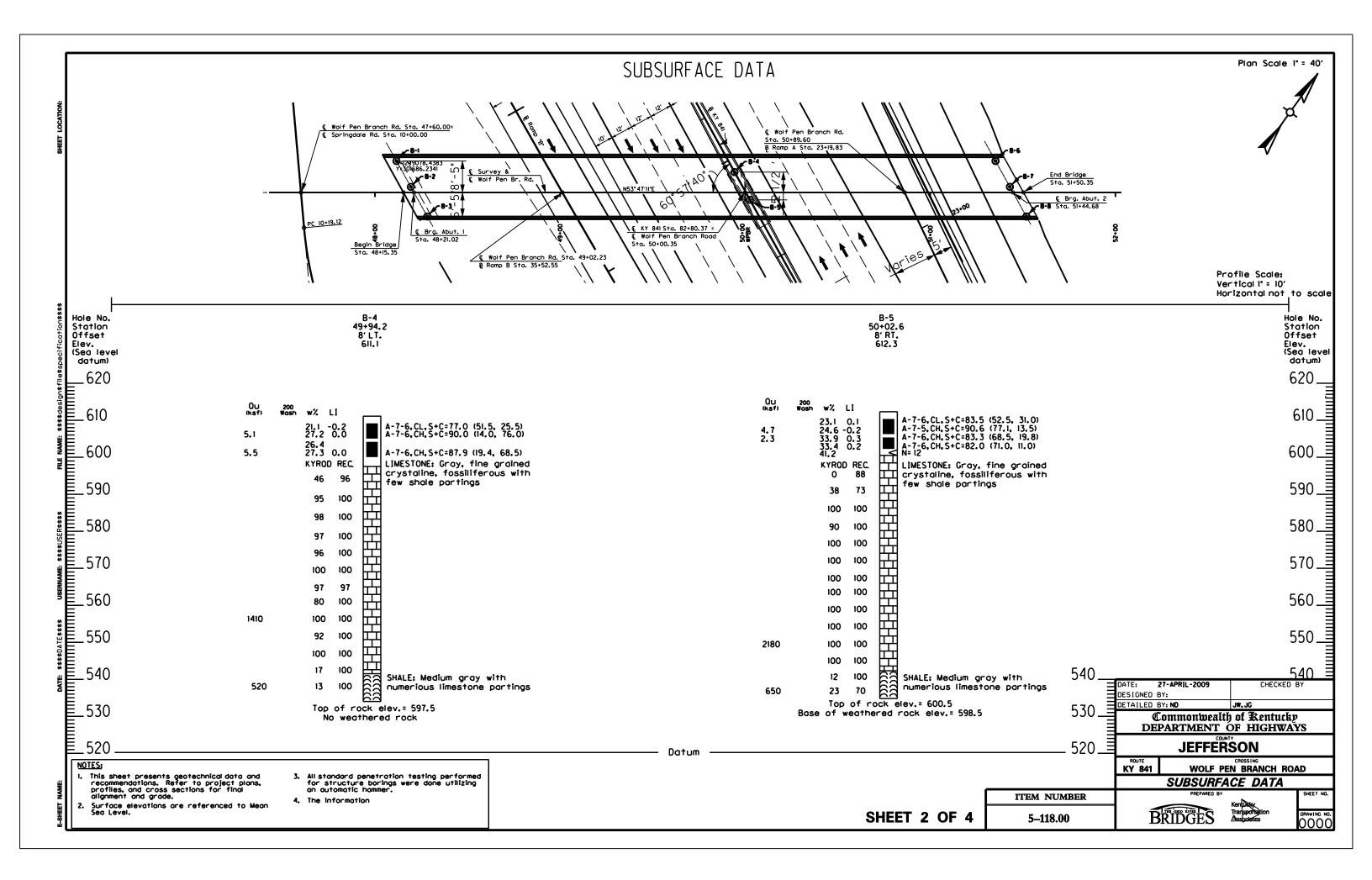
CLIENT ADVANCED SITUATION DOCUMENTS

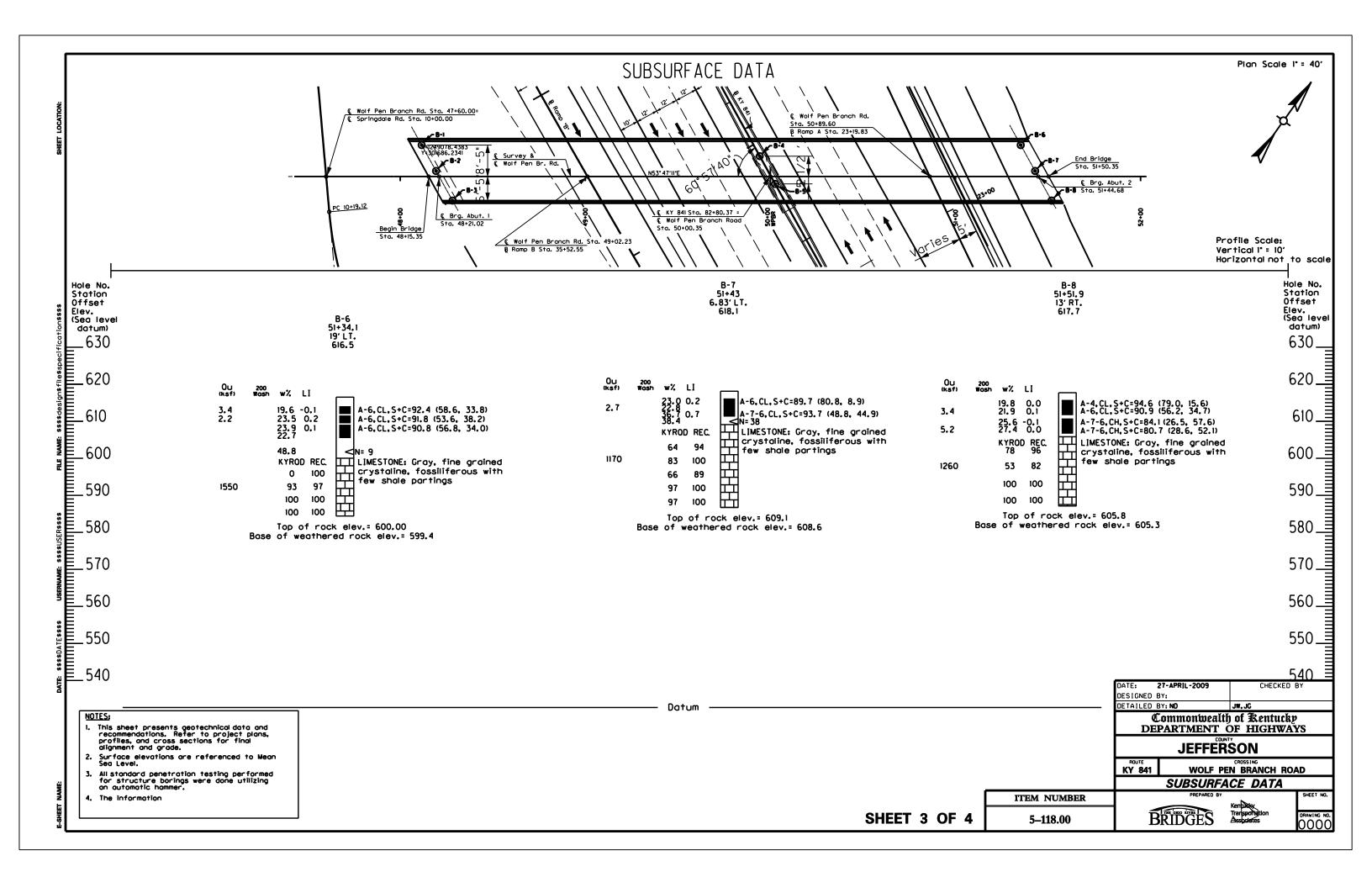
SHEET NO.

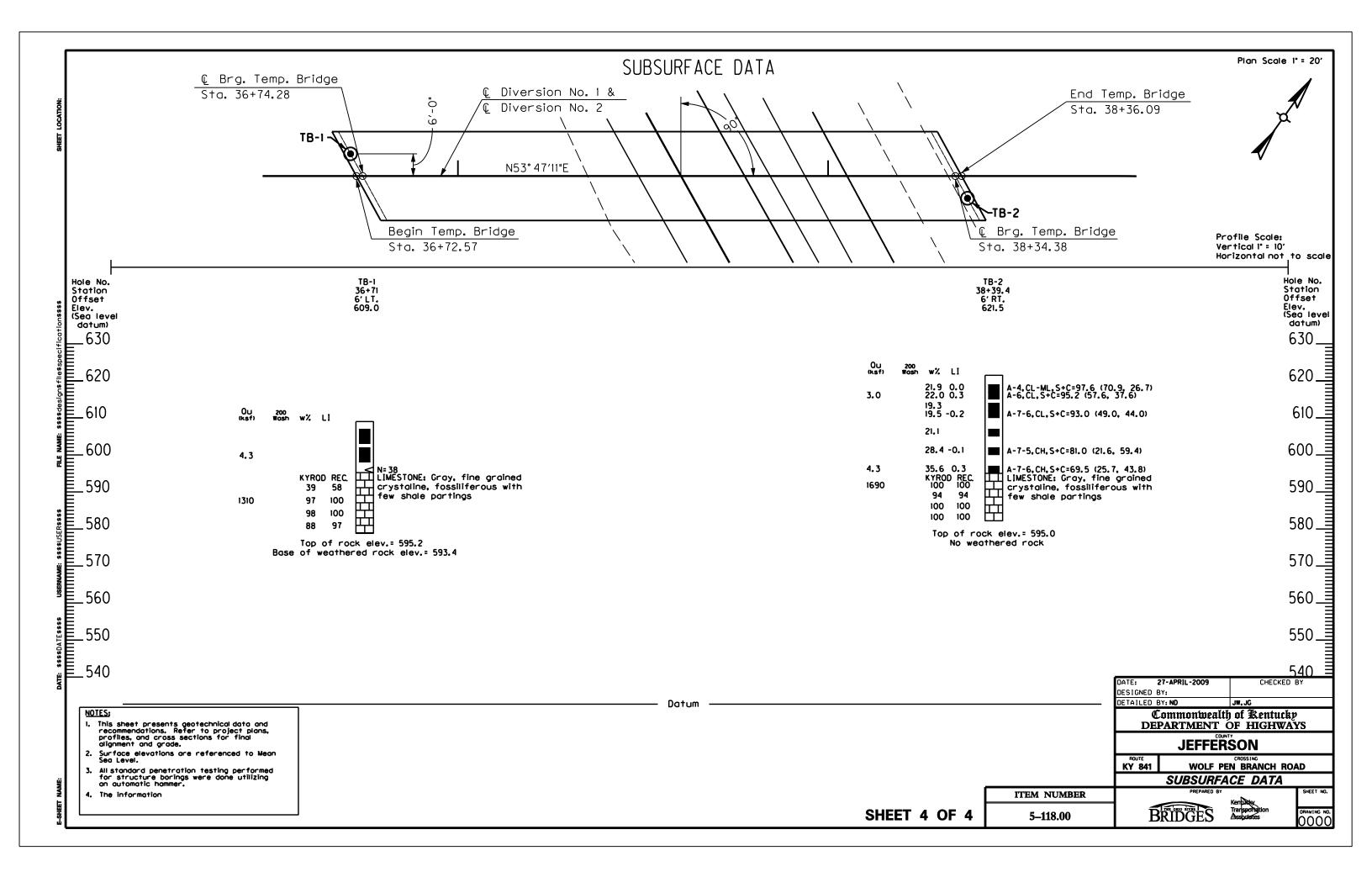
COUNTY OF

ITEM NO.


	565	570	5										APPRU	VLU L.	ļ			DATE			ļ
1 5 5 6 9 9 5 6 9 7 5 9 7 7 7 7 7 6 9 6		_	75	580	585	590	595	003	605	610	615		620	625	630	635	640		645	650	
= 69 56 9 9 55 56 = 09 66 66 86 56 56 42+00 42+50 43+00 43+50 44+00 44+50 45																					
E 69 66 </td <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>												+								_	
+50 43+00 43+50 44+00 44+50 45												S	BE								
69 66 66 86 66 86 66 86 66 86 66 86 66 86 66 66 86 66<							© N	2′ F					GIN								
S S							B SPE(IORMAL	B SPE				43+5	CON PEN 43+5								
													ISTR								
							H SPEC			Elev	13+50. 599.	00 95									
							DT LT	-1.38				-	ON BOA								
						_		8		PVC	44+25	000									
					4′ FB © 1.14	2' FB © -7.	₹				298	63									
					OUTLE	SPEC	<u>`</u>		-												
0(-238.27				2 (1. ((тфт	\rightarrow		2 -1.13	2′ FB .			_				+				_	
				(7.]		<u> </u>	EX 2' FB		SPEC												
				DT LT 1 SEWE 39%			24" PL/ SPEC		DT RT					STA 45 PROP. HFADW/	30 ¹ CUL 0°	, 48.08' VERT SKFW					
95 595.84						F,-	STIC				HLSD	10									
+ 0 598.57					I 46+25.						0.00 = 3										
51-965 46+5					Elev 596.17	_			7		46.37			STA 46+49.7 PROP DROP E	6.00 M	30.97' RT	, contraction of the second se				
						590,50 590,00		ł	- 2' FE		/										
7596.67 600.22									B SPE					STA 47	+25, 42	00' RT					
						/ 598,44			C DT			_		PROP [INLET	TYPE 3		3.60′				
44 597.74				STORM @ 1.5		24 INV 591.69 TG 601.00 18" INV 596.00				47+60	WOLF	PEN BRAN	NCH RD.	PROP C	STA 47+46, 13,00'L PROP CBI TYPE A 6 2 H=5.00 573,57 37 37 37 37 37 3						
				57%		TG 602	597.31				SPRIN	7		PROP C 6 2 H=!	+96.26, BI TYPE 5.00	ìo					
600.29 603.21 603.21						ö <u>≱≯</u> ₽₽∞ storm	597.09 596.84		A	IN	<u>STA 48</u> ЕТ ТҮРІ	+07.50 PR	PROP DROP APRON H = 3	BOX 5.50′STA	48+15.	35 WOLF	B DEN	BRANCH	RD		
						SEWI					604	.17						<			
8 603.58 4 605.17 0 605.17						ER		7777										2 SP			
					CW FC G			۰, ^۱										AN S			
607.17					A 43+UX:23 WULF FEN 35+52,55 RAMP B 7 35, CLR RAMP B	MP B B					Exist Grou							TEEL			
			40.17		/ 841						ing nd lir							BOX			
-1.609 to											he-7							BEA			
+0 612.37												STA 50	50+00.35	WOLF	PEN BRANCH	NCH RD.=		AM BF			
											<u>а</u> .		+80.37	КҮ 84'				RIDGE			
614.79 + 614.79								- 777.			01/-							(179.			
	841		4 ()															33′ -			
616.82 615.17 00+12				STA23+19.8	A 30103 83 RAMP A			 										144.3			
									TG 616.79 18" INV 612.	1			15. 30' E	EXISTING STA 51	+50, 13.			33')			
618.26 617.17								- 7	PVC 51+50.7 Elev 617.17 TG 617.10				¢ sta		PROP CBI TYPE A 6 51+50.35 WOLF PE STA 51+64.39.13.0		H=4. 79' BRANCH F 8T	AD A			
								777 -APPRC	INV 61	18"				PROP	CBI TYPE	4	=5.63′		-48′		
618.97										STORM VER PI		B SPE		STA 5: PROP 1	32 YPE	14' RT		BRID	- 53′ X. KY		
5 619.49 4 620.37								Z LINE	TG 617.65 15" INV 610.68 18" INV 610.43	PE -			LE STA	52+	≤]	ZI≸	BRANCH Y CONN.	GË QN	- 48' <u>/ 8</u> 41		
									S	0		 		PROP [H= 2.5	52+78, 30. DBI Ty 15 50'	. 37' RT					
00 621.38									350.0 SD =	6.04%	5 INV					VPT 53	+25.00				
06.619 53+									0′ VC 368.9		. <u>62</u> 614.12 / SEWE					Elev	Elev 624.17				
66 179 50									7'			2		Gra	-Pro						
00+45 00+45 00+45												FB SP	+-	2' F	pose						
														B SPE	d						_
622.02 622.02												LT-	1.57%	C DT F							
8'89 55+00	621.43 621.43								PVT 55+00. Elev 621,43	APPRO	60' WA			RT							
) 5											TER LII		/								
WOLF	60										1E					EI W S					
56+ PEN	E: 1"															ND C Olf TA. (JE	со
I BRA	= 50' = 5'															0N\$1 PEN 55+0				FFERSO	UNTY OF
ق 56+50 NCH ۲0 5	HORIZ VERTI 82.8															RUC1 BRAN D				N 5-	IT
57+ ROAE	ZONTA CAL															FION ICH F				731.00	EM NO.
-00)																ROAD					SHE
	56 56 56	57	57	58		59	59	60	60	61	-61		62	62	63	63	64		64	R42	EET NO.


e-sheet name:													CHEC	СНЕСКЕД ВҮ АРРROVED ВҮ			DATE DATE		
550	555	560	565	570	575	580	585	590	595	600	605	610	615	620	625	630	635	640	DATUM _
7																			
00													DI/						
-+ 599.4							PVC	30+50.00 v 599_36	S				51N /ERS 4. 3						
0									PEC "				UN ION 0+5						
8.009 800.63 31+00									V" DT				STRI NO. 0						
									LT	3			1						
600.8 601.42 1+20							5			.00%_	0.0%								
3							300 SSD												
+ 5 <u>98.6</u> + 601.74							= 340					I T T T T T T T T T T T T T T T T T T T	/PI 32+00.00 Elev 603.86	86					
) 3							VC D. 43'		<u>+</u> -										
+ 5 <u>96.4</u> + 601.59									+										
									SPE	-									
C 298.9 0 600.96							E		C V										
							x. c			_									
297.9 597.9 23+2								T 33+50.00		-									
							FB (T LT		$\overline{\langle}$	-2.6									
201°3 201°3 34+0								" TEM 1.00%	$\overline{\langle}$		PVC 3	34+00.00 500 53	0						
00								P PIP											
9 885 885 34+5								E	PEC '	Gr									
200							- SPEC @ 4. SPEC " = 1.70		V" DT	<u>opos</u> ade		Exi: Gro							
G 592.2 + 0 597.14							"V" D 202 У" DТ 7		RT-			sting ound							
00							от цт - цт						30						
35+5						Id>	35+50.0	\mathbf{i}					0.0						
50						7'			X	/)' VC 211.10							
0 598.31							07EC 2 13 (SPEC 2 C V''				, <u>36</u> +	10 21		-				
0							точ Jox	: "V" E 64% : "V" E 00% DT P			/ 2 2 2 2	+00 - ATA - 8+9 - 8+9	8+98.00 TE	TEMP. SPRINGDACE	SDALE RD.				
9607.3 9.85 9.85																			
3											100 H 100								
002.03														Elev 602.03					
) 3												BYČ							
615.4 604.53		~							77		\downarrow		' SIN						
		 1	29'						TT		5.5								
619.0 607.03			20'						-				SPAI RIDGE RMIN FOR	/					
0	- 20 TH						R							A 38+36.0	09 TEMP.	BRIDGE			
8 622.2 + 622.2												$\left \right $							
50	EGIN						TEMP			/				V.P.I. 38+75 Flav 610	5.00				
0 e28.3 0 e11_70						CUT				~~)				
00						LIN										~			
628.4 613.53	CUT &					E			<u>(UX. R</u>	ROX. R			3.66						
			_		_		R				_	_			\downarrow				
4	۱۱ 			_	_		_		<u>1</u>	-		_	t Ý	_		_		_	_


											СО	UNTY	OF	ITE	W NO.	SHE	ET NO.
											JE	FFER	SON	5-73	31.00		R77
																	ратим 640
			4	8′ - 4 EX.	53' - BRID	48′ GE											
					DIVID												C 7 F
																	635
								0.01			~ 7		1	5			
	-	65					IVD VIVE	CON RSI 40	<u>151</u> 0N			1 1	1				630
		VP1 40+55.12 Elev 616.65					TA.	40	+35	.12	2]			
		P1 40 El € <															625
																	620
				_													
Ļ.		X															615
+																	
	SPEC	"V" D" 5%	LT														C10
	¥ J.2	57.															610
																	605
	- 77				+												600
LINE			F														
																	595
																	590
																	550
																	585
																	585
																	580
																	575
																	570
																	565
		Г															
									SCAI	.E:	1"	= 5			ONTAL AL		560
AIN.	AGE										1	- 5	VEI		۹L		
											+						555
											+						
615.3	15.36	617.1		618.4				- ח י ח							OFIL	-	
ق 40-	+00		+50		-00	41+	-50	-							35.12		


APPENDIX C:

SUBSURFACE DATA SHEET

APPENDIX D:

BORING LOGS

KSWA
K.S. Ware & Associates, L.L.C. Engineering & Testing Services

LOG OF BORING NO. B-1

Project Name: Louisville East End 08-09 Bridge Study

Location:

Louisville, Kentucky 100-03-0148

Sheet 1 of 1

	Engineerir	ng & Testing Service	es	. Turnborr				•			Chicot	1 01	·
Depth, feet Graphic Log	Surface El.	: 608.7 Sta. 48+10.5, 18 MATERIAL DI			Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
6001/2001 - 4	Light brown fragments Dark brown fragments Dark brown fragments Dark brown fragments Light to me LIMESTON very coarse pieces, slig Light to me LIMESTON	n, medium stiff to hard, fragments, moist n, very stiff, Lean CLA - moist wn, stiff, CLAY with silt - moist	Lean CLAY - with s Y, with sand and trace y, with sand and trace silt, sand and trace che silt, sand and trace che si	29.6 ce chert 		92 83 67 75 92 100 100		63 96 94		25.3 24 30.8 34 39.8	33 34 61 73	22 21 30 34	11 13 31 39
200 200 200 200 200 200 200 200 200 200	oleted: 03/2 AEI		Remarks: Grou activities.	indwater w	l vas n	ot en	counte	red	 durin	g dri	lling		

			L	.OG	6 OF	BOR	RING	G N	0. E	3-2		
		$\mathbf{K}\mathbf{S}\mathbf{M}\mathbf{A}$	Project N	lame	: Lou	uisville	East	End	08-0	9 Br	idge	Stud
			Location		Lοι	uisville,	Ken	tuck	у			
		K.S. Ware & Associates, L.L.C. Engineering & Testing Services	Number:		100	0-03-014	48			Sheet	t 1 of	1
Depth, feet	Graphic Log	Surface El.: 601.5		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
Dept	Grap	Location: Sta. 48+19.4, 2' Lett MATERIAL DESCRIPTI	ON	Sa	Rec	SPT	Υ	Pocke	Nater C	Liqu	Plas	Plasti
		Asphalt Basestone	0,									
		Brown, stiff to very stiff, Lean CLAY - with s fragments, moist	and and trace chert 3.		100			1.75	30.1			
- 4 -		Dark reddish brown, very stiff, Lean CLAY - chert fragments, some black mottling, mois	st		100			2.25	34.2	35	21	14
		Brown, very stiff, Lean CLAY - with sand a	7. nd trace chert	0	92				20.7			
		fragments, moist	9.	7	92 100			2	30.7 33.9			
 -12-		(Auger Refusal 9.7') Light to medium gray, fine grained crystallir LIMESTONE with few shale partings - fossi to very coarse brachiopod and horn choral	ne calcite lliferous with coarse		100		72					
		whole pieces, slightly to moderately fracture Light to medium gray, fine grained crystallir LIMESTONE with few shale partings - fossi	ed - hard 12. ne calcite	<u>8</u>								
 -16-		very coarse brachiopod and choral fragmer pieces, slightly to moderately fractured - ha	nts and whole rd 16.	5	100		79					
 		Light to medium gray, fine grained crystallir LIMESTONE with few shale partings - fossi very coarse brachiopod and choral fragmer pieces, slightly fractured - hard	liferous with fine to 17.	8								
-20-		Light to medium gray, fine grained crystallir LIMESTONE with few shale partings - fossi very coarse brachiopod and choral fragmer	liferous with fine to		100		90					
		pieces, slightly fractured - hard	22.	8								
		(Coring Terminated at 22.8')										
- -	-											
-28-												
	-											
 -32-												
	-											
-36-												
[
Com Date Date	Starte	oleted: 03/19/09		vas r	not er	ncounte	ered	durin	ig dri	lling		
Date		bleted: 03/19/09 AEI	es.									

