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My Background
• BSc – Civil Engineering, Virginia Tech
• MSc – Environmental Engineering, Virginia Tech
• PhD – Life sciences Microbiology, Eawag/ETH Zurich, CH

• MSc and PhD work – Legionella and ecology in plumbing

• Postdoc – Engineering – Purdue 
• Assistant Professor – Agricultural and Biological Engineering & 

Environmental and Ecological Engineering – Purdue 
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A cute rubber duck

Neu et al. (2018) NPJ 
Biofilms & Microbiomes
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A (not-so) cute rubber duck

Neu et al. (2018) NPJ 
Biofilms & Microbiomes
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Shower hoses – suitable for bacterial growth

• Low or no disinfectant residual left

• Warm temperature [20 – 45 °C]

• Unknown, uncontrolled, 

questionable materials inside 

[silicone, PVC-P, PEX, rubber, etc.]

• Long stagnation [23.5 hours]

Proctor, C.R., et al. (2017). Water Res. 
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Biofilms are inevitable. But are they a problem?

Biofouling

Home to pathogens

Biofilm à water (à aerosols à lungs)

Difficult to remove

> Shapes system microbiome
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Legionella gets a lot of attention…
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Organism
Infection 
incidence 

(/yr)

Direct 
Healthcare 

cost ($)

Deaths 
(/year) Reportable

L. pneumophila 8000-
50,000 402 million 995 Yes - CDC

Nontuberculous 
mycobacteria 

(NTM)
86,244 1.53 billion 3800 In certain states

P. aeruginosa 
(pneumonia 

disease)
453 million 730

In certain states 
if antibiotic 

resistant

Tenets of a holistic approach to drinking water-associated 
pathogen research, management, and communication

Proctor et al. 2022. Water Research. 
Tenets of a holistic approach …

Other DWPI: Other Legionella species (e.g., L. longbeachae, micdadei, bozemanii, L. dumoffi) ; Burkholderia cepacian 
complex ; Achromobacter; Stenotrophomonas maltophila, Acinetobacter baumannii, Sphingomonas paucimobili, Aeromonas 
hydrophila , Hartmanella (Vermamoeba), Acanthamoeba –, Naeglaria fowleri ,  Balamuthia mandrillaris

• These cost the US 
economy $2.39 
billion annually, 
with new ones 
continuously being 
discovered

… but there are many problematic organisms
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Disinfectant survival
§ C*T – difficult to compare
§ Need – measure all 3 (and more) 

in same experiments

DWPI
Disinfectant

Chloramine Free 
chlorine

L. pneumophila effective resists
NTM resists resists
P. aeruginosa effective resists

Antibiotic resistance
§ Different antibiotics used
§ NTM has higher resistance

Legionella

e.g., Pryor et al. 2004

NTM

Each organism is different

Proctor et al. 2022. Water Research. 
Tenets of a holistic approach …
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Choice of pipe material à shapes system 
microbiome



11

Photos courtesy of Dr. Frederik Hammes, Eawag

Material – food for bacteria
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Plastic Pipe #1 Plastic Pipe #2

Material – food for bacteria (selection)
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C D A B E F

A – PE-Xc, hard plastic - control

B – PE-X*, drinking water hose

C – silicone

D – Unknown, antibiotic coating

E – PVC-P, with ash, expensive

F –  PVC-P, cheap

Material shapes the shower hose microbiome

Proctor et al. (2016) Env. Sci.: 
Water Research & Tech
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Relative 
Abundance

%
(16S amplicon 

sequencing)

Absolute
Abundance

gc/cm2

(16S rRNA 
gene copies)

Calculated 
Abundance

(gene copy/cm2)

x

=

Material shapes the shower hose microbiome

Proctor et al. (2016) Env. Sci.: 
Water Research & Tech

Trade-offs between DWPI – holistic approach needed
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Stagnation Water sitting still in pipes
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• Discrete sampling 

• Cannot measure directly inside a hose

• Cannot eliminate effects of flow rate

Measuring bacterial shifts in pipes
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Measuring bacterial shifts in pipes
• Continuous sampling 

• Measurement directly inside the shower hose

• Measure during flow and stagnation

• Discrete sampling 

• Cannot measure directly inside a hose

• Cannot eliminate effects of flow rate

Flow cytometer
Real-time FCM 

attachment
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15m 0.0s 1h 0m 0.0s 1h 45m 0.0s

103
105.