		TZOTIZA	L	C	OF	BOR	RING	g N	0. E	3-3		
		KSWA	Project Na	me:						9 Bri	dge	Stud
		K.S. Ware & Associates, L.L.C. Engineering & Testing Services	Location: Number:			uisville,)-03-014		tuck	-	Sheet	1 of	1
et	Log	Surface El.: 602.0		es	y %	ser	Q	n (tsf)	ent, %	imit	imit	Index
Depth, feet	Graphic Log	Location: Sta. 48+28.2, 22' Right		Samples	Recovery	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
	Ŭ	MATERIAL DESCRIPTION			-	S		P	Wat			Ē
		רAsphaltBasestone	<u>0</u> ,3 1,0									
		Reddish brown, stiff, Lean CLAY with sand and trace fragments, sulfer residue oder - moist	e chert 3.0		150			1.25	18.5	39	18	21
4		(Auger Refusal at 3') Light to medium gray, fine grained crystalline calcite	4.7									
		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and w	hole /		78		37					
		Light to medium gray, fine grained crystalline calcite	7.1									
- 8 -	┝┶┯┙	LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and w	hole									
		pieces, slightly fractured - hard - Void or seam from the Light to medium gray, fine grained crystalline calcite			100		100					
—		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and w pipese eliiptly fractured bard	hole									
-12		pieces, slightly fractured - hard Light to medium gray, fine grained crystalline calcite	12.1									
		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and w										
- ·		pieces, slightly fractured - hard			100		97					
-16			17.1									
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w										
		very coarse brachiopod and choral fragments and w pieces, slightly fractured - hard	hole		97		92					
-20					57							
		(Coring Terminated at 22.1')	22.1									
. – .	-	(Conng Terminated at 22.1)										
-24												
;	-											
5– · −28·												
5	-											
<u> </u>	-											
-32												
	-											
- 32-												
-36												
- ·												
40					-1		 	 				
Date	e Starte	d: 03/20/09 activities.	undwater wa	as n	ot en	icounte	erea (aurin	ig ar	ning		
	e Comp ed By: ged By:	AEI										

		KSWA	L Project N			BOR uisville					idge	Stud
		K.S. Ware & Associates, L.L.C. Engineering & Testing Services	Location: Number:			uisville,)-03-014		tuck	-	Sheet	: 1 of	2
feet	c Log	Surface El.: 611.1		oles	ery %	alues	QD	'en (tsf)	itent, %	Limit	Limit	y Index
Depth, feet	Graphic Log	Location: Sta. 49+94.2, 8' Left MATERIAL DESCRIPTION		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content,	Liquid Limit	Plastic Limit	Plasticity Index
		Asphalt Basestone Light brown, hard, Lean CLAY with sand and trace ch	0,						>			
- 4 -		fragments, some black mottling, moist	4.	0	96			4.5	21.1	48	25	23
		Light brown, very stiff, CLAY with silt, sand and trace fragments, gray mottling, moist			63			3	27.2	73	29	44
- 8 -		Dark orangish brown, very stiff to hard, CLAY with sile and trace chert fragments, black mottling - moist	<u>7</u> . , sand	<u>u</u>	100			4.5	26.4			
					83			3.75	27.3	67	29	38
-12-		(Auger Refusal at 13.6')	13.	6								
- 16-		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi very coarse brachiopod and choral fragments and wh pieces, highly fractured - hard	th fine to 15. ole	6. ,	96		46					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wivery coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	th fine to ole	6								
-20- 		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard		6	100		95					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	th fine to	0								
		pieces, siigniig nactureu - naru	27.	6	100		98					
- 24		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	th fine to		100		97					
-32-		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi	32. th fine to	6								
 - 36-		very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	ole		100		96					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous wi brachiopod and choral fragments, slightly fractured -		6								
Date Date	pletion Starte Comp ed By: ged By:	d: 03/18/09 activities. leted: 03/18/09 AEI	indwater v	vas i	not er	ncounte	red	durin	ng dri	lling	1	<u> </u>

				-	L	C	OF	BOR	RINC	3 N	0. I	3-4		
			$SM\Delta$		Project Na	me:	Lou	uisville	East	End	08-0	9 Bri	idge	Stuc
					Location:		Lou	uisville,	Ken	tuck	у			
			e & Associates, L.L ng & Testing Servio		Number:		100	-03-014	8			Sheet	2 of	2
feet	Graphic Log	Surface El				Samples	Recovery %	alues	KY RQD	Pen (tsf)	ntent, %	Liquid Limit	Plastic Limit	Plasticity Index
Depth, feet	Graph	Location:	Sta. 49+94.2, 8			Sam	Recov	SPT Values	KY F	Pocket Pen (tsf)	Water Content,	Liquic	Plastic	Plasticit
		LIMESTO very coars	edium gray, fine grain NE with few shale par se brachiopod and cho ghtly fractured - hard	tings - fossiliferous w	ith fine to ole 42.6		100		100		3			
- 44		Light to me LIMESTOI very coars	edium gray, fine grain NE with few shale par se brachiopod and cho ghtly fractured - hard	tings - fossiliferous w	ith fine to		97		97					
		Light to me	edium gray, fine grain	ed crystalline calcite	47.6									
 		LIMESTO very coars	NE with few shale par se brachiopod and cho ghtly fractured - hard	tings - fossiliferous w	ith fine to ole		100		80					
52— — 56—		LIMESTO very coars	edium gray, fine grain NE with few shale par se brachiopod and cho ghtly fractured - hard	tings - fossiliferous w	ole		100		100					
_ 60- _		Medium g LIMESTO	ray, fine to medium gr NE with few shale par	ained crystalline dolo tings - slightly fracture	ed - hard		100		92					
 64 		Medium gr LIMESTO	ray, fine to medium gr NE with few shale par	ained crystalline dolo tings - slightly fracture	62.6 mitic ed - hard		100		100					
 68 		LIMESTOI Medium to	ray, fine to medium gr NE with few shale par	tings - slightly fracture	ed - hard 6 <u>9.6</u>		100		17					
- 72- -		limestone Medium to	partings - highly fractu	ured - hard h numerious fine grai	72.6									
- - 76-		limestone	partings - highly fractu	ired - hard	77.1		100		13					
_ _ _		(Coring Te	erminated at 77.1)											
Date Date Drille	pletion Starte Comp d By: ed By:	oleted: 03/1 AEI	8/09 8/09	Remarks: Grou activities.	Indwater wa	as n	ot en	counte	ered o	durin	ig dri	illing		

	TZOTIA				BOR						
	IKSWA	Project Na	me:						9 Bri	idge	Stu
	K.S. Ware & Associates, L.L.C.	Location:			uisville,		tuck	-			
	Engineering & Testing Services	Number:		100	-03-014	8			Sheet	: 1 of	2
Jeptn, feet Graphic Log	Surface El.: 612.3		Samples	Recovery %	alues	KY RQD	⁵ en (tsf)	ntent, %	Liquid Limit	Plastic Limit	Plasticity Index
Ueptn, reet Graphic Lo	Location: Sta. 50+02.6, 8' Right		Sam	Recov	SPT Values	КY	Pocket Pen (tsf)	Water Content,	Liquid	Plastic	Plasticit
	MATERIAL DESCRIF Asphalt	0.8						3			
	Basestone Dark brown, very stiff, Lean CLAY, with Probable FILL	gravel and sand, moist- 3.1		100			3.5	23.1	42	21	2'
4	Light brown, very stiff, Lean CLAY with c Light brown to brown, stiff to very stiff, C trace chert fragments - moist			85			2.25		59	30	29
	and one agricence and the										
3 - ///				63			2	33.9	54	26	28
-///				100			1.75	33.4	56	27	29
		11.8	X	56	5-8-4			41.2			
2	(Auger Refusal at 11.8') Light to medium gray, fine grained crysta LIMESTONE with few shale partings - fo to very coarse brachiopod and horn cho	ossiliferous with coarse		88		0					
6	whole pieces, highly fractured and slight Light to medium gray, fine grained crysta LIMESTONE with few shale partings - fo to very coarse brachiopod and horn cho whole pieces, highly fractured and slight Light to medium gray, fine grained crysta	ly weathered - hard alline calcite ossiliferous with coarse 16.5 ral fragments and 17/5 ly weathered - hard		73		38					
	LIMESTONE with few shale partings - for very coarse brachiopod and choral fragn pieces, slightly weathered - hard Light to medium gray, fine grained crysta	ossiliferous with fine to nents and whole		100		100					
	LIMESTONE with few shale partings - for very coarse brachiopod and choral fragm pieces, slightly fractured - hard Light to medium gray, fine grained crysta	nents and whole 22.5									
	LIMESTONE with few shale partings - for very coarse brachiopod and choral fragn pieces, slightly fractured - hard	ossiliferous with fine to nents and whole		100		90					
28	Light to medium gray, fine grained crysta LIMESTONE with few shale partings - fo very coarse brachiopod and choral fragn pieces, slightly fractured - hard	ossiliferous with fine to		100		100					
		32.5		100		100					
	Light to medium gray, fine grained crysta LIMESTONE with few shale partings - fo very coarse brachiopod and choral fragn	alline calcite ossiliferous with fine to									
6- <u>-</u>	pieces, slightly fractured - hard			100		100					
	Light to medium gray, fine grained crysta	37.5 alline calcite	\square								
	LIMESTONE with few shale partings - for brachiopod and choral fragments, slight	ossiliferous with									
ompletior ate Starte ate Comp rilled By:		arks: Groundwater wa vities.	is n	ot er	counte	ered	durin	ng dri	illing		_

		TZ		-	L	C	OF	BOF	RINC	G N	0. I	B-5		
			$\mathbf{N} \mathbf{A}$		Project Na	me	Lou	iisville	East	End	08-0	9 Br	idge	Stu
				-	Location:		Lou	iisville,	, Ken	tuck	у			
			e & Associates, L.L ng & Testing Servic		Number:		100	-03-014	48			Sheet	t 2 of	2
feet	Graphic Log	Surface El	l.: 612.3			Samples	ery %	alues	KY RQD	Pocket Pen (tsf)	ntent, %	Liquid Limit	Plastic Limit	Plasticity Index
Depth, feet	Graph	Location:	Sta. 50+02.6, 8'	Right ESCRIPTION		Sam	Recovery	SPT Values	KY F	Pocket F	Water Content, %	Liquic	Plastic	Plasticit
		LIMESTO very coars	edium gray, fine graine NE with few shale part be brachiopod and choi ghtly fractured - hard	ed crystalline cal	us with fine to		100		100		5			
44-		Light to me LIMESTOI very coars	edium gray, fine graine NE with few shale part e brachiopod and choi ghtly fractured - hard	ings - fossiliferoι	cite us with fine to		100		100					
48-		LIMESTO very coars pieces, slig Medium gi	edium gray, fine graine NE with few shale part be brachiopod and cho ghtly fractured - hard ray, fine to medium gra	ings - fossiliferou al fragments and ined crystalline	us with fine to 48.9 d whole / dolomitic		100		100					
52-		LIMESTO Medium gi LIMESTO Medium gi	NÈ with few shale part ray, fine to medium gra NE with few shale part ray, fine to medium gra NE with few shale part	ings, slightly frac ained crystalline ings, slightly frac ained crystalline	ctured - hard dolomitic ctured - hard dolomitic		100		100					
56- - -		Medium gi	ray, fine to medium gra	ined crystalline	57.5 dolomitic		100		100					
-60 -		LIMESTO	NÈ with few shale part	ings, slightly frac			100		100					
 64 -		Medium gi LIMESTOI	ray, fine to medium gra NE with few shale part	ined crystalline ings, slightly frac	62.5 dolomitic ctured - hard		100		100					
 68 			ray, fine to medium gra NE with few shale part		ctured - hard									
_ _ 72_		limestone	o dark gray SHALE with partings, highly fractur o dark gray SHALE with	ed - hard	72.5		100		12					
- - 76-			partings, highly fractur				70		23					
_		(Coring Te	erminated at 77.5')		77.5									
Date Date Drille	oletion Starte Comp d By: ed By:	leted: 03/1 AEI	9/09 9/09	Remarks: G activities.	roundwater wa	as n	ot en	counte	ered o	durin	ig dr	illing		<u>.</u>

			LC	DG	OF	BOR	RING	G N	0. E	3-6		
		$\mathbf{K} \mathbf{S} \mathbf{M} \mathbf{A}$	Project Na	me:	Lou	uisville	East	End	08-0	9 Bri	idge	Stud
			Location:		Lou	uisville,	Ken	tuck	у			
		K.S. Ware & Associates, L.L.C. Engineering & Testing Services	Number:		100	-03-014	18			Sheet	: 1 of	1
Depth, feet	Graphic Log	Surface El.: 616.5 Location: Sta. 51+34.1, 19' Left		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
Dep	Gr	MATERIAL DESCRIPTION		S	Re	SP		Pock	Vater	Lic	Pla	Plas
		Topsoil Brown, stiff, Lean CLAY - with sandand bitumin spec	0.7						>			
		wet										
- 4 -		Brown, stiff to very stiff, Lean CLAY - with sand and t fragments, moist	<u>3.0</u> race chert		63			3.25	19.6	34	21	13
			7.5		100			2	23.5	32	21	11
- 8 -		Light brown, stiff to hard, Lean CLAY - with sand and chert fragments, moist to wet	trace		83			4.25	23.9	37	22	15
					63			1.75	22.7			
 _ 12_ 			,									
				Х	44	5-6-3			48.8			
-16-		_ (Auger Refusal at 16.5')	16.5 17.1		100		0					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w to very coarse brachiopod and horn choral fragments whole pieces, highly fractured and slightly weathered	and		97		02					
-20- 		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w to very coarse brachiopod and horn choral fragments whole pieces, highly fractured and slightly weathered Light to medium gray, fine grained crystalline calcite	ith coarse and 22/1 - hard		97		93					
-24- 		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard Light to medium gray, fine grained crystalline calcite			100		100					
 -28-		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard										
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	nole /		100		100					
-32-		Medium gray, fine to medium grained crystalline dolo LIMESTONE with few shale partings, slightly fracture	mitic ed - hard 32.1									
		(Coring Terminated at 32.1')										
L _												
-36-												
Date Date Drille	pletion Starte Comp ed By: jed By:	d: 03/16/09 activities. eleted: 03/16/09 AEI	undwater wa	as n	ot en	ncounte	red	durin	ig dri	lling	1	<u>.</u>

			L	OG	OF	BOR	RING	G N	0. E	3-7		
		$\mathbf{K}\mathbf{S}\mathbf{M}\Delta$	Project Na	ame:	Lo	uisville	East	End	08-0	9 Bri	idge	Study
			Location:		Lo	uisville,	Ken	tuck	у			
		K.S. Ware & Associates, L.L.C. Engineering & Testing Services	Number:		100	0-03-014	8			Sheet	t 1 of	1
Depth, feet	Graphic Log	Surface El.: 618.1 Location: Sta. 51+43, 6'-10" Left		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
De	ō	MATERIAL DESCRIPTION			Å.	S		Poch	Water		ā	Plas
		AsphaltBasestone	0.6 <u>1.2</u>									
		Brown, stiff to very stiff, Lean CLAY - with sand and fragments, moist	trace chert		83			1.5	23	35	20	15
- 4 -					63			1.75	22.8			
					100			2.25	36.7	42	21	21
- 8 -			<u>9.0</u>	\square	56	6-22-16			38.4			
- 12-		(Auger Refusal at 9') Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous to very coarse brachiopod and horn choral fragmen whole pieces, highly fractured and slightly weathered	with coarse ts and		94		64					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous to very coarse brachiopod and horn choral fragmen whole pieces, highly fractured and slightly weathere	with coarse ts and		100		83					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and v pieces, slightly weathered - hard - Void or Seam fro 22.4' Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and v pieces, slightly fractured - hard	with fine to /hole m 21.5' to with fine to		89		66					
		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and v pieces, slightly fractured - hard	with fine to		100		97					
-09 BRIDGE STUDY.C		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and v pieces, slightly fractured - hard Medium gray, fine to medium grained crystalline do LIMESTONE with few shale partings, slightly fractu	with fine to whole 30.1 omitic		100		97					
Date Date Date	pletion Starte Comp d By: ed By:	d: 03/17/09 activities. leted: 03/17/09 AEI	oundwater w	as n	ot ei	ncounte	ered	durin	ng dri	lling		

	KSWA	L(Project Na			BOR uisville					idge	Study
	K.S. Ware & Associates, L.L.C.	Location: Number:			uisville,)-03-014		tuck	у	Ohaan	4 - 6	
	Engineering & Testing Services				-03-014	ю 	ţ.	%	Snee	: 1 of	
Depth, feet Graphic Log	Surface El.: 617.7 Location: 51+51.9, 13' Right		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content,	Liquid Limit	Plastic Limit	Plasticity Index
	MATERIAL DESCRIPTION				0)		Å	Wat			
	Asphalt Basestone Light brown, hard, Lean CLAY - with sand and trac fragments, moist	<u>1.0</u> <u>1.4</u> e chert 3.5		100			4	19.8	29	20	9
- 4 -	Brown, very stiff, Lean CLAY - with sand and trace fragments, moist			88			3	21.9	36	21	15
	Grey to Light Brown, hard, CLAY with silt, sand an fragments, black mottling, moist	<u>7.0</u> d trace chert		79			4.25	25.6	59	29	30
	Brown, very stiff, CLAY with silt, sand and trace ch fragments, black mottling, moist	<u>10.0</u> ert 11.9		100			4	27.4	67	29	38
	(Auger Refusal at 11.9') Light to medium gray, fine grained crystalline calci LIMESTONE with few shale partings - fossiliferous to very coarse brachiopod and horn choral fragme whole pieces, moderately fractured and weathered	e with coarse hts and		96		78					
	Light to medium gray, fine grained crystalline calci LIMESTONE with few shale partings - fossiliferous to very coarse brachiopod and horn choral fragme whole pieces, moderately fractured and weathered Light to medium gray, fine grained crystalline calci LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and pieces, slightly fractured - hard - Void or seam from	e 17.4 with coarse / hts and / hard e with fine to whole 21.9		82		53					
	21.1' Light to medium gray, fine grained crystalline calci LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and pieces, slightly fractured - hard	with fine to		100		100					
-24	Light to medium gray, fine grained crystalline calci LIMESTONE with few shale partings - fossiliferous very coarse brachiopod and choral fragments and pieces, slightly fractured - hard Medium gray, fine to medium grained crystalline d	with fine to whole 30.0 Domitic 30.6		100		100					
	LIMESTONE with few shale partings, slightly fractive (Coring Terminated at 30.6') Depth: 30.6 Remarks: Gr	ured - hard /	as n	oter			durin		Illing		
Date Starte Date Comp Date Comp Drilled By: Logged By	d: 03/17/09 activities. eted: 03/17/09 AEI							iy un			

KSWA
K.S. Ware & Associates, L.L.C.

LOG OF BORING NO. TB-1

Project Name: Louisville East End 08-09 Bridge Study

Location: Louisville, Kentucky

Number:

100-03-0148

Sheet 1 of 1

		Engineering & Testing Services	Number:		100	-03-014	8			Sheet	1 of	1
Depth, feet	Graphic Log	Surface El.: 609.0 Location: Sta. 36+71, 6' Left Temporary Diversion Bridge MATERIAL DESCRIPTION		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Dicaticity, Index
	<u> 11</u> <u>1</u>	Topsoil	<u>1.0</u>									
		Brown, stiff, Lean CLAY - moist			100			1.5				
4		Reddish brown, very stiff, Lean CLAY with some che moist	<u>4.0</u> rt pieces -		83			3.5				
- 8					100			3.5				
		Brown, very stiff to hard, CLAY with silt, black mottlin chert pieces - moist	<u>10.0</u> g and		100			4.5				
·12— · _			13.8	\sim	0	50/						
 -16		(Auger Refusal at 13.8') Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w to very coarse brachiopod and horn choral fragments	ith coarse 15.6		58	0	39					
		whole pieces, moderately fractured and weathered - Void or seam from 14.6' to 15.6' Light to medium gray, fine grained crystalline calcite	hard - 17,2 ∫									
20-		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard Light to medium gray, fine grained crystalline calcite	nole		100		97					
- <u>-</u>		LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	hole 22.2									
24-		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	ith fine to nole		100		98					
			27.2									
-28-		Light to medium gray, fine grained crystalline calcite LIMESTONE with few shale partings - fossiliferous w very coarse brachiopod and choral fragments and wh pieces, slightly fractured - hard	ith fine to		97		88					
		(Coring Terminated at 30.2')										
32-												
-												
-												
-												
36-												
-40-		Depth: 30.2 Remarks: Grou	undwater wa	ae n	ot on	counto	rod 4	lurin	a dri	illing		L
	Starte			u 3 11		Sound		aarm	a ni	miy		
	Comp	leted: 03/24/09										
	d By: ed By:	AEI JW										

KSWA
K.S. Ware & Associates, L.L.C. Engineering & Testing Services

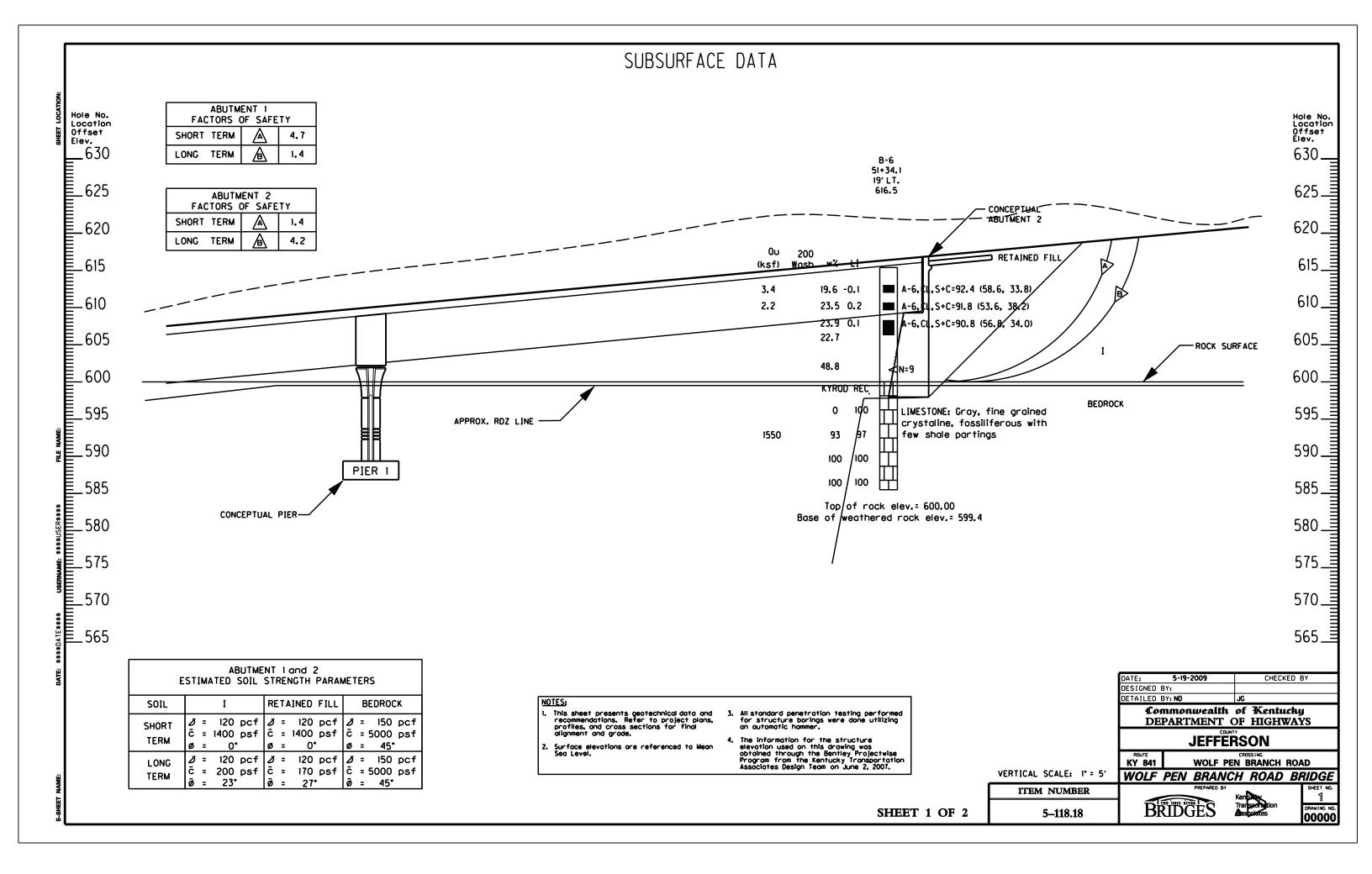
LOG OF BORING-GEOTECH+PP LOUISVILLE EAST END 08-09 BRIDGE STUDY.GPJ KSWARE.GDT 05/15/09

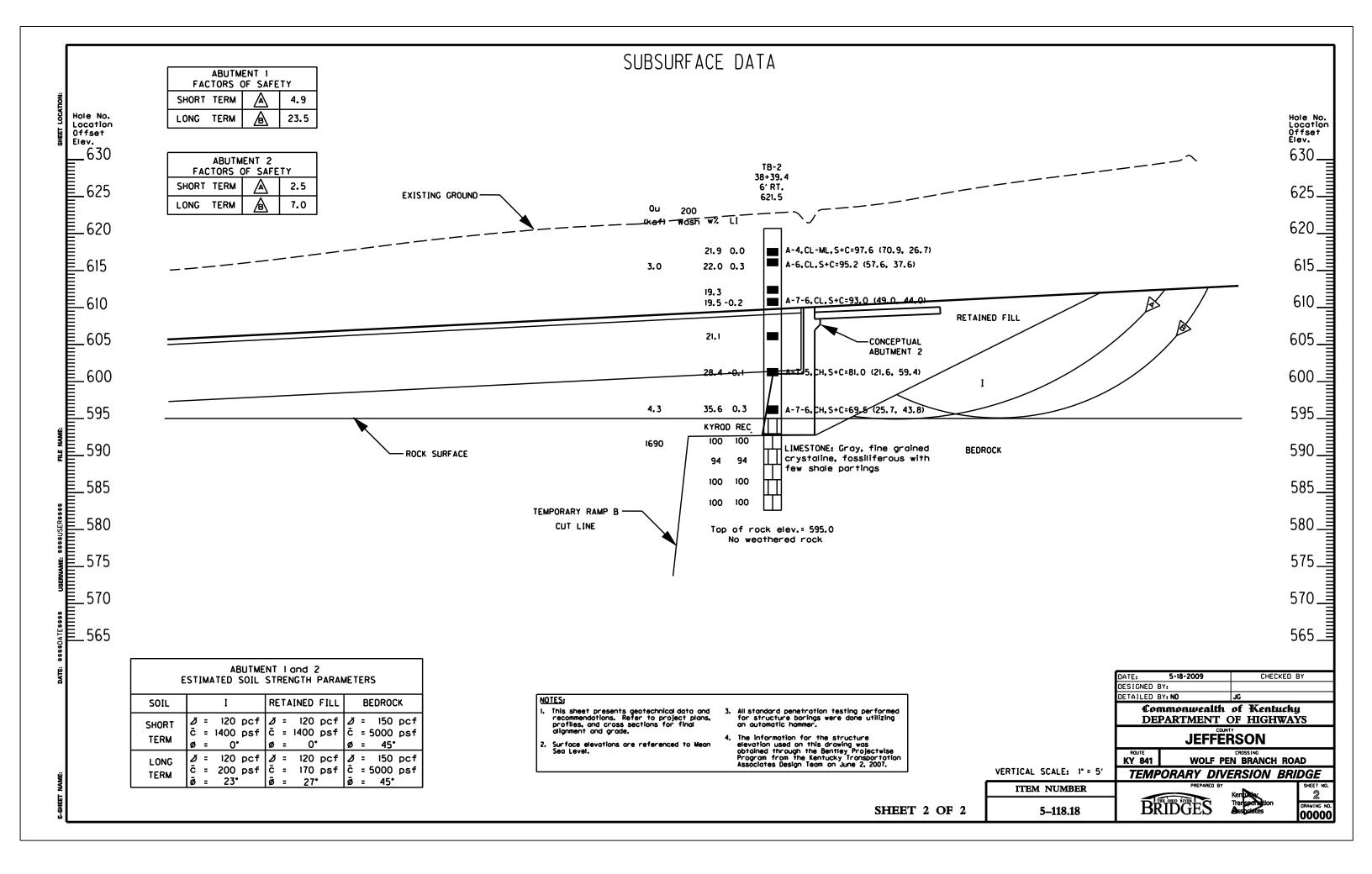
LOG OF BORING NO. TB-2

Project Name: Louisville East End 08-09 Bridge Study

Louisville, Kentucky Location:

Number:


100-03-0148

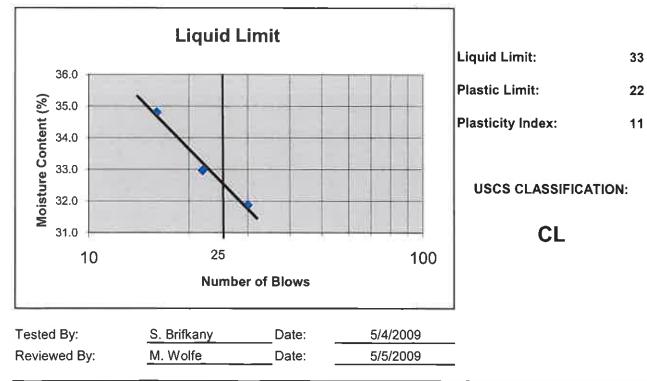

Sheet 1 of 1

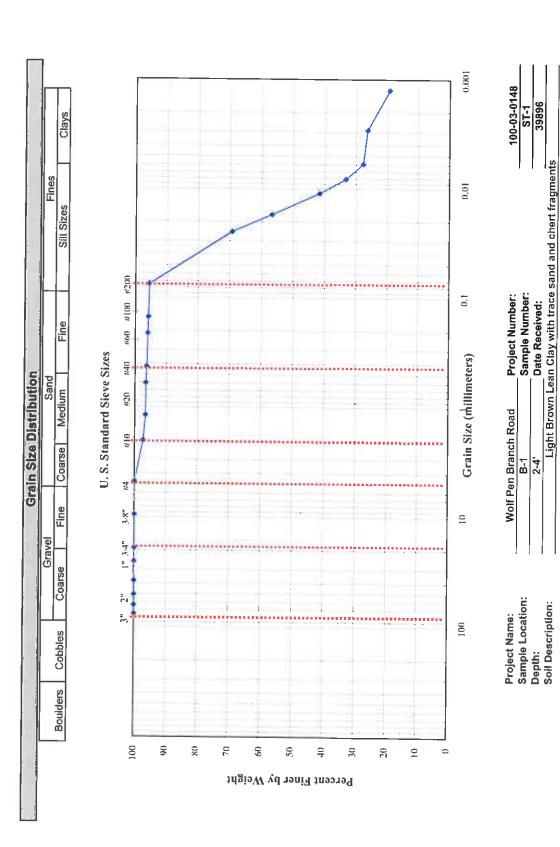
			Lingineerin	g & resting service	5										
	Depth, feet	Graphic Log	Surface El.: Location:	Sta. 38+39.4 6' F	Right		Samples	Recovery %	SPT Values	KY RQD	Pocket Pen (tsf)	Water Content, %	Liquid Limit	Plastic Limit	Plasticity Index
	ݣ	Ū		Temporary Dive				Ř	SF		200	ate		Б	Pla
╞		<u>, 17, 17</u>	Topsoil	MATERIAL DE	SCRIPTION						_	3			
				, very stiff, SILTY CLA noist	Y - with sand and tra	<u>0.8</u> ace chert	3								
	- 4 -					5.0		96			2.25	21.9	29	22	7
			Orange Tar fragments,	n, hard, Lean CLAY -wi moist	th sand and trace ch	<u>0.</u>	<u>,</u>	88			4.5	22	31	19	12
	- 8 -		Red brown, fragments, i	hard, Lean CLAY -with noist	h sand and trace che	<u>8.(</u> ert)	100			4.5	19.3			
	- – - – -12–							88				19.5	46	23	23
	-16							100				21.1			
/02	 -20— 		Dark Brown fragments -	, hard, CLAY with silt, moist	sand and trace chert	<u>19.</u> t	5	96			4.5	28.4	69	32	37
	 24 <i>-</i> -							100				0.5.0	50		00
2						26.5	5	100			4.5	35.6	56	27	29
	- 28-		Light to mee	isal at 26.5') dium gray, fine grained E with few shale partin brachiopod and chora	gs - fossiliferous with	27.3 h fine to ble	3	100		100					
			pieces, slight Light to meen LIMESTON	ntly fractured - hard dium gray, fine grained E with few shale partin	crystalline calcite	h fine to		94		94					
ŝĻ	-32-			brachiopod and chora htly fractured - hard	I tragments and who	ole 32.3	3								
			Light to med	dium gray, fine grained		/									
			LIMESTON very coarse	E with few shale partin brachiopod and chora ntly fractured - hard	gs - fossiliferous with			100		100					
	-36-														
┦				-		37.3	3								
			LIMESTON brachiopod	dium gray, fine grained E with few shale partin and choral fragments,	gs - fossiliferous with		3	100		100					
ᆉ	40-			minated at 39.3)	Domostice:	adwatar				rod	1	ـــــــــــــــــــــــــــــــــــــ	llina		
	Date	pletion Starte	Depth: 39.3 ed: 03/23	6/09	Remarks: Grour activities.	ndwater w	1a5 (iot ef	counte	ieu (aurin	y uri	mig		
	Date	Comp	oleted: 03/23												
וני		d By:	AEI JW												
íL	Lugg	ed By:													

APPENDIX E:

STABILITY SECTION

APPENDIX F:


LABORATORY TESTING RESULTS


Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-1 ST-1 2-4'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with sa	nd and trace chert fra	agments
Date Received:	3/24/2009		

		Liquia	I Limit		Dia	atia Cantan
					P12	stic Conten
Tare No	1	2	3	1	4	5
Wet Soil and Tare	25.71	26.32	25.85		19.77	22.39
Dry Soil and Tare	22.80	23.30	22.70		18.68	20.84
Wt. of Water	2.91	3.02	3.15		1.09	1.55
Tare Wt.	13.67	14.14	13.65]	13.76	13.79
Dry Soil	9.13	9.16	9.05		4.92	7.05
Moisture content%	31.9	33.0	34.8		22.2	22.0
No. Of blows	30	22	16		Average:	22
Required Blows	25-35	20-30	15-25			

K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Phone (615) 255-9702 Fax (615) 256-5873

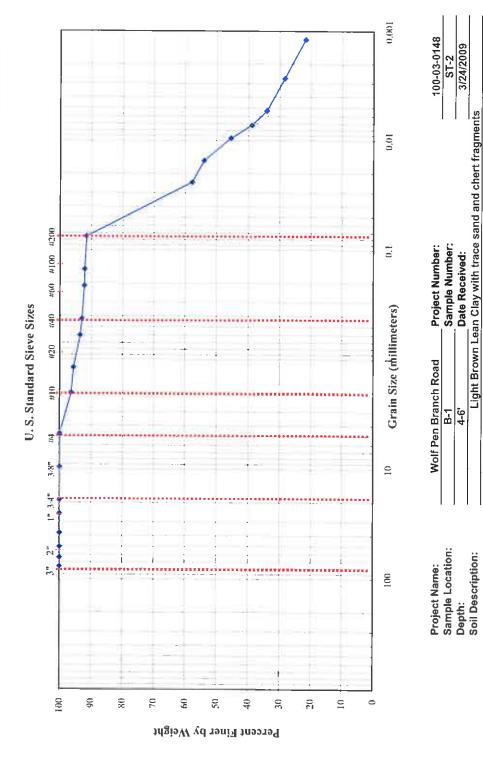
K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-1 ST-2 4-6'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar a	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with sar	nd and trace chert fra	igments
Date Received:	3/24/2009		
	Lieurial Lieuta	D	least - O

		Liquid	l Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	2 3.16	25.12	20.82	1	24.86	17.18	
Dry Soil and Tare	20.88	22.36	19.03]	22.95	16.58	
Wt. of Water	2.28	2.76	1.79		1.91	0.60	
Tare WI.	13.95	14.15	13.77		13.49	13.78	
Dry Soil	6.93	8.21	5.26		9.46	2.80	
Moisture content%	32.9	33.6	34.0		20.2	21.4	
No. Of blows	34	22	19		Average:	2	1
Required Blows	25-35	20-30	15-25				

Liquid Limit 35.0 Moisture Content (%) 34.0 33.0 32.0 25 10 100 Number of Blows Tested By: C. Smith 5/5/2009 Date: Reviewed By: M. Wolfe Date: 5/6/2009


Liquid Limit: 34
Plastic Limit: 21
Plasticity Index: 13
USCS CLASSIFICATION:
CL
00

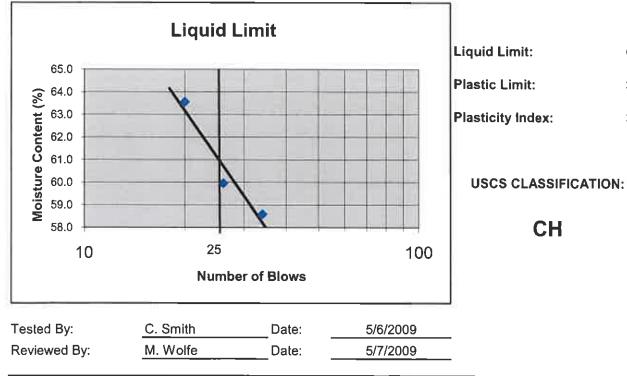
K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210

Phone (615) 255-9702 Fax (615) 256-5873

K. S. Ware and Associates, LLC 3600 Charnerlain Lane, Suite 610 Louisville, Kentcuky 40241

3/24/2009

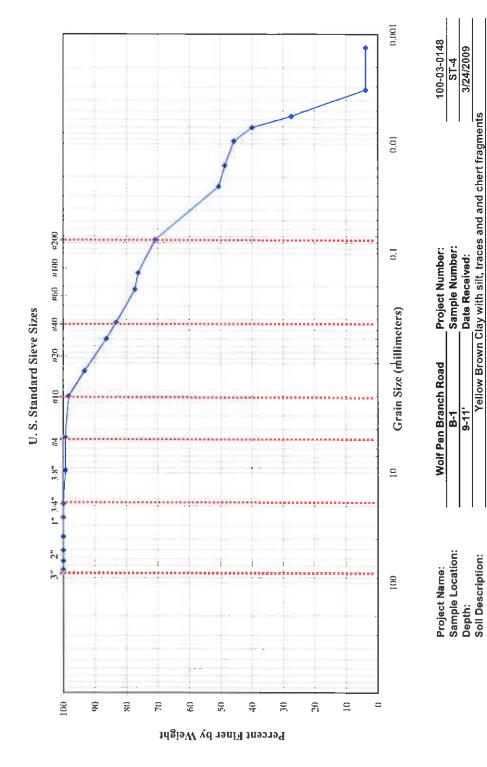
4-6 E I


Sample Location: Depth: Soil Description:

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-1 ST-4 9-11'				
Project Number:	100-03-0148	Test Date:	5/6/2009				
Equipment Used:	LLD, Oven, Ohaus 3kg Scale Tool	, Metal Tares, Mort	ar and Pestel, Spatula, Grooving				
Sample Description:							
Date Received:	3/24/2009		,,,,				

		Liquio	Limit		Pla	astic Con	tent
Tare No	1	2	3		4	5	
Wet Soil and Tare	19.62	17.94	18.33		17.20	21.33	1
Dry Soil and Tare	16.72	15.20	15.33	1	15.75	19.11	
Wt. of Water	2.90	2.74	3.00		1.45	2.22	1
Tare Wt.	11.77	10.63	10.61	1	10.84	11.85	
Dry Soil	4.95	4.57	4.72		4.91	7.26	
Moisture content%	58.6	60.0	63.6]	29.5	30.6	1
No. Of blows	34	26	20		Average:		30
Required Blows	25-35	20-30	15-25				


K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Phone (615) 255-9702 Fax (615) 256-5873 61

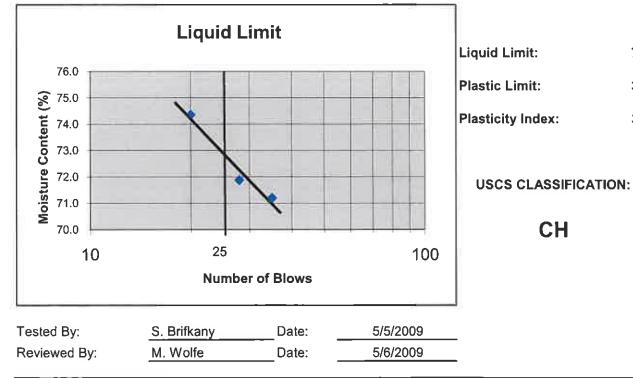
30

31

				OIGIII OIZE DISHINUMIN			
	Gra	ravel		Sand		Fines	
ers Cobbles	s Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

3/24/2009

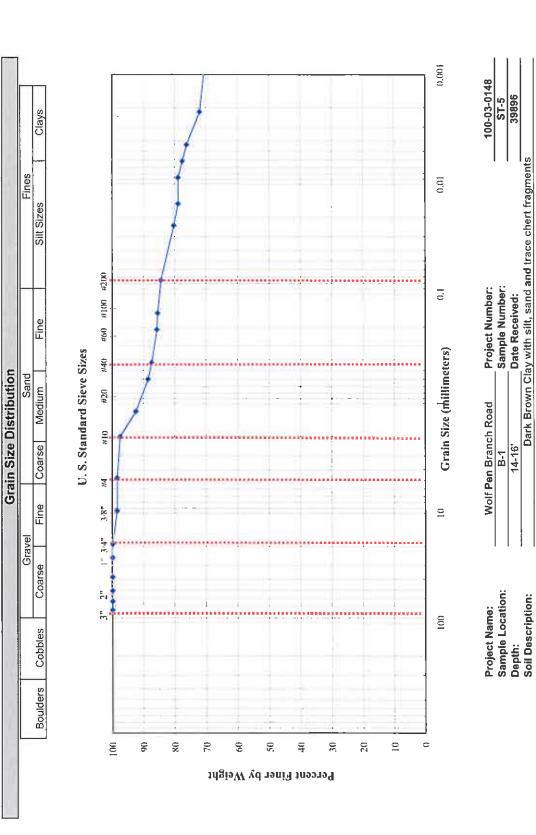
9-11'


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suile 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-1 ST-5 14-16'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale Tool	e, Metal Tares, Mor	tar and Pestel, Spatula, Grooving
Sample Description:	Dark Brown Clay with silt, sa	nd and trace chert f	ragments
Date Received:	3/24/2009		