6
104

105
FL1

-A

Time

A01 2015-09-17__RTinpipe_23ho
Gate: [No Gating]

0 90

shower 
starts

shower 
stops

time (min)

bacteria

inorganic 
particles

24 hours 
stagnant

increasing stagnationflushing fingerprint

Measuring bacterial shifts in pipes

Each dot represents a particle. 
More dots means more bacteria.

Continuous in-situ measurement during flow and stagnation
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Measuring bacterial shifts in pipes
Continuous in-situ measurement during flow and stagnation
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Continuous in-situ measurement during flow and stagnation
Measuring bacterial shifts in pipes

Biofilm affects a consumers’ 
exposure throughout a shower. 
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FLUSHING - Periodically introduce bacteria

Water #1 Water # 2
Frequency controls levels of stress, nutrients
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• 4 identical plumbing systems
• Each system has: 

• Water softener
• Water heater – used as a storage 

tank
• Triplicate 50’ loops of copper pipe

Controlled plumbing systems
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• 10 minute flush 
per line

• Daily
• Weekly
• Extended

• Biweekly 
• Monthly 

Intermittent flow 
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Highest in “daily” flush wall, in copper pipes -- potential scale build-up 
with stagnation? 

COPPER
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Heater (storage)

Copper pipes

Influent

Time for growth, 
but also reduced 
frequency of 
nutrient addition

TOTAL 
CELLS
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Katherine S. Dowdell1,** and Hannah D. 
Greenwald2,**, Sayalee Joshi3,4, Marianne 
Grimard-Conea5, Sarah Pitell6, Yang Song7, 
Christian Ley8,13, Lauren C. Kennedy2,9, Solize 
Vosloo16, Linxuan Huo10, Sarah-Jane Haig6,11, 
Kerry A. Hamilton3,4, Kara L. Nelson2, Ameet 
Pinto10, Michele Prévost5, Caitlin R. Proctor12,13 

, Lutgarde M. Raskin1, Andrew J. Whelton13,14, 
Emily Garner15*, Kelsey J. Pieper16,*, and 
William J. Rhoads17*

Katherine Dowdell

Hannah Greenwald

Legionella pneumophila occurrence in 
reduced-occupancy buildings in 11 cities 
during the COVID-19 pandemic
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More common 
in buildings w/ 
free chlorine

Still an issue in individual buildings

Culturable Legionella pneumophila across 11 cities
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Controlling biofilms Using selection, dispersal, 
and bacteria movement 
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attachment

disinfectant residuals,
high temperatures

substrate leaching biofilm inhibition
`

pipe material influences

transport
(flow, stagnation)

water nutrients

detachment

Divert/discard 
stagnant first flush

Controlling biofilm
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reservoirs

biofiltration
(= growth)

oxidation
(= disinfection)

no treatment (raw water?)

source water treatment

chlorination
(= disinfection)

Groundwater
Surface water
Sea water
Reclaimed water

final meters of 
distribution

distribution network

103 – 105 cells/mL

building

103 – 107 
cells/mL

Controlling biofilm
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Simplify the building 
plumbing system.

Control biofilters in the 
treatment plant  –

release a designed, 
benign, competitive 
bacterial community

Add controlled 
biofilters before the 
house or the shower

Controlling biofilm
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Safer biofilms

Current control mechanisms 
fail

Creativity needed
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Thanks for your time. Caitlin R Proctor
Caitlin-Proctor@purdue.edu