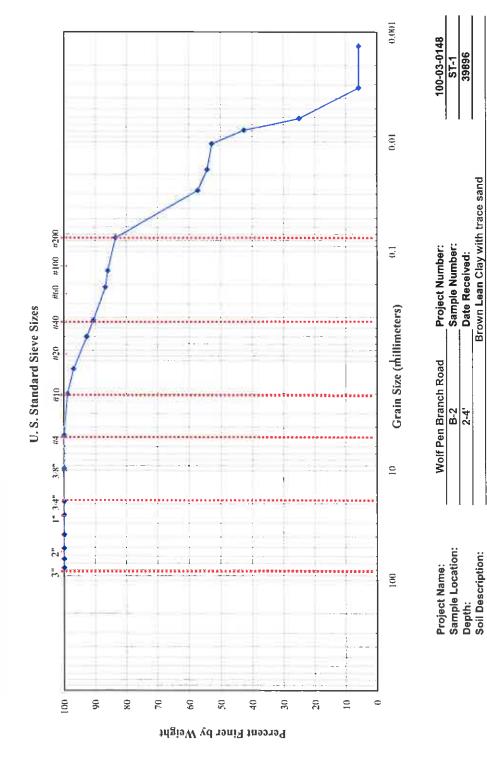
		Liquio	Limit		Pla	astic Conte	nt
Tare No	1	2	3		4	5	
Wet Soil and Tare	2 4.38	21.97	25.17		21.15	19.88	
Dry Soil and Tare	19.98	18.52	20.27]	19.27	18.34	
Wt. of Water	4.40	3.45	4.90	1	1.88	1.54	
Tare Wt.	13.80	13.72	13.68		13.77	13.83	
Dry Soil	6.18	4.80	6.59		5.50	4.51	
Moisture content%	71.2	71.9	74.4]	34.2	34.1	
No. Of blows	35	28	20		Average:	34	
Required Blows	25-35	20-30	15-25				



K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 73

34

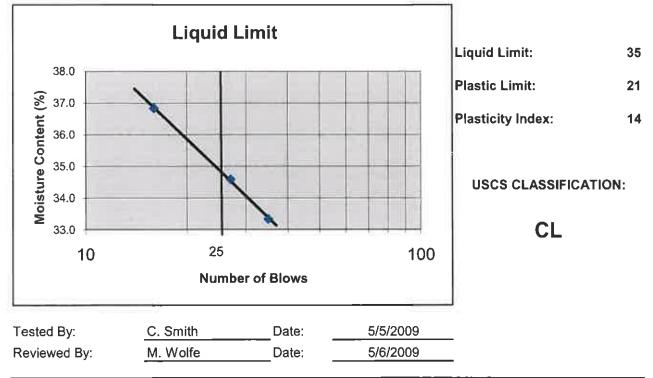
39


K.S. Ware & Associates, L.L.C

 K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Loulsville, Kentcuky 40241

			Gr	Grain Size Distribut	Distribution			
		Grav	vel		Sand		Fines	
Boulders	Cobbies	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

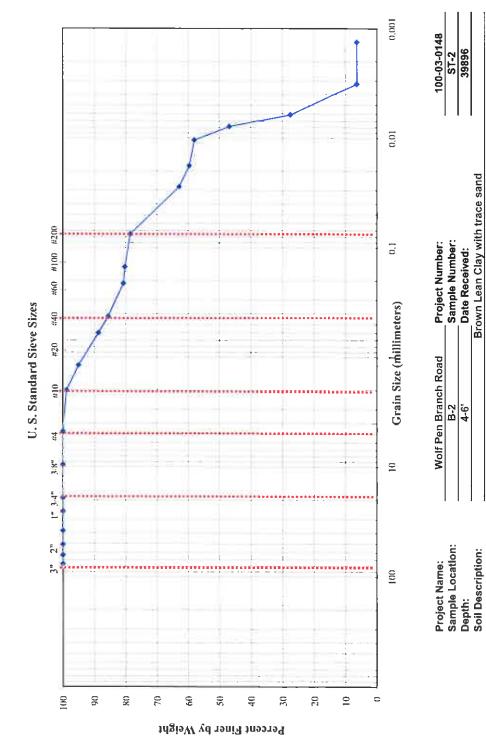
K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


2-4'

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

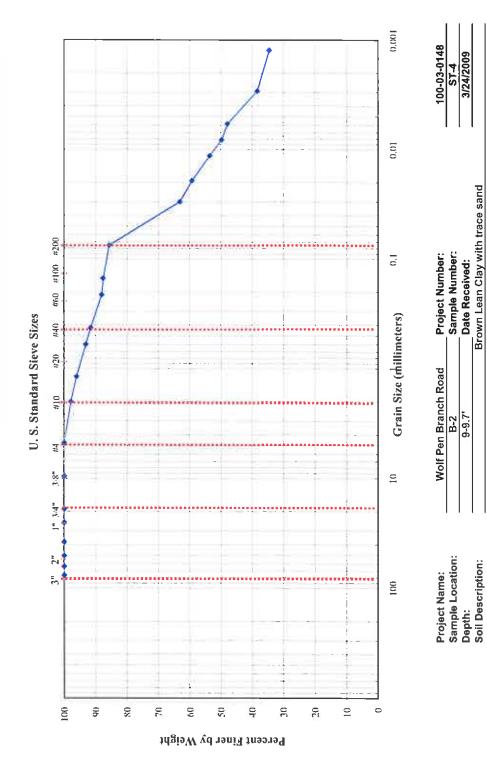
Project Name:	Wolf Pen Branch Road	Sample ID:	B-2 ST-2 4.0-6.0'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand an	d trace chert fragme	nts
Date Received:	3/24/2009		

		Liquid	Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	24.77	24.32	25.82		20.85	19.94	1
Dry Soil and Tare	21.99	21.57	22.56]	19.64	18.84	
Wt. of Water	2.78	2.75	3.26]	1.21	1.10]
Tare Wt.	13.65	13.62	13.71	1	13.98	13.61]
Dry Soil	8.34	7.95	8.85		5.66	5.23]
Moisture content%	33.3	34.6	36.8]	21.4	21.0]
No. Of blows	35	27	16		Average:	2	21
Required Blows	25-35	20-30	15-25				


K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Phone (615) 255-9702 Fax (615) 256-5873

Brown Lean Clay with trace sand

4-6

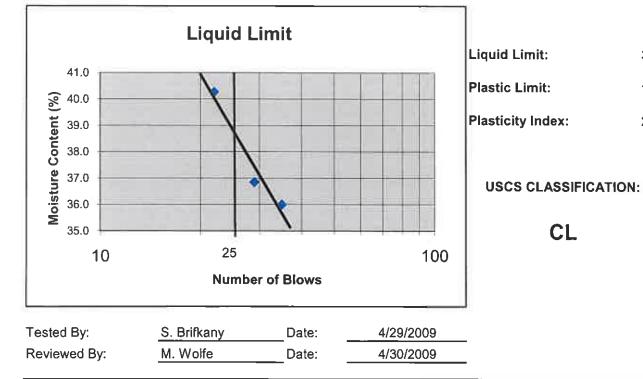

			5	Grain Size UIStrip	JISTRIDUTION			
		Gravel	vel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

			5 D	Brain Size D	Distribution			
		Gravel	rel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kenlcuky 40241

9-9.7'



Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Wolf Pen Branch Road	Sample ID:	B-3 ST-1 2-2.5'
100-03-0148	Test Date:	4/29/2009
LLD, Oven, Ohaus 3kg Scale Tool	e, Metal Tares, Mort	ar and Pestel, Spatula, Grooving
Brown Lean Clay with sand a	and trace chert fragr	nents
3/24/2009		
		Plastic Content
	100-03-0148 LLD, Oven, Ohaus 3kg Scale Tool Brown Lean Clay with sand a	100-03-0148 Test Date: LLD, Oven, Ohaus 3kg Scale, Metal Tares, Mort Tool Brown Lean Clay with sand and trace chert frage 3/24/2009

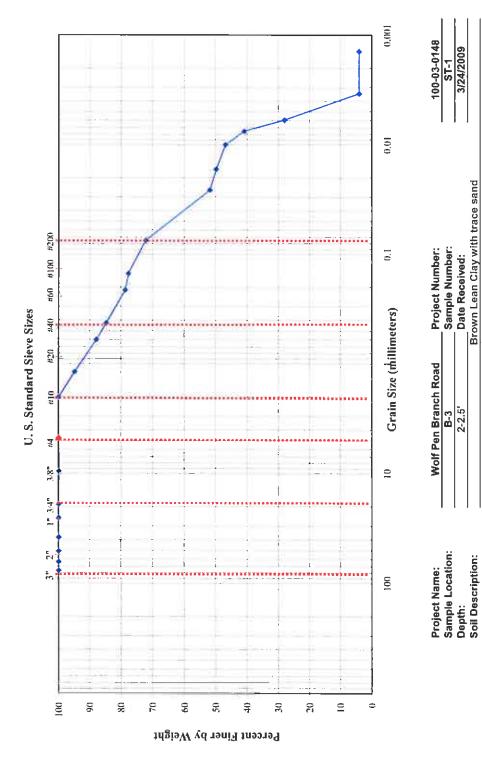
		Liquid	Limit		Pla	<u>astic Cont</u>	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	20.47	22.39	24.30		19.50	21.16	1
Dry Soil and Tare	18.67	20.05	21.38]	18.58	20.06	1
Wt. of Water	1.80	2.34	2.92]	0.92	1.10	1
Tare Wt.	13.67	13.70	14.13]	13.49	13.91	
Dry Soil	5.00	6.35	7.25		5.09	6.15	
Moisture content%	36.0	36.9	40.3		18.1	17.9	1
No. Of blows	35	29	22		Average:	1	8
Required Blows	25-35	20-30	15-25				

Required Blows

K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210

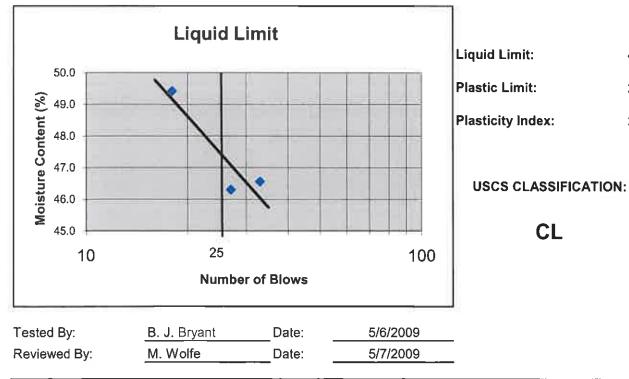
Phone (615) 255-9702 Fax (615) 256-5873 39

18


21

3/24/2009

2-2.5'

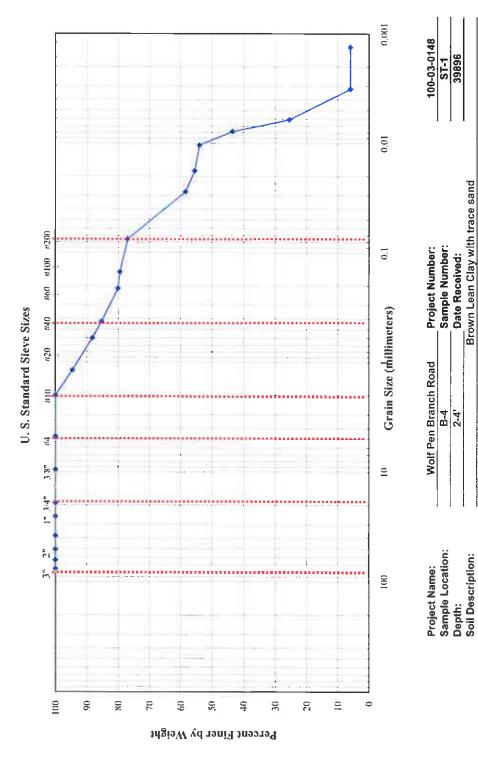

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-4 ST-1 2-4
Project Number:	100-03-0148	Test Date:	5/6/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Morta	ar and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand an	id trace chert fragm	nents
Date Received:	3/24/2009		

_		Liquio	Limit		Pla	astic Conten
Tare No	1	2	3		4	5
Wet Soil and Tare	26.54	22.20	21.67]	19.29	23.20
Dry Soil and Tare	2 3.70	19.51	19.10	1	18.21	22.18
Wt. of Water	2.84	2.69	2.57]	1.08	1.02
Tare Wt.	17.60	13.70	13.90]	13.76	18.16
Dry Soil	6.10	5.81	5.20	1	4.45	4.02
Moisture content%	46.6	46.3	49.4	1	24.3	25.4
No. Of blows	33	27	18		Average:	25
Required Blows	25-35	20-30	15-25			

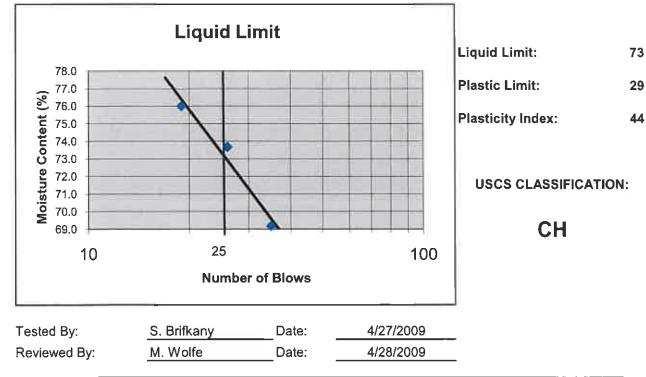
K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210


Phone (615) 255-9702 Fax (615) 256-5873 48

25

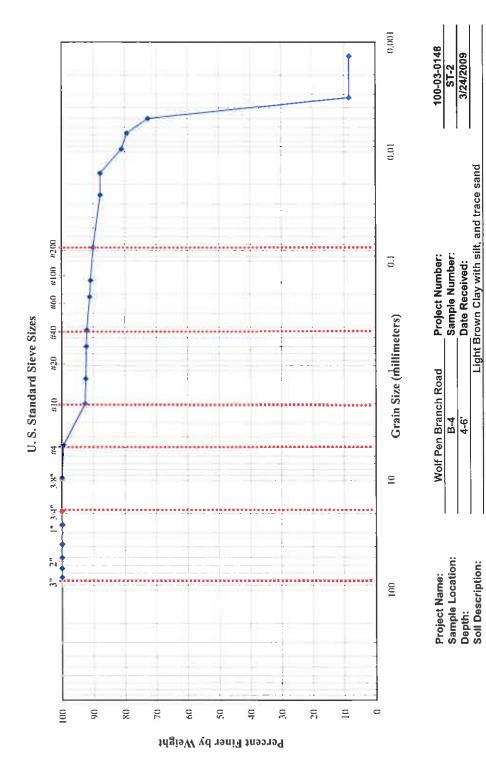
23

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


Brown Lean Clay with trace sand

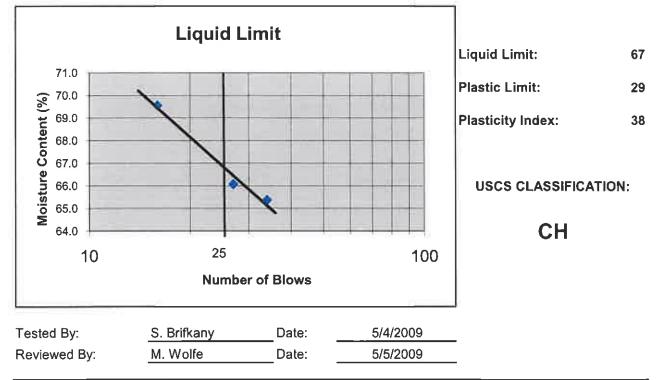
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-4 ST-2 4-6'
Project Number:	100-03-0148	Test Date:	4/27/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mort	ar and Pestel, Spatula, Grooving
Sample Description:	Light Brown Clay with silt and s	sand	
Date Received:	3/24/2009		
			Direction Countrast


		Liquid	i Limit	– Pla	astic Cont	ent
Tare No	1	2	3	4	5	
Wet Soil and Tare	24.01	22.87	21.28	19.19	20.28	
Dry Soil and Tare	19.88	18.98	18.05	18.03	18.82	
Wt. of Water	4.13	3.89	3.23	1.16	1.46	
Tare Wt.	13.91	13.70	13.80	13.90	13.82	
Dry Soil	5.97	5.28	4.25	4.13	5.00	
Moisture content%	69.2	73.7	76.0	28.1	29.2	
No. Of blows	35	26	19	Average:	2	9
Required Blows	25-35	20-30	15-25			· · ·

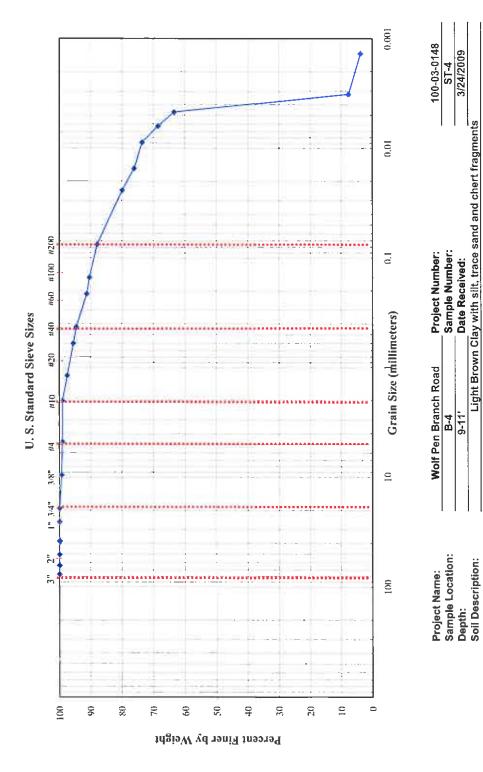
K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210

	Gravel			Sand	Ļ	Fines	
's Cobbles	Coarse	Fine	Coarse	Medium	FINE	all dizes	LIAVS


 K. S. Ware and Associates, LLC 3600 Chamertain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

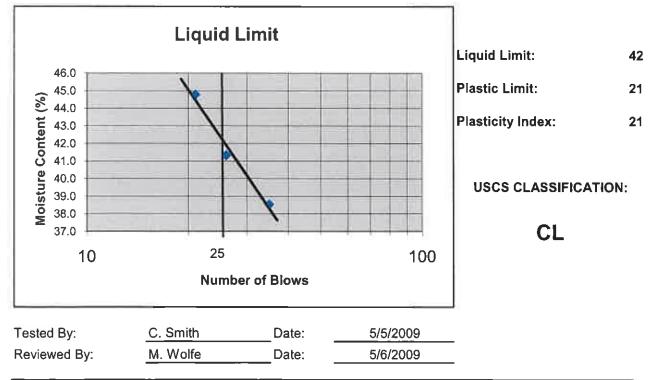
Project Name:	Wolf Pen Branch Road	Sample ID:	B-4 ST-4 9-11'			
Project Number:	100-03-0148	Test Date:	5/4/2009			
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, I Tool	Metal Tares, Mortar a	and Pestel, Spatula, Grooving			
Sample Description:	Light Brown Clay with silt, sand and trace chert fragments					
Date Received:	3/24/2009					


		Liquid Limit			Plastic Content	
Tare No	1	2	3		4	5
Wet Soil and Tare	22.41	23.19	23.73		20.30	21.83
Dry Soil and Tare	19.03	19.47	19.64		18.82	20.15
Wt. of Water	3.38	3.72	4.09]	1.48	1.68
Tare Wt.	13.86	13.84	13.76		13.72	14.23
Dry Soil	5.17	5.63	5.88		5.10	5.92
Moisture content%	65.4	66.1	69.6		29.0	28.4
No. Of blows	34	27	16]	Average:	29
Required Blows	25-35	20-30	15-25			

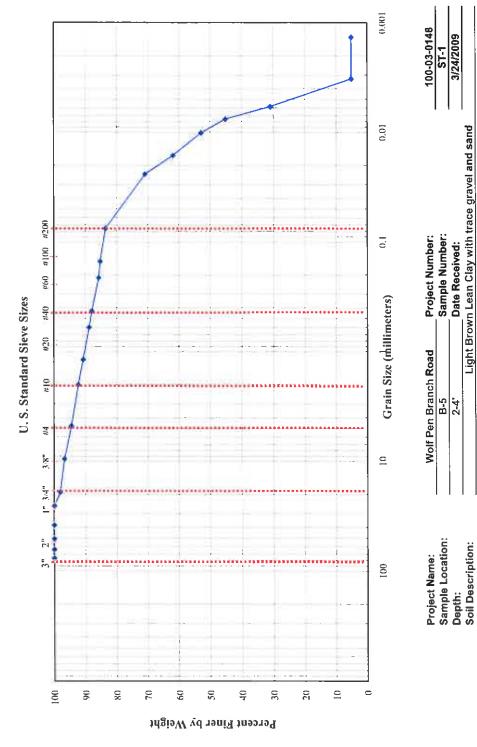
K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210

			619	rain Size D	Distribution			
		Grav	ravel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


9-11'

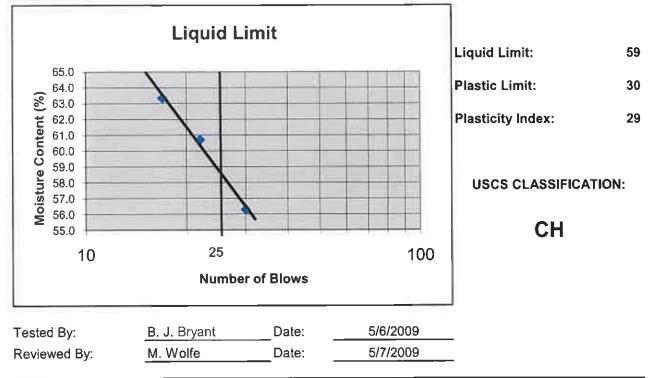
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-5 ST-1 2-4'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with gr	avel and sand	
Date Received:	3/24/2009		
	Liquid Limit		Plastic Content

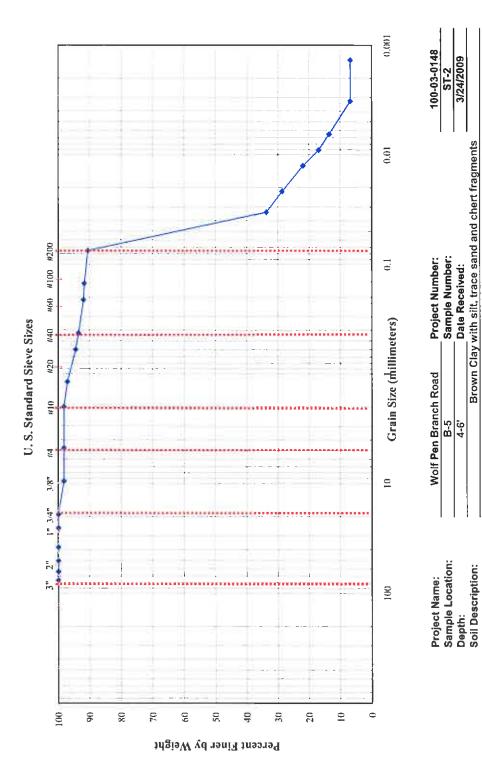
		Liquid	l Limit		Pla	astic Cont	tent
Tare No	1	2	3		4	5	
Wet Soil and Tare	19.34	18.91	21.23		14.63	13.28	1
Dry Soil and Tare	17.24	16.55	18.31]	13.89	12.84]
Wt. of Water	2.10	2.36	2.92		0.74	0.44	
Tare Wt.	11.79	10.84	11,79]	10.61	10.62]
Dry Soil	5.45	5.71	6.52]	3.28	2.22	1
Moisture content%	38.5	41.3	44.8		22.6	19.8	
No. Of blows	35	26	21		Average;	2	21
Required Blows	25-35	20-30	15-25				

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

ST-1 3/24/2009


B-5 2-4'

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-5 ST-2 4-6'
Project Number:	100-03-0148	Test Date:	5/6/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scal Tool	e, Metal Tares, Morta	ar and Pestel, Spatula, Grooving
Sample Description:	Light Brown Clay with silt, sa	nd and trace chert fr	agments
Date Received:	3/24/2009		

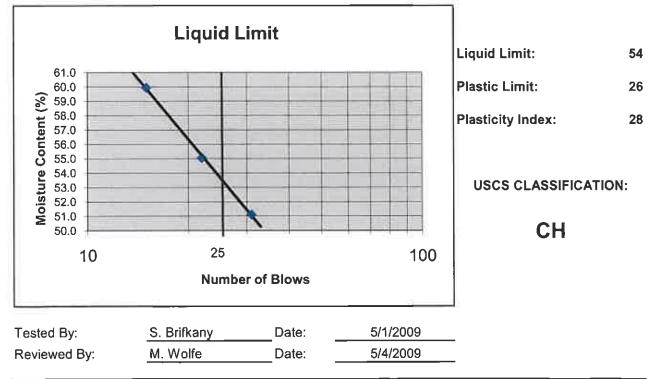
		Liquid	Limit		Pla	istic Conte
Tare No	1	2	3		4	5
Wet Soil and Tare	19.90	20.94	20.52	1	17.40	17.88
Dry Soil and Tare	17.71	18.22	17.91]	16.55	16.94
Wt. of Water	2.19	2.72	2.61]	0.85	0.94
Tare Wt.	13.82	13.74	13.79]	13.64	13.81
Dry Soil	3.89	4.48	4.12]	2.91	3.13
Moisture content%	56.3	60.7	63.3]	29.2	30.0
No. Of blows	30	22	17		Average:	3
Required Blows	25-35	20-30	15-25			

			Gra	irain Size Distrib	Distribution			
		Grav	iravel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

Phone: (502) 326-9023 Fax: (502) 326-9039

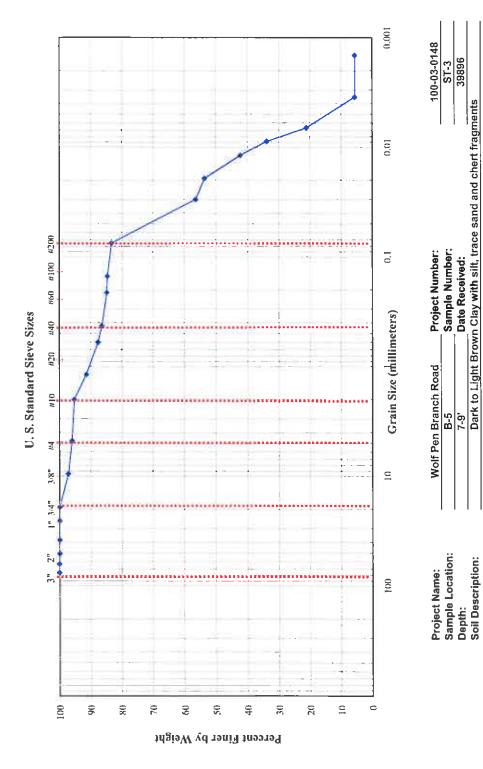
Brown Clay with silt, trace sand and chert fragments

4-6'


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

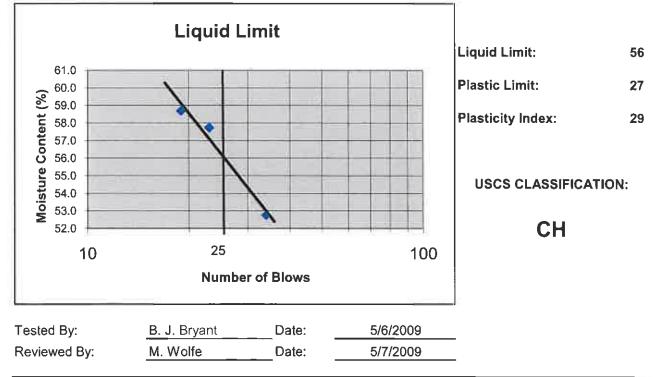
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolfpen Branch Road	Sample ID:	B-5 ST-3 7-9'
Project Number:	100-03-0148	Test Date:	5/1/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Brown Clay with silt, sand and	trace chert fragments	S
Date Received:	3/24/2009		

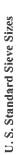

		Liquid	l Limit		Pla	astic Conter
Tare No	1	2	3		4	5
Wet Soil and Tare	22.52	23.74	24.03		20.17	20.31
Dry Soil and Tare	19.52	20.20	20.08		18.84	18.95
Wt. of Water	3.00	3.54	3.95		1.33	1.36
Tare Wt.	13.65	13.77	13.49		13.72	13.80
Dry Soil	5.87	6.43	6.59		5.12	5.15
Moisture content%	51.1	55.1	59.9]	26.0	26.4
No. Of blows	31	22	15		Average:	26
Required Blows	25-35	20-30	15-25			

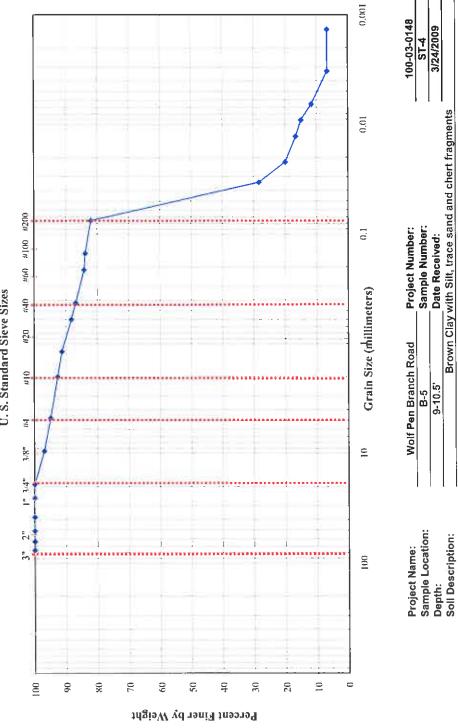
K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Phone (615) 255-9702 Fax (615) 256-5873

K. S. Ware and Associates, LLC 3600 Chamertain Lane, Suite 610 Louisville, Kentcuky 40241


Phone: (502) 326-9023 Fax: (502) 326-9039

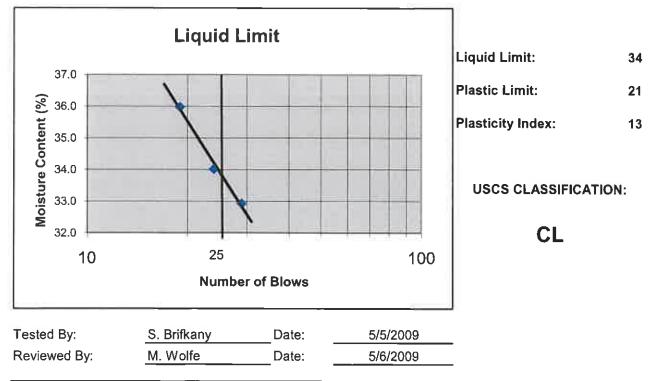
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	<u>B-5 S</u> T-4 9-10.5'
Project Number:	100-03-0148	Test Date:	5/6/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Clay with silt, sand	d and trace chert frag	ments
Date Received:	3/24/2009		······


		Liquio	I Limit		Pla	astic Conte
Tare No	1	2	3		4	5
Wet Soil and Tare	19.57	26.93	22.24]	19.79	19.12
Dry Soil and Tare	16.90	22.19	18.39		18.55	17.98
Wt. of Water	2.67	4.74	3.85]	1.24	1.14
Tare Wt.	11.84	13.98	11.83]	13.82	13.73
Dry Soil	5.06	8.21	6.56]	4.73	4.25
Moisture content%	52.8	57.7	58.7		26.2	26.8
No. Of blows	34	23	19]	Average:	2
Required Blows	25-35	20-30	15-25			

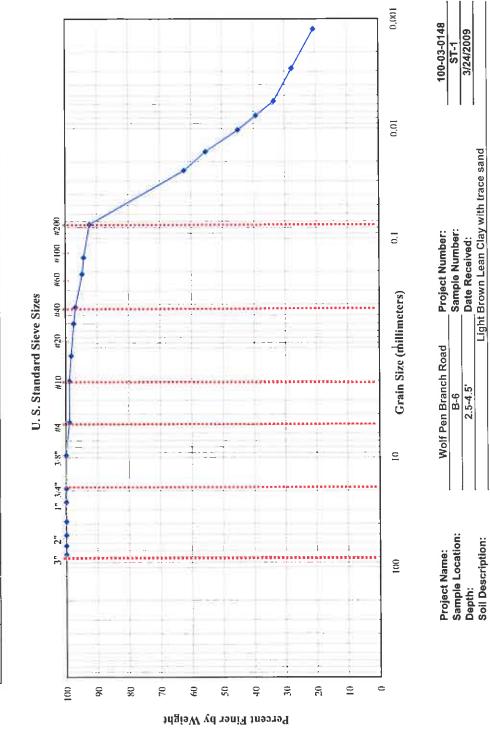
			Gra	Grain Size Distr	Distribution			
		Grav	/el		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


9-10.5'

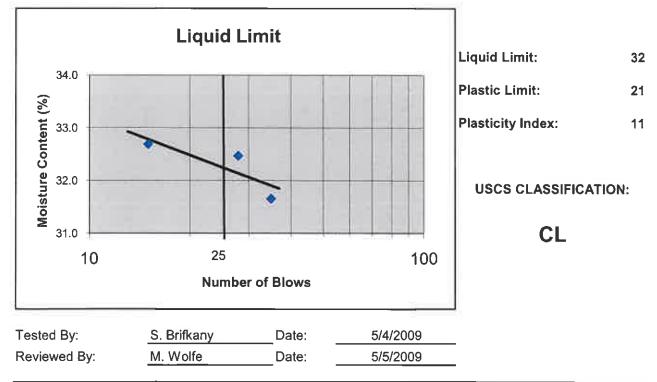
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-6 ST-1 2.5-4.5'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mort	ar and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with tac	e sand	
Date Received:	3/24/2009	<u>=</u>	
	Liquid Limit		Plastic Content

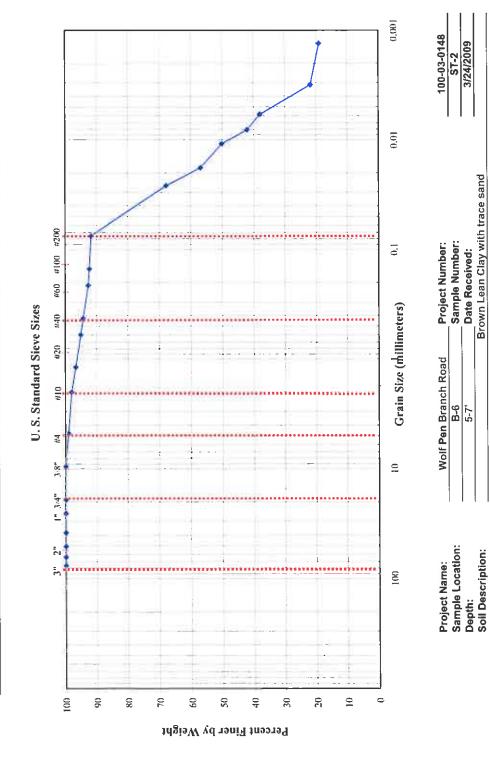

		Liquid	l Limit		Pla	astic Conte	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	24.78	21.62	25.21]	21.51	21.01	
Dry Soil and Tare	22.08	19.63	22.17]	20.19	19.74	
Wt. of Water	2.70	1.99	3.04]	1.32	1.27	
Tare Wt.	13.88	13.78	13.72]	13.62	13.67	
Dry Soil	8.20	5.85	8.45]	6.57	6.07	
Moisture content%	32.9	34.0	36.0]	20.1	20.9	
No. Of blows	29	24	19]	Average:	2	1
Required Blows	25-35	20-30	15-25				

K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Phone (615) 255-9702 Fax (615) 256-5873

			Gra	in Size I	ze Distribution			
		Gra	ravel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

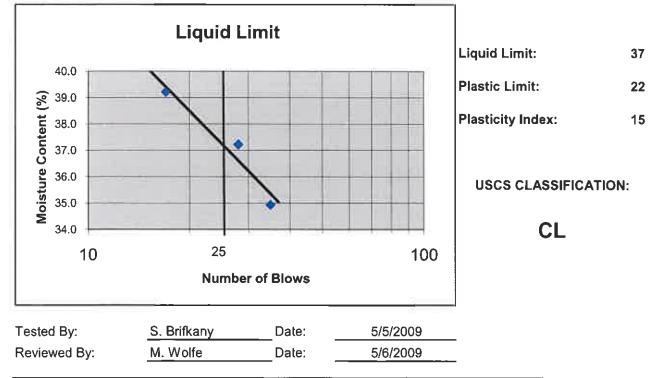

K. S. Ware and Associates, LLC 3600 Charneriain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

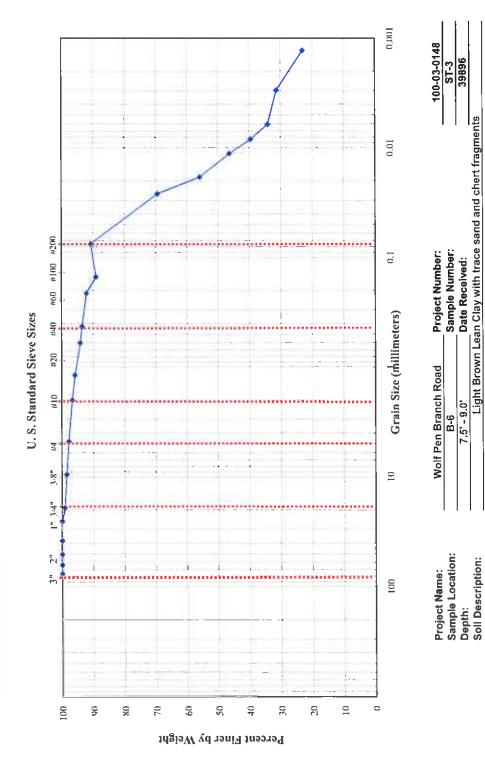

Project Name:	Wolf Pen Branch Road	Sample ID:	B-6 ST-2 5-7'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale Tool	, Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand a	nd trace chert fragme	nts
Date Received:	3/24/2009		

		Liquio	l Limit		Pla	astic Conter
Tare No	1	2	3		4	5
Wet Soil and Tare	2 5.40	23.96	24.81	1	23.99	20.75
Dry Soil and Tare	2 2.63	21.45	22.09	1	22.21	19.52
Wt. of Water	2.77	2.51	2.72	1	1.78	1.23
Tare Wt.	13.88	13.72	13.77	1	13.61	13.65
Dry Soil	8.75	7.73	8.32]	8.60	5.87
Moisture content%	31.7	32.5	32.7]	20.7	21.0
No. Of blows	35	28	15	1	Average:	21
Required Blows	25-35	20-30	15-25			

			Gra	rain Size Dist	Distribution			
		Grav	avel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

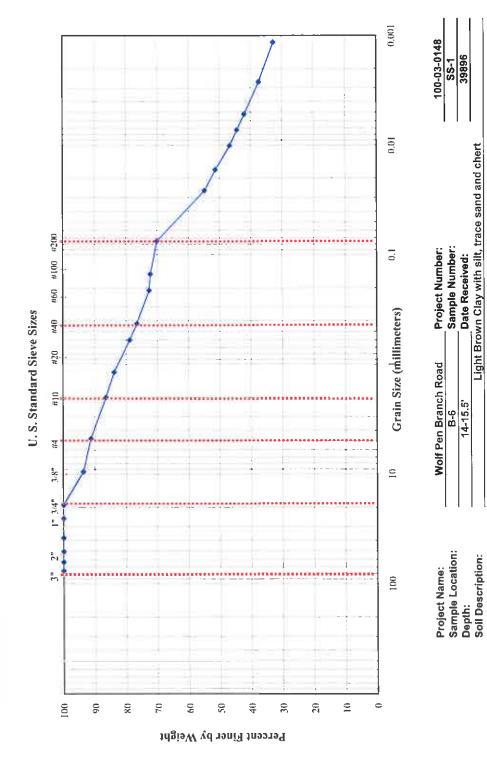
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-6 ST-3 7.5-9'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with sa	nd and trace chert fra	agments
Date Received:	3/24/2009		

		Liquid	l Limit		Pla	astic Content	
Tare No	1	2	3		4	5	
Wet Soil and Tare	23.16	22.99	25.06	1	20.52	21.56	
Dry Soil and Tare	20.76	20.47	21.84		19.36	20.17	
Wt. of Water	2.40	2.52	3.22]	1.16	1.39	
Tare Wt.	13.89	13.70	13.63]	13.94	13.79	
Dry Soil	6.87	6.77	8.21]	5.42	6.38	
Moisture content%	34.9	37.2	39.2]	21.4	21.8	
No. Of blows	35	28	17	1	Average:	22	
Required Blows	25-35	20-30	15-25			· .	

Phone: (502) 326-9023 Fax: (502) 326-9039

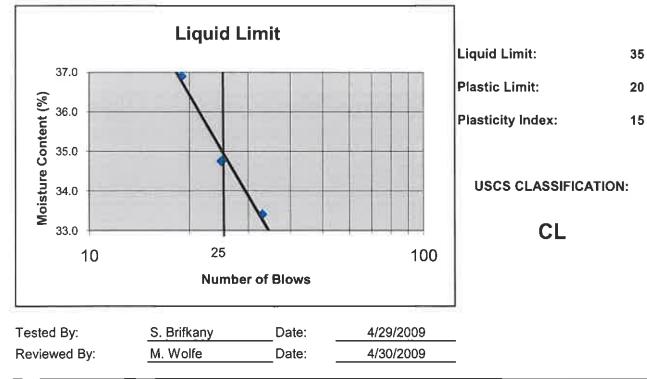
ST-3 39896


Light Brown Lean Clay with trace sand and chert fragments

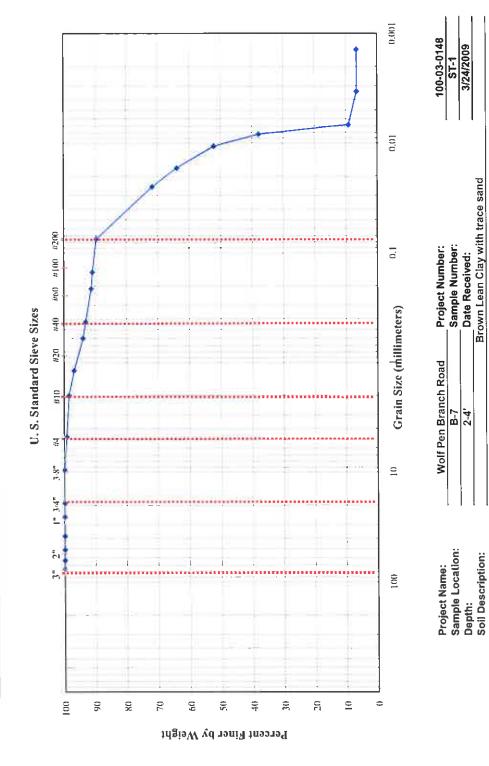
7.5' - 9.0'

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

				Gra	Grain Size Distrib	Distribution	100			
			Gravel	el		Sand		Fines		
Bould	ders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays	

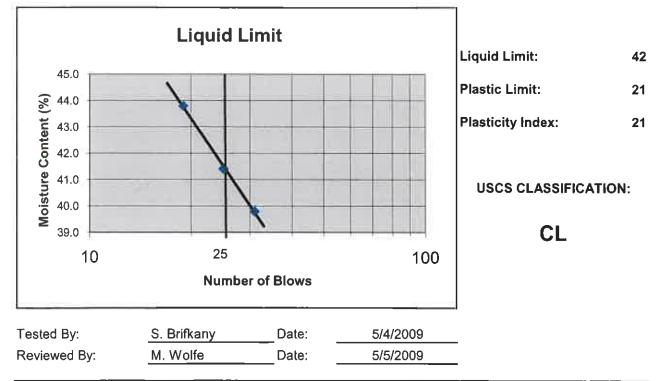

K. S. Ware and Associates, LLC 3600 Chamertain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

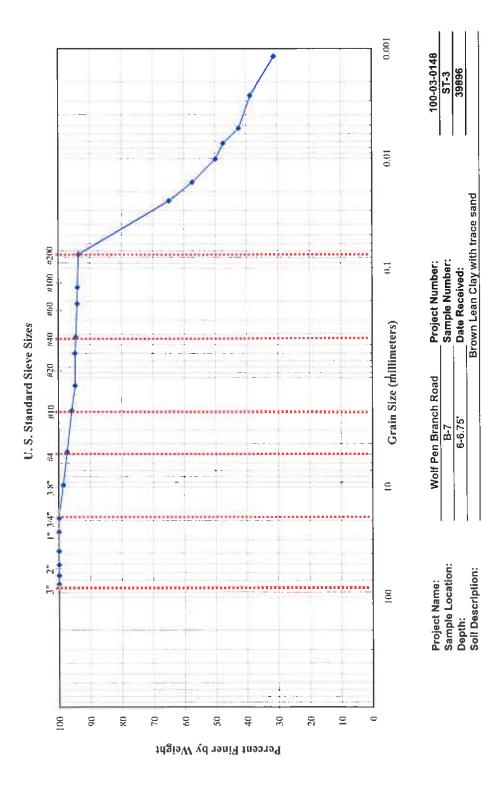

Project Name:	Wolf Pen Branch Road	Sample ID:	B-7 ST-1 2-4'
Project Number:	100-03-0148	Test Date:	4/29/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand and	d trace chert fragme	nts
Date Received:	3/24/2009		

		Liquid	l Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	25.65	23.87	24.44		20.20	22.17	
Dry Soil and Tare	22.65	21.26	21.58		19.16	20.82	
Wt. of Water	3.00	2.61	2.86		1.04	1.35	
Tare Wt.	13.67	13.75	13.83]	13.90	13.98	
Dry Soil	8.98	7.51	7.75]	5.26	6.84	
Moisture content%	33.4	34.8	36.9]	19.8	19.7	
No. Of blows	33	25	19		Average:	2	0
Required Blows	25-35	20-30	15-25				

			Gr	Grain Size Distrib	Distribution			
		Grave	vel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

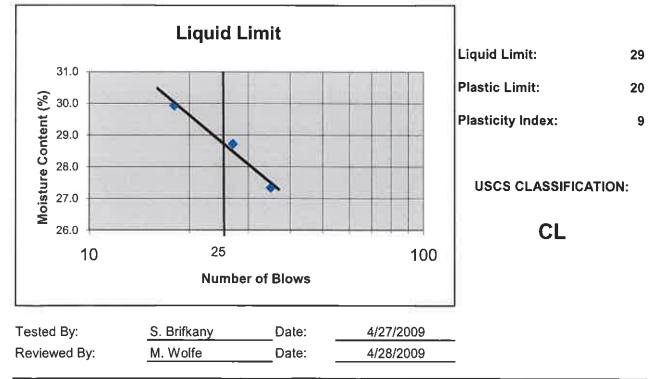

K. S. Ware and Associales, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-7 ST-3 6-6.75'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar a	and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand and	d trace chert fragmer	nts
Date Received:	3/24/2009		

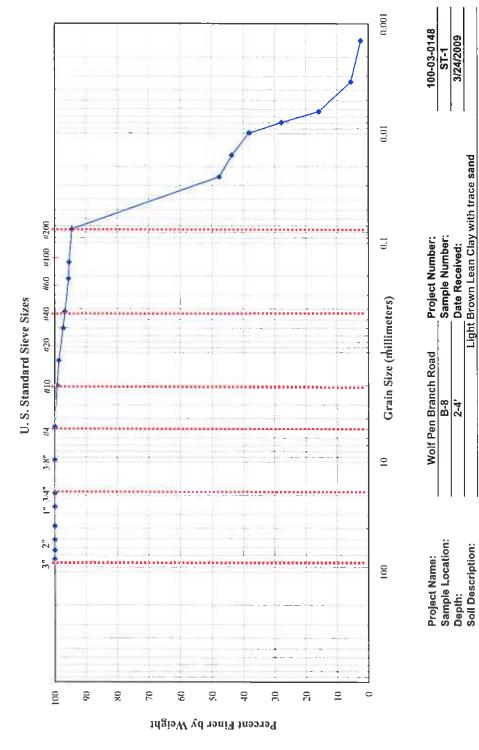
		Ĺiquio	Limit		Pla	astic Conter
Tare No	1	2	3		4	5
Wet Soil and Tare	2 5.51	25.82	24.50		19.52	21.42
Dry Soil and Tare	2 2.18	22.30	21.29		18.54	20.11
Wt. of Water	3.33	3.52	3.21		0.98	1.31
Tare Wt.	13.81	13.80	13.96]	13.89	13.76
Dry Soil	8.37	8.50	7.33		4.65	6.35
Moisture content%	39.8	41.4	43.8]	21.1	20.6
No. Of blows	31	25	19	1	Average:	21
Required Blows	25-35	20-30	15-25			

			Gra	in Size I	Grain Size Distribution			
		Gravel	vel		Sand		Fines	
Boulders	s Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

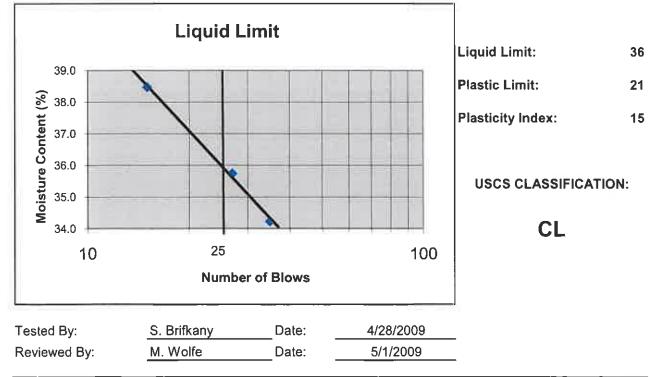
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-8 ST-1 2-4'
Project Number:	100-03-0148	Test Date:	4/27/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, I Tool	Metal Tares, Mortar a	and Pestel, Spatula, Grooving
Sample Description:	Light Brown Lean Clay with sar	nd and trace chert fra	agments
Date Received:	3/24/2009		

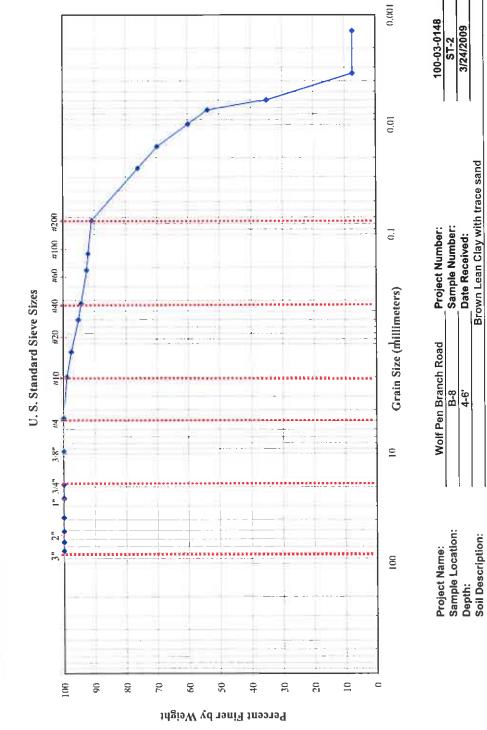

		Liquic	l Limit		Pla	astic Conte
Tare No	1	2	3		4	5
Wet Soil and Tare	26.76	23.28	24.83		20.68	20.93
Dry Soil and Tare	23.99	21.14	22.33	1	19.52	19.77
Wt. of Water	2.77	2.14	2.50		1.16	1.16
Tare Wt.	13.86	13.69	13.98	1	13.65	13.78
Dry Soil	10.13	7.45	8.35		5.87	5.99
Moisture content%	27.3	28.7	29.9		19.8	19.4
No. Of blows	35	27	18		Average:	20
Required Blows	25-35	20-30	15-25			

3/24/2009

Gravel Sand										
				Grav	el		Sand		Fines	
Boulders Cobbles Coarse Fine Coarse Medium Fine Sitt Siz	Bould	lders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

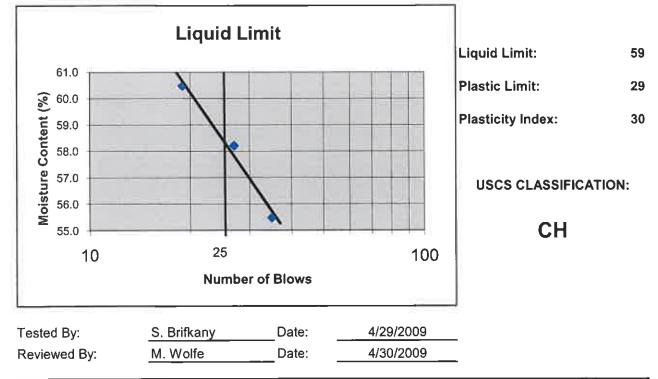
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-8 ST-2 4-6'
Project Number:	100-03-0148	Test Date:	4/28/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Brown Lean Clay with sand an	d trace chert fragme	nts
Date Received:	3/24/2009		

		Liquid	Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	24.88	23.53	24.21		20.86	20.38	
Dry Soil and Tare	22.08	21.80	21.29		19.62	19.22	
Wt. of Water	2.80	1.73	2.92]	1.24	1.16	
Tare Wt.	13.90	16.96	13.70		13.69	13.77	
Dry Soil	8.18	4.84	7.59]	5.93	5.45	
Moisture content%	34.2	35.7	38.5		20.9	21.3	
No. Of blows	35	27	15		Average:	2	1
Required Blows	25-35	20-30	15-25				

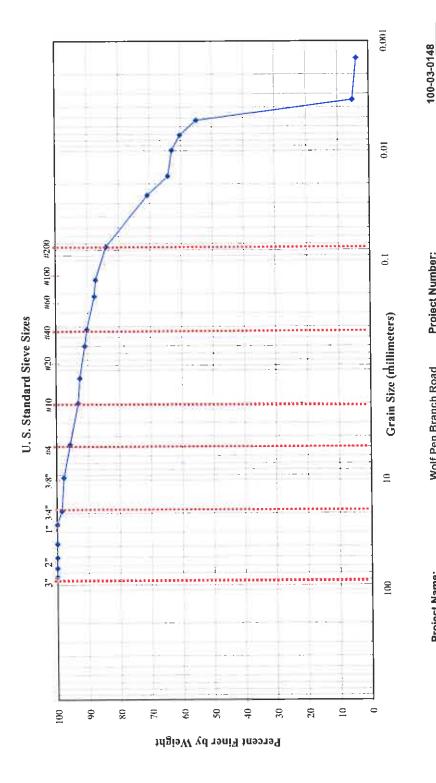
Phone: (502) 326-9023 Fax: (502) 326-9039

Brown Lean Clay with trace sand


K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suile 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolf Pen Branch Road	Sample ID:	B-8 ST-3 7-9'
Project Number:	100-03-0148	Test Date:	4/29/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale Tool	e, Metal Tares, Morta	r and Pestel, Spatula, Grooving
Sample Description:	Grey to Light Brown Clay wit	h silt, sand and trace	chert fragments
Date Received:	3/24/2009		


		Liquid	Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	22.74	25.58	21.65		20.13	20.04	
Dry Soil and Tare	19.50	21.22	18.65		18.67	18.67	
Wt. of Water	3.24	4.36	3.00		1.46	1.37]
Tare Wt.	13.66	13.73	13.69		13.84	13.76]
Dry Soil	5.84	7.49	4.96		4.83	4.91]
Moisture content%	55.5	58.2	60.5]	30.2	27.9]
No. Of blows	35	27	19		Average:	2	9
Required Blows	25-35	20-30	15-25				

			Gra	in Size I	Distribution			
		Gravel	/el		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

1

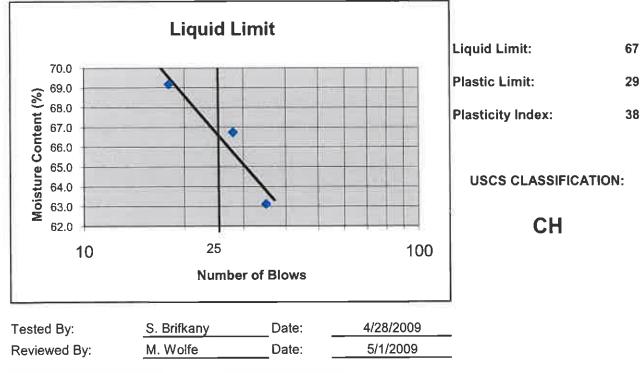
 B-B
 Project Number:
 10

 B-8
 Sample Number:
 3

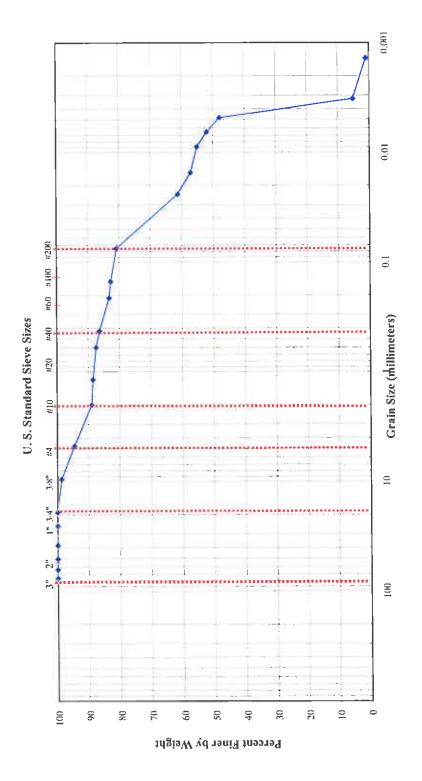
 7-9'
 Date Received:
 3

 Grey to Light Brown Clay, with slit, sand and trace chert fragments
 3
 Wolf Pen Branch Road B-8 7-9' Project Name: Sample Location: Depth: Soil Description:

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


ST-3 3/24/2009

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	B-8 ST-4 9-11'
Project Number:	100-03-0148	Test Date:	4/28/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Morta	ar and Pestel, Spatula, Grooving
Sample Description:	Brown Clay with silt, sand and	trace chert fragme	ents
Date Received:	3/24/2009		

	Γ	Liquid	Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	21.81	23.12	21.13]	18.69	19.25	
Dry Soil and Tare	18.73	20.27	18.19]	17.62	18.02	
Wt. of Water	3.08	2.85	2.94]	1.07	1.23	
Tare Wt.	13.85	16.00	13.94]	13.94	13.70	
Dry Soil	4.88	4.27	4.25]	3.68	4.32	
Moisture content%	63.1	66.7	69.2]	29.1	28.5	
No. Of blows	35	28	18]	Average:	2	9
Required Blows	25-35	20-30	15-25				

Grain Size Distribution	Gravel Sand Fines	
		Cobbles Coart

Phone: (502) 326-9023 Fax: (502) 326-9039

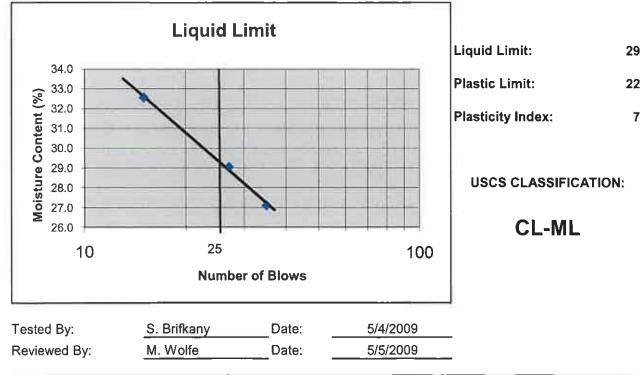
100-03-0148 ST-4 3/24/2009

h Road Project Number: Sample Number: Date Received: Brown Clay, with silt, trace sand and chert fragments

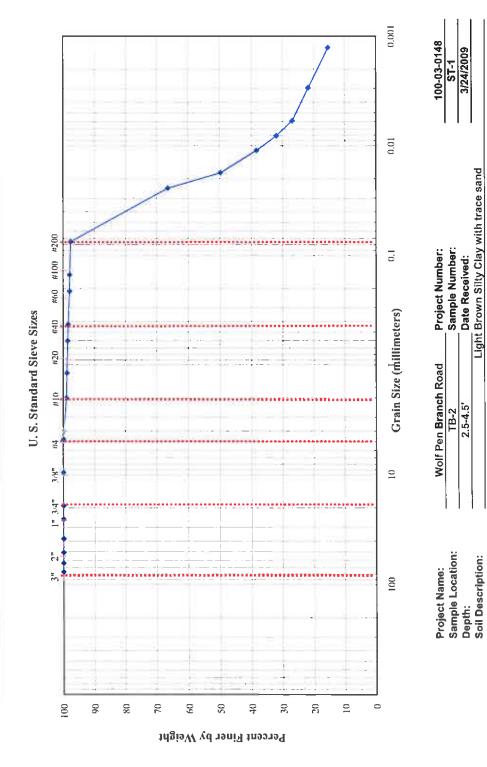
Wolf Pen Branch Road

B-8 9-11'

Project Name: Sample Location: Depth: Soil Description:


> K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

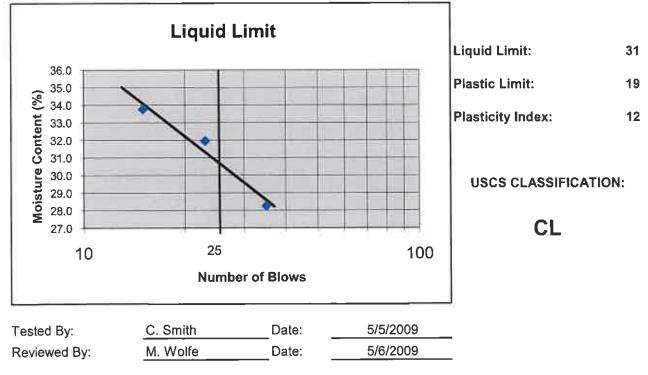
Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318


Project Name:	Wolf Pen Branch Road	Sample ID:	TB-2 ST-1 2.5-4.5'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Morta	ar and Pestel, Spatula, Grooving
Sample Description:	Light Brown Silty Clay with san	d and trace chert f	ragments
Date Received:	3/24/2009		

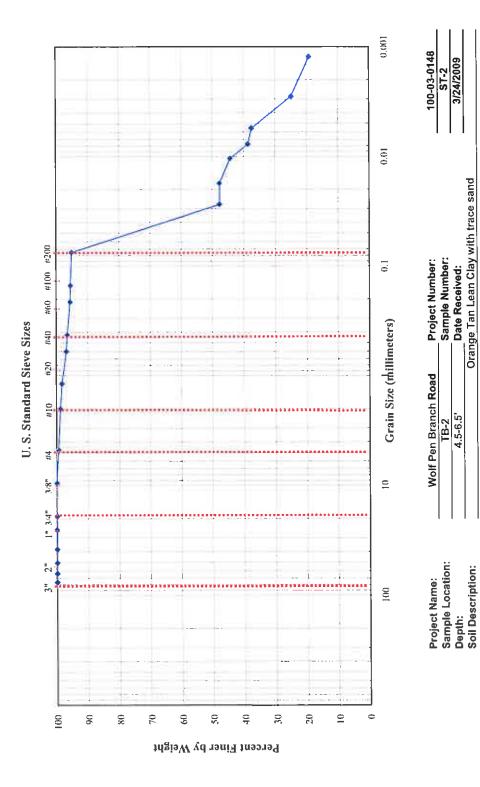
		Liquid	Limit		Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	22.88	23.69	26.15]	2 2.16	19.95	
Dry Soil and Tare	20.98	21.43	23.04]	20.66	18.82	
Wt. of Water	1.90	2.26	3.11]	1.50	1.13	
Tare Wt.	13.97	13.65	13.49]	13.68	13.73	
Dry Soil	7.01	7.78	9.55]	6.98	5.09	
Moisture content%	27.1	29.0	32.6]	21.5	22.2	
No. Of blows	35	27	15		Average:	2	2
Required Blows	25-35	20-30	15-25				

			1 1 1 1	Gra	Grain Size Distrib	Distribution			
			Grave	/el		Sand		Fines	
Bould	ders Co	obbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241


2.5-4.5' TB-2

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

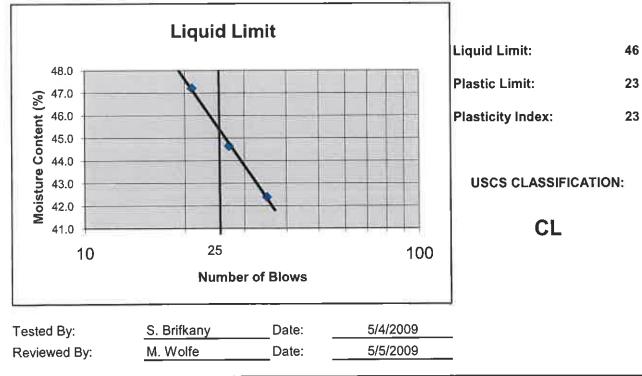

Project Name:	Wolf Pen Branch Road	Sample ID:	TB-2 ST-2 4-6'
Project Number:	100-03-0148	Test Date:	5/5/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale Tool	e, Metal Tares, Mor	tar and Pestel, Spatula, Grooving
Sample Description:	Orange Tan Lean Clay with s	and and trace cher	t fragments
Date Received:	3/24/2009		

		Liquid	Limit		- Pla	astic Cont	ent
Tare No	1	2	3		4	5	
Wet Soil and Tare	22.32	21.98	19.95		15.62	18.80	
Dry Soil and Tare	19.65	19.26	17.88	1	14.99	17.68	
Wt. of Water	2.67	2.72	2.07		0.63	1.12	
Tare Wt.	10.20	10.75	11.75		11.78	11.85	
Dry Soil	9.45	8.51	6.13]	3.21	5.83	
Moisture content%	28.3	32.0	33.8	1	19.6	19.2	
No. Of blows	35	23	15		Average:	1	9
Required Blows	25-35	20-30	15-25				

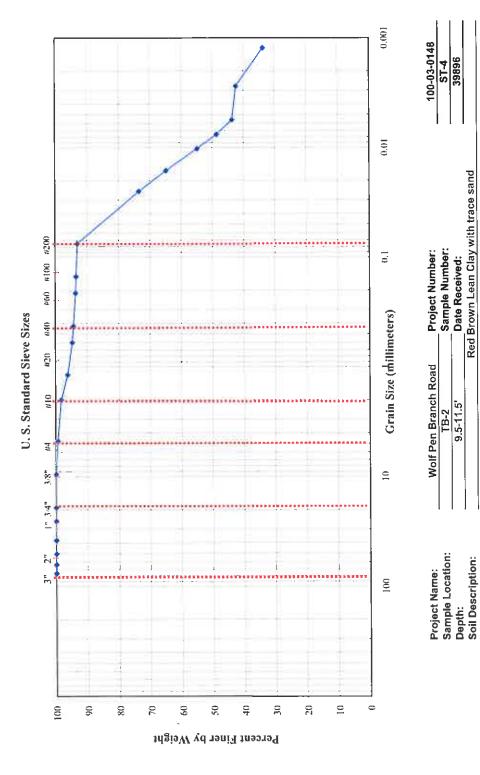
Phone: (502) 326-9023 Fax: (502) 326-9039

Orange Tan Lean Clay with trace sand

4.5-6.5


K. S. Ware and Associates, LLC 3600 Charnerlain Lane, Suite 610 Louisville, Kentcuky 40241

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

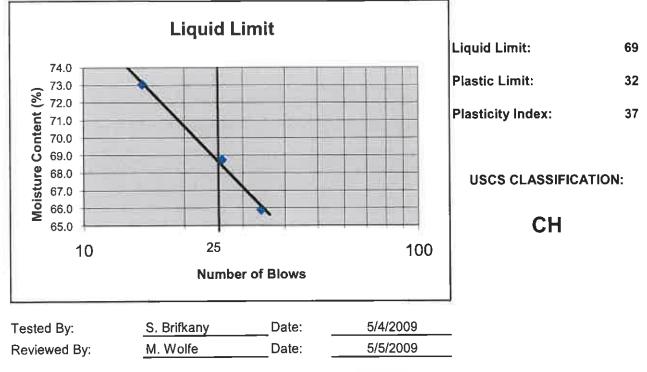

Project Name:	Woif Pen Branch Road	Sample ID:	TB-2 ST-4 9.5-11.5'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Red Brown Lean Clay with san	d and trace chert frag	gments
Date Received:	3/24/2009		

	N	Liquid	Limit		Pla	stic Content
Tare No	1	2	3		4	5
Wet Soil and Tare	21.84	23.97	24.19		22.03	22.32
Dry Soil and Tare	19.39	20.80	20.89	1	20.52	20.71
Wt. of Water	2.45	3.17	3.30		1.51	1.61
Tare Wt.	13.61	13.70	13.90		13.80	13.62
Dry Soil	5.78	7.10	6.99		6.72	7.09
Moisture content%	42.4	44.6	47.2]	22.5	22.7
No. Of blows	35	27	21		Average:	23
Required Blows	25-35	20-30	15-25			

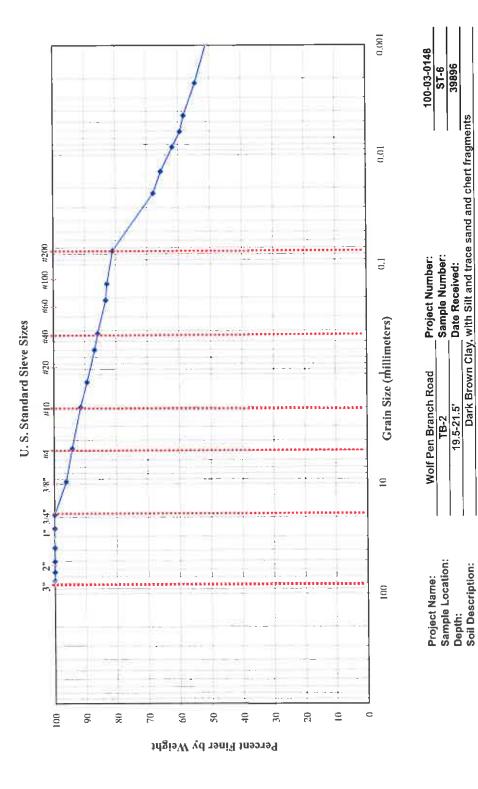
K. S. Ware and Associates, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kentcuky 40241

ST-4 39896

Red Brown Lean Clay with trace sand


TB-2 9.5-11.5'

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

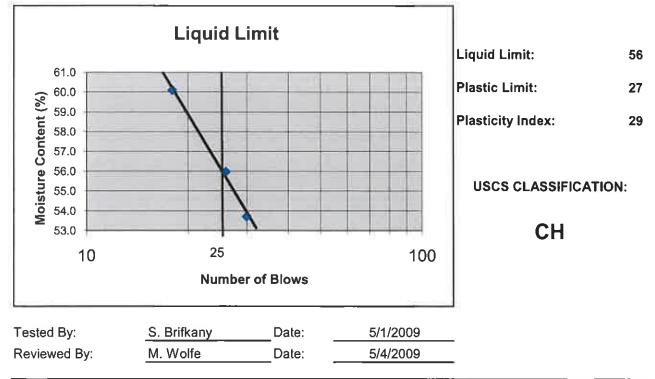

Project Name:	Wolf Pen Branch Road	Sample ID:	TB-2 ST-6 19.5-21.5'
Project Number:	100-03-0148	Test Date:	5/4/2009
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving
Sample Description:	Dark Brown Clay with silt, sand	I and trace chert frag	ments
Date Received:	3/24/2009		
			Vactic Contont

		Liquid	l Limit		Pla	istic Cont	ent
Tare No	1	2	3	I	4	5	
Wet Soil and Tare	23.90	23.03	26.12	1	20.80	21.50	
Dry Soil and Tare	19.90	19.27	21.00	1	19.11	19.61	i
Wt. of Water	4.00	3.76	5.12	1	1.69	1.89	
Tare Wt.	13.83	13.80	13.99	1	13.77	13.71	
Dry Soil	6.07	5.47	7.01	1	5.34	5.90	
Moisture content%	65.9	68.7	73.0	1	31.6	32.0	
No. Of blows	34	26	15	1	Average:	3	2
Required Blows	25-35	20-30	15-25	-			

	Fines	Fine Silt Sizes Clays
ze Distribution	Sand	se Medium
Grain Siz	ravel	Fine Coarse
	Gra	Coarse
		Cobbles
		Boulders

Phone: (502) 326-9023 Fax: (502) 326-9039

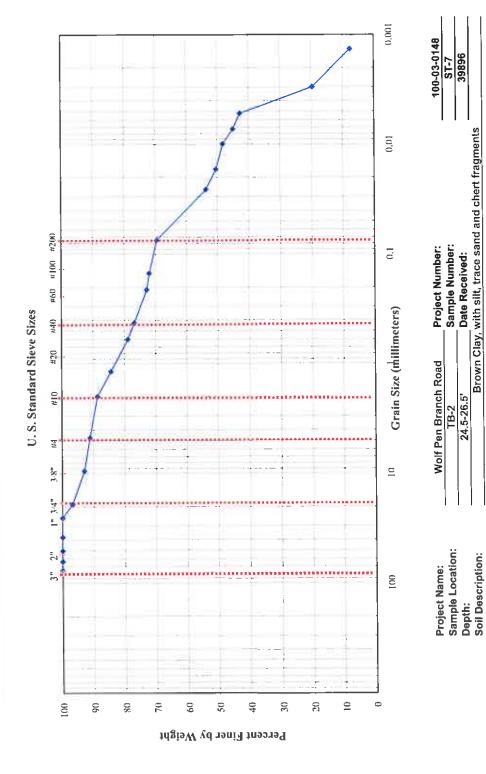
K. S. Ware and Associales, LLC 3600 Chamerlain Lane, Suite 610 Louisville, Kenlcuky 40241



K.S. Ware & Associates, L.L.C. Engineering, Environmental & Information Services

Report of Liquid Limit, Plastic Limit & Plasticity Index ASTM D4318

Project Name:	Wolfpen Branch Road	Sample ID:	TB-2 ST-7 25.5-26.7				
Project Number:	100-03-0148	Test Date:	5/1/2009				
Equipment Used:	LLD, Oven, Ohaus 3kg Scale, Tool	Metal Tares, Mortar	and Pestel, Spatula, Grooving				
Sample Description:	Brown Clay with silt, sand and trace chert fragments						
Date Received:	3/24/2009						


		Liquid	Limit		Pla	stic Conter
Tare No	1	2	3		4	5
Wet Soil and Tare	23.90	22.84	25.89		20.08	21.24
Dry Soil and Tare	20.49	19.56	21.31]	18.73	19.71
Wt. of Water	3.41	3.28	4.58		1.35	1.53
Tare Wt.	14.14	13.70	13.69]	13.69	13.99
Dry Soil	6.35	5.86	7.62		5.04	5.72
Moisture content%	53.7	56.0	60.1		26.8	26.7
No. Of blows	30	26	18		Average:	27
Required Blows	25-35	20-30	15-25			

K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210

			25	1 OZIC UIE	uonnaimsia			
		Grav	Sravel		Sand		Fines	
Boulders	Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt Sizes	Clays

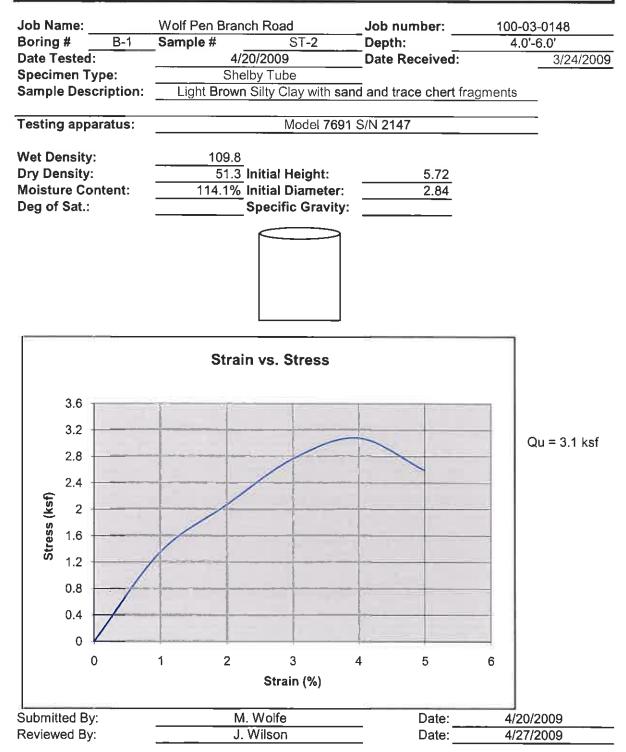
Phone: (502) 326-9023 Fax: (502) 326-9039

K. S. Ware and Associates, LLC 3600 Charnerlain Lane, Suite 610 Louisville, Kentcuky 40241

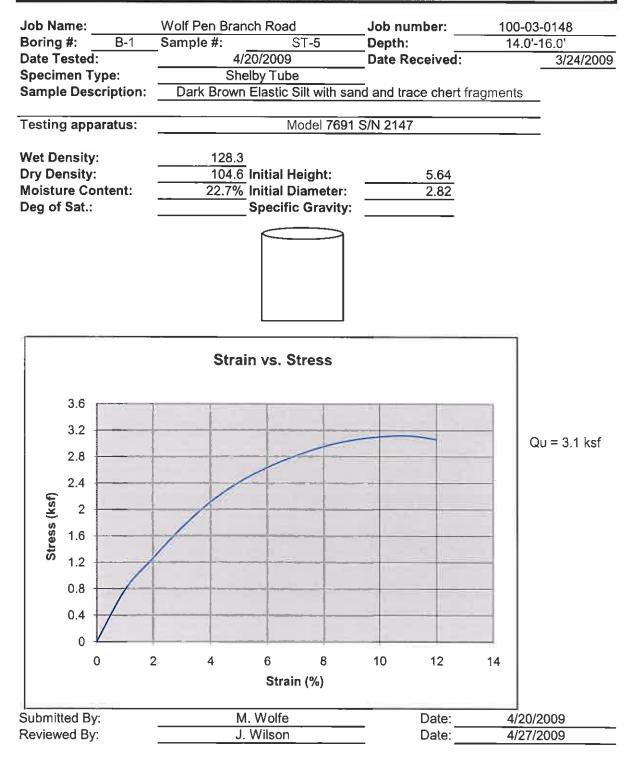
24.5-26.5' TB-2

K.S. Ware & Associates, L.L.C. Engineering, Environmental & Information Services

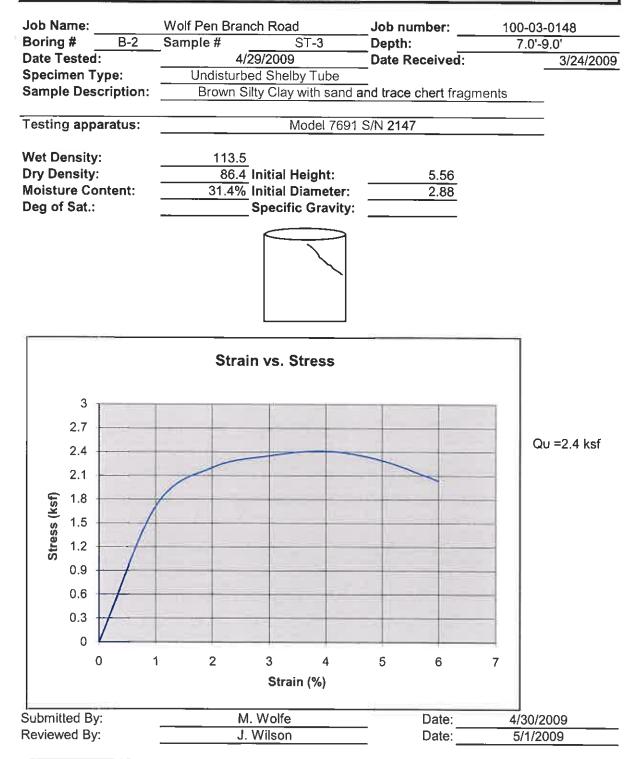
UNCONFINED COMPRESSIVE STRENGTH OF ROCK CORES (ASTM D2938)

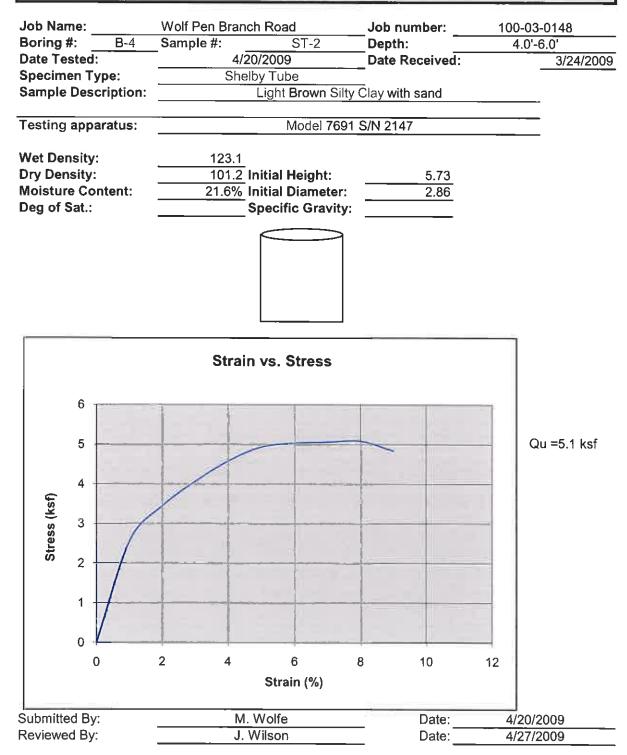

Project Name Client: Contractor:	9:		Branch Road	Project Num Client Job N		100-03-0148.001		
Core Descrip	otion:			3/24/	2009			
Boring No.	Depth	Average Dia.(in)	Average Length (in.)	Surface area(sq.in)	L/D Ratio	Load (Ib)	Corrected Strength (psi)	
B-1 Run 1	18.0-18.4	2.00	4.15	3.14	2.08	27760	8840	
B-2 Run 2	13.5-13.9	1.98	4.41	3.08	2.23	29490	9580	
B-3 Run 2	11.6-12.0	1.99	4.14	3.11	2.08	32200	10350	
B-4 Run 9	57.0-57.4	1.99	4.36	3.11	2.19	30610	9840	
B-4 Run 13	75.5-75.9	1.99	4.08	3.11	2.05	11400	3670	
B-5 Run 14	72.8-73.2	1.99	4.25	3.11	2.14	14070	4520	
B-5 Run 11	58.5-58.9	2.00	4.15	3.14	2.08	47590	15150	
B-7 Run 2	16.0-16.4	1.98	4.37	3.08	2.21	25060	8140	
B-7 Run 2	20.5-20.9	1.98	4.21	3.08	2.13	33290	10812	
B-8 Run 2	21.5-21.9	1.98	4.16	3.08	2.10	27030	8779	
TB-1 Run 2	17.5-17.9	1.98	4.21	3.08	2.13	28160	9146	
TB-2 Run 1	27.1-27.5	1.98	4.13	3.08	2.09	36290	11786	

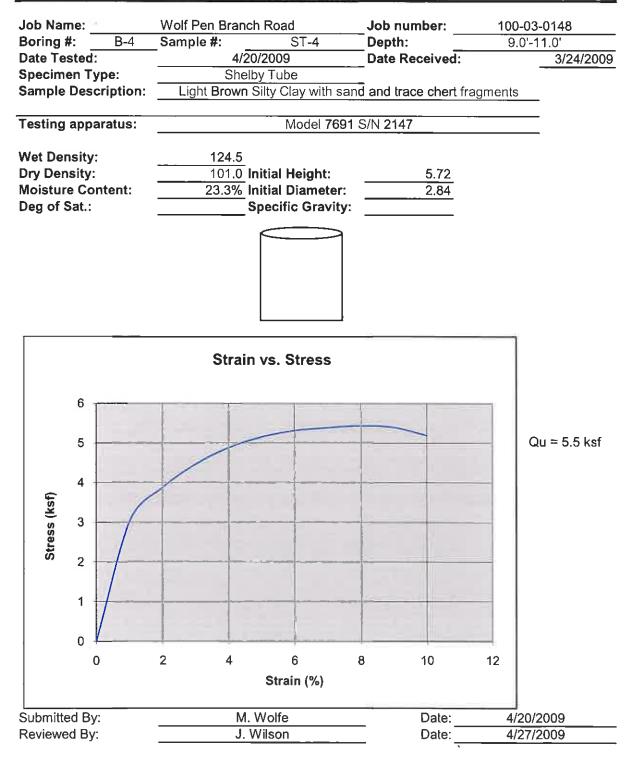
Remarks:

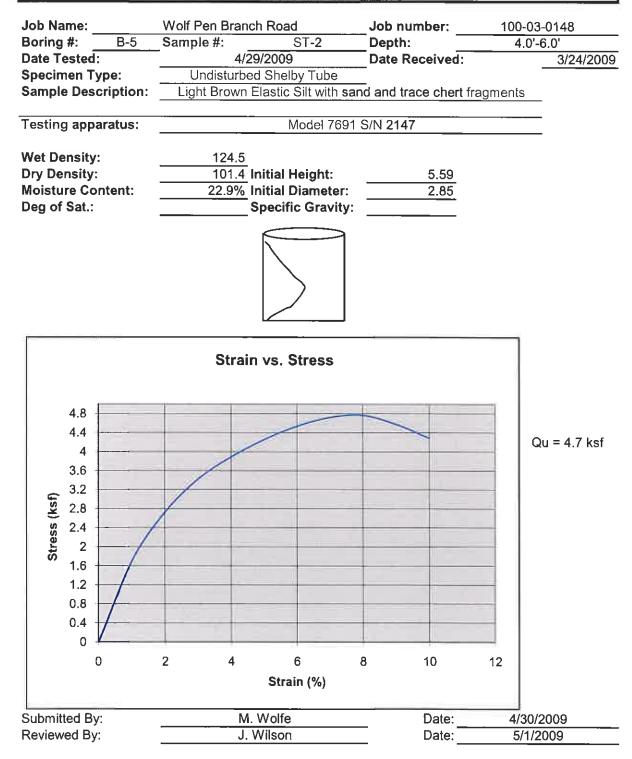

K. S. Ware and Associates, L.L.C. 54 Lindsley Ave Nashville, TN 37210 Date: 5/4/2009
Date: _____

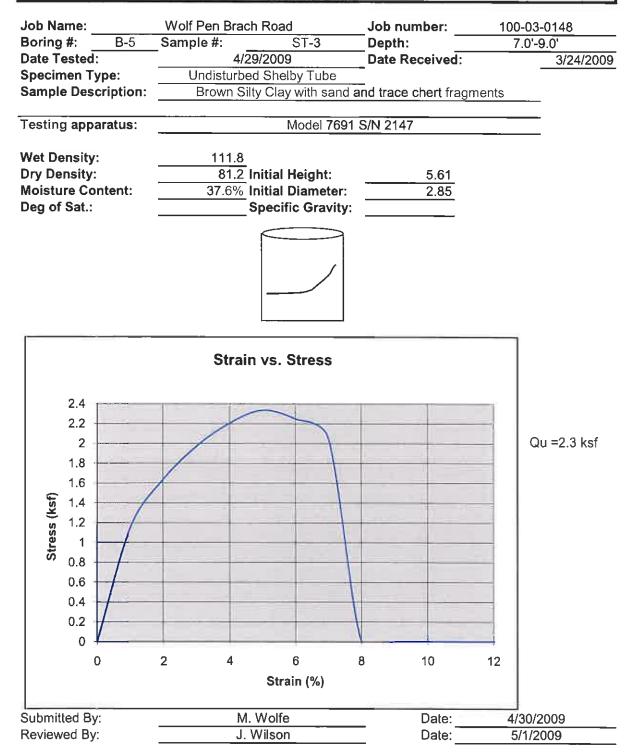
Phone (615) 255-9702 Fax (615) 256-5873

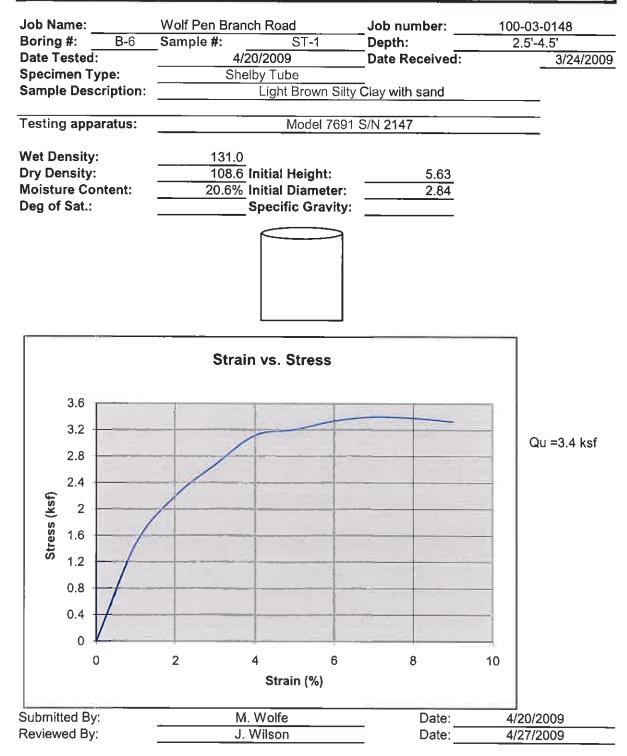


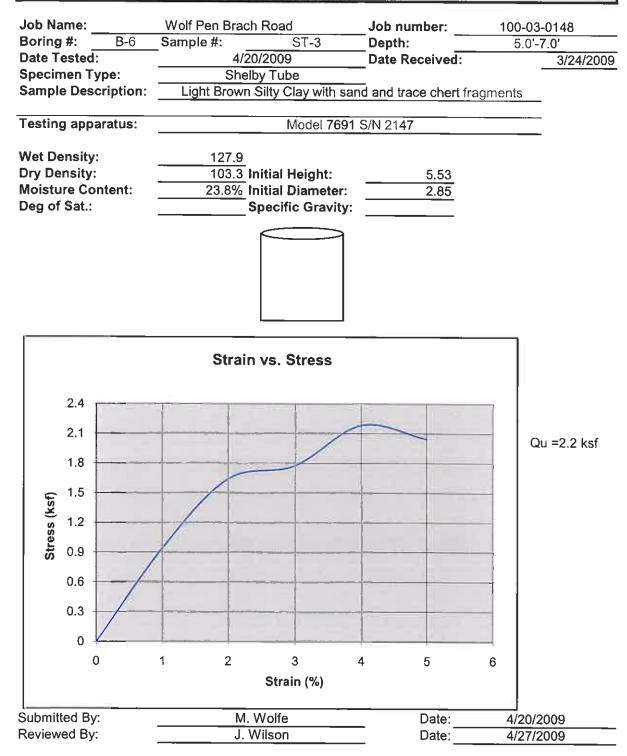


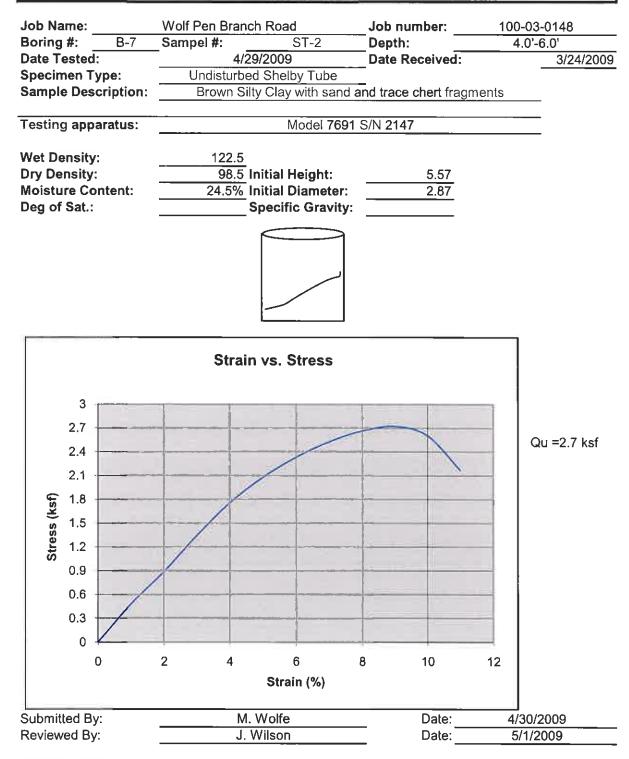


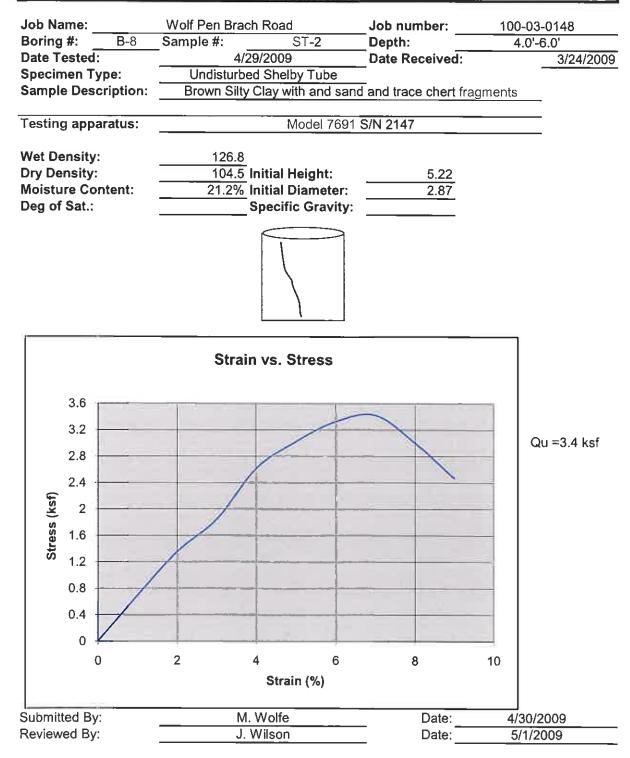


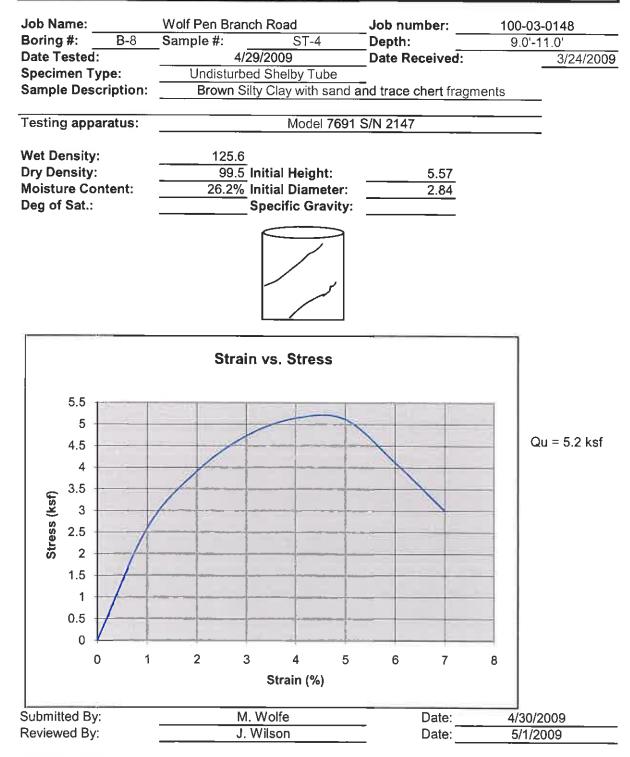


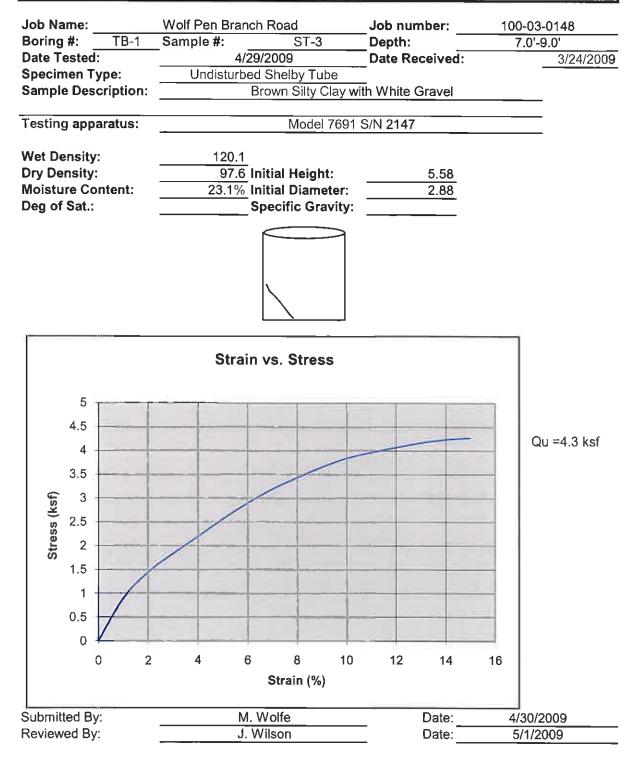


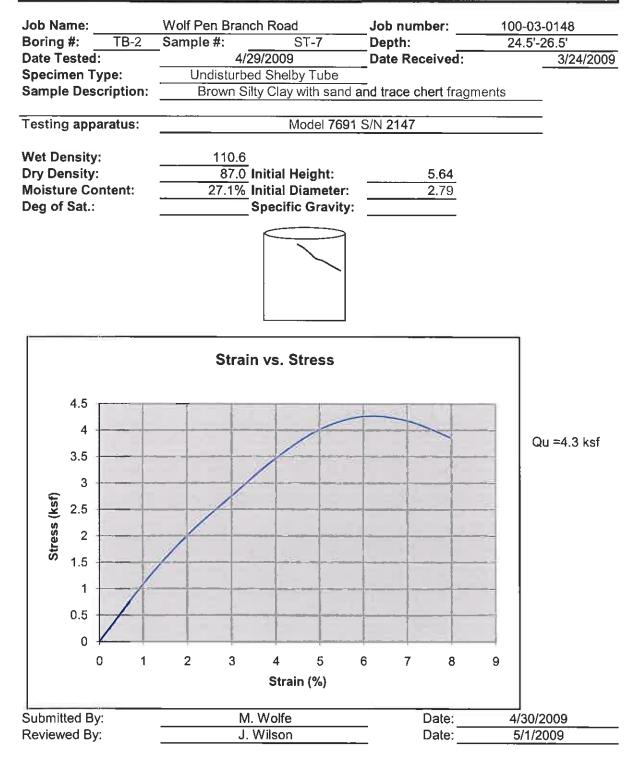


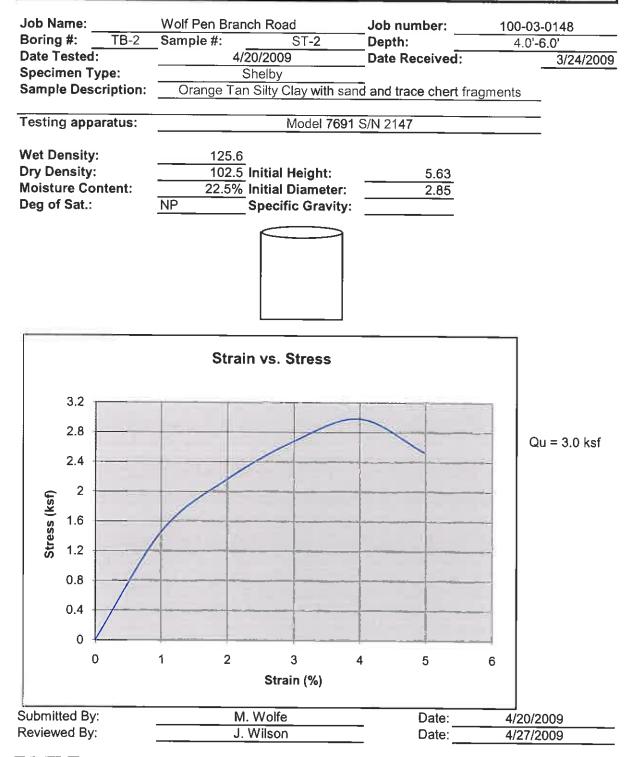




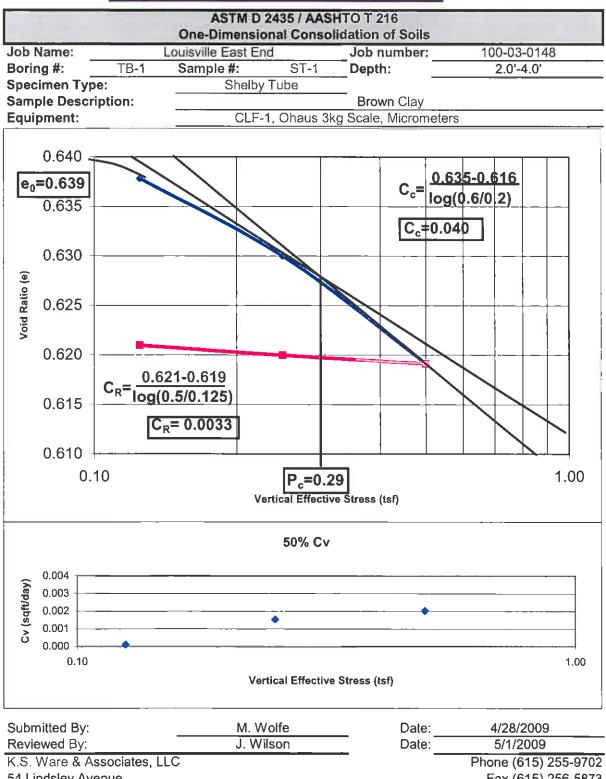


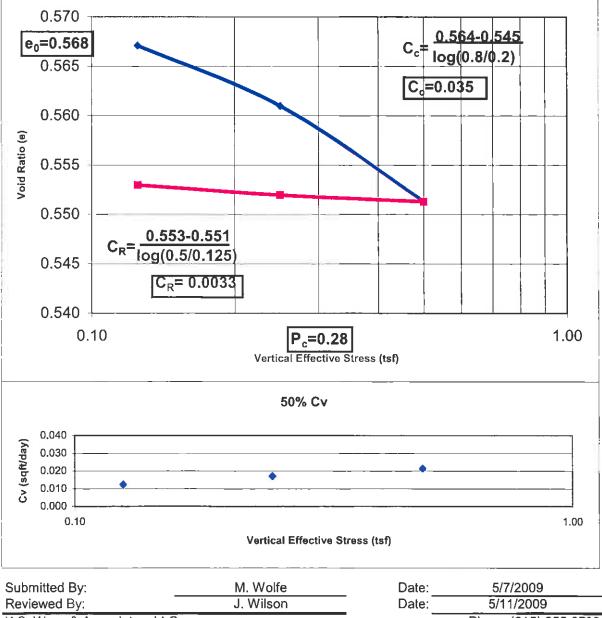












54 Lindsley Avenue

Fax (615) 256-5873

				HTO T 216 lidation of Soils				
Job Name:		Louisville East Er	nd	Job number:	100-03-0148			
Boring #:	B-1	Sample #: ST-2		Depth:	4.0'-6.0'			
Specimen Typ	e:	Shelby Tube						
Sample Descr	iption:			Brown Lean Clay				
Equipment:		CLF-	1, Ohaus 3	kg Scale, Micrometer	S			

K.S. Ware & Associates, LLC 54 Lindsley Avenue Phone (615) 255-9702 Fax (615) 256-5873

APPENDIX G:

ROCK CORE PHOTOS

B-1 Rock Core Samples: 17.4' to 27.1'.

B-1 Rock Core Samples: 27.1' to 29.5'.

B-2 Rock Core Samples: 9.7' to 19.2'.

B-2 Rock Core Samples: 19.2' to 22.8'.

B-3 Rock Core Samples: 3.0' to 12.1'

B-3 Rock Core Samples: 12.1' to 22.1'.

B-4 Rock Core Samples: 13.6' to 23.6'.

B-4 Rock Core Samples: 23.6' to 33.6'.

B-4 Rock Core Samples: 33.6' to 44.0'.

B-4 Rock Core Samples: 44.0' to 52.1'.

BSWA Project NO. 100-03-0148 KYTC Project NO. 5-731.00 Boring NO. B-4 Depth 52.1' - 62.0' Box 5 of 7 18

B-4 Rock Core Samples: 52.1' to 62.0'.

B-4 Rock Core Samples: 62.0' to 71.5'.

B-4 Rock Core Samples: 71.5' to 77.1'.

B-5 Rock Core Samples: 11.9' to 22.7'.

KSWA Proyed NO. HO-05-0145 KTTL Project NO. 5-731.00 ming NO. B-5 Depth 22.7'- 32.0' Box 2 0F 7 R- 4 R-5 R-s R-5

B-5 Rock Core Samples: 22.7' to 32.0'.

B-5 Rock Core Samples: 32.0' to 41.2'.

B-5 Rock Core Samples: 41.2' to 50.7'.

B-5 Rock Core Samples: 50.7' to 61.3'.

KSINA Project NO. 100-03-0148 KYTC Project NO. 5-731.00 Boring NO. B-5 Depth 61.3' - 70.0' Box 6 of 7 18 19 ----12 12 HO 12 12 12

B-5 Rock Core Samples: 61.3' to 70.0'.

B-5 Rock Core Samples: 70.0' to 76.4'.

B-6 Rock Core Samples: 16.5' to 25.5'.

B-6 Rock Core Samples: 25.5' to 31.5'.

KSWA Project NO. 100-03-014-8 KYTC Project NO. 5-731.00 Boring NO. B-7 Depth 9.0'- 18.5' Box 1 OF 3 TOP > R-1 R-J R-1 410 K-c 8.5-24 dH. 2-1 10, 24

B-7 Rock Core Samples: 9.0' to 18.5'.

B-7 Rock Core Samples: 18.5' to 28.6'.

B-7 Rock Core Samples: 28.6' to 31.4'.

B-8 Rock Core Samples: 11.9' to 21.9'.

B-8 Rock Core Samples: 21.9' to 30.6'.

TB-1 Rock Core Samples: 13.8' to 24.0'.

TB-1 Rock Core Samples: 24.0' to 30.2'.

TB-2 Rock Core Samples: 26.5' to 35.3'.

TB-2 Rock Core Samples: 35.3' to 39.3'.

APPENDIX H:

IDEALIZED SOIL PROFILES

Kennedy Interchange Wolf Pen Branch Road Bridge

Borings B-1 through B-3

Elev	vximate ration ft.)	Approx	kimat (ft.)	e Depth	Stratigraphy						
601.5	- 608.7		0.0		Description	Parameters					
					Surface Materials (Topsoil or Asphalt and Basestone)						
600.7	- 607.9	0.8	-	1.0	Medium Stiff to Very Stiff Lean Clay (CL, ML and CL-ML)	V_{f} (lb/ft ³) = 120 $C_{u}(psf) = 1400$					
591.3	- 599.0	3.0	-	17.4	Auger Refusal Core Started	P-Y Curve Reference Number 2					
					Weathered Limestone	P-Y Curve Reference Number 6					
585.0	- 597.3	4.7		18.8	RDZ Zone						
					Limestone	P-Y Curve Reference Number 6					
578.7	- 579.9	22.1	-	29.6	Boring Terminated						
		\mathbf{V}_{t} (lb/ft ³)	= l	Jnit Density (Above Water Table) C _u (tsf)	= Undrained Shear Strength					

Kennedy Interchange Wolf Pen Branch Road Bridge

Borings B-4 and B-5

Appr Ele			Approx	kimate (ft.)	e Depth	Stratig	graphy
611.1	-	612.3		0.0		Description	Parameters
609.9		611.0	1.2	_	1.3	Surface Materials (Asphalt and Basestone)	
	-		1.2		1.5	Medium Stiff to Very Stiff Lean Clay (CL, ML and CL-ML)	\mathbf{Y}_{t} (lb/ft ³) = 120 $\mathbf{C}_{u}(psf) = 1400$ P-Y Curve Reference Number 2
607.1	-	608.3		4.0		Medium Stiff to Very Stiff Clay with Silt (CH)	\mathbf{V}_{t} (lb/ft ³) = 120 $\mathbf{C}_{u}(psf) = 1400$ P-Y Curve Reference Number 2
597.5	-	600.5	11.8	-	13.6	Auger Refusal Core Started Weathered Limestone	
594.8	-	595.5	15.6	-	17.5	RDZ Zone	P-Y Curve Reference Number 6
541.5	_	542.3	69.6	_	70.0	Limestone	P-Y Curve Reference Number 6
						Shale	
534.0	-	534.8	77.1	-	77.5	Boring Terminated	<u> </u>
			V _t (lb/ft ³)	= U	nit Density (Above Water Table) C _u (tsf)	= Undrained Shear Strength

Kennedy Interchange Wolf Pen Branch Road Bridge

Borings B-6 through B-8

Eleva	proximate Elevation Approximate Depth (ft.) (ft.)		e Depth	Stratigraphy					
616.5	- 618.1		0.0		Description	Parameters			
					Surface Materials (Topsoil or Asphalt and Basestone)				
615.8	- 616.9	0.7	-	1.4	Medium Stiff to Very Stiff Lean Clay (CL, ML and CL-ML)	\mathbf{V}_{t} (lb/ft ³) = 120 $\mathbf{C}_{u}(\text{psf}) = 1400$ P-Y Curve Reference Number 2			
600.0	- 609.1	9.0	-	16.5	Auger Refusal Core Started				
598.7	- 601.2	16.9		17.8	Weathered Limestone	P-Y Curve Reference Number 6			
550.7	- 001.2	10.5	-	17.0	Limestone	P-Y Curve Reference Number 6			
584.4	- 586.7	30.6	-	32.1	Boring Terminated				
		\mathbf{Y}_{t} (lb/ft ³)	= (Jnit Density (Above Water Table) C _u (tsf)	= Undrained Shear Strength			

Kennedy Interchange Wolf Pen Branch Road Temporary Diversion Bridge

Borings TB-1 and TB-2

Appro Elev (f			Approx	imate (ft.)	e Depth	Stratigraphy						
609.0	- (621.5		0.0		Description	Parameters					
608.0	- (620.7	0.8	-	1.0	Surface Materials (Topsoil)	V_{t} (lb/ft ³) = 120 $C_{u}(psf) = 1400$					
599.0	- (602.0	10.0	_	19.5	Medium Stiff to Very Stiff Lean Clay (CL, ML and CL-ML)	$\mathbf{V}_{\mathbf{f}}$ (ID/IT) = 120 $\mathbf{C}_{\mathbf{u}}(\text{psi})$ = 1400 P-Y Curve Reference Number 2					
000.0	-	<i>702.0</i>	10.0		10.0	Medium Stiff to Very Stiff Clay with Silt (CH)	\mathbf{Y}_{t} (lb/ft ³) = 120 $\mathbf{C}_{u}(psf) = 1400$ P-Y Curve Reference Number 2					
595.0	- 4	595.2	13.8	-	26.5	Auger Refusal Core Started Weathered Limestone						
593.4	- 4	595.0	15.6	-	26.5	RDZ Zone	P-Y Curve Reference Number 6					
578.8		582.2	30.2	_	39.3	Limestone	P-Y Curve Reference Number 6					
570.0	- ;	JUZ.Z	50.2	-	33.3	Boring Terminated						
			\mathbf{Y}_{t} (lb/ft ³)	= L	Init Density (Above Water Table) C _u (tsf)	= Undrained Shear Strength					

APPENDIX I:

COORDINATE DATA SUBMISSION FORM

COORDINATE DATA SUBMISSION FORM KYTC DIVISION OF STRUCTURAL DESIGN -- GEOTECHNICAL BRANCH

County	Jeffe	erson	Date	5/1/2009	
Road Number	Wolf Pen Branch Road		-		
Survey Crew / Consultant	K. S. Ware & Associates, LLC		-	Notes:	
Contact Person	John D. Goo	lfrey Jr., P.E.	-	All coordinates should be NAD	-83 Latitude.
Item #		8.18	-	Longitude in Decimal Degrees	,
-			-	Longitude in Decimal Degrees	
MARS #		24166			
Project #	5-73	1.00			
-	•	Mark one)			
Elevation Datum	Sea Level	Assumed			
HOLE NUMBER	STATION	OFFSET	ELEVATION (ft)*	LATITUDE	LONGITUDE
B-1 ¹	48+10.5	18' LT	608.7	38.320506	85.614097
B-2 ¹	48+19.4	2' LT	601.5	38.320486	85.614011
B-3 ¹	48+28.2	22' RT	602.0	38.320472	85.613906
B-4 ¹	49+94.2	8' LT	611.1	38.320811	85.613492
B-5 ¹	50+02.6	8' RT	612.3	38.320797	85.613436
B-6 ¹	51+34.1	19' LT	616.5	38.321100	85.613122
B-7 ¹	51+43.0	6' LT	618.1	38.321075	85.613042
B-8 ¹	51+51.9	13' RT	617.7	38.321061	85.613992
TB-1 ²	36+71.0	6' LT	609.0	38.320567	85.614358
TB-2 ²	38+39.4	6' RT	621.5	38.320847	85.613833
HOLE					
NUMBER	STATION	OFFSET	ELEVATION (ft)	LATITUDE	LONGITUDE
		-			
 1. Ctationing from Wolf	 Dan Branch D				
¹ - Stationing from Wolf	Pen Branch R	oad			
² - Stationing from Diver	SION NO. 1				